1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_dinode.h" 33 #include "xfs_inode.h" 34 #include "xfs_inode_item.h" 35 #include "xfs_alloc.h" 36 #include "xfs_ialloc.h" 37 #include "xfs_log_priv.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_log_recover.h" 40 #include "xfs_extfree_item.h" 41 #include "xfs_trans_priv.h" 42 #include "xfs_quota.h" 43 #include "xfs_rw.h" 44 #include "xfs_utils.h" 45 #include "xfs_trace.h" 46 47 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 48 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 49 #if defined(DEBUG) 50 STATIC void xlog_recover_check_summary(xlog_t *); 51 #else 52 #define xlog_recover_check_summary(log) 53 #endif 54 55 /* 56 * Sector aligned buffer routines for buffer create/read/write/access 57 */ 58 59 /* 60 * Verify the given count of basic blocks is valid number of blocks 61 * to specify for an operation involving the given XFS log buffer. 62 * Returns nonzero if the count is valid, 0 otherwise. 63 */ 64 65 static inline int 66 xlog_buf_bbcount_valid( 67 xlog_t *log, 68 int bbcount) 69 { 70 return bbcount > 0 && bbcount <= log->l_logBBsize; 71 } 72 73 /* 74 * Allocate a buffer to hold log data. The buffer needs to be able 75 * to map to a range of nbblks basic blocks at any valid (basic 76 * block) offset within the log. 77 */ 78 STATIC xfs_buf_t * 79 xlog_get_bp( 80 xlog_t *log, 81 int nbblks) 82 { 83 if (!xlog_buf_bbcount_valid(log, nbblks)) { 84 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", 85 nbblks); 86 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 87 return NULL; 88 } 89 90 /* 91 * We do log I/O in units of log sectors (a power-of-2 92 * multiple of the basic block size), so we round up the 93 * requested size to acommodate the basic blocks required 94 * for complete log sectors. 95 * 96 * In addition, the buffer may be used for a non-sector- 97 * aligned block offset, in which case an I/O of the 98 * requested size could extend beyond the end of the 99 * buffer. If the requested size is only 1 basic block it 100 * will never straddle a sector boundary, so this won't be 101 * an issue. Nor will this be a problem if the log I/O is 102 * done in basic blocks (sector size 1). But otherwise we 103 * extend the buffer by one extra log sector to ensure 104 * there's space to accomodate this possiblility. 105 */ 106 if (nbblks > 1 && log->l_sectBBsize > 1) 107 nbblks += log->l_sectBBsize; 108 nbblks = round_up(nbblks, log->l_sectBBsize); 109 110 return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp); 111 } 112 113 STATIC void 114 xlog_put_bp( 115 xfs_buf_t *bp) 116 { 117 xfs_buf_free(bp); 118 } 119 120 /* 121 * Return the address of the start of the given block number's data 122 * in a log buffer. The buffer covers a log sector-aligned region. 123 */ 124 STATIC xfs_caddr_t 125 xlog_align( 126 xlog_t *log, 127 xfs_daddr_t blk_no, 128 int nbblks, 129 xfs_buf_t *bp) 130 { 131 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 132 133 ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp)); 134 return XFS_BUF_PTR(bp) + BBTOB(offset); 135 } 136 137 138 /* 139 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 140 */ 141 STATIC int 142 xlog_bread_noalign( 143 xlog_t *log, 144 xfs_daddr_t blk_no, 145 int nbblks, 146 xfs_buf_t *bp) 147 { 148 int error; 149 150 if (!xlog_buf_bbcount_valid(log, nbblks)) { 151 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", 152 nbblks); 153 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 154 return EFSCORRUPTED; 155 } 156 157 blk_no = round_down(blk_no, log->l_sectBBsize); 158 nbblks = round_up(nbblks, log->l_sectBBsize); 159 160 ASSERT(nbblks > 0); 161 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 162 163 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 164 XFS_BUF_READ(bp); 165 XFS_BUF_BUSY(bp); 166 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 167 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 168 169 xfsbdstrat(log->l_mp, bp); 170 error = xfs_iowait(bp); 171 if (error) 172 xfs_ioerror_alert("xlog_bread", log->l_mp, 173 bp, XFS_BUF_ADDR(bp)); 174 return error; 175 } 176 177 STATIC int 178 xlog_bread( 179 xlog_t *log, 180 xfs_daddr_t blk_no, 181 int nbblks, 182 xfs_buf_t *bp, 183 xfs_caddr_t *offset) 184 { 185 int error; 186 187 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 188 if (error) 189 return error; 190 191 *offset = xlog_align(log, blk_no, nbblks, bp); 192 return 0; 193 } 194 195 /* 196 * Write out the buffer at the given block for the given number of blocks. 197 * The buffer is kept locked across the write and is returned locked. 198 * This can only be used for synchronous log writes. 199 */ 200 STATIC int 201 xlog_bwrite( 202 xlog_t *log, 203 xfs_daddr_t blk_no, 204 int nbblks, 205 xfs_buf_t *bp) 206 { 207 int error; 208 209 if (!xlog_buf_bbcount_valid(log, nbblks)) { 210 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", 211 nbblks); 212 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 213 return EFSCORRUPTED; 214 } 215 216 blk_no = round_down(blk_no, log->l_sectBBsize); 217 nbblks = round_up(nbblks, log->l_sectBBsize); 218 219 ASSERT(nbblks > 0); 220 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 221 222 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 223 XFS_BUF_ZEROFLAGS(bp); 224 XFS_BUF_BUSY(bp); 225 XFS_BUF_HOLD(bp); 226 XFS_BUF_PSEMA(bp, PRIBIO); 227 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 228 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 229 230 if ((error = xfs_bwrite(log->l_mp, bp))) 231 xfs_ioerror_alert("xlog_bwrite", log->l_mp, 232 bp, XFS_BUF_ADDR(bp)); 233 return error; 234 } 235 236 #ifdef DEBUG 237 /* 238 * dump debug superblock and log record information 239 */ 240 STATIC void 241 xlog_header_check_dump( 242 xfs_mount_t *mp, 243 xlog_rec_header_t *head) 244 { 245 cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n", 246 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 247 cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n", 248 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 249 } 250 #else 251 #define xlog_header_check_dump(mp, head) 252 #endif 253 254 /* 255 * check log record header for recovery 256 */ 257 STATIC int 258 xlog_header_check_recover( 259 xfs_mount_t *mp, 260 xlog_rec_header_t *head) 261 { 262 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM); 263 264 /* 265 * IRIX doesn't write the h_fmt field and leaves it zeroed 266 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 267 * a dirty log created in IRIX. 268 */ 269 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) { 270 xlog_warn( 271 "XFS: dirty log written in incompatible format - can't recover"); 272 xlog_header_check_dump(mp, head); 273 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 274 XFS_ERRLEVEL_HIGH, mp); 275 return XFS_ERROR(EFSCORRUPTED); 276 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 277 xlog_warn( 278 "XFS: dirty log entry has mismatched uuid - can't recover"); 279 xlog_header_check_dump(mp, head); 280 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 281 XFS_ERRLEVEL_HIGH, mp); 282 return XFS_ERROR(EFSCORRUPTED); 283 } 284 return 0; 285 } 286 287 /* 288 * read the head block of the log and check the header 289 */ 290 STATIC int 291 xlog_header_check_mount( 292 xfs_mount_t *mp, 293 xlog_rec_header_t *head) 294 { 295 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM); 296 297 if (uuid_is_nil(&head->h_fs_uuid)) { 298 /* 299 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 300 * h_fs_uuid is nil, we assume this log was last mounted 301 * by IRIX and continue. 302 */ 303 xlog_warn("XFS: nil uuid in log - IRIX style log"); 304 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 305 xlog_warn("XFS: log has mismatched uuid - can't recover"); 306 xlog_header_check_dump(mp, head); 307 XFS_ERROR_REPORT("xlog_header_check_mount", 308 XFS_ERRLEVEL_HIGH, mp); 309 return XFS_ERROR(EFSCORRUPTED); 310 } 311 return 0; 312 } 313 314 STATIC void 315 xlog_recover_iodone( 316 struct xfs_buf *bp) 317 { 318 if (XFS_BUF_GETERROR(bp)) { 319 /* 320 * We're not going to bother about retrying 321 * this during recovery. One strike! 322 */ 323 xfs_ioerror_alert("xlog_recover_iodone", 324 bp->b_mount, bp, XFS_BUF_ADDR(bp)); 325 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 326 } 327 bp->b_mount = NULL; 328 XFS_BUF_CLR_IODONE_FUNC(bp); 329 xfs_biodone(bp); 330 } 331 332 /* 333 * This routine finds (to an approximation) the first block in the physical 334 * log which contains the given cycle. It uses a binary search algorithm. 335 * Note that the algorithm can not be perfect because the disk will not 336 * necessarily be perfect. 337 */ 338 STATIC int 339 xlog_find_cycle_start( 340 xlog_t *log, 341 xfs_buf_t *bp, 342 xfs_daddr_t first_blk, 343 xfs_daddr_t *last_blk, 344 uint cycle) 345 { 346 xfs_caddr_t offset; 347 xfs_daddr_t mid_blk; 348 xfs_daddr_t end_blk; 349 uint mid_cycle; 350 int error; 351 352 end_blk = *last_blk; 353 mid_blk = BLK_AVG(first_blk, end_blk); 354 while (mid_blk != first_blk && mid_blk != end_blk) { 355 error = xlog_bread(log, mid_blk, 1, bp, &offset); 356 if (error) 357 return error; 358 mid_cycle = xlog_get_cycle(offset); 359 if (mid_cycle == cycle) 360 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 361 else 362 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 363 mid_blk = BLK_AVG(first_blk, end_blk); 364 } 365 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 366 (mid_blk == end_blk && mid_blk-1 == first_blk)); 367 368 *last_blk = end_blk; 369 370 return 0; 371 } 372 373 /* 374 * Check that a range of blocks does not contain stop_on_cycle_no. 375 * Fill in *new_blk with the block offset where such a block is 376 * found, or with -1 (an invalid block number) if there is no such 377 * block in the range. The scan needs to occur from front to back 378 * and the pointer into the region must be updated since a later 379 * routine will need to perform another test. 380 */ 381 STATIC int 382 xlog_find_verify_cycle( 383 xlog_t *log, 384 xfs_daddr_t start_blk, 385 int nbblks, 386 uint stop_on_cycle_no, 387 xfs_daddr_t *new_blk) 388 { 389 xfs_daddr_t i, j; 390 uint cycle; 391 xfs_buf_t *bp; 392 xfs_daddr_t bufblks; 393 xfs_caddr_t buf = NULL; 394 int error = 0; 395 396 /* 397 * Greedily allocate a buffer big enough to handle the full 398 * range of basic blocks we'll be examining. If that fails, 399 * try a smaller size. We need to be able to read at least 400 * a log sector, or we're out of luck. 401 */ 402 bufblks = 1 << ffs(nbblks); 403 while (!(bp = xlog_get_bp(log, bufblks))) { 404 bufblks >>= 1; 405 if (bufblks < log->l_sectBBsize) 406 return ENOMEM; 407 } 408 409 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 410 int bcount; 411 412 bcount = min(bufblks, (start_blk + nbblks - i)); 413 414 error = xlog_bread(log, i, bcount, bp, &buf); 415 if (error) 416 goto out; 417 418 for (j = 0; j < bcount; j++) { 419 cycle = xlog_get_cycle(buf); 420 if (cycle == stop_on_cycle_no) { 421 *new_blk = i+j; 422 goto out; 423 } 424 425 buf += BBSIZE; 426 } 427 } 428 429 *new_blk = -1; 430 431 out: 432 xlog_put_bp(bp); 433 return error; 434 } 435 436 /* 437 * Potentially backup over partial log record write. 438 * 439 * In the typical case, last_blk is the number of the block directly after 440 * a good log record. Therefore, we subtract one to get the block number 441 * of the last block in the given buffer. extra_bblks contains the number 442 * of blocks we would have read on a previous read. This happens when the 443 * last log record is split over the end of the physical log. 444 * 445 * extra_bblks is the number of blocks potentially verified on a previous 446 * call to this routine. 447 */ 448 STATIC int 449 xlog_find_verify_log_record( 450 xlog_t *log, 451 xfs_daddr_t start_blk, 452 xfs_daddr_t *last_blk, 453 int extra_bblks) 454 { 455 xfs_daddr_t i; 456 xfs_buf_t *bp; 457 xfs_caddr_t offset = NULL; 458 xlog_rec_header_t *head = NULL; 459 int error = 0; 460 int smallmem = 0; 461 int num_blks = *last_blk - start_blk; 462 int xhdrs; 463 464 ASSERT(start_blk != 0 || *last_blk != start_blk); 465 466 if (!(bp = xlog_get_bp(log, num_blks))) { 467 if (!(bp = xlog_get_bp(log, 1))) 468 return ENOMEM; 469 smallmem = 1; 470 } else { 471 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 472 if (error) 473 goto out; 474 offset += ((num_blks - 1) << BBSHIFT); 475 } 476 477 for (i = (*last_blk) - 1; i >= 0; i--) { 478 if (i < start_blk) { 479 /* valid log record not found */ 480 xlog_warn( 481 "XFS: Log inconsistent (didn't find previous header)"); 482 ASSERT(0); 483 error = XFS_ERROR(EIO); 484 goto out; 485 } 486 487 if (smallmem) { 488 error = xlog_bread(log, i, 1, bp, &offset); 489 if (error) 490 goto out; 491 } 492 493 head = (xlog_rec_header_t *)offset; 494 495 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno)) 496 break; 497 498 if (!smallmem) 499 offset -= BBSIZE; 500 } 501 502 /* 503 * We hit the beginning of the physical log & still no header. Return 504 * to caller. If caller can handle a return of -1, then this routine 505 * will be called again for the end of the physical log. 506 */ 507 if (i == -1) { 508 error = -1; 509 goto out; 510 } 511 512 /* 513 * We have the final block of the good log (the first block 514 * of the log record _before_ the head. So we check the uuid. 515 */ 516 if ((error = xlog_header_check_mount(log->l_mp, head))) 517 goto out; 518 519 /* 520 * We may have found a log record header before we expected one. 521 * last_blk will be the 1st block # with a given cycle #. We may end 522 * up reading an entire log record. In this case, we don't want to 523 * reset last_blk. Only when last_blk points in the middle of a log 524 * record do we update last_blk. 525 */ 526 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 527 uint h_size = be32_to_cpu(head->h_size); 528 529 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 530 if (h_size % XLOG_HEADER_CYCLE_SIZE) 531 xhdrs++; 532 } else { 533 xhdrs = 1; 534 } 535 536 if (*last_blk - i + extra_bblks != 537 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 538 *last_blk = i; 539 540 out: 541 xlog_put_bp(bp); 542 return error; 543 } 544 545 /* 546 * Head is defined to be the point of the log where the next log write 547 * write could go. This means that incomplete LR writes at the end are 548 * eliminated when calculating the head. We aren't guaranteed that previous 549 * LR have complete transactions. We only know that a cycle number of 550 * current cycle number -1 won't be present in the log if we start writing 551 * from our current block number. 552 * 553 * last_blk contains the block number of the first block with a given 554 * cycle number. 555 * 556 * Return: zero if normal, non-zero if error. 557 */ 558 STATIC int 559 xlog_find_head( 560 xlog_t *log, 561 xfs_daddr_t *return_head_blk) 562 { 563 xfs_buf_t *bp; 564 xfs_caddr_t offset; 565 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 566 int num_scan_bblks; 567 uint first_half_cycle, last_half_cycle; 568 uint stop_on_cycle; 569 int error, log_bbnum = log->l_logBBsize; 570 571 /* Is the end of the log device zeroed? */ 572 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 573 *return_head_blk = first_blk; 574 575 /* Is the whole lot zeroed? */ 576 if (!first_blk) { 577 /* Linux XFS shouldn't generate totally zeroed logs - 578 * mkfs etc write a dummy unmount record to a fresh 579 * log so we can store the uuid in there 580 */ 581 xlog_warn("XFS: totally zeroed log"); 582 } 583 584 return 0; 585 } else if (error) { 586 xlog_warn("XFS: empty log check failed"); 587 return error; 588 } 589 590 first_blk = 0; /* get cycle # of 1st block */ 591 bp = xlog_get_bp(log, 1); 592 if (!bp) 593 return ENOMEM; 594 595 error = xlog_bread(log, 0, 1, bp, &offset); 596 if (error) 597 goto bp_err; 598 599 first_half_cycle = xlog_get_cycle(offset); 600 601 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 602 error = xlog_bread(log, last_blk, 1, bp, &offset); 603 if (error) 604 goto bp_err; 605 606 last_half_cycle = xlog_get_cycle(offset); 607 ASSERT(last_half_cycle != 0); 608 609 /* 610 * If the 1st half cycle number is equal to the last half cycle number, 611 * then the entire log is stamped with the same cycle number. In this 612 * case, head_blk can't be set to zero (which makes sense). The below 613 * math doesn't work out properly with head_blk equal to zero. Instead, 614 * we set it to log_bbnum which is an invalid block number, but this 615 * value makes the math correct. If head_blk doesn't changed through 616 * all the tests below, *head_blk is set to zero at the very end rather 617 * than log_bbnum. In a sense, log_bbnum and zero are the same block 618 * in a circular file. 619 */ 620 if (first_half_cycle == last_half_cycle) { 621 /* 622 * In this case we believe that the entire log should have 623 * cycle number last_half_cycle. We need to scan backwards 624 * from the end verifying that there are no holes still 625 * containing last_half_cycle - 1. If we find such a hole, 626 * then the start of that hole will be the new head. The 627 * simple case looks like 628 * x | x ... | x - 1 | x 629 * Another case that fits this picture would be 630 * x | x + 1 | x ... | x 631 * In this case the head really is somewhere at the end of the 632 * log, as one of the latest writes at the beginning was 633 * incomplete. 634 * One more case is 635 * x | x + 1 | x ... | x - 1 | x 636 * This is really the combination of the above two cases, and 637 * the head has to end up at the start of the x-1 hole at the 638 * end of the log. 639 * 640 * In the 256k log case, we will read from the beginning to the 641 * end of the log and search for cycle numbers equal to x-1. 642 * We don't worry about the x+1 blocks that we encounter, 643 * because we know that they cannot be the head since the log 644 * started with x. 645 */ 646 head_blk = log_bbnum; 647 stop_on_cycle = last_half_cycle - 1; 648 } else { 649 /* 650 * In this case we want to find the first block with cycle 651 * number matching last_half_cycle. We expect the log to be 652 * some variation on 653 * x + 1 ... | x ... | x 654 * The first block with cycle number x (last_half_cycle) will 655 * be where the new head belongs. First we do a binary search 656 * for the first occurrence of last_half_cycle. The binary 657 * search may not be totally accurate, so then we scan back 658 * from there looking for occurrences of last_half_cycle before 659 * us. If that backwards scan wraps around the beginning of 660 * the log, then we look for occurrences of last_half_cycle - 1 661 * at the end of the log. The cases we're looking for look 662 * like 663 * v binary search stopped here 664 * x + 1 ... | x | x + 1 | x ... | x 665 * ^ but we want to locate this spot 666 * or 667 * <---------> less than scan distance 668 * x + 1 ... | x ... | x - 1 | x 669 * ^ we want to locate this spot 670 */ 671 stop_on_cycle = last_half_cycle; 672 if ((error = xlog_find_cycle_start(log, bp, first_blk, 673 &head_blk, last_half_cycle))) 674 goto bp_err; 675 } 676 677 /* 678 * Now validate the answer. Scan back some number of maximum possible 679 * blocks and make sure each one has the expected cycle number. The 680 * maximum is determined by the total possible amount of buffering 681 * in the in-core log. The following number can be made tighter if 682 * we actually look at the block size of the filesystem. 683 */ 684 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 685 if (head_blk >= num_scan_bblks) { 686 /* 687 * We are guaranteed that the entire check can be performed 688 * in one buffer. 689 */ 690 start_blk = head_blk - num_scan_bblks; 691 if ((error = xlog_find_verify_cycle(log, 692 start_blk, num_scan_bblks, 693 stop_on_cycle, &new_blk))) 694 goto bp_err; 695 if (new_blk != -1) 696 head_blk = new_blk; 697 } else { /* need to read 2 parts of log */ 698 /* 699 * We are going to scan backwards in the log in two parts. 700 * First we scan the physical end of the log. In this part 701 * of the log, we are looking for blocks with cycle number 702 * last_half_cycle - 1. 703 * If we find one, then we know that the log starts there, as 704 * we've found a hole that didn't get written in going around 705 * the end of the physical log. The simple case for this is 706 * x + 1 ... | x ... | x - 1 | x 707 * <---------> less than scan distance 708 * If all of the blocks at the end of the log have cycle number 709 * last_half_cycle, then we check the blocks at the start of 710 * the log looking for occurrences of last_half_cycle. If we 711 * find one, then our current estimate for the location of the 712 * first occurrence of last_half_cycle is wrong and we move 713 * back to the hole we've found. This case looks like 714 * x + 1 ... | x | x + 1 | x ... 715 * ^ binary search stopped here 716 * Another case we need to handle that only occurs in 256k 717 * logs is 718 * x + 1 ... | x ... | x+1 | x ... 719 * ^ binary search stops here 720 * In a 256k log, the scan at the end of the log will see the 721 * x + 1 blocks. We need to skip past those since that is 722 * certainly not the head of the log. By searching for 723 * last_half_cycle-1 we accomplish that. 724 */ 725 ASSERT(head_blk <= INT_MAX && 726 (xfs_daddr_t) num_scan_bblks >= head_blk); 727 start_blk = log_bbnum - (num_scan_bblks - head_blk); 728 if ((error = xlog_find_verify_cycle(log, start_blk, 729 num_scan_bblks - (int)head_blk, 730 (stop_on_cycle - 1), &new_blk))) 731 goto bp_err; 732 if (new_blk != -1) { 733 head_blk = new_blk; 734 goto validate_head; 735 } 736 737 /* 738 * Scan beginning of log now. The last part of the physical 739 * log is good. This scan needs to verify that it doesn't find 740 * the last_half_cycle. 741 */ 742 start_blk = 0; 743 ASSERT(head_blk <= INT_MAX); 744 if ((error = xlog_find_verify_cycle(log, 745 start_blk, (int)head_blk, 746 stop_on_cycle, &new_blk))) 747 goto bp_err; 748 if (new_blk != -1) 749 head_blk = new_blk; 750 } 751 752 validate_head: 753 /* 754 * Now we need to make sure head_blk is not pointing to a block in 755 * the middle of a log record. 756 */ 757 num_scan_bblks = XLOG_REC_SHIFT(log); 758 if (head_blk >= num_scan_bblks) { 759 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 760 761 /* start ptr at last block ptr before head_blk */ 762 if ((error = xlog_find_verify_log_record(log, start_blk, 763 &head_blk, 0)) == -1) { 764 error = XFS_ERROR(EIO); 765 goto bp_err; 766 } else if (error) 767 goto bp_err; 768 } else { 769 start_blk = 0; 770 ASSERT(head_blk <= INT_MAX); 771 if ((error = xlog_find_verify_log_record(log, start_blk, 772 &head_blk, 0)) == -1) { 773 /* We hit the beginning of the log during our search */ 774 start_blk = log_bbnum - (num_scan_bblks - head_blk); 775 new_blk = log_bbnum; 776 ASSERT(start_blk <= INT_MAX && 777 (xfs_daddr_t) log_bbnum-start_blk >= 0); 778 ASSERT(head_blk <= INT_MAX); 779 if ((error = xlog_find_verify_log_record(log, 780 start_blk, &new_blk, 781 (int)head_blk)) == -1) { 782 error = XFS_ERROR(EIO); 783 goto bp_err; 784 } else if (error) 785 goto bp_err; 786 if (new_blk != log_bbnum) 787 head_blk = new_blk; 788 } else if (error) 789 goto bp_err; 790 } 791 792 xlog_put_bp(bp); 793 if (head_blk == log_bbnum) 794 *return_head_blk = 0; 795 else 796 *return_head_blk = head_blk; 797 /* 798 * When returning here, we have a good block number. Bad block 799 * means that during a previous crash, we didn't have a clean break 800 * from cycle number N to cycle number N-1. In this case, we need 801 * to find the first block with cycle number N-1. 802 */ 803 return 0; 804 805 bp_err: 806 xlog_put_bp(bp); 807 808 if (error) 809 xlog_warn("XFS: failed to find log head"); 810 return error; 811 } 812 813 /* 814 * Find the sync block number or the tail of the log. 815 * 816 * This will be the block number of the last record to have its 817 * associated buffers synced to disk. Every log record header has 818 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 819 * to get a sync block number. The only concern is to figure out which 820 * log record header to believe. 821 * 822 * The following algorithm uses the log record header with the largest 823 * lsn. The entire log record does not need to be valid. We only care 824 * that the header is valid. 825 * 826 * We could speed up search by using current head_blk buffer, but it is not 827 * available. 828 */ 829 STATIC int 830 xlog_find_tail( 831 xlog_t *log, 832 xfs_daddr_t *head_blk, 833 xfs_daddr_t *tail_blk) 834 { 835 xlog_rec_header_t *rhead; 836 xlog_op_header_t *op_head; 837 xfs_caddr_t offset = NULL; 838 xfs_buf_t *bp; 839 int error, i, found; 840 xfs_daddr_t umount_data_blk; 841 xfs_daddr_t after_umount_blk; 842 xfs_lsn_t tail_lsn; 843 int hblks; 844 845 found = 0; 846 847 /* 848 * Find previous log record 849 */ 850 if ((error = xlog_find_head(log, head_blk))) 851 return error; 852 853 bp = xlog_get_bp(log, 1); 854 if (!bp) 855 return ENOMEM; 856 if (*head_blk == 0) { /* special case */ 857 error = xlog_bread(log, 0, 1, bp, &offset); 858 if (error) 859 goto done; 860 861 if (xlog_get_cycle(offset) == 0) { 862 *tail_blk = 0; 863 /* leave all other log inited values alone */ 864 goto done; 865 } 866 } 867 868 /* 869 * Search backwards looking for log record header block 870 */ 871 ASSERT(*head_blk < INT_MAX); 872 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 873 error = xlog_bread(log, i, 1, bp, &offset); 874 if (error) 875 goto done; 876 877 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) { 878 found = 1; 879 break; 880 } 881 } 882 /* 883 * If we haven't found the log record header block, start looking 884 * again from the end of the physical log. XXXmiken: There should be 885 * a check here to make sure we didn't search more than N blocks in 886 * the previous code. 887 */ 888 if (!found) { 889 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 890 error = xlog_bread(log, i, 1, bp, &offset); 891 if (error) 892 goto done; 893 894 if (XLOG_HEADER_MAGIC_NUM == 895 be32_to_cpu(*(__be32 *)offset)) { 896 found = 2; 897 break; 898 } 899 } 900 } 901 if (!found) { 902 xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); 903 ASSERT(0); 904 return XFS_ERROR(EIO); 905 } 906 907 /* find blk_no of tail of log */ 908 rhead = (xlog_rec_header_t *)offset; 909 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 910 911 /* 912 * Reset log values according to the state of the log when we 913 * crashed. In the case where head_blk == 0, we bump curr_cycle 914 * one because the next write starts a new cycle rather than 915 * continuing the cycle of the last good log record. At this 916 * point we have guaranteed that all partial log records have been 917 * accounted for. Therefore, we know that the last good log record 918 * written was complete and ended exactly on the end boundary 919 * of the physical log. 920 */ 921 log->l_prev_block = i; 922 log->l_curr_block = (int)*head_blk; 923 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 924 if (found == 2) 925 log->l_curr_cycle++; 926 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn); 927 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn); 928 log->l_grant_reserve_cycle = log->l_curr_cycle; 929 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); 930 log->l_grant_write_cycle = log->l_curr_cycle; 931 log->l_grant_write_bytes = BBTOB(log->l_curr_block); 932 933 /* 934 * Look for unmount record. If we find it, then we know there 935 * was a clean unmount. Since 'i' could be the last block in 936 * the physical log, we convert to a log block before comparing 937 * to the head_blk. 938 * 939 * Save the current tail lsn to use to pass to 940 * xlog_clear_stale_blocks() below. We won't want to clear the 941 * unmount record if there is one, so we pass the lsn of the 942 * unmount record rather than the block after it. 943 */ 944 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 945 int h_size = be32_to_cpu(rhead->h_size); 946 int h_version = be32_to_cpu(rhead->h_version); 947 948 if ((h_version & XLOG_VERSION_2) && 949 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 950 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 951 if (h_size % XLOG_HEADER_CYCLE_SIZE) 952 hblks++; 953 } else { 954 hblks = 1; 955 } 956 } else { 957 hblks = 1; 958 } 959 after_umount_blk = (i + hblks + (int) 960 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 961 tail_lsn = log->l_tail_lsn; 962 if (*head_blk == after_umount_blk && 963 be32_to_cpu(rhead->h_num_logops) == 1) { 964 umount_data_blk = (i + hblks) % log->l_logBBsize; 965 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 966 if (error) 967 goto done; 968 969 op_head = (xlog_op_header_t *)offset; 970 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 971 /* 972 * Set tail and last sync so that newly written 973 * log records will point recovery to after the 974 * current unmount record. 975 */ 976 log->l_tail_lsn = 977 xlog_assign_lsn(log->l_curr_cycle, 978 after_umount_blk); 979 log->l_last_sync_lsn = 980 xlog_assign_lsn(log->l_curr_cycle, 981 after_umount_blk); 982 *tail_blk = after_umount_blk; 983 984 /* 985 * Note that the unmount was clean. If the unmount 986 * was not clean, we need to know this to rebuild the 987 * superblock counters from the perag headers if we 988 * have a filesystem using non-persistent counters. 989 */ 990 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 991 } 992 } 993 994 /* 995 * Make sure that there are no blocks in front of the head 996 * with the same cycle number as the head. This can happen 997 * because we allow multiple outstanding log writes concurrently, 998 * and the later writes might make it out before earlier ones. 999 * 1000 * We use the lsn from before modifying it so that we'll never 1001 * overwrite the unmount record after a clean unmount. 1002 * 1003 * Do this only if we are going to recover the filesystem 1004 * 1005 * NOTE: This used to say "if (!readonly)" 1006 * However on Linux, we can & do recover a read-only filesystem. 1007 * We only skip recovery if NORECOVERY is specified on mount, 1008 * in which case we would not be here. 1009 * 1010 * But... if the -device- itself is readonly, just skip this. 1011 * We can't recover this device anyway, so it won't matter. 1012 */ 1013 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1014 error = xlog_clear_stale_blocks(log, tail_lsn); 1015 1016 done: 1017 xlog_put_bp(bp); 1018 1019 if (error) 1020 xlog_warn("XFS: failed to locate log tail"); 1021 return error; 1022 } 1023 1024 /* 1025 * Is the log zeroed at all? 1026 * 1027 * The last binary search should be changed to perform an X block read 1028 * once X becomes small enough. You can then search linearly through 1029 * the X blocks. This will cut down on the number of reads we need to do. 1030 * 1031 * If the log is partially zeroed, this routine will pass back the blkno 1032 * of the first block with cycle number 0. It won't have a complete LR 1033 * preceding it. 1034 * 1035 * Return: 1036 * 0 => the log is completely written to 1037 * -1 => use *blk_no as the first block of the log 1038 * >0 => error has occurred 1039 */ 1040 STATIC int 1041 xlog_find_zeroed( 1042 xlog_t *log, 1043 xfs_daddr_t *blk_no) 1044 { 1045 xfs_buf_t *bp; 1046 xfs_caddr_t offset; 1047 uint first_cycle, last_cycle; 1048 xfs_daddr_t new_blk, last_blk, start_blk; 1049 xfs_daddr_t num_scan_bblks; 1050 int error, log_bbnum = log->l_logBBsize; 1051 1052 *blk_no = 0; 1053 1054 /* check totally zeroed log */ 1055 bp = xlog_get_bp(log, 1); 1056 if (!bp) 1057 return ENOMEM; 1058 error = xlog_bread(log, 0, 1, bp, &offset); 1059 if (error) 1060 goto bp_err; 1061 1062 first_cycle = xlog_get_cycle(offset); 1063 if (first_cycle == 0) { /* completely zeroed log */ 1064 *blk_no = 0; 1065 xlog_put_bp(bp); 1066 return -1; 1067 } 1068 1069 /* check partially zeroed log */ 1070 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1071 if (error) 1072 goto bp_err; 1073 1074 last_cycle = xlog_get_cycle(offset); 1075 if (last_cycle != 0) { /* log completely written to */ 1076 xlog_put_bp(bp); 1077 return 0; 1078 } else if (first_cycle != 1) { 1079 /* 1080 * If the cycle of the last block is zero, the cycle of 1081 * the first block must be 1. If it's not, maybe we're 1082 * not looking at a log... Bail out. 1083 */ 1084 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); 1085 return XFS_ERROR(EINVAL); 1086 } 1087 1088 /* we have a partially zeroed log */ 1089 last_blk = log_bbnum-1; 1090 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1091 goto bp_err; 1092 1093 /* 1094 * Validate the answer. Because there is no way to guarantee that 1095 * the entire log is made up of log records which are the same size, 1096 * we scan over the defined maximum blocks. At this point, the maximum 1097 * is not chosen to mean anything special. XXXmiken 1098 */ 1099 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1100 ASSERT(num_scan_bblks <= INT_MAX); 1101 1102 if (last_blk < num_scan_bblks) 1103 num_scan_bblks = last_blk; 1104 start_blk = last_blk - num_scan_bblks; 1105 1106 /* 1107 * We search for any instances of cycle number 0 that occur before 1108 * our current estimate of the head. What we're trying to detect is 1109 * 1 ... | 0 | 1 | 0... 1110 * ^ binary search ends here 1111 */ 1112 if ((error = xlog_find_verify_cycle(log, start_blk, 1113 (int)num_scan_bblks, 0, &new_blk))) 1114 goto bp_err; 1115 if (new_blk != -1) 1116 last_blk = new_blk; 1117 1118 /* 1119 * Potentially backup over partial log record write. We don't need 1120 * to search the end of the log because we know it is zero. 1121 */ 1122 if ((error = xlog_find_verify_log_record(log, start_blk, 1123 &last_blk, 0)) == -1) { 1124 error = XFS_ERROR(EIO); 1125 goto bp_err; 1126 } else if (error) 1127 goto bp_err; 1128 1129 *blk_no = last_blk; 1130 bp_err: 1131 xlog_put_bp(bp); 1132 if (error) 1133 return error; 1134 return -1; 1135 } 1136 1137 /* 1138 * These are simple subroutines used by xlog_clear_stale_blocks() below 1139 * to initialize a buffer full of empty log record headers and write 1140 * them into the log. 1141 */ 1142 STATIC void 1143 xlog_add_record( 1144 xlog_t *log, 1145 xfs_caddr_t buf, 1146 int cycle, 1147 int block, 1148 int tail_cycle, 1149 int tail_block) 1150 { 1151 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1152 1153 memset(buf, 0, BBSIZE); 1154 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1155 recp->h_cycle = cpu_to_be32(cycle); 1156 recp->h_version = cpu_to_be32( 1157 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1158 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1159 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1160 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1161 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1162 } 1163 1164 STATIC int 1165 xlog_write_log_records( 1166 xlog_t *log, 1167 int cycle, 1168 int start_block, 1169 int blocks, 1170 int tail_cycle, 1171 int tail_block) 1172 { 1173 xfs_caddr_t offset; 1174 xfs_buf_t *bp; 1175 int balign, ealign; 1176 int sectbb = log->l_sectBBsize; 1177 int end_block = start_block + blocks; 1178 int bufblks; 1179 int error = 0; 1180 int i, j = 0; 1181 1182 /* 1183 * Greedily allocate a buffer big enough to handle the full 1184 * range of basic blocks to be written. If that fails, try 1185 * a smaller size. We need to be able to write at least a 1186 * log sector, or we're out of luck. 1187 */ 1188 bufblks = 1 << ffs(blocks); 1189 while (!(bp = xlog_get_bp(log, bufblks))) { 1190 bufblks >>= 1; 1191 if (bufblks < sectbb) 1192 return ENOMEM; 1193 } 1194 1195 /* We may need to do a read at the start to fill in part of 1196 * the buffer in the starting sector not covered by the first 1197 * write below. 1198 */ 1199 balign = round_down(start_block, sectbb); 1200 if (balign != start_block) { 1201 error = xlog_bread_noalign(log, start_block, 1, bp); 1202 if (error) 1203 goto out_put_bp; 1204 1205 j = start_block - balign; 1206 } 1207 1208 for (i = start_block; i < end_block; i += bufblks) { 1209 int bcount, endcount; 1210 1211 bcount = min(bufblks, end_block - start_block); 1212 endcount = bcount - j; 1213 1214 /* We may need to do a read at the end to fill in part of 1215 * the buffer in the final sector not covered by the write. 1216 * If this is the same sector as the above read, skip it. 1217 */ 1218 ealign = round_down(end_block, sectbb); 1219 if (j == 0 && (start_block + endcount > ealign)) { 1220 offset = XFS_BUF_PTR(bp); 1221 balign = BBTOB(ealign - start_block); 1222 error = XFS_BUF_SET_PTR(bp, offset + balign, 1223 BBTOB(sectbb)); 1224 if (error) 1225 break; 1226 1227 error = xlog_bread_noalign(log, ealign, sectbb, bp); 1228 if (error) 1229 break; 1230 1231 error = XFS_BUF_SET_PTR(bp, offset, bufblks); 1232 if (error) 1233 break; 1234 } 1235 1236 offset = xlog_align(log, start_block, endcount, bp); 1237 for (; j < endcount; j++) { 1238 xlog_add_record(log, offset, cycle, i+j, 1239 tail_cycle, tail_block); 1240 offset += BBSIZE; 1241 } 1242 error = xlog_bwrite(log, start_block, endcount, bp); 1243 if (error) 1244 break; 1245 start_block += endcount; 1246 j = 0; 1247 } 1248 1249 out_put_bp: 1250 xlog_put_bp(bp); 1251 return error; 1252 } 1253 1254 /* 1255 * This routine is called to blow away any incomplete log writes out 1256 * in front of the log head. We do this so that we won't become confused 1257 * if we come up, write only a little bit more, and then crash again. 1258 * If we leave the partial log records out there, this situation could 1259 * cause us to think those partial writes are valid blocks since they 1260 * have the current cycle number. We get rid of them by overwriting them 1261 * with empty log records with the old cycle number rather than the 1262 * current one. 1263 * 1264 * The tail lsn is passed in rather than taken from 1265 * the log so that we will not write over the unmount record after a 1266 * clean unmount in a 512 block log. Doing so would leave the log without 1267 * any valid log records in it until a new one was written. If we crashed 1268 * during that time we would not be able to recover. 1269 */ 1270 STATIC int 1271 xlog_clear_stale_blocks( 1272 xlog_t *log, 1273 xfs_lsn_t tail_lsn) 1274 { 1275 int tail_cycle, head_cycle; 1276 int tail_block, head_block; 1277 int tail_distance, max_distance; 1278 int distance; 1279 int error; 1280 1281 tail_cycle = CYCLE_LSN(tail_lsn); 1282 tail_block = BLOCK_LSN(tail_lsn); 1283 head_cycle = log->l_curr_cycle; 1284 head_block = log->l_curr_block; 1285 1286 /* 1287 * Figure out the distance between the new head of the log 1288 * and the tail. We want to write over any blocks beyond the 1289 * head that we may have written just before the crash, but 1290 * we don't want to overwrite the tail of the log. 1291 */ 1292 if (head_cycle == tail_cycle) { 1293 /* 1294 * The tail is behind the head in the physical log, 1295 * so the distance from the head to the tail is the 1296 * distance from the head to the end of the log plus 1297 * the distance from the beginning of the log to the 1298 * tail. 1299 */ 1300 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1301 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1302 XFS_ERRLEVEL_LOW, log->l_mp); 1303 return XFS_ERROR(EFSCORRUPTED); 1304 } 1305 tail_distance = tail_block + (log->l_logBBsize - head_block); 1306 } else { 1307 /* 1308 * The head is behind the tail in the physical log, 1309 * so the distance from the head to the tail is just 1310 * the tail block minus the head block. 1311 */ 1312 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1313 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1314 XFS_ERRLEVEL_LOW, log->l_mp); 1315 return XFS_ERROR(EFSCORRUPTED); 1316 } 1317 tail_distance = tail_block - head_block; 1318 } 1319 1320 /* 1321 * If the head is right up against the tail, we can't clear 1322 * anything. 1323 */ 1324 if (tail_distance <= 0) { 1325 ASSERT(tail_distance == 0); 1326 return 0; 1327 } 1328 1329 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1330 /* 1331 * Take the smaller of the maximum amount of outstanding I/O 1332 * we could have and the distance to the tail to clear out. 1333 * We take the smaller so that we don't overwrite the tail and 1334 * we don't waste all day writing from the head to the tail 1335 * for no reason. 1336 */ 1337 max_distance = MIN(max_distance, tail_distance); 1338 1339 if ((head_block + max_distance) <= log->l_logBBsize) { 1340 /* 1341 * We can stomp all the blocks we need to without 1342 * wrapping around the end of the log. Just do it 1343 * in a single write. Use the cycle number of the 1344 * current cycle minus one so that the log will look like: 1345 * n ... | n - 1 ... 1346 */ 1347 error = xlog_write_log_records(log, (head_cycle - 1), 1348 head_block, max_distance, tail_cycle, 1349 tail_block); 1350 if (error) 1351 return error; 1352 } else { 1353 /* 1354 * We need to wrap around the end of the physical log in 1355 * order to clear all the blocks. Do it in two separate 1356 * I/Os. The first write should be from the head to the 1357 * end of the physical log, and it should use the current 1358 * cycle number minus one just like above. 1359 */ 1360 distance = log->l_logBBsize - head_block; 1361 error = xlog_write_log_records(log, (head_cycle - 1), 1362 head_block, distance, tail_cycle, 1363 tail_block); 1364 1365 if (error) 1366 return error; 1367 1368 /* 1369 * Now write the blocks at the start of the physical log. 1370 * This writes the remainder of the blocks we want to clear. 1371 * It uses the current cycle number since we're now on the 1372 * same cycle as the head so that we get: 1373 * n ... n ... | n - 1 ... 1374 * ^^^^^ blocks we're writing 1375 */ 1376 distance = max_distance - (log->l_logBBsize - head_block); 1377 error = xlog_write_log_records(log, head_cycle, 0, distance, 1378 tail_cycle, tail_block); 1379 if (error) 1380 return error; 1381 } 1382 1383 return 0; 1384 } 1385 1386 /****************************************************************************** 1387 * 1388 * Log recover routines 1389 * 1390 ****************************************************************************** 1391 */ 1392 1393 STATIC xlog_recover_t * 1394 xlog_recover_find_tid( 1395 struct hlist_head *head, 1396 xlog_tid_t tid) 1397 { 1398 xlog_recover_t *trans; 1399 struct hlist_node *n; 1400 1401 hlist_for_each_entry(trans, n, head, r_list) { 1402 if (trans->r_log_tid == tid) 1403 return trans; 1404 } 1405 return NULL; 1406 } 1407 1408 STATIC void 1409 xlog_recover_new_tid( 1410 struct hlist_head *head, 1411 xlog_tid_t tid, 1412 xfs_lsn_t lsn) 1413 { 1414 xlog_recover_t *trans; 1415 1416 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1417 trans->r_log_tid = tid; 1418 trans->r_lsn = lsn; 1419 INIT_LIST_HEAD(&trans->r_itemq); 1420 1421 INIT_HLIST_NODE(&trans->r_list); 1422 hlist_add_head(&trans->r_list, head); 1423 } 1424 1425 STATIC void 1426 xlog_recover_add_item( 1427 struct list_head *head) 1428 { 1429 xlog_recover_item_t *item; 1430 1431 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1432 INIT_LIST_HEAD(&item->ri_list); 1433 list_add_tail(&item->ri_list, head); 1434 } 1435 1436 STATIC int 1437 xlog_recover_add_to_cont_trans( 1438 struct log *log, 1439 xlog_recover_t *trans, 1440 xfs_caddr_t dp, 1441 int len) 1442 { 1443 xlog_recover_item_t *item; 1444 xfs_caddr_t ptr, old_ptr; 1445 int old_len; 1446 1447 if (list_empty(&trans->r_itemq)) { 1448 /* finish copying rest of trans header */ 1449 xlog_recover_add_item(&trans->r_itemq); 1450 ptr = (xfs_caddr_t) &trans->r_theader + 1451 sizeof(xfs_trans_header_t) - len; 1452 memcpy(ptr, dp, len); /* d, s, l */ 1453 return 0; 1454 } 1455 /* take the tail entry */ 1456 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1457 1458 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1459 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1460 1461 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u); 1462 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1463 item->ri_buf[item->ri_cnt-1].i_len += len; 1464 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1465 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 1466 return 0; 1467 } 1468 1469 /* 1470 * The next region to add is the start of a new region. It could be 1471 * a whole region or it could be the first part of a new region. Because 1472 * of this, the assumption here is that the type and size fields of all 1473 * format structures fit into the first 32 bits of the structure. 1474 * 1475 * This works because all regions must be 32 bit aligned. Therefore, we 1476 * either have both fields or we have neither field. In the case we have 1477 * neither field, the data part of the region is zero length. We only have 1478 * a log_op_header and can throw away the header since a new one will appear 1479 * later. If we have at least 4 bytes, then we can determine how many regions 1480 * will appear in the current log item. 1481 */ 1482 STATIC int 1483 xlog_recover_add_to_trans( 1484 struct log *log, 1485 xlog_recover_t *trans, 1486 xfs_caddr_t dp, 1487 int len) 1488 { 1489 xfs_inode_log_format_t *in_f; /* any will do */ 1490 xlog_recover_item_t *item; 1491 xfs_caddr_t ptr; 1492 1493 if (!len) 1494 return 0; 1495 if (list_empty(&trans->r_itemq)) { 1496 /* we need to catch log corruptions here */ 1497 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 1498 xlog_warn("XFS: xlog_recover_add_to_trans: " 1499 "bad header magic number"); 1500 ASSERT(0); 1501 return XFS_ERROR(EIO); 1502 } 1503 if (len == sizeof(xfs_trans_header_t)) 1504 xlog_recover_add_item(&trans->r_itemq); 1505 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1506 return 0; 1507 } 1508 1509 ptr = kmem_alloc(len, KM_SLEEP); 1510 memcpy(ptr, dp, len); 1511 in_f = (xfs_inode_log_format_t *)ptr; 1512 1513 /* take the tail entry */ 1514 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1515 if (item->ri_total != 0 && 1516 item->ri_total == item->ri_cnt) { 1517 /* tail item is in use, get a new one */ 1518 xlog_recover_add_item(&trans->r_itemq); 1519 item = list_entry(trans->r_itemq.prev, 1520 xlog_recover_item_t, ri_list); 1521 } 1522 1523 if (item->ri_total == 0) { /* first region to be added */ 1524 if (in_f->ilf_size == 0 || 1525 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 1526 xlog_warn( 1527 "XFS: bad number of regions (%d) in inode log format", 1528 in_f->ilf_size); 1529 ASSERT(0); 1530 return XFS_ERROR(EIO); 1531 } 1532 1533 item->ri_total = in_f->ilf_size; 1534 item->ri_buf = 1535 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 1536 KM_SLEEP); 1537 } 1538 ASSERT(item->ri_total > item->ri_cnt); 1539 /* Description region is ri_buf[0] */ 1540 item->ri_buf[item->ri_cnt].i_addr = ptr; 1541 item->ri_buf[item->ri_cnt].i_len = len; 1542 item->ri_cnt++; 1543 trace_xfs_log_recover_item_add(log, trans, item, 0); 1544 return 0; 1545 } 1546 1547 /* 1548 * Sort the log items in the transaction. Cancelled buffers need 1549 * to be put first so they are processed before any items that might 1550 * modify the buffers. If they are cancelled, then the modifications 1551 * don't need to be replayed. 1552 */ 1553 STATIC int 1554 xlog_recover_reorder_trans( 1555 struct log *log, 1556 xlog_recover_t *trans, 1557 int pass) 1558 { 1559 xlog_recover_item_t *item, *n; 1560 LIST_HEAD(sort_list); 1561 1562 list_splice_init(&trans->r_itemq, &sort_list); 1563 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1564 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1565 1566 switch (ITEM_TYPE(item)) { 1567 case XFS_LI_BUF: 1568 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1569 trace_xfs_log_recover_item_reorder_head(log, 1570 trans, item, pass); 1571 list_move(&item->ri_list, &trans->r_itemq); 1572 break; 1573 } 1574 case XFS_LI_INODE: 1575 case XFS_LI_DQUOT: 1576 case XFS_LI_QUOTAOFF: 1577 case XFS_LI_EFD: 1578 case XFS_LI_EFI: 1579 trace_xfs_log_recover_item_reorder_tail(log, 1580 trans, item, pass); 1581 list_move_tail(&item->ri_list, &trans->r_itemq); 1582 break; 1583 default: 1584 xlog_warn( 1585 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); 1586 ASSERT(0); 1587 return XFS_ERROR(EIO); 1588 } 1589 } 1590 ASSERT(list_empty(&sort_list)); 1591 return 0; 1592 } 1593 1594 /* 1595 * Build up the table of buf cancel records so that we don't replay 1596 * cancelled data in the second pass. For buffer records that are 1597 * not cancel records, there is nothing to do here so we just return. 1598 * 1599 * If we get a cancel record which is already in the table, this indicates 1600 * that the buffer was cancelled multiple times. In order to ensure 1601 * that during pass 2 we keep the record in the table until we reach its 1602 * last occurrence in the log, we keep a reference count in the cancel 1603 * record in the table to tell us how many times we expect to see this 1604 * record during the second pass. 1605 */ 1606 STATIC void 1607 xlog_recover_do_buffer_pass1( 1608 xlog_t *log, 1609 xfs_buf_log_format_t *buf_f) 1610 { 1611 xfs_buf_cancel_t *bcp; 1612 xfs_buf_cancel_t *nextp; 1613 xfs_buf_cancel_t *prevp; 1614 xfs_buf_cancel_t **bucket; 1615 xfs_daddr_t blkno = 0; 1616 uint len = 0; 1617 ushort flags = 0; 1618 1619 switch (buf_f->blf_type) { 1620 case XFS_LI_BUF: 1621 blkno = buf_f->blf_blkno; 1622 len = buf_f->blf_len; 1623 flags = buf_f->blf_flags; 1624 break; 1625 } 1626 1627 /* 1628 * If this isn't a cancel buffer item, then just return. 1629 */ 1630 if (!(flags & XFS_BLF_CANCEL)) { 1631 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1632 return; 1633 } 1634 1635 /* 1636 * Insert an xfs_buf_cancel record into the hash table of 1637 * them. If there is already an identical record, bump 1638 * its reference count. 1639 */ 1640 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1641 XLOG_BC_TABLE_SIZE]; 1642 /* 1643 * If the hash bucket is empty then just insert a new record into 1644 * the bucket. 1645 */ 1646 if (*bucket == NULL) { 1647 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1648 KM_SLEEP); 1649 bcp->bc_blkno = blkno; 1650 bcp->bc_len = len; 1651 bcp->bc_refcount = 1; 1652 bcp->bc_next = NULL; 1653 *bucket = bcp; 1654 return; 1655 } 1656 1657 /* 1658 * The hash bucket is not empty, so search for duplicates of our 1659 * record. If we find one them just bump its refcount. If not 1660 * then add us at the end of the list. 1661 */ 1662 prevp = NULL; 1663 nextp = *bucket; 1664 while (nextp != NULL) { 1665 if (nextp->bc_blkno == blkno && nextp->bc_len == len) { 1666 nextp->bc_refcount++; 1667 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1668 return; 1669 } 1670 prevp = nextp; 1671 nextp = nextp->bc_next; 1672 } 1673 ASSERT(prevp != NULL); 1674 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1675 KM_SLEEP); 1676 bcp->bc_blkno = blkno; 1677 bcp->bc_len = len; 1678 bcp->bc_refcount = 1; 1679 bcp->bc_next = NULL; 1680 prevp->bc_next = bcp; 1681 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1682 } 1683 1684 /* 1685 * Check to see whether the buffer being recovered has a corresponding 1686 * entry in the buffer cancel record table. If it does then return 1 1687 * so that it will be cancelled, otherwise return 0. If the buffer is 1688 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement 1689 * the refcount on the entry in the table and remove it from the table 1690 * if this is the last reference. 1691 * 1692 * We remove the cancel record from the table when we encounter its 1693 * last occurrence in the log so that if the same buffer is re-used 1694 * again after its last cancellation we actually replay the changes 1695 * made at that point. 1696 */ 1697 STATIC int 1698 xlog_check_buffer_cancelled( 1699 xlog_t *log, 1700 xfs_daddr_t blkno, 1701 uint len, 1702 ushort flags) 1703 { 1704 xfs_buf_cancel_t *bcp; 1705 xfs_buf_cancel_t *prevp; 1706 xfs_buf_cancel_t **bucket; 1707 1708 if (log->l_buf_cancel_table == NULL) { 1709 /* 1710 * There is nothing in the table built in pass one, 1711 * so this buffer must not be cancelled. 1712 */ 1713 ASSERT(!(flags & XFS_BLF_CANCEL)); 1714 return 0; 1715 } 1716 1717 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1718 XLOG_BC_TABLE_SIZE]; 1719 bcp = *bucket; 1720 if (bcp == NULL) { 1721 /* 1722 * There is no corresponding entry in the table built 1723 * in pass one, so this buffer has not been cancelled. 1724 */ 1725 ASSERT(!(flags & XFS_BLF_CANCEL)); 1726 return 0; 1727 } 1728 1729 /* 1730 * Search for an entry in the buffer cancel table that 1731 * matches our buffer. 1732 */ 1733 prevp = NULL; 1734 while (bcp != NULL) { 1735 if (bcp->bc_blkno == blkno && bcp->bc_len == len) { 1736 /* 1737 * We've go a match, so return 1 so that the 1738 * recovery of this buffer is cancelled. 1739 * If this buffer is actually a buffer cancel 1740 * log item, then decrement the refcount on the 1741 * one in the table and remove it if this is the 1742 * last reference. 1743 */ 1744 if (flags & XFS_BLF_CANCEL) { 1745 bcp->bc_refcount--; 1746 if (bcp->bc_refcount == 0) { 1747 if (prevp == NULL) { 1748 *bucket = bcp->bc_next; 1749 } else { 1750 prevp->bc_next = bcp->bc_next; 1751 } 1752 kmem_free(bcp); 1753 } 1754 } 1755 return 1; 1756 } 1757 prevp = bcp; 1758 bcp = bcp->bc_next; 1759 } 1760 /* 1761 * We didn't find a corresponding entry in the table, so 1762 * return 0 so that the buffer is NOT cancelled. 1763 */ 1764 ASSERT(!(flags & XFS_BLF_CANCEL)); 1765 return 0; 1766 } 1767 1768 STATIC int 1769 xlog_recover_do_buffer_pass2( 1770 xlog_t *log, 1771 xfs_buf_log_format_t *buf_f) 1772 { 1773 xfs_daddr_t blkno = 0; 1774 ushort flags = 0; 1775 uint len = 0; 1776 1777 switch (buf_f->blf_type) { 1778 case XFS_LI_BUF: 1779 blkno = buf_f->blf_blkno; 1780 flags = buf_f->blf_flags; 1781 len = buf_f->blf_len; 1782 break; 1783 } 1784 1785 return xlog_check_buffer_cancelled(log, blkno, len, flags); 1786 } 1787 1788 /* 1789 * Perform recovery for a buffer full of inodes. In these buffers, 1790 * the only data which should be recovered is that which corresponds 1791 * to the di_next_unlinked pointers in the on disk inode structures. 1792 * The rest of the data for the inodes is always logged through the 1793 * inodes themselves rather than the inode buffer and is recovered 1794 * in xlog_recover_do_inode_trans(). 1795 * 1796 * The only time when buffers full of inodes are fully recovered is 1797 * when the buffer is full of newly allocated inodes. In this case 1798 * the buffer will not be marked as an inode buffer and so will be 1799 * sent to xlog_recover_do_reg_buffer() below during recovery. 1800 */ 1801 STATIC int 1802 xlog_recover_do_inode_buffer( 1803 xfs_mount_t *mp, 1804 xlog_recover_item_t *item, 1805 xfs_buf_t *bp, 1806 xfs_buf_log_format_t *buf_f) 1807 { 1808 int i; 1809 int item_index; 1810 int bit; 1811 int nbits; 1812 int reg_buf_offset; 1813 int reg_buf_bytes; 1814 int next_unlinked_offset; 1815 int inodes_per_buf; 1816 xfs_agino_t *logged_nextp; 1817 xfs_agino_t *buffer_nextp; 1818 unsigned int *data_map = NULL; 1819 unsigned int map_size = 0; 1820 1821 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 1822 1823 switch (buf_f->blf_type) { 1824 case XFS_LI_BUF: 1825 data_map = buf_f->blf_data_map; 1826 map_size = buf_f->blf_map_size; 1827 break; 1828 } 1829 /* 1830 * Set the variables corresponding to the current region to 1831 * 0 so that we'll initialize them on the first pass through 1832 * the loop. 1833 */ 1834 reg_buf_offset = 0; 1835 reg_buf_bytes = 0; 1836 bit = 0; 1837 nbits = 0; 1838 item_index = 0; 1839 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; 1840 for (i = 0; i < inodes_per_buf; i++) { 1841 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1842 offsetof(xfs_dinode_t, di_next_unlinked); 1843 1844 while (next_unlinked_offset >= 1845 (reg_buf_offset + reg_buf_bytes)) { 1846 /* 1847 * The next di_next_unlinked field is beyond 1848 * the current logged region. Find the next 1849 * logged region that contains or is beyond 1850 * the current di_next_unlinked field. 1851 */ 1852 bit += nbits; 1853 bit = xfs_next_bit(data_map, map_size, bit); 1854 1855 /* 1856 * If there are no more logged regions in the 1857 * buffer, then we're done. 1858 */ 1859 if (bit == -1) { 1860 return 0; 1861 } 1862 1863 nbits = xfs_contig_bits(data_map, map_size, 1864 bit); 1865 ASSERT(nbits > 0); 1866 reg_buf_offset = bit << XFS_BLF_SHIFT; 1867 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 1868 item_index++; 1869 } 1870 1871 /* 1872 * If the current logged region starts after the current 1873 * di_next_unlinked field, then move on to the next 1874 * di_next_unlinked field. 1875 */ 1876 if (next_unlinked_offset < reg_buf_offset) { 1877 continue; 1878 } 1879 1880 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1881 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 1882 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); 1883 1884 /* 1885 * The current logged region contains a copy of the 1886 * current di_next_unlinked field. Extract its value 1887 * and copy it to the buffer copy. 1888 */ 1889 logged_nextp = item->ri_buf[item_index].i_addr + 1890 next_unlinked_offset - reg_buf_offset; 1891 if (unlikely(*logged_nextp == 0)) { 1892 xfs_fs_cmn_err(CE_ALERT, mp, 1893 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", 1894 item, bp); 1895 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1896 XFS_ERRLEVEL_LOW, mp); 1897 return XFS_ERROR(EFSCORRUPTED); 1898 } 1899 1900 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1901 next_unlinked_offset); 1902 *buffer_nextp = *logged_nextp; 1903 } 1904 1905 return 0; 1906 } 1907 1908 /* 1909 * Perform a 'normal' buffer recovery. Each logged region of the 1910 * buffer should be copied over the corresponding region in the 1911 * given buffer. The bitmap in the buf log format structure indicates 1912 * where to place the logged data. 1913 */ 1914 /*ARGSUSED*/ 1915 STATIC void 1916 xlog_recover_do_reg_buffer( 1917 struct xfs_mount *mp, 1918 xlog_recover_item_t *item, 1919 xfs_buf_t *bp, 1920 xfs_buf_log_format_t *buf_f) 1921 { 1922 int i; 1923 int bit; 1924 int nbits; 1925 unsigned int *data_map = NULL; 1926 unsigned int map_size = 0; 1927 int error; 1928 1929 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 1930 1931 switch (buf_f->blf_type) { 1932 case XFS_LI_BUF: 1933 data_map = buf_f->blf_data_map; 1934 map_size = buf_f->blf_map_size; 1935 break; 1936 } 1937 bit = 0; 1938 i = 1; /* 0 is the buf format structure */ 1939 while (1) { 1940 bit = xfs_next_bit(data_map, map_size, bit); 1941 if (bit == -1) 1942 break; 1943 nbits = xfs_contig_bits(data_map, map_size, bit); 1944 ASSERT(nbits > 0); 1945 ASSERT(item->ri_buf[i].i_addr != NULL); 1946 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 1947 ASSERT(XFS_BUF_COUNT(bp) >= 1948 ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT)); 1949 1950 /* 1951 * Do a sanity check if this is a dquot buffer. Just checking 1952 * the first dquot in the buffer should do. XXXThis is 1953 * probably a good thing to do for other buf types also. 1954 */ 1955 error = 0; 1956 if (buf_f->blf_flags & 1957 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 1958 if (item->ri_buf[i].i_addr == NULL) { 1959 cmn_err(CE_ALERT, 1960 "XFS: NULL dquot in %s.", __func__); 1961 goto next; 1962 } 1963 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 1964 cmn_err(CE_ALERT, 1965 "XFS: dquot too small (%d) in %s.", 1966 item->ri_buf[i].i_len, __func__); 1967 goto next; 1968 } 1969 error = xfs_qm_dqcheck(item->ri_buf[i].i_addr, 1970 -1, 0, XFS_QMOPT_DOWARN, 1971 "dquot_buf_recover"); 1972 if (error) 1973 goto next; 1974 } 1975 1976 memcpy(xfs_buf_offset(bp, 1977 (uint)bit << XFS_BLF_SHIFT), /* dest */ 1978 item->ri_buf[i].i_addr, /* source */ 1979 nbits<<XFS_BLF_SHIFT); /* length */ 1980 next: 1981 i++; 1982 bit += nbits; 1983 } 1984 1985 /* Shouldn't be any more regions */ 1986 ASSERT(i == item->ri_total); 1987 } 1988 1989 /* 1990 * Do some primitive error checking on ondisk dquot data structures. 1991 */ 1992 int 1993 xfs_qm_dqcheck( 1994 xfs_disk_dquot_t *ddq, 1995 xfs_dqid_t id, 1996 uint type, /* used only when IO_dorepair is true */ 1997 uint flags, 1998 char *str) 1999 { 2000 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 2001 int errs = 0; 2002 2003 /* 2004 * We can encounter an uninitialized dquot buffer for 2 reasons: 2005 * 1. If we crash while deleting the quotainode(s), and those blks got 2006 * used for user data. This is because we take the path of regular 2007 * file deletion; however, the size field of quotainodes is never 2008 * updated, so all the tricks that we play in itruncate_finish 2009 * don't quite matter. 2010 * 2011 * 2. We don't play the quota buffers when there's a quotaoff logitem. 2012 * But the allocation will be replayed so we'll end up with an 2013 * uninitialized quota block. 2014 * 2015 * This is all fine; things are still consistent, and we haven't lost 2016 * any quota information. Just don't complain about bad dquot blks. 2017 */ 2018 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) { 2019 if (flags & XFS_QMOPT_DOWARN) 2020 cmn_err(CE_ALERT, 2021 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 2022 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 2023 errs++; 2024 } 2025 if (ddq->d_version != XFS_DQUOT_VERSION) { 2026 if (flags & XFS_QMOPT_DOWARN) 2027 cmn_err(CE_ALERT, 2028 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 2029 str, id, ddq->d_version, XFS_DQUOT_VERSION); 2030 errs++; 2031 } 2032 2033 if (ddq->d_flags != XFS_DQ_USER && 2034 ddq->d_flags != XFS_DQ_PROJ && 2035 ddq->d_flags != XFS_DQ_GROUP) { 2036 if (flags & XFS_QMOPT_DOWARN) 2037 cmn_err(CE_ALERT, 2038 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 2039 str, id, ddq->d_flags); 2040 errs++; 2041 } 2042 2043 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 2044 if (flags & XFS_QMOPT_DOWARN) 2045 cmn_err(CE_ALERT, 2046 "%s : ondisk-dquot 0x%p, ID mismatch: " 2047 "0x%x expected, found id 0x%x", 2048 str, ddq, id, be32_to_cpu(ddq->d_id)); 2049 errs++; 2050 } 2051 2052 if (!errs && ddq->d_id) { 2053 if (ddq->d_blk_softlimit && 2054 be64_to_cpu(ddq->d_bcount) >= 2055 be64_to_cpu(ddq->d_blk_softlimit)) { 2056 if (!ddq->d_btimer) { 2057 if (flags & XFS_QMOPT_DOWARN) 2058 cmn_err(CE_ALERT, 2059 "%s : Dquot ID 0x%x (0x%p) " 2060 "BLK TIMER NOT STARTED", 2061 str, (int)be32_to_cpu(ddq->d_id), ddq); 2062 errs++; 2063 } 2064 } 2065 if (ddq->d_ino_softlimit && 2066 be64_to_cpu(ddq->d_icount) >= 2067 be64_to_cpu(ddq->d_ino_softlimit)) { 2068 if (!ddq->d_itimer) { 2069 if (flags & XFS_QMOPT_DOWARN) 2070 cmn_err(CE_ALERT, 2071 "%s : Dquot ID 0x%x (0x%p) " 2072 "INODE TIMER NOT STARTED", 2073 str, (int)be32_to_cpu(ddq->d_id), ddq); 2074 errs++; 2075 } 2076 } 2077 if (ddq->d_rtb_softlimit && 2078 be64_to_cpu(ddq->d_rtbcount) >= 2079 be64_to_cpu(ddq->d_rtb_softlimit)) { 2080 if (!ddq->d_rtbtimer) { 2081 if (flags & XFS_QMOPT_DOWARN) 2082 cmn_err(CE_ALERT, 2083 "%s : Dquot ID 0x%x (0x%p) " 2084 "RTBLK TIMER NOT STARTED", 2085 str, (int)be32_to_cpu(ddq->d_id), ddq); 2086 errs++; 2087 } 2088 } 2089 } 2090 2091 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2092 return errs; 2093 2094 if (flags & XFS_QMOPT_DOWARN) 2095 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); 2096 2097 /* 2098 * Typically, a repair is only requested by quotacheck. 2099 */ 2100 ASSERT(id != -1); 2101 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2102 memset(d, 0, sizeof(xfs_dqblk_t)); 2103 2104 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2105 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2106 d->dd_diskdq.d_flags = type; 2107 d->dd_diskdq.d_id = cpu_to_be32(id); 2108 2109 return errs; 2110 } 2111 2112 /* 2113 * Perform a dquot buffer recovery. 2114 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2115 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2116 * Else, treat it as a regular buffer and do recovery. 2117 */ 2118 STATIC void 2119 xlog_recover_do_dquot_buffer( 2120 xfs_mount_t *mp, 2121 xlog_t *log, 2122 xlog_recover_item_t *item, 2123 xfs_buf_t *bp, 2124 xfs_buf_log_format_t *buf_f) 2125 { 2126 uint type; 2127 2128 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2129 2130 /* 2131 * Filesystems are required to send in quota flags at mount time. 2132 */ 2133 if (mp->m_qflags == 0) { 2134 return; 2135 } 2136 2137 type = 0; 2138 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2139 type |= XFS_DQ_USER; 2140 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2141 type |= XFS_DQ_PROJ; 2142 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2143 type |= XFS_DQ_GROUP; 2144 /* 2145 * This type of quotas was turned off, so ignore this buffer 2146 */ 2147 if (log->l_quotaoffs_flag & type) 2148 return; 2149 2150 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2151 } 2152 2153 /* 2154 * This routine replays a modification made to a buffer at runtime. 2155 * There are actually two types of buffer, regular and inode, which 2156 * are handled differently. Inode buffers are handled differently 2157 * in that we only recover a specific set of data from them, namely 2158 * the inode di_next_unlinked fields. This is because all other inode 2159 * data is actually logged via inode records and any data we replay 2160 * here which overlaps that may be stale. 2161 * 2162 * When meta-data buffers are freed at run time we log a buffer item 2163 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2164 * of the buffer in the log should not be replayed at recovery time. 2165 * This is so that if the blocks covered by the buffer are reused for 2166 * file data before we crash we don't end up replaying old, freed 2167 * meta-data into a user's file. 2168 * 2169 * To handle the cancellation of buffer log items, we make two passes 2170 * over the log during recovery. During the first we build a table of 2171 * those buffers which have been cancelled, and during the second we 2172 * only replay those buffers which do not have corresponding cancel 2173 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2174 * for more details on the implementation of the table of cancel records. 2175 */ 2176 STATIC int 2177 xlog_recover_do_buffer_trans( 2178 xlog_t *log, 2179 xlog_recover_item_t *item, 2180 int pass) 2181 { 2182 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2183 xfs_mount_t *mp; 2184 xfs_buf_t *bp; 2185 int error; 2186 int cancel; 2187 xfs_daddr_t blkno; 2188 int len; 2189 ushort flags; 2190 uint buf_flags; 2191 2192 if (pass == XLOG_RECOVER_PASS1) { 2193 /* 2194 * In this pass we're only looking for buf items 2195 * with the XFS_BLF_CANCEL bit set. 2196 */ 2197 xlog_recover_do_buffer_pass1(log, buf_f); 2198 return 0; 2199 } else { 2200 /* 2201 * In this pass we want to recover all the buffers 2202 * which have not been cancelled and are not 2203 * cancellation buffers themselves. The routine 2204 * we call here will tell us whether or not to 2205 * continue with the replay of this buffer. 2206 */ 2207 cancel = xlog_recover_do_buffer_pass2(log, buf_f); 2208 if (cancel) { 2209 trace_xfs_log_recover_buf_cancel(log, buf_f); 2210 return 0; 2211 } 2212 } 2213 trace_xfs_log_recover_buf_recover(log, buf_f); 2214 switch (buf_f->blf_type) { 2215 case XFS_LI_BUF: 2216 blkno = buf_f->blf_blkno; 2217 len = buf_f->blf_len; 2218 flags = buf_f->blf_flags; 2219 break; 2220 default: 2221 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 2222 "xfs_log_recover: unknown buffer type 0x%x, logdev %s", 2223 buf_f->blf_type, log->l_mp->m_logname ? 2224 log->l_mp->m_logname : "internal"); 2225 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", 2226 XFS_ERRLEVEL_LOW, log->l_mp); 2227 return XFS_ERROR(EFSCORRUPTED); 2228 } 2229 2230 mp = log->l_mp; 2231 buf_flags = XBF_LOCK; 2232 if (!(flags & XFS_BLF_INODE_BUF)) 2233 buf_flags |= XBF_MAPPED; 2234 2235 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags); 2236 if (XFS_BUF_ISERROR(bp)) { 2237 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, 2238 bp, blkno); 2239 error = XFS_BUF_GETERROR(bp); 2240 xfs_buf_relse(bp); 2241 return error; 2242 } 2243 2244 error = 0; 2245 if (flags & XFS_BLF_INODE_BUF) { 2246 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2247 } else if (flags & 2248 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2249 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2250 } else { 2251 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2252 } 2253 if (error) 2254 return XFS_ERROR(error); 2255 2256 /* 2257 * Perform delayed write on the buffer. Asynchronous writes will be 2258 * slower when taking into account all the buffers to be flushed. 2259 * 2260 * Also make sure that only inode buffers with good sizes stay in 2261 * the buffer cache. The kernel moves inodes in buffers of 1 block 2262 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2263 * buffers in the log can be a different size if the log was generated 2264 * by an older kernel using unclustered inode buffers or a newer kernel 2265 * running with a different inode cluster size. Regardless, if the 2266 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2267 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2268 * the buffer out of the buffer cache so that the buffer won't 2269 * overlap with future reads of those inodes. 2270 */ 2271 if (XFS_DINODE_MAGIC == 2272 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2273 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, 2274 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2275 XFS_BUF_STALE(bp); 2276 error = xfs_bwrite(mp, bp); 2277 } else { 2278 ASSERT(bp->b_mount == NULL || bp->b_mount == mp); 2279 bp->b_mount = mp; 2280 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2281 xfs_bdwrite(mp, bp); 2282 } 2283 2284 return (error); 2285 } 2286 2287 STATIC int 2288 xlog_recover_do_inode_trans( 2289 xlog_t *log, 2290 xlog_recover_item_t *item, 2291 int pass) 2292 { 2293 xfs_inode_log_format_t *in_f; 2294 xfs_mount_t *mp; 2295 xfs_buf_t *bp; 2296 xfs_dinode_t *dip; 2297 xfs_ino_t ino; 2298 int len; 2299 xfs_caddr_t src; 2300 xfs_caddr_t dest; 2301 int error; 2302 int attr_index; 2303 uint fields; 2304 xfs_icdinode_t *dicp; 2305 int need_free = 0; 2306 2307 if (pass == XLOG_RECOVER_PASS1) { 2308 return 0; 2309 } 2310 2311 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2312 in_f = item->ri_buf[0].i_addr; 2313 } else { 2314 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2315 need_free = 1; 2316 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2317 if (error) 2318 goto error; 2319 } 2320 ino = in_f->ilf_ino; 2321 mp = log->l_mp; 2322 2323 /* 2324 * Inode buffers can be freed, look out for it, 2325 * and do not replay the inode. 2326 */ 2327 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2328 in_f->ilf_len, 0)) { 2329 error = 0; 2330 trace_xfs_log_recover_inode_cancel(log, in_f); 2331 goto error; 2332 } 2333 trace_xfs_log_recover_inode_recover(log, in_f); 2334 2335 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 2336 XBF_LOCK); 2337 if (XFS_BUF_ISERROR(bp)) { 2338 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, 2339 bp, in_f->ilf_blkno); 2340 error = XFS_BUF_GETERROR(bp); 2341 xfs_buf_relse(bp); 2342 goto error; 2343 } 2344 error = 0; 2345 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2346 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2347 2348 /* 2349 * Make sure the place we're flushing out to really looks 2350 * like an inode! 2351 */ 2352 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) { 2353 xfs_buf_relse(bp); 2354 xfs_fs_cmn_err(CE_ALERT, mp, 2355 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", 2356 dip, bp, ino); 2357 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", 2358 XFS_ERRLEVEL_LOW, mp); 2359 error = EFSCORRUPTED; 2360 goto error; 2361 } 2362 dicp = item->ri_buf[1].i_addr; 2363 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2364 xfs_buf_relse(bp); 2365 xfs_fs_cmn_err(CE_ALERT, mp, 2366 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", 2367 item, ino); 2368 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", 2369 XFS_ERRLEVEL_LOW, mp); 2370 error = EFSCORRUPTED; 2371 goto error; 2372 } 2373 2374 /* Skip replay when the on disk inode is newer than the log one */ 2375 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2376 /* 2377 * Deal with the wrap case, DI_MAX_FLUSH is less 2378 * than smaller numbers 2379 */ 2380 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2381 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2382 /* do nothing */ 2383 } else { 2384 xfs_buf_relse(bp); 2385 trace_xfs_log_recover_inode_skip(log, in_f); 2386 error = 0; 2387 goto error; 2388 } 2389 } 2390 /* Take the opportunity to reset the flush iteration count */ 2391 dicp->di_flushiter = 0; 2392 2393 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { 2394 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2395 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2396 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", 2397 XFS_ERRLEVEL_LOW, mp, dicp); 2398 xfs_buf_relse(bp); 2399 xfs_fs_cmn_err(CE_ALERT, mp, 2400 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2401 item, dip, bp, ino); 2402 error = EFSCORRUPTED; 2403 goto error; 2404 } 2405 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { 2406 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2407 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2408 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2409 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", 2410 XFS_ERRLEVEL_LOW, mp, dicp); 2411 xfs_buf_relse(bp); 2412 xfs_fs_cmn_err(CE_ALERT, mp, 2413 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2414 item, dip, bp, ino); 2415 error = EFSCORRUPTED; 2416 goto error; 2417 } 2418 } 2419 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2420 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", 2421 XFS_ERRLEVEL_LOW, mp, dicp); 2422 xfs_buf_relse(bp); 2423 xfs_fs_cmn_err(CE_ALERT, mp, 2424 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2425 item, dip, bp, ino, 2426 dicp->di_nextents + dicp->di_anextents, 2427 dicp->di_nblocks); 2428 error = EFSCORRUPTED; 2429 goto error; 2430 } 2431 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2432 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", 2433 XFS_ERRLEVEL_LOW, mp, dicp); 2434 xfs_buf_relse(bp); 2435 xfs_fs_cmn_err(CE_ALERT, mp, 2436 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", 2437 item, dip, bp, ino, dicp->di_forkoff); 2438 error = EFSCORRUPTED; 2439 goto error; 2440 } 2441 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) { 2442 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", 2443 XFS_ERRLEVEL_LOW, mp, dicp); 2444 xfs_buf_relse(bp); 2445 xfs_fs_cmn_err(CE_ALERT, mp, 2446 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", 2447 item->ri_buf[1].i_len, item); 2448 error = EFSCORRUPTED; 2449 goto error; 2450 } 2451 2452 /* The core is in in-core format */ 2453 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr); 2454 2455 /* the rest is in on-disk format */ 2456 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) { 2457 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode), 2458 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode), 2459 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode)); 2460 } 2461 2462 fields = in_f->ilf_fields; 2463 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2464 case XFS_ILOG_DEV: 2465 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2466 break; 2467 case XFS_ILOG_UUID: 2468 memcpy(XFS_DFORK_DPTR(dip), 2469 &in_f->ilf_u.ilfu_uuid, 2470 sizeof(uuid_t)); 2471 break; 2472 } 2473 2474 if (in_f->ilf_size == 2) 2475 goto write_inode_buffer; 2476 len = item->ri_buf[2].i_len; 2477 src = item->ri_buf[2].i_addr; 2478 ASSERT(in_f->ilf_size <= 4); 2479 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2480 ASSERT(!(fields & XFS_ILOG_DFORK) || 2481 (len == in_f->ilf_dsize)); 2482 2483 switch (fields & XFS_ILOG_DFORK) { 2484 case XFS_ILOG_DDATA: 2485 case XFS_ILOG_DEXT: 2486 memcpy(XFS_DFORK_DPTR(dip), src, len); 2487 break; 2488 2489 case XFS_ILOG_DBROOT: 2490 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2491 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2492 XFS_DFORK_DSIZE(dip, mp)); 2493 break; 2494 2495 default: 2496 /* 2497 * There are no data fork flags set. 2498 */ 2499 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2500 break; 2501 } 2502 2503 /* 2504 * If we logged any attribute data, recover it. There may or 2505 * may not have been any other non-core data logged in this 2506 * transaction. 2507 */ 2508 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2509 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2510 attr_index = 3; 2511 } else { 2512 attr_index = 2; 2513 } 2514 len = item->ri_buf[attr_index].i_len; 2515 src = item->ri_buf[attr_index].i_addr; 2516 ASSERT(len == in_f->ilf_asize); 2517 2518 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2519 case XFS_ILOG_ADATA: 2520 case XFS_ILOG_AEXT: 2521 dest = XFS_DFORK_APTR(dip); 2522 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2523 memcpy(dest, src, len); 2524 break; 2525 2526 case XFS_ILOG_ABROOT: 2527 dest = XFS_DFORK_APTR(dip); 2528 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2529 len, (xfs_bmdr_block_t*)dest, 2530 XFS_DFORK_ASIZE(dip, mp)); 2531 break; 2532 2533 default: 2534 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); 2535 ASSERT(0); 2536 xfs_buf_relse(bp); 2537 error = EIO; 2538 goto error; 2539 } 2540 } 2541 2542 write_inode_buffer: 2543 ASSERT(bp->b_mount == NULL || bp->b_mount == mp); 2544 bp->b_mount = mp; 2545 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2546 xfs_bdwrite(mp, bp); 2547 error: 2548 if (need_free) 2549 kmem_free(in_f); 2550 return XFS_ERROR(error); 2551 } 2552 2553 /* 2554 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2555 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2556 * of that type. 2557 */ 2558 STATIC int 2559 xlog_recover_do_quotaoff_trans( 2560 xlog_t *log, 2561 xlog_recover_item_t *item, 2562 int pass) 2563 { 2564 xfs_qoff_logformat_t *qoff_f; 2565 2566 if (pass == XLOG_RECOVER_PASS2) { 2567 return (0); 2568 } 2569 2570 qoff_f = item->ri_buf[0].i_addr; 2571 ASSERT(qoff_f); 2572 2573 /* 2574 * The logitem format's flag tells us if this was user quotaoff, 2575 * group/project quotaoff or both. 2576 */ 2577 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2578 log->l_quotaoffs_flag |= XFS_DQ_USER; 2579 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2580 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2581 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2582 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2583 2584 return (0); 2585 } 2586 2587 /* 2588 * Recover a dquot record 2589 */ 2590 STATIC int 2591 xlog_recover_do_dquot_trans( 2592 xlog_t *log, 2593 xlog_recover_item_t *item, 2594 int pass) 2595 { 2596 xfs_mount_t *mp; 2597 xfs_buf_t *bp; 2598 struct xfs_disk_dquot *ddq, *recddq; 2599 int error; 2600 xfs_dq_logformat_t *dq_f; 2601 uint type; 2602 2603 if (pass == XLOG_RECOVER_PASS1) { 2604 return 0; 2605 } 2606 mp = log->l_mp; 2607 2608 /* 2609 * Filesystems are required to send in quota flags at mount time. 2610 */ 2611 if (mp->m_qflags == 0) 2612 return (0); 2613 2614 recddq = item->ri_buf[1].i_addr; 2615 if (recddq == NULL) { 2616 cmn_err(CE_ALERT, 2617 "XFS: NULL dquot in %s.", __func__); 2618 return XFS_ERROR(EIO); 2619 } 2620 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 2621 cmn_err(CE_ALERT, 2622 "XFS: dquot too small (%d) in %s.", 2623 item->ri_buf[1].i_len, __func__); 2624 return XFS_ERROR(EIO); 2625 } 2626 2627 /* 2628 * This type of quotas was turned off, so ignore this record. 2629 */ 2630 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2631 ASSERT(type); 2632 if (log->l_quotaoffs_flag & type) 2633 return (0); 2634 2635 /* 2636 * At this point we know that quota was _not_ turned off. 2637 * Since the mount flags are not indicating to us otherwise, this 2638 * must mean that quota is on, and the dquot needs to be replayed. 2639 * Remember that we may not have fully recovered the superblock yet, 2640 * so we can't do the usual trick of looking at the SB quota bits. 2641 * 2642 * The other possibility, of course, is that the quota subsystem was 2643 * removed since the last mount - ENOSYS. 2644 */ 2645 dq_f = item->ri_buf[0].i_addr; 2646 ASSERT(dq_f); 2647 if ((error = xfs_qm_dqcheck(recddq, 2648 dq_f->qlf_id, 2649 0, XFS_QMOPT_DOWARN, 2650 "xlog_recover_do_dquot_trans (log copy)"))) { 2651 return XFS_ERROR(EIO); 2652 } 2653 ASSERT(dq_f->qlf_len == 1); 2654 2655 error = xfs_read_buf(mp, mp->m_ddev_targp, 2656 dq_f->qlf_blkno, 2657 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 2658 0, &bp); 2659 if (error) { 2660 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, 2661 bp, dq_f->qlf_blkno); 2662 return error; 2663 } 2664 ASSERT(bp); 2665 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2666 2667 /* 2668 * At least the magic num portion should be on disk because this 2669 * was among a chunk of dquots created earlier, and we did some 2670 * minimal initialization then. 2671 */ 2672 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2673 "xlog_recover_do_dquot_trans")) { 2674 xfs_buf_relse(bp); 2675 return XFS_ERROR(EIO); 2676 } 2677 2678 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2679 2680 ASSERT(dq_f->qlf_size == 2); 2681 ASSERT(bp->b_mount == NULL || bp->b_mount == mp); 2682 bp->b_mount = mp; 2683 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2684 xfs_bdwrite(mp, bp); 2685 2686 return (0); 2687 } 2688 2689 /* 2690 * This routine is called to create an in-core extent free intent 2691 * item from the efi format structure which was logged on disk. 2692 * It allocates an in-core efi, copies the extents from the format 2693 * structure into it, and adds the efi to the AIL with the given 2694 * LSN. 2695 */ 2696 STATIC int 2697 xlog_recover_do_efi_trans( 2698 xlog_t *log, 2699 xlog_recover_item_t *item, 2700 xfs_lsn_t lsn, 2701 int pass) 2702 { 2703 int error; 2704 xfs_mount_t *mp; 2705 xfs_efi_log_item_t *efip; 2706 xfs_efi_log_format_t *efi_formatp; 2707 2708 if (pass == XLOG_RECOVER_PASS1) { 2709 return 0; 2710 } 2711 2712 efi_formatp = item->ri_buf[0].i_addr; 2713 2714 mp = log->l_mp; 2715 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2716 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2717 &(efip->efi_format)))) { 2718 xfs_efi_item_free(efip); 2719 return error; 2720 } 2721 efip->efi_next_extent = efi_formatp->efi_nextents; 2722 efip->efi_flags |= XFS_EFI_COMMITTED; 2723 2724 spin_lock(&log->l_ailp->xa_lock); 2725 /* 2726 * xfs_trans_ail_update() drops the AIL lock. 2727 */ 2728 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn); 2729 return 0; 2730 } 2731 2732 2733 /* 2734 * This routine is called when an efd format structure is found in 2735 * a committed transaction in the log. It's purpose is to cancel 2736 * the corresponding efi if it was still in the log. To do this 2737 * it searches the AIL for the efi with an id equal to that in the 2738 * efd format structure. If we find it, we remove the efi from the 2739 * AIL and free it. 2740 */ 2741 STATIC void 2742 xlog_recover_do_efd_trans( 2743 xlog_t *log, 2744 xlog_recover_item_t *item, 2745 int pass) 2746 { 2747 xfs_efd_log_format_t *efd_formatp; 2748 xfs_efi_log_item_t *efip = NULL; 2749 xfs_log_item_t *lip; 2750 __uint64_t efi_id; 2751 struct xfs_ail_cursor cur; 2752 struct xfs_ail *ailp = log->l_ailp; 2753 2754 if (pass == XLOG_RECOVER_PASS1) { 2755 return; 2756 } 2757 2758 efd_formatp = item->ri_buf[0].i_addr; 2759 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2760 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2761 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2762 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2763 efi_id = efd_formatp->efd_efi_id; 2764 2765 /* 2766 * Search for the efi with the id in the efd format structure 2767 * in the AIL. 2768 */ 2769 spin_lock(&ailp->xa_lock); 2770 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2771 while (lip != NULL) { 2772 if (lip->li_type == XFS_LI_EFI) { 2773 efip = (xfs_efi_log_item_t *)lip; 2774 if (efip->efi_format.efi_id == efi_id) { 2775 /* 2776 * xfs_trans_ail_delete() drops the 2777 * AIL lock. 2778 */ 2779 xfs_trans_ail_delete(ailp, lip); 2780 xfs_efi_item_free(efip); 2781 spin_lock(&ailp->xa_lock); 2782 break; 2783 } 2784 } 2785 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2786 } 2787 xfs_trans_ail_cursor_done(ailp, &cur); 2788 spin_unlock(&ailp->xa_lock); 2789 } 2790 2791 /* 2792 * Perform the transaction 2793 * 2794 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2795 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2796 */ 2797 STATIC int 2798 xlog_recover_do_trans( 2799 xlog_t *log, 2800 xlog_recover_t *trans, 2801 int pass) 2802 { 2803 int error = 0; 2804 xlog_recover_item_t *item; 2805 2806 error = xlog_recover_reorder_trans(log, trans, pass); 2807 if (error) 2808 return error; 2809 2810 list_for_each_entry(item, &trans->r_itemq, ri_list) { 2811 trace_xfs_log_recover_item_recover(log, trans, item, pass); 2812 switch (ITEM_TYPE(item)) { 2813 case XFS_LI_BUF: 2814 error = xlog_recover_do_buffer_trans(log, item, pass); 2815 break; 2816 case XFS_LI_INODE: 2817 error = xlog_recover_do_inode_trans(log, item, pass); 2818 break; 2819 case XFS_LI_EFI: 2820 error = xlog_recover_do_efi_trans(log, item, 2821 trans->r_lsn, pass); 2822 break; 2823 case XFS_LI_EFD: 2824 xlog_recover_do_efd_trans(log, item, pass); 2825 error = 0; 2826 break; 2827 case XFS_LI_DQUOT: 2828 error = xlog_recover_do_dquot_trans(log, item, pass); 2829 break; 2830 case XFS_LI_QUOTAOFF: 2831 error = xlog_recover_do_quotaoff_trans(log, item, 2832 pass); 2833 break; 2834 default: 2835 xlog_warn( 2836 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item)); 2837 ASSERT(0); 2838 error = XFS_ERROR(EIO); 2839 break; 2840 } 2841 2842 if (error) 2843 return error; 2844 } 2845 2846 return 0; 2847 } 2848 2849 /* 2850 * Free up any resources allocated by the transaction 2851 * 2852 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2853 */ 2854 STATIC void 2855 xlog_recover_free_trans( 2856 xlog_recover_t *trans) 2857 { 2858 xlog_recover_item_t *item, *n; 2859 int i; 2860 2861 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2862 /* Free the regions in the item. */ 2863 list_del(&item->ri_list); 2864 for (i = 0; i < item->ri_cnt; i++) 2865 kmem_free(item->ri_buf[i].i_addr); 2866 /* Free the item itself */ 2867 kmem_free(item->ri_buf); 2868 kmem_free(item); 2869 } 2870 /* Free the transaction recover structure */ 2871 kmem_free(trans); 2872 } 2873 2874 STATIC int 2875 xlog_recover_commit_trans( 2876 xlog_t *log, 2877 xlog_recover_t *trans, 2878 int pass) 2879 { 2880 int error; 2881 2882 hlist_del(&trans->r_list); 2883 if ((error = xlog_recover_do_trans(log, trans, pass))) 2884 return error; 2885 xlog_recover_free_trans(trans); /* no error */ 2886 return 0; 2887 } 2888 2889 STATIC int 2890 xlog_recover_unmount_trans( 2891 xlog_recover_t *trans) 2892 { 2893 /* Do nothing now */ 2894 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); 2895 return 0; 2896 } 2897 2898 /* 2899 * There are two valid states of the r_state field. 0 indicates that the 2900 * transaction structure is in a normal state. We have either seen the 2901 * start of the transaction or the last operation we added was not a partial 2902 * operation. If the last operation we added to the transaction was a 2903 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2904 * 2905 * NOTE: skip LRs with 0 data length. 2906 */ 2907 STATIC int 2908 xlog_recover_process_data( 2909 xlog_t *log, 2910 struct hlist_head rhash[], 2911 xlog_rec_header_t *rhead, 2912 xfs_caddr_t dp, 2913 int pass) 2914 { 2915 xfs_caddr_t lp; 2916 int num_logops; 2917 xlog_op_header_t *ohead; 2918 xlog_recover_t *trans; 2919 xlog_tid_t tid; 2920 int error; 2921 unsigned long hash; 2922 uint flags; 2923 2924 lp = dp + be32_to_cpu(rhead->h_len); 2925 num_logops = be32_to_cpu(rhead->h_num_logops); 2926 2927 /* check the log format matches our own - else we can't recover */ 2928 if (xlog_header_check_recover(log->l_mp, rhead)) 2929 return (XFS_ERROR(EIO)); 2930 2931 while ((dp < lp) && num_logops) { 2932 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2933 ohead = (xlog_op_header_t *)dp; 2934 dp += sizeof(xlog_op_header_t); 2935 if (ohead->oh_clientid != XFS_TRANSACTION && 2936 ohead->oh_clientid != XFS_LOG) { 2937 xlog_warn( 2938 "XFS: xlog_recover_process_data: bad clientid"); 2939 ASSERT(0); 2940 return (XFS_ERROR(EIO)); 2941 } 2942 tid = be32_to_cpu(ohead->oh_tid); 2943 hash = XLOG_RHASH(tid); 2944 trans = xlog_recover_find_tid(&rhash[hash], tid); 2945 if (trans == NULL) { /* not found; add new tid */ 2946 if (ohead->oh_flags & XLOG_START_TRANS) 2947 xlog_recover_new_tid(&rhash[hash], tid, 2948 be64_to_cpu(rhead->h_lsn)); 2949 } else { 2950 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 2951 xlog_warn( 2952 "XFS: xlog_recover_process_data: bad length"); 2953 WARN_ON(1); 2954 return (XFS_ERROR(EIO)); 2955 } 2956 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2957 if (flags & XLOG_WAS_CONT_TRANS) 2958 flags &= ~XLOG_CONTINUE_TRANS; 2959 switch (flags) { 2960 case XLOG_COMMIT_TRANS: 2961 error = xlog_recover_commit_trans(log, 2962 trans, pass); 2963 break; 2964 case XLOG_UNMOUNT_TRANS: 2965 error = xlog_recover_unmount_trans(trans); 2966 break; 2967 case XLOG_WAS_CONT_TRANS: 2968 error = xlog_recover_add_to_cont_trans(log, 2969 trans, dp, 2970 be32_to_cpu(ohead->oh_len)); 2971 break; 2972 case XLOG_START_TRANS: 2973 xlog_warn( 2974 "XFS: xlog_recover_process_data: bad transaction"); 2975 ASSERT(0); 2976 error = XFS_ERROR(EIO); 2977 break; 2978 case 0: 2979 case XLOG_CONTINUE_TRANS: 2980 error = xlog_recover_add_to_trans(log, trans, 2981 dp, be32_to_cpu(ohead->oh_len)); 2982 break; 2983 default: 2984 xlog_warn( 2985 "XFS: xlog_recover_process_data: bad flag"); 2986 ASSERT(0); 2987 error = XFS_ERROR(EIO); 2988 break; 2989 } 2990 if (error) 2991 return error; 2992 } 2993 dp += be32_to_cpu(ohead->oh_len); 2994 num_logops--; 2995 } 2996 return 0; 2997 } 2998 2999 /* 3000 * Process an extent free intent item that was recovered from 3001 * the log. We need to free the extents that it describes. 3002 */ 3003 STATIC int 3004 xlog_recover_process_efi( 3005 xfs_mount_t *mp, 3006 xfs_efi_log_item_t *efip) 3007 { 3008 xfs_efd_log_item_t *efdp; 3009 xfs_trans_t *tp; 3010 int i; 3011 int error = 0; 3012 xfs_extent_t *extp; 3013 xfs_fsblock_t startblock_fsb; 3014 3015 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); 3016 3017 /* 3018 * First check the validity of the extents described by the 3019 * EFI. If any are bad, then assume that all are bad and 3020 * just toss the EFI. 3021 */ 3022 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3023 extp = &(efip->efi_format.efi_extents[i]); 3024 startblock_fsb = XFS_BB_TO_FSB(mp, 3025 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3026 if ((startblock_fsb == 0) || 3027 (extp->ext_len == 0) || 3028 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3029 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3030 /* 3031 * This will pull the EFI from the AIL and 3032 * free the memory associated with it. 3033 */ 3034 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3035 return XFS_ERROR(EIO); 3036 } 3037 } 3038 3039 tp = xfs_trans_alloc(mp, 0); 3040 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3041 if (error) 3042 goto abort_error; 3043 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3044 3045 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3046 extp = &(efip->efi_format.efi_extents[i]); 3047 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3048 if (error) 3049 goto abort_error; 3050 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3051 extp->ext_len); 3052 } 3053 3054 efip->efi_flags |= XFS_EFI_RECOVERED; 3055 error = xfs_trans_commit(tp, 0); 3056 return error; 3057 3058 abort_error: 3059 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3060 return error; 3061 } 3062 3063 /* 3064 * When this is called, all of the EFIs which did not have 3065 * corresponding EFDs should be in the AIL. What we do now 3066 * is free the extents associated with each one. 3067 * 3068 * Since we process the EFIs in normal transactions, they 3069 * will be removed at some point after the commit. This prevents 3070 * us from just walking down the list processing each one. 3071 * We'll use a flag in the EFI to skip those that we've already 3072 * processed and use the AIL iteration mechanism's generation 3073 * count to try to speed this up at least a bit. 3074 * 3075 * When we start, we know that the EFIs are the only things in 3076 * the AIL. As we process them, however, other items are added 3077 * to the AIL. Since everything added to the AIL must come after 3078 * everything already in the AIL, we stop processing as soon as 3079 * we see something other than an EFI in the AIL. 3080 */ 3081 STATIC int 3082 xlog_recover_process_efis( 3083 xlog_t *log) 3084 { 3085 xfs_log_item_t *lip; 3086 xfs_efi_log_item_t *efip; 3087 int error = 0; 3088 struct xfs_ail_cursor cur; 3089 struct xfs_ail *ailp; 3090 3091 ailp = log->l_ailp; 3092 spin_lock(&ailp->xa_lock); 3093 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3094 while (lip != NULL) { 3095 /* 3096 * We're done when we see something other than an EFI. 3097 * There should be no EFIs left in the AIL now. 3098 */ 3099 if (lip->li_type != XFS_LI_EFI) { 3100 #ifdef DEBUG 3101 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3102 ASSERT(lip->li_type != XFS_LI_EFI); 3103 #endif 3104 break; 3105 } 3106 3107 /* 3108 * Skip EFIs that we've already processed. 3109 */ 3110 efip = (xfs_efi_log_item_t *)lip; 3111 if (efip->efi_flags & XFS_EFI_RECOVERED) { 3112 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3113 continue; 3114 } 3115 3116 spin_unlock(&ailp->xa_lock); 3117 error = xlog_recover_process_efi(log->l_mp, efip); 3118 spin_lock(&ailp->xa_lock); 3119 if (error) 3120 goto out; 3121 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3122 } 3123 out: 3124 xfs_trans_ail_cursor_done(ailp, &cur); 3125 spin_unlock(&ailp->xa_lock); 3126 return error; 3127 } 3128 3129 /* 3130 * This routine performs a transaction to null out a bad inode pointer 3131 * in an agi unlinked inode hash bucket. 3132 */ 3133 STATIC void 3134 xlog_recover_clear_agi_bucket( 3135 xfs_mount_t *mp, 3136 xfs_agnumber_t agno, 3137 int bucket) 3138 { 3139 xfs_trans_t *tp; 3140 xfs_agi_t *agi; 3141 xfs_buf_t *agibp; 3142 int offset; 3143 int error; 3144 3145 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3146 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 3147 0, 0, 0); 3148 if (error) 3149 goto out_abort; 3150 3151 error = xfs_read_agi(mp, tp, agno, &agibp); 3152 if (error) 3153 goto out_abort; 3154 3155 agi = XFS_BUF_TO_AGI(agibp); 3156 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3157 offset = offsetof(xfs_agi_t, agi_unlinked) + 3158 (sizeof(xfs_agino_t) * bucket); 3159 xfs_trans_log_buf(tp, agibp, offset, 3160 (offset + sizeof(xfs_agino_t) - 1)); 3161 3162 error = xfs_trans_commit(tp, 0); 3163 if (error) 3164 goto out_error; 3165 return; 3166 3167 out_abort: 3168 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3169 out_error: 3170 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: " 3171 "failed to clear agi %d. Continuing.", agno); 3172 return; 3173 } 3174 3175 STATIC xfs_agino_t 3176 xlog_recover_process_one_iunlink( 3177 struct xfs_mount *mp, 3178 xfs_agnumber_t agno, 3179 xfs_agino_t agino, 3180 int bucket) 3181 { 3182 struct xfs_buf *ibp; 3183 struct xfs_dinode *dip; 3184 struct xfs_inode *ip; 3185 xfs_ino_t ino; 3186 int error; 3187 3188 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3189 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 3190 if (error) 3191 goto fail; 3192 3193 /* 3194 * Get the on disk inode to find the next inode in the bucket. 3195 */ 3196 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK); 3197 if (error) 3198 goto fail_iput; 3199 3200 ASSERT(ip->i_d.di_nlink == 0); 3201 ASSERT(ip->i_d.di_mode != 0); 3202 3203 /* setup for the next pass */ 3204 agino = be32_to_cpu(dip->di_next_unlinked); 3205 xfs_buf_relse(ibp); 3206 3207 /* 3208 * Prevent any DMAPI event from being sent when the reference on 3209 * the inode is dropped. 3210 */ 3211 ip->i_d.di_dmevmask = 0; 3212 3213 IRELE(ip); 3214 return agino; 3215 3216 fail_iput: 3217 IRELE(ip); 3218 fail: 3219 /* 3220 * We can't read in the inode this bucket points to, or this inode 3221 * is messed up. Just ditch this bucket of inodes. We will lose 3222 * some inodes and space, but at least we won't hang. 3223 * 3224 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3225 * clear the inode pointer in the bucket. 3226 */ 3227 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3228 return NULLAGINO; 3229 } 3230 3231 /* 3232 * xlog_iunlink_recover 3233 * 3234 * This is called during recovery to process any inodes which 3235 * we unlinked but not freed when the system crashed. These 3236 * inodes will be on the lists in the AGI blocks. What we do 3237 * here is scan all the AGIs and fully truncate and free any 3238 * inodes found on the lists. Each inode is removed from the 3239 * lists when it has been fully truncated and is freed. The 3240 * freeing of the inode and its removal from the list must be 3241 * atomic. 3242 */ 3243 STATIC void 3244 xlog_recover_process_iunlinks( 3245 xlog_t *log) 3246 { 3247 xfs_mount_t *mp; 3248 xfs_agnumber_t agno; 3249 xfs_agi_t *agi; 3250 xfs_buf_t *agibp; 3251 xfs_agino_t agino; 3252 int bucket; 3253 int error; 3254 uint mp_dmevmask; 3255 3256 mp = log->l_mp; 3257 3258 /* 3259 * Prevent any DMAPI event from being sent while in this function. 3260 */ 3261 mp_dmevmask = mp->m_dmevmask; 3262 mp->m_dmevmask = 0; 3263 3264 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3265 /* 3266 * Find the agi for this ag. 3267 */ 3268 error = xfs_read_agi(mp, NULL, agno, &agibp); 3269 if (error) { 3270 /* 3271 * AGI is b0rked. Don't process it. 3272 * 3273 * We should probably mark the filesystem as corrupt 3274 * after we've recovered all the ag's we can.... 3275 */ 3276 continue; 3277 } 3278 agi = XFS_BUF_TO_AGI(agibp); 3279 3280 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3281 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3282 while (agino != NULLAGINO) { 3283 /* 3284 * Release the agi buffer so that it can 3285 * be acquired in the normal course of the 3286 * transaction to truncate and free the inode. 3287 */ 3288 xfs_buf_relse(agibp); 3289 3290 agino = xlog_recover_process_one_iunlink(mp, 3291 agno, agino, bucket); 3292 3293 /* 3294 * Reacquire the agibuffer and continue around 3295 * the loop. This should never fail as we know 3296 * the buffer was good earlier on. 3297 */ 3298 error = xfs_read_agi(mp, NULL, agno, &agibp); 3299 ASSERT(error == 0); 3300 agi = XFS_BUF_TO_AGI(agibp); 3301 } 3302 } 3303 3304 /* 3305 * Release the buffer for the current agi so we can 3306 * go on to the next one. 3307 */ 3308 xfs_buf_relse(agibp); 3309 } 3310 3311 mp->m_dmevmask = mp_dmevmask; 3312 } 3313 3314 3315 #ifdef DEBUG 3316 STATIC void 3317 xlog_pack_data_checksum( 3318 xlog_t *log, 3319 xlog_in_core_t *iclog, 3320 int size) 3321 { 3322 int i; 3323 __be32 *up; 3324 uint chksum = 0; 3325 3326 up = (__be32 *)iclog->ic_datap; 3327 /* divide length by 4 to get # words */ 3328 for (i = 0; i < (size >> 2); i++) { 3329 chksum ^= be32_to_cpu(*up); 3330 up++; 3331 } 3332 iclog->ic_header.h_chksum = cpu_to_be32(chksum); 3333 } 3334 #else 3335 #define xlog_pack_data_checksum(log, iclog, size) 3336 #endif 3337 3338 /* 3339 * Stamp cycle number in every block 3340 */ 3341 void 3342 xlog_pack_data( 3343 xlog_t *log, 3344 xlog_in_core_t *iclog, 3345 int roundoff) 3346 { 3347 int i, j, k; 3348 int size = iclog->ic_offset + roundoff; 3349 __be32 cycle_lsn; 3350 xfs_caddr_t dp; 3351 3352 xlog_pack_data_checksum(log, iclog, size); 3353 3354 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3355 3356 dp = iclog->ic_datap; 3357 for (i = 0; i < BTOBB(size) && 3358 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3359 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 3360 *(__be32 *)dp = cycle_lsn; 3361 dp += BBSIZE; 3362 } 3363 3364 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3365 xlog_in_core_2_t *xhdr = iclog->ic_data; 3366 3367 for ( ; i < BTOBB(size); i++) { 3368 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3369 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3370 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 3371 *(__be32 *)dp = cycle_lsn; 3372 dp += BBSIZE; 3373 } 3374 3375 for (i = 1; i < log->l_iclog_heads; i++) { 3376 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3377 } 3378 } 3379 } 3380 3381 STATIC void 3382 xlog_unpack_data( 3383 xlog_rec_header_t *rhead, 3384 xfs_caddr_t dp, 3385 xlog_t *log) 3386 { 3387 int i, j, k; 3388 3389 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 3390 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3391 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 3392 dp += BBSIZE; 3393 } 3394 3395 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3396 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 3397 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 3398 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3399 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3400 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3401 dp += BBSIZE; 3402 } 3403 } 3404 } 3405 3406 STATIC int 3407 xlog_valid_rec_header( 3408 xlog_t *log, 3409 xlog_rec_header_t *rhead, 3410 xfs_daddr_t blkno) 3411 { 3412 int hlen; 3413 3414 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) { 3415 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3416 XFS_ERRLEVEL_LOW, log->l_mp); 3417 return XFS_ERROR(EFSCORRUPTED); 3418 } 3419 if (unlikely( 3420 (!rhead->h_version || 3421 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 3422 xlog_warn("XFS: %s: unrecognised log version (%d).", 3423 __func__, be32_to_cpu(rhead->h_version)); 3424 return XFS_ERROR(EIO); 3425 } 3426 3427 /* LR body must have data or it wouldn't have been written */ 3428 hlen = be32_to_cpu(rhead->h_len); 3429 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3430 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3431 XFS_ERRLEVEL_LOW, log->l_mp); 3432 return XFS_ERROR(EFSCORRUPTED); 3433 } 3434 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3435 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3436 XFS_ERRLEVEL_LOW, log->l_mp); 3437 return XFS_ERROR(EFSCORRUPTED); 3438 } 3439 return 0; 3440 } 3441 3442 /* 3443 * Read the log from tail to head and process the log records found. 3444 * Handle the two cases where the tail and head are in the same cycle 3445 * and where the active portion of the log wraps around the end of 3446 * the physical log separately. The pass parameter is passed through 3447 * to the routines called to process the data and is not looked at 3448 * here. 3449 */ 3450 STATIC int 3451 xlog_do_recovery_pass( 3452 xlog_t *log, 3453 xfs_daddr_t head_blk, 3454 xfs_daddr_t tail_blk, 3455 int pass) 3456 { 3457 xlog_rec_header_t *rhead; 3458 xfs_daddr_t blk_no; 3459 xfs_caddr_t offset; 3460 xfs_buf_t *hbp, *dbp; 3461 int error = 0, h_size; 3462 int bblks, split_bblks; 3463 int hblks, split_hblks, wrapped_hblks; 3464 struct hlist_head rhash[XLOG_RHASH_SIZE]; 3465 3466 ASSERT(head_blk != tail_blk); 3467 3468 /* 3469 * Read the header of the tail block and get the iclog buffer size from 3470 * h_size. Use this to tell how many sectors make up the log header. 3471 */ 3472 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3473 /* 3474 * When using variable length iclogs, read first sector of 3475 * iclog header and extract the header size from it. Get a 3476 * new hbp that is the correct size. 3477 */ 3478 hbp = xlog_get_bp(log, 1); 3479 if (!hbp) 3480 return ENOMEM; 3481 3482 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 3483 if (error) 3484 goto bread_err1; 3485 3486 rhead = (xlog_rec_header_t *)offset; 3487 error = xlog_valid_rec_header(log, rhead, tail_blk); 3488 if (error) 3489 goto bread_err1; 3490 h_size = be32_to_cpu(rhead->h_size); 3491 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3492 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3493 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3494 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3495 hblks++; 3496 xlog_put_bp(hbp); 3497 hbp = xlog_get_bp(log, hblks); 3498 } else { 3499 hblks = 1; 3500 } 3501 } else { 3502 ASSERT(log->l_sectBBsize == 1); 3503 hblks = 1; 3504 hbp = xlog_get_bp(log, 1); 3505 h_size = XLOG_BIG_RECORD_BSIZE; 3506 } 3507 3508 if (!hbp) 3509 return ENOMEM; 3510 dbp = xlog_get_bp(log, BTOBB(h_size)); 3511 if (!dbp) { 3512 xlog_put_bp(hbp); 3513 return ENOMEM; 3514 } 3515 3516 memset(rhash, 0, sizeof(rhash)); 3517 if (tail_blk <= head_blk) { 3518 for (blk_no = tail_blk; blk_no < head_blk; ) { 3519 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3520 if (error) 3521 goto bread_err2; 3522 3523 rhead = (xlog_rec_header_t *)offset; 3524 error = xlog_valid_rec_header(log, rhead, blk_no); 3525 if (error) 3526 goto bread_err2; 3527 3528 /* blocks in data section */ 3529 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3530 error = xlog_bread(log, blk_no + hblks, bblks, dbp, 3531 &offset); 3532 if (error) 3533 goto bread_err2; 3534 3535 xlog_unpack_data(rhead, offset, log); 3536 if ((error = xlog_recover_process_data(log, 3537 rhash, rhead, offset, pass))) 3538 goto bread_err2; 3539 blk_no += bblks + hblks; 3540 } 3541 } else { 3542 /* 3543 * Perform recovery around the end of the physical log. 3544 * When the head is not on the same cycle number as the tail, 3545 * we can't do a sequential recovery as above. 3546 */ 3547 blk_no = tail_blk; 3548 while (blk_no < log->l_logBBsize) { 3549 /* 3550 * Check for header wrapping around physical end-of-log 3551 */ 3552 offset = XFS_BUF_PTR(hbp); 3553 split_hblks = 0; 3554 wrapped_hblks = 0; 3555 if (blk_no + hblks <= log->l_logBBsize) { 3556 /* Read header in one read */ 3557 error = xlog_bread(log, blk_no, hblks, hbp, 3558 &offset); 3559 if (error) 3560 goto bread_err2; 3561 } else { 3562 /* This LR is split across physical log end */ 3563 if (blk_no != log->l_logBBsize) { 3564 /* some data before physical log end */ 3565 ASSERT(blk_no <= INT_MAX); 3566 split_hblks = log->l_logBBsize - (int)blk_no; 3567 ASSERT(split_hblks > 0); 3568 error = xlog_bread(log, blk_no, 3569 split_hblks, hbp, 3570 &offset); 3571 if (error) 3572 goto bread_err2; 3573 } 3574 3575 /* 3576 * Note: this black magic still works with 3577 * large sector sizes (non-512) only because: 3578 * - we increased the buffer size originally 3579 * by 1 sector giving us enough extra space 3580 * for the second read; 3581 * - the log start is guaranteed to be sector 3582 * aligned; 3583 * - we read the log end (LR header start) 3584 * _first_, then the log start (LR header end) 3585 * - order is important. 3586 */ 3587 wrapped_hblks = hblks - split_hblks; 3588 error = XFS_BUF_SET_PTR(hbp, 3589 offset + BBTOB(split_hblks), 3590 BBTOB(hblks - split_hblks)); 3591 if (error) 3592 goto bread_err2; 3593 3594 error = xlog_bread_noalign(log, 0, 3595 wrapped_hblks, hbp); 3596 if (error) 3597 goto bread_err2; 3598 3599 error = XFS_BUF_SET_PTR(hbp, offset, 3600 BBTOB(hblks)); 3601 if (error) 3602 goto bread_err2; 3603 } 3604 rhead = (xlog_rec_header_t *)offset; 3605 error = xlog_valid_rec_header(log, rhead, 3606 split_hblks ? blk_no : 0); 3607 if (error) 3608 goto bread_err2; 3609 3610 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3611 blk_no += hblks; 3612 3613 /* Read in data for log record */ 3614 if (blk_no + bblks <= log->l_logBBsize) { 3615 error = xlog_bread(log, blk_no, bblks, dbp, 3616 &offset); 3617 if (error) 3618 goto bread_err2; 3619 } else { 3620 /* This log record is split across the 3621 * physical end of log */ 3622 offset = XFS_BUF_PTR(dbp); 3623 split_bblks = 0; 3624 if (blk_no != log->l_logBBsize) { 3625 /* some data is before the physical 3626 * end of log */ 3627 ASSERT(!wrapped_hblks); 3628 ASSERT(blk_no <= INT_MAX); 3629 split_bblks = 3630 log->l_logBBsize - (int)blk_no; 3631 ASSERT(split_bblks > 0); 3632 error = xlog_bread(log, blk_no, 3633 split_bblks, dbp, 3634 &offset); 3635 if (error) 3636 goto bread_err2; 3637 } 3638 3639 /* 3640 * Note: this black magic still works with 3641 * large sector sizes (non-512) only because: 3642 * - we increased the buffer size originally 3643 * by 1 sector giving us enough extra space 3644 * for the second read; 3645 * - the log start is guaranteed to be sector 3646 * aligned; 3647 * - we read the log end (LR header start) 3648 * _first_, then the log start (LR header end) 3649 * - order is important. 3650 */ 3651 error = XFS_BUF_SET_PTR(dbp, 3652 offset + BBTOB(split_bblks), 3653 BBTOB(bblks - split_bblks)); 3654 if (error) 3655 goto bread_err2; 3656 3657 error = xlog_bread_noalign(log, wrapped_hblks, 3658 bblks - split_bblks, 3659 dbp); 3660 if (error) 3661 goto bread_err2; 3662 3663 error = XFS_BUF_SET_PTR(dbp, offset, h_size); 3664 if (error) 3665 goto bread_err2; 3666 } 3667 xlog_unpack_data(rhead, offset, log); 3668 if ((error = xlog_recover_process_data(log, rhash, 3669 rhead, offset, pass))) 3670 goto bread_err2; 3671 blk_no += bblks; 3672 } 3673 3674 ASSERT(blk_no >= log->l_logBBsize); 3675 blk_no -= log->l_logBBsize; 3676 3677 /* read first part of physical log */ 3678 while (blk_no < head_blk) { 3679 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3680 if (error) 3681 goto bread_err2; 3682 3683 rhead = (xlog_rec_header_t *)offset; 3684 error = xlog_valid_rec_header(log, rhead, blk_no); 3685 if (error) 3686 goto bread_err2; 3687 3688 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3689 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3690 &offset); 3691 if (error) 3692 goto bread_err2; 3693 3694 xlog_unpack_data(rhead, offset, log); 3695 if ((error = xlog_recover_process_data(log, rhash, 3696 rhead, offset, pass))) 3697 goto bread_err2; 3698 blk_no += bblks + hblks; 3699 } 3700 } 3701 3702 bread_err2: 3703 xlog_put_bp(dbp); 3704 bread_err1: 3705 xlog_put_bp(hbp); 3706 return error; 3707 } 3708 3709 /* 3710 * Do the recovery of the log. We actually do this in two phases. 3711 * The two passes are necessary in order to implement the function 3712 * of cancelling a record written into the log. The first pass 3713 * determines those things which have been cancelled, and the 3714 * second pass replays log items normally except for those which 3715 * have been cancelled. The handling of the replay and cancellations 3716 * takes place in the log item type specific routines. 3717 * 3718 * The table of items which have cancel records in the log is allocated 3719 * and freed at this level, since only here do we know when all of 3720 * the log recovery has been completed. 3721 */ 3722 STATIC int 3723 xlog_do_log_recovery( 3724 xlog_t *log, 3725 xfs_daddr_t head_blk, 3726 xfs_daddr_t tail_blk) 3727 { 3728 int error; 3729 3730 ASSERT(head_blk != tail_blk); 3731 3732 /* 3733 * First do a pass to find all of the cancelled buf log items. 3734 * Store them in the buf_cancel_table for use in the second pass. 3735 */ 3736 log->l_buf_cancel_table = 3737 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * 3738 sizeof(xfs_buf_cancel_t*), 3739 KM_SLEEP); 3740 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3741 XLOG_RECOVER_PASS1); 3742 if (error != 0) { 3743 kmem_free(log->l_buf_cancel_table); 3744 log->l_buf_cancel_table = NULL; 3745 return error; 3746 } 3747 /* 3748 * Then do a second pass to actually recover the items in the log. 3749 * When it is complete free the table of buf cancel items. 3750 */ 3751 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3752 XLOG_RECOVER_PASS2); 3753 #ifdef DEBUG 3754 if (!error) { 3755 int i; 3756 3757 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3758 ASSERT(log->l_buf_cancel_table[i] == NULL); 3759 } 3760 #endif /* DEBUG */ 3761 3762 kmem_free(log->l_buf_cancel_table); 3763 log->l_buf_cancel_table = NULL; 3764 3765 return error; 3766 } 3767 3768 /* 3769 * Do the actual recovery 3770 */ 3771 STATIC int 3772 xlog_do_recover( 3773 xlog_t *log, 3774 xfs_daddr_t head_blk, 3775 xfs_daddr_t tail_blk) 3776 { 3777 int error; 3778 xfs_buf_t *bp; 3779 xfs_sb_t *sbp; 3780 3781 /* 3782 * First replay the images in the log. 3783 */ 3784 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3785 if (error) { 3786 return error; 3787 } 3788 3789 XFS_bflush(log->l_mp->m_ddev_targp); 3790 3791 /* 3792 * If IO errors happened during recovery, bail out. 3793 */ 3794 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3795 return (EIO); 3796 } 3797 3798 /* 3799 * We now update the tail_lsn since much of the recovery has completed 3800 * and there may be space available to use. If there were no extent 3801 * or iunlinks, we can free up the entire log and set the tail_lsn to 3802 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3803 * lsn of the last known good LR on disk. If there are extent frees 3804 * or iunlinks they will have some entries in the AIL; so we look at 3805 * the AIL to determine how to set the tail_lsn. 3806 */ 3807 xlog_assign_tail_lsn(log->l_mp); 3808 3809 /* 3810 * Now that we've finished replaying all buffer and inode 3811 * updates, re-read in the superblock. 3812 */ 3813 bp = xfs_getsb(log->l_mp, 0); 3814 XFS_BUF_UNDONE(bp); 3815 ASSERT(!(XFS_BUF_ISWRITE(bp))); 3816 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); 3817 XFS_BUF_READ(bp); 3818 XFS_BUF_UNASYNC(bp); 3819 xfsbdstrat(log->l_mp, bp); 3820 error = xfs_iowait(bp); 3821 if (error) { 3822 xfs_ioerror_alert("xlog_do_recover", 3823 log->l_mp, bp, XFS_BUF_ADDR(bp)); 3824 ASSERT(0); 3825 xfs_buf_relse(bp); 3826 return error; 3827 } 3828 3829 /* Convert superblock from on-disk format */ 3830 sbp = &log->l_mp->m_sb; 3831 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 3832 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3833 ASSERT(xfs_sb_good_version(sbp)); 3834 xfs_buf_relse(bp); 3835 3836 /* We've re-read the superblock so re-initialize per-cpu counters */ 3837 xfs_icsb_reinit_counters(log->l_mp); 3838 3839 xlog_recover_check_summary(log); 3840 3841 /* Normal transactions can now occur */ 3842 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3843 return 0; 3844 } 3845 3846 /* 3847 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3848 * 3849 * Return error or zero. 3850 */ 3851 int 3852 xlog_recover( 3853 xlog_t *log) 3854 { 3855 xfs_daddr_t head_blk, tail_blk; 3856 int error; 3857 3858 /* find the tail of the log */ 3859 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3860 return error; 3861 3862 if (tail_blk != head_blk) { 3863 /* There used to be a comment here: 3864 * 3865 * disallow recovery on read-only mounts. note -- mount 3866 * checks for ENOSPC and turns it into an intelligent 3867 * error message. 3868 * ...but this is no longer true. Now, unless you specify 3869 * NORECOVERY (in which case this function would never be 3870 * called), we just go ahead and recover. We do this all 3871 * under the vfs layer, so we can get away with it unless 3872 * the device itself is read-only, in which case we fail. 3873 */ 3874 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3875 return error; 3876 } 3877 3878 cmn_err(CE_NOTE, 3879 "Starting XFS recovery on filesystem: %s (logdev: %s)", 3880 log->l_mp->m_fsname, log->l_mp->m_logname ? 3881 log->l_mp->m_logname : "internal"); 3882 3883 error = xlog_do_recover(log, head_blk, tail_blk); 3884 log->l_flags |= XLOG_RECOVERY_NEEDED; 3885 } 3886 return error; 3887 } 3888 3889 /* 3890 * In the first part of recovery we replay inodes and buffers and build 3891 * up the list of extent free items which need to be processed. Here 3892 * we process the extent free items and clean up the on disk unlinked 3893 * inode lists. This is separated from the first part of recovery so 3894 * that the root and real-time bitmap inodes can be read in from disk in 3895 * between the two stages. This is necessary so that we can free space 3896 * in the real-time portion of the file system. 3897 */ 3898 int 3899 xlog_recover_finish( 3900 xlog_t *log) 3901 { 3902 /* 3903 * Now we're ready to do the transactions needed for the 3904 * rest of recovery. Start with completing all the extent 3905 * free intent records and then process the unlinked inode 3906 * lists. At this point, we essentially run in normal mode 3907 * except that we're still performing recovery actions 3908 * rather than accepting new requests. 3909 */ 3910 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3911 int error; 3912 error = xlog_recover_process_efis(log); 3913 if (error) { 3914 cmn_err(CE_ALERT, 3915 "Failed to recover EFIs on filesystem: %s", 3916 log->l_mp->m_fsname); 3917 return error; 3918 } 3919 /* 3920 * Sync the log to get all the EFIs out of the AIL. 3921 * This isn't absolutely necessary, but it helps in 3922 * case the unlink transactions would have problems 3923 * pushing the EFIs out of the way. 3924 */ 3925 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3926 3927 xlog_recover_process_iunlinks(log); 3928 3929 xlog_recover_check_summary(log); 3930 3931 cmn_err(CE_NOTE, 3932 "Ending XFS recovery on filesystem: %s (logdev: %s)", 3933 log->l_mp->m_fsname, log->l_mp->m_logname ? 3934 log->l_mp->m_logname : "internal"); 3935 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3936 } else { 3937 cmn_err(CE_DEBUG, 3938 "!Ending clean XFS mount for filesystem: %s\n", 3939 log->l_mp->m_fsname); 3940 } 3941 return 0; 3942 } 3943 3944 3945 #if defined(DEBUG) 3946 /* 3947 * Read all of the agf and agi counters and check that they 3948 * are consistent with the superblock counters. 3949 */ 3950 void 3951 xlog_recover_check_summary( 3952 xlog_t *log) 3953 { 3954 xfs_mount_t *mp; 3955 xfs_agf_t *agfp; 3956 xfs_buf_t *agfbp; 3957 xfs_buf_t *agibp; 3958 xfs_agnumber_t agno; 3959 __uint64_t freeblks; 3960 __uint64_t itotal; 3961 __uint64_t ifree; 3962 int error; 3963 3964 mp = log->l_mp; 3965 3966 freeblks = 0LL; 3967 itotal = 0LL; 3968 ifree = 0LL; 3969 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3970 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 3971 if (error) { 3972 xfs_fs_cmn_err(CE_ALERT, mp, 3973 "xlog_recover_check_summary(agf)" 3974 "agf read failed agno %d error %d", 3975 agno, error); 3976 } else { 3977 agfp = XFS_BUF_TO_AGF(agfbp); 3978 freeblks += be32_to_cpu(agfp->agf_freeblks) + 3979 be32_to_cpu(agfp->agf_flcount); 3980 xfs_buf_relse(agfbp); 3981 } 3982 3983 error = xfs_read_agi(mp, NULL, agno, &agibp); 3984 if (!error) { 3985 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 3986 3987 itotal += be32_to_cpu(agi->agi_count); 3988 ifree += be32_to_cpu(agi->agi_freecount); 3989 xfs_buf_relse(agibp); 3990 } 3991 } 3992 } 3993 #endif /* DEBUG */ 3994