xref: /linux/fs/xfs/xfs_log_recover.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_rw.h"
44 #include "xfs_utils.h"
45 #include "xfs_trace.h"
46 
47 STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
48 STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
49 #if defined(DEBUG)
50 STATIC void	xlog_recover_check_summary(xlog_t *);
51 #else
52 #define	xlog_recover_check_summary(log)
53 #endif
54 
55 /*
56  * Sector aligned buffer routines for buffer create/read/write/access
57  */
58 
59 /*
60  * Verify the given count of basic blocks is valid number of blocks
61  * to specify for an operation involving the given XFS log buffer.
62  * Returns nonzero if the count is valid, 0 otherwise.
63  */
64 
65 static inline int
66 xlog_buf_bbcount_valid(
67 	xlog_t		*log,
68 	int		bbcount)
69 {
70 	return bbcount > 0 && bbcount <= log->l_logBBsize;
71 }
72 
73 /*
74  * Allocate a buffer to hold log data.  The buffer needs to be able
75  * to map to a range of nbblks basic blocks at any valid (basic
76  * block) offset within the log.
77  */
78 STATIC xfs_buf_t *
79 xlog_get_bp(
80 	xlog_t		*log,
81 	int		nbblks)
82 {
83 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
84 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
85 			nbblks);
86 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
87 		return NULL;
88 	}
89 
90 	/*
91 	 * We do log I/O in units of log sectors (a power-of-2
92 	 * multiple of the basic block size), so we round up the
93 	 * requested size to acommodate the basic blocks required
94 	 * for complete log sectors.
95 	 *
96 	 * In addition, the buffer may be used for a non-sector-
97 	 * aligned block offset, in which case an I/O of the
98 	 * requested size could extend beyond the end of the
99 	 * buffer.  If the requested size is only 1 basic block it
100 	 * will never straddle a sector boundary, so this won't be
101 	 * an issue.  Nor will this be a problem if the log I/O is
102 	 * done in basic blocks (sector size 1).  But otherwise we
103 	 * extend the buffer by one extra log sector to ensure
104 	 * there's space to accomodate this possiblility.
105 	 */
106 	if (nbblks > 1 && log->l_sectBBsize > 1)
107 		nbblks += log->l_sectBBsize;
108 	nbblks = round_up(nbblks, log->l_sectBBsize);
109 
110 	return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
111 }
112 
113 STATIC void
114 xlog_put_bp(
115 	xfs_buf_t	*bp)
116 {
117 	xfs_buf_free(bp);
118 }
119 
120 /*
121  * Return the address of the start of the given block number's data
122  * in a log buffer.  The buffer covers a log sector-aligned region.
123  */
124 STATIC xfs_caddr_t
125 xlog_align(
126 	xlog_t		*log,
127 	xfs_daddr_t	blk_no,
128 	int		nbblks,
129 	xfs_buf_t	*bp)
130 {
131 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
132 
133 	ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
134 	return XFS_BUF_PTR(bp) + BBTOB(offset);
135 }
136 
137 
138 /*
139  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
140  */
141 STATIC int
142 xlog_bread_noalign(
143 	xlog_t		*log,
144 	xfs_daddr_t	blk_no,
145 	int		nbblks,
146 	xfs_buf_t	*bp)
147 {
148 	int		error;
149 
150 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
151 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
152 			nbblks);
153 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
154 		return EFSCORRUPTED;
155 	}
156 
157 	blk_no = round_down(blk_no, log->l_sectBBsize);
158 	nbblks = round_up(nbblks, log->l_sectBBsize);
159 
160 	ASSERT(nbblks > 0);
161 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
162 
163 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
164 	XFS_BUF_READ(bp);
165 	XFS_BUF_BUSY(bp);
166 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
167 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
168 
169 	xfsbdstrat(log->l_mp, bp);
170 	error = xfs_iowait(bp);
171 	if (error)
172 		xfs_ioerror_alert("xlog_bread", log->l_mp,
173 				  bp, XFS_BUF_ADDR(bp));
174 	return error;
175 }
176 
177 STATIC int
178 xlog_bread(
179 	xlog_t		*log,
180 	xfs_daddr_t	blk_no,
181 	int		nbblks,
182 	xfs_buf_t	*bp,
183 	xfs_caddr_t	*offset)
184 {
185 	int		error;
186 
187 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
188 	if (error)
189 		return error;
190 
191 	*offset = xlog_align(log, blk_no, nbblks, bp);
192 	return 0;
193 }
194 
195 /*
196  * Write out the buffer at the given block for the given number of blocks.
197  * The buffer is kept locked across the write and is returned locked.
198  * This can only be used for synchronous log writes.
199  */
200 STATIC int
201 xlog_bwrite(
202 	xlog_t		*log,
203 	xfs_daddr_t	blk_no,
204 	int		nbblks,
205 	xfs_buf_t	*bp)
206 {
207 	int		error;
208 
209 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
210 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
211 			nbblks);
212 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
213 		return EFSCORRUPTED;
214 	}
215 
216 	blk_no = round_down(blk_no, log->l_sectBBsize);
217 	nbblks = round_up(nbblks, log->l_sectBBsize);
218 
219 	ASSERT(nbblks > 0);
220 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
221 
222 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
223 	XFS_BUF_ZEROFLAGS(bp);
224 	XFS_BUF_BUSY(bp);
225 	XFS_BUF_HOLD(bp);
226 	XFS_BUF_PSEMA(bp, PRIBIO);
227 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
228 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
229 
230 	if ((error = xfs_bwrite(log->l_mp, bp)))
231 		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
232 				  bp, XFS_BUF_ADDR(bp));
233 	return error;
234 }
235 
236 #ifdef DEBUG
237 /*
238  * dump debug superblock and log record information
239  */
240 STATIC void
241 xlog_header_check_dump(
242 	xfs_mount_t		*mp,
243 	xlog_rec_header_t	*head)
244 {
245 	cmn_err(CE_DEBUG, "%s:  SB : uuid = %pU, fmt = %d\n",
246 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
247 	cmn_err(CE_DEBUG, "    log : uuid = %pU, fmt = %d\n",
248 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
249 }
250 #else
251 #define xlog_header_check_dump(mp, head)
252 #endif
253 
254 /*
255  * check log record header for recovery
256  */
257 STATIC int
258 xlog_header_check_recover(
259 	xfs_mount_t		*mp,
260 	xlog_rec_header_t	*head)
261 {
262 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
263 
264 	/*
265 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
266 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
267 	 * a dirty log created in IRIX.
268 	 */
269 	if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
270 		xlog_warn(
271 	"XFS: dirty log written in incompatible format - can't recover");
272 		xlog_header_check_dump(mp, head);
273 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
274 				 XFS_ERRLEVEL_HIGH, mp);
275 		return XFS_ERROR(EFSCORRUPTED);
276 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
277 		xlog_warn(
278 	"XFS: dirty log entry has mismatched uuid - can't recover");
279 		xlog_header_check_dump(mp, head);
280 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
281 				 XFS_ERRLEVEL_HIGH, mp);
282 		return XFS_ERROR(EFSCORRUPTED);
283 	}
284 	return 0;
285 }
286 
287 /*
288  * read the head block of the log and check the header
289  */
290 STATIC int
291 xlog_header_check_mount(
292 	xfs_mount_t		*mp,
293 	xlog_rec_header_t	*head)
294 {
295 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
296 
297 	if (uuid_is_nil(&head->h_fs_uuid)) {
298 		/*
299 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
300 		 * h_fs_uuid is nil, we assume this log was last mounted
301 		 * by IRIX and continue.
302 		 */
303 		xlog_warn("XFS: nil uuid in log - IRIX style log");
304 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
305 		xlog_warn("XFS: log has mismatched uuid - can't recover");
306 		xlog_header_check_dump(mp, head);
307 		XFS_ERROR_REPORT("xlog_header_check_mount",
308 				 XFS_ERRLEVEL_HIGH, mp);
309 		return XFS_ERROR(EFSCORRUPTED);
310 	}
311 	return 0;
312 }
313 
314 STATIC void
315 xlog_recover_iodone(
316 	struct xfs_buf	*bp)
317 {
318 	if (XFS_BUF_GETERROR(bp)) {
319 		/*
320 		 * We're not going to bother about retrying
321 		 * this during recovery. One strike!
322 		 */
323 		xfs_ioerror_alert("xlog_recover_iodone",
324 				  bp->b_mount, bp, XFS_BUF_ADDR(bp));
325 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
326 	}
327 	bp->b_mount = NULL;
328 	XFS_BUF_CLR_IODONE_FUNC(bp);
329 	xfs_biodone(bp);
330 }
331 
332 /*
333  * This routine finds (to an approximation) the first block in the physical
334  * log which contains the given cycle.  It uses a binary search algorithm.
335  * Note that the algorithm can not be perfect because the disk will not
336  * necessarily be perfect.
337  */
338 STATIC int
339 xlog_find_cycle_start(
340 	xlog_t		*log,
341 	xfs_buf_t	*bp,
342 	xfs_daddr_t	first_blk,
343 	xfs_daddr_t	*last_blk,
344 	uint		cycle)
345 {
346 	xfs_caddr_t	offset;
347 	xfs_daddr_t	mid_blk;
348 	xfs_daddr_t	end_blk;
349 	uint		mid_cycle;
350 	int		error;
351 
352 	end_blk = *last_blk;
353 	mid_blk = BLK_AVG(first_blk, end_blk);
354 	while (mid_blk != first_blk && mid_blk != end_blk) {
355 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
356 		if (error)
357 			return error;
358 		mid_cycle = xlog_get_cycle(offset);
359 		if (mid_cycle == cycle)
360 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
361 		else
362 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
363 		mid_blk = BLK_AVG(first_blk, end_blk);
364 	}
365 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
366 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
367 
368 	*last_blk = end_blk;
369 
370 	return 0;
371 }
372 
373 /*
374  * Check that a range of blocks does not contain stop_on_cycle_no.
375  * Fill in *new_blk with the block offset where such a block is
376  * found, or with -1 (an invalid block number) if there is no such
377  * block in the range.  The scan needs to occur from front to back
378  * and the pointer into the region must be updated since a later
379  * routine will need to perform another test.
380  */
381 STATIC int
382 xlog_find_verify_cycle(
383 	xlog_t		*log,
384 	xfs_daddr_t	start_blk,
385 	int		nbblks,
386 	uint		stop_on_cycle_no,
387 	xfs_daddr_t	*new_blk)
388 {
389 	xfs_daddr_t	i, j;
390 	uint		cycle;
391 	xfs_buf_t	*bp;
392 	xfs_daddr_t	bufblks;
393 	xfs_caddr_t	buf = NULL;
394 	int		error = 0;
395 
396 	/*
397 	 * Greedily allocate a buffer big enough to handle the full
398 	 * range of basic blocks we'll be examining.  If that fails,
399 	 * try a smaller size.  We need to be able to read at least
400 	 * a log sector, or we're out of luck.
401 	 */
402 	bufblks = 1 << ffs(nbblks);
403 	while (!(bp = xlog_get_bp(log, bufblks))) {
404 		bufblks >>= 1;
405 		if (bufblks < log->l_sectBBsize)
406 			return ENOMEM;
407 	}
408 
409 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
410 		int	bcount;
411 
412 		bcount = min(bufblks, (start_blk + nbblks - i));
413 
414 		error = xlog_bread(log, i, bcount, bp, &buf);
415 		if (error)
416 			goto out;
417 
418 		for (j = 0; j < bcount; j++) {
419 			cycle = xlog_get_cycle(buf);
420 			if (cycle == stop_on_cycle_no) {
421 				*new_blk = i+j;
422 				goto out;
423 			}
424 
425 			buf += BBSIZE;
426 		}
427 	}
428 
429 	*new_blk = -1;
430 
431 out:
432 	xlog_put_bp(bp);
433 	return error;
434 }
435 
436 /*
437  * Potentially backup over partial log record write.
438  *
439  * In the typical case, last_blk is the number of the block directly after
440  * a good log record.  Therefore, we subtract one to get the block number
441  * of the last block in the given buffer.  extra_bblks contains the number
442  * of blocks we would have read on a previous read.  This happens when the
443  * last log record is split over the end of the physical log.
444  *
445  * extra_bblks is the number of blocks potentially verified on a previous
446  * call to this routine.
447  */
448 STATIC int
449 xlog_find_verify_log_record(
450 	xlog_t			*log,
451 	xfs_daddr_t		start_blk,
452 	xfs_daddr_t		*last_blk,
453 	int			extra_bblks)
454 {
455 	xfs_daddr_t		i;
456 	xfs_buf_t		*bp;
457 	xfs_caddr_t		offset = NULL;
458 	xlog_rec_header_t	*head = NULL;
459 	int			error = 0;
460 	int			smallmem = 0;
461 	int			num_blks = *last_blk - start_blk;
462 	int			xhdrs;
463 
464 	ASSERT(start_blk != 0 || *last_blk != start_blk);
465 
466 	if (!(bp = xlog_get_bp(log, num_blks))) {
467 		if (!(bp = xlog_get_bp(log, 1)))
468 			return ENOMEM;
469 		smallmem = 1;
470 	} else {
471 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
472 		if (error)
473 			goto out;
474 		offset += ((num_blks - 1) << BBSHIFT);
475 	}
476 
477 	for (i = (*last_blk) - 1; i >= 0; i--) {
478 		if (i < start_blk) {
479 			/* valid log record not found */
480 			xlog_warn(
481 		"XFS: Log inconsistent (didn't find previous header)");
482 			ASSERT(0);
483 			error = XFS_ERROR(EIO);
484 			goto out;
485 		}
486 
487 		if (smallmem) {
488 			error = xlog_bread(log, i, 1, bp, &offset);
489 			if (error)
490 				goto out;
491 		}
492 
493 		head = (xlog_rec_header_t *)offset;
494 
495 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
496 			break;
497 
498 		if (!smallmem)
499 			offset -= BBSIZE;
500 	}
501 
502 	/*
503 	 * We hit the beginning of the physical log & still no header.  Return
504 	 * to caller.  If caller can handle a return of -1, then this routine
505 	 * will be called again for the end of the physical log.
506 	 */
507 	if (i == -1) {
508 		error = -1;
509 		goto out;
510 	}
511 
512 	/*
513 	 * We have the final block of the good log (the first block
514 	 * of the log record _before_ the head. So we check the uuid.
515 	 */
516 	if ((error = xlog_header_check_mount(log->l_mp, head)))
517 		goto out;
518 
519 	/*
520 	 * We may have found a log record header before we expected one.
521 	 * last_blk will be the 1st block # with a given cycle #.  We may end
522 	 * up reading an entire log record.  In this case, we don't want to
523 	 * reset last_blk.  Only when last_blk points in the middle of a log
524 	 * record do we update last_blk.
525 	 */
526 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
527 		uint	h_size = be32_to_cpu(head->h_size);
528 
529 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
530 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
531 			xhdrs++;
532 	} else {
533 		xhdrs = 1;
534 	}
535 
536 	if (*last_blk - i + extra_bblks !=
537 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
538 		*last_blk = i;
539 
540 out:
541 	xlog_put_bp(bp);
542 	return error;
543 }
544 
545 /*
546  * Head is defined to be the point of the log where the next log write
547  * write could go.  This means that incomplete LR writes at the end are
548  * eliminated when calculating the head.  We aren't guaranteed that previous
549  * LR have complete transactions.  We only know that a cycle number of
550  * current cycle number -1 won't be present in the log if we start writing
551  * from our current block number.
552  *
553  * last_blk contains the block number of the first block with a given
554  * cycle number.
555  *
556  * Return: zero if normal, non-zero if error.
557  */
558 STATIC int
559 xlog_find_head(
560 	xlog_t 		*log,
561 	xfs_daddr_t	*return_head_blk)
562 {
563 	xfs_buf_t	*bp;
564 	xfs_caddr_t	offset;
565 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
566 	int		num_scan_bblks;
567 	uint		first_half_cycle, last_half_cycle;
568 	uint		stop_on_cycle;
569 	int		error, log_bbnum = log->l_logBBsize;
570 
571 	/* Is the end of the log device zeroed? */
572 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
573 		*return_head_blk = first_blk;
574 
575 		/* Is the whole lot zeroed? */
576 		if (!first_blk) {
577 			/* Linux XFS shouldn't generate totally zeroed logs -
578 			 * mkfs etc write a dummy unmount record to a fresh
579 			 * log so we can store the uuid in there
580 			 */
581 			xlog_warn("XFS: totally zeroed log");
582 		}
583 
584 		return 0;
585 	} else if (error) {
586 		xlog_warn("XFS: empty log check failed");
587 		return error;
588 	}
589 
590 	first_blk = 0;			/* get cycle # of 1st block */
591 	bp = xlog_get_bp(log, 1);
592 	if (!bp)
593 		return ENOMEM;
594 
595 	error = xlog_bread(log, 0, 1, bp, &offset);
596 	if (error)
597 		goto bp_err;
598 
599 	first_half_cycle = xlog_get_cycle(offset);
600 
601 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
602 	error = xlog_bread(log, last_blk, 1, bp, &offset);
603 	if (error)
604 		goto bp_err;
605 
606 	last_half_cycle = xlog_get_cycle(offset);
607 	ASSERT(last_half_cycle != 0);
608 
609 	/*
610 	 * If the 1st half cycle number is equal to the last half cycle number,
611 	 * then the entire log is stamped with the same cycle number.  In this
612 	 * case, head_blk can't be set to zero (which makes sense).  The below
613 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
614 	 * we set it to log_bbnum which is an invalid block number, but this
615 	 * value makes the math correct.  If head_blk doesn't changed through
616 	 * all the tests below, *head_blk is set to zero at the very end rather
617 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
618 	 * in a circular file.
619 	 */
620 	if (first_half_cycle == last_half_cycle) {
621 		/*
622 		 * In this case we believe that the entire log should have
623 		 * cycle number last_half_cycle.  We need to scan backwards
624 		 * from the end verifying that there are no holes still
625 		 * containing last_half_cycle - 1.  If we find such a hole,
626 		 * then the start of that hole will be the new head.  The
627 		 * simple case looks like
628 		 *        x | x ... | x - 1 | x
629 		 * Another case that fits this picture would be
630 		 *        x | x + 1 | x ... | x
631 		 * In this case the head really is somewhere at the end of the
632 		 * log, as one of the latest writes at the beginning was
633 		 * incomplete.
634 		 * One more case is
635 		 *        x | x + 1 | x ... | x - 1 | x
636 		 * This is really the combination of the above two cases, and
637 		 * the head has to end up at the start of the x-1 hole at the
638 		 * end of the log.
639 		 *
640 		 * In the 256k log case, we will read from the beginning to the
641 		 * end of the log and search for cycle numbers equal to x-1.
642 		 * We don't worry about the x+1 blocks that we encounter,
643 		 * because we know that they cannot be the head since the log
644 		 * started with x.
645 		 */
646 		head_blk = log_bbnum;
647 		stop_on_cycle = last_half_cycle - 1;
648 	} else {
649 		/*
650 		 * In this case we want to find the first block with cycle
651 		 * number matching last_half_cycle.  We expect the log to be
652 		 * some variation on
653 		 *        x + 1 ... | x ... | x
654 		 * The first block with cycle number x (last_half_cycle) will
655 		 * be where the new head belongs.  First we do a binary search
656 		 * for the first occurrence of last_half_cycle.  The binary
657 		 * search may not be totally accurate, so then we scan back
658 		 * from there looking for occurrences of last_half_cycle before
659 		 * us.  If that backwards scan wraps around the beginning of
660 		 * the log, then we look for occurrences of last_half_cycle - 1
661 		 * at the end of the log.  The cases we're looking for look
662 		 * like
663 		 *                               v binary search stopped here
664 		 *        x + 1 ... | x | x + 1 | x ... | x
665 		 *                   ^ but we want to locate this spot
666 		 * or
667 		 *        <---------> less than scan distance
668 		 *        x + 1 ... | x ... | x - 1 | x
669 		 *                           ^ we want to locate this spot
670 		 */
671 		stop_on_cycle = last_half_cycle;
672 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
673 						&head_blk, last_half_cycle)))
674 			goto bp_err;
675 	}
676 
677 	/*
678 	 * Now validate the answer.  Scan back some number of maximum possible
679 	 * blocks and make sure each one has the expected cycle number.  The
680 	 * maximum is determined by the total possible amount of buffering
681 	 * in the in-core log.  The following number can be made tighter if
682 	 * we actually look at the block size of the filesystem.
683 	 */
684 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
685 	if (head_blk >= num_scan_bblks) {
686 		/*
687 		 * We are guaranteed that the entire check can be performed
688 		 * in one buffer.
689 		 */
690 		start_blk = head_blk - num_scan_bblks;
691 		if ((error = xlog_find_verify_cycle(log,
692 						start_blk, num_scan_bblks,
693 						stop_on_cycle, &new_blk)))
694 			goto bp_err;
695 		if (new_blk != -1)
696 			head_blk = new_blk;
697 	} else {		/* need to read 2 parts of log */
698 		/*
699 		 * We are going to scan backwards in the log in two parts.
700 		 * First we scan the physical end of the log.  In this part
701 		 * of the log, we are looking for blocks with cycle number
702 		 * last_half_cycle - 1.
703 		 * If we find one, then we know that the log starts there, as
704 		 * we've found a hole that didn't get written in going around
705 		 * the end of the physical log.  The simple case for this is
706 		 *        x + 1 ... | x ... | x - 1 | x
707 		 *        <---------> less than scan distance
708 		 * If all of the blocks at the end of the log have cycle number
709 		 * last_half_cycle, then we check the blocks at the start of
710 		 * the log looking for occurrences of last_half_cycle.  If we
711 		 * find one, then our current estimate for the location of the
712 		 * first occurrence of last_half_cycle is wrong and we move
713 		 * back to the hole we've found.  This case looks like
714 		 *        x + 1 ... | x | x + 1 | x ...
715 		 *                               ^ binary search stopped here
716 		 * Another case we need to handle that only occurs in 256k
717 		 * logs is
718 		 *        x + 1 ... | x ... | x+1 | x ...
719 		 *                   ^ binary search stops here
720 		 * In a 256k log, the scan at the end of the log will see the
721 		 * x + 1 blocks.  We need to skip past those since that is
722 		 * certainly not the head of the log.  By searching for
723 		 * last_half_cycle-1 we accomplish that.
724 		 */
725 		ASSERT(head_blk <= INT_MAX &&
726 			(xfs_daddr_t) num_scan_bblks >= head_blk);
727 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
728 		if ((error = xlog_find_verify_cycle(log, start_blk,
729 					num_scan_bblks - (int)head_blk,
730 					(stop_on_cycle - 1), &new_blk)))
731 			goto bp_err;
732 		if (new_blk != -1) {
733 			head_blk = new_blk;
734 			goto validate_head;
735 		}
736 
737 		/*
738 		 * Scan beginning of log now.  The last part of the physical
739 		 * log is good.  This scan needs to verify that it doesn't find
740 		 * the last_half_cycle.
741 		 */
742 		start_blk = 0;
743 		ASSERT(head_blk <= INT_MAX);
744 		if ((error = xlog_find_verify_cycle(log,
745 					start_blk, (int)head_blk,
746 					stop_on_cycle, &new_blk)))
747 			goto bp_err;
748 		if (new_blk != -1)
749 			head_blk = new_blk;
750 	}
751 
752 validate_head:
753 	/*
754 	 * Now we need to make sure head_blk is not pointing to a block in
755 	 * the middle of a log record.
756 	 */
757 	num_scan_bblks = XLOG_REC_SHIFT(log);
758 	if (head_blk >= num_scan_bblks) {
759 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
760 
761 		/* start ptr at last block ptr before head_blk */
762 		if ((error = xlog_find_verify_log_record(log, start_blk,
763 							&head_blk, 0)) == -1) {
764 			error = XFS_ERROR(EIO);
765 			goto bp_err;
766 		} else if (error)
767 			goto bp_err;
768 	} else {
769 		start_blk = 0;
770 		ASSERT(head_blk <= INT_MAX);
771 		if ((error = xlog_find_verify_log_record(log, start_blk,
772 							&head_blk, 0)) == -1) {
773 			/* We hit the beginning of the log during our search */
774 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
775 			new_blk = log_bbnum;
776 			ASSERT(start_blk <= INT_MAX &&
777 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
778 			ASSERT(head_blk <= INT_MAX);
779 			if ((error = xlog_find_verify_log_record(log,
780 							start_blk, &new_blk,
781 							(int)head_blk)) == -1) {
782 				error = XFS_ERROR(EIO);
783 				goto bp_err;
784 			} else if (error)
785 				goto bp_err;
786 			if (new_blk != log_bbnum)
787 				head_blk = new_blk;
788 		} else if (error)
789 			goto bp_err;
790 	}
791 
792 	xlog_put_bp(bp);
793 	if (head_blk == log_bbnum)
794 		*return_head_blk = 0;
795 	else
796 		*return_head_blk = head_blk;
797 	/*
798 	 * When returning here, we have a good block number.  Bad block
799 	 * means that during a previous crash, we didn't have a clean break
800 	 * from cycle number N to cycle number N-1.  In this case, we need
801 	 * to find the first block with cycle number N-1.
802 	 */
803 	return 0;
804 
805  bp_err:
806 	xlog_put_bp(bp);
807 
808 	if (error)
809 	    xlog_warn("XFS: failed to find log head");
810 	return error;
811 }
812 
813 /*
814  * Find the sync block number or the tail of the log.
815  *
816  * This will be the block number of the last record to have its
817  * associated buffers synced to disk.  Every log record header has
818  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
819  * to get a sync block number.  The only concern is to figure out which
820  * log record header to believe.
821  *
822  * The following algorithm uses the log record header with the largest
823  * lsn.  The entire log record does not need to be valid.  We only care
824  * that the header is valid.
825  *
826  * We could speed up search by using current head_blk buffer, but it is not
827  * available.
828  */
829 STATIC int
830 xlog_find_tail(
831 	xlog_t			*log,
832 	xfs_daddr_t		*head_blk,
833 	xfs_daddr_t		*tail_blk)
834 {
835 	xlog_rec_header_t	*rhead;
836 	xlog_op_header_t	*op_head;
837 	xfs_caddr_t		offset = NULL;
838 	xfs_buf_t		*bp;
839 	int			error, i, found;
840 	xfs_daddr_t		umount_data_blk;
841 	xfs_daddr_t		after_umount_blk;
842 	xfs_lsn_t		tail_lsn;
843 	int			hblks;
844 
845 	found = 0;
846 
847 	/*
848 	 * Find previous log record
849 	 */
850 	if ((error = xlog_find_head(log, head_blk)))
851 		return error;
852 
853 	bp = xlog_get_bp(log, 1);
854 	if (!bp)
855 		return ENOMEM;
856 	if (*head_blk == 0) {				/* special case */
857 		error = xlog_bread(log, 0, 1, bp, &offset);
858 		if (error)
859 			goto done;
860 
861 		if (xlog_get_cycle(offset) == 0) {
862 			*tail_blk = 0;
863 			/* leave all other log inited values alone */
864 			goto done;
865 		}
866 	}
867 
868 	/*
869 	 * Search backwards looking for log record header block
870 	 */
871 	ASSERT(*head_blk < INT_MAX);
872 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
873 		error = xlog_bread(log, i, 1, bp, &offset);
874 		if (error)
875 			goto done;
876 
877 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
878 			found = 1;
879 			break;
880 		}
881 	}
882 	/*
883 	 * If we haven't found the log record header block, start looking
884 	 * again from the end of the physical log.  XXXmiken: There should be
885 	 * a check here to make sure we didn't search more than N blocks in
886 	 * the previous code.
887 	 */
888 	if (!found) {
889 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
890 			error = xlog_bread(log, i, 1, bp, &offset);
891 			if (error)
892 				goto done;
893 
894 			if (XLOG_HEADER_MAGIC_NUM ==
895 			    be32_to_cpu(*(__be32 *)offset)) {
896 				found = 2;
897 				break;
898 			}
899 		}
900 	}
901 	if (!found) {
902 		xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
903 		ASSERT(0);
904 		return XFS_ERROR(EIO);
905 	}
906 
907 	/* find blk_no of tail of log */
908 	rhead = (xlog_rec_header_t *)offset;
909 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
910 
911 	/*
912 	 * Reset log values according to the state of the log when we
913 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
914 	 * one because the next write starts a new cycle rather than
915 	 * continuing the cycle of the last good log record.  At this
916 	 * point we have guaranteed that all partial log records have been
917 	 * accounted for.  Therefore, we know that the last good log record
918 	 * written was complete and ended exactly on the end boundary
919 	 * of the physical log.
920 	 */
921 	log->l_prev_block = i;
922 	log->l_curr_block = (int)*head_blk;
923 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
924 	if (found == 2)
925 		log->l_curr_cycle++;
926 	log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
927 	log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
928 	log->l_grant_reserve_cycle = log->l_curr_cycle;
929 	log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
930 	log->l_grant_write_cycle = log->l_curr_cycle;
931 	log->l_grant_write_bytes = BBTOB(log->l_curr_block);
932 
933 	/*
934 	 * Look for unmount record.  If we find it, then we know there
935 	 * was a clean unmount.  Since 'i' could be the last block in
936 	 * the physical log, we convert to a log block before comparing
937 	 * to the head_blk.
938 	 *
939 	 * Save the current tail lsn to use to pass to
940 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
941 	 * unmount record if there is one, so we pass the lsn of the
942 	 * unmount record rather than the block after it.
943 	 */
944 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
945 		int	h_size = be32_to_cpu(rhead->h_size);
946 		int	h_version = be32_to_cpu(rhead->h_version);
947 
948 		if ((h_version & XLOG_VERSION_2) &&
949 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
950 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
951 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
952 				hblks++;
953 		} else {
954 			hblks = 1;
955 		}
956 	} else {
957 		hblks = 1;
958 	}
959 	after_umount_blk = (i + hblks + (int)
960 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
961 	tail_lsn = log->l_tail_lsn;
962 	if (*head_blk == after_umount_blk &&
963 	    be32_to_cpu(rhead->h_num_logops) == 1) {
964 		umount_data_blk = (i + hblks) % log->l_logBBsize;
965 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
966 		if (error)
967 			goto done;
968 
969 		op_head = (xlog_op_header_t *)offset;
970 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
971 			/*
972 			 * Set tail and last sync so that newly written
973 			 * log records will point recovery to after the
974 			 * current unmount record.
975 			 */
976 			log->l_tail_lsn =
977 				xlog_assign_lsn(log->l_curr_cycle,
978 						after_umount_blk);
979 			log->l_last_sync_lsn =
980 				xlog_assign_lsn(log->l_curr_cycle,
981 						after_umount_blk);
982 			*tail_blk = after_umount_blk;
983 
984 			/*
985 			 * Note that the unmount was clean. If the unmount
986 			 * was not clean, we need to know this to rebuild the
987 			 * superblock counters from the perag headers if we
988 			 * have a filesystem using non-persistent counters.
989 			 */
990 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
991 		}
992 	}
993 
994 	/*
995 	 * Make sure that there are no blocks in front of the head
996 	 * with the same cycle number as the head.  This can happen
997 	 * because we allow multiple outstanding log writes concurrently,
998 	 * and the later writes might make it out before earlier ones.
999 	 *
1000 	 * We use the lsn from before modifying it so that we'll never
1001 	 * overwrite the unmount record after a clean unmount.
1002 	 *
1003 	 * Do this only if we are going to recover the filesystem
1004 	 *
1005 	 * NOTE: This used to say "if (!readonly)"
1006 	 * However on Linux, we can & do recover a read-only filesystem.
1007 	 * We only skip recovery if NORECOVERY is specified on mount,
1008 	 * in which case we would not be here.
1009 	 *
1010 	 * But... if the -device- itself is readonly, just skip this.
1011 	 * We can't recover this device anyway, so it won't matter.
1012 	 */
1013 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1014 		error = xlog_clear_stale_blocks(log, tail_lsn);
1015 
1016 done:
1017 	xlog_put_bp(bp);
1018 
1019 	if (error)
1020 		xlog_warn("XFS: failed to locate log tail");
1021 	return error;
1022 }
1023 
1024 /*
1025  * Is the log zeroed at all?
1026  *
1027  * The last binary search should be changed to perform an X block read
1028  * once X becomes small enough.  You can then search linearly through
1029  * the X blocks.  This will cut down on the number of reads we need to do.
1030  *
1031  * If the log is partially zeroed, this routine will pass back the blkno
1032  * of the first block with cycle number 0.  It won't have a complete LR
1033  * preceding it.
1034  *
1035  * Return:
1036  *	0  => the log is completely written to
1037  *	-1 => use *blk_no as the first block of the log
1038  *	>0 => error has occurred
1039  */
1040 STATIC int
1041 xlog_find_zeroed(
1042 	xlog_t		*log,
1043 	xfs_daddr_t	*blk_no)
1044 {
1045 	xfs_buf_t	*bp;
1046 	xfs_caddr_t	offset;
1047 	uint	        first_cycle, last_cycle;
1048 	xfs_daddr_t	new_blk, last_blk, start_blk;
1049 	xfs_daddr_t     num_scan_bblks;
1050 	int	        error, log_bbnum = log->l_logBBsize;
1051 
1052 	*blk_no = 0;
1053 
1054 	/* check totally zeroed log */
1055 	bp = xlog_get_bp(log, 1);
1056 	if (!bp)
1057 		return ENOMEM;
1058 	error = xlog_bread(log, 0, 1, bp, &offset);
1059 	if (error)
1060 		goto bp_err;
1061 
1062 	first_cycle = xlog_get_cycle(offset);
1063 	if (first_cycle == 0) {		/* completely zeroed log */
1064 		*blk_no = 0;
1065 		xlog_put_bp(bp);
1066 		return -1;
1067 	}
1068 
1069 	/* check partially zeroed log */
1070 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1071 	if (error)
1072 		goto bp_err;
1073 
1074 	last_cycle = xlog_get_cycle(offset);
1075 	if (last_cycle != 0) {		/* log completely written to */
1076 		xlog_put_bp(bp);
1077 		return 0;
1078 	} else if (first_cycle != 1) {
1079 		/*
1080 		 * If the cycle of the last block is zero, the cycle of
1081 		 * the first block must be 1. If it's not, maybe we're
1082 		 * not looking at a log... Bail out.
1083 		 */
1084 		xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1085 		return XFS_ERROR(EINVAL);
1086 	}
1087 
1088 	/* we have a partially zeroed log */
1089 	last_blk = log_bbnum-1;
1090 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1091 		goto bp_err;
1092 
1093 	/*
1094 	 * Validate the answer.  Because there is no way to guarantee that
1095 	 * the entire log is made up of log records which are the same size,
1096 	 * we scan over the defined maximum blocks.  At this point, the maximum
1097 	 * is not chosen to mean anything special.   XXXmiken
1098 	 */
1099 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1100 	ASSERT(num_scan_bblks <= INT_MAX);
1101 
1102 	if (last_blk < num_scan_bblks)
1103 		num_scan_bblks = last_blk;
1104 	start_blk = last_blk - num_scan_bblks;
1105 
1106 	/*
1107 	 * We search for any instances of cycle number 0 that occur before
1108 	 * our current estimate of the head.  What we're trying to detect is
1109 	 *        1 ... | 0 | 1 | 0...
1110 	 *                       ^ binary search ends here
1111 	 */
1112 	if ((error = xlog_find_verify_cycle(log, start_blk,
1113 					 (int)num_scan_bblks, 0, &new_blk)))
1114 		goto bp_err;
1115 	if (new_blk != -1)
1116 		last_blk = new_blk;
1117 
1118 	/*
1119 	 * Potentially backup over partial log record write.  We don't need
1120 	 * to search the end of the log because we know it is zero.
1121 	 */
1122 	if ((error = xlog_find_verify_log_record(log, start_blk,
1123 				&last_blk, 0)) == -1) {
1124 	    error = XFS_ERROR(EIO);
1125 	    goto bp_err;
1126 	} else if (error)
1127 	    goto bp_err;
1128 
1129 	*blk_no = last_blk;
1130 bp_err:
1131 	xlog_put_bp(bp);
1132 	if (error)
1133 		return error;
1134 	return -1;
1135 }
1136 
1137 /*
1138  * These are simple subroutines used by xlog_clear_stale_blocks() below
1139  * to initialize a buffer full of empty log record headers and write
1140  * them into the log.
1141  */
1142 STATIC void
1143 xlog_add_record(
1144 	xlog_t			*log,
1145 	xfs_caddr_t		buf,
1146 	int			cycle,
1147 	int			block,
1148 	int			tail_cycle,
1149 	int			tail_block)
1150 {
1151 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1152 
1153 	memset(buf, 0, BBSIZE);
1154 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1155 	recp->h_cycle = cpu_to_be32(cycle);
1156 	recp->h_version = cpu_to_be32(
1157 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1158 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1159 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1160 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1161 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1162 }
1163 
1164 STATIC int
1165 xlog_write_log_records(
1166 	xlog_t		*log,
1167 	int		cycle,
1168 	int		start_block,
1169 	int		blocks,
1170 	int		tail_cycle,
1171 	int		tail_block)
1172 {
1173 	xfs_caddr_t	offset;
1174 	xfs_buf_t	*bp;
1175 	int		balign, ealign;
1176 	int		sectbb = log->l_sectBBsize;
1177 	int		end_block = start_block + blocks;
1178 	int		bufblks;
1179 	int		error = 0;
1180 	int		i, j = 0;
1181 
1182 	/*
1183 	 * Greedily allocate a buffer big enough to handle the full
1184 	 * range of basic blocks to be written.  If that fails, try
1185 	 * a smaller size.  We need to be able to write at least a
1186 	 * log sector, or we're out of luck.
1187 	 */
1188 	bufblks = 1 << ffs(blocks);
1189 	while (!(bp = xlog_get_bp(log, bufblks))) {
1190 		bufblks >>= 1;
1191 		if (bufblks < sectbb)
1192 			return ENOMEM;
1193 	}
1194 
1195 	/* We may need to do a read at the start to fill in part of
1196 	 * the buffer in the starting sector not covered by the first
1197 	 * write below.
1198 	 */
1199 	balign = round_down(start_block, sectbb);
1200 	if (balign != start_block) {
1201 		error = xlog_bread_noalign(log, start_block, 1, bp);
1202 		if (error)
1203 			goto out_put_bp;
1204 
1205 		j = start_block - balign;
1206 	}
1207 
1208 	for (i = start_block; i < end_block; i += bufblks) {
1209 		int		bcount, endcount;
1210 
1211 		bcount = min(bufblks, end_block - start_block);
1212 		endcount = bcount - j;
1213 
1214 		/* We may need to do a read at the end to fill in part of
1215 		 * the buffer in the final sector not covered by the write.
1216 		 * If this is the same sector as the above read, skip it.
1217 		 */
1218 		ealign = round_down(end_block, sectbb);
1219 		if (j == 0 && (start_block + endcount > ealign)) {
1220 			offset = XFS_BUF_PTR(bp);
1221 			balign = BBTOB(ealign - start_block);
1222 			error = XFS_BUF_SET_PTR(bp, offset + balign,
1223 						BBTOB(sectbb));
1224 			if (error)
1225 				break;
1226 
1227 			error = xlog_bread_noalign(log, ealign, sectbb, bp);
1228 			if (error)
1229 				break;
1230 
1231 			error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1232 			if (error)
1233 				break;
1234 		}
1235 
1236 		offset = xlog_align(log, start_block, endcount, bp);
1237 		for (; j < endcount; j++) {
1238 			xlog_add_record(log, offset, cycle, i+j,
1239 					tail_cycle, tail_block);
1240 			offset += BBSIZE;
1241 		}
1242 		error = xlog_bwrite(log, start_block, endcount, bp);
1243 		if (error)
1244 			break;
1245 		start_block += endcount;
1246 		j = 0;
1247 	}
1248 
1249  out_put_bp:
1250 	xlog_put_bp(bp);
1251 	return error;
1252 }
1253 
1254 /*
1255  * This routine is called to blow away any incomplete log writes out
1256  * in front of the log head.  We do this so that we won't become confused
1257  * if we come up, write only a little bit more, and then crash again.
1258  * If we leave the partial log records out there, this situation could
1259  * cause us to think those partial writes are valid blocks since they
1260  * have the current cycle number.  We get rid of them by overwriting them
1261  * with empty log records with the old cycle number rather than the
1262  * current one.
1263  *
1264  * The tail lsn is passed in rather than taken from
1265  * the log so that we will not write over the unmount record after a
1266  * clean unmount in a 512 block log.  Doing so would leave the log without
1267  * any valid log records in it until a new one was written.  If we crashed
1268  * during that time we would not be able to recover.
1269  */
1270 STATIC int
1271 xlog_clear_stale_blocks(
1272 	xlog_t		*log,
1273 	xfs_lsn_t	tail_lsn)
1274 {
1275 	int		tail_cycle, head_cycle;
1276 	int		tail_block, head_block;
1277 	int		tail_distance, max_distance;
1278 	int		distance;
1279 	int		error;
1280 
1281 	tail_cycle = CYCLE_LSN(tail_lsn);
1282 	tail_block = BLOCK_LSN(tail_lsn);
1283 	head_cycle = log->l_curr_cycle;
1284 	head_block = log->l_curr_block;
1285 
1286 	/*
1287 	 * Figure out the distance between the new head of the log
1288 	 * and the tail.  We want to write over any blocks beyond the
1289 	 * head that we may have written just before the crash, but
1290 	 * we don't want to overwrite the tail of the log.
1291 	 */
1292 	if (head_cycle == tail_cycle) {
1293 		/*
1294 		 * The tail is behind the head in the physical log,
1295 		 * so the distance from the head to the tail is the
1296 		 * distance from the head to the end of the log plus
1297 		 * the distance from the beginning of the log to the
1298 		 * tail.
1299 		 */
1300 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1301 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1302 					 XFS_ERRLEVEL_LOW, log->l_mp);
1303 			return XFS_ERROR(EFSCORRUPTED);
1304 		}
1305 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1306 	} else {
1307 		/*
1308 		 * The head is behind the tail in the physical log,
1309 		 * so the distance from the head to the tail is just
1310 		 * the tail block minus the head block.
1311 		 */
1312 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1313 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1314 					 XFS_ERRLEVEL_LOW, log->l_mp);
1315 			return XFS_ERROR(EFSCORRUPTED);
1316 		}
1317 		tail_distance = tail_block - head_block;
1318 	}
1319 
1320 	/*
1321 	 * If the head is right up against the tail, we can't clear
1322 	 * anything.
1323 	 */
1324 	if (tail_distance <= 0) {
1325 		ASSERT(tail_distance == 0);
1326 		return 0;
1327 	}
1328 
1329 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1330 	/*
1331 	 * Take the smaller of the maximum amount of outstanding I/O
1332 	 * we could have and the distance to the tail to clear out.
1333 	 * We take the smaller so that we don't overwrite the tail and
1334 	 * we don't waste all day writing from the head to the tail
1335 	 * for no reason.
1336 	 */
1337 	max_distance = MIN(max_distance, tail_distance);
1338 
1339 	if ((head_block + max_distance) <= log->l_logBBsize) {
1340 		/*
1341 		 * We can stomp all the blocks we need to without
1342 		 * wrapping around the end of the log.  Just do it
1343 		 * in a single write.  Use the cycle number of the
1344 		 * current cycle minus one so that the log will look like:
1345 		 *     n ... | n - 1 ...
1346 		 */
1347 		error = xlog_write_log_records(log, (head_cycle - 1),
1348 				head_block, max_distance, tail_cycle,
1349 				tail_block);
1350 		if (error)
1351 			return error;
1352 	} else {
1353 		/*
1354 		 * We need to wrap around the end of the physical log in
1355 		 * order to clear all the blocks.  Do it in two separate
1356 		 * I/Os.  The first write should be from the head to the
1357 		 * end of the physical log, and it should use the current
1358 		 * cycle number minus one just like above.
1359 		 */
1360 		distance = log->l_logBBsize - head_block;
1361 		error = xlog_write_log_records(log, (head_cycle - 1),
1362 				head_block, distance, tail_cycle,
1363 				tail_block);
1364 
1365 		if (error)
1366 			return error;
1367 
1368 		/*
1369 		 * Now write the blocks at the start of the physical log.
1370 		 * This writes the remainder of the blocks we want to clear.
1371 		 * It uses the current cycle number since we're now on the
1372 		 * same cycle as the head so that we get:
1373 		 *    n ... n ... | n - 1 ...
1374 		 *    ^^^^^ blocks we're writing
1375 		 */
1376 		distance = max_distance - (log->l_logBBsize - head_block);
1377 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1378 				tail_cycle, tail_block);
1379 		if (error)
1380 			return error;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 /******************************************************************************
1387  *
1388  *		Log recover routines
1389  *
1390  ******************************************************************************
1391  */
1392 
1393 STATIC xlog_recover_t *
1394 xlog_recover_find_tid(
1395 	struct hlist_head	*head,
1396 	xlog_tid_t		tid)
1397 {
1398 	xlog_recover_t		*trans;
1399 	struct hlist_node	*n;
1400 
1401 	hlist_for_each_entry(trans, n, head, r_list) {
1402 		if (trans->r_log_tid == tid)
1403 			return trans;
1404 	}
1405 	return NULL;
1406 }
1407 
1408 STATIC void
1409 xlog_recover_new_tid(
1410 	struct hlist_head	*head,
1411 	xlog_tid_t		tid,
1412 	xfs_lsn_t		lsn)
1413 {
1414 	xlog_recover_t		*trans;
1415 
1416 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1417 	trans->r_log_tid   = tid;
1418 	trans->r_lsn	   = lsn;
1419 	INIT_LIST_HEAD(&trans->r_itemq);
1420 
1421 	INIT_HLIST_NODE(&trans->r_list);
1422 	hlist_add_head(&trans->r_list, head);
1423 }
1424 
1425 STATIC void
1426 xlog_recover_add_item(
1427 	struct list_head	*head)
1428 {
1429 	xlog_recover_item_t	*item;
1430 
1431 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1432 	INIT_LIST_HEAD(&item->ri_list);
1433 	list_add_tail(&item->ri_list, head);
1434 }
1435 
1436 STATIC int
1437 xlog_recover_add_to_cont_trans(
1438 	struct log		*log,
1439 	xlog_recover_t		*trans,
1440 	xfs_caddr_t		dp,
1441 	int			len)
1442 {
1443 	xlog_recover_item_t	*item;
1444 	xfs_caddr_t		ptr, old_ptr;
1445 	int			old_len;
1446 
1447 	if (list_empty(&trans->r_itemq)) {
1448 		/* finish copying rest of trans header */
1449 		xlog_recover_add_item(&trans->r_itemq);
1450 		ptr = (xfs_caddr_t) &trans->r_theader +
1451 				sizeof(xfs_trans_header_t) - len;
1452 		memcpy(ptr, dp, len); /* d, s, l */
1453 		return 0;
1454 	}
1455 	/* take the tail entry */
1456 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1457 
1458 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1459 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1460 
1461 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1462 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1463 	item->ri_buf[item->ri_cnt-1].i_len += len;
1464 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1465 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1466 	return 0;
1467 }
1468 
1469 /*
1470  * The next region to add is the start of a new region.  It could be
1471  * a whole region or it could be the first part of a new region.  Because
1472  * of this, the assumption here is that the type and size fields of all
1473  * format structures fit into the first 32 bits of the structure.
1474  *
1475  * This works because all regions must be 32 bit aligned.  Therefore, we
1476  * either have both fields or we have neither field.  In the case we have
1477  * neither field, the data part of the region is zero length.  We only have
1478  * a log_op_header and can throw away the header since a new one will appear
1479  * later.  If we have at least 4 bytes, then we can determine how many regions
1480  * will appear in the current log item.
1481  */
1482 STATIC int
1483 xlog_recover_add_to_trans(
1484 	struct log		*log,
1485 	xlog_recover_t		*trans,
1486 	xfs_caddr_t		dp,
1487 	int			len)
1488 {
1489 	xfs_inode_log_format_t	*in_f;			/* any will do */
1490 	xlog_recover_item_t	*item;
1491 	xfs_caddr_t		ptr;
1492 
1493 	if (!len)
1494 		return 0;
1495 	if (list_empty(&trans->r_itemq)) {
1496 		/* we need to catch log corruptions here */
1497 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1498 			xlog_warn("XFS: xlog_recover_add_to_trans: "
1499 				  "bad header magic number");
1500 			ASSERT(0);
1501 			return XFS_ERROR(EIO);
1502 		}
1503 		if (len == sizeof(xfs_trans_header_t))
1504 			xlog_recover_add_item(&trans->r_itemq);
1505 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1506 		return 0;
1507 	}
1508 
1509 	ptr = kmem_alloc(len, KM_SLEEP);
1510 	memcpy(ptr, dp, len);
1511 	in_f = (xfs_inode_log_format_t *)ptr;
1512 
1513 	/* take the tail entry */
1514 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1515 	if (item->ri_total != 0 &&
1516 	     item->ri_total == item->ri_cnt) {
1517 		/* tail item is in use, get a new one */
1518 		xlog_recover_add_item(&trans->r_itemq);
1519 		item = list_entry(trans->r_itemq.prev,
1520 					xlog_recover_item_t, ri_list);
1521 	}
1522 
1523 	if (item->ri_total == 0) {		/* first region to be added */
1524 		if (in_f->ilf_size == 0 ||
1525 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1526 			xlog_warn(
1527 	"XFS: bad number of regions (%d) in inode log format",
1528 				  in_f->ilf_size);
1529 			ASSERT(0);
1530 			return XFS_ERROR(EIO);
1531 		}
1532 
1533 		item->ri_total = in_f->ilf_size;
1534 		item->ri_buf =
1535 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1536 				    KM_SLEEP);
1537 	}
1538 	ASSERT(item->ri_total > item->ri_cnt);
1539 	/* Description region is ri_buf[0] */
1540 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1541 	item->ri_buf[item->ri_cnt].i_len  = len;
1542 	item->ri_cnt++;
1543 	trace_xfs_log_recover_item_add(log, trans, item, 0);
1544 	return 0;
1545 }
1546 
1547 /*
1548  * Sort the log items in the transaction. Cancelled buffers need
1549  * to be put first so they are processed before any items that might
1550  * modify the buffers. If they are cancelled, then the modifications
1551  * don't need to be replayed.
1552  */
1553 STATIC int
1554 xlog_recover_reorder_trans(
1555 	struct log		*log,
1556 	xlog_recover_t		*trans,
1557 	int			pass)
1558 {
1559 	xlog_recover_item_t	*item, *n;
1560 	LIST_HEAD(sort_list);
1561 
1562 	list_splice_init(&trans->r_itemq, &sort_list);
1563 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1564 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1565 
1566 		switch (ITEM_TYPE(item)) {
1567 		case XFS_LI_BUF:
1568 			if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1569 				trace_xfs_log_recover_item_reorder_head(log,
1570 							trans, item, pass);
1571 				list_move(&item->ri_list, &trans->r_itemq);
1572 				break;
1573 			}
1574 		case XFS_LI_INODE:
1575 		case XFS_LI_DQUOT:
1576 		case XFS_LI_QUOTAOFF:
1577 		case XFS_LI_EFD:
1578 		case XFS_LI_EFI:
1579 			trace_xfs_log_recover_item_reorder_tail(log,
1580 							trans, item, pass);
1581 			list_move_tail(&item->ri_list, &trans->r_itemq);
1582 			break;
1583 		default:
1584 			xlog_warn(
1585 	"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1586 			ASSERT(0);
1587 			return XFS_ERROR(EIO);
1588 		}
1589 	}
1590 	ASSERT(list_empty(&sort_list));
1591 	return 0;
1592 }
1593 
1594 /*
1595  * Build up the table of buf cancel records so that we don't replay
1596  * cancelled data in the second pass.  For buffer records that are
1597  * not cancel records, there is nothing to do here so we just return.
1598  *
1599  * If we get a cancel record which is already in the table, this indicates
1600  * that the buffer was cancelled multiple times.  In order to ensure
1601  * that during pass 2 we keep the record in the table until we reach its
1602  * last occurrence in the log, we keep a reference count in the cancel
1603  * record in the table to tell us how many times we expect to see this
1604  * record during the second pass.
1605  */
1606 STATIC void
1607 xlog_recover_do_buffer_pass1(
1608 	xlog_t			*log,
1609 	xfs_buf_log_format_t	*buf_f)
1610 {
1611 	xfs_buf_cancel_t	*bcp;
1612 	xfs_buf_cancel_t	*nextp;
1613 	xfs_buf_cancel_t	*prevp;
1614 	xfs_buf_cancel_t	**bucket;
1615 	xfs_daddr_t		blkno = 0;
1616 	uint			len = 0;
1617 	ushort			flags = 0;
1618 
1619 	switch (buf_f->blf_type) {
1620 	case XFS_LI_BUF:
1621 		blkno = buf_f->blf_blkno;
1622 		len = buf_f->blf_len;
1623 		flags = buf_f->blf_flags;
1624 		break;
1625 	}
1626 
1627 	/*
1628 	 * If this isn't a cancel buffer item, then just return.
1629 	 */
1630 	if (!(flags & XFS_BLF_CANCEL)) {
1631 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1632 		return;
1633 	}
1634 
1635 	/*
1636 	 * Insert an xfs_buf_cancel record into the hash table of
1637 	 * them.  If there is already an identical record, bump
1638 	 * its reference count.
1639 	 */
1640 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1641 					  XLOG_BC_TABLE_SIZE];
1642 	/*
1643 	 * If the hash bucket is empty then just insert a new record into
1644 	 * the bucket.
1645 	 */
1646 	if (*bucket == NULL) {
1647 		bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1648 						     KM_SLEEP);
1649 		bcp->bc_blkno = blkno;
1650 		bcp->bc_len = len;
1651 		bcp->bc_refcount = 1;
1652 		bcp->bc_next = NULL;
1653 		*bucket = bcp;
1654 		return;
1655 	}
1656 
1657 	/*
1658 	 * The hash bucket is not empty, so search for duplicates of our
1659 	 * record.  If we find one them just bump its refcount.  If not
1660 	 * then add us at the end of the list.
1661 	 */
1662 	prevp = NULL;
1663 	nextp = *bucket;
1664 	while (nextp != NULL) {
1665 		if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1666 			nextp->bc_refcount++;
1667 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1668 			return;
1669 		}
1670 		prevp = nextp;
1671 		nextp = nextp->bc_next;
1672 	}
1673 	ASSERT(prevp != NULL);
1674 	bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1675 					     KM_SLEEP);
1676 	bcp->bc_blkno = blkno;
1677 	bcp->bc_len = len;
1678 	bcp->bc_refcount = 1;
1679 	bcp->bc_next = NULL;
1680 	prevp->bc_next = bcp;
1681 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1682 }
1683 
1684 /*
1685  * Check to see whether the buffer being recovered has a corresponding
1686  * entry in the buffer cancel record table.  If it does then return 1
1687  * so that it will be cancelled, otherwise return 0.  If the buffer is
1688  * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1689  * the refcount on the entry in the table and remove it from the table
1690  * if this is the last reference.
1691  *
1692  * We remove the cancel record from the table when we encounter its
1693  * last occurrence in the log so that if the same buffer is re-used
1694  * again after its last cancellation we actually replay the changes
1695  * made at that point.
1696  */
1697 STATIC int
1698 xlog_check_buffer_cancelled(
1699 	xlog_t			*log,
1700 	xfs_daddr_t		blkno,
1701 	uint			len,
1702 	ushort			flags)
1703 {
1704 	xfs_buf_cancel_t	*bcp;
1705 	xfs_buf_cancel_t	*prevp;
1706 	xfs_buf_cancel_t	**bucket;
1707 
1708 	if (log->l_buf_cancel_table == NULL) {
1709 		/*
1710 		 * There is nothing in the table built in pass one,
1711 		 * so this buffer must not be cancelled.
1712 		 */
1713 		ASSERT(!(flags & XFS_BLF_CANCEL));
1714 		return 0;
1715 	}
1716 
1717 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1718 					  XLOG_BC_TABLE_SIZE];
1719 	bcp = *bucket;
1720 	if (bcp == NULL) {
1721 		/*
1722 		 * There is no corresponding entry in the table built
1723 		 * in pass one, so this buffer has not been cancelled.
1724 		 */
1725 		ASSERT(!(flags & XFS_BLF_CANCEL));
1726 		return 0;
1727 	}
1728 
1729 	/*
1730 	 * Search for an entry in the buffer cancel table that
1731 	 * matches our buffer.
1732 	 */
1733 	prevp = NULL;
1734 	while (bcp != NULL) {
1735 		if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1736 			/*
1737 			 * We've go a match, so return 1 so that the
1738 			 * recovery of this buffer is cancelled.
1739 			 * If this buffer is actually a buffer cancel
1740 			 * log item, then decrement the refcount on the
1741 			 * one in the table and remove it if this is the
1742 			 * last reference.
1743 			 */
1744 			if (flags & XFS_BLF_CANCEL) {
1745 				bcp->bc_refcount--;
1746 				if (bcp->bc_refcount == 0) {
1747 					if (prevp == NULL) {
1748 						*bucket = bcp->bc_next;
1749 					} else {
1750 						prevp->bc_next = bcp->bc_next;
1751 					}
1752 					kmem_free(bcp);
1753 				}
1754 			}
1755 			return 1;
1756 		}
1757 		prevp = bcp;
1758 		bcp = bcp->bc_next;
1759 	}
1760 	/*
1761 	 * We didn't find a corresponding entry in the table, so
1762 	 * return 0 so that the buffer is NOT cancelled.
1763 	 */
1764 	ASSERT(!(flags & XFS_BLF_CANCEL));
1765 	return 0;
1766 }
1767 
1768 STATIC int
1769 xlog_recover_do_buffer_pass2(
1770 	xlog_t			*log,
1771 	xfs_buf_log_format_t	*buf_f)
1772 {
1773 	xfs_daddr_t		blkno = 0;
1774 	ushort			flags = 0;
1775 	uint			len = 0;
1776 
1777 	switch (buf_f->blf_type) {
1778 	case XFS_LI_BUF:
1779 		blkno = buf_f->blf_blkno;
1780 		flags = buf_f->blf_flags;
1781 		len = buf_f->blf_len;
1782 		break;
1783 	}
1784 
1785 	return xlog_check_buffer_cancelled(log, blkno, len, flags);
1786 }
1787 
1788 /*
1789  * Perform recovery for a buffer full of inodes.  In these buffers,
1790  * the only data which should be recovered is that which corresponds
1791  * to the di_next_unlinked pointers in the on disk inode structures.
1792  * The rest of the data for the inodes is always logged through the
1793  * inodes themselves rather than the inode buffer and is recovered
1794  * in xlog_recover_do_inode_trans().
1795  *
1796  * The only time when buffers full of inodes are fully recovered is
1797  * when the buffer is full of newly allocated inodes.  In this case
1798  * the buffer will not be marked as an inode buffer and so will be
1799  * sent to xlog_recover_do_reg_buffer() below during recovery.
1800  */
1801 STATIC int
1802 xlog_recover_do_inode_buffer(
1803 	xfs_mount_t		*mp,
1804 	xlog_recover_item_t	*item,
1805 	xfs_buf_t		*bp,
1806 	xfs_buf_log_format_t	*buf_f)
1807 {
1808 	int			i;
1809 	int			item_index;
1810 	int			bit;
1811 	int			nbits;
1812 	int			reg_buf_offset;
1813 	int			reg_buf_bytes;
1814 	int			next_unlinked_offset;
1815 	int			inodes_per_buf;
1816 	xfs_agino_t		*logged_nextp;
1817 	xfs_agino_t		*buffer_nextp;
1818 	unsigned int		*data_map = NULL;
1819 	unsigned int		map_size = 0;
1820 
1821 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1822 
1823 	switch (buf_f->blf_type) {
1824 	case XFS_LI_BUF:
1825 		data_map = buf_f->blf_data_map;
1826 		map_size = buf_f->blf_map_size;
1827 		break;
1828 	}
1829 	/*
1830 	 * Set the variables corresponding to the current region to
1831 	 * 0 so that we'll initialize them on the first pass through
1832 	 * the loop.
1833 	 */
1834 	reg_buf_offset = 0;
1835 	reg_buf_bytes = 0;
1836 	bit = 0;
1837 	nbits = 0;
1838 	item_index = 0;
1839 	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1840 	for (i = 0; i < inodes_per_buf; i++) {
1841 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1842 			offsetof(xfs_dinode_t, di_next_unlinked);
1843 
1844 		while (next_unlinked_offset >=
1845 		       (reg_buf_offset + reg_buf_bytes)) {
1846 			/*
1847 			 * The next di_next_unlinked field is beyond
1848 			 * the current logged region.  Find the next
1849 			 * logged region that contains or is beyond
1850 			 * the current di_next_unlinked field.
1851 			 */
1852 			bit += nbits;
1853 			bit = xfs_next_bit(data_map, map_size, bit);
1854 
1855 			/*
1856 			 * If there are no more logged regions in the
1857 			 * buffer, then we're done.
1858 			 */
1859 			if (bit == -1) {
1860 				return 0;
1861 			}
1862 
1863 			nbits = xfs_contig_bits(data_map, map_size,
1864 							 bit);
1865 			ASSERT(nbits > 0);
1866 			reg_buf_offset = bit << XFS_BLF_SHIFT;
1867 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1868 			item_index++;
1869 		}
1870 
1871 		/*
1872 		 * If the current logged region starts after the current
1873 		 * di_next_unlinked field, then move on to the next
1874 		 * di_next_unlinked field.
1875 		 */
1876 		if (next_unlinked_offset < reg_buf_offset) {
1877 			continue;
1878 		}
1879 
1880 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1881 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1882 		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1883 
1884 		/*
1885 		 * The current logged region contains a copy of the
1886 		 * current di_next_unlinked field.  Extract its value
1887 		 * and copy it to the buffer copy.
1888 		 */
1889 		logged_nextp = item->ri_buf[item_index].i_addr +
1890 				next_unlinked_offset - reg_buf_offset;
1891 		if (unlikely(*logged_nextp == 0)) {
1892 			xfs_fs_cmn_err(CE_ALERT, mp,
1893 				"bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1894 				item, bp);
1895 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1896 					 XFS_ERRLEVEL_LOW, mp);
1897 			return XFS_ERROR(EFSCORRUPTED);
1898 		}
1899 
1900 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1901 					      next_unlinked_offset);
1902 		*buffer_nextp = *logged_nextp;
1903 	}
1904 
1905 	return 0;
1906 }
1907 
1908 /*
1909  * Perform a 'normal' buffer recovery.  Each logged region of the
1910  * buffer should be copied over the corresponding region in the
1911  * given buffer.  The bitmap in the buf log format structure indicates
1912  * where to place the logged data.
1913  */
1914 /*ARGSUSED*/
1915 STATIC void
1916 xlog_recover_do_reg_buffer(
1917 	struct xfs_mount	*mp,
1918 	xlog_recover_item_t	*item,
1919 	xfs_buf_t		*bp,
1920 	xfs_buf_log_format_t	*buf_f)
1921 {
1922 	int			i;
1923 	int			bit;
1924 	int			nbits;
1925 	unsigned int		*data_map = NULL;
1926 	unsigned int		map_size = 0;
1927 	int                     error;
1928 
1929 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1930 
1931 	switch (buf_f->blf_type) {
1932 	case XFS_LI_BUF:
1933 		data_map = buf_f->blf_data_map;
1934 		map_size = buf_f->blf_map_size;
1935 		break;
1936 	}
1937 	bit = 0;
1938 	i = 1;  /* 0 is the buf format structure */
1939 	while (1) {
1940 		bit = xfs_next_bit(data_map, map_size, bit);
1941 		if (bit == -1)
1942 			break;
1943 		nbits = xfs_contig_bits(data_map, map_size, bit);
1944 		ASSERT(nbits > 0);
1945 		ASSERT(item->ri_buf[i].i_addr != NULL);
1946 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1947 		ASSERT(XFS_BUF_COUNT(bp) >=
1948 		       ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1949 
1950 		/*
1951 		 * Do a sanity check if this is a dquot buffer. Just checking
1952 		 * the first dquot in the buffer should do. XXXThis is
1953 		 * probably a good thing to do for other buf types also.
1954 		 */
1955 		error = 0;
1956 		if (buf_f->blf_flags &
1957 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1958 			if (item->ri_buf[i].i_addr == NULL) {
1959 				cmn_err(CE_ALERT,
1960 					"XFS: NULL dquot in %s.", __func__);
1961 				goto next;
1962 			}
1963 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1964 				cmn_err(CE_ALERT,
1965 					"XFS: dquot too small (%d) in %s.",
1966 					item->ri_buf[i].i_len, __func__);
1967 				goto next;
1968 			}
1969 			error = xfs_qm_dqcheck(item->ri_buf[i].i_addr,
1970 					       -1, 0, XFS_QMOPT_DOWARN,
1971 					       "dquot_buf_recover");
1972 			if (error)
1973 				goto next;
1974 		}
1975 
1976 		memcpy(xfs_buf_offset(bp,
1977 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
1978 			item->ri_buf[i].i_addr,		/* source */
1979 			nbits<<XFS_BLF_SHIFT);		/* length */
1980  next:
1981 		i++;
1982 		bit += nbits;
1983 	}
1984 
1985 	/* Shouldn't be any more regions */
1986 	ASSERT(i == item->ri_total);
1987 }
1988 
1989 /*
1990  * Do some primitive error checking on ondisk dquot data structures.
1991  */
1992 int
1993 xfs_qm_dqcheck(
1994 	xfs_disk_dquot_t *ddq,
1995 	xfs_dqid_t	 id,
1996 	uint		 type,	  /* used only when IO_dorepair is true */
1997 	uint		 flags,
1998 	char		 *str)
1999 {
2000 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
2001 	int		errs = 0;
2002 
2003 	/*
2004 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
2005 	 * 1. If we crash while deleting the quotainode(s), and those blks got
2006 	 *    used for user data. This is because we take the path of regular
2007 	 *    file deletion; however, the size field of quotainodes is never
2008 	 *    updated, so all the tricks that we play in itruncate_finish
2009 	 *    don't quite matter.
2010 	 *
2011 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2012 	 *    But the allocation will be replayed so we'll end up with an
2013 	 *    uninitialized quota block.
2014 	 *
2015 	 * This is all fine; things are still consistent, and we haven't lost
2016 	 * any quota information. Just don't complain about bad dquot blks.
2017 	 */
2018 	if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2019 		if (flags & XFS_QMOPT_DOWARN)
2020 			cmn_err(CE_ALERT,
2021 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2022 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2023 		errs++;
2024 	}
2025 	if (ddq->d_version != XFS_DQUOT_VERSION) {
2026 		if (flags & XFS_QMOPT_DOWARN)
2027 			cmn_err(CE_ALERT,
2028 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2029 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
2030 		errs++;
2031 	}
2032 
2033 	if (ddq->d_flags != XFS_DQ_USER &&
2034 	    ddq->d_flags != XFS_DQ_PROJ &&
2035 	    ddq->d_flags != XFS_DQ_GROUP) {
2036 		if (flags & XFS_QMOPT_DOWARN)
2037 			cmn_err(CE_ALERT,
2038 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2039 			str, id, ddq->d_flags);
2040 		errs++;
2041 	}
2042 
2043 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2044 		if (flags & XFS_QMOPT_DOWARN)
2045 			cmn_err(CE_ALERT,
2046 			"%s : ondisk-dquot 0x%p, ID mismatch: "
2047 			"0x%x expected, found id 0x%x",
2048 			str, ddq, id, be32_to_cpu(ddq->d_id));
2049 		errs++;
2050 	}
2051 
2052 	if (!errs && ddq->d_id) {
2053 		if (ddq->d_blk_softlimit &&
2054 		    be64_to_cpu(ddq->d_bcount) >=
2055 				be64_to_cpu(ddq->d_blk_softlimit)) {
2056 			if (!ddq->d_btimer) {
2057 				if (flags & XFS_QMOPT_DOWARN)
2058 					cmn_err(CE_ALERT,
2059 					"%s : Dquot ID 0x%x (0x%p) "
2060 					"BLK TIMER NOT STARTED",
2061 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2062 				errs++;
2063 			}
2064 		}
2065 		if (ddq->d_ino_softlimit &&
2066 		    be64_to_cpu(ddq->d_icount) >=
2067 				be64_to_cpu(ddq->d_ino_softlimit)) {
2068 			if (!ddq->d_itimer) {
2069 				if (flags & XFS_QMOPT_DOWARN)
2070 					cmn_err(CE_ALERT,
2071 					"%s : Dquot ID 0x%x (0x%p) "
2072 					"INODE TIMER NOT STARTED",
2073 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2074 				errs++;
2075 			}
2076 		}
2077 		if (ddq->d_rtb_softlimit &&
2078 		    be64_to_cpu(ddq->d_rtbcount) >=
2079 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2080 			if (!ddq->d_rtbtimer) {
2081 				if (flags & XFS_QMOPT_DOWARN)
2082 					cmn_err(CE_ALERT,
2083 					"%s : Dquot ID 0x%x (0x%p) "
2084 					"RTBLK TIMER NOT STARTED",
2085 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2086 				errs++;
2087 			}
2088 		}
2089 	}
2090 
2091 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2092 		return errs;
2093 
2094 	if (flags & XFS_QMOPT_DOWARN)
2095 		cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2096 
2097 	/*
2098 	 * Typically, a repair is only requested by quotacheck.
2099 	 */
2100 	ASSERT(id != -1);
2101 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2102 	memset(d, 0, sizeof(xfs_dqblk_t));
2103 
2104 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2105 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2106 	d->dd_diskdq.d_flags = type;
2107 	d->dd_diskdq.d_id = cpu_to_be32(id);
2108 
2109 	return errs;
2110 }
2111 
2112 /*
2113  * Perform a dquot buffer recovery.
2114  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2115  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2116  * Else, treat it as a regular buffer and do recovery.
2117  */
2118 STATIC void
2119 xlog_recover_do_dquot_buffer(
2120 	xfs_mount_t		*mp,
2121 	xlog_t			*log,
2122 	xlog_recover_item_t	*item,
2123 	xfs_buf_t		*bp,
2124 	xfs_buf_log_format_t	*buf_f)
2125 {
2126 	uint			type;
2127 
2128 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2129 
2130 	/*
2131 	 * Filesystems are required to send in quota flags at mount time.
2132 	 */
2133 	if (mp->m_qflags == 0) {
2134 		return;
2135 	}
2136 
2137 	type = 0;
2138 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2139 		type |= XFS_DQ_USER;
2140 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2141 		type |= XFS_DQ_PROJ;
2142 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2143 		type |= XFS_DQ_GROUP;
2144 	/*
2145 	 * This type of quotas was turned off, so ignore this buffer
2146 	 */
2147 	if (log->l_quotaoffs_flag & type)
2148 		return;
2149 
2150 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2151 }
2152 
2153 /*
2154  * This routine replays a modification made to a buffer at runtime.
2155  * There are actually two types of buffer, regular and inode, which
2156  * are handled differently.  Inode buffers are handled differently
2157  * in that we only recover a specific set of data from them, namely
2158  * the inode di_next_unlinked fields.  This is because all other inode
2159  * data is actually logged via inode records and any data we replay
2160  * here which overlaps that may be stale.
2161  *
2162  * When meta-data buffers are freed at run time we log a buffer item
2163  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2164  * of the buffer in the log should not be replayed at recovery time.
2165  * This is so that if the blocks covered by the buffer are reused for
2166  * file data before we crash we don't end up replaying old, freed
2167  * meta-data into a user's file.
2168  *
2169  * To handle the cancellation of buffer log items, we make two passes
2170  * over the log during recovery.  During the first we build a table of
2171  * those buffers which have been cancelled, and during the second we
2172  * only replay those buffers which do not have corresponding cancel
2173  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2174  * for more details on the implementation of the table of cancel records.
2175  */
2176 STATIC int
2177 xlog_recover_do_buffer_trans(
2178 	xlog_t			*log,
2179 	xlog_recover_item_t	*item,
2180 	int			pass)
2181 {
2182 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2183 	xfs_mount_t		*mp;
2184 	xfs_buf_t		*bp;
2185 	int			error;
2186 	int			cancel;
2187 	xfs_daddr_t		blkno;
2188 	int			len;
2189 	ushort			flags;
2190 	uint			buf_flags;
2191 
2192 	if (pass == XLOG_RECOVER_PASS1) {
2193 		/*
2194 		 * In this pass we're only looking for buf items
2195 		 * with the XFS_BLF_CANCEL bit set.
2196 		 */
2197 		xlog_recover_do_buffer_pass1(log, buf_f);
2198 		return 0;
2199 	} else {
2200 		/*
2201 		 * In this pass we want to recover all the buffers
2202 		 * which have not been cancelled and are not
2203 		 * cancellation buffers themselves.  The routine
2204 		 * we call here will tell us whether or not to
2205 		 * continue with the replay of this buffer.
2206 		 */
2207 		cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2208 		if (cancel) {
2209 			trace_xfs_log_recover_buf_cancel(log, buf_f);
2210 			return 0;
2211 		}
2212 	}
2213 	trace_xfs_log_recover_buf_recover(log, buf_f);
2214 	switch (buf_f->blf_type) {
2215 	case XFS_LI_BUF:
2216 		blkno = buf_f->blf_blkno;
2217 		len = buf_f->blf_len;
2218 		flags = buf_f->blf_flags;
2219 		break;
2220 	default:
2221 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2222 			"xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2223 			buf_f->blf_type, log->l_mp->m_logname ?
2224 			log->l_mp->m_logname : "internal");
2225 		XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2226 				 XFS_ERRLEVEL_LOW, log->l_mp);
2227 		return XFS_ERROR(EFSCORRUPTED);
2228 	}
2229 
2230 	mp = log->l_mp;
2231 	buf_flags = XBF_LOCK;
2232 	if (!(flags & XFS_BLF_INODE_BUF))
2233 		buf_flags |= XBF_MAPPED;
2234 
2235 	bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
2236 	if (XFS_BUF_ISERROR(bp)) {
2237 		xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2238 				  bp, blkno);
2239 		error = XFS_BUF_GETERROR(bp);
2240 		xfs_buf_relse(bp);
2241 		return error;
2242 	}
2243 
2244 	error = 0;
2245 	if (flags & XFS_BLF_INODE_BUF) {
2246 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2247 	} else if (flags &
2248 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2249 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2250 	} else {
2251 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2252 	}
2253 	if (error)
2254 		return XFS_ERROR(error);
2255 
2256 	/*
2257 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2258 	 * slower when taking into account all the buffers to be flushed.
2259 	 *
2260 	 * Also make sure that only inode buffers with good sizes stay in
2261 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2262 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2263 	 * buffers in the log can be a different size if the log was generated
2264 	 * by an older kernel using unclustered inode buffers or a newer kernel
2265 	 * running with a different inode cluster size.  Regardless, if the
2266 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2267 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2268 	 * the buffer out of the buffer cache so that the buffer won't
2269 	 * overlap with future reads of those inodes.
2270 	 */
2271 	if (XFS_DINODE_MAGIC ==
2272 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2273 	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2274 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2275 		XFS_BUF_STALE(bp);
2276 		error = xfs_bwrite(mp, bp);
2277 	} else {
2278 		ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2279 		bp->b_mount = mp;
2280 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2281 		xfs_bdwrite(mp, bp);
2282 	}
2283 
2284 	return (error);
2285 }
2286 
2287 STATIC int
2288 xlog_recover_do_inode_trans(
2289 	xlog_t			*log,
2290 	xlog_recover_item_t	*item,
2291 	int			pass)
2292 {
2293 	xfs_inode_log_format_t	*in_f;
2294 	xfs_mount_t		*mp;
2295 	xfs_buf_t		*bp;
2296 	xfs_dinode_t		*dip;
2297 	xfs_ino_t		ino;
2298 	int			len;
2299 	xfs_caddr_t		src;
2300 	xfs_caddr_t		dest;
2301 	int			error;
2302 	int			attr_index;
2303 	uint			fields;
2304 	xfs_icdinode_t		*dicp;
2305 	int			need_free = 0;
2306 
2307 	if (pass == XLOG_RECOVER_PASS1) {
2308 		return 0;
2309 	}
2310 
2311 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2312 		in_f = item->ri_buf[0].i_addr;
2313 	} else {
2314 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2315 		need_free = 1;
2316 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2317 		if (error)
2318 			goto error;
2319 	}
2320 	ino = in_f->ilf_ino;
2321 	mp = log->l_mp;
2322 
2323 	/*
2324 	 * Inode buffers can be freed, look out for it,
2325 	 * and do not replay the inode.
2326 	 */
2327 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2328 					in_f->ilf_len, 0)) {
2329 		error = 0;
2330 		trace_xfs_log_recover_inode_cancel(log, in_f);
2331 		goto error;
2332 	}
2333 	trace_xfs_log_recover_inode_recover(log, in_f);
2334 
2335 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2336 			  XBF_LOCK);
2337 	if (XFS_BUF_ISERROR(bp)) {
2338 		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2339 				  bp, in_f->ilf_blkno);
2340 		error = XFS_BUF_GETERROR(bp);
2341 		xfs_buf_relse(bp);
2342 		goto error;
2343 	}
2344 	error = 0;
2345 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2346 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2347 
2348 	/*
2349 	 * Make sure the place we're flushing out to really looks
2350 	 * like an inode!
2351 	 */
2352 	if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2353 		xfs_buf_relse(bp);
2354 		xfs_fs_cmn_err(CE_ALERT, mp,
2355 			"xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2356 			dip, bp, ino);
2357 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2358 				 XFS_ERRLEVEL_LOW, mp);
2359 		error = EFSCORRUPTED;
2360 		goto error;
2361 	}
2362 	dicp = item->ri_buf[1].i_addr;
2363 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2364 		xfs_buf_relse(bp);
2365 		xfs_fs_cmn_err(CE_ALERT, mp,
2366 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2367 			item, ino);
2368 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2369 				 XFS_ERRLEVEL_LOW, mp);
2370 		error = EFSCORRUPTED;
2371 		goto error;
2372 	}
2373 
2374 	/* Skip replay when the on disk inode is newer than the log one */
2375 	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2376 		/*
2377 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2378 		 * than smaller numbers
2379 		 */
2380 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2381 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2382 			/* do nothing */
2383 		} else {
2384 			xfs_buf_relse(bp);
2385 			trace_xfs_log_recover_inode_skip(log, in_f);
2386 			error = 0;
2387 			goto error;
2388 		}
2389 	}
2390 	/* Take the opportunity to reset the flush iteration count */
2391 	dicp->di_flushiter = 0;
2392 
2393 	if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2394 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2395 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2396 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2397 					 XFS_ERRLEVEL_LOW, mp, dicp);
2398 			xfs_buf_relse(bp);
2399 			xfs_fs_cmn_err(CE_ALERT, mp,
2400 				"xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2401 				item, dip, bp, ino);
2402 			error = EFSCORRUPTED;
2403 			goto error;
2404 		}
2405 	} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2406 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2407 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2408 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2409 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2410 					     XFS_ERRLEVEL_LOW, mp, dicp);
2411 			xfs_buf_relse(bp);
2412 			xfs_fs_cmn_err(CE_ALERT, mp,
2413 				"xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2414 				item, dip, bp, ino);
2415 			error = EFSCORRUPTED;
2416 			goto error;
2417 		}
2418 	}
2419 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2420 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2421 				     XFS_ERRLEVEL_LOW, mp, dicp);
2422 		xfs_buf_relse(bp);
2423 		xfs_fs_cmn_err(CE_ALERT, mp,
2424 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2425 			item, dip, bp, ino,
2426 			dicp->di_nextents + dicp->di_anextents,
2427 			dicp->di_nblocks);
2428 		error = EFSCORRUPTED;
2429 		goto error;
2430 	}
2431 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2432 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2433 				     XFS_ERRLEVEL_LOW, mp, dicp);
2434 		xfs_buf_relse(bp);
2435 		xfs_fs_cmn_err(CE_ALERT, mp,
2436 			"xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2437 			item, dip, bp, ino, dicp->di_forkoff);
2438 		error = EFSCORRUPTED;
2439 		goto error;
2440 	}
2441 	if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2442 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2443 				     XFS_ERRLEVEL_LOW, mp, dicp);
2444 		xfs_buf_relse(bp);
2445 		xfs_fs_cmn_err(CE_ALERT, mp,
2446 			"xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2447 			item->ri_buf[1].i_len, item);
2448 		error = EFSCORRUPTED;
2449 		goto error;
2450 	}
2451 
2452 	/* The core is in in-core format */
2453 	xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2454 
2455 	/* the rest is in on-disk format */
2456 	if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2457 		memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2458 			item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2459 			item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2460 	}
2461 
2462 	fields = in_f->ilf_fields;
2463 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2464 	case XFS_ILOG_DEV:
2465 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2466 		break;
2467 	case XFS_ILOG_UUID:
2468 		memcpy(XFS_DFORK_DPTR(dip),
2469 		       &in_f->ilf_u.ilfu_uuid,
2470 		       sizeof(uuid_t));
2471 		break;
2472 	}
2473 
2474 	if (in_f->ilf_size == 2)
2475 		goto write_inode_buffer;
2476 	len = item->ri_buf[2].i_len;
2477 	src = item->ri_buf[2].i_addr;
2478 	ASSERT(in_f->ilf_size <= 4);
2479 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2480 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2481 	       (len == in_f->ilf_dsize));
2482 
2483 	switch (fields & XFS_ILOG_DFORK) {
2484 	case XFS_ILOG_DDATA:
2485 	case XFS_ILOG_DEXT:
2486 		memcpy(XFS_DFORK_DPTR(dip), src, len);
2487 		break;
2488 
2489 	case XFS_ILOG_DBROOT:
2490 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2491 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2492 				 XFS_DFORK_DSIZE(dip, mp));
2493 		break;
2494 
2495 	default:
2496 		/*
2497 		 * There are no data fork flags set.
2498 		 */
2499 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2500 		break;
2501 	}
2502 
2503 	/*
2504 	 * If we logged any attribute data, recover it.  There may or
2505 	 * may not have been any other non-core data logged in this
2506 	 * transaction.
2507 	 */
2508 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2509 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2510 			attr_index = 3;
2511 		} else {
2512 			attr_index = 2;
2513 		}
2514 		len = item->ri_buf[attr_index].i_len;
2515 		src = item->ri_buf[attr_index].i_addr;
2516 		ASSERT(len == in_f->ilf_asize);
2517 
2518 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2519 		case XFS_ILOG_ADATA:
2520 		case XFS_ILOG_AEXT:
2521 			dest = XFS_DFORK_APTR(dip);
2522 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2523 			memcpy(dest, src, len);
2524 			break;
2525 
2526 		case XFS_ILOG_ABROOT:
2527 			dest = XFS_DFORK_APTR(dip);
2528 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2529 					 len, (xfs_bmdr_block_t*)dest,
2530 					 XFS_DFORK_ASIZE(dip, mp));
2531 			break;
2532 
2533 		default:
2534 			xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2535 			ASSERT(0);
2536 			xfs_buf_relse(bp);
2537 			error = EIO;
2538 			goto error;
2539 		}
2540 	}
2541 
2542 write_inode_buffer:
2543 	ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2544 	bp->b_mount = mp;
2545 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2546 	xfs_bdwrite(mp, bp);
2547 error:
2548 	if (need_free)
2549 		kmem_free(in_f);
2550 	return XFS_ERROR(error);
2551 }
2552 
2553 /*
2554  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2555  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2556  * of that type.
2557  */
2558 STATIC int
2559 xlog_recover_do_quotaoff_trans(
2560 	xlog_t			*log,
2561 	xlog_recover_item_t	*item,
2562 	int			pass)
2563 {
2564 	xfs_qoff_logformat_t	*qoff_f;
2565 
2566 	if (pass == XLOG_RECOVER_PASS2) {
2567 		return (0);
2568 	}
2569 
2570 	qoff_f = item->ri_buf[0].i_addr;
2571 	ASSERT(qoff_f);
2572 
2573 	/*
2574 	 * The logitem format's flag tells us if this was user quotaoff,
2575 	 * group/project quotaoff or both.
2576 	 */
2577 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2578 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2579 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2580 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2581 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2582 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2583 
2584 	return (0);
2585 }
2586 
2587 /*
2588  * Recover a dquot record
2589  */
2590 STATIC int
2591 xlog_recover_do_dquot_trans(
2592 	xlog_t			*log,
2593 	xlog_recover_item_t	*item,
2594 	int			pass)
2595 {
2596 	xfs_mount_t		*mp;
2597 	xfs_buf_t		*bp;
2598 	struct xfs_disk_dquot	*ddq, *recddq;
2599 	int			error;
2600 	xfs_dq_logformat_t	*dq_f;
2601 	uint			type;
2602 
2603 	if (pass == XLOG_RECOVER_PASS1) {
2604 		return 0;
2605 	}
2606 	mp = log->l_mp;
2607 
2608 	/*
2609 	 * Filesystems are required to send in quota flags at mount time.
2610 	 */
2611 	if (mp->m_qflags == 0)
2612 		return (0);
2613 
2614 	recddq = item->ri_buf[1].i_addr;
2615 	if (recddq == NULL) {
2616 		cmn_err(CE_ALERT,
2617 			"XFS: NULL dquot in %s.", __func__);
2618 		return XFS_ERROR(EIO);
2619 	}
2620 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2621 		cmn_err(CE_ALERT,
2622 			"XFS: dquot too small (%d) in %s.",
2623 			item->ri_buf[1].i_len, __func__);
2624 		return XFS_ERROR(EIO);
2625 	}
2626 
2627 	/*
2628 	 * This type of quotas was turned off, so ignore this record.
2629 	 */
2630 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2631 	ASSERT(type);
2632 	if (log->l_quotaoffs_flag & type)
2633 		return (0);
2634 
2635 	/*
2636 	 * At this point we know that quota was _not_ turned off.
2637 	 * Since the mount flags are not indicating to us otherwise, this
2638 	 * must mean that quota is on, and the dquot needs to be replayed.
2639 	 * Remember that we may not have fully recovered the superblock yet,
2640 	 * so we can't do the usual trick of looking at the SB quota bits.
2641 	 *
2642 	 * The other possibility, of course, is that the quota subsystem was
2643 	 * removed since the last mount - ENOSYS.
2644 	 */
2645 	dq_f = item->ri_buf[0].i_addr;
2646 	ASSERT(dq_f);
2647 	if ((error = xfs_qm_dqcheck(recddq,
2648 			   dq_f->qlf_id,
2649 			   0, XFS_QMOPT_DOWARN,
2650 			   "xlog_recover_do_dquot_trans (log copy)"))) {
2651 		return XFS_ERROR(EIO);
2652 	}
2653 	ASSERT(dq_f->qlf_len == 1);
2654 
2655 	error = xfs_read_buf(mp, mp->m_ddev_targp,
2656 			     dq_f->qlf_blkno,
2657 			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2658 			     0, &bp);
2659 	if (error) {
2660 		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2661 				  bp, dq_f->qlf_blkno);
2662 		return error;
2663 	}
2664 	ASSERT(bp);
2665 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2666 
2667 	/*
2668 	 * At least the magic num portion should be on disk because this
2669 	 * was among a chunk of dquots created earlier, and we did some
2670 	 * minimal initialization then.
2671 	 */
2672 	if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2673 			   "xlog_recover_do_dquot_trans")) {
2674 		xfs_buf_relse(bp);
2675 		return XFS_ERROR(EIO);
2676 	}
2677 
2678 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2679 
2680 	ASSERT(dq_f->qlf_size == 2);
2681 	ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2682 	bp->b_mount = mp;
2683 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2684 	xfs_bdwrite(mp, bp);
2685 
2686 	return (0);
2687 }
2688 
2689 /*
2690  * This routine is called to create an in-core extent free intent
2691  * item from the efi format structure which was logged on disk.
2692  * It allocates an in-core efi, copies the extents from the format
2693  * structure into it, and adds the efi to the AIL with the given
2694  * LSN.
2695  */
2696 STATIC int
2697 xlog_recover_do_efi_trans(
2698 	xlog_t			*log,
2699 	xlog_recover_item_t	*item,
2700 	xfs_lsn_t		lsn,
2701 	int			pass)
2702 {
2703 	int			error;
2704 	xfs_mount_t		*mp;
2705 	xfs_efi_log_item_t	*efip;
2706 	xfs_efi_log_format_t	*efi_formatp;
2707 
2708 	if (pass == XLOG_RECOVER_PASS1) {
2709 		return 0;
2710 	}
2711 
2712 	efi_formatp = item->ri_buf[0].i_addr;
2713 
2714 	mp = log->l_mp;
2715 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2716 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2717 					 &(efip->efi_format)))) {
2718 		xfs_efi_item_free(efip);
2719 		return error;
2720 	}
2721 	efip->efi_next_extent = efi_formatp->efi_nextents;
2722 	efip->efi_flags |= XFS_EFI_COMMITTED;
2723 
2724 	spin_lock(&log->l_ailp->xa_lock);
2725 	/*
2726 	 * xfs_trans_ail_update() drops the AIL lock.
2727 	 */
2728 	xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2729 	return 0;
2730 }
2731 
2732 
2733 /*
2734  * This routine is called when an efd format structure is found in
2735  * a committed transaction in the log.  It's purpose is to cancel
2736  * the corresponding efi if it was still in the log.  To do this
2737  * it searches the AIL for the efi with an id equal to that in the
2738  * efd format structure.  If we find it, we remove the efi from the
2739  * AIL and free it.
2740  */
2741 STATIC void
2742 xlog_recover_do_efd_trans(
2743 	xlog_t			*log,
2744 	xlog_recover_item_t	*item,
2745 	int			pass)
2746 {
2747 	xfs_efd_log_format_t	*efd_formatp;
2748 	xfs_efi_log_item_t	*efip = NULL;
2749 	xfs_log_item_t		*lip;
2750 	__uint64_t		efi_id;
2751 	struct xfs_ail_cursor	cur;
2752 	struct xfs_ail		*ailp = log->l_ailp;
2753 
2754 	if (pass == XLOG_RECOVER_PASS1) {
2755 		return;
2756 	}
2757 
2758 	efd_formatp = item->ri_buf[0].i_addr;
2759 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2760 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2761 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2762 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2763 	efi_id = efd_formatp->efd_efi_id;
2764 
2765 	/*
2766 	 * Search for the efi with the id in the efd format structure
2767 	 * in the AIL.
2768 	 */
2769 	spin_lock(&ailp->xa_lock);
2770 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2771 	while (lip != NULL) {
2772 		if (lip->li_type == XFS_LI_EFI) {
2773 			efip = (xfs_efi_log_item_t *)lip;
2774 			if (efip->efi_format.efi_id == efi_id) {
2775 				/*
2776 				 * xfs_trans_ail_delete() drops the
2777 				 * AIL lock.
2778 				 */
2779 				xfs_trans_ail_delete(ailp, lip);
2780 				xfs_efi_item_free(efip);
2781 				spin_lock(&ailp->xa_lock);
2782 				break;
2783 			}
2784 		}
2785 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2786 	}
2787 	xfs_trans_ail_cursor_done(ailp, &cur);
2788 	spin_unlock(&ailp->xa_lock);
2789 }
2790 
2791 /*
2792  * Perform the transaction
2793  *
2794  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2795  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2796  */
2797 STATIC int
2798 xlog_recover_do_trans(
2799 	xlog_t			*log,
2800 	xlog_recover_t		*trans,
2801 	int			pass)
2802 {
2803 	int			error = 0;
2804 	xlog_recover_item_t	*item;
2805 
2806 	error = xlog_recover_reorder_trans(log, trans, pass);
2807 	if (error)
2808 		return error;
2809 
2810 	list_for_each_entry(item, &trans->r_itemq, ri_list) {
2811 		trace_xfs_log_recover_item_recover(log, trans, item, pass);
2812 		switch (ITEM_TYPE(item)) {
2813 		case XFS_LI_BUF:
2814 			error = xlog_recover_do_buffer_trans(log, item, pass);
2815 			break;
2816 		case XFS_LI_INODE:
2817 			error = xlog_recover_do_inode_trans(log, item, pass);
2818 			break;
2819 		case XFS_LI_EFI:
2820 			error = xlog_recover_do_efi_trans(log, item,
2821 							  trans->r_lsn, pass);
2822 			break;
2823 		case XFS_LI_EFD:
2824 			xlog_recover_do_efd_trans(log, item, pass);
2825 			error = 0;
2826 			break;
2827 		case XFS_LI_DQUOT:
2828 			error = xlog_recover_do_dquot_trans(log, item, pass);
2829 			break;
2830 		case XFS_LI_QUOTAOFF:
2831 			error = xlog_recover_do_quotaoff_trans(log, item,
2832 							       pass);
2833 			break;
2834 		default:
2835 			xlog_warn(
2836 	"XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
2837 			ASSERT(0);
2838 			error = XFS_ERROR(EIO);
2839 			break;
2840 		}
2841 
2842 		if (error)
2843 			return error;
2844 	}
2845 
2846 	return 0;
2847 }
2848 
2849 /*
2850  * Free up any resources allocated by the transaction
2851  *
2852  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2853  */
2854 STATIC void
2855 xlog_recover_free_trans(
2856 	xlog_recover_t		*trans)
2857 {
2858 	xlog_recover_item_t	*item, *n;
2859 	int			i;
2860 
2861 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2862 		/* Free the regions in the item. */
2863 		list_del(&item->ri_list);
2864 		for (i = 0; i < item->ri_cnt; i++)
2865 			kmem_free(item->ri_buf[i].i_addr);
2866 		/* Free the item itself */
2867 		kmem_free(item->ri_buf);
2868 		kmem_free(item);
2869 	}
2870 	/* Free the transaction recover structure */
2871 	kmem_free(trans);
2872 }
2873 
2874 STATIC int
2875 xlog_recover_commit_trans(
2876 	xlog_t			*log,
2877 	xlog_recover_t		*trans,
2878 	int			pass)
2879 {
2880 	int			error;
2881 
2882 	hlist_del(&trans->r_list);
2883 	if ((error = xlog_recover_do_trans(log, trans, pass)))
2884 		return error;
2885 	xlog_recover_free_trans(trans);			/* no error */
2886 	return 0;
2887 }
2888 
2889 STATIC int
2890 xlog_recover_unmount_trans(
2891 	xlog_recover_t		*trans)
2892 {
2893 	/* Do nothing now */
2894 	xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2895 	return 0;
2896 }
2897 
2898 /*
2899  * There are two valid states of the r_state field.  0 indicates that the
2900  * transaction structure is in a normal state.  We have either seen the
2901  * start of the transaction or the last operation we added was not a partial
2902  * operation.  If the last operation we added to the transaction was a
2903  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2904  *
2905  * NOTE: skip LRs with 0 data length.
2906  */
2907 STATIC int
2908 xlog_recover_process_data(
2909 	xlog_t			*log,
2910 	struct hlist_head	rhash[],
2911 	xlog_rec_header_t	*rhead,
2912 	xfs_caddr_t		dp,
2913 	int			pass)
2914 {
2915 	xfs_caddr_t		lp;
2916 	int			num_logops;
2917 	xlog_op_header_t	*ohead;
2918 	xlog_recover_t		*trans;
2919 	xlog_tid_t		tid;
2920 	int			error;
2921 	unsigned long		hash;
2922 	uint			flags;
2923 
2924 	lp = dp + be32_to_cpu(rhead->h_len);
2925 	num_logops = be32_to_cpu(rhead->h_num_logops);
2926 
2927 	/* check the log format matches our own - else we can't recover */
2928 	if (xlog_header_check_recover(log->l_mp, rhead))
2929 		return (XFS_ERROR(EIO));
2930 
2931 	while ((dp < lp) && num_logops) {
2932 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2933 		ohead = (xlog_op_header_t *)dp;
2934 		dp += sizeof(xlog_op_header_t);
2935 		if (ohead->oh_clientid != XFS_TRANSACTION &&
2936 		    ohead->oh_clientid != XFS_LOG) {
2937 			xlog_warn(
2938 		"XFS: xlog_recover_process_data: bad clientid");
2939 			ASSERT(0);
2940 			return (XFS_ERROR(EIO));
2941 		}
2942 		tid = be32_to_cpu(ohead->oh_tid);
2943 		hash = XLOG_RHASH(tid);
2944 		trans = xlog_recover_find_tid(&rhash[hash], tid);
2945 		if (trans == NULL) {		   /* not found; add new tid */
2946 			if (ohead->oh_flags & XLOG_START_TRANS)
2947 				xlog_recover_new_tid(&rhash[hash], tid,
2948 					be64_to_cpu(rhead->h_lsn));
2949 		} else {
2950 			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2951 				xlog_warn(
2952 			"XFS: xlog_recover_process_data: bad length");
2953 				WARN_ON(1);
2954 				return (XFS_ERROR(EIO));
2955 			}
2956 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2957 			if (flags & XLOG_WAS_CONT_TRANS)
2958 				flags &= ~XLOG_CONTINUE_TRANS;
2959 			switch (flags) {
2960 			case XLOG_COMMIT_TRANS:
2961 				error = xlog_recover_commit_trans(log,
2962 								trans, pass);
2963 				break;
2964 			case XLOG_UNMOUNT_TRANS:
2965 				error = xlog_recover_unmount_trans(trans);
2966 				break;
2967 			case XLOG_WAS_CONT_TRANS:
2968 				error = xlog_recover_add_to_cont_trans(log,
2969 						trans, dp,
2970 						be32_to_cpu(ohead->oh_len));
2971 				break;
2972 			case XLOG_START_TRANS:
2973 				xlog_warn(
2974 			"XFS: xlog_recover_process_data: bad transaction");
2975 				ASSERT(0);
2976 				error = XFS_ERROR(EIO);
2977 				break;
2978 			case 0:
2979 			case XLOG_CONTINUE_TRANS:
2980 				error = xlog_recover_add_to_trans(log, trans,
2981 						dp, be32_to_cpu(ohead->oh_len));
2982 				break;
2983 			default:
2984 				xlog_warn(
2985 			"XFS: xlog_recover_process_data: bad flag");
2986 				ASSERT(0);
2987 				error = XFS_ERROR(EIO);
2988 				break;
2989 			}
2990 			if (error)
2991 				return error;
2992 		}
2993 		dp += be32_to_cpu(ohead->oh_len);
2994 		num_logops--;
2995 	}
2996 	return 0;
2997 }
2998 
2999 /*
3000  * Process an extent free intent item that was recovered from
3001  * the log.  We need to free the extents that it describes.
3002  */
3003 STATIC int
3004 xlog_recover_process_efi(
3005 	xfs_mount_t		*mp,
3006 	xfs_efi_log_item_t	*efip)
3007 {
3008 	xfs_efd_log_item_t	*efdp;
3009 	xfs_trans_t		*tp;
3010 	int			i;
3011 	int			error = 0;
3012 	xfs_extent_t		*extp;
3013 	xfs_fsblock_t		startblock_fsb;
3014 
3015 	ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3016 
3017 	/*
3018 	 * First check the validity of the extents described by the
3019 	 * EFI.  If any are bad, then assume that all are bad and
3020 	 * just toss the EFI.
3021 	 */
3022 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3023 		extp = &(efip->efi_format.efi_extents[i]);
3024 		startblock_fsb = XFS_BB_TO_FSB(mp,
3025 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3026 		if ((startblock_fsb == 0) ||
3027 		    (extp->ext_len == 0) ||
3028 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3029 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3030 			/*
3031 			 * This will pull the EFI from the AIL and
3032 			 * free the memory associated with it.
3033 			 */
3034 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3035 			return XFS_ERROR(EIO);
3036 		}
3037 	}
3038 
3039 	tp = xfs_trans_alloc(mp, 0);
3040 	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3041 	if (error)
3042 		goto abort_error;
3043 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3044 
3045 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3046 		extp = &(efip->efi_format.efi_extents[i]);
3047 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3048 		if (error)
3049 			goto abort_error;
3050 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3051 					 extp->ext_len);
3052 	}
3053 
3054 	efip->efi_flags |= XFS_EFI_RECOVERED;
3055 	error = xfs_trans_commit(tp, 0);
3056 	return error;
3057 
3058 abort_error:
3059 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3060 	return error;
3061 }
3062 
3063 /*
3064  * When this is called, all of the EFIs which did not have
3065  * corresponding EFDs should be in the AIL.  What we do now
3066  * is free the extents associated with each one.
3067  *
3068  * Since we process the EFIs in normal transactions, they
3069  * will be removed at some point after the commit.  This prevents
3070  * us from just walking down the list processing each one.
3071  * We'll use a flag in the EFI to skip those that we've already
3072  * processed and use the AIL iteration mechanism's generation
3073  * count to try to speed this up at least a bit.
3074  *
3075  * When we start, we know that the EFIs are the only things in
3076  * the AIL.  As we process them, however, other items are added
3077  * to the AIL.  Since everything added to the AIL must come after
3078  * everything already in the AIL, we stop processing as soon as
3079  * we see something other than an EFI in the AIL.
3080  */
3081 STATIC int
3082 xlog_recover_process_efis(
3083 	xlog_t			*log)
3084 {
3085 	xfs_log_item_t		*lip;
3086 	xfs_efi_log_item_t	*efip;
3087 	int			error = 0;
3088 	struct xfs_ail_cursor	cur;
3089 	struct xfs_ail		*ailp;
3090 
3091 	ailp = log->l_ailp;
3092 	spin_lock(&ailp->xa_lock);
3093 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3094 	while (lip != NULL) {
3095 		/*
3096 		 * We're done when we see something other than an EFI.
3097 		 * There should be no EFIs left in the AIL now.
3098 		 */
3099 		if (lip->li_type != XFS_LI_EFI) {
3100 #ifdef DEBUG
3101 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3102 				ASSERT(lip->li_type != XFS_LI_EFI);
3103 #endif
3104 			break;
3105 		}
3106 
3107 		/*
3108 		 * Skip EFIs that we've already processed.
3109 		 */
3110 		efip = (xfs_efi_log_item_t *)lip;
3111 		if (efip->efi_flags & XFS_EFI_RECOVERED) {
3112 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3113 			continue;
3114 		}
3115 
3116 		spin_unlock(&ailp->xa_lock);
3117 		error = xlog_recover_process_efi(log->l_mp, efip);
3118 		spin_lock(&ailp->xa_lock);
3119 		if (error)
3120 			goto out;
3121 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3122 	}
3123 out:
3124 	xfs_trans_ail_cursor_done(ailp, &cur);
3125 	spin_unlock(&ailp->xa_lock);
3126 	return error;
3127 }
3128 
3129 /*
3130  * This routine performs a transaction to null out a bad inode pointer
3131  * in an agi unlinked inode hash bucket.
3132  */
3133 STATIC void
3134 xlog_recover_clear_agi_bucket(
3135 	xfs_mount_t	*mp,
3136 	xfs_agnumber_t	agno,
3137 	int		bucket)
3138 {
3139 	xfs_trans_t	*tp;
3140 	xfs_agi_t	*agi;
3141 	xfs_buf_t	*agibp;
3142 	int		offset;
3143 	int		error;
3144 
3145 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3146 	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3147 				  0, 0, 0);
3148 	if (error)
3149 		goto out_abort;
3150 
3151 	error = xfs_read_agi(mp, tp, agno, &agibp);
3152 	if (error)
3153 		goto out_abort;
3154 
3155 	agi = XFS_BUF_TO_AGI(agibp);
3156 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3157 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3158 		 (sizeof(xfs_agino_t) * bucket);
3159 	xfs_trans_log_buf(tp, agibp, offset,
3160 			  (offset + sizeof(xfs_agino_t) - 1));
3161 
3162 	error = xfs_trans_commit(tp, 0);
3163 	if (error)
3164 		goto out_error;
3165 	return;
3166 
3167 out_abort:
3168 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3169 out_error:
3170 	xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3171 			"failed to clear agi %d. Continuing.", agno);
3172 	return;
3173 }
3174 
3175 STATIC xfs_agino_t
3176 xlog_recover_process_one_iunlink(
3177 	struct xfs_mount		*mp,
3178 	xfs_agnumber_t			agno,
3179 	xfs_agino_t			agino,
3180 	int				bucket)
3181 {
3182 	struct xfs_buf			*ibp;
3183 	struct xfs_dinode		*dip;
3184 	struct xfs_inode		*ip;
3185 	xfs_ino_t			ino;
3186 	int				error;
3187 
3188 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3189 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3190 	if (error)
3191 		goto fail;
3192 
3193 	/*
3194 	 * Get the on disk inode to find the next inode in the bucket.
3195 	 */
3196 	error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3197 	if (error)
3198 		goto fail_iput;
3199 
3200 	ASSERT(ip->i_d.di_nlink == 0);
3201 	ASSERT(ip->i_d.di_mode != 0);
3202 
3203 	/* setup for the next pass */
3204 	agino = be32_to_cpu(dip->di_next_unlinked);
3205 	xfs_buf_relse(ibp);
3206 
3207 	/*
3208 	 * Prevent any DMAPI event from being sent when the reference on
3209 	 * the inode is dropped.
3210 	 */
3211 	ip->i_d.di_dmevmask = 0;
3212 
3213 	IRELE(ip);
3214 	return agino;
3215 
3216  fail_iput:
3217 	IRELE(ip);
3218  fail:
3219 	/*
3220 	 * We can't read in the inode this bucket points to, or this inode
3221 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3222 	 * some inodes and space, but at least we won't hang.
3223 	 *
3224 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3225 	 * clear the inode pointer in the bucket.
3226 	 */
3227 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3228 	return NULLAGINO;
3229 }
3230 
3231 /*
3232  * xlog_iunlink_recover
3233  *
3234  * This is called during recovery to process any inodes which
3235  * we unlinked but not freed when the system crashed.  These
3236  * inodes will be on the lists in the AGI blocks.  What we do
3237  * here is scan all the AGIs and fully truncate and free any
3238  * inodes found on the lists.  Each inode is removed from the
3239  * lists when it has been fully truncated and is freed.  The
3240  * freeing of the inode and its removal from the list must be
3241  * atomic.
3242  */
3243 STATIC void
3244 xlog_recover_process_iunlinks(
3245 	xlog_t		*log)
3246 {
3247 	xfs_mount_t	*mp;
3248 	xfs_agnumber_t	agno;
3249 	xfs_agi_t	*agi;
3250 	xfs_buf_t	*agibp;
3251 	xfs_agino_t	agino;
3252 	int		bucket;
3253 	int		error;
3254 	uint		mp_dmevmask;
3255 
3256 	mp = log->l_mp;
3257 
3258 	/*
3259 	 * Prevent any DMAPI event from being sent while in this function.
3260 	 */
3261 	mp_dmevmask = mp->m_dmevmask;
3262 	mp->m_dmevmask = 0;
3263 
3264 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3265 		/*
3266 		 * Find the agi for this ag.
3267 		 */
3268 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3269 		if (error) {
3270 			/*
3271 			 * AGI is b0rked. Don't process it.
3272 			 *
3273 			 * We should probably mark the filesystem as corrupt
3274 			 * after we've recovered all the ag's we can....
3275 			 */
3276 			continue;
3277 		}
3278 		agi = XFS_BUF_TO_AGI(agibp);
3279 
3280 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3281 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3282 			while (agino != NULLAGINO) {
3283 				/*
3284 				 * Release the agi buffer so that it can
3285 				 * be acquired in the normal course of the
3286 				 * transaction to truncate and free the inode.
3287 				 */
3288 				xfs_buf_relse(agibp);
3289 
3290 				agino = xlog_recover_process_one_iunlink(mp,
3291 							agno, agino, bucket);
3292 
3293 				/*
3294 				 * Reacquire the agibuffer and continue around
3295 				 * the loop. This should never fail as we know
3296 				 * the buffer was good earlier on.
3297 				 */
3298 				error = xfs_read_agi(mp, NULL, agno, &agibp);
3299 				ASSERT(error == 0);
3300 				agi = XFS_BUF_TO_AGI(agibp);
3301 			}
3302 		}
3303 
3304 		/*
3305 		 * Release the buffer for the current agi so we can
3306 		 * go on to the next one.
3307 		 */
3308 		xfs_buf_relse(agibp);
3309 	}
3310 
3311 	mp->m_dmevmask = mp_dmevmask;
3312 }
3313 
3314 
3315 #ifdef DEBUG
3316 STATIC void
3317 xlog_pack_data_checksum(
3318 	xlog_t		*log,
3319 	xlog_in_core_t	*iclog,
3320 	int		size)
3321 {
3322 	int		i;
3323 	__be32		*up;
3324 	uint		chksum = 0;
3325 
3326 	up = (__be32 *)iclog->ic_datap;
3327 	/* divide length by 4 to get # words */
3328 	for (i = 0; i < (size >> 2); i++) {
3329 		chksum ^= be32_to_cpu(*up);
3330 		up++;
3331 	}
3332 	iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3333 }
3334 #else
3335 #define xlog_pack_data_checksum(log, iclog, size)
3336 #endif
3337 
3338 /*
3339  * Stamp cycle number in every block
3340  */
3341 void
3342 xlog_pack_data(
3343 	xlog_t			*log,
3344 	xlog_in_core_t		*iclog,
3345 	int			roundoff)
3346 {
3347 	int			i, j, k;
3348 	int			size = iclog->ic_offset + roundoff;
3349 	__be32			cycle_lsn;
3350 	xfs_caddr_t		dp;
3351 
3352 	xlog_pack_data_checksum(log, iclog, size);
3353 
3354 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3355 
3356 	dp = iclog->ic_datap;
3357 	for (i = 0; i < BTOBB(size) &&
3358 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3359 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3360 		*(__be32 *)dp = cycle_lsn;
3361 		dp += BBSIZE;
3362 	}
3363 
3364 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3365 		xlog_in_core_2_t *xhdr = iclog->ic_data;
3366 
3367 		for ( ; i < BTOBB(size); i++) {
3368 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3369 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3370 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3371 			*(__be32 *)dp = cycle_lsn;
3372 			dp += BBSIZE;
3373 		}
3374 
3375 		for (i = 1; i < log->l_iclog_heads; i++) {
3376 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3377 		}
3378 	}
3379 }
3380 
3381 STATIC void
3382 xlog_unpack_data(
3383 	xlog_rec_header_t	*rhead,
3384 	xfs_caddr_t		dp,
3385 	xlog_t			*log)
3386 {
3387 	int			i, j, k;
3388 
3389 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3390 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3391 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3392 		dp += BBSIZE;
3393 	}
3394 
3395 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3396 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3397 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3398 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3399 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3400 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3401 			dp += BBSIZE;
3402 		}
3403 	}
3404 }
3405 
3406 STATIC int
3407 xlog_valid_rec_header(
3408 	xlog_t			*log,
3409 	xlog_rec_header_t	*rhead,
3410 	xfs_daddr_t		blkno)
3411 {
3412 	int			hlen;
3413 
3414 	if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3415 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3416 				XFS_ERRLEVEL_LOW, log->l_mp);
3417 		return XFS_ERROR(EFSCORRUPTED);
3418 	}
3419 	if (unlikely(
3420 	    (!rhead->h_version ||
3421 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3422 		xlog_warn("XFS: %s: unrecognised log version (%d).",
3423 			__func__, be32_to_cpu(rhead->h_version));
3424 		return XFS_ERROR(EIO);
3425 	}
3426 
3427 	/* LR body must have data or it wouldn't have been written */
3428 	hlen = be32_to_cpu(rhead->h_len);
3429 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3430 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3431 				XFS_ERRLEVEL_LOW, log->l_mp);
3432 		return XFS_ERROR(EFSCORRUPTED);
3433 	}
3434 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3435 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3436 				XFS_ERRLEVEL_LOW, log->l_mp);
3437 		return XFS_ERROR(EFSCORRUPTED);
3438 	}
3439 	return 0;
3440 }
3441 
3442 /*
3443  * Read the log from tail to head and process the log records found.
3444  * Handle the two cases where the tail and head are in the same cycle
3445  * and where the active portion of the log wraps around the end of
3446  * the physical log separately.  The pass parameter is passed through
3447  * to the routines called to process the data and is not looked at
3448  * here.
3449  */
3450 STATIC int
3451 xlog_do_recovery_pass(
3452 	xlog_t			*log,
3453 	xfs_daddr_t		head_blk,
3454 	xfs_daddr_t		tail_blk,
3455 	int			pass)
3456 {
3457 	xlog_rec_header_t	*rhead;
3458 	xfs_daddr_t		blk_no;
3459 	xfs_caddr_t		offset;
3460 	xfs_buf_t		*hbp, *dbp;
3461 	int			error = 0, h_size;
3462 	int			bblks, split_bblks;
3463 	int			hblks, split_hblks, wrapped_hblks;
3464 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
3465 
3466 	ASSERT(head_blk != tail_blk);
3467 
3468 	/*
3469 	 * Read the header of the tail block and get the iclog buffer size from
3470 	 * h_size.  Use this to tell how many sectors make up the log header.
3471 	 */
3472 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3473 		/*
3474 		 * When using variable length iclogs, read first sector of
3475 		 * iclog header and extract the header size from it.  Get a
3476 		 * new hbp that is the correct size.
3477 		 */
3478 		hbp = xlog_get_bp(log, 1);
3479 		if (!hbp)
3480 			return ENOMEM;
3481 
3482 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3483 		if (error)
3484 			goto bread_err1;
3485 
3486 		rhead = (xlog_rec_header_t *)offset;
3487 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3488 		if (error)
3489 			goto bread_err1;
3490 		h_size = be32_to_cpu(rhead->h_size);
3491 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3492 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3493 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3494 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3495 				hblks++;
3496 			xlog_put_bp(hbp);
3497 			hbp = xlog_get_bp(log, hblks);
3498 		} else {
3499 			hblks = 1;
3500 		}
3501 	} else {
3502 		ASSERT(log->l_sectBBsize == 1);
3503 		hblks = 1;
3504 		hbp = xlog_get_bp(log, 1);
3505 		h_size = XLOG_BIG_RECORD_BSIZE;
3506 	}
3507 
3508 	if (!hbp)
3509 		return ENOMEM;
3510 	dbp = xlog_get_bp(log, BTOBB(h_size));
3511 	if (!dbp) {
3512 		xlog_put_bp(hbp);
3513 		return ENOMEM;
3514 	}
3515 
3516 	memset(rhash, 0, sizeof(rhash));
3517 	if (tail_blk <= head_blk) {
3518 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3519 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3520 			if (error)
3521 				goto bread_err2;
3522 
3523 			rhead = (xlog_rec_header_t *)offset;
3524 			error = xlog_valid_rec_header(log, rhead, blk_no);
3525 			if (error)
3526 				goto bread_err2;
3527 
3528 			/* blocks in data section */
3529 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3530 			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3531 					   &offset);
3532 			if (error)
3533 				goto bread_err2;
3534 
3535 			xlog_unpack_data(rhead, offset, log);
3536 			if ((error = xlog_recover_process_data(log,
3537 						rhash, rhead, offset, pass)))
3538 				goto bread_err2;
3539 			blk_no += bblks + hblks;
3540 		}
3541 	} else {
3542 		/*
3543 		 * Perform recovery around the end of the physical log.
3544 		 * When the head is not on the same cycle number as the tail,
3545 		 * we can't do a sequential recovery as above.
3546 		 */
3547 		blk_no = tail_blk;
3548 		while (blk_no < log->l_logBBsize) {
3549 			/*
3550 			 * Check for header wrapping around physical end-of-log
3551 			 */
3552 			offset = XFS_BUF_PTR(hbp);
3553 			split_hblks = 0;
3554 			wrapped_hblks = 0;
3555 			if (blk_no + hblks <= log->l_logBBsize) {
3556 				/* Read header in one read */
3557 				error = xlog_bread(log, blk_no, hblks, hbp,
3558 						   &offset);
3559 				if (error)
3560 					goto bread_err2;
3561 			} else {
3562 				/* This LR is split across physical log end */
3563 				if (blk_no != log->l_logBBsize) {
3564 					/* some data before physical log end */
3565 					ASSERT(blk_no <= INT_MAX);
3566 					split_hblks = log->l_logBBsize - (int)blk_no;
3567 					ASSERT(split_hblks > 0);
3568 					error = xlog_bread(log, blk_no,
3569 							   split_hblks, hbp,
3570 							   &offset);
3571 					if (error)
3572 						goto bread_err2;
3573 				}
3574 
3575 				/*
3576 				 * Note: this black magic still works with
3577 				 * large sector sizes (non-512) only because:
3578 				 * - we increased the buffer size originally
3579 				 *   by 1 sector giving us enough extra space
3580 				 *   for the second read;
3581 				 * - the log start is guaranteed to be sector
3582 				 *   aligned;
3583 				 * - we read the log end (LR header start)
3584 				 *   _first_, then the log start (LR header end)
3585 				 *   - order is important.
3586 				 */
3587 				wrapped_hblks = hblks - split_hblks;
3588 				error = XFS_BUF_SET_PTR(hbp,
3589 						offset + BBTOB(split_hblks),
3590 						BBTOB(hblks - split_hblks));
3591 				if (error)
3592 					goto bread_err2;
3593 
3594 				error = xlog_bread_noalign(log, 0,
3595 							   wrapped_hblks, hbp);
3596 				if (error)
3597 					goto bread_err2;
3598 
3599 				error = XFS_BUF_SET_PTR(hbp, offset,
3600 							BBTOB(hblks));
3601 				if (error)
3602 					goto bread_err2;
3603 			}
3604 			rhead = (xlog_rec_header_t *)offset;
3605 			error = xlog_valid_rec_header(log, rhead,
3606 						split_hblks ? blk_no : 0);
3607 			if (error)
3608 				goto bread_err2;
3609 
3610 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3611 			blk_no += hblks;
3612 
3613 			/* Read in data for log record */
3614 			if (blk_no + bblks <= log->l_logBBsize) {
3615 				error = xlog_bread(log, blk_no, bblks, dbp,
3616 						   &offset);
3617 				if (error)
3618 					goto bread_err2;
3619 			} else {
3620 				/* This log record is split across the
3621 				 * physical end of log */
3622 				offset = XFS_BUF_PTR(dbp);
3623 				split_bblks = 0;
3624 				if (blk_no != log->l_logBBsize) {
3625 					/* some data is before the physical
3626 					 * end of log */
3627 					ASSERT(!wrapped_hblks);
3628 					ASSERT(blk_no <= INT_MAX);
3629 					split_bblks =
3630 						log->l_logBBsize - (int)blk_no;
3631 					ASSERT(split_bblks > 0);
3632 					error = xlog_bread(log, blk_no,
3633 							split_bblks, dbp,
3634 							&offset);
3635 					if (error)
3636 						goto bread_err2;
3637 				}
3638 
3639 				/*
3640 				 * Note: this black magic still works with
3641 				 * large sector sizes (non-512) only because:
3642 				 * - we increased the buffer size originally
3643 				 *   by 1 sector giving us enough extra space
3644 				 *   for the second read;
3645 				 * - the log start is guaranteed to be sector
3646 				 *   aligned;
3647 				 * - we read the log end (LR header start)
3648 				 *   _first_, then the log start (LR header end)
3649 				 *   - order is important.
3650 				 */
3651 				error = XFS_BUF_SET_PTR(dbp,
3652 						offset + BBTOB(split_bblks),
3653 						BBTOB(bblks - split_bblks));
3654 				if (error)
3655 					goto bread_err2;
3656 
3657 				error = xlog_bread_noalign(log, wrapped_hblks,
3658 						bblks - split_bblks,
3659 						dbp);
3660 				if (error)
3661 					goto bread_err2;
3662 
3663 				error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3664 				if (error)
3665 					goto bread_err2;
3666 			}
3667 			xlog_unpack_data(rhead, offset, log);
3668 			if ((error = xlog_recover_process_data(log, rhash,
3669 							rhead, offset, pass)))
3670 				goto bread_err2;
3671 			blk_no += bblks;
3672 		}
3673 
3674 		ASSERT(blk_no >= log->l_logBBsize);
3675 		blk_no -= log->l_logBBsize;
3676 
3677 		/* read first part of physical log */
3678 		while (blk_no < head_blk) {
3679 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3680 			if (error)
3681 				goto bread_err2;
3682 
3683 			rhead = (xlog_rec_header_t *)offset;
3684 			error = xlog_valid_rec_header(log, rhead, blk_no);
3685 			if (error)
3686 				goto bread_err2;
3687 
3688 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3689 			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3690 					   &offset);
3691 			if (error)
3692 				goto bread_err2;
3693 
3694 			xlog_unpack_data(rhead, offset, log);
3695 			if ((error = xlog_recover_process_data(log, rhash,
3696 							rhead, offset, pass)))
3697 				goto bread_err2;
3698 			blk_no += bblks + hblks;
3699 		}
3700 	}
3701 
3702  bread_err2:
3703 	xlog_put_bp(dbp);
3704  bread_err1:
3705 	xlog_put_bp(hbp);
3706 	return error;
3707 }
3708 
3709 /*
3710  * Do the recovery of the log.  We actually do this in two phases.
3711  * The two passes are necessary in order to implement the function
3712  * of cancelling a record written into the log.  The first pass
3713  * determines those things which have been cancelled, and the
3714  * second pass replays log items normally except for those which
3715  * have been cancelled.  The handling of the replay and cancellations
3716  * takes place in the log item type specific routines.
3717  *
3718  * The table of items which have cancel records in the log is allocated
3719  * and freed at this level, since only here do we know when all of
3720  * the log recovery has been completed.
3721  */
3722 STATIC int
3723 xlog_do_log_recovery(
3724 	xlog_t		*log,
3725 	xfs_daddr_t	head_blk,
3726 	xfs_daddr_t	tail_blk)
3727 {
3728 	int		error;
3729 
3730 	ASSERT(head_blk != tail_blk);
3731 
3732 	/*
3733 	 * First do a pass to find all of the cancelled buf log items.
3734 	 * Store them in the buf_cancel_table for use in the second pass.
3735 	 */
3736 	log->l_buf_cancel_table =
3737 		(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3738 						 sizeof(xfs_buf_cancel_t*),
3739 						 KM_SLEEP);
3740 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3741 				      XLOG_RECOVER_PASS1);
3742 	if (error != 0) {
3743 		kmem_free(log->l_buf_cancel_table);
3744 		log->l_buf_cancel_table = NULL;
3745 		return error;
3746 	}
3747 	/*
3748 	 * Then do a second pass to actually recover the items in the log.
3749 	 * When it is complete free the table of buf cancel items.
3750 	 */
3751 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3752 				      XLOG_RECOVER_PASS2);
3753 #ifdef DEBUG
3754 	if (!error) {
3755 		int	i;
3756 
3757 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3758 			ASSERT(log->l_buf_cancel_table[i] == NULL);
3759 	}
3760 #endif	/* DEBUG */
3761 
3762 	kmem_free(log->l_buf_cancel_table);
3763 	log->l_buf_cancel_table = NULL;
3764 
3765 	return error;
3766 }
3767 
3768 /*
3769  * Do the actual recovery
3770  */
3771 STATIC int
3772 xlog_do_recover(
3773 	xlog_t		*log,
3774 	xfs_daddr_t	head_blk,
3775 	xfs_daddr_t	tail_blk)
3776 {
3777 	int		error;
3778 	xfs_buf_t	*bp;
3779 	xfs_sb_t	*sbp;
3780 
3781 	/*
3782 	 * First replay the images in the log.
3783 	 */
3784 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3785 	if (error) {
3786 		return error;
3787 	}
3788 
3789 	XFS_bflush(log->l_mp->m_ddev_targp);
3790 
3791 	/*
3792 	 * If IO errors happened during recovery, bail out.
3793 	 */
3794 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3795 		return (EIO);
3796 	}
3797 
3798 	/*
3799 	 * We now update the tail_lsn since much of the recovery has completed
3800 	 * and there may be space available to use.  If there were no extent
3801 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3802 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3803 	 * lsn of the last known good LR on disk.  If there are extent frees
3804 	 * or iunlinks they will have some entries in the AIL; so we look at
3805 	 * the AIL to determine how to set the tail_lsn.
3806 	 */
3807 	xlog_assign_tail_lsn(log->l_mp);
3808 
3809 	/*
3810 	 * Now that we've finished replaying all buffer and inode
3811 	 * updates, re-read in the superblock.
3812 	 */
3813 	bp = xfs_getsb(log->l_mp, 0);
3814 	XFS_BUF_UNDONE(bp);
3815 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
3816 	ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3817 	XFS_BUF_READ(bp);
3818 	XFS_BUF_UNASYNC(bp);
3819 	xfsbdstrat(log->l_mp, bp);
3820 	error = xfs_iowait(bp);
3821 	if (error) {
3822 		xfs_ioerror_alert("xlog_do_recover",
3823 				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3824 		ASSERT(0);
3825 		xfs_buf_relse(bp);
3826 		return error;
3827 	}
3828 
3829 	/* Convert superblock from on-disk format */
3830 	sbp = &log->l_mp->m_sb;
3831 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3832 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3833 	ASSERT(xfs_sb_good_version(sbp));
3834 	xfs_buf_relse(bp);
3835 
3836 	/* We've re-read the superblock so re-initialize per-cpu counters */
3837 	xfs_icsb_reinit_counters(log->l_mp);
3838 
3839 	xlog_recover_check_summary(log);
3840 
3841 	/* Normal transactions can now occur */
3842 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3843 	return 0;
3844 }
3845 
3846 /*
3847  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3848  *
3849  * Return error or zero.
3850  */
3851 int
3852 xlog_recover(
3853 	xlog_t		*log)
3854 {
3855 	xfs_daddr_t	head_blk, tail_blk;
3856 	int		error;
3857 
3858 	/* find the tail of the log */
3859 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3860 		return error;
3861 
3862 	if (tail_blk != head_blk) {
3863 		/* There used to be a comment here:
3864 		 *
3865 		 * disallow recovery on read-only mounts.  note -- mount
3866 		 * checks for ENOSPC and turns it into an intelligent
3867 		 * error message.
3868 		 * ...but this is no longer true.  Now, unless you specify
3869 		 * NORECOVERY (in which case this function would never be
3870 		 * called), we just go ahead and recover.  We do this all
3871 		 * under the vfs layer, so we can get away with it unless
3872 		 * the device itself is read-only, in which case we fail.
3873 		 */
3874 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3875 			return error;
3876 		}
3877 
3878 		cmn_err(CE_NOTE,
3879 			"Starting XFS recovery on filesystem: %s (logdev: %s)",
3880 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3881 			log->l_mp->m_logname : "internal");
3882 
3883 		error = xlog_do_recover(log, head_blk, tail_blk);
3884 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3885 	}
3886 	return error;
3887 }
3888 
3889 /*
3890  * In the first part of recovery we replay inodes and buffers and build
3891  * up the list of extent free items which need to be processed.  Here
3892  * we process the extent free items and clean up the on disk unlinked
3893  * inode lists.  This is separated from the first part of recovery so
3894  * that the root and real-time bitmap inodes can be read in from disk in
3895  * between the two stages.  This is necessary so that we can free space
3896  * in the real-time portion of the file system.
3897  */
3898 int
3899 xlog_recover_finish(
3900 	xlog_t		*log)
3901 {
3902 	/*
3903 	 * Now we're ready to do the transactions needed for the
3904 	 * rest of recovery.  Start with completing all the extent
3905 	 * free intent records and then process the unlinked inode
3906 	 * lists.  At this point, we essentially run in normal mode
3907 	 * except that we're still performing recovery actions
3908 	 * rather than accepting new requests.
3909 	 */
3910 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3911 		int	error;
3912 		error = xlog_recover_process_efis(log);
3913 		if (error) {
3914 			cmn_err(CE_ALERT,
3915 				"Failed to recover EFIs on filesystem: %s",
3916 				log->l_mp->m_fsname);
3917 			return error;
3918 		}
3919 		/*
3920 		 * Sync the log to get all the EFIs out of the AIL.
3921 		 * This isn't absolutely necessary, but it helps in
3922 		 * case the unlink transactions would have problems
3923 		 * pushing the EFIs out of the way.
3924 		 */
3925 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3926 
3927 		xlog_recover_process_iunlinks(log);
3928 
3929 		xlog_recover_check_summary(log);
3930 
3931 		cmn_err(CE_NOTE,
3932 			"Ending XFS recovery on filesystem: %s (logdev: %s)",
3933 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3934 			log->l_mp->m_logname : "internal");
3935 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3936 	} else {
3937 		cmn_err(CE_DEBUG,
3938 			"!Ending clean XFS mount for filesystem: %s\n",
3939 			log->l_mp->m_fsname);
3940 	}
3941 	return 0;
3942 }
3943 
3944 
3945 #if defined(DEBUG)
3946 /*
3947  * Read all of the agf and agi counters and check that they
3948  * are consistent with the superblock counters.
3949  */
3950 void
3951 xlog_recover_check_summary(
3952 	xlog_t		*log)
3953 {
3954 	xfs_mount_t	*mp;
3955 	xfs_agf_t	*agfp;
3956 	xfs_buf_t	*agfbp;
3957 	xfs_buf_t	*agibp;
3958 	xfs_agnumber_t	agno;
3959 	__uint64_t	freeblks;
3960 	__uint64_t	itotal;
3961 	__uint64_t	ifree;
3962 	int		error;
3963 
3964 	mp = log->l_mp;
3965 
3966 	freeblks = 0LL;
3967 	itotal = 0LL;
3968 	ifree = 0LL;
3969 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3970 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3971 		if (error) {
3972 			xfs_fs_cmn_err(CE_ALERT, mp,
3973 					"xlog_recover_check_summary(agf)"
3974 					"agf read failed agno %d error %d",
3975 							agno, error);
3976 		} else {
3977 			agfp = XFS_BUF_TO_AGF(agfbp);
3978 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
3979 				    be32_to_cpu(agfp->agf_flcount);
3980 			xfs_buf_relse(agfbp);
3981 		}
3982 
3983 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3984 		if (!error) {
3985 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
3986 
3987 			itotal += be32_to_cpu(agi->agi_count);
3988 			ifree += be32_to_cpu(agi->agi_freecount);
3989 			xfs_buf_relse(agibp);
3990 		}
3991 	}
3992 }
3993 #endif /* DEBUG */
3994