1 /* 2 * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it would be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 11 * 12 * Further, this software is distributed without any warranty that it is 13 * free of the rightful claim of any third person regarding infringement 14 * or the like. Any license provided herein, whether implied or 15 * otherwise, applies only to this software file. Patent licenses, if 16 * any, provided herein do not apply to combinations of this program with 17 * other software, or any other product whatsoever. 18 * 19 * You should have received a copy of the GNU General Public License along 20 * with this program; if not, write the Free Software Foundation, Inc., 59 21 * Temple Place - Suite 330, Boston MA 02111-1307, USA. 22 * 23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, 24 * Mountain View, CA 94043, or: 25 * 26 * http://www.sgi.com 27 * 28 * For further information regarding this notice, see: 29 * 30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ 31 */ 32 33 #include "xfs.h" 34 #include "xfs_macros.h" 35 #include "xfs_types.h" 36 #include "xfs_inum.h" 37 #include "xfs_log.h" 38 #include "xfs_ag.h" 39 #include "xfs_sb.h" 40 #include "xfs_trans.h" 41 #include "xfs_dir.h" 42 #include "xfs_dir2.h" 43 #include "xfs_dmapi.h" 44 #include "xfs_mount.h" 45 #include "xfs_error.h" 46 #include "xfs_bmap_btree.h" 47 #include "xfs_alloc.h" 48 #include "xfs_attr_sf.h" 49 #include "xfs_dir_sf.h" 50 #include "xfs_dir2_sf.h" 51 #include "xfs_dinode.h" 52 #include "xfs_imap.h" 53 #include "xfs_inode_item.h" 54 #include "xfs_inode.h" 55 #include "xfs_ialloc_btree.h" 56 #include "xfs_ialloc.h" 57 #include "xfs_log_priv.h" 58 #include "xfs_buf_item.h" 59 #include "xfs_alloc_btree.h" 60 #include "xfs_log_recover.h" 61 #include "xfs_extfree_item.h" 62 #include "xfs_trans_priv.h" 63 #include "xfs_bit.h" 64 #include "xfs_quota.h" 65 #include "xfs_rw.h" 66 67 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 68 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 69 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q, 70 xlog_recover_item_t *item); 71 #if defined(DEBUG) 72 STATIC void xlog_recover_check_summary(xlog_t *); 73 STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int); 74 #else 75 #define xlog_recover_check_summary(log) 76 #define xlog_recover_check_ail(mp, lip, gen) 77 #endif 78 79 80 /* 81 * Sector aligned buffer routines for buffer create/read/write/access 82 */ 83 84 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \ 85 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \ 86 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) ) 87 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask) 88 89 xfs_buf_t * 90 xlog_get_bp( 91 xlog_t *log, 92 int num_bblks) 93 { 94 ASSERT(num_bblks > 0); 95 96 if (log->l_sectbb_log) { 97 if (num_bblks > 1) 98 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 99 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks); 100 } 101 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp); 102 } 103 104 void 105 xlog_put_bp( 106 xfs_buf_t *bp) 107 { 108 xfs_buf_free(bp); 109 } 110 111 112 /* 113 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 114 */ 115 int 116 xlog_bread( 117 xlog_t *log, 118 xfs_daddr_t blk_no, 119 int nbblks, 120 xfs_buf_t *bp) 121 { 122 int error; 123 124 if (log->l_sectbb_log) { 125 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 126 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 127 } 128 129 ASSERT(nbblks > 0); 130 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 131 ASSERT(bp); 132 133 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 134 XFS_BUF_READ(bp); 135 XFS_BUF_BUSY(bp); 136 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 137 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 138 139 xfsbdstrat(log->l_mp, bp); 140 if ((error = xfs_iowait(bp))) 141 xfs_ioerror_alert("xlog_bread", log->l_mp, 142 bp, XFS_BUF_ADDR(bp)); 143 return error; 144 } 145 146 /* 147 * Write out the buffer at the given block for the given number of blocks. 148 * The buffer is kept locked across the write and is returned locked. 149 * This can only be used for synchronous log writes. 150 */ 151 STATIC int 152 xlog_bwrite( 153 xlog_t *log, 154 xfs_daddr_t blk_no, 155 int nbblks, 156 xfs_buf_t *bp) 157 { 158 int error; 159 160 if (log->l_sectbb_log) { 161 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 162 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 163 } 164 165 ASSERT(nbblks > 0); 166 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 167 168 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 169 XFS_BUF_ZEROFLAGS(bp); 170 XFS_BUF_BUSY(bp); 171 XFS_BUF_HOLD(bp); 172 XFS_BUF_PSEMA(bp, PRIBIO); 173 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 174 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 175 176 if ((error = xfs_bwrite(log->l_mp, bp))) 177 xfs_ioerror_alert("xlog_bwrite", log->l_mp, 178 bp, XFS_BUF_ADDR(bp)); 179 return error; 180 } 181 182 STATIC xfs_caddr_t 183 xlog_align( 184 xlog_t *log, 185 xfs_daddr_t blk_no, 186 int nbblks, 187 xfs_buf_t *bp) 188 { 189 xfs_caddr_t ptr; 190 191 if (!log->l_sectbb_log) 192 return XFS_BUF_PTR(bp); 193 194 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask); 195 ASSERT(XFS_BUF_SIZE(bp) >= 196 BBTOB(nbblks + (blk_no & log->l_sectbb_mask))); 197 return ptr; 198 } 199 200 #ifdef DEBUG 201 /* 202 * dump debug superblock and log record information 203 */ 204 STATIC void 205 xlog_header_check_dump( 206 xfs_mount_t *mp, 207 xlog_rec_header_t *head) 208 { 209 int b; 210 211 printk("%s: SB : uuid = ", __FUNCTION__); 212 for (b = 0; b < 16; b++) 213 printk("%02x",((unsigned char *)&mp->m_sb.sb_uuid)[b]); 214 printk(", fmt = %d\n", XLOG_FMT); 215 printk(" log : uuid = "); 216 for (b = 0; b < 16; b++) 217 printk("%02x",((unsigned char *)&head->h_fs_uuid)[b]); 218 printk(", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT)); 219 } 220 #else 221 #define xlog_header_check_dump(mp, head) 222 #endif 223 224 /* 225 * check log record header for recovery 226 */ 227 STATIC int 228 xlog_header_check_recover( 229 xfs_mount_t *mp, 230 xlog_rec_header_t *head) 231 { 232 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); 233 234 /* 235 * IRIX doesn't write the h_fmt field and leaves it zeroed 236 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 237 * a dirty log created in IRIX. 238 */ 239 if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) { 240 xlog_warn( 241 "XFS: dirty log written in incompatible format - can't recover"); 242 xlog_header_check_dump(mp, head); 243 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 244 XFS_ERRLEVEL_HIGH, mp); 245 return XFS_ERROR(EFSCORRUPTED); 246 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 247 xlog_warn( 248 "XFS: dirty log entry has mismatched uuid - can't recover"); 249 xlog_header_check_dump(mp, head); 250 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 251 XFS_ERRLEVEL_HIGH, mp); 252 return XFS_ERROR(EFSCORRUPTED); 253 } 254 return 0; 255 } 256 257 /* 258 * read the head block of the log and check the header 259 */ 260 STATIC int 261 xlog_header_check_mount( 262 xfs_mount_t *mp, 263 xlog_rec_header_t *head) 264 { 265 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); 266 267 if (uuid_is_nil(&head->h_fs_uuid)) { 268 /* 269 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 270 * h_fs_uuid is nil, we assume this log was last mounted 271 * by IRIX and continue. 272 */ 273 xlog_warn("XFS: nil uuid in log - IRIX style log"); 274 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 275 xlog_warn("XFS: log has mismatched uuid - can't recover"); 276 xlog_header_check_dump(mp, head); 277 XFS_ERROR_REPORT("xlog_header_check_mount", 278 XFS_ERRLEVEL_HIGH, mp); 279 return XFS_ERROR(EFSCORRUPTED); 280 } 281 return 0; 282 } 283 284 STATIC void 285 xlog_recover_iodone( 286 struct xfs_buf *bp) 287 { 288 xfs_mount_t *mp; 289 290 ASSERT(XFS_BUF_FSPRIVATE(bp, void *)); 291 292 if (XFS_BUF_GETERROR(bp)) { 293 /* 294 * We're not going to bother about retrying 295 * this during recovery. One strike! 296 */ 297 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *); 298 xfs_ioerror_alert("xlog_recover_iodone", 299 mp, bp, XFS_BUF_ADDR(bp)); 300 xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR); 301 } 302 XFS_BUF_SET_FSPRIVATE(bp, NULL); 303 XFS_BUF_CLR_IODONE_FUNC(bp); 304 xfs_biodone(bp); 305 } 306 307 /* 308 * This routine finds (to an approximation) the first block in the physical 309 * log which contains the given cycle. It uses a binary search algorithm. 310 * Note that the algorithm can not be perfect because the disk will not 311 * necessarily be perfect. 312 */ 313 int 314 xlog_find_cycle_start( 315 xlog_t *log, 316 xfs_buf_t *bp, 317 xfs_daddr_t first_blk, 318 xfs_daddr_t *last_blk, 319 uint cycle) 320 { 321 xfs_caddr_t offset; 322 xfs_daddr_t mid_blk; 323 uint mid_cycle; 324 int error; 325 326 mid_blk = BLK_AVG(first_blk, *last_blk); 327 while (mid_blk != first_blk && mid_blk != *last_blk) { 328 if ((error = xlog_bread(log, mid_blk, 1, bp))) 329 return error; 330 offset = xlog_align(log, mid_blk, 1, bp); 331 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT); 332 if (mid_cycle == cycle) { 333 *last_blk = mid_blk; 334 /* last_half_cycle == mid_cycle */ 335 } else { 336 first_blk = mid_blk; 337 /* first_half_cycle == mid_cycle */ 338 } 339 mid_blk = BLK_AVG(first_blk, *last_blk); 340 } 341 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) || 342 (mid_blk == *last_blk && mid_blk-1 == first_blk)); 343 344 return 0; 345 } 346 347 /* 348 * Check that the range of blocks does not contain the cycle number 349 * given. The scan needs to occur from front to back and the ptr into the 350 * region must be updated since a later routine will need to perform another 351 * test. If the region is completely good, we end up returning the same 352 * last block number. 353 * 354 * Set blkno to -1 if we encounter no errors. This is an invalid block number 355 * since we don't ever expect logs to get this large. 356 */ 357 STATIC int 358 xlog_find_verify_cycle( 359 xlog_t *log, 360 xfs_daddr_t start_blk, 361 int nbblks, 362 uint stop_on_cycle_no, 363 xfs_daddr_t *new_blk) 364 { 365 xfs_daddr_t i, j; 366 uint cycle; 367 xfs_buf_t *bp; 368 xfs_daddr_t bufblks; 369 xfs_caddr_t buf = NULL; 370 int error = 0; 371 372 bufblks = 1 << ffs(nbblks); 373 374 while (!(bp = xlog_get_bp(log, bufblks))) { 375 /* can't get enough memory to do everything in one big buffer */ 376 bufblks >>= 1; 377 if (bufblks <= log->l_sectbb_log) 378 return ENOMEM; 379 } 380 381 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 382 int bcount; 383 384 bcount = min(bufblks, (start_blk + nbblks - i)); 385 386 if ((error = xlog_bread(log, i, bcount, bp))) 387 goto out; 388 389 buf = xlog_align(log, i, bcount, bp); 390 for (j = 0; j < bcount; j++) { 391 cycle = GET_CYCLE(buf, ARCH_CONVERT); 392 if (cycle == stop_on_cycle_no) { 393 *new_blk = i+j; 394 goto out; 395 } 396 397 buf += BBSIZE; 398 } 399 } 400 401 *new_blk = -1; 402 403 out: 404 xlog_put_bp(bp); 405 return error; 406 } 407 408 /* 409 * Potentially backup over partial log record write. 410 * 411 * In the typical case, last_blk is the number of the block directly after 412 * a good log record. Therefore, we subtract one to get the block number 413 * of the last block in the given buffer. extra_bblks contains the number 414 * of blocks we would have read on a previous read. This happens when the 415 * last log record is split over the end of the physical log. 416 * 417 * extra_bblks is the number of blocks potentially verified on a previous 418 * call to this routine. 419 */ 420 STATIC int 421 xlog_find_verify_log_record( 422 xlog_t *log, 423 xfs_daddr_t start_blk, 424 xfs_daddr_t *last_blk, 425 int extra_bblks) 426 { 427 xfs_daddr_t i; 428 xfs_buf_t *bp; 429 xfs_caddr_t offset = NULL; 430 xlog_rec_header_t *head = NULL; 431 int error = 0; 432 int smallmem = 0; 433 int num_blks = *last_blk - start_blk; 434 int xhdrs; 435 436 ASSERT(start_blk != 0 || *last_blk != start_blk); 437 438 if (!(bp = xlog_get_bp(log, num_blks))) { 439 if (!(bp = xlog_get_bp(log, 1))) 440 return ENOMEM; 441 smallmem = 1; 442 } else { 443 if ((error = xlog_bread(log, start_blk, num_blks, bp))) 444 goto out; 445 offset = xlog_align(log, start_blk, num_blks, bp); 446 offset += ((num_blks - 1) << BBSHIFT); 447 } 448 449 for (i = (*last_blk) - 1; i >= 0; i--) { 450 if (i < start_blk) { 451 /* valid log record not found */ 452 xlog_warn( 453 "XFS: Log inconsistent (didn't find previous header)"); 454 ASSERT(0); 455 error = XFS_ERROR(EIO); 456 goto out; 457 } 458 459 if (smallmem) { 460 if ((error = xlog_bread(log, i, 1, bp))) 461 goto out; 462 offset = xlog_align(log, i, 1, bp); 463 } 464 465 head = (xlog_rec_header_t *)offset; 466 467 if (XLOG_HEADER_MAGIC_NUM == 468 INT_GET(head->h_magicno, ARCH_CONVERT)) 469 break; 470 471 if (!smallmem) 472 offset -= BBSIZE; 473 } 474 475 /* 476 * We hit the beginning of the physical log & still no header. Return 477 * to caller. If caller can handle a return of -1, then this routine 478 * will be called again for the end of the physical log. 479 */ 480 if (i == -1) { 481 error = -1; 482 goto out; 483 } 484 485 /* 486 * We have the final block of the good log (the first block 487 * of the log record _before_ the head. So we check the uuid. 488 */ 489 if ((error = xlog_header_check_mount(log->l_mp, head))) 490 goto out; 491 492 /* 493 * We may have found a log record header before we expected one. 494 * last_blk will be the 1st block # with a given cycle #. We may end 495 * up reading an entire log record. In this case, we don't want to 496 * reset last_blk. Only when last_blk points in the middle of a log 497 * record do we update last_blk. 498 */ 499 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 500 uint h_size = INT_GET(head->h_size, ARCH_CONVERT); 501 502 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 503 if (h_size % XLOG_HEADER_CYCLE_SIZE) 504 xhdrs++; 505 } else { 506 xhdrs = 1; 507 } 508 509 if (*last_blk - i + extra_bblks 510 != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs) 511 *last_blk = i; 512 513 out: 514 xlog_put_bp(bp); 515 return error; 516 } 517 518 /* 519 * Head is defined to be the point of the log where the next log write 520 * write could go. This means that incomplete LR writes at the end are 521 * eliminated when calculating the head. We aren't guaranteed that previous 522 * LR have complete transactions. We only know that a cycle number of 523 * current cycle number -1 won't be present in the log if we start writing 524 * from our current block number. 525 * 526 * last_blk contains the block number of the first block with a given 527 * cycle number. 528 * 529 * Return: zero if normal, non-zero if error. 530 */ 531 STATIC int 532 xlog_find_head( 533 xlog_t *log, 534 xfs_daddr_t *return_head_blk) 535 { 536 xfs_buf_t *bp; 537 xfs_caddr_t offset; 538 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 539 int num_scan_bblks; 540 uint first_half_cycle, last_half_cycle; 541 uint stop_on_cycle; 542 int error, log_bbnum = log->l_logBBsize; 543 544 /* Is the end of the log device zeroed? */ 545 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 546 *return_head_blk = first_blk; 547 548 /* Is the whole lot zeroed? */ 549 if (!first_blk) { 550 /* Linux XFS shouldn't generate totally zeroed logs - 551 * mkfs etc write a dummy unmount record to a fresh 552 * log so we can store the uuid in there 553 */ 554 xlog_warn("XFS: totally zeroed log"); 555 } 556 557 return 0; 558 } else if (error) { 559 xlog_warn("XFS: empty log check failed"); 560 return error; 561 } 562 563 first_blk = 0; /* get cycle # of 1st block */ 564 bp = xlog_get_bp(log, 1); 565 if (!bp) 566 return ENOMEM; 567 if ((error = xlog_bread(log, 0, 1, bp))) 568 goto bp_err; 569 offset = xlog_align(log, 0, 1, bp); 570 first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); 571 572 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 573 if ((error = xlog_bread(log, last_blk, 1, bp))) 574 goto bp_err; 575 offset = xlog_align(log, last_blk, 1, bp); 576 last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); 577 ASSERT(last_half_cycle != 0); 578 579 /* 580 * If the 1st half cycle number is equal to the last half cycle number, 581 * then the entire log is stamped with the same cycle number. In this 582 * case, head_blk can't be set to zero (which makes sense). The below 583 * math doesn't work out properly with head_blk equal to zero. Instead, 584 * we set it to log_bbnum which is an invalid block number, but this 585 * value makes the math correct. If head_blk doesn't changed through 586 * all the tests below, *head_blk is set to zero at the very end rather 587 * than log_bbnum. In a sense, log_bbnum and zero are the same block 588 * in a circular file. 589 */ 590 if (first_half_cycle == last_half_cycle) { 591 /* 592 * In this case we believe that the entire log should have 593 * cycle number last_half_cycle. We need to scan backwards 594 * from the end verifying that there are no holes still 595 * containing last_half_cycle - 1. If we find such a hole, 596 * then the start of that hole will be the new head. The 597 * simple case looks like 598 * x | x ... | x - 1 | x 599 * Another case that fits this picture would be 600 * x | x + 1 | x ... | x 601 * In this case the head really is somwhere at the end of the 602 * log, as one of the latest writes at the beginning was 603 * incomplete. 604 * One more case is 605 * x | x + 1 | x ... | x - 1 | x 606 * This is really the combination of the above two cases, and 607 * the head has to end up at the start of the x-1 hole at the 608 * end of the log. 609 * 610 * In the 256k log case, we will read from the beginning to the 611 * end of the log and search for cycle numbers equal to x-1. 612 * We don't worry about the x+1 blocks that we encounter, 613 * because we know that they cannot be the head since the log 614 * started with x. 615 */ 616 head_blk = log_bbnum; 617 stop_on_cycle = last_half_cycle - 1; 618 } else { 619 /* 620 * In this case we want to find the first block with cycle 621 * number matching last_half_cycle. We expect the log to be 622 * some variation on 623 * x + 1 ... | x ... 624 * The first block with cycle number x (last_half_cycle) will 625 * be where the new head belongs. First we do a binary search 626 * for the first occurrence of last_half_cycle. The binary 627 * search may not be totally accurate, so then we scan back 628 * from there looking for occurrences of last_half_cycle before 629 * us. If that backwards scan wraps around the beginning of 630 * the log, then we look for occurrences of last_half_cycle - 1 631 * at the end of the log. The cases we're looking for look 632 * like 633 * x + 1 ... | x | x + 1 | x ... 634 * ^ binary search stopped here 635 * or 636 * x + 1 ... | x ... | x - 1 | x 637 * <---------> less than scan distance 638 */ 639 stop_on_cycle = last_half_cycle; 640 if ((error = xlog_find_cycle_start(log, bp, first_blk, 641 &head_blk, last_half_cycle))) 642 goto bp_err; 643 } 644 645 /* 646 * Now validate the answer. Scan back some number of maximum possible 647 * blocks and make sure each one has the expected cycle number. The 648 * maximum is determined by the total possible amount of buffering 649 * in the in-core log. The following number can be made tighter if 650 * we actually look at the block size of the filesystem. 651 */ 652 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 653 if (head_blk >= num_scan_bblks) { 654 /* 655 * We are guaranteed that the entire check can be performed 656 * in one buffer. 657 */ 658 start_blk = head_blk - num_scan_bblks; 659 if ((error = xlog_find_verify_cycle(log, 660 start_blk, num_scan_bblks, 661 stop_on_cycle, &new_blk))) 662 goto bp_err; 663 if (new_blk != -1) 664 head_blk = new_blk; 665 } else { /* need to read 2 parts of log */ 666 /* 667 * We are going to scan backwards in the log in two parts. 668 * First we scan the physical end of the log. In this part 669 * of the log, we are looking for blocks with cycle number 670 * last_half_cycle - 1. 671 * If we find one, then we know that the log starts there, as 672 * we've found a hole that didn't get written in going around 673 * the end of the physical log. The simple case for this is 674 * x + 1 ... | x ... | x - 1 | x 675 * <---------> less than scan distance 676 * If all of the blocks at the end of the log have cycle number 677 * last_half_cycle, then we check the blocks at the start of 678 * the log looking for occurrences of last_half_cycle. If we 679 * find one, then our current estimate for the location of the 680 * first occurrence of last_half_cycle is wrong and we move 681 * back to the hole we've found. This case looks like 682 * x + 1 ... | x | x + 1 | x ... 683 * ^ binary search stopped here 684 * Another case we need to handle that only occurs in 256k 685 * logs is 686 * x + 1 ... | x ... | x+1 | x ... 687 * ^ binary search stops here 688 * In a 256k log, the scan at the end of the log will see the 689 * x + 1 blocks. We need to skip past those since that is 690 * certainly not the head of the log. By searching for 691 * last_half_cycle-1 we accomplish that. 692 */ 693 start_blk = log_bbnum - num_scan_bblks + head_blk; 694 ASSERT(head_blk <= INT_MAX && 695 (xfs_daddr_t) num_scan_bblks - head_blk >= 0); 696 if ((error = xlog_find_verify_cycle(log, start_blk, 697 num_scan_bblks - (int)head_blk, 698 (stop_on_cycle - 1), &new_blk))) 699 goto bp_err; 700 if (new_blk != -1) { 701 head_blk = new_blk; 702 goto bad_blk; 703 } 704 705 /* 706 * Scan beginning of log now. The last part of the physical 707 * log is good. This scan needs to verify that it doesn't find 708 * the last_half_cycle. 709 */ 710 start_blk = 0; 711 ASSERT(head_blk <= INT_MAX); 712 if ((error = xlog_find_verify_cycle(log, 713 start_blk, (int)head_blk, 714 stop_on_cycle, &new_blk))) 715 goto bp_err; 716 if (new_blk != -1) 717 head_blk = new_blk; 718 } 719 720 bad_blk: 721 /* 722 * Now we need to make sure head_blk is not pointing to a block in 723 * the middle of a log record. 724 */ 725 num_scan_bblks = XLOG_REC_SHIFT(log); 726 if (head_blk >= num_scan_bblks) { 727 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 728 729 /* start ptr at last block ptr before head_blk */ 730 if ((error = xlog_find_verify_log_record(log, start_blk, 731 &head_blk, 0)) == -1) { 732 error = XFS_ERROR(EIO); 733 goto bp_err; 734 } else if (error) 735 goto bp_err; 736 } else { 737 start_blk = 0; 738 ASSERT(head_blk <= INT_MAX); 739 if ((error = xlog_find_verify_log_record(log, start_blk, 740 &head_blk, 0)) == -1) { 741 /* We hit the beginning of the log during our search */ 742 start_blk = log_bbnum - num_scan_bblks + head_blk; 743 new_blk = log_bbnum; 744 ASSERT(start_blk <= INT_MAX && 745 (xfs_daddr_t) log_bbnum-start_blk >= 0); 746 ASSERT(head_blk <= INT_MAX); 747 if ((error = xlog_find_verify_log_record(log, 748 start_blk, &new_blk, 749 (int)head_blk)) == -1) { 750 error = XFS_ERROR(EIO); 751 goto bp_err; 752 } else if (error) 753 goto bp_err; 754 if (new_blk != log_bbnum) 755 head_blk = new_blk; 756 } else if (error) 757 goto bp_err; 758 } 759 760 xlog_put_bp(bp); 761 if (head_blk == log_bbnum) 762 *return_head_blk = 0; 763 else 764 *return_head_blk = head_blk; 765 /* 766 * When returning here, we have a good block number. Bad block 767 * means that during a previous crash, we didn't have a clean break 768 * from cycle number N to cycle number N-1. In this case, we need 769 * to find the first block with cycle number N-1. 770 */ 771 return 0; 772 773 bp_err: 774 xlog_put_bp(bp); 775 776 if (error) 777 xlog_warn("XFS: failed to find log head"); 778 return error; 779 } 780 781 /* 782 * Find the sync block number or the tail of the log. 783 * 784 * This will be the block number of the last record to have its 785 * associated buffers synced to disk. Every log record header has 786 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 787 * to get a sync block number. The only concern is to figure out which 788 * log record header to believe. 789 * 790 * The following algorithm uses the log record header with the largest 791 * lsn. The entire log record does not need to be valid. We only care 792 * that the header is valid. 793 * 794 * We could speed up search by using current head_blk buffer, but it is not 795 * available. 796 */ 797 int 798 xlog_find_tail( 799 xlog_t *log, 800 xfs_daddr_t *head_blk, 801 xfs_daddr_t *tail_blk, 802 int readonly) 803 { 804 xlog_rec_header_t *rhead; 805 xlog_op_header_t *op_head; 806 xfs_caddr_t offset = NULL; 807 xfs_buf_t *bp; 808 int error, i, found; 809 xfs_daddr_t umount_data_blk; 810 xfs_daddr_t after_umount_blk; 811 xfs_lsn_t tail_lsn; 812 int hblks; 813 814 found = 0; 815 816 /* 817 * Find previous log record 818 */ 819 if ((error = xlog_find_head(log, head_blk))) 820 return error; 821 822 bp = xlog_get_bp(log, 1); 823 if (!bp) 824 return ENOMEM; 825 if (*head_blk == 0) { /* special case */ 826 if ((error = xlog_bread(log, 0, 1, bp))) 827 goto bread_err; 828 offset = xlog_align(log, 0, 1, bp); 829 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) { 830 *tail_blk = 0; 831 /* leave all other log inited values alone */ 832 goto exit; 833 } 834 } 835 836 /* 837 * Search backwards looking for log record header block 838 */ 839 ASSERT(*head_blk < INT_MAX); 840 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 841 if ((error = xlog_bread(log, i, 1, bp))) 842 goto bread_err; 843 offset = xlog_align(log, i, 1, bp); 844 if (XLOG_HEADER_MAGIC_NUM == 845 INT_GET(*(uint *)offset, ARCH_CONVERT)) { 846 found = 1; 847 break; 848 } 849 } 850 /* 851 * If we haven't found the log record header block, start looking 852 * again from the end of the physical log. XXXmiken: There should be 853 * a check here to make sure we didn't search more than N blocks in 854 * the previous code. 855 */ 856 if (!found) { 857 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 858 if ((error = xlog_bread(log, i, 1, bp))) 859 goto bread_err; 860 offset = xlog_align(log, i, 1, bp); 861 if (XLOG_HEADER_MAGIC_NUM == 862 INT_GET(*(uint*)offset, ARCH_CONVERT)) { 863 found = 2; 864 break; 865 } 866 } 867 } 868 if (!found) { 869 xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); 870 ASSERT(0); 871 return XFS_ERROR(EIO); 872 } 873 874 /* find blk_no of tail of log */ 875 rhead = (xlog_rec_header_t *)offset; 876 *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT)); 877 878 /* 879 * Reset log values according to the state of the log when we 880 * crashed. In the case where head_blk == 0, we bump curr_cycle 881 * one because the next write starts a new cycle rather than 882 * continuing the cycle of the last good log record. At this 883 * point we have guaranteed that all partial log records have been 884 * accounted for. Therefore, we know that the last good log record 885 * written was complete and ended exactly on the end boundary 886 * of the physical log. 887 */ 888 log->l_prev_block = i; 889 log->l_curr_block = (int)*head_blk; 890 log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT); 891 if (found == 2) 892 log->l_curr_cycle++; 893 log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT); 894 log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT); 895 log->l_grant_reserve_cycle = log->l_curr_cycle; 896 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); 897 log->l_grant_write_cycle = log->l_curr_cycle; 898 log->l_grant_write_bytes = BBTOB(log->l_curr_block); 899 900 /* 901 * Look for unmount record. If we find it, then we know there 902 * was a clean unmount. Since 'i' could be the last block in 903 * the physical log, we convert to a log block before comparing 904 * to the head_blk. 905 * 906 * Save the current tail lsn to use to pass to 907 * xlog_clear_stale_blocks() below. We won't want to clear the 908 * unmount record if there is one, so we pass the lsn of the 909 * unmount record rather than the block after it. 910 */ 911 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 912 int h_size = INT_GET(rhead->h_size, ARCH_CONVERT); 913 int h_version = INT_GET(rhead->h_version, ARCH_CONVERT); 914 915 if ((h_version & XLOG_VERSION_2) && 916 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 917 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 918 if (h_size % XLOG_HEADER_CYCLE_SIZE) 919 hblks++; 920 } else { 921 hblks = 1; 922 } 923 } else { 924 hblks = 1; 925 } 926 after_umount_blk = (i + hblks + (int) 927 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize; 928 tail_lsn = log->l_tail_lsn; 929 if (*head_blk == after_umount_blk && 930 INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) { 931 umount_data_blk = (i + hblks) % log->l_logBBsize; 932 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) { 933 goto bread_err; 934 } 935 offset = xlog_align(log, umount_data_blk, 1, bp); 936 op_head = (xlog_op_header_t *)offset; 937 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 938 /* 939 * Set tail and last sync so that newly written 940 * log records will point recovery to after the 941 * current unmount record. 942 */ 943 ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle, 944 after_umount_blk); 945 ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle, 946 after_umount_blk); 947 *tail_blk = after_umount_blk; 948 } 949 } 950 951 /* 952 * Make sure that there are no blocks in front of the head 953 * with the same cycle number as the head. This can happen 954 * because we allow multiple outstanding log writes concurrently, 955 * and the later writes might make it out before earlier ones. 956 * 957 * We use the lsn from before modifying it so that we'll never 958 * overwrite the unmount record after a clean unmount. 959 * 960 * Do this only if we are going to recover the filesystem 961 * 962 * NOTE: This used to say "if (!readonly)" 963 * However on Linux, we can & do recover a read-only filesystem. 964 * We only skip recovery if NORECOVERY is specified on mount, 965 * in which case we would not be here. 966 * 967 * But... if the -device- itself is readonly, just skip this. 968 * We can't recover this device anyway, so it won't matter. 969 */ 970 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 971 error = xlog_clear_stale_blocks(log, tail_lsn); 972 } 973 974 bread_err: 975 exit: 976 xlog_put_bp(bp); 977 978 if (error) 979 xlog_warn("XFS: failed to locate log tail"); 980 return error; 981 } 982 983 /* 984 * Is the log zeroed at all? 985 * 986 * The last binary search should be changed to perform an X block read 987 * once X becomes small enough. You can then search linearly through 988 * the X blocks. This will cut down on the number of reads we need to do. 989 * 990 * If the log is partially zeroed, this routine will pass back the blkno 991 * of the first block with cycle number 0. It won't have a complete LR 992 * preceding it. 993 * 994 * Return: 995 * 0 => the log is completely written to 996 * -1 => use *blk_no as the first block of the log 997 * >0 => error has occurred 998 */ 999 int 1000 xlog_find_zeroed( 1001 xlog_t *log, 1002 xfs_daddr_t *blk_no) 1003 { 1004 xfs_buf_t *bp; 1005 xfs_caddr_t offset; 1006 uint first_cycle, last_cycle; 1007 xfs_daddr_t new_blk, last_blk, start_blk; 1008 xfs_daddr_t num_scan_bblks; 1009 int error, log_bbnum = log->l_logBBsize; 1010 1011 /* check totally zeroed log */ 1012 bp = xlog_get_bp(log, 1); 1013 if (!bp) 1014 return ENOMEM; 1015 if ((error = xlog_bread(log, 0, 1, bp))) 1016 goto bp_err; 1017 offset = xlog_align(log, 0, 1, bp); 1018 first_cycle = GET_CYCLE(offset, ARCH_CONVERT); 1019 if (first_cycle == 0) { /* completely zeroed log */ 1020 *blk_no = 0; 1021 xlog_put_bp(bp); 1022 return -1; 1023 } 1024 1025 /* check partially zeroed log */ 1026 if ((error = xlog_bread(log, log_bbnum-1, 1, bp))) 1027 goto bp_err; 1028 offset = xlog_align(log, log_bbnum-1, 1, bp); 1029 last_cycle = GET_CYCLE(offset, ARCH_CONVERT); 1030 if (last_cycle != 0) { /* log completely written to */ 1031 xlog_put_bp(bp); 1032 return 0; 1033 } else if (first_cycle != 1) { 1034 /* 1035 * If the cycle of the last block is zero, the cycle of 1036 * the first block must be 1. If it's not, maybe we're 1037 * not looking at a log... Bail out. 1038 */ 1039 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); 1040 return XFS_ERROR(EINVAL); 1041 } 1042 1043 /* we have a partially zeroed log */ 1044 last_blk = log_bbnum-1; 1045 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1046 goto bp_err; 1047 1048 /* 1049 * Validate the answer. Because there is no way to guarantee that 1050 * the entire log is made up of log records which are the same size, 1051 * we scan over the defined maximum blocks. At this point, the maximum 1052 * is not chosen to mean anything special. XXXmiken 1053 */ 1054 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1055 ASSERT(num_scan_bblks <= INT_MAX); 1056 1057 if (last_blk < num_scan_bblks) 1058 num_scan_bblks = last_blk; 1059 start_blk = last_blk - num_scan_bblks; 1060 1061 /* 1062 * We search for any instances of cycle number 0 that occur before 1063 * our current estimate of the head. What we're trying to detect is 1064 * 1 ... | 0 | 1 | 0... 1065 * ^ binary search ends here 1066 */ 1067 if ((error = xlog_find_verify_cycle(log, start_blk, 1068 (int)num_scan_bblks, 0, &new_blk))) 1069 goto bp_err; 1070 if (new_blk != -1) 1071 last_blk = new_blk; 1072 1073 /* 1074 * Potentially backup over partial log record write. We don't need 1075 * to search the end of the log because we know it is zero. 1076 */ 1077 if ((error = xlog_find_verify_log_record(log, start_blk, 1078 &last_blk, 0)) == -1) { 1079 error = XFS_ERROR(EIO); 1080 goto bp_err; 1081 } else if (error) 1082 goto bp_err; 1083 1084 *blk_no = last_blk; 1085 bp_err: 1086 xlog_put_bp(bp); 1087 if (error) 1088 return error; 1089 return -1; 1090 } 1091 1092 /* 1093 * These are simple subroutines used by xlog_clear_stale_blocks() below 1094 * to initialize a buffer full of empty log record headers and write 1095 * them into the log. 1096 */ 1097 STATIC void 1098 xlog_add_record( 1099 xlog_t *log, 1100 xfs_caddr_t buf, 1101 int cycle, 1102 int block, 1103 int tail_cycle, 1104 int tail_block) 1105 { 1106 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1107 1108 memset(buf, 0, BBSIZE); 1109 INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM); 1110 INT_SET(recp->h_cycle, ARCH_CONVERT, cycle); 1111 INT_SET(recp->h_version, ARCH_CONVERT, 1112 XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1); 1113 ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block); 1114 ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block); 1115 INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT); 1116 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1117 } 1118 1119 STATIC int 1120 xlog_write_log_records( 1121 xlog_t *log, 1122 int cycle, 1123 int start_block, 1124 int blocks, 1125 int tail_cycle, 1126 int tail_block) 1127 { 1128 xfs_caddr_t offset; 1129 xfs_buf_t *bp; 1130 int balign, ealign; 1131 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 1132 int end_block = start_block + blocks; 1133 int bufblks; 1134 int error = 0; 1135 int i, j = 0; 1136 1137 bufblks = 1 << ffs(blocks); 1138 while (!(bp = xlog_get_bp(log, bufblks))) { 1139 bufblks >>= 1; 1140 if (bufblks <= log->l_sectbb_log) 1141 return ENOMEM; 1142 } 1143 1144 /* We may need to do a read at the start to fill in part of 1145 * the buffer in the starting sector not covered by the first 1146 * write below. 1147 */ 1148 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block); 1149 if (balign != start_block) { 1150 if ((error = xlog_bread(log, start_block, 1, bp))) { 1151 xlog_put_bp(bp); 1152 return error; 1153 } 1154 j = start_block - balign; 1155 } 1156 1157 for (i = start_block; i < end_block; i += bufblks) { 1158 int bcount, endcount; 1159 1160 bcount = min(bufblks, end_block - start_block); 1161 endcount = bcount - j; 1162 1163 /* We may need to do a read at the end to fill in part of 1164 * the buffer in the final sector not covered by the write. 1165 * If this is the same sector as the above read, skip it. 1166 */ 1167 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block); 1168 if (j == 0 && (start_block + endcount > ealign)) { 1169 offset = XFS_BUF_PTR(bp); 1170 balign = BBTOB(ealign - start_block); 1171 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb)); 1172 if ((error = xlog_bread(log, ealign, sectbb, bp))) 1173 break; 1174 XFS_BUF_SET_PTR(bp, offset, bufblks); 1175 } 1176 1177 offset = xlog_align(log, start_block, endcount, bp); 1178 for (; j < endcount; j++) { 1179 xlog_add_record(log, offset, cycle, i+j, 1180 tail_cycle, tail_block); 1181 offset += BBSIZE; 1182 } 1183 error = xlog_bwrite(log, start_block, endcount, bp); 1184 if (error) 1185 break; 1186 start_block += endcount; 1187 j = 0; 1188 } 1189 xlog_put_bp(bp); 1190 return error; 1191 } 1192 1193 /* 1194 * This routine is called to blow away any incomplete log writes out 1195 * in front of the log head. We do this so that we won't become confused 1196 * if we come up, write only a little bit more, and then crash again. 1197 * If we leave the partial log records out there, this situation could 1198 * cause us to think those partial writes are valid blocks since they 1199 * have the current cycle number. We get rid of them by overwriting them 1200 * with empty log records with the old cycle number rather than the 1201 * current one. 1202 * 1203 * The tail lsn is passed in rather than taken from 1204 * the log so that we will not write over the unmount record after a 1205 * clean unmount in a 512 block log. Doing so would leave the log without 1206 * any valid log records in it until a new one was written. If we crashed 1207 * during that time we would not be able to recover. 1208 */ 1209 STATIC int 1210 xlog_clear_stale_blocks( 1211 xlog_t *log, 1212 xfs_lsn_t tail_lsn) 1213 { 1214 int tail_cycle, head_cycle; 1215 int tail_block, head_block; 1216 int tail_distance, max_distance; 1217 int distance; 1218 int error; 1219 1220 tail_cycle = CYCLE_LSN(tail_lsn); 1221 tail_block = BLOCK_LSN(tail_lsn); 1222 head_cycle = log->l_curr_cycle; 1223 head_block = log->l_curr_block; 1224 1225 /* 1226 * Figure out the distance between the new head of the log 1227 * and the tail. We want to write over any blocks beyond the 1228 * head that we may have written just before the crash, but 1229 * we don't want to overwrite the tail of the log. 1230 */ 1231 if (head_cycle == tail_cycle) { 1232 /* 1233 * The tail is behind the head in the physical log, 1234 * so the distance from the head to the tail is the 1235 * distance from the head to the end of the log plus 1236 * the distance from the beginning of the log to the 1237 * tail. 1238 */ 1239 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1240 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1241 XFS_ERRLEVEL_LOW, log->l_mp); 1242 return XFS_ERROR(EFSCORRUPTED); 1243 } 1244 tail_distance = tail_block + (log->l_logBBsize - head_block); 1245 } else { 1246 /* 1247 * The head is behind the tail in the physical log, 1248 * so the distance from the head to the tail is just 1249 * the tail block minus the head block. 1250 */ 1251 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1252 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1253 XFS_ERRLEVEL_LOW, log->l_mp); 1254 return XFS_ERROR(EFSCORRUPTED); 1255 } 1256 tail_distance = tail_block - head_block; 1257 } 1258 1259 /* 1260 * If the head is right up against the tail, we can't clear 1261 * anything. 1262 */ 1263 if (tail_distance <= 0) { 1264 ASSERT(tail_distance == 0); 1265 return 0; 1266 } 1267 1268 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1269 /* 1270 * Take the smaller of the maximum amount of outstanding I/O 1271 * we could have and the distance to the tail to clear out. 1272 * We take the smaller so that we don't overwrite the tail and 1273 * we don't waste all day writing from the head to the tail 1274 * for no reason. 1275 */ 1276 max_distance = MIN(max_distance, tail_distance); 1277 1278 if ((head_block + max_distance) <= log->l_logBBsize) { 1279 /* 1280 * We can stomp all the blocks we need to without 1281 * wrapping around the end of the log. Just do it 1282 * in a single write. Use the cycle number of the 1283 * current cycle minus one so that the log will look like: 1284 * n ... | n - 1 ... 1285 */ 1286 error = xlog_write_log_records(log, (head_cycle - 1), 1287 head_block, max_distance, tail_cycle, 1288 tail_block); 1289 if (error) 1290 return error; 1291 } else { 1292 /* 1293 * We need to wrap around the end of the physical log in 1294 * order to clear all the blocks. Do it in two separate 1295 * I/Os. The first write should be from the head to the 1296 * end of the physical log, and it should use the current 1297 * cycle number minus one just like above. 1298 */ 1299 distance = log->l_logBBsize - head_block; 1300 error = xlog_write_log_records(log, (head_cycle - 1), 1301 head_block, distance, tail_cycle, 1302 tail_block); 1303 1304 if (error) 1305 return error; 1306 1307 /* 1308 * Now write the blocks at the start of the physical log. 1309 * This writes the remainder of the blocks we want to clear. 1310 * It uses the current cycle number since we're now on the 1311 * same cycle as the head so that we get: 1312 * n ... n ... | n - 1 ... 1313 * ^^^^^ blocks we're writing 1314 */ 1315 distance = max_distance - (log->l_logBBsize - head_block); 1316 error = xlog_write_log_records(log, head_cycle, 0, distance, 1317 tail_cycle, tail_block); 1318 if (error) 1319 return error; 1320 } 1321 1322 return 0; 1323 } 1324 1325 /****************************************************************************** 1326 * 1327 * Log recover routines 1328 * 1329 ****************************************************************************** 1330 */ 1331 1332 STATIC xlog_recover_t * 1333 xlog_recover_find_tid( 1334 xlog_recover_t *q, 1335 xlog_tid_t tid) 1336 { 1337 xlog_recover_t *p = q; 1338 1339 while (p != NULL) { 1340 if (p->r_log_tid == tid) 1341 break; 1342 p = p->r_next; 1343 } 1344 return p; 1345 } 1346 1347 STATIC void 1348 xlog_recover_put_hashq( 1349 xlog_recover_t **q, 1350 xlog_recover_t *trans) 1351 { 1352 trans->r_next = *q; 1353 *q = trans; 1354 } 1355 1356 STATIC void 1357 xlog_recover_add_item( 1358 xlog_recover_item_t **itemq) 1359 { 1360 xlog_recover_item_t *item; 1361 1362 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1363 xlog_recover_insert_item_backq(itemq, item); 1364 } 1365 1366 STATIC int 1367 xlog_recover_add_to_cont_trans( 1368 xlog_recover_t *trans, 1369 xfs_caddr_t dp, 1370 int len) 1371 { 1372 xlog_recover_item_t *item; 1373 xfs_caddr_t ptr, old_ptr; 1374 int old_len; 1375 1376 item = trans->r_itemq; 1377 if (item == 0) { 1378 /* finish copying rest of trans header */ 1379 xlog_recover_add_item(&trans->r_itemq); 1380 ptr = (xfs_caddr_t) &trans->r_theader + 1381 sizeof(xfs_trans_header_t) - len; 1382 memcpy(ptr, dp, len); /* d, s, l */ 1383 return 0; 1384 } 1385 item = item->ri_prev; 1386 1387 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1388 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1389 1390 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0); 1391 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1392 item->ri_buf[item->ri_cnt-1].i_len += len; 1393 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1394 return 0; 1395 } 1396 1397 /* 1398 * The next region to add is the start of a new region. It could be 1399 * a whole region or it could be the first part of a new region. Because 1400 * of this, the assumption here is that the type and size fields of all 1401 * format structures fit into the first 32 bits of the structure. 1402 * 1403 * This works because all regions must be 32 bit aligned. Therefore, we 1404 * either have both fields or we have neither field. In the case we have 1405 * neither field, the data part of the region is zero length. We only have 1406 * a log_op_header and can throw away the header since a new one will appear 1407 * later. If we have at least 4 bytes, then we can determine how many regions 1408 * will appear in the current log item. 1409 */ 1410 STATIC int 1411 xlog_recover_add_to_trans( 1412 xlog_recover_t *trans, 1413 xfs_caddr_t dp, 1414 int len) 1415 { 1416 xfs_inode_log_format_t *in_f; /* any will do */ 1417 xlog_recover_item_t *item; 1418 xfs_caddr_t ptr; 1419 1420 if (!len) 1421 return 0; 1422 item = trans->r_itemq; 1423 if (item == 0) { 1424 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC); 1425 if (len == sizeof(xfs_trans_header_t)) 1426 xlog_recover_add_item(&trans->r_itemq); 1427 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1428 return 0; 1429 } 1430 1431 ptr = kmem_alloc(len, KM_SLEEP); 1432 memcpy(ptr, dp, len); 1433 in_f = (xfs_inode_log_format_t *)ptr; 1434 1435 if (item->ri_prev->ri_total != 0 && 1436 item->ri_prev->ri_total == item->ri_prev->ri_cnt) { 1437 xlog_recover_add_item(&trans->r_itemq); 1438 } 1439 item = trans->r_itemq; 1440 item = item->ri_prev; 1441 1442 if (item->ri_total == 0) { /* first region to be added */ 1443 item->ri_total = in_f->ilf_size; 1444 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM); 1445 item->ri_buf = kmem_zalloc((item->ri_total * 1446 sizeof(xfs_log_iovec_t)), KM_SLEEP); 1447 } 1448 ASSERT(item->ri_total > item->ri_cnt); 1449 /* Description region is ri_buf[0] */ 1450 item->ri_buf[item->ri_cnt].i_addr = ptr; 1451 item->ri_buf[item->ri_cnt].i_len = len; 1452 item->ri_cnt++; 1453 return 0; 1454 } 1455 1456 STATIC void 1457 xlog_recover_new_tid( 1458 xlog_recover_t **q, 1459 xlog_tid_t tid, 1460 xfs_lsn_t lsn) 1461 { 1462 xlog_recover_t *trans; 1463 1464 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1465 trans->r_log_tid = tid; 1466 trans->r_lsn = lsn; 1467 xlog_recover_put_hashq(q, trans); 1468 } 1469 1470 STATIC int 1471 xlog_recover_unlink_tid( 1472 xlog_recover_t **q, 1473 xlog_recover_t *trans) 1474 { 1475 xlog_recover_t *tp; 1476 int found = 0; 1477 1478 ASSERT(trans != 0); 1479 if (trans == *q) { 1480 *q = (*q)->r_next; 1481 } else { 1482 tp = *q; 1483 while (tp != 0) { 1484 if (tp->r_next == trans) { 1485 found = 1; 1486 break; 1487 } 1488 tp = tp->r_next; 1489 } 1490 if (!found) { 1491 xlog_warn( 1492 "XFS: xlog_recover_unlink_tid: trans not found"); 1493 ASSERT(0); 1494 return XFS_ERROR(EIO); 1495 } 1496 tp->r_next = tp->r_next->r_next; 1497 } 1498 return 0; 1499 } 1500 1501 STATIC void 1502 xlog_recover_insert_item_backq( 1503 xlog_recover_item_t **q, 1504 xlog_recover_item_t *item) 1505 { 1506 if (*q == 0) { 1507 item->ri_prev = item->ri_next = item; 1508 *q = item; 1509 } else { 1510 item->ri_next = *q; 1511 item->ri_prev = (*q)->ri_prev; 1512 (*q)->ri_prev = item; 1513 item->ri_prev->ri_next = item; 1514 } 1515 } 1516 1517 STATIC void 1518 xlog_recover_insert_item_frontq( 1519 xlog_recover_item_t **q, 1520 xlog_recover_item_t *item) 1521 { 1522 xlog_recover_insert_item_backq(q, item); 1523 *q = item; 1524 } 1525 1526 STATIC int 1527 xlog_recover_reorder_trans( 1528 xlog_t *log, 1529 xlog_recover_t *trans) 1530 { 1531 xlog_recover_item_t *first_item, *itemq, *itemq_next; 1532 xfs_buf_log_format_t *buf_f; 1533 xfs_buf_log_format_v1_t *obuf_f; 1534 ushort flags = 0; 1535 1536 first_item = itemq = trans->r_itemq; 1537 trans->r_itemq = NULL; 1538 do { 1539 itemq_next = itemq->ri_next; 1540 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr; 1541 switch (ITEM_TYPE(itemq)) { 1542 case XFS_LI_BUF: 1543 flags = buf_f->blf_flags; 1544 break; 1545 case XFS_LI_6_1_BUF: 1546 case XFS_LI_5_3_BUF: 1547 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1548 flags = obuf_f->blf_flags; 1549 break; 1550 } 1551 1552 switch (ITEM_TYPE(itemq)) { 1553 case XFS_LI_BUF: 1554 case XFS_LI_6_1_BUF: 1555 case XFS_LI_5_3_BUF: 1556 if (!(flags & XFS_BLI_CANCEL)) { 1557 xlog_recover_insert_item_frontq(&trans->r_itemq, 1558 itemq); 1559 break; 1560 } 1561 case XFS_LI_INODE: 1562 case XFS_LI_6_1_INODE: 1563 case XFS_LI_5_3_INODE: 1564 case XFS_LI_DQUOT: 1565 case XFS_LI_QUOTAOFF: 1566 case XFS_LI_EFD: 1567 case XFS_LI_EFI: 1568 xlog_recover_insert_item_backq(&trans->r_itemq, itemq); 1569 break; 1570 default: 1571 xlog_warn( 1572 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); 1573 ASSERT(0); 1574 return XFS_ERROR(EIO); 1575 } 1576 itemq = itemq_next; 1577 } while (first_item != itemq); 1578 return 0; 1579 } 1580 1581 /* 1582 * Build up the table of buf cancel records so that we don't replay 1583 * cancelled data in the second pass. For buffer records that are 1584 * not cancel records, there is nothing to do here so we just return. 1585 * 1586 * If we get a cancel record which is already in the table, this indicates 1587 * that the buffer was cancelled multiple times. In order to ensure 1588 * that during pass 2 we keep the record in the table until we reach its 1589 * last occurrence in the log, we keep a reference count in the cancel 1590 * record in the table to tell us how many times we expect to see this 1591 * record during the second pass. 1592 */ 1593 STATIC void 1594 xlog_recover_do_buffer_pass1( 1595 xlog_t *log, 1596 xfs_buf_log_format_t *buf_f) 1597 { 1598 xfs_buf_cancel_t *bcp; 1599 xfs_buf_cancel_t *nextp; 1600 xfs_buf_cancel_t *prevp; 1601 xfs_buf_cancel_t **bucket; 1602 xfs_buf_log_format_v1_t *obuf_f; 1603 xfs_daddr_t blkno = 0; 1604 uint len = 0; 1605 ushort flags = 0; 1606 1607 switch (buf_f->blf_type) { 1608 case XFS_LI_BUF: 1609 blkno = buf_f->blf_blkno; 1610 len = buf_f->blf_len; 1611 flags = buf_f->blf_flags; 1612 break; 1613 case XFS_LI_6_1_BUF: 1614 case XFS_LI_5_3_BUF: 1615 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1616 blkno = (xfs_daddr_t) obuf_f->blf_blkno; 1617 len = obuf_f->blf_len; 1618 flags = obuf_f->blf_flags; 1619 break; 1620 } 1621 1622 /* 1623 * If this isn't a cancel buffer item, then just return. 1624 */ 1625 if (!(flags & XFS_BLI_CANCEL)) 1626 return; 1627 1628 /* 1629 * Insert an xfs_buf_cancel record into the hash table of 1630 * them. If there is already an identical record, bump 1631 * its reference count. 1632 */ 1633 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1634 XLOG_BC_TABLE_SIZE]; 1635 /* 1636 * If the hash bucket is empty then just insert a new record into 1637 * the bucket. 1638 */ 1639 if (*bucket == NULL) { 1640 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1641 KM_SLEEP); 1642 bcp->bc_blkno = blkno; 1643 bcp->bc_len = len; 1644 bcp->bc_refcount = 1; 1645 bcp->bc_next = NULL; 1646 *bucket = bcp; 1647 return; 1648 } 1649 1650 /* 1651 * The hash bucket is not empty, so search for duplicates of our 1652 * record. If we find one them just bump its refcount. If not 1653 * then add us at the end of the list. 1654 */ 1655 prevp = NULL; 1656 nextp = *bucket; 1657 while (nextp != NULL) { 1658 if (nextp->bc_blkno == blkno && nextp->bc_len == len) { 1659 nextp->bc_refcount++; 1660 return; 1661 } 1662 prevp = nextp; 1663 nextp = nextp->bc_next; 1664 } 1665 ASSERT(prevp != NULL); 1666 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1667 KM_SLEEP); 1668 bcp->bc_blkno = blkno; 1669 bcp->bc_len = len; 1670 bcp->bc_refcount = 1; 1671 bcp->bc_next = NULL; 1672 prevp->bc_next = bcp; 1673 } 1674 1675 /* 1676 * Check to see whether the buffer being recovered has a corresponding 1677 * entry in the buffer cancel record table. If it does then return 1 1678 * so that it will be cancelled, otherwise return 0. If the buffer is 1679 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement 1680 * the refcount on the entry in the table and remove it from the table 1681 * if this is the last reference. 1682 * 1683 * We remove the cancel record from the table when we encounter its 1684 * last occurrence in the log so that if the same buffer is re-used 1685 * again after its last cancellation we actually replay the changes 1686 * made at that point. 1687 */ 1688 STATIC int 1689 xlog_check_buffer_cancelled( 1690 xlog_t *log, 1691 xfs_daddr_t blkno, 1692 uint len, 1693 ushort flags) 1694 { 1695 xfs_buf_cancel_t *bcp; 1696 xfs_buf_cancel_t *prevp; 1697 xfs_buf_cancel_t **bucket; 1698 1699 if (log->l_buf_cancel_table == NULL) { 1700 /* 1701 * There is nothing in the table built in pass one, 1702 * so this buffer must not be cancelled. 1703 */ 1704 ASSERT(!(flags & XFS_BLI_CANCEL)); 1705 return 0; 1706 } 1707 1708 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1709 XLOG_BC_TABLE_SIZE]; 1710 bcp = *bucket; 1711 if (bcp == NULL) { 1712 /* 1713 * There is no corresponding entry in the table built 1714 * in pass one, so this buffer has not been cancelled. 1715 */ 1716 ASSERT(!(flags & XFS_BLI_CANCEL)); 1717 return 0; 1718 } 1719 1720 /* 1721 * Search for an entry in the buffer cancel table that 1722 * matches our buffer. 1723 */ 1724 prevp = NULL; 1725 while (bcp != NULL) { 1726 if (bcp->bc_blkno == blkno && bcp->bc_len == len) { 1727 /* 1728 * We've go a match, so return 1 so that the 1729 * recovery of this buffer is cancelled. 1730 * If this buffer is actually a buffer cancel 1731 * log item, then decrement the refcount on the 1732 * one in the table and remove it if this is the 1733 * last reference. 1734 */ 1735 if (flags & XFS_BLI_CANCEL) { 1736 bcp->bc_refcount--; 1737 if (bcp->bc_refcount == 0) { 1738 if (prevp == NULL) { 1739 *bucket = bcp->bc_next; 1740 } else { 1741 prevp->bc_next = bcp->bc_next; 1742 } 1743 kmem_free(bcp, 1744 sizeof(xfs_buf_cancel_t)); 1745 } 1746 } 1747 return 1; 1748 } 1749 prevp = bcp; 1750 bcp = bcp->bc_next; 1751 } 1752 /* 1753 * We didn't find a corresponding entry in the table, so 1754 * return 0 so that the buffer is NOT cancelled. 1755 */ 1756 ASSERT(!(flags & XFS_BLI_CANCEL)); 1757 return 0; 1758 } 1759 1760 STATIC int 1761 xlog_recover_do_buffer_pass2( 1762 xlog_t *log, 1763 xfs_buf_log_format_t *buf_f) 1764 { 1765 xfs_buf_log_format_v1_t *obuf_f; 1766 xfs_daddr_t blkno = 0; 1767 ushort flags = 0; 1768 uint len = 0; 1769 1770 switch (buf_f->blf_type) { 1771 case XFS_LI_BUF: 1772 blkno = buf_f->blf_blkno; 1773 flags = buf_f->blf_flags; 1774 len = buf_f->blf_len; 1775 break; 1776 case XFS_LI_6_1_BUF: 1777 case XFS_LI_5_3_BUF: 1778 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1779 blkno = (xfs_daddr_t) obuf_f->blf_blkno; 1780 flags = obuf_f->blf_flags; 1781 len = (xfs_daddr_t) obuf_f->blf_len; 1782 break; 1783 } 1784 1785 return xlog_check_buffer_cancelled(log, blkno, len, flags); 1786 } 1787 1788 /* 1789 * Perform recovery for a buffer full of inodes. In these buffers, 1790 * the only data which should be recovered is that which corresponds 1791 * to the di_next_unlinked pointers in the on disk inode structures. 1792 * The rest of the data for the inodes is always logged through the 1793 * inodes themselves rather than the inode buffer and is recovered 1794 * in xlog_recover_do_inode_trans(). 1795 * 1796 * The only time when buffers full of inodes are fully recovered is 1797 * when the buffer is full of newly allocated inodes. In this case 1798 * the buffer will not be marked as an inode buffer and so will be 1799 * sent to xlog_recover_do_reg_buffer() below during recovery. 1800 */ 1801 STATIC int 1802 xlog_recover_do_inode_buffer( 1803 xfs_mount_t *mp, 1804 xlog_recover_item_t *item, 1805 xfs_buf_t *bp, 1806 xfs_buf_log_format_t *buf_f) 1807 { 1808 int i; 1809 int item_index; 1810 int bit; 1811 int nbits; 1812 int reg_buf_offset; 1813 int reg_buf_bytes; 1814 int next_unlinked_offset; 1815 int inodes_per_buf; 1816 xfs_agino_t *logged_nextp; 1817 xfs_agino_t *buffer_nextp; 1818 xfs_buf_log_format_v1_t *obuf_f; 1819 unsigned int *data_map = NULL; 1820 unsigned int map_size = 0; 1821 1822 switch (buf_f->blf_type) { 1823 case XFS_LI_BUF: 1824 data_map = buf_f->blf_data_map; 1825 map_size = buf_f->blf_map_size; 1826 break; 1827 case XFS_LI_6_1_BUF: 1828 case XFS_LI_5_3_BUF: 1829 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1830 data_map = obuf_f->blf_data_map; 1831 map_size = obuf_f->blf_map_size; 1832 break; 1833 } 1834 /* 1835 * Set the variables corresponding to the current region to 1836 * 0 so that we'll initialize them on the first pass through 1837 * the loop. 1838 */ 1839 reg_buf_offset = 0; 1840 reg_buf_bytes = 0; 1841 bit = 0; 1842 nbits = 0; 1843 item_index = 0; 1844 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; 1845 for (i = 0; i < inodes_per_buf; i++) { 1846 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1847 offsetof(xfs_dinode_t, di_next_unlinked); 1848 1849 while (next_unlinked_offset >= 1850 (reg_buf_offset + reg_buf_bytes)) { 1851 /* 1852 * The next di_next_unlinked field is beyond 1853 * the current logged region. Find the next 1854 * logged region that contains or is beyond 1855 * the current di_next_unlinked field. 1856 */ 1857 bit += nbits; 1858 bit = xfs_next_bit(data_map, map_size, bit); 1859 1860 /* 1861 * If there are no more logged regions in the 1862 * buffer, then we're done. 1863 */ 1864 if (bit == -1) { 1865 return 0; 1866 } 1867 1868 nbits = xfs_contig_bits(data_map, map_size, 1869 bit); 1870 ASSERT(nbits > 0); 1871 reg_buf_offset = bit << XFS_BLI_SHIFT; 1872 reg_buf_bytes = nbits << XFS_BLI_SHIFT; 1873 item_index++; 1874 } 1875 1876 /* 1877 * If the current logged region starts after the current 1878 * di_next_unlinked field, then move on to the next 1879 * di_next_unlinked field. 1880 */ 1881 if (next_unlinked_offset < reg_buf_offset) { 1882 continue; 1883 } 1884 1885 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1886 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0); 1887 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); 1888 1889 /* 1890 * The current logged region contains a copy of the 1891 * current di_next_unlinked field. Extract its value 1892 * and copy it to the buffer copy. 1893 */ 1894 logged_nextp = (xfs_agino_t *) 1895 ((char *)(item->ri_buf[item_index].i_addr) + 1896 (next_unlinked_offset - reg_buf_offset)); 1897 if (unlikely(*logged_nextp == 0)) { 1898 xfs_fs_cmn_err(CE_ALERT, mp, 1899 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", 1900 item, bp); 1901 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1902 XFS_ERRLEVEL_LOW, mp); 1903 return XFS_ERROR(EFSCORRUPTED); 1904 } 1905 1906 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1907 next_unlinked_offset); 1908 INT_SET(*buffer_nextp, ARCH_CONVERT, *logged_nextp); 1909 } 1910 1911 return 0; 1912 } 1913 1914 /* 1915 * Perform a 'normal' buffer recovery. Each logged region of the 1916 * buffer should be copied over the corresponding region in the 1917 * given buffer. The bitmap in the buf log format structure indicates 1918 * where to place the logged data. 1919 */ 1920 /*ARGSUSED*/ 1921 STATIC void 1922 xlog_recover_do_reg_buffer( 1923 xfs_mount_t *mp, 1924 xlog_recover_item_t *item, 1925 xfs_buf_t *bp, 1926 xfs_buf_log_format_t *buf_f) 1927 { 1928 int i; 1929 int bit; 1930 int nbits; 1931 xfs_buf_log_format_v1_t *obuf_f; 1932 unsigned int *data_map = NULL; 1933 unsigned int map_size = 0; 1934 int error; 1935 1936 switch (buf_f->blf_type) { 1937 case XFS_LI_BUF: 1938 data_map = buf_f->blf_data_map; 1939 map_size = buf_f->blf_map_size; 1940 break; 1941 case XFS_LI_6_1_BUF: 1942 case XFS_LI_5_3_BUF: 1943 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1944 data_map = obuf_f->blf_data_map; 1945 map_size = obuf_f->blf_map_size; 1946 break; 1947 } 1948 bit = 0; 1949 i = 1; /* 0 is the buf format structure */ 1950 while (1) { 1951 bit = xfs_next_bit(data_map, map_size, bit); 1952 if (bit == -1) 1953 break; 1954 nbits = xfs_contig_bits(data_map, map_size, bit); 1955 ASSERT(nbits > 0); 1956 ASSERT(item->ri_buf[i].i_addr != 0); 1957 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0); 1958 ASSERT(XFS_BUF_COUNT(bp) >= 1959 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT)); 1960 1961 /* 1962 * Do a sanity check if this is a dquot buffer. Just checking 1963 * the first dquot in the buffer should do. XXXThis is 1964 * probably a good thing to do for other buf types also. 1965 */ 1966 error = 0; 1967 if (buf_f->blf_flags & 1968 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 1969 error = xfs_qm_dqcheck((xfs_disk_dquot_t *) 1970 item->ri_buf[i].i_addr, 1971 -1, 0, XFS_QMOPT_DOWARN, 1972 "dquot_buf_recover"); 1973 } 1974 if (!error) 1975 memcpy(xfs_buf_offset(bp, 1976 (uint)bit << XFS_BLI_SHIFT), /* dest */ 1977 item->ri_buf[i].i_addr, /* source */ 1978 nbits<<XFS_BLI_SHIFT); /* length */ 1979 i++; 1980 bit += nbits; 1981 } 1982 1983 /* Shouldn't be any more regions */ 1984 ASSERT(i == item->ri_total); 1985 } 1986 1987 /* 1988 * Do some primitive error checking on ondisk dquot data structures. 1989 */ 1990 int 1991 xfs_qm_dqcheck( 1992 xfs_disk_dquot_t *ddq, 1993 xfs_dqid_t id, 1994 uint type, /* used only when IO_dorepair is true */ 1995 uint flags, 1996 char *str) 1997 { 1998 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 1999 int errs = 0; 2000 2001 /* 2002 * We can encounter an uninitialized dquot buffer for 2 reasons: 2003 * 1. If we crash while deleting the quotainode(s), and those blks got 2004 * used for user data. This is because we take the path of regular 2005 * file deletion; however, the size field of quotainodes is never 2006 * updated, so all the tricks that we play in itruncate_finish 2007 * don't quite matter. 2008 * 2009 * 2. We don't play the quota buffers when there's a quotaoff logitem. 2010 * But the allocation will be replayed so we'll end up with an 2011 * uninitialized quota block. 2012 * 2013 * This is all fine; things are still consistent, and we haven't lost 2014 * any quota information. Just don't complain about bad dquot blks. 2015 */ 2016 if (INT_GET(ddq->d_magic, ARCH_CONVERT) != XFS_DQUOT_MAGIC) { 2017 if (flags & XFS_QMOPT_DOWARN) 2018 cmn_err(CE_ALERT, 2019 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 2020 str, id, 2021 INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_MAGIC); 2022 errs++; 2023 } 2024 if (INT_GET(ddq->d_version, ARCH_CONVERT) != XFS_DQUOT_VERSION) { 2025 if (flags & XFS_QMOPT_DOWARN) 2026 cmn_err(CE_ALERT, 2027 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 2028 str, id, 2029 INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_VERSION); 2030 errs++; 2031 } 2032 2033 if (INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_USER && 2034 INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_PROJ && 2035 INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_GROUP) { 2036 if (flags & XFS_QMOPT_DOWARN) 2037 cmn_err(CE_ALERT, 2038 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 2039 str, id, INT_GET(ddq->d_flags, ARCH_CONVERT)); 2040 errs++; 2041 } 2042 2043 if (id != -1 && id != INT_GET(ddq->d_id, ARCH_CONVERT)) { 2044 if (flags & XFS_QMOPT_DOWARN) 2045 cmn_err(CE_ALERT, 2046 "%s : ondisk-dquot 0x%p, ID mismatch: " 2047 "0x%x expected, found id 0x%x", 2048 str, ddq, id, INT_GET(ddq->d_id, ARCH_CONVERT)); 2049 errs++; 2050 } 2051 2052 if (!errs && ddq->d_id) { 2053 if (INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT) && 2054 INT_GET(ddq->d_bcount, ARCH_CONVERT) >= 2055 INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT)) { 2056 if (!ddq->d_btimer) { 2057 if (flags & XFS_QMOPT_DOWARN) 2058 cmn_err(CE_ALERT, 2059 "%s : Dquot ID 0x%x (0x%p) " 2060 "BLK TIMER NOT STARTED", 2061 str, (int) 2062 INT_GET(ddq->d_id, ARCH_CONVERT), ddq); 2063 errs++; 2064 } 2065 } 2066 if (INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT) && 2067 INT_GET(ddq->d_icount, ARCH_CONVERT) >= 2068 INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT)) { 2069 if (!ddq->d_itimer) { 2070 if (flags & XFS_QMOPT_DOWARN) 2071 cmn_err(CE_ALERT, 2072 "%s : Dquot ID 0x%x (0x%p) " 2073 "INODE TIMER NOT STARTED", 2074 str, (int) 2075 INT_GET(ddq->d_id, ARCH_CONVERT), ddq); 2076 errs++; 2077 } 2078 } 2079 if (INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT) && 2080 INT_GET(ddq->d_rtbcount, ARCH_CONVERT) >= 2081 INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT)) { 2082 if (!ddq->d_rtbtimer) { 2083 if (flags & XFS_QMOPT_DOWARN) 2084 cmn_err(CE_ALERT, 2085 "%s : Dquot ID 0x%x (0x%p) " 2086 "RTBLK TIMER NOT STARTED", 2087 str, (int) 2088 INT_GET(ddq->d_id, ARCH_CONVERT), ddq); 2089 errs++; 2090 } 2091 } 2092 } 2093 2094 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2095 return errs; 2096 2097 if (flags & XFS_QMOPT_DOWARN) 2098 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); 2099 2100 /* 2101 * Typically, a repair is only requested by quotacheck. 2102 */ 2103 ASSERT(id != -1); 2104 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2105 memset(d, 0, sizeof(xfs_dqblk_t)); 2106 INT_SET(d->dd_diskdq.d_magic, ARCH_CONVERT, XFS_DQUOT_MAGIC); 2107 INT_SET(d->dd_diskdq.d_version, ARCH_CONVERT, XFS_DQUOT_VERSION); 2108 INT_SET(d->dd_diskdq.d_id, ARCH_CONVERT, id); 2109 INT_SET(d->dd_diskdq.d_flags, ARCH_CONVERT, type); 2110 2111 return errs; 2112 } 2113 2114 /* 2115 * Perform a dquot buffer recovery. 2116 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2117 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2118 * Else, treat it as a regular buffer and do recovery. 2119 */ 2120 STATIC void 2121 xlog_recover_do_dquot_buffer( 2122 xfs_mount_t *mp, 2123 xlog_t *log, 2124 xlog_recover_item_t *item, 2125 xfs_buf_t *bp, 2126 xfs_buf_log_format_t *buf_f) 2127 { 2128 uint type; 2129 2130 /* 2131 * Filesystems are required to send in quota flags at mount time. 2132 */ 2133 if (mp->m_qflags == 0) { 2134 return; 2135 } 2136 2137 type = 0; 2138 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF) 2139 type |= XFS_DQ_USER; 2140 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF) 2141 type |= XFS_DQ_PROJ; 2142 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF) 2143 type |= XFS_DQ_GROUP; 2144 /* 2145 * This type of quotas was turned off, so ignore this buffer 2146 */ 2147 if (log->l_quotaoffs_flag & type) 2148 return; 2149 2150 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2151 } 2152 2153 /* 2154 * This routine replays a modification made to a buffer at runtime. 2155 * There are actually two types of buffer, regular and inode, which 2156 * are handled differently. Inode buffers are handled differently 2157 * in that we only recover a specific set of data from them, namely 2158 * the inode di_next_unlinked fields. This is because all other inode 2159 * data is actually logged via inode records and any data we replay 2160 * here which overlaps that may be stale. 2161 * 2162 * When meta-data buffers are freed at run time we log a buffer item 2163 * with the XFS_BLI_CANCEL bit set to indicate that previous copies 2164 * of the buffer in the log should not be replayed at recovery time. 2165 * This is so that if the blocks covered by the buffer are reused for 2166 * file data before we crash we don't end up replaying old, freed 2167 * meta-data into a user's file. 2168 * 2169 * To handle the cancellation of buffer log items, we make two passes 2170 * over the log during recovery. During the first we build a table of 2171 * those buffers which have been cancelled, and during the second we 2172 * only replay those buffers which do not have corresponding cancel 2173 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2174 * for more details on the implementation of the table of cancel records. 2175 */ 2176 STATIC int 2177 xlog_recover_do_buffer_trans( 2178 xlog_t *log, 2179 xlog_recover_item_t *item, 2180 int pass) 2181 { 2182 xfs_buf_log_format_t *buf_f; 2183 xfs_buf_log_format_v1_t *obuf_f; 2184 xfs_mount_t *mp; 2185 xfs_buf_t *bp; 2186 int error; 2187 int cancel; 2188 xfs_daddr_t blkno; 2189 int len; 2190 ushort flags; 2191 2192 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr; 2193 2194 if (pass == XLOG_RECOVER_PASS1) { 2195 /* 2196 * In this pass we're only looking for buf items 2197 * with the XFS_BLI_CANCEL bit set. 2198 */ 2199 xlog_recover_do_buffer_pass1(log, buf_f); 2200 return 0; 2201 } else { 2202 /* 2203 * In this pass we want to recover all the buffers 2204 * which have not been cancelled and are not 2205 * cancellation buffers themselves. The routine 2206 * we call here will tell us whether or not to 2207 * continue with the replay of this buffer. 2208 */ 2209 cancel = xlog_recover_do_buffer_pass2(log, buf_f); 2210 if (cancel) { 2211 return 0; 2212 } 2213 } 2214 switch (buf_f->blf_type) { 2215 case XFS_LI_BUF: 2216 blkno = buf_f->blf_blkno; 2217 len = buf_f->blf_len; 2218 flags = buf_f->blf_flags; 2219 break; 2220 case XFS_LI_6_1_BUF: 2221 case XFS_LI_5_3_BUF: 2222 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 2223 blkno = obuf_f->blf_blkno; 2224 len = obuf_f->blf_len; 2225 flags = obuf_f->blf_flags; 2226 break; 2227 default: 2228 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 2229 "xfs_log_recover: unknown buffer type 0x%x, dev %s", 2230 buf_f->blf_type, XFS_BUFTARG_NAME(log->l_targ)); 2231 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", 2232 XFS_ERRLEVEL_LOW, log->l_mp); 2233 return XFS_ERROR(EFSCORRUPTED); 2234 } 2235 2236 mp = log->l_mp; 2237 if (flags & XFS_BLI_INODE_BUF) { 2238 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len, 2239 XFS_BUF_LOCK); 2240 } else { 2241 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0); 2242 } 2243 if (XFS_BUF_ISERROR(bp)) { 2244 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, 2245 bp, blkno); 2246 error = XFS_BUF_GETERROR(bp); 2247 xfs_buf_relse(bp); 2248 return error; 2249 } 2250 2251 error = 0; 2252 if (flags & XFS_BLI_INODE_BUF) { 2253 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2254 } else if (flags & 2255 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 2256 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2257 } else { 2258 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2259 } 2260 if (error) 2261 return XFS_ERROR(error); 2262 2263 /* 2264 * Perform delayed write on the buffer. Asynchronous writes will be 2265 * slower when taking into account all the buffers to be flushed. 2266 * 2267 * Also make sure that only inode buffers with good sizes stay in 2268 * the buffer cache. The kernel moves inodes in buffers of 1 block 2269 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2270 * buffers in the log can be a different size if the log was generated 2271 * by an older kernel using unclustered inode buffers or a newer kernel 2272 * running with a different inode cluster size. Regardless, if the 2273 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2274 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2275 * the buffer out of the buffer cache so that the buffer won't 2276 * overlap with future reads of those inodes. 2277 */ 2278 if (XFS_DINODE_MAGIC == 2279 INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) && 2280 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, 2281 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2282 XFS_BUF_STALE(bp); 2283 error = xfs_bwrite(mp, bp); 2284 } else { 2285 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2286 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2287 XFS_BUF_SET_FSPRIVATE(bp, mp); 2288 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2289 xfs_bdwrite(mp, bp); 2290 } 2291 2292 return (error); 2293 } 2294 2295 STATIC int 2296 xlog_recover_do_inode_trans( 2297 xlog_t *log, 2298 xlog_recover_item_t *item, 2299 int pass) 2300 { 2301 xfs_inode_log_format_t *in_f; 2302 xfs_mount_t *mp; 2303 xfs_buf_t *bp; 2304 xfs_imap_t imap; 2305 xfs_dinode_t *dip; 2306 xfs_ino_t ino; 2307 int len; 2308 xfs_caddr_t src; 2309 xfs_caddr_t dest; 2310 int error; 2311 int attr_index; 2312 uint fields; 2313 xfs_dinode_core_t *dicp; 2314 2315 if (pass == XLOG_RECOVER_PASS1) { 2316 return 0; 2317 } 2318 2319 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr; 2320 ino = in_f->ilf_ino; 2321 mp = log->l_mp; 2322 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2323 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno; 2324 imap.im_len = in_f->ilf_len; 2325 imap.im_boffset = in_f->ilf_boffset; 2326 } else { 2327 /* 2328 * It's an old inode format record. We don't know where 2329 * its cluster is located on disk, and we can't allow 2330 * xfs_imap() to figure it out because the inode btrees 2331 * are not ready to be used. Therefore do not pass the 2332 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give 2333 * us only the single block in which the inode lives 2334 * rather than its cluster, so we must make sure to 2335 * invalidate the buffer when we write it out below. 2336 */ 2337 imap.im_blkno = 0; 2338 xfs_imap(log->l_mp, NULL, ino, &imap, 0); 2339 } 2340 2341 /* 2342 * Inode buffers can be freed, look out for it, 2343 * and do not replay the inode. 2344 */ 2345 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) 2346 return 0; 2347 2348 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len, 2349 XFS_BUF_LOCK); 2350 if (XFS_BUF_ISERROR(bp)) { 2351 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, 2352 bp, imap.im_blkno); 2353 error = XFS_BUF_GETERROR(bp); 2354 xfs_buf_relse(bp); 2355 return error; 2356 } 2357 error = 0; 2358 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2359 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 2360 2361 /* 2362 * Make sure the place we're flushing out to really looks 2363 * like an inode! 2364 */ 2365 if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) { 2366 xfs_buf_relse(bp); 2367 xfs_fs_cmn_err(CE_ALERT, mp, 2368 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", 2369 dip, bp, ino); 2370 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", 2371 XFS_ERRLEVEL_LOW, mp); 2372 return XFS_ERROR(EFSCORRUPTED); 2373 } 2374 dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr); 2375 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2376 xfs_buf_relse(bp); 2377 xfs_fs_cmn_err(CE_ALERT, mp, 2378 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", 2379 item, ino); 2380 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", 2381 XFS_ERRLEVEL_LOW, mp); 2382 return XFS_ERROR(EFSCORRUPTED); 2383 } 2384 2385 /* Skip replay when the on disk inode is newer than the log one */ 2386 if (dicp->di_flushiter < 2387 INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) { 2388 /* 2389 * Deal with the wrap case, DI_MAX_FLUSH is less 2390 * than smaller numbers 2391 */ 2392 if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT) 2393 == DI_MAX_FLUSH) && 2394 (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) { 2395 /* do nothing */ 2396 } else { 2397 xfs_buf_relse(bp); 2398 return 0; 2399 } 2400 } 2401 /* Take the opportunity to reset the flush iteration count */ 2402 dicp->di_flushiter = 0; 2403 2404 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { 2405 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2406 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2407 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", 2408 XFS_ERRLEVEL_LOW, mp, dicp); 2409 xfs_buf_relse(bp); 2410 xfs_fs_cmn_err(CE_ALERT, mp, 2411 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2412 item, dip, bp, ino); 2413 return XFS_ERROR(EFSCORRUPTED); 2414 } 2415 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { 2416 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2417 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2418 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2419 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", 2420 XFS_ERRLEVEL_LOW, mp, dicp); 2421 xfs_buf_relse(bp); 2422 xfs_fs_cmn_err(CE_ALERT, mp, 2423 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2424 item, dip, bp, ino); 2425 return XFS_ERROR(EFSCORRUPTED); 2426 } 2427 } 2428 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2429 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", 2430 XFS_ERRLEVEL_LOW, mp, dicp); 2431 xfs_buf_relse(bp); 2432 xfs_fs_cmn_err(CE_ALERT, mp, 2433 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2434 item, dip, bp, ino, 2435 dicp->di_nextents + dicp->di_anextents, 2436 dicp->di_nblocks); 2437 return XFS_ERROR(EFSCORRUPTED); 2438 } 2439 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2440 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", 2441 XFS_ERRLEVEL_LOW, mp, dicp); 2442 xfs_buf_relse(bp); 2443 xfs_fs_cmn_err(CE_ALERT, mp, 2444 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", 2445 item, dip, bp, ino, dicp->di_forkoff); 2446 return XFS_ERROR(EFSCORRUPTED); 2447 } 2448 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) { 2449 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", 2450 XFS_ERRLEVEL_LOW, mp, dicp); 2451 xfs_buf_relse(bp); 2452 xfs_fs_cmn_err(CE_ALERT, mp, 2453 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", 2454 item->ri_buf[1].i_len, item); 2455 return XFS_ERROR(EFSCORRUPTED); 2456 } 2457 2458 /* The core is in in-core format */ 2459 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, 2460 (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1); 2461 2462 /* the rest is in on-disk format */ 2463 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) { 2464 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t), 2465 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t), 2466 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t)); 2467 } 2468 2469 fields = in_f->ilf_fields; 2470 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2471 case XFS_ILOG_DEV: 2472 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev); 2473 2474 break; 2475 case XFS_ILOG_UUID: 2476 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid; 2477 break; 2478 } 2479 2480 if (in_f->ilf_size == 2) 2481 goto write_inode_buffer; 2482 len = item->ri_buf[2].i_len; 2483 src = item->ri_buf[2].i_addr; 2484 ASSERT(in_f->ilf_size <= 4); 2485 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2486 ASSERT(!(fields & XFS_ILOG_DFORK) || 2487 (len == in_f->ilf_dsize)); 2488 2489 switch (fields & XFS_ILOG_DFORK) { 2490 case XFS_ILOG_DDATA: 2491 case XFS_ILOG_DEXT: 2492 memcpy(&dip->di_u, src, len); 2493 break; 2494 2495 case XFS_ILOG_DBROOT: 2496 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2497 &(dip->di_u.di_bmbt), 2498 XFS_DFORK_DSIZE(dip, mp)); 2499 break; 2500 2501 default: 2502 /* 2503 * There are no data fork flags set. 2504 */ 2505 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2506 break; 2507 } 2508 2509 /* 2510 * If we logged any attribute data, recover it. There may or 2511 * may not have been any other non-core data logged in this 2512 * transaction. 2513 */ 2514 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2515 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2516 attr_index = 3; 2517 } else { 2518 attr_index = 2; 2519 } 2520 len = item->ri_buf[attr_index].i_len; 2521 src = item->ri_buf[attr_index].i_addr; 2522 ASSERT(len == in_f->ilf_asize); 2523 2524 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2525 case XFS_ILOG_ADATA: 2526 case XFS_ILOG_AEXT: 2527 dest = XFS_DFORK_APTR(dip); 2528 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2529 memcpy(dest, src, len); 2530 break; 2531 2532 case XFS_ILOG_ABROOT: 2533 dest = XFS_DFORK_APTR(dip); 2534 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2535 (xfs_bmdr_block_t*)dest, 2536 XFS_DFORK_ASIZE(dip, mp)); 2537 break; 2538 2539 default: 2540 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); 2541 ASSERT(0); 2542 xfs_buf_relse(bp); 2543 return XFS_ERROR(EIO); 2544 } 2545 } 2546 2547 write_inode_buffer: 2548 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2549 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2550 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2551 XFS_BUF_SET_FSPRIVATE(bp, mp); 2552 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2553 xfs_bdwrite(mp, bp); 2554 } else { 2555 XFS_BUF_STALE(bp); 2556 error = xfs_bwrite(mp, bp); 2557 } 2558 2559 return (error); 2560 } 2561 2562 /* 2563 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2564 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2565 * of that type. 2566 */ 2567 STATIC int 2568 xlog_recover_do_quotaoff_trans( 2569 xlog_t *log, 2570 xlog_recover_item_t *item, 2571 int pass) 2572 { 2573 xfs_qoff_logformat_t *qoff_f; 2574 2575 if (pass == XLOG_RECOVER_PASS2) { 2576 return (0); 2577 } 2578 2579 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr; 2580 ASSERT(qoff_f); 2581 2582 /* 2583 * The logitem format's flag tells us if this was user quotaoff, 2584 * group quotaoff or both. 2585 */ 2586 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2587 log->l_quotaoffs_flag |= XFS_DQ_USER; 2588 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2589 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2590 2591 return (0); 2592 } 2593 2594 /* 2595 * Recover a dquot record 2596 */ 2597 STATIC int 2598 xlog_recover_do_dquot_trans( 2599 xlog_t *log, 2600 xlog_recover_item_t *item, 2601 int pass) 2602 { 2603 xfs_mount_t *mp; 2604 xfs_buf_t *bp; 2605 struct xfs_disk_dquot *ddq, *recddq; 2606 int error; 2607 xfs_dq_logformat_t *dq_f; 2608 uint type; 2609 2610 if (pass == XLOG_RECOVER_PASS1) { 2611 return 0; 2612 } 2613 mp = log->l_mp; 2614 2615 /* 2616 * Filesystems are required to send in quota flags at mount time. 2617 */ 2618 if (mp->m_qflags == 0) 2619 return (0); 2620 2621 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr; 2622 ASSERT(recddq); 2623 /* 2624 * This type of quotas was turned off, so ignore this record. 2625 */ 2626 type = INT_GET(recddq->d_flags, ARCH_CONVERT) & 2627 (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2628 ASSERT(type); 2629 if (log->l_quotaoffs_flag & type) 2630 return (0); 2631 2632 /* 2633 * At this point we know that quota was _not_ turned off. 2634 * Since the mount flags are not indicating to us otherwise, this 2635 * must mean that quota is on, and the dquot needs to be replayed. 2636 * Remember that we may not have fully recovered the superblock yet, 2637 * so we can't do the usual trick of looking at the SB quota bits. 2638 * 2639 * The other possibility, of course, is that the quota subsystem was 2640 * removed since the last mount - ENOSYS. 2641 */ 2642 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr; 2643 ASSERT(dq_f); 2644 if ((error = xfs_qm_dqcheck(recddq, 2645 dq_f->qlf_id, 2646 0, XFS_QMOPT_DOWARN, 2647 "xlog_recover_do_dquot_trans (log copy)"))) { 2648 return XFS_ERROR(EIO); 2649 } 2650 ASSERT(dq_f->qlf_len == 1); 2651 2652 error = xfs_read_buf(mp, mp->m_ddev_targp, 2653 dq_f->qlf_blkno, 2654 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 2655 0, &bp); 2656 if (error) { 2657 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, 2658 bp, dq_f->qlf_blkno); 2659 return error; 2660 } 2661 ASSERT(bp); 2662 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2663 2664 /* 2665 * At least the magic num portion should be on disk because this 2666 * was among a chunk of dquots created earlier, and we did some 2667 * minimal initialization then. 2668 */ 2669 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2670 "xlog_recover_do_dquot_trans")) { 2671 xfs_buf_relse(bp); 2672 return XFS_ERROR(EIO); 2673 } 2674 2675 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2676 2677 ASSERT(dq_f->qlf_size == 2); 2678 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2679 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2680 XFS_BUF_SET_FSPRIVATE(bp, mp); 2681 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2682 xfs_bdwrite(mp, bp); 2683 2684 return (0); 2685 } 2686 2687 /* 2688 * This routine is called to create an in-core extent free intent 2689 * item from the efi format structure which was logged on disk. 2690 * It allocates an in-core efi, copies the extents from the format 2691 * structure into it, and adds the efi to the AIL with the given 2692 * LSN. 2693 */ 2694 STATIC void 2695 xlog_recover_do_efi_trans( 2696 xlog_t *log, 2697 xlog_recover_item_t *item, 2698 xfs_lsn_t lsn, 2699 int pass) 2700 { 2701 xfs_mount_t *mp; 2702 xfs_efi_log_item_t *efip; 2703 xfs_efi_log_format_t *efi_formatp; 2704 SPLDECL(s); 2705 2706 if (pass == XLOG_RECOVER_PASS1) { 2707 return; 2708 } 2709 2710 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr; 2711 ASSERT(item->ri_buf[0].i_len == 2712 (sizeof(xfs_efi_log_format_t) + 2713 ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)))); 2714 2715 mp = log->l_mp; 2716 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2717 memcpy((char *)&(efip->efi_format), (char *)efi_formatp, 2718 sizeof(xfs_efi_log_format_t) + 2719 ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))); 2720 efip->efi_next_extent = efi_formatp->efi_nextents; 2721 efip->efi_flags |= XFS_EFI_COMMITTED; 2722 2723 AIL_LOCK(mp,s); 2724 /* 2725 * xfs_trans_update_ail() drops the AIL lock. 2726 */ 2727 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s); 2728 } 2729 2730 2731 /* 2732 * This routine is called when an efd format structure is found in 2733 * a committed transaction in the log. It's purpose is to cancel 2734 * the corresponding efi if it was still in the log. To do this 2735 * it searches the AIL for the efi with an id equal to that in the 2736 * efd format structure. If we find it, we remove the efi from the 2737 * AIL and free it. 2738 */ 2739 STATIC void 2740 xlog_recover_do_efd_trans( 2741 xlog_t *log, 2742 xlog_recover_item_t *item, 2743 int pass) 2744 { 2745 xfs_mount_t *mp; 2746 xfs_efd_log_format_t *efd_formatp; 2747 xfs_efi_log_item_t *efip = NULL; 2748 xfs_log_item_t *lip; 2749 int gen; 2750 __uint64_t efi_id; 2751 SPLDECL(s); 2752 2753 if (pass == XLOG_RECOVER_PASS1) { 2754 return; 2755 } 2756 2757 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr; 2758 ASSERT(item->ri_buf[0].i_len == 2759 (sizeof(xfs_efd_log_format_t) + 2760 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t)))); 2761 efi_id = efd_formatp->efd_efi_id; 2762 2763 /* 2764 * Search for the efi with the id in the efd format structure 2765 * in the AIL. 2766 */ 2767 mp = log->l_mp; 2768 AIL_LOCK(mp,s); 2769 lip = xfs_trans_first_ail(mp, &gen); 2770 while (lip != NULL) { 2771 if (lip->li_type == XFS_LI_EFI) { 2772 efip = (xfs_efi_log_item_t *)lip; 2773 if (efip->efi_format.efi_id == efi_id) { 2774 /* 2775 * xfs_trans_delete_ail() drops the 2776 * AIL lock. 2777 */ 2778 xfs_trans_delete_ail(mp, lip, s); 2779 break; 2780 } 2781 } 2782 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 2783 } 2784 2785 /* 2786 * If we found it, then free it up. If it wasn't there, it 2787 * must have been overwritten in the log. Oh well. 2788 */ 2789 if (lip != NULL) { 2790 xfs_efi_item_free(efip); 2791 } else { 2792 AIL_UNLOCK(mp, s); 2793 } 2794 } 2795 2796 /* 2797 * Perform the transaction 2798 * 2799 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2800 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2801 */ 2802 STATIC int 2803 xlog_recover_do_trans( 2804 xlog_t *log, 2805 xlog_recover_t *trans, 2806 int pass) 2807 { 2808 int error = 0; 2809 xlog_recover_item_t *item, *first_item; 2810 2811 if ((error = xlog_recover_reorder_trans(log, trans))) 2812 return error; 2813 first_item = item = trans->r_itemq; 2814 do { 2815 /* 2816 * we don't need to worry about the block number being 2817 * truncated in > 1 TB buffers because in user-land, 2818 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so 2819 * the blkno's will get through the user-mode buffer 2820 * cache properly. The only bad case is o32 kernels 2821 * where xfs_daddr_t is 32-bits but mount will warn us 2822 * off a > 1 TB filesystem before we get here. 2823 */ 2824 if ((ITEM_TYPE(item) == XFS_LI_BUF) || 2825 (ITEM_TYPE(item) == XFS_LI_6_1_BUF) || 2826 (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) { 2827 if ((error = xlog_recover_do_buffer_trans(log, item, 2828 pass))) 2829 break; 2830 } else if ((ITEM_TYPE(item) == XFS_LI_INODE) || 2831 (ITEM_TYPE(item) == XFS_LI_6_1_INODE) || 2832 (ITEM_TYPE(item) == XFS_LI_5_3_INODE)) { 2833 if ((error = xlog_recover_do_inode_trans(log, item, 2834 pass))) 2835 break; 2836 } else if (ITEM_TYPE(item) == XFS_LI_EFI) { 2837 xlog_recover_do_efi_trans(log, item, trans->r_lsn, 2838 pass); 2839 } else if (ITEM_TYPE(item) == XFS_LI_EFD) { 2840 xlog_recover_do_efd_trans(log, item, pass); 2841 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) { 2842 if ((error = xlog_recover_do_dquot_trans(log, item, 2843 pass))) 2844 break; 2845 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) { 2846 if ((error = xlog_recover_do_quotaoff_trans(log, item, 2847 pass))) 2848 break; 2849 } else { 2850 xlog_warn("XFS: xlog_recover_do_trans"); 2851 ASSERT(0); 2852 error = XFS_ERROR(EIO); 2853 break; 2854 } 2855 item = item->ri_next; 2856 } while (first_item != item); 2857 2858 return error; 2859 } 2860 2861 /* 2862 * Free up any resources allocated by the transaction 2863 * 2864 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2865 */ 2866 STATIC void 2867 xlog_recover_free_trans( 2868 xlog_recover_t *trans) 2869 { 2870 xlog_recover_item_t *first_item, *item, *free_item; 2871 int i; 2872 2873 item = first_item = trans->r_itemq; 2874 do { 2875 free_item = item; 2876 item = item->ri_next; 2877 /* Free the regions in the item. */ 2878 for (i = 0; i < free_item->ri_cnt; i++) { 2879 kmem_free(free_item->ri_buf[i].i_addr, 2880 free_item->ri_buf[i].i_len); 2881 } 2882 /* Free the item itself */ 2883 kmem_free(free_item->ri_buf, 2884 (free_item->ri_total * sizeof(xfs_log_iovec_t))); 2885 kmem_free(free_item, sizeof(xlog_recover_item_t)); 2886 } while (first_item != item); 2887 /* Free the transaction recover structure */ 2888 kmem_free(trans, sizeof(xlog_recover_t)); 2889 } 2890 2891 STATIC int 2892 xlog_recover_commit_trans( 2893 xlog_t *log, 2894 xlog_recover_t **q, 2895 xlog_recover_t *trans, 2896 int pass) 2897 { 2898 int error; 2899 2900 if ((error = xlog_recover_unlink_tid(q, trans))) 2901 return error; 2902 if ((error = xlog_recover_do_trans(log, trans, pass))) 2903 return error; 2904 xlog_recover_free_trans(trans); /* no error */ 2905 return 0; 2906 } 2907 2908 STATIC int 2909 xlog_recover_unmount_trans( 2910 xlog_recover_t *trans) 2911 { 2912 /* Do nothing now */ 2913 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); 2914 return 0; 2915 } 2916 2917 /* 2918 * There are two valid states of the r_state field. 0 indicates that the 2919 * transaction structure is in a normal state. We have either seen the 2920 * start of the transaction or the last operation we added was not a partial 2921 * operation. If the last operation we added to the transaction was a 2922 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2923 * 2924 * NOTE: skip LRs with 0 data length. 2925 */ 2926 STATIC int 2927 xlog_recover_process_data( 2928 xlog_t *log, 2929 xlog_recover_t *rhash[], 2930 xlog_rec_header_t *rhead, 2931 xfs_caddr_t dp, 2932 int pass) 2933 { 2934 xfs_caddr_t lp; 2935 int num_logops; 2936 xlog_op_header_t *ohead; 2937 xlog_recover_t *trans; 2938 xlog_tid_t tid; 2939 int error; 2940 unsigned long hash; 2941 uint flags; 2942 2943 lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT); 2944 num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT); 2945 2946 /* check the log format matches our own - else we can't recover */ 2947 if (xlog_header_check_recover(log->l_mp, rhead)) 2948 return (XFS_ERROR(EIO)); 2949 2950 while ((dp < lp) && num_logops) { 2951 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2952 ohead = (xlog_op_header_t *)dp; 2953 dp += sizeof(xlog_op_header_t); 2954 if (ohead->oh_clientid != XFS_TRANSACTION && 2955 ohead->oh_clientid != XFS_LOG) { 2956 xlog_warn( 2957 "XFS: xlog_recover_process_data: bad clientid"); 2958 ASSERT(0); 2959 return (XFS_ERROR(EIO)); 2960 } 2961 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT); 2962 hash = XLOG_RHASH(tid); 2963 trans = xlog_recover_find_tid(rhash[hash], tid); 2964 if (trans == NULL) { /* not found; add new tid */ 2965 if (ohead->oh_flags & XLOG_START_TRANS) 2966 xlog_recover_new_tid(&rhash[hash], tid, 2967 INT_GET(rhead->h_lsn, ARCH_CONVERT)); 2968 } else { 2969 ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp); 2970 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2971 if (flags & XLOG_WAS_CONT_TRANS) 2972 flags &= ~XLOG_CONTINUE_TRANS; 2973 switch (flags) { 2974 case XLOG_COMMIT_TRANS: 2975 error = xlog_recover_commit_trans(log, 2976 &rhash[hash], trans, pass); 2977 break; 2978 case XLOG_UNMOUNT_TRANS: 2979 error = xlog_recover_unmount_trans(trans); 2980 break; 2981 case XLOG_WAS_CONT_TRANS: 2982 error = xlog_recover_add_to_cont_trans(trans, 2983 dp, INT_GET(ohead->oh_len, 2984 ARCH_CONVERT)); 2985 break; 2986 case XLOG_START_TRANS: 2987 xlog_warn( 2988 "XFS: xlog_recover_process_data: bad transaction"); 2989 ASSERT(0); 2990 error = XFS_ERROR(EIO); 2991 break; 2992 case 0: 2993 case XLOG_CONTINUE_TRANS: 2994 error = xlog_recover_add_to_trans(trans, 2995 dp, INT_GET(ohead->oh_len, 2996 ARCH_CONVERT)); 2997 break; 2998 default: 2999 xlog_warn( 3000 "XFS: xlog_recover_process_data: bad flag"); 3001 ASSERT(0); 3002 error = XFS_ERROR(EIO); 3003 break; 3004 } 3005 if (error) 3006 return error; 3007 } 3008 dp += INT_GET(ohead->oh_len, ARCH_CONVERT); 3009 num_logops--; 3010 } 3011 return 0; 3012 } 3013 3014 /* 3015 * Process an extent free intent item that was recovered from 3016 * the log. We need to free the extents that it describes. 3017 */ 3018 STATIC void 3019 xlog_recover_process_efi( 3020 xfs_mount_t *mp, 3021 xfs_efi_log_item_t *efip) 3022 { 3023 xfs_efd_log_item_t *efdp; 3024 xfs_trans_t *tp; 3025 int i; 3026 xfs_extent_t *extp; 3027 xfs_fsblock_t startblock_fsb; 3028 3029 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); 3030 3031 /* 3032 * First check the validity of the extents described by the 3033 * EFI. If any are bad, then assume that all are bad and 3034 * just toss the EFI. 3035 */ 3036 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3037 extp = &(efip->efi_format.efi_extents[i]); 3038 startblock_fsb = XFS_BB_TO_FSB(mp, 3039 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3040 if ((startblock_fsb == 0) || 3041 (extp->ext_len == 0) || 3042 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3043 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3044 /* 3045 * This will pull the EFI from the AIL and 3046 * free the memory associated with it. 3047 */ 3048 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3049 return; 3050 } 3051 } 3052 3053 tp = xfs_trans_alloc(mp, 0); 3054 xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3055 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3056 3057 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3058 extp = &(efip->efi_format.efi_extents[i]); 3059 xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3060 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3061 extp->ext_len); 3062 } 3063 3064 efip->efi_flags |= XFS_EFI_RECOVERED; 3065 xfs_trans_commit(tp, 0, NULL); 3066 } 3067 3068 /* 3069 * Verify that once we've encountered something other than an EFI 3070 * in the AIL that there are no more EFIs in the AIL. 3071 */ 3072 #if defined(DEBUG) 3073 STATIC void 3074 xlog_recover_check_ail( 3075 xfs_mount_t *mp, 3076 xfs_log_item_t *lip, 3077 int gen) 3078 { 3079 int orig_gen = gen; 3080 3081 do { 3082 ASSERT(lip->li_type != XFS_LI_EFI); 3083 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3084 /* 3085 * The check will be bogus if we restart from the 3086 * beginning of the AIL, so ASSERT that we don't. 3087 * We never should since we're holding the AIL lock 3088 * the entire time. 3089 */ 3090 ASSERT(gen == orig_gen); 3091 } while (lip != NULL); 3092 } 3093 #endif /* DEBUG */ 3094 3095 /* 3096 * When this is called, all of the EFIs which did not have 3097 * corresponding EFDs should be in the AIL. What we do now 3098 * is free the extents associated with each one. 3099 * 3100 * Since we process the EFIs in normal transactions, they 3101 * will be removed at some point after the commit. This prevents 3102 * us from just walking down the list processing each one. 3103 * We'll use a flag in the EFI to skip those that we've already 3104 * processed and use the AIL iteration mechanism's generation 3105 * count to try to speed this up at least a bit. 3106 * 3107 * When we start, we know that the EFIs are the only things in 3108 * the AIL. As we process them, however, other items are added 3109 * to the AIL. Since everything added to the AIL must come after 3110 * everything already in the AIL, we stop processing as soon as 3111 * we see something other than an EFI in the AIL. 3112 */ 3113 STATIC void 3114 xlog_recover_process_efis( 3115 xlog_t *log) 3116 { 3117 xfs_log_item_t *lip; 3118 xfs_efi_log_item_t *efip; 3119 int gen; 3120 xfs_mount_t *mp; 3121 SPLDECL(s); 3122 3123 mp = log->l_mp; 3124 AIL_LOCK(mp,s); 3125 3126 lip = xfs_trans_first_ail(mp, &gen); 3127 while (lip != NULL) { 3128 /* 3129 * We're done when we see something other than an EFI. 3130 */ 3131 if (lip->li_type != XFS_LI_EFI) { 3132 xlog_recover_check_ail(mp, lip, gen); 3133 break; 3134 } 3135 3136 /* 3137 * Skip EFIs that we've already processed. 3138 */ 3139 efip = (xfs_efi_log_item_t *)lip; 3140 if (efip->efi_flags & XFS_EFI_RECOVERED) { 3141 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3142 continue; 3143 } 3144 3145 AIL_UNLOCK(mp, s); 3146 xlog_recover_process_efi(mp, efip); 3147 AIL_LOCK(mp,s); 3148 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3149 } 3150 AIL_UNLOCK(mp, s); 3151 } 3152 3153 /* 3154 * This routine performs a transaction to null out a bad inode pointer 3155 * in an agi unlinked inode hash bucket. 3156 */ 3157 STATIC void 3158 xlog_recover_clear_agi_bucket( 3159 xfs_mount_t *mp, 3160 xfs_agnumber_t agno, 3161 int bucket) 3162 { 3163 xfs_trans_t *tp; 3164 xfs_agi_t *agi; 3165 xfs_buf_t *agibp; 3166 int offset; 3167 int error; 3168 3169 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3170 xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0); 3171 3172 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 3173 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3174 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 3175 if (error) { 3176 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3177 return; 3178 } 3179 3180 agi = XFS_BUF_TO_AGI(agibp); 3181 if (INT_GET(agi->agi_magicnum, ARCH_CONVERT) != XFS_AGI_MAGIC) { 3182 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3183 return; 3184 } 3185 ASSERT(INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC); 3186 3187 INT_SET(agi->agi_unlinked[bucket], ARCH_CONVERT, NULLAGINO); 3188 offset = offsetof(xfs_agi_t, agi_unlinked) + 3189 (sizeof(xfs_agino_t) * bucket); 3190 xfs_trans_log_buf(tp, agibp, offset, 3191 (offset + sizeof(xfs_agino_t) - 1)); 3192 3193 (void) xfs_trans_commit(tp, 0, NULL); 3194 } 3195 3196 /* 3197 * xlog_iunlink_recover 3198 * 3199 * This is called during recovery to process any inodes which 3200 * we unlinked but not freed when the system crashed. These 3201 * inodes will be on the lists in the AGI blocks. What we do 3202 * here is scan all the AGIs and fully truncate and free any 3203 * inodes found on the lists. Each inode is removed from the 3204 * lists when it has been fully truncated and is freed. The 3205 * freeing of the inode and its removal from the list must be 3206 * atomic. 3207 */ 3208 void 3209 xlog_recover_process_iunlinks( 3210 xlog_t *log) 3211 { 3212 xfs_mount_t *mp; 3213 xfs_agnumber_t agno; 3214 xfs_agi_t *agi; 3215 xfs_buf_t *agibp; 3216 xfs_buf_t *ibp; 3217 xfs_dinode_t *dip; 3218 xfs_inode_t *ip; 3219 xfs_agino_t agino; 3220 xfs_ino_t ino; 3221 int bucket; 3222 int error; 3223 uint mp_dmevmask; 3224 3225 mp = log->l_mp; 3226 3227 /* 3228 * Prevent any DMAPI event from being sent while in this function. 3229 */ 3230 mp_dmevmask = mp->m_dmevmask; 3231 mp->m_dmevmask = 0; 3232 3233 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3234 /* 3235 * Find the agi for this ag. 3236 */ 3237 agibp = xfs_buf_read(mp->m_ddev_targp, 3238 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3239 XFS_FSS_TO_BB(mp, 1), 0); 3240 if (XFS_BUF_ISERROR(agibp)) { 3241 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)", 3242 log->l_mp, agibp, 3243 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp))); 3244 } 3245 agi = XFS_BUF_TO_AGI(agibp); 3246 ASSERT(XFS_AGI_MAGIC == 3247 INT_GET(agi->agi_magicnum, ARCH_CONVERT)); 3248 3249 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3250 3251 agino = INT_GET(agi->agi_unlinked[bucket], ARCH_CONVERT); 3252 while (agino != NULLAGINO) { 3253 3254 /* 3255 * Release the agi buffer so that it can 3256 * be acquired in the normal course of the 3257 * transaction to truncate and free the inode. 3258 */ 3259 xfs_buf_relse(agibp); 3260 3261 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3262 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0); 3263 ASSERT(error || (ip != NULL)); 3264 3265 if (!error) { 3266 /* 3267 * Get the on disk inode to find the 3268 * next inode in the bucket. 3269 */ 3270 error = xfs_itobp(mp, NULL, ip, &dip, 3271 &ibp, 0); 3272 ASSERT(error || (dip != NULL)); 3273 } 3274 3275 if (!error) { 3276 ASSERT(ip->i_d.di_nlink == 0); 3277 3278 /* setup for the next pass */ 3279 agino = INT_GET(dip->di_next_unlinked, 3280 ARCH_CONVERT); 3281 xfs_buf_relse(ibp); 3282 /* 3283 * Prevent any DMAPI event from 3284 * being sent when the 3285 * reference on the inode is 3286 * dropped. 3287 */ 3288 ip->i_d.di_dmevmask = 0; 3289 3290 /* 3291 * If this is a new inode, handle 3292 * it specially. Otherwise, 3293 * just drop our reference to the 3294 * inode. If there are no 3295 * other references, this will 3296 * send the inode to 3297 * xfs_inactive() which will 3298 * truncate the file and free 3299 * the inode. 3300 */ 3301 if (ip->i_d.di_mode == 0) 3302 xfs_iput_new(ip, 0); 3303 else 3304 VN_RELE(XFS_ITOV(ip)); 3305 } else { 3306 /* 3307 * We can't read in the inode 3308 * this bucket points to, or 3309 * this inode is messed up. Just 3310 * ditch this bucket of inodes. We 3311 * will lose some inodes and space, 3312 * but at least we won't hang. Call 3313 * xlog_recover_clear_agi_bucket() 3314 * to perform a transaction to clear 3315 * the inode pointer in the bucket. 3316 */ 3317 xlog_recover_clear_agi_bucket(mp, agno, 3318 bucket); 3319 3320 agino = NULLAGINO; 3321 } 3322 3323 /* 3324 * Reacquire the agibuffer and continue around 3325 * the loop. 3326 */ 3327 agibp = xfs_buf_read(mp->m_ddev_targp, 3328 XFS_AG_DADDR(mp, agno, 3329 XFS_AGI_DADDR(mp)), 3330 XFS_FSS_TO_BB(mp, 1), 0); 3331 if (XFS_BUF_ISERROR(agibp)) { 3332 xfs_ioerror_alert( 3333 "xlog_recover_process_iunlinks(#2)", 3334 log->l_mp, agibp, 3335 XFS_AG_DADDR(mp, agno, 3336 XFS_AGI_DADDR(mp))); 3337 } 3338 agi = XFS_BUF_TO_AGI(agibp); 3339 ASSERT(XFS_AGI_MAGIC == INT_GET( 3340 agi->agi_magicnum, ARCH_CONVERT)); 3341 } 3342 } 3343 3344 /* 3345 * Release the buffer for the current agi so we can 3346 * go on to the next one. 3347 */ 3348 xfs_buf_relse(agibp); 3349 } 3350 3351 mp->m_dmevmask = mp_dmevmask; 3352 } 3353 3354 3355 #ifdef DEBUG 3356 STATIC void 3357 xlog_pack_data_checksum( 3358 xlog_t *log, 3359 xlog_in_core_t *iclog, 3360 int size) 3361 { 3362 int i; 3363 uint *up; 3364 uint chksum = 0; 3365 3366 up = (uint *)iclog->ic_datap; 3367 /* divide length by 4 to get # words */ 3368 for (i = 0; i < (size >> 2); i++) { 3369 chksum ^= INT_GET(*up, ARCH_CONVERT); 3370 up++; 3371 } 3372 INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum); 3373 } 3374 #else 3375 #define xlog_pack_data_checksum(log, iclog, size) 3376 #endif 3377 3378 /* 3379 * Stamp cycle number in every block 3380 */ 3381 void 3382 xlog_pack_data( 3383 xlog_t *log, 3384 xlog_in_core_t *iclog, 3385 int roundoff) 3386 { 3387 int i, j, k; 3388 int size = iclog->ic_offset + roundoff; 3389 uint cycle_lsn; 3390 xfs_caddr_t dp; 3391 xlog_in_core_2_t *xhdr; 3392 3393 xlog_pack_data_checksum(log, iclog, size); 3394 3395 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3396 3397 dp = iclog->ic_datap; 3398 for (i = 0; i < BTOBB(size) && 3399 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3400 iclog->ic_header.h_cycle_data[i] = *(uint *)dp; 3401 *(uint *)dp = cycle_lsn; 3402 dp += BBSIZE; 3403 } 3404 3405 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3406 xhdr = (xlog_in_core_2_t *)&iclog->ic_header; 3407 for ( ; i < BTOBB(size); i++) { 3408 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3409 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3410 xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp; 3411 *(uint *)dp = cycle_lsn; 3412 dp += BBSIZE; 3413 } 3414 3415 for (i = 1; i < log->l_iclog_heads; i++) { 3416 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3417 } 3418 } 3419 } 3420 3421 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) 3422 STATIC void 3423 xlog_unpack_data_checksum( 3424 xlog_rec_header_t *rhead, 3425 xfs_caddr_t dp, 3426 xlog_t *log) 3427 { 3428 uint *up = (uint *)dp; 3429 uint chksum = 0; 3430 int i; 3431 3432 /* divide length by 4 to get # words */ 3433 for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) { 3434 chksum ^= INT_GET(*up, ARCH_CONVERT); 3435 up++; 3436 } 3437 if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) { 3438 if (rhead->h_chksum || 3439 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) { 3440 cmn_err(CE_DEBUG, 3441 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)", 3442 INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum); 3443 cmn_err(CE_DEBUG, 3444 "XFS: Disregard message if filesystem was created with non-DEBUG kernel"); 3445 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3446 cmn_err(CE_DEBUG, 3447 "XFS: LogR this is a LogV2 filesystem"); 3448 } 3449 log->l_flags |= XLOG_CHKSUM_MISMATCH; 3450 } 3451 } 3452 } 3453 #else 3454 #define xlog_unpack_data_checksum(rhead, dp, log) 3455 #endif 3456 3457 STATIC void 3458 xlog_unpack_data( 3459 xlog_rec_header_t *rhead, 3460 xfs_caddr_t dp, 3461 xlog_t *log) 3462 { 3463 int i, j, k; 3464 xlog_in_core_2_t *xhdr; 3465 3466 for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) && 3467 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3468 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i]; 3469 dp += BBSIZE; 3470 } 3471 3472 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3473 xhdr = (xlog_in_core_2_t *)rhead; 3474 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) { 3475 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3476 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3477 *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3478 dp += BBSIZE; 3479 } 3480 } 3481 3482 xlog_unpack_data_checksum(rhead, dp, log); 3483 } 3484 3485 STATIC int 3486 xlog_valid_rec_header( 3487 xlog_t *log, 3488 xlog_rec_header_t *rhead, 3489 xfs_daddr_t blkno) 3490 { 3491 int hlen; 3492 3493 if (unlikely( 3494 (INT_GET(rhead->h_magicno, ARCH_CONVERT) != 3495 XLOG_HEADER_MAGIC_NUM))) { 3496 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3497 XFS_ERRLEVEL_LOW, log->l_mp); 3498 return XFS_ERROR(EFSCORRUPTED); 3499 } 3500 if (unlikely( 3501 (!rhead->h_version || 3502 (INT_GET(rhead->h_version, ARCH_CONVERT) & 3503 (~XLOG_VERSION_OKBITS)) != 0))) { 3504 xlog_warn("XFS: %s: unrecognised log version (%d).", 3505 __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT)); 3506 return XFS_ERROR(EIO); 3507 } 3508 3509 /* LR body must have data or it wouldn't have been written */ 3510 hlen = INT_GET(rhead->h_len, ARCH_CONVERT); 3511 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3512 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3513 XFS_ERRLEVEL_LOW, log->l_mp); 3514 return XFS_ERROR(EFSCORRUPTED); 3515 } 3516 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3517 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3518 XFS_ERRLEVEL_LOW, log->l_mp); 3519 return XFS_ERROR(EFSCORRUPTED); 3520 } 3521 return 0; 3522 } 3523 3524 /* 3525 * Read the log from tail to head and process the log records found. 3526 * Handle the two cases where the tail and head are in the same cycle 3527 * and where the active portion of the log wraps around the end of 3528 * the physical log separately. The pass parameter is passed through 3529 * to the routines called to process the data and is not looked at 3530 * here. 3531 */ 3532 STATIC int 3533 xlog_do_recovery_pass( 3534 xlog_t *log, 3535 xfs_daddr_t head_blk, 3536 xfs_daddr_t tail_blk, 3537 int pass) 3538 { 3539 xlog_rec_header_t *rhead; 3540 xfs_daddr_t blk_no; 3541 xfs_caddr_t bufaddr, offset; 3542 xfs_buf_t *hbp, *dbp; 3543 int error = 0, h_size; 3544 int bblks, split_bblks; 3545 int hblks, split_hblks, wrapped_hblks; 3546 xlog_recover_t *rhash[XLOG_RHASH_SIZE]; 3547 3548 ASSERT(head_blk != tail_blk); 3549 3550 /* 3551 * Read the header of the tail block and get the iclog buffer size from 3552 * h_size. Use this to tell how many sectors make up the log header. 3553 */ 3554 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3555 /* 3556 * When using variable length iclogs, read first sector of 3557 * iclog header and extract the header size from it. Get a 3558 * new hbp that is the correct size. 3559 */ 3560 hbp = xlog_get_bp(log, 1); 3561 if (!hbp) 3562 return ENOMEM; 3563 if ((error = xlog_bread(log, tail_blk, 1, hbp))) 3564 goto bread_err1; 3565 offset = xlog_align(log, tail_blk, 1, hbp); 3566 rhead = (xlog_rec_header_t *)offset; 3567 error = xlog_valid_rec_header(log, rhead, tail_blk); 3568 if (error) 3569 goto bread_err1; 3570 h_size = INT_GET(rhead->h_size, ARCH_CONVERT); 3571 if ((INT_GET(rhead->h_version, ARCH_CONVERT) 3572 & XLOG_VERSION_2) && 3573 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3574 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3575 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3576 hblks++; 3577 xlog_put_bp(hbp); 3578 hbp = xlog_get_bp(log, hblks); 3579 } else { 3580 hblks = 1; 3581 } 3582 } else { 3583 ASSERT(log->l_sectbb_log == 0); 3584 hblks = 1; 3585 hbp = xlog_get_bp(log, 1); 3586 h_size = XLOG_BIG_RECORD_BSIZE; 3587 } 3588 3589 if (!hbp) 3590 return ENOMEM; 3591 dbp = xlog_get_bp(log, BTOBB(h_size)); 3592 if (!dbp) { 3593 xlog_put_bp(hbp); 3594 return ENOMEM; 3595 } 3596 3597 memset(rhash, 0, sizeof(rhash)); 3598 if (tail_blk <= head_blk) { 3599 for (blk_no = tail_blk; blk_no < head_blk; ) { 3600 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3601 goto bread_err2; 3602 offset = xlog_align(log, blk_no, hblks, hbp); 3603 rhead = (xlog_rec_header_t *)offset; 3604 error = xlog_valid_rec_header(log, rhead, blk_no); 3605 if (error) 3606 goto bread_err2; 3607 3608 /* blocks in data section */ 3609 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3610 error = xlog_bread(log, blk_no + hblks, bblks, dbp); 3611 if (error) 3612 goto bread_err2; 3613 offset = xlog_align(log, blk_no + hblks, bblks, dbp); 3614 xlog_unpack_data(rhead, offset, log); 3615 if ((error = xlog_recover_process_data(log, 3616 rhash, rhead, offset, pass))) 3617 goto bread_err2; 3618 blk_no += bblks + hblks; 3619 } 3620 } else { 3621 /* 3622 * Perform recovery around the end of the physical log. 3623 * When the head is not on the same cycle number as the tail, 3624 * we can't do a sequential recovery as above. 3625 */ 3626 blk_no = tail_blk; 3627 while (blk_no < log->l_logBBsize) { 3628 /* 3629 * Check for header wrapping around physical end-of-log 3630 */ 3631 offset = NULL; 3632 split_hblks = 0; 3633 wrapped_hblks = 0; 3634 if (blk_no + hblks <= log->l_logBBsize) { 3635 /* Read header in one read */ 3636 error = xlog_bread(log, blk_no, hblks, hbp); 3637 if (error) 3638 goto bread_err2; 3639 offset = xlog_align(log, blk_no, hblks, hbp); 3640 } else { 3641 /* This LR is split across physical log end */ 3642 if (blk_no != log->l_logBBsize) { 3643 /* some data before physical log end */ 3644 ASSERT(blk_no <= INT_MAX); 3645 split_hblks = log->l_logBBsize - (int)blk_no; 3646 ASSERT(split_hblks > 0); 3647 if ((error = xlog_bread(log, blk_no, 3648 split_hblks, hbp))) 3649 goto bread_err2; 3650 offset = xlog_align(log, blk_no, 3651 split_hblks, hbp); 3652 } 3653 /* 3654 * Note: this black magic still works with 3655 * large sector sizes (non-512) only because: 3656 * - we increased the buffer size originally 3657 * by 1 sector giving us enough extra space 3658 * for the second read; 3659 * - the log start is guaranteed to be sector 3660 * aligned; 3661 * - we read the log end (LR header start) 3662 * _first_, then the log start (LR header end) 3663 * - order is important. 3664 */ 3665 bufaddr = XFS_BUF_PTR(hbp); 3666 XFS_BUF_SET_PTR(hbp, 3667 bufaddr + BBTOB(split_hblks), 3668 BBTOB(hblks - split_hblks)); 3669 wrapped_hblks = hblks - split_hblks; 3670 error = xlog_bread(log, 0, wrapped_hblks, hbp); 3671 if (error) 3672 goto bread_err2; 3673 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks)); 3674 if (!offset) 3675 offset = xlog_align(log, 0, 3676 wrapped_hblks, hbp); 3677 } 3678 rhead = (xlog_rec_header_t *)offset; 3679 error = xlog_valid_rec_header(log, rhead, 3680 split_hblks ? blk_no : 0); 3681 if (error) 3682 goto bread_err2; 3683 3684 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3685 blk_no += hblks; 3686 3687 /* Read in data for log record */ 3688 if (blk_no + bblks <= log->l_logBBsize) { 3689 error = xlog_bread(log, blk_no, bblks, dbp); 3690 if (error) 3691 goto bread_err2; 3692 offset = xlog_align(log, blk_no, bblks, dbp); 3693 } else { 3694 /* This log record is split across the 3695 * physical end of log */ 3696 offset = NULL; 3697 split_bblks = 0; 3698 if (blk_no != log->l_logBBsize) { 3699 /* some data is before the physical 3700 * end of log */ 3701 ASSERT(!wrapped_hblks); 3702 ASSERT(blk_no <= INT_MAX); 3703 split_bblks = 3704 log->l_logBBsize - (int)blk_no; 3705 ASSERT(split_bblks > 0); 3706 if ((error = xlog_bread(log, blk_no, 3707 split_bblks, dbp))) 3708 goto bread_err2; 3709 offset = xlog_align(log, blk_no, 3710 split_bblks, dbp); 3711 } 3712 /* 3713 * Note: this black magic still works with 3714 * large sector sizes (non-512) only because: 3715 * - we increased the buffer size originally 3716 * by 1 sector giving us enough extra space 3717 * for the second read; 3718 * - the log start is guaranteed to be sector 3719 * aligned; 3720 * - we read the log end (LR header start) 3721 * _first_, then the log start (LR header end) 3722 * - order is important. 3723 */ 3724 bufaddr = XFS_BUF_PTR(dbp); 3725 XFS_BUF_SET_PTR(dbp, 3726 bufaddr + BBTOB(split_bblks), 3727 BBTOB(bblks - split_bblks)); 3728 if ((error = xlog_bread(log, wrapped_hblks, 3729 bblks - split_bblks, dbp))) 3730 goto bread_err2; 3731 XFS_BUF_SET_PTR(dbp, bufaddr, h_size); 3732 if (!offset) 3733 offset = xlog_align(log, wrapped_hblks, 3734 bblks - split_bblks, dbp); 3735 } 3736 xlog_unpack_data(rhead, offset, log); 3737 if ((error = xlog_recover_process_data(log, rhash, 3738 rhead, offset, pass))) 3739 goto bread_err2; 3740 blk_no += bblks; 3741 } 3742 3743 ASSERT(blk_no >= log->l_logBBsize); 3744 blk_no -= log->l_logBBsize; 3745 3746 /* read first part of physical log */ 3747 while (blk_no < head_blk) { 3748 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3749 goto bread_err2; 3750 offset = xlog_align(log, blk_no, hblks, hbp); 3751 rhead = (xlog_rec_header_t *)offset; 3752 error = xlog_valid_rec_header(log, rhead, blk_no); 3753 if (error) 3754 goto bread_err2; 3755 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3756 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp))) 3757 goto bread_err2; 3758 offset = xlog_align(log, blk_no+hblks, bblks, dbp); 3759 xlog_unpack_data(rhead, offset, log); 3760 if ((error = xlog_recover_process_data(log, rhash, 3761 rhead, offset, pass))) 3762 goto bread_err2; 3763 blk_no += bblks + hblks; 3764 } 3765 } 3766 3767 bread_err2: 3768 xlog_put_bp(dbp); 3769 bread_err1: 3770 xlog_put_bp(hbp); 3771 return error; 3772 } 3773 3774 /* 3775 * Do the recovery of the log. We actually do this in two phases. 3776 * The two passes are necessary in order to implement the function 3777 * of cancelling a record written into the log. The first pass 3778 * determines those things which have been cancelled, and the 3779 * second pass replays log items normally except for those which 3780 * have been cancelled. The handling of the replay and cancellations 3781 * takes place in the log item type specific routines. 3782 * 3783 * The table of items which have cancel records in the log is allocated 3784 * and freed at this level, since only here do we know when all of 3785 * the log recovery has been completed. 3786 */ 3787 STATIC int 3788 xlog_do_log_recovery( 3789 xlog_t *log, 3790 xfs_daddr_t head_blk, 3791 xfs_daddr_t tail_blk) 3792 { 3793 int error; 3794 3795 ASSERT(head_blk != tail_blk); 3796 3797 /* 3798 * First do a pass to find all of the cancelled buf log items. 3799 * Store them in the buf_cancel_table for use in the second pass. 3800 */ 3801 log->l_buf_cancel_table = 3802 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * 3803 sizeof(xfs_buf_cancel_t*), 3804 KM_SLEEP); 3805 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3806 XLOG_RECOVER_PASS1); 3807 if (error != 0) { 3808 kmem_free(log->l_buf_cancel_table, 3809 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); 3810 log->l_buf_cancel_table = NULL; 3811 return error; 3812 } 3813 /* 3814 * Then do a second pass to actually recover the items in the log. 3815 * When it is complete free the table of buf cancel items. 3816 */ 3817 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3818 XLOG_RECOVER_PASS2); 3819 #ifdef DEBUG 3820 { 3821 int i; 3822 3823 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3824 ASSERT(log->l_buf_cancel_table[i] == NULL); 3825 } 3826 #endif /* DEBUG */ 3827 3828 kmem_free(log->l_buf_cancel_table, 3829 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); 3830 log->l_buf_cancel_table = NULL; 3831 3832 return error; 3833 } 3834 3835 /* 3836 * Do the actual recovery 3837 */ 3838 STATIC int 3839 xlog_do_recover( 3840 xlog_t *log, 3841 xfs_daddr_t head_blk, 3842 xfs_daddr_t tail_blk) 3843 { 3844 int error; 3845 xfs_buf_t *bp; 3846 xfs_sb_t *sbp; 3847 3848 /* 3849 * First replay the images in the log. 3850 */ 3851 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3852 if (error) { 3853 return error; 3854 } 3855 3856 XFS_bflush(log->l_mp->m_ddev_targp); 3857 3858 /* 3859 * If IO errors happened during recovery, bail out. 3860 */ 3861 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3862 return (EIO); 3863 } 3864 3865 /* 3866 * We now update the tail_lsn since much of the recovery has completed 3867 * and there may be space available to use. If there were no extent 3868 * or iunlinks, we can free up the entire log and set the tail_lsn to 3869 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3870 * lsn of the last known good LR on disk. If there are extent frees 3871 * or iunlinks they will have some entries in the AIL; so we look at 3872 * the AIL to determine how to set the tail_lsn. 3873 */ 3874 xlog_assign_tail_lsn(log->l_mp); 3875 3876 /* 3877 * Now that we've finished replaying all buffer and inode 3878 * updates, re-read in the superblock. 3879 */ 3880 bp = xfs_getsb(log->l_mp, 0); 3881 XFS_BUF_UNDONE(bp); 3882 XFS_BUF_READ(bp); 3883 xfsbdstrat(log->l_mp, bp); 3884 if ((error = xfs_iowait(bp))) { 3885 xfs_ioerror_alert("xlog_do_recover", 3886 log->l_mp, bp, XFS_BUF_ADDR(bp)); 3887 ASSERT(0); 3888 xfs_buf_relse(bp); 3889 return error; 3890 } 3891 3892 /* Convert superblock from on-disk format */ 3893 sbp = &log->l_mp->m_sb; 3894 xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS); 3895 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3896 ASSERT(XFS_SB_GOOD_VERSION(sbp)); 3897 xfs_buf_relse(bp); 3898 3899 xlog_recover_check_summary(log); 3900 3901 /* Normal transactions can now occur */ 3902 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3903 return 0; 3904 } 3905 3906 /* 3907 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3908 * 3909 * Return error or zero. 3910 */ 3911 int 3912 xlog_recover( 3913 xlog_t *log, 3914 int readonly) 3915 { 3916 xfs_daddr_t head_blk, tail_blk; 3917 int error; 3918 3919 /* find the tail of the log */ 3920 if ((error = xlog_find_tail(log, &head_blk, &tail_blk, readonly))) 3921 return error; 3922 3923 if (tail_blk != head_blk) { 3924 /* There used to be a comment here: 3925 * 3926 * disallow recovery on read-only mounts. note -- mount 3927 * checks for ENOSPC and turns it into an intelligent 3928 * error message. 3929 * ...but this is no longer true. Now, unless you specify 3930 * NORECOVERY (in which case this function would never be 3931 * called), we just go ahead and recover. We do this all 3932 * under the vfs layer, so we can get away with it unless 3933 * the device itself is read-only, in which case we fail. 3934 */ 3935 if ((error = xfs_dev_is_read_only(log->l_mp, 3936 "recovery required"))) { 3937 return error; 3938 } 3939 3940 cmn_err(CE_NOTE, 3941 "Starting XFS recovery on filesystem: %s (dev: %s)", 3942 log->l_mp->m_fsname, XFS_BUFTARG_NAME(log->l_targ)); 3943 3944 error = xlog_do_recover(log, head_blk, tail_blk); 3945 log->l_flags |= XLOG_RECOVERY_NEEDED; 3946 } 3947 return error; 3948 } 3949 3950 /* 3951 * In the first part of recovery we replay inodes and buffers and build 3952 * up the list of extent free items which need to be processed. Here 3953 * we process the extent free items and clean up the on disk unlinked 3954 * inode lists. This is separated from the first part of recovery so 3955 * that the root and real-time bitmap inodes can be read in from disk in 3956 * between the two stages. This is necessary so that we can free space 3957 * in the real-time portion of the file system. 3958 */ 3959 int 3960 xlog_recover_finish( 3961 xlog_t *log, 3962 int mfsi_flags) 3963 { 3964 /* 3965 * Now we're ready to do the transactions needed for the 3966 * rest of recovery. Start with completing all the extent 3967 * free intent records and then process the unlinked inode 3968 * lists. At this point, we essentially run in normal mode 3969 * except that we're still performing recovery actions 3970 * rather than accepting new requests. 3971 */ 3972 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3973 xlog_recover_process_efis(log); 3974 /* 3975 * Sync the log to get all the EFIs out of the AIL. 3976 * This isn't absolutely necessary, but it helps in 3977 * case the unlink transactions would have problems 3978 * pushing the EFIs out of the way. 3979 */ 3980 xfs_log_force(log->l_mp, (xfs_lsn_t)0, 3981 (XFS_LOG_FORCE | XFS_LOG_SYNC)); 3982 3983 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) { 3984 xlog_recover_process_iunlinks(log); 3985 } 3986 3987 xlog_recover_check_summary(log); 3988 3989 cmn_err(CE_NOTE, 3990 "Ending XFS recovery on filesystem: %s (dev: %s)", 3991 log->l_mp->m_fsname, XFS_BUFTARG_NAME(log->l_targ)); 3992 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3993 } else { 3994 cmn_err(CE_DEBUG, 3995 "!Ending clean XFS mount for filesystem: %s", 3996 log->l_mp->m_fsname); 3997 } 3998 return 0; 3999 } 4000 4001 4002 #if defined(DEBUG) 4003 /* 4004 * Read all of the agf and agi counters and check that they 4005 * are consistent with the superblock counters. 4006 */ 4007 void 4008 xlog_recover_check_summary( 4009 xlog_t *log) 4010 { 4011 xfs_mount_t *mp; 4012 xfs_agf_t *agfp; 4013 xfs_agi_t *agip; 4014 xfs_buf_t *agfbp; 4015 xfs_buf_t *agibp; 4016 xfs_daddr_t agfdaddr; 4017 xfs_daddr_t agidaddr; 4018 xfs_buf_t *sbbp; 4019 #ifdef XFS_LOUD_RECOVERY 4020 xfs_sb_t *sbp; 4021 #endif 4022 xfs_agnumber_t agno; 4023 __uint64_t freeblks; 4024 __uint64_t itotal; 4025 __uint64_t ifree; 4026 4027 mp = log->l_mp; 4028 4029 freeblks = 0LL; 4030 itotal = 0LL; 4031 ifree = 0LL; 4032 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4033 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)); 4034 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr, 4035 XFS_FSS_TO_BB(mp, 1), 0); 4036 if (XFS_BUF_ISERROR(agfbp)) { 4037 xfs_ioerror_alert("xlog_recover_check_summary(agf)", 4038 mp, agfbp, agfdaddr); 4039 } 4040 agfp = XFS_BUF_TO_AGF(agfbp); 4041 ASSERT(XFS_AGF_MAGIC == 4042 INT_GET(agfp->agf_magicnum, ARCH_CONVERT)); 4043 ASSERT(XFS_AGF_GOOD_VERSION( 4044 INT_GET(agfp->agf_versionnum, ARCH_CONVERT))); 4045 ASSERT(INT_GET(agfp->agf_seqno, ARCH_CONVERT) == agno); 4046 4047 freeblks += INT_GET(agfp->agf_freeblks, ARCH_CONVERT) + 4048 INT_GET(agfp->agf_flcount, ARCH_CONVERT); 4049 xfs_buf_relse(agfbp); 4050 4051 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 4052 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr, 4053 XFS_FSS_TO_BB(mp, 1), 0); 4054 if (XFS_BUF_ISERROR(agibp)) { 4055 xfs_ioerror_alert("xlog_recover_check_summary(agi)", 4056 mp, agibp, agidaddr); 4057 } 4058 agip = XFS_BUF_TO_AGI(agibp); 4059 ASSERT(XFS_AGI_MAGIC == 4060 INT_GET(agip->agi_magicnum, ARCH_CONVERT)); 4061 ASSERT(XFS_AGI_GOOD_VERSION( 4062 INT_GET(agip->agi_versionnum, ARCH_CONVERT))); 4063 ASSERT(INT_GET(agip->agi_seqno, ARCH_CONVERT) == agno); 4064 4065 itotal += INT_GET(agip->agi_count, ARCH_CONVERT); 4066 ifree += INT_GET(agip->agi_freecount, ARCH_CONVERT); 4067 xfs_buf_relse(agibp); 4068 } 4069 4070 sbbp = xfs_getsb(mp, 0); 4071 #ifdef XFS_LOUD_RECOVERY 4072 sbp = &mp->m_sb; 4073 xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS); 4074 cmn_err(CE_NOTE, 4075 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu", 4076 sbp->sb_icount, itotal); 4077 cmn_err(CE_NOTE, 4078 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu", 4079 sbp->sb_ifree, ifree); 4080 cmn_err(CE_NOTE, 4081 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu", 4082 sbp->sb_fdblocks, freeblks); 4083 #if 0 4084 /* 4085 * This is turned off until I account for the allocation 4086 * btree blocks which live in free space. 4087 */ 4088 ASSERT(sbp->sb_icount == itotal); 4089 ASSERT(sbp->sb_ifree == ifree); 4090 ASSERT(sbp->sb_fdblocks == freeblks); 4091 #endif 4092 #endif 4093 xfs_buf_relse(sbbp); 4094 } 4095 #endif /* DEBUG */ 4096