1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_error.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_dir2_sf.h" 35 #include "xfs_attr_sf.h" 36 #include "xfs_dinode.h" 37 #include "xfs_inode.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_imap.h" 40 #include "xfs_alloc.h" 41 #include "xfs_ialloc.h" 42 #include "xfs_log_priv.h" 43 #include "xfs_buf_item.h" 44 #include "xfs_log_recover.h" 45 #include "xfs_extfree_item.h" 46 #include "xfs_trans_priv.h" 47 #include "xfs_quota.h" 48 #include "xfs_rw.h" 49 50 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 51 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 52 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q, 53 xlog_recover_item_t *item); 54 #if defined(DEBUG) 55 STATIC void xlog_recover_check_summary(xlog_t *); 56 STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int); 57 #else 58 #define xlog_recover_check_summary(log) 59 #define xlog_recover_check_ail(mp, lip, gen) 60 #endif 61 62 63 /* 64 * Sector aligned buffer routines for buffer create/read/write/access 65 */ 66 67 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \ 68 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \ 69 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) ) 70 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask) 71 72 xfs_buf_t * 73 xlog_get_bp( 74 xlog_t *log, 75 int num_bblks) 76 { 77 ASSERT(num_bblks > 0); 78 79 if (log->l_sectbb_log) { 80 if (num_bblks > 1) 81 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 82 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks); 83 } 84 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp); 85 } 86 87 void 88 xlog_put_bp( 89 xfs_buf_t *bp) 90 { 91 xfs_buf_free(bp); 92 } 93 94 95 /* 96 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 97 */ 98 int 99 xlog_bread( 100 xlog_t *log, 101 xfs_daddr_t blk_no, 102 int nbblks, 103 xfs_buf_t *bp) 104 { 105 int error; 106 107 if (log->l_sectbb_log) { 108 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 109 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 110 } 111 112 ASSERT(nbblks > 0); 113 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 114 ASSERT(bp); 115 116 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 117 XFS_BUF_READ(bp); 118 XFS_BUF_BUSY(bp); 119 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 120 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 121 122 xfsbdstrat(log->l_mp, bp); 123 if ((error = xfs_iowait(bp))) 124 xfs_ioerror_alert("xlog_bread", log->l_mp, 125 bp, XFS_BUF_ADDR(bp)); 126 return error; 127 } 128 129 /* 130 * Write out the buffer at the given block for the given number of blocks. 131 * The buffer is kept locked across the write and is returned locked. 132 * This can only be used for synchronous log writes. 133 */ 134 STATIC int 135 xlog_bwrite( 136 xlog_t *log, 137 xfs_daddr_t blk_no, 138 int nbblks, 139 xfs_buf_t *bp) 140 { 141 int error; 142 143 if (log->l_sectbb_log) { 144 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 145 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 146 } 147 148 ASSERT(nbblks > 0); 149 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 150 151 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 152 XFS_BUF_ZEROFLAGS(bp); 153 XFS_BUF_BUSY(bp); 154 XFS_BUF_HOLD(bp); 155 XFS_BUF_PSEMA(bp, PRIBIO); 156 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 157 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 158 159 if ((error = xfs_bwrite(log->l_mp, bp))) 160 xfs_ioerror_alert("xlog_bwrite", log->l_mp, 161 bp, XFS_BUF_ADDR(bp)); 162 return error; 163 } 164 165 STATIC xfs_caddr_t 166 xlog_align( 167 xlog_t *log, 168 xfs_daddr_t blk_no, 169 int nbblks, 170 xfs_buf_t *bp) 171 { 172 xfs_caddr_t ptr; 173 174 if (!log->l_sectbb_log) 175 return XFS_BUF_PTR(bp); 176 177 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask); 178 ASSERT(XFS_BUF_SIZE(bp) >= 179 BBTOB(nbblks + (blk_no & log->l_sectbb_mask))); 180 return ptr; 181 } 182 183 #ifdef DEBUG 184 /* 185 * dump debug superblock and log record information 186 */ 187 STATIC void 188 xlog_header_check_dump( 189 xfs_mount_t *mp, 190 xlog_rec_header_t *head) 191 { 192 int b; 193 194 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __FUNCTION__); 195 for (b = 0; b < 16; b++) 196 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]); 197 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT); 198 cmn_err(CE_DEBUG, " log : uuid = "); 199 for (b = 0; b < 16; b++) 200 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]); 201 cmn_err(CE_DEBUG, ", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT)); 202 } 203 #else 204 #define xlog_header_check_dump(mp, head) 205 #endif 206 207 /* 208 * check log record header for recovery 209 */ 210 STATIC int 211 xlog_header_check_recover( 212 xfs_mount_t *mp, 213 xlog_rec_header_t *head) 214 { 215 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); 216 217 /* 218 * IRIX doesn't write the h_fmt field and leaves it zeroed 219 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 220 * a dirty log created in IRIX. 221 */ 222 if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) { 223 xlog_warn( 224 "XFS: dirty log written in incompatible format - can't recover"); 225 xlog_header_check_dump(mp, head); 226 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 227 XFS_ERRLEVEL_HIGH, mp); 228 return XFS_ERROR(EFSCORRUPTED); 229 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 230 xlog_warn( 231 "XFS: dirty log entry has mismatched uuid - can't recover"); 232 xlog_header_check_dump(mp, head); 233 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 234 XFS_ERRLEVEL_HIGH, mp); 235 return XFS_ERROR(EFSCORRUPTED); 236 } 237 return 0; 238 } 239 240 /* 241 * read the head block of the log and check the header 242 */ 243 STATIC int 244 xlog_header_check_mount( 245 xfs_mount_t *mp, 246 xlog_rec_header_t *head) 247 { 248 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); 249 250 if (uuid_is_nil(&head->h_fs_uuid)) { 251 /* 252 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 253 * h_fs_uuid is nil, we assume this log was last mounted 254 * by IRIX and continue. 255 */ 256 xlog_warn("XFS: nil uuid in log - IRIX style log"); 257 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 258 xlog_warn("XFS: log has mismatched uuid - can't recover"); 259 xlog_header_check_dump(mp, head); 260 XFS_ERROR_REPORT("xlog_header_check_mount", 261 XFS_ERRLEVEL_HIGH, mp); 262 return XFS_ERROR(EFSCORRUPTED); 263 } 264 return 0; 265 } 266 267 STATIC void 268 xlog_recover_iodone( 269 struct xfs_buf *bp) 270 { 271 xfs_mount_t *mp; 272 273 ASSERT(XFS_BUF_FSPRIVATE(bp, void *)); 274 275 if (XFS_BUF_GETERROR(bp)) { 276 /* 277 * We're not going to bother about retrying 278 * this during recovery. One strike! 279 */ 280 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *); 281 xfs_ioerror_alert("xlog_recover_iodone", 282 mp, bp, XFS_BUF_ADDR(bp)); 283 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 284 } 285 XFS_BUF_SET_FSPRIVATE(bp, NULL); 286 XFS_BUF_CLR_IODONE_FUNC(bp); 287 xfs_biodone(bp); 288 } 289 290 /* 291 * This routine finds (to an approximation) the first block in the physical 292 * log which contains the given cycle. It uses a binary search algorithm. 293 * Note that the algorithm can not be perfect because the disk will not 294 * necessarily be perfect. 295 */ 296 int 297 xlog_find_cycle_start( 298 xlog_t *log, 299 xfs_buf_t *bp, 300 xfs_daddr_t first_blk, 301 xfs_daddr_t *last_blk, 302 uint cycle) 303 { 304 xfs_caddr_t offset; 305 xfs_daddr_t mid_blk; 306 uint mid_cycle; 307 int error; 308 309 mid_blk = BLK_AVG(first_blk, *last_blk); 310 while (mid_blk != first_blk && mid_blk != *last_blk) { 311 if ((error = xlog_bread(log, mid_blk, 1, bp))) 312 return error; 313 offset = xlog_align(log, mid_blk, 1, bp); 314 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT); 315 if (mid_cycle == cycle) { 316 *last_blk = mid_blk; 317 /* last_half_cycle == mid_cycle */ 318 } else { 319 first_blk = mid_blk; 320 /* first_half_cycle == mid_cycle */ 321 } 322 mid_blk = BLK_AVG(first_blk, *last_blk); 323 } 324 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) || 325 (mid_blk == *last_blk && mid_blk-1 == first_blk)); 326 327 return 0; 328 } 329 330 /* 331 * Check that the range of blocks does not contain the cycle number 332 * given. The scan needs to occur from front to back and the ptr into the 333 * region must be updated since a later routine will need to perform another 334 * test. If the region is completely good, we end up returning the same 335 * last block number. 336 * 337 * Set blkno to -1 if we encounter no errors. This is an invalid block number 338 * since we don't ever expect logs to get this large. 339 */ 340 STATIC int 341 xlog_find_verify_cycle( 342 xlog_t *log, 343 xfs_daddr_t start_blk, 344 int nbblks, 345 uint stop_on_cycle_no, 346 xfs_daddr_t *new_blk) 347 { 348 xfs_daddr_t i, j; 349 uint cycle; 350 xfs_buf_t *bp; 351 xfs_daddr_t bufblks; 352 xfs_caddr_t buf = NULL; 353 int error = 0; 354 355 bufblks = 1 << ffs(nbblks); 356 357 while (!(bp = xlog_get_bp(log, bufblks))) { 358 /* can't get enough memory to do everything in one big buffer */ 359 bufblks >>= 1; 360 if (bufblks <= log->l_sectbb_log) 361 return ENOMEM; 362 } 363 364 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 365 int bcount; 366 367 bcount = min(bufblks, (start_blk + nbblks - i)); 368 369 if ((error = xlog_bread(log, i, bcount, bp))) 370 goto out; 371 372 buf = xlog_align(log, i, bcount, bp); 373 for (j = 0; j < bcount; j++) { 374 cycle = GET_CYCLE(buf, ARCH_CONVERT); 375 if (cycle == stop_on_cycle_no) { 376 *new_blk = i+j; 377 goto out; 378 } 379 380 buf += BBSIZE; 381 } 382 } 383 384 *new_blk = -1; 385 386 out: 387 xlog_put_bp(bp); 388 return error; 389 } 390 391 /* 392 * Potentially backup over partial log record write. 393 * 394 * In the typical case, last_blk is the number of the block directly after 395 * a good log record. Therefore, we subtract one to get the block number 396 * of the last block in the given buffer. extra_bblks contains the number 397 * of blocks we would have read on a previous read. This happens when the 398 * last log record is split over the end of the physical log. 399 * 400 * extra_bblks is the number of blocks potentially verified on a previous 401 * call to this routine. 402 */ 403 STATIC int 404 xlog_find_verify_log_record( 405 xlog_t *log, 406 xfs_daddr_t start_blk, 407 xfs_daddr_t *last_blk, 408 int extra_bblks) 409 { 410 xfs_daddr_t i; 411 xfs_buf_t *bp; 412 xfs_caddr_t offset = NULL; 413 xlog_rec_header_t *head = NULL; 414 int error = 0; 415 int smallmem = 0; 416 int num_blks = *last_blk - start_blk; 417 int xhdrs; 418 419 ASSERT(start_blk != 0 || *last_blk != start_blk); 420 421 if (!(bp = xlog_get_bp(log, num_blks))) { 422 if (!(bp = xlog_get_bp(log, 1))) 423 return ENOMEM; 424 smallmem = 1; 425 } else { 426 if ((error = xlog_bread(log, start_blk, num_blks, bp))) 427 goto out; 428 offset = xlog_align(log, start_blk, num_blks, bp); 429 offset += ((num_blks - 1) << BBSHIFT); 430 } 431 432 for (i = (*last_blk) - 1; i >= 0; i--) { 433 if (i < start_blk) { 434 /* valid log record not found */ 435 xlog_warn( 436 "XFS: Log inconsistent (didn't find previous header)"); 437 ASSERT(0); 438 error = XFS_ERROR(EIO); 439 goto out; 440 } 441 442 if (smallmem) { 443 if ((error = xlog_bread(log, i, 1, bp))) 444 goto out; 445 offset = xlog_align(log, i, 1, bp); 446 } 447 448 head = (xlog_rec_header_t *)offset; 449 450 if (XLOG_HEADER_MAGIC_NUM == 451 INT_GET(head->h_magicno, ARCH_CONVERT)) 452 break; 453 454 if (!smallmem) 455 offset -= BBSIZE; 456 } 457 458 /* 459 * We hit the beginning of the physical log & still no header. Return 460 * to caller. If caller can handle a return of -1, then this routine 461 * will be called again for the end of the physical log. 462 */ 463 if (i == -1) { 464 error = -1; 465 goto out; 466 } 467 468 /* 469 * We have the final block of the good log (the first block 470 * of the log record _before_ the head. So we check the uuid. 471 */ 472 if ((error = xlog_header_check_mount(log->l_mp, head))) 473 goto out; 474 475 /* 476 * We may have found a log record header before we expected one. 477 * last_blk will be the 1st block # with a given cycle #. We may end 478 * up reading an entire log record. In this case, we don't want to 479 * reset last_blk. Only when last_blk points in the middle of a log 480 * record do we update last_blk. 481 */ 482 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 483 uint h_size = INT_GET(head->h_size, ARCH_CONVERT); 484 485 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 486 if (h_size % XLOG_HEADER_CYCLE_SIZE) 487 xhdrs++; 488 } else { 489 xhdrs = 1; 490 } 491 492 if (*last_blk - i + extra_bblks 493 != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs) 494 *last_blk = i; 495 496 out: 497 xlog_put_bp(bp); 498 return error; 499 } 500 501 /* 502 * Head is defined to be the point of the log where the next log write 503 * write could go. This means that incomplete LR writes at the end are 504 * eliminated when calculating the head. We aren't guaranteed that previous 505 * LR have complete transactions. We only know that a cycle number of 506 * current cycle number -1 won't be present in the log if we start writing 507 * from our current block number. 508 * 509 * last_blk contains the block number of the first block with a given 510 * cycle number. 511 * 512 * Return: zero if normal, non-zero if error. 513 */ 514 STATIC int 515 xlog_find_head( 516 xlog_t *log, 517 xfs_daddr_t *return_head_blk) 518 { 519 xfs_buf_t *bp; 520 xfs_caddr_t offset; 521 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 522 int num_scan_bblks; 523 uint first_half_cycle, last_half_cycle; 524 uint stop_on_cycle; 525 int error, log_bbnum = log->l_logBBsize; 526 527 /* Is the end of the log device zeroed? */ 528 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 529 *return_head_blk = first_blk; 530 531 /* Is the whole lot zeroed? */ 532 if (!first_blk) { 533 /* Linux XFS shouldn't generate totally zeroed logs - 534 * mkfs etc write a dummy unmount record to a fresh 535 * log so we can store the uuid in there 536 */ 537 xlog_warn("XFS: totally zeroed log"); 538 } 539 540 return 0; 541 } else if (error) { 542 xlog_warn("XFS: empty log check failed"); 543 return error; 544 } 545 546 first_blk = 0; /* get cycle # of 1st block */ 547 bp = xlog_get_bp(log, 1); 548 if (!bp) 549 return ENOMEM; 550 if ((error = xlog_bread(log, 0, 1, bp))) 551 goto bp_err; 552 offset = xlog_align(log, 0, 1, bp); 553 first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); 554 555 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 556 if ((error = xlog_bread(log, last_blk, 1, bp))) 557 goto bp_err; 558 offset = xlog_align(log, last_blk, 1, bp); 559 last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); 560 ASSERT(last_half_cycle != 0); 561 562 /* 563 * If the 1st half cycle number is equal to the last half cycle number, 564 * then the entire log is stamped with the same cycle number. In this 565 * case, head_blk can't be set to zero (which makes sense). The below 566 * math doesn't work out properly with head_blk equal to zero. Instead, 567 * we set it to log_bbnum which is an invalid block number, but this 568 * value makes the math correct. If head_blk doesn't changed through 569 * all the tests below, *head_blk is set to zero at the very end rather 570 * than log_bbnum. In a sense, log_bbnum and zero are the same block 571 * in a circular file. 572 */ 573 if (first_half_cycle == last_half_cycle) { 574 /* 575 * In this case we believe that the entire log should have 576 * cycle number last_half_cycle. We need to scan backwards 577 * from the end verifying that there are no holes still 578 * containing last_half_cycle - 1. If we find such a hole, 579 * then the start of that hole will be the new head. The 580 * simple case looks like 581 * x | x ... | x - 1 | x 582 * Another case that fits this picture would be 583 * x | x + 1 | x ... | x 584 * In this case the head really is somewhere at the end of the 585 * log, as one of the latest writes at the beginning was 586 * incomplete. 587 * One more case is 588 * x | x + 1 | x ... | x - 1 | x 589 * This is really the combination of the above two cases, and 590 * the head has to end up at the start of the x-1 hole at the 591 * end of the log. 592 * 593 * In the 256k log case, we will read from the beginning to the 594 * end of the log and search for cycle numbers equal to x-1. 595 * We don't worry about the x+1 blocks that we encounter, 596 * because we know that they cannot be the head since the log 597 * started with x. 598 */ 599 head_blk = log_bbnum; 600 stop_on_cycle = last_half_cycle - 1; 601 } else { 602 /* 603 * In this case we want to find the first block with cycle 604 * number matching last_half_cycle. We expect the log to be 605 * some variation on 606 * x + 1 ... | x ... 607 * The first block with cycle number x (last_half_cycle) will 608 * be where the new head belongs. First we do a binary search 609 * for the first occurrence of last_half_cycle. The binary 610 * search may not be totally accurate, so then we scan back 611 * from there looking for occurrences of last_half_cycle before 612 * us. If that backwards scan wraps around the beginning of 613 * the log, then we look for occurrences of last_half_cycle - 1 614 * at the end of the log. The cases we're looking for look 615 * like 616 * x + 1 ... | x | x + 1 | x ... 617 * ^ binary search stopped here 618 * or 619 * x + 1 ... | x ... | x - 1 | x 620 * <---------> less than scan distance 621 */ 622 stop_on_cycle = last_half_cycle; 623 if ((error = xlog_find_cycle_start(log, bp, first_blk, 624 &head_blk, last_half_cycle))) 625 goto bp_err; 626 } 627 628 /* 629 * Now validate the answer. Scan back some number of maximum possible 630 * blocks and make sure each one has the expected cycle number. The 631 * maximum is determined by the total possible amount of buffering 632 * in the in-core log. The following number can be made tighter if 633 * we actually look at the block size of the filesystem. 634 */ 635 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 636 if (head_blk >= num_scan_bblks) { 637 /* 638 * We are guaranteed that the entire check can be performed 639 * in one buffer. 640 */ 641 start_blk = head_blk - num_scan_bblks; 642 if ((error = xlog_find_verify_cycle(log, 643 start_blk, num_scan_bblks, 644 stop_on_cycle, &new_blk))) 645 goto bp_err; 646 if (new_blk != -1) 647 head_blk = new_blk; 648 } else { /* need to read 2 parts of log */ 649 /* 650 * We are going to scan backwards in the log in two parts. 651 * First we scan the physical end of the log. In this part 652 * of the log, we are looking for blocks with cycle number 653 * last_half_cycle - 1. 654 * If we find one, then we know that the log starts there, as 655 * we've found a hole that didn't get written in going around 656 * the end of the physical log. The simple case for this is 657 * x + 1 ... | x ... | x - 1 | x 658 * <---------> less than scan distance 659 * If all of the blocks at the end of the log have cycle number 660 * last_half_cycle, then we check the blocks at the start of 661 * the log looking for occurrences of last_half_cycle. If we 662 * find one, then our current estimate for the location of the 663 * first occurrence of last_half_cycle is wrong and we move 664 * back to the hole we've found. This case looks like 665 * x + 1 ... | x | x + 1 | x ... 666 * ^ binary search stopped here 667 * Another case we need to handle that only occurs in 256k 668 * logs is 669 * x + 1 ... | x ... | x+1 | x ... 670 * ^ binary search stops here 671 * In a 256k log, the scan at the end of the log will see the 672 * x + 1 blocks. We need to skip past those since that is 673 * certainly not the head of the log. By searching for 674 * last_half_cycle-1 we accomplish that. 675 */ 676 start_blk = log_bbnum - num_scan_bblks + head_blk; 677 ASSERT(head_blk <= INT_MAX && 678 (xfs_daddr_t) num_scan_bblks - head_blk >= 0); 679 if ((error = xlog_find_verify_cycle(log, start_blk, 680 num_scan_bblks - (int)head_blk, 681 (stop_on_cycle - 1), &new_blk))) 682 goto bp_err; 683 if (new_blk != -1) { 684 head_blk = new_blk; 685 goto bad_blk; 686 } 687 688 /* 689 * Scan beginning of log now. The last part of the physical 690 * log is good. This scan needs to verify that it doesn't find 691 * the last_half_cycle. 692 */ 693 start_blk = 0; 694 ASSERT(head_blk <= INT_MAX); 695 if ((error = xlog_find_verify_cycle(log, 696 start_blk, (int)head_blk, 697 stop_on_cycle, &new_blk))) 698 goto bp_err; 699 if (new_blk != -1) 700 head_blk = new_blk; 701 } 702 703 bad_blk: 704 /* 705 * Now we need to make sure head_blk is not pointing to a block in 706 * the middle of a log record. 707 */ 708 num_scan_bblks = XLOG_REC_SHIFT(log); 709 if (head_blk >= num_scan_bblks) { 710 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 711 712 /* start ptr at last block ptr before head_blk */ 713 if ((error = xlog_find_verify_log_record(log, start_blk, 714 &head_blk, 0)) == -1) { 715 error = XFS_ERROR(EIO); 716 goto bp_err; 717 } else if (error) 718 goto bp_err; 719 } else { 720 start_blk = 0; 721 ASSERT(head_blk <= INT_MAX); 722 if ((error = xlog_find_verify_log_record(log, start_blk, 723 &head_blk, 0)) == -1) { 724 /* We hit the beginning of the log during our search */ 725 start_blk = log_bbnum - num_scan_bblks + head_blk; 726 new_blk = log_bbnum; 727 ASSERT(start_blk <= INT_MAX && 728 (xfs_daddr_t) log_bbnum-start_blk >= 0); 729 ASSERT(head_blk <= INT_MAX); 730 if ((error = xlog_find_verify_log_record(log, 731 start_blk, &new_blk, 732 (int)head_blk)) == -1) { 733 error = XFS_ERROR(EIO); 734 goto bp_err; 735 } else if (error) 736 goto bp_err; 737 if (new_blk != log_bbnum) 738 head_blk = new_blk; 739 } else if (error) 740 goto bp_err; 741 } 742 743 xlog_put_bp(bp); 744 if (head_blk == log_bbnum) 745 *return_head_blk = 0; 746 else 747 *return_head_blk = head_blk; 748 /* 749 * When returning here, we have a good block number. Bad block 750 * means that during a previous crash, we didn't have a clean break 751 * from cycle number N to cycle number N-1. In this case, we need 752 * to find the first block with cycle number N-1. 753 */ 754 return 0; 755 756 bp_err: 757 xlog_put_bp(bp); 758 759 if (error) 760 xlog_warn("XFS: failed to find log head"); 761 return error; 762 } 763 764 /* 765 * Find the sync block number or the tail of the log. 766 * 767 * This will be the block number of the last record to have its 768 * associated buffers synced to disk. Every log record header has 769 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 770 * to get a sync block number. The only concern is to figure out which 771 * log record header to believe. 772 * 773 * The following algorithm uses the log record header with the largest 774 * lsn. The entire log record does not need to be valid. We only care 775 * that the header is valid. 776 * 777 * We could speed up search by using current head_blk buffer, but it is not 778 * available. 779 */ 780 int 781 xlog_find_tail( 782 xlog_t *log, 783 xfs_daddr_t *head_blk, 784 xfs_daddr_t *tail_blk) 785 { 786 xlog_rec_header_t *rhead; 787 xlog_op_header_t *op_head; 788 xfs_caddr_t offset = NULL; 789 xfs_buf_t *bp; 790 int error, i, found; 791 xfs_daddr_t umount_data_blk; 792 xfs_daddr_t after_umount_blk; 793 xfs_lsn_t tail_lsn; 794 int hblks; 795 796 found = 0; 797 798 /* 799 * Find previous log record 800 */ 801 if ((error = xlog_find_head(log, head_blk))) 802 return error; 803 804 bp = xlog_get_bp(log, 1); 805 if (!bp) 806 return ENOMEM; 807 if (*head_blk == 0) { /* special case */ 808 if ((error = xlog_bread(log, 0, 1, bp))) 809 goto bread_err; 810 offset = xlog_align(log, 0, 1, bp); 811 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) { 812 *tail_blk = 0; 813 /* leave all other log inited values alone */ 814 goto exit; 815 } 816 } 817 818 /* 819 * Search backwards looking for log record header block 820 */ 821 ASSERT(*head_blk < INT_MAX); 822 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 823 if ((error = xlog_bread(log, i, 1, bp))) 824 goto bread_err; 825 offset = xlog_align(log, i, 1, bp); 826 if (XLOG_HEADER_MAGIC_NUM == 827 INT_GET(*(uint *)offset, ARCH_CONVERT)) { 828 found = 1; 829 break; 830 } 831 } 832 /* 833 * If we haven't found the log record header block, start looking 834 * again from the end of the physical log. XXXmiken: There should be 835 * a check here to make sure we didn't search more than N blocks in 836 * the previous code. 837 */ 838 if (!found) { 839 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 840 if ((error = xlog_bread(log, i, 1, bp))) 841 goto bread_err; 842 offset = xlog_align(log, i, 1, bp); 843 if (XLOG_HEADER_MAGIC_NUM == 844 INT_GET(*(uint*)offset, ARCH_CONVERT)) { 845 found = 2; 846 break; 847 } 848 } 849 } 850 if (!found) { 851 xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); 852 ASSERT(0); 853 return XFS_ERROR(EIO); 854 } 855 856 /* find blk_no of tail of log */ 857 rhead = (xlog_rec_header_t *)offset; 858 *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT)); 859 860 /* 861 * Reset log values according to the state of the log when we 862 * crashed. In the case where head_blk == 0, we bump curr_cycle 863 * one because the next write starts a new cycle rather than 864 * continuing the cycle of the last good log record. At this 865 * point we have guaranteed that all partial log records have been 866 * accounted for. Therefore, we know that the last good log record 867 * written was complete and ended exactly on the end boundary 868 * of the physical log. 869 */ 870 log->l_prev_block = i; 871 log->l_curr_block = (int)*head_blk; 872 log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT); 873 if (found == 2) 874 log->l_curr_cycle++; 875 log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT); 876 log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT); 877 log->l_grant_reserve_cycle = log->l_curr_cycle; 878 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); 879 log->l_grant_write_cycle = log->l_curr_cycle; 880 log->l_grant_write_bytes = BBTOB(log->l_curr_block); 881 882 /* 883 * Look for unmount record. If we find it, then we know there 884 * was a clean unmount. Since 'i' could be the last block in 885 * the physical log, we convert to a log block before comparing 886 * to the head_blk. 887 * 888 * Save the current tail lsn to use to pass to 889 * xlog_clear_stale_blocks() below. We won't want to clear the 890 * unmount record if there is one, so we pass the lsn of the 891 * unmount record rather than the block after it. 892 */ 893 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 894 int h_size = INT_GET(rhead->h_size, ARCH_CONVERT); 895 int h_version = INT_GET(rhead->h_version, ARCH_CONVERT); 896 897 if ((h_version & XLOG_VERSION_2) && 898 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 899 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 900 if (h_size % XLOG_HEADER_CYCLE_SIZE) 901 hblks++; 902 } else { 903 hblks = 1; 904 } 905 } else { 906 hblks = 1; 907 } 908 after_umount_blk = (i + hblks + (int) 909 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize; 910 tail_lsn = log->l_tail_lsn; 911 if (*head_blk == after_umount_blk && 912 INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) { 913 umount_data_blk = (i + hblks) % log->l_logBBsize; 914 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) { 915 goto bread_err; 916 } 917 offset = xlog_align(log, umount_data_blk, 1, bp); 918 op_head = (xlog_op_header_t *)offset; 919 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 920 /* 921 * Set tail and last sync so that newly written 922 * log records will point recovery to after the 923 * current unmount record. 924 */ 925 ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle, 926 after_umount_blk); 927 ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle, 928 after_umount_blk); 929 *tail_blk = after_umount_blk; 930 } 931 } 932 933 /* 934 * Make sure that there are no blocks in front of the head 935 * with the same cycle number as the head. This can happen 936 * because we allow multiple outstanding log writes concurrently, 937 * and the later writes might make it out before earlier ones. 938 * 939 * We use the lsn from before modifying it so that we'll never 940 * overwrite the unmount record after a clean unmount. 941 * 942 * Do this only if we are going to recover the filesystem 943 * 944 * NOTE: This used to say "if (!readonly)" 945 * However on Linux, we can & do recover a read-only filesystem. 946 * We only skip recovery if NORECOVERY is specified on mount, 947 * in which case we would not be here. 948 * 949 * But... if the -device- itself is readonly, just skip this. 950 * We can't recover this device anyway, so it won't matter. 951 */ 952 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 953 error = xlog_clear_stale_blocks(log, tail_lsn); 954 } 955 956 bread_err: 957 exit: 958 xlog_put_bp(bp); 959 960 if (error) 961 xlog_warn("XFS: failed to locate log tail"); 962 return error; 963 } 964 965 /* 966 * Is the log zeroed at all? 967 * 968 * The last binary search should be changed to perform an X block read 969 * once X becomes small enough. You can then search linearly through 970 * the X blocks. This will cut down on the number of reads we need to do. 971 * 972 * If the log is partially zeroed, this routine will pass back the blkno 973 * of the first block with cycle number 0. It won't have a complete LR 974 * preceding it. 975 * 976 * Return: 977 * 0 => the log is completely written to 978 * -1 => use *blk_no as the first block of the log 979 * >0 => error has occurred 980 */ 981 int 982 xlog_find_zeroed( 983 xlog_t *log, 984 xfs_daddr_t *blk_no) 985 { 986 xfs_buf_t *bp; 987 xfs_caddr_t offset; 988 uint first_cycle, last_cycle; 989 xfs_daddr_t new_blk, last_blk, start_blk; 990 xfs_daddr_t num_scan_bblks; 991 int error, log_bbnum = log->l_logBBsize; 992 993 *blk_no = 0; 994 995 /* check totally zeroed log */ 996 bp = xlog_get_bp(log, 1); 997 if (!bp) 998 return ENOMEM; 999 if ((error = xlog_bread(log, 0, 1, bp))) 1000 goto bp_err; 1001 offset = xlog_align(log, 0, 1, bp); 1002 first_cycle = GET_CYCLE(offset, ARCH_CONVERT); 1003 if (first_cycle == 0) { /* completely zeroed log */ 1004 *blk_no = 0; 1005 xlog_put_bp(bp); 1006 return -1; 1007 } 1008 1009 /* check partially zeroed log */ 1010 if ((error = xlog_bread(log, log_bbnum-1, 1, bp))) 1011 goto bp_err; 1012 offset = xlog_align(log, log_bbnum-1, 1, bp); 1013 last_cycle = GET_CYCLE(offset, ARCH_CONVERT); 1014 if (last_cycle != 0) { /* log completely written to */ 1015 xlog_put_bp(bp); 1016 return 0; 1017 } else if (first_cycle != 1) { 1018 /* 1019 * If the cycle of the last block is zero, the cycle of 1020 * the first block must be 1. If it's not, maybe we're 1021 * not looking at a log... Bail out. 1022 */ 1023 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); 1024 return XFS_ERROR(EINVAL); 1025 } 1026 1027 /* we have a partially zeroed log */ 1028 last_blk = log_bbnum-1; 1029 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1030 goto bp_err; 1031 1032 /* 1033 * Validate the answer. Because there is no way to guarantee that 1034 * the entire log is made up of log records which are the same size, 1035 * we scan over the defined maximum blocks. At this point, the maximum 1036 * is not chosen to mean anything special. XXXmiken 1037 */ 1038 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1039 ASSERT(num_scan_bblks <= INT_MAX); 1040 1041 if (last_blk < num_scan_bblks) 1042 num_scan_bblks = last_blk; 1043 start_blk = last_blk - num_scan_bblks; 1044 1045 /* 1046 * We search for any instances of cycle number 0 that occur before 1047 * our current estimate of the head. What we're trying to detect is 1048 * 1 ... | 0 | 1 | 0... 1049 * ^ binary search ends here 1050 */ 1051 if ((error = xlog_find_verify_cycle(log, start_blk, 1052 (int)num_scan_bblks, 0, &new_blk))) 1053 goto bp_err; 1054 if (new_blk != -1) 1055 last_blk = new_blk; 1056 1057 /* 1058 * Potentially backup over partial log record write. We don't need 1059 * to search the end of the log because we know it is zero. 1060 */ 1061 if ((error = xlog_find_verify_log_record(log, start_blk, 1062 &last_blk, 0)) == -1) { 1063 error = XFS_ERROR(EIO); 1064 goto bp_err; 1065 } else if (error) 1066 goto bp_err; 1067 1068 *blk_no = last_blk; 1069 bp_err: 1070 xlog_put_bp(bp); 1071 if (error) 1072 return error; 1073 return -1; 1074 } 1075 1076 /* 1077 * These are simple subroutines used by xlog_clear_stale_blocks() below 1078 * to initialize a buffer full of empty log record headers and write 1079 * them into the log. 1080 */ 1081 STATIC void 1082 xlog_add_record( 1083 xlog_t *log, 1084 xfs_caddr_t buf, 1085 int cycle, 1086 int block, 1087 int tail_cycle, 1088 int tail_block) 1089 { 1090 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1091 1092 memset(buf, 0, BBSIZE); 1093 INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM); 1094 INT_SET(recp->h_cycle, ARCH_CONVERT, cycle); 1095 INT_SET(recp->h_version, ARCH_CONVERT, 1096 XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1); 1097 ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block); 1098 ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block); 1099 INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT); 1100 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1101 } 1102 1103 STATIC int 1104 xlog_write_log_records( 1105 xlog_t *log, 1106 int cycle, 1107 int start_block, 1108 int blocks, 1109 int tail_cycle, 1110 int tail_block) 1111 { 1112 xfs_caddr_t offset; 1113 xfs_buf_t *bp; 1114 int balign, ealign; 1115 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 1116 int end_block = start_block + blocks; 1117 int bufblks; 1118 int error = 0; 1119 int i, j = 0; 1120 1121 bufblks = 1 << ffs(blocks); 1122 while (!(bp = xlog_get_bp(log, bufblks))) { 1123 bufblks >>= 1; 1124 if (bufblks <= log->l_sectbb_log) 1125 return ENOMEM; 1126 } 1127 1128 /* We may need to do a read at the start to fill in part of 1129 * the buffer in the starting sector not covered by the first 1130 * write below. 1131 */ 1132 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block); 1133 if (balign != start_block) { 1134 if ((error = xlog_bread(log, start_block, 1, bp))) { 1135 xlog_put_bp(bp); 1136 return error; 1137 } 1138 j = start_block - balign; 1139 } 1140 1141 for (i = start_block; i < end_block; i += bufblks) { 1142 int bcount, endcount; 1143 1144 bcount = min(bufblks, end_block - start_block); 1145 endcount = bcount - j; 1146 1147 /* We may need to do a read at the end to fill in part of 1148 * the buffer in the final sector not covered by the write. 1149 * If this is the same sector as the above read, skip it. 1150 */ 1151 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block); 1152 if (j == 0 && (start_block + endcount > ealign)) { 1153 offset = XFS_BUF_PTR(bp); 1154 balign = BBTOB(ealign - start_block); 1155 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb)); 1156 if ((error = xlog_bread(log, ealign, sectbb, bp))) 1157 break; 1158 XFS_BUF_SET_PTR(bp, offset, bufblks); 1159 } 1160 1161 offset = xlog_align(log, start_block, endcount, bp); 1162 for (; j < endcount; j++) { 1163 xlog_add_record(log, offset, cycle, i+j, 1164 tail_cycle, tail_block); 1165 offset += BBSIZE; 1166 } 1167 error = xlog_bwrite(log, start_block, endcount, bp); 1168 if (error) 1169 break; 1170 start_block += endcount; 1171 j = 0; 1172 } 1173 xlog_put_bp(bp); 1174 return error; 1175 } 1176 1177 /* 1178 * This routine is called to blow away any incomplete log writes out 1179 * in front of the log head. We do this so that we won't become confused 1180 * if we come up, write only a little bit more, and then crash again. 1181 * If we leave the partial log records out there, this situation could 1182 * cause us to think those partial writes are valid blocks since they 1183 * have the current cycle number. We get rid of them by overwriting them 1184 * with empty log records with the old cycle number rather than the 1185 * current one. 1186 * 1187 * The tail lsn is passed in rather than taken from 1188 * the log so that we will not write over the unmount record after a 1189 * clean unmount in a 512 block log. Doing so would leave the log without 1190 * any valid log records in it until a new one was written. If we crashed 1191 * during that time we would not be able to recover. 1192 */ 1193 STATIC int 1194 xlog_clear_stale_blocks( 1195 xlog_t *log, 1196 xfs_lsn_t tail_lsn) 1197 { 1198 int tail_cycle, head_cycle; 1199 int tail_block, head_block; 1200 int tail_distance, max_distance; 1201 int distance; 1202 int error; 1203 1204 tail_cycle = CYCLE_LSN(tail_lsn); 1205 tail_block = BLOCK_LSN(tail_lsn); 1206 head_cycle = log->l_curr_cycle; 1207 head_block = log->l_curr_block; 1208 1209 /* 1210 * Figure out the distance between the new head of the log 1211 * and the tail. We want to write over any blocks beyond the 1212 * head that we may have written just before the crash, but 1213 * we don't want to overwrite the tail of the log. 1214 */ 1215 if (head_cycle == tail_cycle) { 1216 /* 1217 * The tail is behind the head in the physical log, 1218 * so the distance from the head to the tail is the 1219 * distance from the head to the end of the log plus 1220 * the distance from the beginning of the log to the 1221 * tail. 1222 */ 1223 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1224 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1225 XFS_ERRLEVEL_LOW, log->l_mp); 1226 return XFS_ERROR(EFSCORRUPTED); 1227 } 1228 tail_distance = tail_block + (log->l_logBBsize - head_block); 1229 } else { 1230 /* 1231 * The head is behind the tail in the physical log, 1232 * so the distance from the head to the tail is just 1233 * the tail block minus the head block. 1234 */ 1235 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1236 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1237 XFS_ERRLEVEL_LOW, log->l_mp); 1238 return XFS_ERROR(EFSCORRUPTED); 1239 } 1240 tail_distance = tail_block - head_block; 1241 } 1242 1243 /* 1244 * If the head is right up against the tail, we can't clear 1245 * anything. 1246 */ 1247 if (tail_distance <= 0) { 1248 ASSERT(tail_distance == 0); 1249 return 0; 1250 } 1251 1252 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1253 /* 1254 * Take the smaller of the maximum amount of outstanding I/O 1255 * we could have and the distance to the tail to clear out. 1256 * We take the smaller so that we don't overwrite the tail and 1257 * we don't waste all day writing from the head to the tail 1258 * for no reason. 1259 */ 1260 max_distance = MIN(max_distance, tail_distance); 1261 1262 if ((head_block + max_distance) <= log->l_logBBsize) { 1263 /* 1264 * We can stomp all the blocks we need to without 1265 * wrapping around the end of the log. Just do it 1266 * in a single write. Use the cycle number of the 1267 * current cycle minus one so that the log will look like: 1268 * n ... | n - 1 ... 1269 */ 1270 error = xlog_write_log_records(log, (head_cycle - 1), 1271 head_block, max_distance, tail_cycle, 1272 tail_block); 1273 if (error) 1274 return error; 1275 } else { 1276 /* 1277 * We need to wrap around the end of the physical log in 1278 * order to clear all the blocks. Do it in two separate 1279 * I/Os. The first write should be from the head to the 1280 * end of the physical log, and it should use the current 1281 * cycle number minus one just like above. 1282 */ 1283 distance = log->l_logBBsize - head_block; 1284 error = xlog_write_log_records(log, (head_cycle - 1), 1285 head_block, distance, tail_cycle, 1286 tail_block); 1287 1288 if (error) 1289 return error; 1290 1291 /* 1292 * Now write the blocks at the start of the physical log. 1293 * This writes the remainder of the blocks we want to clear. 1294 * It uses the current cycle number since we're now on the 1295 * same cycle as the head so that we get: 1296 * n ... n ... | n - 1 ... 1297 * ^^^^^ blocks we're writing 1298 */ 1299 distance = max_distance - (log->l_logBBsize - head_block); 1300 error = xlog_write_log_records(log, head_cycle, 0, distance, 1301 tail_cycle, tail_block); 1302 if (error) 1303 return error; 1304 } 1305 1306 return 0; 1307 } 1308 1309 /****************************************************************************** 1310 * 1311 * Log recover routines 1312 * 1313 ****************************************************************************** 1314 */ 1315 1316 STATIC xlog_recover_t * 1317 xlog_recover_find_tid( 1318 xlog_recover_t *q, 1319 xlog_tid_t tid) 1320 { 1321 xlog_recover_t *p = q; 1322 1323 while (p != NULL) { 1324 if (p->r_log_tid == tid) 1325 break; 1326 p = p->r_next; 1327 } 1328 return p; 1329 } 1330 1331 STATIC void 1332 xlog_recover_put_hashq( 1333 xlog_recover_t **q, 1334 xlog_recover_t *trans) 1335 { 1336 trans->r_next = *q; 1337 *q = trans; 1338 } 1339 1340 STATIC void 1341 xlog_recover_add_item( 1342 xlog_recover_item_t **itemq) 1343 { 1344 xlog_recover_item_t *item; 1345 1346 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1347 xlog_recover_insert_item_backq(itemq, item); 1348 } 1349 1350 STATIC int 1351 xlog_recover_add_to_cont_trans( 1352 xlog_recover_t *trans, 1353 xfs_caddr_t dp, 1354 int len) 1355 { 1356 xlog_recover_item_t *item; 1357 xfs_caddr_t ptr, old_ptr; 1358 int old_len; 1359 1360 item = trans->r_itemq; 1361 if (item == 0) { 1362 /* finish copying rest of trans header */ 1363 xlog_recover_add_item(&trans->r_itemq); 1364 ptr = (xfs_caddr_t) &trans->r_theader + 1365 sizeof(xfs_trans_header_t) - len; 1366 memcpy(ptr, dp, len); /* d, s, l */ 1367 return 0; 1368 } 1369 item = item->ri_prev; 1370 1371 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1372 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1373 1374 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u); 1375 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1376 item->ri_buf[item->ri_cnt-1].i_len += len; 1377 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1378 return 0; 1379 } 1380 1381 /* 1382 * The next region to add is the start of a new region. It could be 1383 * a whole region or it could be the first part of a new region. Because 1384 * of this, the assumption here is that the type and size fields of all 1385 * format structures fit into the first 32 bits of the structure. 1386 * 1387 * This works because all regions must be 32 bit aligned. Therefore, we 1388 * either have both fields or we have neither field. In the case we have 1389 * neither field, the data part of the region is zero length. We only have 1390 * a log_op_header and can throw away the header since a new one will appear 1391 * later. If we have at least 4 bytes, then we can determine how many regions 1392 * will appear in the current log item. 1393 */ 1394 STATIC int 1395 xlog_recover_add_to_trans( 1396 xlog_recover_t *trans, 1397 xfs_caddr_t dp, 1398 int len) 1399 { 1400 xfs_inode_log_format_t *in_f; /* any will do */ 1401 xlog_recover_item_t *item; 1402 xfs_caddr_t ptr; 1403 1404 if (!len) 1405 return 0; 1406 item = trans->r_itemq; 1407 if (item == 0) { 1408 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC); 1409 if (len == sizeof(xfs_trans_header_t)) 1410 xlog_recover_add_item(&trans->r_itemq); 1411 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1412 return 0; 1413 } 1414 1415 ptr = kmem_alloc(len, KM_SLEEP); 1416 memcpy(ptr, dp, len); 1417 in_f = (xfs_inode_log_format_t *)ptr; 1418 1419 if (item->ri_prev->ri_total != 0 && 1420 item->ri_prev->ri_total == item->ri_prev->ri_cnt) { 1421 xlog_recover_add_item(&trans->r_itemq); 1422 } 1423 item = trans->r_itemq; 1424 item = item->ri_prev; 1425 1426 if (item->ri_total == 0) { /* first region to be added */ 1427 item->ri_total = in_f->ilf_size; 1428 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM); 1429 item->ri_buf = kmem_zalloc((item->ri_total * 1430 sizeof(xfs_log_iovec_t)), KM_SLEEP); 1431 } 1432 ASSERT(item->ri_total > item->ri_cnt); 1433 /* Description region is ri_buf[0] */ 1434 item->ri_buf[item->ri_cnt].i_addr = ptr; 1435 item->ri_buf[item->ri_cnt].i_len = len; 1436 item->ri_cnt++; 1437 return 0; 1438 } 1439 1440 STATIC void 1441 xlog_recover_new_tid( 1442 xlog_recover_t **q, 1443 xlog_tid_t tid, 1444 xfs_lsn_t lsn) 1445 { 1446 xlog_recover_t *trans; 1447 1448 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1449 trans->r_log_tid = tid; 1450 trans->r_lsn = lsn; 1451 xlog_recover_put_hashq(q, trans); 1452 } 1453 1454 STATIC int 1455 xlog_recover_unlink_tid( 1456 xlog_recover_t **q, 1457 xlog_recover_t *trans) 1458 { 1459 xlog_recover_t *tp; 1460 int found = 0; 1461 1462 ASSERT(trans != 0); 1463 if (trans == *q) { 1464 *q = (*q)->r_next; 1465 } else { 1466 tp = *q; 1467 while (tp != 0) { 1468 if (tp->r_next == trans) { 1469 found = 1; 1470 break; 1471 } 1472 tp = tp->r_next; 1473 } 1474 if (!found) { 1475 xlog_warn( 1476 "XFS: xlog_recover_unlink_tid: trans not found"); 1477 ASSERT(0); 1478 return XFS_ERROR(EIO); 1479 } 1480 tp->r_next = tp->r_next->r_next; 1481 } 1482 return 0; 1483 } 1484 1485 STATIC void 1486 xlog_recover_insert_item_backq( 1487 xlog_recover_item_t **q, 1488 xlog_recover_item_t *item) 1489 { 1490 if (*q == 0) { 1491 item->ri_prev = item->ri_next = item; 1492 *q = item; 1493 } else { 1494 item->ri_next = *q; 1495 item->ri_prev = (*q)->ri_prev; 1496 (*q)->ri_prev = item; 1497 item->ri_prev->ri_next = item; 1498 } 1499 } 1500 1501 STATIC void 1502 xlog_recover_insert_item_frontq( 1503 xlog_recover_item_t **q, 1504 xlog_recover_item_t *item) 1505 { 1506 xlog_recover_insert_item_backq(q, item); 1507 *q = item; 1508 } 1509 1510 STATIC int 1511 xlog_recover_reorder_trans( 1512 xlog_t *log, 1513 xlog_recover_t *trans) 1514 { 1515 xlog_recover_item_t *first_item, *itemq, *itemq_next; 1516 xfs_buf_log_format_t *buf_f; 1517 ushort flags = 0; 1518 1519 first_item = itemq = trans->r_itemq; 1520 trans->r_itemq = NULL; 1521 do { 1522 itemq_next = itemq->ri_next; 1523 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr; 1524 1525 switch (ITEM_TYPE(itemq)) { 1526 case XFS_LI_BUF: 1527 flags = buf_f->blf_flags; 1528 if (!(flags & XFS_BLI_CANCEL)) { 1529 xlog_recover_insert_item_frontq(&trans->r_itemq, 1530 itemq); 1531 break; 1532 } 1533 case XFS_LI_INODE: 1534 case XFS_LI_DQUOT: 1535 case XFS_LI_QUOTAOFF: 1536 case XFS_LI_EFD: 1537 case XFS_LI_EFI: 1538 xlog_recover_insert_item_backq(&trans->r_itemq, itemq); 1539 break; 1540 default: 1541 xlog_warn( 1542 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); 1543 ASSERT(0); 1544 return XFS_ERROR(EIO); 1545 } 1546 itemq = itemq_next; 1547 } while (first_item != itemq); 1548 return 0; 1549 } 1550 1551 /* 1552 * Build up the table of buf cancel records so that we don't replay 1553 * cancelled data in the second pass. For buffer records that are 1554 * not cancel records, there is nothing to do here so we just return. 1555 * 1556 * If we get a cancel record which is already in the table, this indicates 1557 * that the buffer was cancelled multiple times. In order to ensure 1558 * that during pass 2 we keep the record in the table until we reach its 1559 * last occurrence in the log, we keep a reference count in the cancel 1560 * record in the table to tell us how many times we expect to see this 1561 * record during the second pass. 1562 */ 1563 STATIC void 1564 xlog_recover_do_buffer_pass1( 1565 xlog_t *log, 1566 xfs_buf_log_format_t *buf_f) 1567 { 1568 xfs_buf_cancel_t *bcp; 1569 xfs_buf_cancel_t *nextp; 1570 xfs_buf_cancel_t *prevp; 1571 xfs_buf_cancel_t **bucket; 1572 xfs_daddr_t blkno = 0; 1573 uint len = 0; 1574 ushort flags = 0; 1575 1576 switch (buf_f->blf_type) { 1577 case XFS_LI_BUF: 1578 blkno = buf_f->blf_blkno; 1579 len = buf_f->blf_len; 1580 flags = buf_f->blf_flags; 1581 break; 1582 } 1583 1584 /* 1585 * If this isn't a cancel buffer item, then just return. 1586 */ 1587 if (!(flags & XFS_BLI_CANCEL)) 1588 return; 1589 1590 /* 1591 * Insert an xfs_buf_cancel record into the hash table of 1592 * them. If there is already an identical record, bump 1593 * its reference count. 1594 */ 1595 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1596 XLOG_BC_TABLE_SIZE]; 1597 /* 1598 * If the hash bucket is empty then just insert a new record into 1599 * the bucket. 1600 */ 1601 if (*bucket == NULL) { 1602 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1603 KM_SLEEP); 1604 bcp->bc_blkno = blkno; 1605 bcp->bc_len = len; 1606 bcp->bc_refcount = 1; 1607 bcp->bc_next = NULL; 1608 *bucket = bcp; 1609 return; 1610 } 1611 1612 /* 1613 * The hash bucket is not empty, so search for duplicates of our 1614 * record. If we find one them just bump its refcount. If not 1615 * then add us at the end of the list. 1616 */ 1617 prevp = NULL; 1618 nextp = *bucket; 1619 while (nextp != NULL) { 1620 if (nextp->bc_blkno == blkno && nextp->bc_len == len) { 1621 nextp->bc_refcount++; 1622 return; 1623 } 1624 prevp = nextp; 1625 nextp = nextp->bc_next; 1626 } 1627 ASSERT(prevp != NULL); 1628 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1629 KM_SLEEP); 1630 bcp->bc_blkno = blkno; 1631 bcp->bc_len = len; 1632 bcp->bc_refcount = 1; 1633 bcp->bc_next = NULL; 1634 prevp->bc_next = bcp; 1635 } 1636 1637 /* 1638 * Check to see whether the buffer being recovered has a corresponding 1639 * entry in the buffer cancel record table. If it does then return 1 1640 * so that it will be cancelled, otherwise return 0. If the buffer is 1641 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement 1642 * the refcount on the entry in the table and remove it from the table 1643 * if this is the last reference. 1644 * 1645 * We remove the cancel record from the table when we encounter its 1646 * last occurrence in the log so that if the same buffer is re-used 1647 * again after its last cancellation we actually replay the changes 1648 * made at that point. 1649 */ 1650 STATIC int 1651 xlog_check_buffer_cancelled( 1652 xlog_t *log, 1653 xfs_daddr_t blkno, 1654 uint len, 1655 ushort flags) 1656 { 1657 xfs_buf_cancel_t *bcp; 1658 xfs_buf_cancel_t *prevp; 1659 xfs_buf_cancel_t **bucket; 1660 1661 if (log->l_buf_cancel_table == NULL) { 1662 /* 1663 * There is nothing in the table built in pass one, 1664 * so this buffer must not be cancelled. 1665 */ 1666 ASSERT(!(flags & XFS_BLI_CANCEL)); 1667 return 0; 1668 } 1669 1670 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1671 XLOG_BC_TABLE_SIZE]; 1672 bcp = *bucket; 1673 if (bcp == NULL) { 1674 /* 1675 * There is no corresponding entry in the table built 1676 * in pass one, so this buffer has not been cancelled. 1677 */ 1678 ASSERT(!(flags & XFS_BLI_CANCEL)); 1679 return 0; 1680 } 1681 1682 /* 1683 * Search for an entry in the buffer cancel table that 1684 * matches our buffer. 1685 */ 1686 prevp = NULL; 1687 while (bcp != NULL) { 1688 if (bcp->bc_blkno == blkno && bcp->bc_len == len) { 1689 /* 1690 * We've go a match, so return 1 so that the 1691 * recovery of this buffer is cancelled. 1692 * If this buffer is actually a buffer cancel 1693 * log item, then decrement the refcount on the 1694 * one in the table and remove it if this is the 1695 * last reference. 1696 */ 1697 if (flags & XFS_BLI_CANCEL) { 1698 bcp->bc_refcount--; 1699 if (bcp->bc_refcount == 0) { 1700 if (prevp == NULL) { 1701 *bucket = bcp->bc_next; 1702 } else { 1703 prevp->bc_next = bcp->bc_next; 1704 } 1705 kmem_free(bcp, 1706 sizeof(xfs_buf_cancel_t)); 1707 } 1708 } 1709 return 1; 1710 } 1711 prevp = bcp; 1712 bcp = bcp->bc_next; 1713 } 1714 /* 1715 * We didn't find a corresponding entry in the table, so 1716 * return 0 so that the buffer is NOT cancelled. 1717 */ 1718 ASSERT(!(flags & XFS_BLI_CANCEL)); 1719 return 0; 1720 } 1721 1722 STATIC int 1723 xlog_recover_do_buffer_pass2( 1724 xlog_t *log, 1725 xfs_buf_log_format_t *buf_f) 1726 { 1727 xfs_daddr_t blkno = 0; 1728 ushort flags = 0; 1729 uint len = 0; 1730 1731 switch (buf_f->blf_type) { 1732 case XFS_LI_BUF: 1733 blkno = buf_f->blf_blkno; 1734 flags = buf_f->blf_flags; 1735 len = buf_f->blf_len; 1736 break; 1737 } 1738 1739 return xlog_check_buffer_cancelled(log, blkno, len, flags); 1740 } 1741 1742 /* 1743 * Perform recovery for a buffer full of inodes. In these buffers, 1744 * the only data which should be recovered is that which corresponds 1745 * to the di_next_unlinked pointers in the on disk inode structures. 1746 * The rest of the data for the inodes is always logged through the 1747 * inodes themselves rather than the inode buffer and is recovered 1748 * in xlog_recover_do_inode_trans(). 1749 * 1750 * The only time when buffers full of inodes are fully recovered is 1751 * when the buffer is full of newly allocated inodes. In this case 1752 * the buffer will not be marked as an inode buffer and so will be 1753 * sent to xlog_recover_do_reg_buffer() below during recovery. 1754 */ 1755 STATIC int 1756 xlog_recover_do_inode_buffer( 1757 xfs_mount_t *mp, 1758 xlog_recover_item_t *item, 1759 xfs_buf_t *bp, 1760 xfs_buf_log_format_t *buf_f) 1761 { 1762 int i; 1763 int item_index; 1764 int bit; 1765 int nbits; 1766 int reg_buf_offset; 1767 int reg_buf_bytes; 1768 int next_unlinked_offset; 1769 int inodes_per_buf; 1770 xfs_agino_t *logged_nextp; 1771 xfs_agino_t *buffer_nextp; 1772 unsigned int *data_map = NULL; 1773 unsigned int map_size = 0; 1774 1775 switch (buf_f->blf_type) { 1776 case XFS_LI_BUF: 1777 data_map = buf_f->blf_data_map; 1778 map_size = buf_f->blf_map_size; 1779 break; 1780 } 1781 /* 1782 * Set the variables corresponding to the current region to 1783 * 0 so that we'll initialize them on the first pass through 1784 * the loop. 1785 */ 1786 reg_buf_offset = 0; 1787 reg_buf_bytes = 0; 1788 bit = 0; 1789 nbits = 0; 1790 item_index = 0; 1791 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; 1792 for (i = 0; i < inodes_per_buf; i++) { 1793 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1794 offsetof(xfs_dinode_t, di_next_unlinked); 1795 1796 while (next_unlinked_offset >= 1797 (reg_buf_offset + reg_buf_bytes)) { 1798 /* 1799 * The next di_next_unlinked field is beyond 1800 * the current logged region. Find the next 1801 * logged region that contains or is beyond 1802 * the current di_next_unlinked field. 1803 */ 1804 bit += nbits; 1805 bit = xfs_next_bit(data_map, map_size, bit); 1806 1807 /* 1808 * If there are no more logged regions in the 1809 * buffer, then we're done. 1810 */ 1811 if (bit == -1) { 1812 return 0; 1813 } 1814 1815 nbits = xfs_contig_bits(data_map, map_size, 1816 bit); 1817 ASSERT(nbits > 0); 1818 reg_buf_offset = bit << XFS_BLI_SHIFT; 1819 reg_buf_bytes = nbits << XFS_BLI_SHIFT; 1820 item_index++; 1821 } 1822 1823 /* 1824 * If the current logged region starts after the current 1825 * di_next_unlinked field, then move on to the next 1826 * di_next_unlinked field. 1827 */ 1828 if (next_unlinked_offset < reg_buf_offset) { 1829 continue; 1830 } 1831 1832 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1833 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0); 1834 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); 1835 1836 /* 1837 * The current logged region contains a copy of the 1838 * current di_next_unlinked field. Extract its value 1839 * and copy it to the buffer copy. 1840 */ 1841 logged_nextp = (xfs_agino_t *) 1842 ((char *)(item->ri_buf[item_index].i_addr) + 1843 (next_unlinked_offset - reg_buf_offset)); 1844 if (unlikely(*logged_nextp == 0)) { 1845 xfs_fs_cmn_err(CE_ALERT, mp, 1846 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", 1847 item, bp); 1848 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1849 XFS_ERRLEVEL_LOW, mp); 1850 return XFS_ERROR(EFSCORRUPTED); 1851 } 1852 1853 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1854 next_unlinked_offset); 1855 *buffer_nextp = *logged_nextp; 1856 } 1857 1858 return 0; 1859 } 1860 1861 /* 1862 * Perform a 'normal' buffer recovery. Each logged region of the 1863 * buffer should be copied over the corresponding region in the 1864 * given buffer. The bitmap in the buf log format structure indicates 1865 * where to place the logged data. 1866 */ 1867 /*ARGSUSED*/ 1868 STATIC void 1869 xlog_recover_do_reg_buffer( 1870 xfs_mount_t *mp, 1871 xlog_recover_item_t *item, 1872 xfs_buf_t *bp, 1873 xfs_buf_log_format_t *buf_f) 1874 { 1875 int i; 1876 int bit; 1877 int nbits; 1878 unsigned int *data_map = NULL; 1879 unsigned int map_size = 0; 1880 int error; 1881 1882 switch (buf_f->blf_type) { 1883 case XFS_LI_BUF: 1884 data_map = buf_f->blf_data_map; 1885 map_size = buf_f->blf_map_size; 1886 break; 1887 } 1888 bit = 0; 1889 i = 1; /* 0 is the buf format structure */ 1890 while (1) { 1891 bit = xfs_next_bit(data_map, map_size, bit); 1892 if (bit == -1) 1893 break; 1894 nbits = xfs_contig_bits(data_map, map_size, bit); 1895 ASSERT(nbits > 0); 1896 ASSERT(item->ri_buf[i].i_addr != 0); 1897 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0); 1898 ASSERT(XFS_BUF_COUNT(bp) >= 1899 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT)); 1900 1901 /* 1902 * Do a sanity check if this is a dquot buffer. Just checking 1903 * the first dquot in the buffer should do. XXXThis is 1904 * probably a good thing to do for other buf types also. 1905 */ 1906 error = 0; 1907 if (buf_f->blf_flags & 1908 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 1909 error = xfs_qm_dqcheck((xfs_disk_dquot_t *) 1910 item->ri_buf[i].i_addr, 1911 -1, 0, XFS_QMOPT_DOWARN, 1912 "dquot_buf_recover"); 1913 } 1914 if (!error) 1915 memcpy(xfs_buf_offset(bp, 1916 (uint)bit << XFS_BLI_SHIFT), /* dest */ 1917 item->ri_buf[i].i_addr, /* source */ 1918 nbits<<XFS_BLI_SHIFT); /* length */ 1919 i++; 1920 bit += nbits; 1921 } 1922 1923 /* Shouldn't be any more regions */ 1924 ASSERT(i == item->ri_total); 1925 } 1926 1927 /* 1928 * Do some primitive error checking on ondisk dquot data structures. 1929 */ 1930 int 1931 xfs_qm_dqcheck( 1932 xfs_disk_dquot_t *ddq, 1933 xfs_dqid_t id, 1934 uint type, /* used only when IO_dorepair is true */ 1935 uint flags, 1936 char *str) 1937 { 1938 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 1939 int errs = 0; 1940 1941 /* 1942 * We can encounter an uninitialized dquot buffer for 2 reasons: 1943 * 1. If we crash while deleting the quotainode(s), and those blks got 1944 * used for user data. This is because we take the path of regular 1945 * file deletion; however, the size field of quotainodes is never 1946 * updated, so all the tricks that we play in itruncate_finish 1947 * don't quite matter. 1948 * 1949 * 2. We don't play the quota buffers when there's a quotaoff logitem. 1950 * But the allocation will be replayed so we'll end up with an 1951 * uninitialized quota block. 1952 * 1953 * This is all fine; things are still consistent, and we haven't lost 1954 * any quota information. Just don't complain about bad dquot blks. 1955 */ 1956 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) { 1957 if (flags & XFS_QMOPT_DOWARN) 1958 cmn_err(CE_ALERT, 1959 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 1960 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 1961 errs++; 1962 } 1963 if (ddq->d_version != XFS_DQUOT_VERSION) { 1964 if (flags & XFS_QMOPT_DOWARN) 1965 cmn_err(CE_ALERT, 1966 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 1967 str, id, ddq->d_version, XFS_DQUOT_VERSION); 1968 errs++; 1969 } 1970 1971 if (ddq->d_flags != XFS_DQ_USER && 1972 ddq->d_flags != XFS_DQ_PROJ && 1973 ddq->d_flags != XFS_DQ_GROUP) { 1974 if (flags & XFS_QMOPT_DOWARN) 1975 cmn_err(CE_ALERT, 1976 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 1977 str, id, ddq->d_flags); 1978 errs++; 1979 } 1980 1981 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 1982 if (flags & XFS_QMOPT_DOWARN) 1983 cmn_err(CE_ALERT, 1984 "%s : ondisk-dquot 0x%p, ID mismatch: " 1985 "0x%x expected, found id 0x%x", 1986 str, ddq, id, be32_to_cpu(ddq->d_id)); 1987 errs++; 1988 } 1989 1990 if (!errs && ddq->d_id) { 1991 if (ddq->d_blk_softlimit && 1992 be64_to_cpu(ddq->d_bcount) >= 1993 be64_to_cpu(ddq->d_blk_softlimit)) { 1994 if (!ddq->d_btimer) { 1995 if (flags & XFS_QMOPT_DOWARN) 1996 cmn_err(CE_ALERT, 1997 "%s : Dquot ID 0x%x (0x%p) " 1998 "BLK TIMER NOT STARTED", 1999 str, (int)be32_to_cpu(ddq->d_id), ddq); 2000 errs++; 2001 } 2002 } 2003 if (ddq->d_ino_softlimit && 2004 be64_to_cpu(ddq->d_icount) >= 2005 be64_to_cpu(ddq->d_ino_softlimit)) { 2006 if (!ddq->d_itimer) { 2007 if (flags & XFS_QMOPT_DOWARN) 2008 cmn_err(CE_ALERT, 2009 "%s : Dquot ID 0x%x (0x%p) " 2010 "INODE TIMER NOT STARTED", 2011 str, (int)be32_to_cpu(ddq->d_id), ddq); 2012 errs++; 2013 } 2014 } 2015 if (ddq->d_rtb_softlimit && 2016 be64_to_cpu(ddq->d_rtbcount) >= 2017 be64_to_cpu(ddq->d_rtb_softlimit)) { 2018 if (!ddq->d_rtbtimer) { 2019 if (flags & XFS_QMOPT_DOWARN) 2020 cmn_err(CE_ALERT, 2021 "%s : Dquot ID 0x%x (0x%p) " 2022 "RTBLK TIMER NOT STARTED", 2023 str, (int)be32_to_cpu(ddq->d_id), ddq); 2024 errs++; 2025 } 2026 } 2027 } 2028 2029 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2030 return errs; 2031 2032 if (flags & XFS_QMOPT_DOWARN) 2033 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); 2034 2035 /* 2036 * Typically, a repair is only requested by quotacheck. 2037 */ 2038 ASSERT(id != -1); 2039 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2040 memset(d, 0, sizeof(xfs_dqblk_t)); 2041 2042 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2043 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2044 d->dd_diskdq.d_flags = type; 2045 d->dd_diskdq.d_id = cpu_to_be32(id); 2046 2047 return errs; 2048 } 2049 2050 /* 2051 * Perform a dquot buffer recovery. 2052 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2053 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2054 * Else, treat it as a regular buffer and do recovery. 2055 */ 2056 STATIC void 2057 xlog_recover_do_dquot_buffer( 2058 xfs_mount_t *mp, 2059 xlog_t *log, 2060 xlog_recover_item_t *item, 2061 xfs_buf_t *bp, 2062 xfs_buf_log_format_t *buf_f) 2063 { 2064 uint type; 2065 2066 /* 2067 * Filesystems are required to send in quota flags at mount time. 2068 */ 2069 if (mp->m_qflags == 0) { 2070 return; 2071 } 2072 2073 type = 0; 2074 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF) 2075 type |= XFS_DQ_USER; 2076 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF) 2077 type |= XFS_DQ_PROJ; 2078 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF) 2079 type |= XFS_DQ_GROUP; 2080 /* 2081 * This type of quotas was turned off, so ignore this buffer 2082 */ 2083 if (log->l_quotaoffs_flag & type) 2084 return; 2085 2086 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2087 } 2088 2089 /* 2090 * This routine replays a modification made to a buffer at runtime. 2091 * There are actually two types of buffer, regular and inode, which 2092 * are handled differently. Inode buffers are handled differently 2093 * in that we only recover a specific set of data from them, namely 2094 * the inode di_next_unlinked fields. This is because all other inode 2095 * data is actually logged via inode records and any data we replay 2096 * here which overlaps that may be stale. 2097 * 2098 * When meta-data buffers are freed at run time we log a buffer item 2099 * with the XFS_BLI_CANCEL bit set to indicate that previous copies 2100 * of the buffer in the log should not be replayed at recovery time. 2101 * This is so that if the blocks covered by the buffer are reused for 2102 * file data before we crash we don't end up replaying old, freed 2103 * meta-data into a user's file. 2104 * 2105 * To handle the cancellation of buffer log items, we make two passes 2106 * over the log during recovery. During the first we build a table of 2107 * those buffers which have been cancelled, and during the second we 2108 * only replay those buffers which do not have corresponding cancel 2109 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2110 * for more details on the implementation of the table of cancel records. 2111 */ 2112 STATIC int 2113 xlog_recover_do_buffer_trans( 2114 xlog_t *log, 2115 xlog_recover_item_t *item, 2116 int pass) 2117 { 2118 xfs_buf_log_format_t *buf_f; 2119 xfs_mount_t *mp; 2120 xfs_buf_t *bp; 2121 int error; 2122 int cancel; 2123 xfs_daddr_t blkno; 2124 int len; 2125 ushort flags; 2126 2127 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr; 2128 2129 if (pass == XLOG_RECOVER_PASS1) { 2130 /* 2131 * In this pass we're only looking for buf items 2132 * with the XFS_BLI_CANCEL bit set. 2133 */ 2134 xlog_recover_do_buffer_pass1(log, buf_f); 2135 return 0; 2136 } else { 2137 /* 2138 * In this pass we want to recover all the buffers 2139 * which have not been cancelled and are not 2140 * cancellation buffers themselves. The routine 2141 * we call here will tell us whether or not to 2142 * continue with the replay of this buffer. 2143 */ 2144 cancel = xlog_recover_do_buffer_pass2(log, buf_f); 2145 if (cancel) { 2146 return 0; 2147 } 2148 } 2149 switch (buf_f->blf_type) { 2150 case XFS_LI_BUF: 2151 blkno = buf_f->blf_blkno; 2152 len = buf_f->blf_len; 2153 flags = buf_f->blf_flags; 2154 break; 2155 default: 2156 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 2157 "xfs_log_recover: unknown buffer type 0x%x, logdev %s", 2158 buf_f->blf_type, log->l_mp->m_logname ? 2159 log->l_mp->m_logname : "internal"); 2160 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", 2161 XFS_ERRLEVEL_LOW, log->l_mp); 2162 return XFS_ERROR(EFSCORRUPTED); 2163 } 2164 2165 mp = log->l_mp; 2166 if (flags & XFS_BLI_INODE_BUF) { 2167 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len, 2168 XFS_BUF_LOCK); 2169 } else { 2170 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0); 2171 } 2172 if (XFS_BUF_ISERROR(bp)) { 2173 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, 2174 bp, blkno); 2175 error = XFS_BUF_GETERROR(bp); 2176 xfs_buf_relse(bp); 2177 return error; 2178 } 2179 2180 error = 0; 2181 if (flags & XFS_BLI_INODE_BUF) { 2182 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2183 } else if (flags & 2184 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 2185 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2186 } else { 2187 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2188 } 2189 if (error) 2190 return XFS_ERROR(error); 2191 2192 /* 2193 * Perform delayed write on the buffer. Asynchronous writes will be 2194 * slower when taking into account all the buffers to be flushed. 2195 * 2196 * Also make sure that only inode buffers with good sizes stay in 2197 * the buffer cache. The kernel moves inodes in buffers of 1 block 2198 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2199 * buffers in the log can be a different size if the log was generated 2200 * by an older kernel using unclustered inode buffers or a newer kernel 2201 * running with a different inode cluster size. Regardless, if the 2202 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2203 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2204 * the buffer out of the buffer cache so that the buffer won't 2205 * overlap with future reads of those inodes. 2206 */ 2207 if (XFS_DINODE_MAGIC == 2208 INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) && 2209 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, 2210 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2211 XFS_BUF_STALE(bp); 2212 error = xfs_bwrite(mp, bp); 2213 } else { 2214 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2215 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2216 XFS_BUF_SET_FSPRIVATE(bp, mp); 2217 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2218 xfs_bdwrite(mp, bp); 2219 } 2220 2221 return (error); 2222 } 2223 2224 STATIC int 2225 xlog_recover_do_inode_trans( 2226 xlog_t *log, 2227 xlog_recover_item_t *item, 2228 int pass) 2229 { 2230 xfs_inode_log_format_t *in_f; 2231 xfs_mount_t *mp; 2232 xfs_buf_t *bp; 2233 xfs_imap_t imap; 2234 xfs_dinode_t *dip; 2235 xfs_ino_t ino; 2236 int len; 2237 xfs_caddr_t src; 2238 xfs_caddr_t dest; 2239 int error; 2240 int attr_index; 2241 uint fields; 2242 xfs_dinode_core_t *dicp; 2243 int need_free = 0; 2244 2245 if (pass == XLOG_RECOVER_PASS1) { 2246 return 0; 2247 } 2248 2249 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2250 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr; 2251 } else { 2252 in_f = (xfs_inode_log_format_t *)kmem_alloc( 2253 sizeof(xfs_inode_log_format_t), KM_SLEEP); 2254 need_free = 1; 2255 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2256 if (error) 2257 goto error; 2258 } 2259 ino = in_f->ilf_ino; 2260 mp = log->l_mp; 2261 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2262 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno; 2263 imap.im_len = in_f->ilf_len; 2264 imap.im_boffset = in_f->ilf_boffset; 2265 } else { 2266 /* 2267 * It's an old inode format record. We don't know where 2268 * its cluster is located on disk, and we can't allow 2269 * xfs_imap() to figure it out because the inode btrees 2270 * are not ready to be used. Therefore do not pass the 2271 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give 2272 * us only the single block in which the inode lives 2273 * rather than its cluster, so we must make sure to 2274 * invalidate the buffer when we write it out below. 2275 */ 2276 imap.im_blkno = 0; 2277 xfs_imap(log->l_mp, NULL, ino, &imap, 0); 2278 } 2279 2280 /* 2281 * Inode buffers can be freed, look out for it, 2282 * and do not replay the inode. 2283 */ 2284 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) { 2285 error = 0; 2286 goto error; 2287 } 2288 2289 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len, 2290 XFS_BUF_LOCK); 2291 if (XFS_BUF_ISERROR(bp)) { 2292 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, 2293 bp, imap.im_blkno); 2294 error = XFS_BUF_GETERROR(bp); 2295 xfs_buf_relse(bp); 2296 goto error; 2297 } 2298 error = 0; 2299 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2300 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 2301 2302 /* 2303 * Make sure the place we're flushing out to really looks 2304 * like an inode! 2305 */ 2306 if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) { 2307 xfs_buf_relse(bp); 2308 xfs_fs_cmn_err(CE_ALERT, mp, 2309 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", 2310 dip, bp, ino); 2311 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", 2312 XFS_ERRLEVEL_LOW, mp); 2313 error = EFSCORRUPTED; 2314 goto error; 2315 } 2316 dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr); 2317 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2318 xfs_buf_relse(bp); 2319 xfs_fs_cmn_err(CE_ALERT, mp, 2320 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", 2321 item, ino); 2322 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", 2323 XFS_ERRLEVEL_LOW, mp); 2324 error = EFSCORRUPTED; 2325 goto error; 2326 } 2327 2328 /* Skip replay when the on disk inode is newer than the log one */ 2329 if (dicp->di_flushiter < 2330 INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) { 2331 /* 2332 * Deal with the wrap case, DI_MAX_FLUSH is less 2333 * than smaller numbers 2334 */ 2335 if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT) 2336 == DI_MAX_FLUSH) && 2337 (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) { 2338 /* do nothing */ 2339 } else { 2340 xfs_buf_relse(bp); 2341 error = 0; 2342 goto error; 2343 } 2344 } 2345 /* Take the opportunity to reset the flush iteration count */ 2346 dicp->di_flushiter = 0; 2347 2348 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { 2349 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2350 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2351 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", 2352 XFS_ERRLEVEL_LOW, mp, dicp); 2353 xfs_buf_relse(bp); 2354 xfs_fs_cmn_err(CE_ALERT, mp, 2355 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2356 item, dip, bp, ino); 2357 error = EFSCORRUPTED; 2358 goto error; 2359 } 2360 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { 2361 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2362 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2363 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2364 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", 2365 XFS_ERRLEVEL_LOW, mp, dicp); 2366 xfs_buf_relse(bp); 2367 xfs_fs_cmn_err(CE_ALERT, mp, 2368 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2369 item, dip, bp, ino); 2370 error = EFSCORRUPTED; 2371 goto error; 2372 } 2373 } 2374 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2375 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", 2376 XFS_ERRLEVEL_LOW, mp, dicp); 2377 xfs_buf_relse(bp); 2378 xfs_fs_cmn_err(CE_ALERT, mp, 2379 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2380 item, dip, bp, ino, 2381 dicp->di_nextents + dicp->di_anextents, 2382 dicp->di_nblocks); 2383 error = EFSCORRUPTED; 2384 goto error; 2385 } 2386 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2387 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", 2388 XFS_ERRLEVEL_LOW, mp, dicp); 2389 xfs_buf_relse(bp); 2390 xfs_fs_cmn_err(CE_ALERT, mp, 2391 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", 2392 item, dip, bp, ino, dicp->di_forkoff); 2393 error = EFSCORRUPTED; 2394 goto error; 2395 } 2396 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) { 2397 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", 2398 XFS_ERRLEVEL_LOW, mp, dicp); 2399 xfs_buf_relse(bp); 2400 xfs_fs_cmn_err(CE_ALERT, mp, 2401 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", 2402 item->ri_buf[1].i_len, item); 2403 error = EFSCORRUPTED; 2404 goto error; 2405 } 2406 2407 /* The core is in in-core format */ 2408 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, 2409 (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1); 2410 2411 /* the rest is in on-disk format */ 2412 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) { 2413 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t), 2414 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t), 2415 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t)); 2416 } 2417 2418 fields = in_f->ilf_fields; 2419 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2420 case XFS_ILOG_DEV: 2421 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev); 2422 2423 break; 2424 case XFS_ILOG_UUID: 2425 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid; 2426 break; 2427 } 2428 2429 if (in_f->ilf_size == 2) 2430 goto write_inode_buffer; 2431 len = item->ri_buf[2].i_len; 2432 src = item->ri_buf[2].i_addr; 2433 ASSERT(in_f->ilf_size <= 4); 2434 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2435 ASSERT(!(fields & XFS_ILOG_DFORK) || 2436 (len == in_f->ilf_dsize)); 2437 2438 switch (fields & XFS_ILOG_DFORK) { 2439 case XFS_ILOG_DDATA: 2440 case XFS_ILOG_DEXT: 2441 memcpy(&dip->di_u, src, len); 2442 break; 2443 2444 case XFS_ILOG_DBROOT: 2445 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2446 &(dip->di_u.di_bmbt), 2447 XFS_DFORK_DSIZE(dip, mp)); 2448 break; 2449 2450 default: 2451 /* 2452 * There are no data fork flags set. 2453 */ 2454 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2455 break; 2456 } 2457 2458 /* 2459 * If we logged any attribute data, recover it. There may or 2460 * may not have been any other non-core data logged in this 2461 * transaction. 2462 */ 2463 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2464 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2465 attr_index = 3; 2466 } else { 2467 attr_index = 2; 2468 } 2469 len = item->ri_buf[attr_index].i_len; 2470 src = item->ri_buf[attr_index].i_addr; 2471 ASSERT(len == in_f->ilf_asize); 2472 2473 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2474 case XFS_ILOG_ADATA: 2475 case XFS_ILOG_AEXT: 2476 dest = XFS_DFORK_APTR(dip); 2477 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2478 memcpy(dest, src, len); 2479 break; 2480 2481 case XFS_ILOG_ABROOT: 2482 dest = XFS_DFORK_APTR(dip); 2483 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2484 (xfs_bmdr_block_t*)dest, 2485 XFS_DFORK_ASIZE(dip, mp)); 2486 break; 2487 2488 default: 2489 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); 2490 ASSERT(0); 2491 xfs_buf_relse(bp); 2492 error = EIO; 2493 goto error; 2494 } 2495 } 2496 2497 write_inode_buffer: 2498 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2499 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2500 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2501 XFS_BUF_SET_FSPRIVATE(bp, mp); 2502 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2503 xfs_bdwrite(mp, bp); 2504 } else { 2505 XFS_BUF_STALE(bp); 2506 error = xfs_bwrite(mp, bp); 2507 } 2508 2509 error: 2510 if (need_free) 2511 kmem_free(in_f, sizeof(*in_f)); 2512 return XFS_ERROR(error); 2513 } 2514 2515 /* 2516 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2517 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2518 * of that type. 2519 */ 2520 STATIC int 2521 xlog_recover_do_quotaoff_trans( 2522 xlog_t *log, 2523 xlog_recover_item_t *item, 2524 int pass) 2525 { 2526 xfs_qoff_logformat_t *qoff_f; 2527 2528 if (pass == XLOG_RECOVER_PASS2) { 2529 return (0); 2530 } 2531 2532 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr; 2533 ASSERT(qoff_f); 2534 2535 /* 2536 * The logitem format's flag tells us if this was user quotaoff, 2537 * group/project quotaoff or both. 2538 */ 2539 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2540 log->l_quotaoffs_flag |= XFS_DQ_USER; 2541 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2542 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2543 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2544 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2545 2546 return (0); 2547 } 2548 2549 /* 2550 * Recover a dquot record 2551 */ 2552 STATIC int 2553 xlog_recover_do_dquot_trans( 2554 xlog_t *log, 2555 xlog_recover_item_t *item, 2556 int pass) 2557 { 2558 xfs_mount_t *mp; 2559 xfs_buf_t *bp; 2560 struct xfs_disk_dquot *ddq, *recddq; 2561 int error; 2562 xfs_dq_logformat_t *dq_f; 2563 uint type; 2564 2565 if (pass == XLOG_RECOVER_PASS1) { 2566 return 0; 2567 } 2568 mp = log->l_mp; 2569 2570 /* 2571 * Filesystems are required to send in quota flags at mount time. 2572 */ 2573 if (mp->m_qflags == 0) 2574 return (0); 2575 2576 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr; 2577 ASSERT(recddq); 2578 /* 2579 * This type of quotas was turned off, so ignore this record. 2580 */ 2581 type = INT_GET(recddq->d_flags, ARCH_CONVERT) & 2582 (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2583 ASSERT(type); 2584 if (log->l_quotaoffs_flag & type) 2585 return (0); 2586 2587 /* 2588 * At this point we know that quota was _not_ turned off. 2589 * Since the mount flags are not indicating to us otherwise, this 2590 * must mean that quota is on, and the dquot needs to be replayed. 2591 * Remember that we may not have fully recovered the superblock yet, 2592 * so we can't do the usual trick of looking at the SB quota bits. 2593 * 2594 * The other possibility, of course, is that the quota subsystem was 2595 * removed since the last mount - ENOSYS. 2596 */ 2597 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr; 2598 ASSERT(dq_f); 2599 if ((error = xfs_qm_dqcheck(recddq, 2600 dq_f->qlf_id, 2601 0, XFS_QMOPT_DOWARN, 2602 "xlog_recover_do_dquot_trans (log copy)"))) { 2603 return XFS_ERROR(EIO); 2604 } 2605 ASSERT(dq_f->qlf_len == 1); 2606 2607 error = xfs_read_buf(mp, mp->m_ddev_targp, 2608 dq_f->qlf_blkno, 2609 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 2610 0, &bp); 2611 if (error) { 2612 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, 2613 bp, dq_f->qlf_blkno); 2614 return error; 2615 } 2616 ASSERT(bp); 2617 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2618 2619 /* 2620 * At least the magic num portion should be on disk because this 2621 * was among a chunk of dquots created earlier, and we did some 2622 * minimal initialization then. 2623 */ 2624 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2625 "xlog_recover_do_dquot_trans")) { 2626 xfs_buf_relse(bp); 2627 return XFS_ERROR(EIO); 2628 } 2629 2630 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2631 2632 ASSERT(dq_f->qlf_size == 2); 2633 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2634 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2635 XFS_BUF_SET_FSPRIVATE(bp, mp); 2636 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2637 xfs_bdwrite(mp, bp); 2638 2639 return (0); 2640 } 2641 2642 /* 2643 * This routine is called to create an in-core extent free intent 2644 * item from the efi format structure which was logged on disk. 2645 * It allocates an in-core efi, copies the extents from the format 2646 * structure into it, and adds the efi to the AIL with the given 2647 * LSN. 2648 */ 2649 STATIC int 2650 xlog_recover_do_efi_trans( 2651 xlog_t *log, 2652 xlog_recover_item_t *item, 2653 xfs_lsn_t lsn, 2654 int pass) 2655 { 2656 int error; 2657 xfs_mount_t *mp; 2658 xfs_efi_log_item_t *efip; 2659 xfs_efi_log_format_t *efi_formatp; 2660 SPLDECL(s); 2661 2662 if (pass == XLOG_RECOVER_PASS1) { 2663 return 0; 2664 } 2665 2666 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr; 2667 2668 mp = log->l_mp; 2669 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2670 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2671 &(efip->efi_format)))) { 2672 xfs_efi_item_free(efip); 2673 return error; 2674 } 2675 efip->efi_next_extent = efi_formatp->efi_nextents; 2676 efip->efi_flags |= XFS_EFI_COMMITTED; 2677 2678 AIL_LOCK(mp,s); 2679 /* 2680 * xfs_trans_update_ail() drops the AIL lock. 2681 */ 2682 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s); 2683 return 0; 2684 } 2685 2686 2687 /* 2688 * This routine is called when an efd format structure is found in 2689 * a committed transaction in the log. It's purpose is to cancel 2690 * the corresponding efi if it was still in the log. To do this 2691 * it searches the AIL for the efi with an id equal to that in the 2692 * efd format structure. If we find it, we remove the efi from the 2693 * AIL and free it. 2694 */ 2695 STATIC void 2696 xlog_recover_do_efd_trans( 2697 xlog_t *log, 2698 xlog_recover_item_t *item, 2699 int pass) 2700 { 2701 xfs_mount_t *mp; 2702 xfs_efd_log_format_t *efd_formatp; 2703 xfs_efi_log_item_t *efip = NULL; 2704 xfs_log_item_t *lip; 2705 int gen; 2706 __uint64_t efi_id; 2707 SPLDECL(s); 2708 2709 if (pass == XLOG_RECOVER_PASS1) { 2710 return; 2711 } 2712 2713 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr; 2714 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2715 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2716 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2717 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2718 efi_id = efd_formatp->efd_efi_id; 2719 2720 /* 2721 * Search for the efi with the id in the efd format structure 2722 * in the AIL. 2723 */ 2724 mp = log->l_mp; 2725 AIL_LOCK(mp,s); 2726 lip = xfs_trans_first_ail(mp, &gen); 2727 while (lip != NULL) { 2728 if (lip->li_type == XFS_LI_EFI) { 2729 efip = (xfs_efi_log_item_t *)lip; 2730 if (efip->efi_format.efi_id == efi_id) { 2731 /* 2732 * xfs_trans_delete_ail() drops the 2733 * AIL lock. 2734 */ 2735 xfs_trans_delete_ail(mp, lip, s); 2736 break; 2737 } 2738 } 2739 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 2740 } 2741 2742 /* 2743 * If we found it, then free it up. If it wasn't there, it 2744 * must have been overwritten in the log. Oh well. 2745 */ 2746 if (lip != NULL) { 2747 xfs_efi_item_free(efip); 2748 } else { 2749 AIL_UNLOCK(mp, s); 2750 } 2751 } 2752 2753 /* 2754 * Perform the transaction 2755 * 2756 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2757 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2758 */ 2759 STATIC int 2760 xlog_recover_do_trans( 2761 xlog_t *log, 2762 xlog_recover_t *trans, 2763 int pass) 2764 { 2765 int error = 0; 2766 xlog_recover_item_t *item, *first_item; 2767 2768 if ((error = xlog_recover_reorder_trans(log, trans))) 2769 return error; 2770 first_item = item = trans->r_itemq; 2771 do { 2772 /* 2773 * we don't need to worry about the block number being 2774 * truncated in > 1 TB buffers because in user-land, 2775 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so 2776 * the blknos will get through the user-mode buffer 2777 * cache properly. The only bad case is o32 kernels 2778 * where xfs_daddr_t is 32-bits but mount will warn us 2779 * off a > 1 TB filesystem before we get here. 2780 */ 2781 if ((ITEM_TYPE(item) == XFS_LI_BUF)) { 2782 if ((error = xlog_recover_do_buffer_trans(log, item, 2783 pass))) 2784 break; 2785 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) { 2786 if ((error = xlog_recover_do_inode_trans(log, item, 2787 pass))) 2788 break; 2789 } else if (ITEM_TYPE(item) == XFS_LI_EFI) { 2790 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn, 2791 pass))) 2792 break; 2793 } else if (ITEM_TYPE(item) == XFS_LI_EFD) { 2794 xlog_recover_do_efd_trans(log, item, pass); 2795 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) { 2796 if ((error = xlog_recover_do_dquot_trans(log, item, 2797 pass))) 2798 break; 2799 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) { 2800 if ((error = xlog_recover_do_quotaoff_trans(log, item, 2801 pass))) 2802 break; 2803 } else { 2804 xlog_warn("XFS: xlog_recover_do_trans"); 2805 ASSERT(0); 2806 error = XFS_ERROR(EIO); 2807 break; 2808 } 2809 item = item->ri_next; 2810 } while (first_item != item); 2811 2812 return error; 2813 } 2814 2815 /* 2816 * Free up any resources allocated by the transaction 2817 * 2818 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2819 */ 2820 STATIC void 2821 xlog_recover_free_trans( 2822 xlog_recover_t *trans) 2823 { 2824 xlog_recover_item_t *first_item, *item, *free_item; 2825 int i; 2826 2827 item = first_item = trans->r_itemq; 2828 do { 2829 free_item = item; 2830 item = item->ri_next; 2831 /* Free the regions in the item. */ 2832 for (i = 0; i < free_item->ri_cnt; i++) { 2833 kmem_free(free_item->ri_buf[i].i_addr, 2834 free_item->ri_buf[i].i_len); 2835 } 2836 /* Free the item itself */ 2837 kmem_free(free_item->ri_buf, 2838 (free_item->ri_total * sizeof(xfs_log_iovec_t))); 2839 kmem_free(free_item, sizeof(xlog_recover_item_t)); 2840 } while (first_item != item); 2841 /* Free the transaction recover structure */ 2842 kmem_free(trans, sizeof(xlog_recover_t)); 2843 } 2844 2845 STATIC int 2846 xlog_recover_commit_trans( 2847 xlog_t *log, 2848 xlog_recover_t **q, 2849 xlog_recover_t *trans, 2850 int pass) 2851 { 2852 int error; 2853 2854 if ((error = xlog_recover_unlink_tid(q, trans))) 2855 return error; 2856 if ((error = xlog_recover_do_trans(log, trans, pass))) 2857 return error; 2858 xlog_recover_free_trans(trans); /* no error */ 2859 return 0; 2860 } 2861 2862 STATIC int 2863 xlog_recover_unmount_trans( 2864 xlog_recover_t *trans) 2865 { 2866 /* Do nothing now */ 2867 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); 2868 return 0; 2869 } 2870 2871 /* 2872 * There are two valid states of the r_state field. 0 indicates that the 2873 * transaction structure is in a normal state. We have either seen the 2874 * start of the transaction or the last operation we added was not a partial 2875 * operation. If the last operation we added to the transaction was a 2876 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2877 * 2878 * NOTE: skip LRs with 0 data length. 2879 */ 2880 STATIC int 2881 xlog_recover_process_data( 2882 xlog_t *log, 2883 xlog_recover_t *rhash[], 2884 xlog_rec_header_t *rhead, 2885 xfs_caddr_t dp, 2886 int pass) 2887 { 2888 xfs_caddr_t lp; 2889 int num_logops; 2890 xlog_op_header_t *ohead; 2891 xlog_recover_t *trans; 2892 xlog_tid_t tid; 2893 int error; 2894 unsigned long hash; 2895 uint flags; 2896 2897 lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT); 2898 num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT); 2899 2900 /* check the log format matches our own - else we can't recover */ 2901 if (xlog_header_check_recover(log->l_mp, rhead)) 2902 return (XFS_ERROR(EIO)); 2903 2904 while ((dp < lp) && num_logops) { 2905 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2906 ohead = (xlog_op_header_t *)dp; 2907 dp += sizeof(xlog_op_header_t); 2908 if (ohead->oh_clientid != XFS_TRANSACTION && 2909 ohead->oh_clientid != XFS_LOG) { 2910 xlog_warn( 2911 "XFS: xlog_recover_process_data: bad clientid"); 2912 ASSERT(0); 2913 return (XFS_ERROR(EIO)); 2914 } 2915 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT); 2916 hash = XLOG_RHASH(tid); 2917 trans = xlog_recover_find_tid(rhash[hash], tid); 2918 if (trans == NULL) { /* not found; add new tid */ 2919 if (ohead->oh_flags & XLOG_START_TRANS) 2920 xlog_recover_new_tid(&rhash[hash], tid, 2921 INT_GET(rhead->h_lsn, ARCH_CONVERT)); 2922 } else { 2923 ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp); 2924 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2925 if (flags & XLOG_WAS_CONT_TRANS) 2926 flags &= ~XLOG_CONTINUE_TRANS; 2927 switch (flags) { 2928 case XLOG_COMMIT_TRANS: 2929 error = xlog_recover_commit_trans(log, 2930 &rhash[hash], trans, pass); 2931 break; 2932 case XLOG_UNMOUNT_TRANS: 2933 error = xlog_recover_unmount_trans(trans); 2934 break; 2935 case XLOG_WAS_CONT_TRANS: 2936 error = xlog_recover_add_to_cont_trans(trans, 2937 dp, INT_GET(ohead->oh_len, 2938 ARCH_CONVERT)); 2939 break; 2940 case XLOG_START_TRANS: 2941 xlog_warn( 2942 "XFS: xlog_recover_process_data: bad transaction"); 2943 ASSERT(0); 2944 error = XFS_ERROR(EIO); 2945 break; 2946 case 0: 2947 case XLOG_CONTINUE_TRANS: 2948 error = xlog_recover_add_to_trans(trans, 2949 dp, INT_GET(ohead->oh_len, 2950 ARCH_CONVERT)); 2951 break; 2952 default: 2953 xlog_warn( 2954 "XFS: xlog_recover_process_data: bad flag"); 2955 ASSERT(0); 2956 error = XFS_ERROR(EIO); 2957 break; 2958 } 2959 if (error) 2960 return error; 2961 } 2962 dp += INT_GET(ohead->oh_len, ARCH_CONVERT); 2963 num_logops--; 2964 } 2965 return 0; 2966 } 2967 2968 /* 2969 * Process an extent free intent item that was recovered from 2970 * the log. We need to free the extents that it describes. 2971 */ 2972 STATIC void 2973 xlog_recover_process_efi( 2974 xfs_mount_t *mp, 2975 xfs_efi_log_item_t *efip) 2976 { 2977 xfs_efd_log_item_t *efdp; 2978 xfs_trans_t *tp; 2979 int i; 2980 xfs_extent_t *extp; 2981 xfs_fsblock_t startblock_fsb; 2982 2983 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); 2984 2985 /* 2986 * First check the validity of the extents described by the 2987 * EFI. If any are bad, then assume that all are bad and 2988 * just toss the EFI. 2989 */ 2990 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 2991 extp = &(efip->efi_format.efi_extents[i]); 2992 startblock_fsb = XFS_BB_TO_FSB(mp, 2993 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 2994 if ((startblock_fsb == 0) || 2995 (extp->ext_len == 0) || 2996 (startblock_fsb >= mp->m_sb.sb_dblocks) || 2997 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 2998 /* 2999 * This will pull the EFI from the AIL and 3000 * free the memory associated with it. 3001 */ 3002 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3003 return; 3004 } 3005 } 3006 3007 tp = xfs_trans_alloc(mp, 0); 3008 xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3009 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3010 3011 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3012 extp = &(efip->efi_format.efi_extents[i]); 3013 xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3014 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3015 extp->ext_len); 3016 } 3017 3018 efip->efi_flags |= XFS_EFI_RECOVERED; 3019 xfs_trans_commit(tp, 0, NULL); 3020 } 3021 3022 /* 3023 * Verify that once we've encountered something other than an EFI 3024 * in the AIL that there are no more EFIs in the AIL. 3025 */ 3026 #if defined(DEBUG) 3027 STATIC void 3028 xlog_recover_check_ail( 3029 xfs_mount_t *mp, 3030 xfs_log_item_t *lip, 3031 int gen) 3032 { 3033 int orig_gen = gen; 3034 3035 do { 3036 ASSERT(lip->li_type != XFS_LI_EFI); 3037 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3038 /* 3039 * The check will be bogus if we restart from the 3040 * beginning of the AIL, so ASSERT that we don't. 3041 * We never should since we're holding the AIL lock 3042 * the entire time. 3043 */ 3044 ASSERT(gen == orig_gen); 3045 } while (lip != NULL); 3046 } 3047 #endif /* DEBUG */ 3048 3049 /* 3050 * When this is called, all of the EFIs which did not have 3051 * corresponding EFDs should be in the AIL. What we do now 3052 * is free the extents associated with each one. 3053 * 3054 * Since we process the EFIs in normal transactions, they 3055 * will be removed at some point after the commit. This prevents 3056 * us from just walking down the list processing each one. 3057 * We'll use a flag in the EFI to skip those that we've already 3058 * processed and use the AIL iteration mechanism's generation 3059 * count to try to speed this up at least a bit. 3060 * 3061 * When we start, we know that the EFIs are the only things in 3062 * the AIL. As we process them, however, other items are added 3063 * to the AIL. Since everything added to the AIL must come after 3064 * everything already in the AIL, we stop processing as soon as 3065 * we see something other than an EFI in the AIL. 3066 */ 3067 STATIC void 3068 xlog_recover_process_efis( 3069 xlog_t *log) 3070 { 3071 xfs_log_item_t *lip; 3072 xfs_efi_log_item_t *efip; 3073 int gen; 3074 xfs_mount_t *mp; 3075 SPLDECL(s); 3076 3077 mp = log->l_mp; 3078 AIL_LOCK(mp,s); 3079 3080 lip = xfs_trans_first_ail(mp, &gen); 3081 while (lip != NULL) { 3082 /* 3083 * We're done when we see something other than an EFI. 3084 */ 3085 if (lip->li_type != XFS_LI_EFI) { 3086 xlog_recover_check_ail(mp, lip, gen); 3087 break; 3088 } 3089 3090 /* 3091 * Skip EFIs that we've already processed. 3092 */ 3093 efip = (xfs_efi_log_item_t *)lip; 3094 if (efip->efi_flags & XFS_EFI_RECOVERED) { 3095 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3096 continue; 3097 } 3098 3099 AIL_UNLOCK(mp, s); 3100 xlog_recover_process_efi(mp, efip); 3101 AIL_LOCK(mp,s); 3102 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3103 } 3104 AIL_UNLOCK(mp, s); 3105 } 3106 3107 /* 3108 * This routine performs a transaction to null out a bad inode pointer 3109 * in an agi unlinked inode hash bucket. 3110 */ 3111 STATIC void 3112 xlog_recover_clear_agi_bucket( 3113 xfs_mount_t *mp, 3114 xfs_agnumber_t agno, 3115 int bucket) 3116 { 3117 xfs_trans_t *tp; 3118 xfs_agi_t *agi; 3119 xfs_buf_t *agibp; 3120 int offset; 3121 int error; 3122 3123 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3124 xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0); 3125 3126 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 3127 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3128 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 3129 if (error) { 3130 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3131 return; 3132 } 3133 3134 agi = XFS_BUF_TO_AGI(agibp); 3135 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) { 3136 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3137 return; 3138 } 3139 3140 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3141 offset = offsetof(xfs_agi_t, agi_unlinked) + 3142 (sizeof(xfs_agino_t) * bucket); 3143 xfs_trans_log_buf(tp, agibp, offset, 3144 (offset + sizeof(xfs_agino_t) - 1)); 3145 3146 (void) xfs_trans_commit(tp, 0, NULL); 3147 } 3148 3149 /* 3150 * xlog_iunlink_recover 3151 * 3152 * This is called during recovery to process any inodes which 3153 * we unlinked but not freed when the system crashed. These 3154 * inodes will be on the lists in the AGI blocks. What we do 3155 * here is scan all the AGIs and fully truncate and free any 3156 * inodes found on the lists. Each inode is removed from the 3157 * lists when it has been fully truncated and is freed. The 3158 * freeing of the inode and its removal from the list must be 3159 * atomic. 3160 */ 3161 void 3162 xlog_recover_process_iunlinks( 3163 xlog_t *log) 3164 { 3165 xfs_mount_t *mp; 3166 xfs_agnumber_t agno; 3167 xfs_agi_t *agi; 3168 xfs_buf_t *agibp; 3169 xfs_buf_t *ibp; 3170 xfs_dinode_t *dip; 3171 xfs_inode_t *ip; 3172 xfs_agino_t agino; 3173 xfs_ino_t ino; 3174 int bucket; 3175 int error; 3176 uint mp_dmevmask; 3177 3178 mp = log->l_mp; 3179 3180 /* 3181 * Prevent any DMAPI event from being sent while in this function. 3182 */ 3183 mp_dmevmask = mp->m_dmevmask; 3184 mp->m_dmevmask = 0; 3185 3186 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3187 /* 3188 * Find the agi for this ag. 3189 */ 3190 agibp = xfs_buf_read(mp->m_ddev_targp, 3191 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3192 XFS_FSS_TO_BB(mp, 1), 0); 3193 if (XFS_BUF_ISERROR(agibp)) { 3194 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)", 3195 log->l_mp, agibp, 3196 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp))); 3197 } 3198 agi = XFS_BUF_TO_AGI(agibp); 3199 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum)); 3200 3201 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3202 3203 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3204 while (agino != NULLAGINO) { 3205 3206 /* 3207 * Release the agi buffer so that it can 3208 * be acquired in the normal course of the 3209 * transaction to truncate and free the inode. 3210 */ 3211 xfs_buf_relse(agibp); 3212 3213 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3214 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0); 3215 ASSERT(error || (ip != NULL)); 3216 3217 if (!error) { 3218 /* 3219 * Get the on disk inode to find the 3220 * next inode in the bucket. 3221 */ 3222 error = xfs_itobp(mp, NULL, ip, &dip, 3223 &ibp, 0, 0); 3224 ASSERT(error || (dip != NULL)); 3225 } 3226 3227 if (!error) { 3228 ASSERT(ip->i_d.di_nlink == 0); 3229 3230 /* setup for the next pass */ 3231 agino = INT_GET(dip->di_next_unlinked, 3232 ARCH_CONVERT); 3233 xfs_buf_relse(ibp); 3234 /* 3235 * Prevent any DMAPI event from 3236 * being sent when the 3237 * reference on the inode is 3238 * dropped. 3239 */ 3240 ip->i_d.di_dmevmask = 0; 3241 3242 /* 3243 * If this is a new inode, handle 3244 * it specially. Otherwise, 3245 * just drop our reference to the 3246 * inode. If there are no 3247 * other references, this will 3248 * send the inode to 3249 * xfs_inactive() which will 3250 * truncate the file and free 3251 * the inode. 3252 */ 3253 if (ip->i_d.di_mode == 0) 3254 xfs_iput_new(ip, 0); 3255 else 3256 VN_RELE(XFS_ITOV(ip)); 3257 } else { 3258 /* 3259 * We can't read in the inode 3260 * this bucket points to, or 3261 * this inode is messed up. Just 3262 * ditch this bucket of inodes. We 3263 * will lose some inodes and space, 3264 * but at least we won't hang. Call 3265 * xlog_recover_clear_agi_bucket() 3266 * to perform a transaction to clear 3267 * the inode pointer in the bucket. 3268 */ 3269 xlog_recover_clear_agi_bucket(mp, agno, 3270 bucket); 3271 3272 agino = NULLAGINO; 3273 } 3274 3275 /* 3276 * Reacquire the agibuffer and continue around 3277 * the loop. 3278 */ 3279 agibp = xfs_buf_read(mp->m_ddev_targp, 3280 XFS_AG_DADDR(mp, agno, 3281 XFS_AGI_DADDR(mp)), 3282 XFS_FSS_TO_BB(mp, 1), 0); 3283 if (XFS_BUF_ISERROR(agibp)) { 3284 xfs_ioerror_alert( 3285 "xlog_recover_process_iunlinks(#2)", 3286 log->l_mp, agibp, 3287 XFS_AG_DADDR(mp, agno, 3288 XFS_AGI_DADDR(mp))); 3289 } 3290 agi = XFS_BUF_TO_AGI(agibp); 3291 ASSERT(XFS_AGI_MAGIC == be32_to_cpu( 3292 agi->agi_magicnum)); 3293 } 3294 } 3295 3296 /* 3297 * Release the buffer for the current agi so we can 3298 * go on to the next one. 3299 */ 3300 xfs_buf_relse(agibp); 3301 } 3302 3303 mp->m_dmevmask = mp_dmevmask; 3304 } 3305 3306 3307 #ifdef DEBUG 3308 STATIC void 3309 xlog_pack_data_checksum( 3310 xlog_t *log, 3311 xlog_in_core_t *iclog, 3312 int size) 3313 { 3314 int i; 3315 uint *up; 3316 uint chksum = 0; 3317 3318 up = (uint *)iclog->ic_datap; 3319 /* divide length by 4 to get # words */ 3320 for (i = 0; i < (size >> 2); i++) { 3321 chksum ^= INT_GET(*up, ARCH_CONVERT); 3322 up++; 3323 } 3324 INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum); 3325 } 3326 #else 3327 #define xlog_pack_data_checksum(log, iclog, size) 3328 #endif 3329 3330 /* 3331 * Stamp cycle number in every block 3332 */ 3333 void 3334 xlog_pack_data( 3335 xlog_t *log, 3336 xlog_in_core_t *iclog, 3337 int roundoff) 3338 { 3339 int i, j, k; 3340 int size = iclog->ic_offset + roundoff; 3341 uint cycle_lsn; 3342 xfs_caddr_t dp; 3343 xlog_in_core_2_t *xhdr; 3344 3345 xlog_pack_data_checksum(log, iclog, size); 3346 3347 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3348 3349 dp = iclog->ic_datap; 3350 for (i = 0; i < BTOBB(size) && 3351 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3352 iclog->ic_header.h_cycle_data[i] = *(uint *)dp; 3353 *(uint *)dp = cycle_lsn; 3354 dp += BBSIZE; 3355 } 3356 3357 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3358 xhdr = (xlog_in_core_2_t *)&iclog->ic_header; 3359 for ( ; i < BTOBB(size); i++) { 3360 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3361 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3362 xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp; 3363 *(uint *)dp = cycle_lsn; 3364 dp += BBSIZE; 3365 } 3366 3367 for (i = 1; i < log->l_iclog_heads; i++) { 3368 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3369 } 3370 } 3371 } 3372 3373 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) 3374 STATIC void 3375 xlog_unpack_data_checksum( 3376 xlog_rec_header_t *rhead, 3377 xfs_caddr_t dp, 3378 xlog_t *log) 3379 { 3380 uint *up = (uint *)dp; 3381 uint chksum = 0; 3382 int i; 3383 3384 /* divide length by 4 to get # words */ 3385 for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) { 3386 chksum ^= INT_GET(*up, ARCH_CONVERT); 3387 up++; 3388 } 3389 if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) { 3390 if (rhead->h_chksum || 3391 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) { 3392 cmn_err(CE_DEBUG, 3393 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n", 3394 INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum); 3395 cmn_err(CE_DEBUG, 3396 "XFS: Disregard message if filesystem was created with non-DEBUG kernel"); 3397 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3398 cmn_err(CE_DEBUG, 3399 "XFS: LogR this is a LogV2 filesystem\n"); 3400 } 3401 log->l_flags |= XLOG_CHKSUM_MISMATCH; 3402 } 3403 } 3404 } 3405 #else 3406 #define xlog_unpack_data_checksum(rhead, dp, log) 3407 #endif 3408 3409 STATIC void 3410 xlog_unpack_data( 3411 xlog_rec_header_t *rhead, 3412 xfs_caddr_t dp, 3413 xlog_t *log) 3414 { 3415 int i, j, k; 3416 xlog_in_core_2_t *xhdr; 3417 3418 for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) && 3419 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3420 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i]; 3421 dp += BBSIZE; 3422 } 3423 3424 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3425 xhdr = (xlog_in_core_2_t *)rhead; 3426 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) { 3427 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3428 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3429 *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3430 dp += BBSIZE; 3431 } 3432 } 3433 3434 xlog_unpack_data_checksum(rhead, dp, log); 3435 } 3436 3437 STATIC int 3438 xlog_valid_rec_header( 3439 xlog_t *log, 3440 xlog_rec_header_t *rhead, 3441 xfs_daddr_t blkno) 3442 { 3443 int hlen; 3444 3445 if (unlikely( 3446 (INT_GET(rhead->h_magicno, ARCH_CONVERT) != 3447 XLOG_HEADER_MAGIC_NUM))) { 3448 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3449 XFS_ERRLEVEL_LOW, log->l_mp); 3450 return XFS_ERROR(EFSCORRUPTED); 3451 } 3452 if (unlikely( 3453 (!rhead->h_version || 3454 (INT_GET(rhead->h_version, ARCH_CONVERT) & 3455 (~XLOG_VERSION_OKBITS)) != 0))) { 3456 xlog_warn("XFS: %s: unrecognised log version (%d).", 3457 __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT)); 3458 return XFS_ERROR(EIO); 3459 } 3460 3461 /* LR body must have data or it wouldn't have been written */ 3462 hlen = INT_GET(rhead->h_len, ARCH_CONVERT); 3463 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3464 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3465 XFS_ERRLEVEL_LOW, log->l_mp); 3466 return XFS_ERROR(EFSCORRUPTED); 3467 } 3468 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3469 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3470 XFS_ERRLEVEL_LOW, log->l_mp); 3471 return XFS_ERROR(EFSCORRUPTED); 3472 } 3473 return 0; 3474 } 3475 3476 /* 3477 * Read the log from tail to head and process the log records found. 3478 * Handle the two cases where the tail and head are in the same cycle 3479 * and where the active portion of the log wraps around the end of 3480 * the physical log separately. The pass parameter is passed through 3481 * to the routines called to process the data and is not looked at 3482 * here. 3483 */ 3484 STATIC int 3485 xlog_do_recovery_pass( 3486 xlog_t *log, 3487 xfs_daddr_t head_blk, 3488 xfs_daddr_t tail_blk, 3489 int pass) 3490 { 3491 xlog_rec_header_t *rhead; 3492 xfs_daddr_t blk_no; 3493 xfs_caddr_t bufaddr, offset; 3494 xfs_buf_t *hbp, *dbp; 3495 int error = 0, h_size; 3496 int bblks, split_bblks; 3497 int hblks, split_hblks, wrapped_hblks; 3498 xlog_recover_t *rhash[XLOG_RHASH_SIZE]; 3499 3500 ASSERT(head_blk != tail_blk); 3501 3502 /* 3503 * Read the header of the tail block and get the iclog buffer size from 3504 * h_size. Use this to tell how many sectors make up the log header. 3505 */ 3506 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3507 /* 3508 * When using variable length iclogs, read first sector of 3509 * iclog header and extract the header size from it. Get a 3510 * new hbp that is the correct size. 3511 */ 3512 hbp = xlog_get_bp(log, 1); 3513 if (!hbp) 3514 return ENOMEM; 3515 if ((error = xlog_bread(log, tail_blk, 1, hbp))) 3516 goto bread_err1; 3517 offset = xlog_align(log, tail_blk, 1, hbp); 3518 rhead = (xlog_rec_header_t *)offset; 3519 error = xlog_valid_rec_header(log, rhead, tail_blk); 3520 if (error) 3521 goto bread_err1; 3522 h_size = INT_GET(rhead->h_size, ARCH_CONVERT); 3523 if ((INT_GET(rhead->h_version, ARCH_CONVERT) 3524 & XLOG_VERSION_2) && 3525 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3526 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3527 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3528 hblks++; 3529 xlog_put_bp(hbp); 3530 hbp = xlog_get_bp(log, hblks); 3531 } else { 3532 hblks = 1; 3533 } 3534 } else { 3535 ASSERT(log->l_sectbb_log == 0); 3536 hblks = 1; 3537 hbp = xlog_get_bp(log, 1); 3538 h_size = XLOG_BIG_RECORD_BSIZE; 3539 } 3540 3541 if (!hbp) 3542 return ENOMEM; 3543 dbp = xlog_get_bp(log, BTOBB(h_size)); 3544 if (!dbp) { 3545 xlog_put_bp(hbp); 3546 return ENOMEM; 3547 } 3548 3549 memset(rhash, 0, sizeof(rhash)); 3550 if (tail_blk <= head_blk) { 3551 for (blk_no = tail_blk; blk_no < head_blk; ) { 3552 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3553 goto bread_err2; 3554 offset = xlog_align(log, blk_no, hblks, hbp); 3555 rhead = (xlog_rec_header_t *)offset; 3556 error = xlog_valid_rec_header(log, rhead, blk_no); 3557 if (error) 3558 goto bread_err2; 3559 3560 /* blocks in data section */ 3561 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3562 error = xlog_bread(log, blk_no + hblks, bblks, dbp); 3563 if (error) 3564 goto bread_err2; 3565 offset = xlog_align(log, blk_no + hblks, bblks, dbp); 3566 xlog_unpack_data(rhead, offset, log); 3567 if ((error = xlog_recover_process_data(log, 3568 rhash, rhead, offset, pass))) 3569 goto bread_err2; 3570 blk_no += bblks + hblks; 3571 } 3572 } else { 3573 /* 3574 * Perform recovery around the end of the physical log. 3575 * When the head is not on the same cycle number as the tail, 3576 * we can't do a sequential recovery as above. 3577 */ 3578 blk_no = tail_blk; 3579 while (blk_no < log->l_logBBsize) { 3580 /* 3581 * Check for header wrapping around physical end-of-log 3582 */ 3583 offset = NULL; 3584 split_hblks = 0; 3585 wrapped_hblks = 0; 3586 if (blk_no + hblks <= log->l_logBBsize) { 3587 /* Read header in one read */ 3588 error = xlog_bread(log, blk_no, hblks, hbp); 3589 if (error) 3590 goto bread_err2; 3591 offset = xlog_align(log, blk_no, hblks, hbp); 3592 } else { 3593 /* This LR is split across physical log end */ 3594 if (blk_no != log->l_logBBsize) { 3595 /* some data before physical log end */ 3596 ASSERT(blk_no <= INT_MAX); 3597 split_hblks = log->l_logBBsize - (int)blk_no; 3598 ASSERT(split_hblks > 0); 3599 if ((error = xlog_bread(log, blk_no, 3600 split_hblks, hbp))) 3601 goto bread_err2; 3602 offset = xlog_align(log, blk_no, 3603 split_hblks, hbp); 3604 } 3605 /* 3606 * Note: this black magic still works with 3607 * large sector sizes (non-512) only because: 3608 * - we increased the buffer size originally 3609 * by 1 sector giving us enough extra space 3610 * for the second read; 3611 * - the log start is guaranteed to be sector 3612 * aligned; 3613 * - we read the log end (LR header start) 3614 * _first_, then the log start (LR header end) 3615 * - order is important. 3616 */ 3617 bufaddr = XFS_BUF_PTR(hbp); 3618 XFS_BUF_SET_PTR(hbp, 3619 bufaddr + BBTOB(split_hblks), 3620 BBTOB(hblks - split_hblks)); 3621 wrapped_hblks = hblks - split_hblks; 3622 error = xlog_bread(log, 0, wrapped_hblks, hbp); 3623 if (error) 3624 goto bread_err2; 3625 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks)); 3626 if (!offset) 3627 offset = xlog_align(log, 0, 3628 wrapped_hblks, hbp); 3629 } 3630 rhead = (xlog_rec_header_t *)offset; 3631 error = xlog_valid_rec_header(log, rhead, 3632 split_hblks ? blk_no : 0); 3633 if (error) 3634 goto bread_err2; 3635 3636 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3637 blk_no += hblks; 3638 3639 /* Read in data for log record */ 3640 if (blk_no + bblks <= log->l_logBBsize) { 3641 error = xlog_bread(log, blk_no, bblks, dbp); 3642 if (error) 3643 goto bread_err2; 3644 offset = xlog_align(log, blk_no, bblks, dbp); 3645 } else { 3646 /* This log record is split across the 3647 * physical end of log */ 3648 offset = NULL; 3649 split_bblks = 0; 3650 if (blk_no != log->l_logBBsize) { 3651 /* some data is before the physical 3652 * end of log */ 3653 ASSERT(!wrapped_hblks); 3654 ASSERT(blk_no <= INT_MAX); 3655 split_bblks = 3656 log->l_logBBsize - (int)blk_no; 3657 ASSERT(split_bblks > 0); 3658 if ((error = xlog_bread(log, blk_no, 3659 split_bblks, dbp))) 3660 goto bread_err2; 3661 offset = xlog_align(log, blk_no, 3662 split_bblks, dbp); 3663 } 3664 /* 3665 * Note: this black magic still works with 3666 * large sector sizes (non-512) only because: 3667 * - we increased the buffer size originally 3668 * by 1 sector giving us enough extra space 3669 * for the second read; 3670 * - the log start is guaranteed to be sector 3671 * aligned; 3672 * - we read the log end (LR header start) 3673 * _first_, then the log start (LR header end) 3674 * - order is important. 3675 */ 3676 bufaddr = XFS_BUF_PTR(dbp); 3677 XFS_BUF_SET_PTR(dbp, 3678 bufaddr + BBTOB(split_bblks), 3679 BBTOB(bblks - split_bblks)); 3680 if ((error = xlog_bread(log, wrapped_hblks, 3681 bblks - split_bblks, dbp))) 3682 goto bread_err2; 3683 XFS_BUF_SET_PTR(dbp, bufaddr, h_size); 3684 if (!offset) 3685 offset = xlog_align(log, wrapped_hblks, 3686 bblks - split_bblks, dbp); 3687 } 3688 xlog_unpack_data(rhead, offset, log); 3689 if ((error = xlog_recover_process_data(log, rhash, 3690 rhead, offset, pass))) 3691 goto bread_err2; 3692 blk_no += bblks; 3693 } 3694 3695 ASSERT(blk_no >= log->l_logBBsize); 3696 blk_no -= log->l_logBBsize; 3697 3698 /* read first part of physical log */ 3699 while (blk_no < head_blk) { 3700 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3701 goto bread_err2; 3702 offset = xlog_align(log, blk_no, hblks, hbp); 3703 rhead = (xlog_rec_header_t *)offset; 3704 error = xlog_valid_rec_header(log, rhead, blk_no); 3705 if (error) 3706 goto bread_err2; 3707 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3708 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp))) 3709 goto bread_err2; 3710 offset = xlog_align(log, blk_no+hblks, bblks, dbp); 3711 xlog_unpack_data(rhead, offset, log); 3712 if ((error = xlog_recover_process_data(log, rhash, 3713 rhead, offset, pass))) 3714 goto bread_err2; 3715 blk_no += bblks + hblks; 3716 } 3717 } 3718 3719 bread_err2: 3720 xlog_put_bp(dbp); 3721 bread_err1: 3722 xlog_put_bp(hbp); 3723 return error; 3724 } 3725 3726 /* 3727 * Do the recovery of the log. We actually do this in two phases. 3728 * The two passes are necessary in order to implement the function 3729 * of cancelling a record written into the log. The first pass 3730 * determines those things which have been cancelled, and the 3731 * second pass replays log items normally except for those which 3732 * have been cancelled. The handling of the replay and cancellations 3733 * takes place in the log item type specific routines. 3734 * 3735 * The table of items which have cancel records in the log is allocated 3736 * and freed at this level, since only here do we know when all of 3737 * the log recovery has been completed. 3738 */ 3739 STATIC int 3740 xlog_do_log_recovery( 3741 xlog_t *log, 3742 xfs_daddr_t head_blk, 3743 xfs_daddr_t tail_blk) 3744 { 3745 int error; 3746 3747 ASSERT(head_blk != tail_blk); 3748 3749 /* 3750 * First do a pass to find all of the cancelled buf log items. 3751 * Store them in the buf_cancel_table for use in the second pass. 3752 */ 3753 log->l_buf_cancel_table = 3754 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * 3755 sizeof(xfs_buf_cancel_t*), 3756 KM_SLEEP); 3757 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3758 XLOG_RECOVER_PASS1); 3759 if (error != 0) { 3760 kmem_free(log->l_buf_cancel_table, 3761 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); 3762 log->l_buf_cancel_table = NULL; 3763 return error; 3764 } 3765 /* 3766 * Then do a second pass to actually recover the items in the log. 3767 * When it is complete free the table of buf cancel items. 3768 */ 3769 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3770 XLOG_RECOVER_PASS2); 3771 #ifdef DEBUG 3772 if (!error) { 3773 int i; 3774 3775 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3776 ASSERT(log->l_buf_cancel_table[i] == NULL); 3777 } 3778 #endif /* DEBUG */ 3779 3780 kmem_free(log->l_buf_cancel_table, 3781 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); 3782 log->l_buf_cancel_table = NULL; 3783 3784 return error; 3785 } 3786 3787 /* 3788 * Do the actual recovery 3789 */ 3790 STATIC int 3791 xlog_do_recover( 3792 xlog_t *log, 3793 xfs_daddr_t head_blk, 3794 xfs_daddr_t tail_blk) 3795 { 3796 int error; 3797 xfs_buf_t *bp; 3798 xfs_sb_t *sbp; 3799 3800 /* 3801 * First replay the images in the log. 3802 */ 3803 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3804 if (error) { 3805 return error; 3806 } 3807 3808 XFS_bflush(log->l_mp->m_ddev_targp); 3809 3810 /* 3811 * If IO errors happened during recovery, bail out. 3812 */ 3813 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3814 return (EIO); 3815 } 3816 3817 /* 3818 * We now update the tail_lsn since much of the recovery has completed 3819 * and there may be space available to use. If there were no extent 3820 * or iunlinks, we can free up the entire log and set the tail_lsn to 3821 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3822 * lsn of the last known good LR on disk. If there are extent frees 3823 * or iunlinks they will have some entries in the AIL; so we look at 3824 * the AIL to determine how to set the tail_lsn. 3825 */ 3826 xlog_assign_tail_lsn(log->l_mp); 3827 3828 /* 3829 * Now that we've finished replaying all buffer and inode 3830 * updates, re-read in the superblock. 3831 */ 3832 bp = xfs_getsb(log->l_mp, 0); 3833 XFS_BUF_UNDONE(bp); 3834 XFS_BUF_READ(bp); 3835 xfsbdstrat(log->l_mp, bp); 3836 if ((error = xfs_iowait(bp))) { 3837 xfs_ioerror_alert("xlog_do_recover", 3838 log->l_mp, bp, XFS_BUF_ADDR(bp)); 3839 ASSERT(0); 3840 xfs_buf_relse(bp); 3841 return error; 3842 } 3843 3844 /* Convert superblock from on-disk format */ 3845 sbp = &log->l_mp->m_sb; 3846 xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS); 3847 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3848 ASSERT(XFS_SB_GOOD_VERSION(sbp)); 3849 xfs_buf_relse(bp); 3850 3851 /* We've re-read the superblock so re-initialize per-cpu counters */ 3852 xfs_icsb_reinit_counters(log->l_mp); 3853 3854 xlog_recover_check_summary(log); 3855 3856 /* Normal transactions can now occur */ 3857 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3858 return 0; 3859 } 3860 3861 /* 3862 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3863 * 3864 * Return error or zero. 3865 */ 3866 int 3867 xlog_recover( 3868 xlog_t *log) 3869 { 3870 xfs_daddr_t head_blk, tail_blk; 3871 int error; 3872 3873 /* find the tail of the log */ 3874 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3875 return error; 3876 3877 if (tail_blk != head_blk) { 3878 /* There used to be a comment here: 3879 * 3880 * disallow recovery on read-only mounts. note -- mount 3881 * checks for ENOSPC and turns it into an intelligent 3882 * error message. 3883 * ...but this is no longer true. Now, unless you specify 3884 * NORECOVERY (in which case this function would never be 3885 * called), we just go ahead and recover. We do this all 3886 * under the vfs layer, so we can get away with it unless 3887 * the device itself is read-only, in which case we fail. 3888 */ 3889 if ((error = xfs_dev_is_read_only(log->l_mp, 3890 "recovery required"))) { 3891 return error; 3892 } 3893 3894 cmn_err(CE_NOTE, 3895 "Starting XFS recovery on filesystem: %s (logdev: %s)", 3896 log->l_mp->m_fsname, log->l_mp->m_logname ? 3897 log->l_mp->m_logname : "internal"); 3898 3899 error = xlog_do_recover(log, head_blk, tail_blk); 3900 log->l_flags |= XLOG_RECOVERY_NEEDED; 3901 } 3902 return error; 3903 } 3904 3905 /* 3906 * In the first part of recovery we replay inodes and buffers and build 3907 * up the list of extent free items which need to be processed. Here 3908 * we process the extent free items and clean up the on disk unlinked 3909 * inode lists. This is separated from the first part of recovery so 3910 * that the root and real-time bitmap inodes can be read in from disk in 3911 * between the two stages. This is necessary so that we can free space 3912 * in the real-time portion of the file system. 3913 */ 3914 int 3915 xlog_recover_finish( 3916 xlog_t *log, 3917 int mfsi_flags) 3918 { 3919 /* 3920 * Now we're ready to do the transactions needed for the 3921 * rest of recovery. Start with completing all the extent 3922 * free intent records and then process the unlinked inode 3923 * lists. At this point, we essentially run in normal mode 3924 * except that we're still performing recovery actions 3925 * rather than accepting new requests. 3926 */ 3927 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3928 xlog_recover_process_efis(log); 3929 /* 3930 * Sync the log to get all the EFIs out of the AIL. 3931 * This isn't absolutely necessary, but it helps in 3932 * case the unlink transactions would have problems 3933 * pushing the EFIs out of the way. 3934 */ 3935 xfs_log_force(log->l_mp, (xfs_lsn_t)0, 3936 (XFS_LOG_FORCE | XFS_LOG_SYNC)); 3937 3938 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) { 3939 xlog_recover_process_iunlinks(log); 3940 } 3941 3942 xlog_recover_check_summary(log); 3943 3944 cmn_err(CE_NOTE, 3945 "Ending XFS recovery on filesystem: %s (logdev: %s)", 3946 log->l_mp->m_fsname, log->l_mp->m_logname ? 3947 log->l_mp->m_logname : "internal"); 3948 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3949 } else { 3950 cmn_err(CE_DEBUG, 3951 "!Ending clean XFS mount for filesystem: %s\n", 3952 log->l_mp->m_fsname); 3953 } 3954 return 0; 3955 } 3956 3957 3958 #if defined(DEBUG) 3959 /* 3960 * Read all of the agf and agi counters and check that they 3961 * are consistent with the superblock counters. 3962 */ 3963 void 3964 xlog_recover_check_summary( 3965 xlog_t *log) 3966 { 3967 xfs_mount_t *mp; 3968 xfs_agf_t *agfp; 3969 xfs_agi_t *agip; 3970 xfs_buf_t *agfbp; 3971 xfs_buf_t *agibp; 3972 xfs_daddr_t agfdaddr; 3973 xfs_daddr_t agidaddr; 3974 xfs_buf_t *sbbp; 3975 #ifdef XFS_LOUD_RECOVERY 3976 xfs_sb_t *sbp; 3977 #endif 3978 xfs_agnumber_t agno; 3979 __uint64_t freeblks; 3980 __uint64_t itotal; 3981 __uint64_t ifree; 3982 3983 mp = log->l_mp; 3984 3985 freeblks = 0LL; 3986 itotal = 0LL; 3987 ifree = 0LL; 3988 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3989 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)); 3990 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr, 3991 XFS_FSS_TO_BB(mp, 1), 0); 3992 if (XFS_BUF_ISERROR(agfbp)) { 3993 xfs_ioerror_alert("xlog_recover_check_summary(agf)", 3994 mp, agfbp, agfdaddr); 3995 } 3996 agfp = XFS_BUF_TO_AGF(agfbp); 3997 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum)); 3998 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum))); 3999 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno); 4000 4001 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4002 be32_to_cpu(agfp->agf_flcount); 4003 xfs_buf_relse(agfbp); 4004 4005 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 4006 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr, 4007 XFS_FSS_TO_BB(mp, 1), 0); 4008 if (XFS_BUF_ISERROR(agibp)) { 4009 xfs_ioerror_alert("xlog_recover_check_summary(agi)", 4010 mp, agibp, agidaddr); 4011 } 4012 agip = XFS_BUF_TO_AGI(agibp); 4013 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum)); 4014 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum))); 4015 ASSERT(be32_to_cpu(agip->agi_seqno) == agno); 4016 4017 itotal += be32_to_cpu(agip->agi_count); 4018 ifree += be32_to_cpu(agip->agi_freecount); 4019 xfs_buf_relse(agibp); 4020 } 4021 4022 sbbp = xfs_getsb(mp, 0); 4023 #ifdef XFS_LOUD_RECOVERY 4024 sbp = &mp->m_sb; 4025 xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS); 4026 cmn_err(CE_NOTE, 4027 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu", 4028 sbp->sb_icount, itotal); 4029 cmn_err(CE_NOTE, 4030 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu", 4031 sbp->sb_ifree, ifree); 4032 cmn_err(CE_NOTE, 4033 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu", 4034 sbp->sb_fdblocks, freeblks); 4035 #if 0 4036 /* 4037 * This is turned off until I account for the allocation 4038 * btree blocks which live in free space. 4039 */ 4040 ASSERT(sbp->sb_icount == itotal); 4041 ASSERT(sbp->sb_ifree == ifree); 4042 ASSERT(sbp->sb_fdblocks == freeblks); 4043 #endif 4044 #endif 4045 xfs_buf_relse(sbbp); 4046 } 4047 #endif /* DEBUG */ 4048