1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_error.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_dir2_sf.h" 35 #include "xfs_attr_sf.h" 36 #include "xfs_dinode.h" 37 #include "xfs_inode.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_alloc.h" 40 #include "xfs_ialloc.h" 41 #include "xfs_log_priv.h" 42 #include "xfs_buf_item.h" 43 #include "xfs_log_recover.h" 44 #include "xfs_extfree_item.h" 45 #include "xfs_trans_priv.h" 46 #include "xfs_quota.h" 47 #include "xfs_rw.h" 48 #include "xfs_utils.h" 49 50 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 51 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 52 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q, 53 xlog_recover_item_t *item); 54 #if defined(DEBUG) 55 STATIC void xlog_recover_check_summary(xlog_t *); 56 #else 57 #define xlog_recover_check_summary(log) 58 #endif 59 60 61 /* 62 * Sector aligned buffer routines for buffer create/read/write/access 63 */ 64 65 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \ 66 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \ 67 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) ) 68 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask) 69 70 xfs_buf_t * 71 xlog_get_bp( 72 xlog_t *log, 73 int nbblks) 74 { 75 if (nbblks <= 0 || nbblks > log->l_logBBsize) { 76 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks); 77 XFS_ERROR_REPORT("xlog_get_bp(1)", 78 XFS_ERRLEVEL_HIGH, log->l_mp); 79 return NULL; 80 } 81 82 if (log->l_sectbb_log) { 83 if (nbblks > 1) 84 nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 85 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 86 } 87 return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp); 88 } 89 90 void 91 xlog_put_bp( 92 xfs_buf_t *bp) 93 { 94 xfs_buf_free(bp); 95 } 96 97 STATIC xfs_caddr_t 98 xlog_align( 99 xlog_t *log, 100 xfs_daddr_t blk_no, 101 int nbblks, 102 xfs_buf_t *bp) 103 { 104 xfs_caddr_t ptr; 105 106 if (!log->l_sectbb_log) 107 return XFS_BUF_PTR(bp); 108 109 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask); 110 ASSERT(XFS_BUF_SIZE(bp) >= 111 BBTOB(nbblks + (blk_no & log->l_sectbb_mask))); 112 return ptr; 113 } 114 115 116 /* 117 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 118 */ 119 STATIC int 120 xlog_bread_noalign( 121 xlog_t *log, 122 xfs_daddr_t blk_no, 123 int nbblks, 124 xfs_buf_t *bp) 125 { 126 int error; 127 128 if (nbblks <= 0 || nbblks > log->l_logBBsize) { 129 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks); 130 XFS_ERROR_REPORT("xlog_bread(1)", 131 XFS_ERRLEVEL_HIGH, log->l_mp); 132 return EFSCORRUPTED; 133 } 134 135 if (log->l_sectbb_log) { 136 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 137 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 138 } 139 140 ASSERT(nbblks > 0); 141 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 142 ASSERT(bp); 143 144 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 145 XFS_BUF_READ(bp); 146 XFS_BUF_BUSY(bp); 147 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 148 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 149 150 xfsbdstrat(log->l_mp, bp); 151 error = xfs_iowait(bp); 152 if (error) 153 xfs_ioerror_alert("xlog_bread", log->l_mp, 154 bp, XFS_BUF_ADDR(bp)); 155 return error; 156 } 157 158 STATIC int 159 xlog_bread( 160 xlog_t *log, 161 xfs_daddr_t blk_no, 162 int nbblks, 163 xfs_buf_t *bp, 164 xfs_caddr_t *offset) 165 { 166 int error; 167 168 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 169 if (error) 170 return error; 171 172 *offset = xlog_align(log, blk_no, nbblks, bp); 173 return 0; 174 } 175 176 /* 177 * Write out the buffer at the given block for the given number of blocks. 178 * The buffer is kept locked across the write and is returned locked. 179 * This can only be used for synchronous log writes. 180 */ 181 STATIC int 182 xlog_bwrite( 183 xlog_t *log, 184 xfs_daddr_t blk_no, 185 int nbblks, 186 xfs_buf_t *bp) 187 { 188 int error; 189 190 if (nbblks <= 0 || nbblks > log->l_logBBsize) { 191 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks); 192 XFS_ERROR_REPORT("xlog_bwrite(1)", 193 XFS_ERRLEVEL_HIGH, log->l_mp); 194 return EFSCORRUPTED; 195 } 196 197 if (log->l_sectbb_log) { 198 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 199 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 200 } 201 202 ASSERT(nbblks > 0); 203 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 204 205 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 206 XFS_BUF_ZEROFLAGS(bp); 207 XFS_BUF_BUSY(bp); 208 XFS_BUF_HOLD(bp); 209 XFS_BUF_PSEMA(bp, PRIBIO); 210 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 211 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 212 213 if ((error = xfs_bwrite(log->l_mp, bp))) 214 xfs_ioerror_alert("xlog_bwrite", log->l_mp, 215 bp, XFS_BUF_ADDR(bp)); 216 return error; 217 } 218 219 #ifdef DEBUG 220 /* 221 * dump debug superblock and log record information 222 */ 223 STATIC void 224 xlog_header_check_dump( 225 xfs_mount_t *mp, 226 xlog_rec_header_t *head) 227 { 228 int b; 229 230 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__); 231 for (b = 0; b < 16; b++) 232 cmn_err(CE_DEBUG, "%02x", ((__uint8_t *)&mp->m_sb.sb_uuid)[b]); 233 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT); 234 cmn_err(CE_DEBUG, " log : uuid = "); 235 for (b = 0; b < 16; b++) 236 cmn_err(CE_DEBUG, "%02x", ((__uint8_t *)&head->h_fs_uuid)[b]); 237 cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt)); 238 } 239 #else 240 #define xlog_header_check_dump(mp, head) 241 #endif 242 243 /* 244 * check log record header for recovery 245 */ 246 STATIC int 247 xlog_header_check_recover( 248 xfs_mount_t *mp, 249 xlog_rec_header_t *head) 250 { 251 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM); 252 253 /* 254 * IRIX doesn't write the h_fmt field and leaves it zeroed 255 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 256 * a dirty log created in IRIX. 257 */ 258 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) { 259 xlog_warn( 260 "XFS: dirty log written in incompatible format - can't recover"); 261 xlog_header_check_dump(mp, head); 262 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 263 XFS_ERRLEVEL_HIGH, mp); 264 return XFS_ERROR(EFSCORRUPTED); 265 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 266 xlog_warn( 267 "XFS: dirty log entry has mismatched uuid - can't recover"); 268 xlog_header_check_dump(mp, head); 269 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 270 XFS_ERRLEVEL_HIGH, mp); 271 return XFS_ERROR(EFSCORRUPTED); 272 } 273 return 0; 274 } 275 276 /* 277 * read the head block of the log and check the header 278 */ 279 STATIC int 280 xlog_header_check_mount( 281 xfs_mount_t *mp, 282 xlog_rec_header_t *head) 283 { 284 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM); 285 286 if (uuid_is_nil(&head->h_fs_uuid)) { 287 /* 288 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 289 * h_fs_uuid is nil, we assume this log was last mounted 290 * by IRIX and continue. 291 */ 292 xlog_warn("XFS: nil uuid in log - IRIX style log"); 293 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 294 xlog_warn("XFS: log has mismatched uuid - can't recover"); 295 xlog_header_check_dump(mp, head); 296 XFS_ERROR_REPORT("xlog_header_check_mount", 297 XFS_ERRLEVEL_HIGH, mp); 298 return XFS_ERROR(EFSCORRUPTED); 299 } 300 return 0; 301 } 302 303 STATIC void 304 xlog_recover_iodone( 305 struct xfs_buf *bp) 306 { 307 if (XFS_BUF_GETERROR(bp)) { 308 /* 309 * We're not going to bother about retrying 310 * this during recovery. One strike! 311 */ 312 xfs_ioerror_alert("xlog_recover_iodone", 313 bp->b_mount, bp, XFS_BUF_ADDR(bp)); 314 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 315 } 316 bp->b_mount = NULL; 317 XFS_BUF_CLR_IODONE_FUNC(bp); 318 xfs_biodone(bp); 319 } 320 321 /* 322 * This routine finds (to an approximation) the first block in the physical 323 * log which contains the given cycle. It uses a binary search algorithm. 324 * Note that the algorithm can not be perfect because the disk will not 325 * necessarily be perfect. 326 */ 327 STATIC int 328 xlog_find_cycle_start( 329 xlog_t *log, 330 xfs_buf_t *bp, 331 xfs_daddr_t first_blk, 332 xfs_daddr_t *last_blk, 333 uint cycle) 334 { 335 xfs_caddr_t offset; 336 xfs_daddr_t mid_blk; 337 uint mid_cycle; 338 int error; 339 340 mid_blk = BLK_AVG(first_blk, *last_blk); 341 while (mid_blk != first_blk && mid_blk != *last_blk) { 342 error = xlog_bread(log, mid_blk, 1, bp, &offset); 343 if (error) 344 return error; 345 mid_cycle = xlog_get_cycle(offset); 346 if (mid_cycle == cycle) { 347 *last_blk = mid_blk; 348 /* last_half_cycle == mid_cycle */ 349 } else { 350 first_blk = mid_blk; 351 /* first_half_cycle == mid_cycle */ 352 } 353 mid_blk = BLK_AVG(first_blk, *last_blk); 354 } 355 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) || 356 (mid_blk == *last_blk && mid_blk-1 == first_blk)); 357 358 return 0; 359 } 360 361 /* 362 * Check that the range of blocks does not contain the cycle number 363 * given. The scan needs to occur from front to back and the ptr into the 364 * region must be updated since a later routine will need to perform another 365 * test. If the region is completely good, we end up returning the same 366 * last block number. 367 * 368 * Set blkno to -1 if we encounter no errors. This is an invalid block number 369 * since we don't ever expect logs to get this large. 370 */ 371 STATIC int 372 xlog_find_verify_cycle( 373 xlog_t *log, 374 xfs_daddr_t start_blk, 375 int nbblks, 376 uint stop_on_cycle_no, 377 xfs_daddr_t *new_blk) 378 { 379 xfs_daddr_t i, j; 380 uint cycle; 381 xfs_buf_t *bp; 382 xfs_daddr_t bufblks; 383 xfs_caddr_t buf = NULL; 384 int error = 0; 385 386 bufblks = 1 << ffs(nbblks); 387 388 while (!(bp = xlog_get_bp(log, bufblks))) { 389 /* can't get enough memory to do everything in one big buffer */ 390 bufblks >>= 1; 391 if (bufblks <= log->l_sectbb_log) 392 return ENOMEM; 393 } 394 395 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 396 int bcount; 397 398 bcount = min(bufblks, (start_blk + nbblks - i)); 399 400 error = xlog_bread(log, i, bcount, bp, &buf); 401 if (error) 402 goto out; 403 404 for (j = 0; j < bcount; j++) { 405 cycle = xlog_get_cycle(buf); 406 if (cycle == stop_on_cycle_no) { 407 *new_blk = i+j; 408 goto out; 409 } 410 411 buf += BBSIZE; 412 } 413 } 414 415 *new_blk = -1; 416 417 out: 418 xlog_put_bp(bp); 419 return error; 420 } 421 422 /* 423 * Potentially backup over partial log record write. 424 * 425 * In the typical case, last_blk is the number of the block directly after 426 * a good log record. Therefore, we subtract one to get the block number 427 * of the last block in the given buffer. extra_bblks contains the number 428 * of blocks we would have read on a previous read. This happens when the 429 * last log record is split over the end of the physical log. 430 * 431 * extra_bblks is the number of blocks potentially verified on a previous 432 * call to this routine. 433 */ 434 STATIC int 435 xlog_find_verify_log_record( 436 xlog_t *log, 437 xfs_daddr_t start_blk, 438 xfs_daddr_t *last_blk, 439 int extra_bblks) 440 { 441 xfs_daddr_t i; 442 xfs_buf_t *bp; 443 xfs_caddr_t offset = NULL; 444 xlog_rec_header_t *head = NULL; 445 int error = 0; 446 int smallmem = 0; 447 int num_blks = *last_blk - start_blk; 448 int xhdrs; 449 450 ASSERT(start_blk != 0 || *last_blk != start_blk); 451 452 if (!(bp = xlog_get_bp(log, num_blks))) { 453 if (!(bp = xlog_get_bp(log, 1))) 454 return ENOMEM; 455 smallmem = 1; 456 } else { 457 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 458 if (error) 459 goto out; 460 offset += ((num_blks - 1) << BBSHIFT); 461 } 462 463 for (i = (*last_blk) - 1; i >= 0; i--) { 464 if (i < start_blk) { 465 /* valid log record not found */ 466 xlog_warn( 467 "XFS: Log inconsistent (didn't find previous header)"); 468 ASSERT(0); 469 error = XFS_ERROR(EIO); 470 goto out; 471 } 472 473 if (smallmem) { 474 error = xlog_bread(log, i, 1, bp, &offset); 475 if (error) 476 goto out; 477 } 478 479 head = (xlog_rec_header_t *)offset; 480 481 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno)) 482 break; 483 484 if (!smallmem) 485 offset -= BBSIZE; 486 } 487 488 /* 489 * We hit the beginning of the physical log & still no header. Return 490 * to caller. If caller can handle a return of -1, then this routine 491 * will be called again for the end of the physical log. 492 */ 493 if (i == -1) { 494 error = -1; 495 goto out; 496 } 497 498 /* 499 * We have the final block of the good log (the first block 500 * of the log record _before_ the head. So we check the uuid. 501 */ 502 if ((error = xlog_header_check_mount(log->l_mp, head))) 503 goto out; 504 505 /* 506 * We may have found a log record header before we expected one. 507 * last_blk will be the 1st block # with a given cycle #. We may end 508 * up reading an entire log record. In this case, we don't want to 509 * reset last_blk. Only when last_blk points in the middle of a log 510 * record do we update last_blk. 511 */ 512 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 513 uint h_size = be32_to_cpu(head->h_size); 514 515 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 516 if (h_size % XLOG_HEADER_CYCLE_SIZE) 517 xhdrs++; 518 } else { 519 xhdrs = 1; 520 } 521 522 if (*last_blk - i + extra_bblks != 523 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 524 *last_blk = i; 525 526 out: 527 xlog_put_bp(bp); 528 return error; 529 } 530 531 /* 532 * Head is defined to be the point of the log where the next log write 533 * write could go. This means that incomplete LR writes at the end are 534 * eliminated when calculating the head. We aren't guaranteed that previous 535 * LR have complete transactions. We only know that a cycle number of 536 * current cycle number -1 won't be present in the log if we start writing 537 * from our current block number. 538 * 539 * last_blk contains the block number of the first block with a given 540 * cycle number. 541 * 542 * Return: zero if normal, non-zero if error. 543 */ 544 STATIC int 545 xlog_find_head( 546 xlog_t *log, 547 xfs_daddr_t *return_head_blk) 548 { 549 xfs_buf_t *bp; 550 xfs_caddr_t offset; 551 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 552 int num_scan_bblks; 553 uint first_half_cycle, last_half_cycle; 554 uint stop_on_cycle; 555 int error, log_bbnum = log->l_logBBsize; 556 557 /* Is the end of the log device zeroed? */ 558 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 559 *return_head_blk = first_blk; 560 561 /* Is the whole lot zeroed? */ 562 if (!first_blk) { 563 /* Linux XFS shouldn't generate totally zeroed logs - 564 * mkfs etc write a dummy unmount record to a fresh 565 * log so we can store the uuid in there 566 */ 567 xlog_warn("XFS: totally zeroed log"); 568 } 569 570 return 0; 571 } else if (error) { 572 xlog_warn("XFS: empty log check failed"); 573 return error; 574 } 575 576 first_blk = 0; /* get cycle # of 1st block */ 577 bp = xlog_get_bp(log, 1); 578 if (!bp) 579 return ENOMEM; 580 581 error = xlog_bread(log, 0, 1, bp, &offset); 582 if (error) 583 goto bp_err; 584 585 first_half_cycle = xlog_get_cycle(offset); 586 587 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 588 error = xlog_bread(log, last_blk, 1, bp, &offset); 589 if (error) 590 goto bp_err; 591 592 last_half_cycle = xlog_get_cycle(offset); 593 ASSERT(last_half_cycle != 0); 594 595 /* 596 * If the 1st half cycle number is equal to the last half cycle number, 597 * then the entire log is stamped with the same cycle number. In this 598 * case, head_blk can't be set to zero (which makes sense). The below 599 * math doesn't work out properly with head_blk equal to zero. Instead, 600 * we set it to log_bbnum which is an invalid block number, but this 601 * value makes the math correct. If head_blk doesn't changed through 602 * all the tests below, *head_blk is set to zero at the very end rather 603 * than log_bbnum. In a sense, log_bbnum and zero are the same block 604 * in a circular file. 605 */ 606 if (first_half_cycle == last_half_cycle) { 607 /* 608 * In this case we believe that the entire log should have 609 * cycle number last_half_cycle. We need to scan backwards 610 * from the end verifying that there are no holes still 611 * containing last_half_cycle - 1. If we find such a hole, 612 * then the start of that hole will be the new head. The 613 * simple case looks like 614 * x | x ... | x - 1 | x 615 * Another case that fits this picture would be 616 * x | x + 1 | x ... | x 617 * In this case the head really is somewhere at the end of the 618 * log, as one of the latest writes at the beginning was 619 * incomplete. 620 * One more case is 621 * x | x + 1 | x ... | x - 1 | x 622 * This is really the combination of the above two cases, and 623 * the head has to end up at the start of the x-1 hole at the 624 * end of the log. 625 * 626 * In the 256k log case, we will read from the beginning to the 627 * end of the log and search for cycle numbers equal to x-1. 628 * We don't worry about the x+1 blocks that we encounter, 629 * because we know that they cannot be the head since the log 630 * started with x. 631 */ 632 head_blk = log_bbnum; 633 stop_on_cycle = last_half_cycle - 1; 634 } else { 635 /* 636 * In this case we want to find the first block with cycle 637 * number matching last_half_cycle. We expect the log to be 638 * some variation on 639 * x + 1 ... | x ... 640 * The first block with cycle number x (last_half_cycle) will 641 * be where the new head belongs. First we do a binary search 642 * for the first occurrence of last_half_cycle. The binary 643 * search may not be totally accurate, so then we scan back 644 * from there looking for occurrences of last_half_cycle before 645 * us. If that backwards scan wraps around the beginning of 646 * the log, then we look for occurrences of last_half_cycle - 1 647 * at the end of the log. The cases we're looking for look 648 * like 649 * x + 1 ... | x | x + 1 | x ... 650 * ^ binary search stopped here 651 * or 652 * x + 1 ... | x ... | x - 1 | x 653 * <---------> less than scan distance 654 */ 655 stop_on_cycle = last_half_cycle; 656 if ((error = xlog_find_cycle_start(log, bp, first_blk, 657 &head_blk, last_half_cycle))) 658 goto bp_err; 659 } 660 661 /* 662 * Now validate the answer. Scan back some number of maximum possible 663 * blocks and make sure each one has the expected cycle number. The 664 * maximum is determined by the total possible amount of buffering 665 * in the in-core log. The following number can be made tighter if 666 * we actually look at the block size of the filesystem. 667 */ 668 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 669 if (head_blk >= num_scan_bblks) { 670 /* 671 * We are guaranteed that the entire check can be performed 672 * in one buffer. 673 */ 674 start_blk = head_blk - num_scan_bblks; 675 if ((error = xlog_find_verify_cycle(log, 676 start_blk, num_scan_bblks, 677 stop_on_cycle, &new_blk))) 678 goto bp_err; 679 if (new_blk != -1) 680 head_blk = new_blk; 681 } else { /* need to read 2 parts of log */ 682 /* 683 * We are going to scan backwards in the log in two parts. 684 * First we scan the physical end of the log. In this part 685 * of the log, we are looking for blocks with cycle number 686 * last_half_cycle - 1. 687 * If we find one, then we know that the log starts there, as 688 * we've found a hole that didn't get written in going around 689 * the end of the physical log. The simple case for this is 690 * x + 1 ... | x ... | x - 1 | x 691 * <---------> less than scan distance 692 * If all of the blocks at the end of the log have cycle number 693 * last_half_cycle, then we check the blocks at the start of 694 * the log looking for occurrences of last_half_cycle. If we 695 * find one, then our current estimate for the location of the 696 * first occurrence of last_half_cycle is wrong and we move 697 * back to the hole we've found. This case looks like 698 * x + 1 ... | x | x + 1 | x ... 699 * ^ binary search stopped here 700 * Another case we need to handle that only occurs in 256k 701 * logs is 702 * x + 1 ... | x ... | x+1 | x ... 703 * ^ binary search stops here 704 * In a 256k log, the scan at the end of the log will see the 705 * x + 1 blocks. We need to skip past those since that is 706 * certainly not the head of the log. By searching for 707 * last_half_cycle-1 we accomplish that. 708 */ 709 start_blk = log_bbnum - num_scan_bblks + head_blk; 710 ASSERT(head_blk <= INT_MAX && 711 (xfs_daddr_t) num_scan_bblks - head_blk >= 0); 712 if ((error = xlog_find_verify_cycle(log, start_blk, 713 num_scan_bblks - (int)head_blk, 714 (stop_on_cycle - 1), &new_blk))) 715 goto bp_err; 716 if (new_blk != -1) { 717 head_blk = new_blk; 718 goto bad_blk; 719 } 720 721 /* 722 * Scan beginning of log now. The last part of the physical 723 * log is good. This scan needs to verify that it doesn't find 724 * the last_half_cycle. 725 */ 726 start_blk = 0; 727 ASSERT(head_blk <= INT_MAX); 728 if ((error = xlog_find_verify_cycle(log, 729 start_blk, (int)head_blk, 730 stop_on_cycle, &new_blk))) 731 goto bp_err; 732 if (new_blk != -1) 733 head_blk = new_blk; 734 } 735 736 bad_blk: 737 /* 738 * Now we need to make sure head_blk is not pointing to a block in 739 * the middle of a log record. 740 */ 741 num_scan_bblks = XLOG_REC_SHIFT(log); 742 if (head_blk >= num_scan_bblks) { 743 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 744 745 /* start ptr at last block ptr before head_blk */ 746 if ((error = xlog_find_verify_log_record(log, start_blk, 747 &head_blk, 0)) == -1) { 748 error = XFS_ERROR(EIO); 749 goto bp_err; 750 } else if (error) 751 goto bp_err; 752 } else { 753 start_blk = 0; 754 ASSERT(head_blk <= INT_MAX); 755 if ((error = xlog_find_verify_log_record(log, start_blk, 756 &head_blk, 0)) == -1) { 757 /* We hit the beginning of the log during our search */ 758 start_blk = log_bbnum - num_scan_bblks + head_blk; 759 new_blk = log_bbnum; 760 ASSERT(start_blk <= INT_MAX && 761 (xfs_daddr_t) log_bbnum-start_blk >= 0); 762 ASSERT(head_blk <= INT_MAX); 763 if ((error = xlog_find_verify_log_record(log, 764 start_blk, &new_blk, 765 (int)head_blk)) == -1) { 766 error = XFS_ERROR(EIO); 767 goto bp_err; 768 } else if (error) 769 goto bp_err; 770 if (new_blk != log_bbnum) 771 head_blk = new_blk; 772 } else if (error) 773 goto bp_err; 774 } 775 776 xlog_put_bp(bp); 777 if (head_blk == log_bbnum) 778 *return_head_blk = 0; 779 else 780 *return_head_blk = head_blk; 781 /* 782 * When returning here, we have a good block number. Bad block 783 * means that during a previous crash, we didn't have a clean break 784 * from cycle number N to cycle number N-1. In this case, we need 785 * to find the first block with cycle number N-1. 786 */ 787 return 0; 788 789 bp_err: 790 xlog_put_bp(bp); 791 792 if (error) 793 xlog_warn("XFS: failed to find log head"); 794 return error; 795 } 796 797 /* 798 * Find the sync block number or the tail of the log. 799 * 800 * This will be the block number of the last record to have its 801 * associated buffers synced to disk. Every log record header has 802 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 803 * to get a sync block number. The only concern is to figure out which 804 * log record header to believe. 805 * 806 * The following algorithm uses the log record header with the largest 807 * lsn. The entire log record does not need to be valid. We only care 808 * that the header is valid. 809 * 810 * We could speed up search by using current head_blk buffer, but it is not 811 * available. 812 */ 813 int 814 xlog_find_tail( 815 xlog_t *log, 816 xfs_daddr_t *head_blk, 817 xfs_daddr_t *tail_blk) 818 { 819 xlog_rec_header_t *rhead; 820 xlog_op_header_t *op_head; 821 xfs_caddr_t offset = NULL; 822 xfs_buf_t *bp; 823 int error, i, found; 824 xfs_daddr_t umount_data_blk; 825 xfs_daddr_t after_umount_blk; 826 xfs_lsn_t tail_lsn; 827 int hblks; 828 829 found = 0; 830 831 /* 832 * Find previous log record 833 */ 834 if ((error = xlog_find_head(log, head_blk))) 835 return error; 836 837 bp = xlog_get_bp(log, 1); 838 if (!bp) 839 return ENOMEM; 840 if (*head_blk == 0) { /* special case */ 841 error = xlog_bread(log, 0, 1, bp, &offset); 842 if (error) 843 goto bread_err; 844 845 if (xlog_get_cycle(offset) == 0) { 846 *tail_blk = 0; 847 /* leave all other log inited values alone */ 848 goto exit; 849 } 850 } 851 852 /* 853 * Search backwards looking for log record header block 854 */ 855 ASSERT(*head_blk < INT_MAX); 856 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 857 error = xlog_bread(log, i, 1, bp, &offset); 858 if (error) 859 goto bread_err; 860 861 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) { 862 found = 1; 863 break; 864 } 865 } 866 /* 867 * If we haven't found the log record header block, start looking 868 * again from the end of the physical log. XXXmiken: There should be 869 * a check here to make sure we didn't search more than N blocks in 870 * the previous code. 871 */ 872 if (!found) { 873 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 874 error = xlog_bread(log, i, 1, bp, &offset); 875 if (error) 876 goto bread_err; 877 878 if (XLOG_HEADER_MAGIC_NUM == 879 be32_to_cpu(*(__be32 *)offset)) { 880 found = 2; 881 break; 882 } 883 } 884 } 885 if (!found) { 886 xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); 887 ASSERT(0); 888 return XFS_ERROR(EIO); 889 } 890 891 /* find blk_no of tail of log */ 892 rhead = (xlog_rec_header_t *)offset; 893 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 894 895 /* 896 * Reset log values according to the state of the log when we 897 * crashed. In the case where head_blk == 0, we bump curr_cycle 898 * one because the next write starts a new cycle rather than 899 * continuing the cycle of the last good log record. At this 900 * point we have guaranteed that all partial log records have been 901 * accounted for. Therefore, we know that the last good log record 902 * written was complete and ended exactly on the end boundary 903 * of the physical log. 904 */ 905 log->l_prev_block = i; 906 log->l_curr_block = (int)*head_blk; 907 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 908 if (found == 2) 909 log->l_curr_cycle++; 910 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn); 911 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn); 912 log->l_grant_reserve_cycle = log->l_curr_cycle; 913 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); 914 log->l_grant_write_cycle = log->l_curr_cycle; 915 log->l_grant_write_bytes = BBTOB(log->l_curr_block); 916 917 /* 918 * Look for unmount record. If we find it, then we know there 919 * was a clean unmount. Since 'i' could be the last block in 920 * the physical log, we convert to a log block before comparing 921 * to the head_blk. 922 * 923 * Save the current tail lsn to use to pass to 924 * xlog_clear_stale_blocks() below. We won't want to clear the 925 * unmount record if there is one, so we pass the lsn of the 926 * unmount record rather than the block after it. 927 */ 928 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 929 int h_size = be32_to_cpu(rhead->h_size); 930 int h_version = be32_to_cpu(rhead->h_version); 931 932 if ((h_version & XLOG_VERSION_2) && 933 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 934 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 935 if (h_size % XLOG_HEADER_CYCLE_SIZE) 936 hblks++; 937 } else { 938 hblks = 1; 939 } 940 } else { 941 hblks = 1; 942 } 943 after_umount_blk = (i + hblks + (int) 944 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 945 tail_lsn = log->l_tail_lsn; 946 if (*head_blk == after_umount_blk && 947 be32_to_cpu(rhead->h_num_logops) == 1) { 948 umount_data_blk = (i + hblks) % log->l_logBBsize; 949 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 950 if (error) 951 goto bread_err; 952 953 op_head = (xlog_op_header_t *)offset; 954 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 955 /* 956 * Set tail and last sync so that newly written 957 * log records will point recovery to after the 958 * current unmount record. 959 */ 960 log->l_tail_lsn = 961 xlog_assign_lsn(log->l_curr_cycle, 962 after_umount_blk); 963 log->l_last_sync_lsn = 964 xlog_assign_lsn(log->l_curr_cycle, 965 after_umount_blk); 966 *tail_blk = after_umount_blk; 967 968 /* 969 * Note that the unmount was clean. If the unmount 970 * was not clean, we need to know this to rebuild the 971 * superblock counters from the perag headers if we 972 * have a filesystem using non-persistent counters. 973 */ 974 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 975 } 976 } 977 978 /* 979 * Make sure that there are no blocks in front of the head 980 * with the same cycle number as the head. This can happen 981 * because we allow multiple outstanding log writes concurrently, 982 * and the later writes might make it out before earlier ones. 983 * 984 * We use the lsn from before modifying it so that we'll never 985 * overwrite the unmount record after a clean unmount. 986 * 987 * Do this only if we are going to recover the filesystem 988 * 989 * NOTE: This used to say "if (!readonly)" 990 * However on Linux, we can & do recover a read-only filesystem. 991 * We only skip recovery if NORECOVERY is specified on mount, 992 * in which case we would not be here. 993 * 994 * But... if the -device- itself is readonly, just skip this. 995 * We can't recover this device anyway, so it won't matter. 996 */ 997 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 998 error = xlog_clear_stale_blocks(log, tail_lsn); 999 } 1000 1001 bread_err: 1002 exit: 1003 xlog_put_bp(bp); 1004 1005 if (error) 1006 xlog_warn("XFS: failed to locate log tail"); 1007 return error; 1008 } 1009 1010 /* 1011 * Is the log zeroed at all? 1012 * 1013 * The last binary search should be changed to perform an X block read 1014 * once X becomes small enough. You can then search linearly through 1015 * the X blocks. This will cut down on the number of reads we need to do. 1016 * 1017 * If the log is partially zeroed, this routine will pass back the blkno 1018 * of the first block with cycle number 0. It won't have a complete LR 1019 * preceding it. 1020 * 1021 * Return: 1022 * 0 => the log is completely written to 1023 * -1 => use *blk_no as the first block of the log 1024 * >0 => error has occurred 1025 */ 1026 STATIC int 1027 xlog_find_zeroed( 1028 xlog_t *log, 1029 xfs_daddr_t *blk_no) 1030 { 1031 xfs_buf_t *bp; 1032 xfs_caddr_t offset; 1033 uint first_cycle, last_cycle; 1034 xfs_daddr_t new_blk, last_blk, start_blk; 1035 xfs_daddr_t num_scan_bblks; 1036 int error, log_bbnum = log->l_logBBsize; 1037 1038 *blk_no = 0; 1039 1040 /* check totally zeroed log */ 1041 bp = xlog_get_bp(log, 1); 1042 if (!bp) 1043 return ENOMEM; 1044 error = xlog_bread(log, 0, 1, bp, &offset); 1045 if (error) 1046 goto bp_err; 1047 1048 first_cycle = xlog_get_cycle(offset); 1049 if (first_cycle == 0) { /* completely zeroed log */ 1050 *blk_no = 0; 1051 xlog_put_bp(bp); 1052 return -1; 1053 } 1054 1055 /* check partially zeroed log */ 1056 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1057 if (error) 1058 goto bp_err; 1059 1060 last_cycle = xlog_get_cycle(offset); 1061 if (last_cycle != 0) { /* log completely written to */ 1062 xlog_put_bp(bp); 1063 return 0; 1064 } else if (first_cycle != 1) { 1065 /* 1066 * If the cycle of the last block is zero, the cycle of 1067 * the first block must be 1. If it's not, maybe we're 1068 * not looking at a log... Bail out. 1069 */ 1070 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); 1071 return XFS_ERROR(EINVAL); 1072 } 1073 1074 /* we have a partially zeroed log */ 1075 last_blk = log_bbnum-1; 1076 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1077 goto bp_err; 1078 1079 /* 1080 * Validate the answer. Because there is no way to guarantee that 1081 * the entire log is made up of log records which are the same size, 1082 * we scan over the defined maximum blocks. At this point, the maximum 1083 * is not chosen to mean anything special. XXXmiken 1084 */ 1085 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1086 ASSERT(num_scan_bblks <= INT_MAX); 1087 1088 if (last_blk < num_scan_bblks) 1089 num_scan_bblks = last_blk; 1090 start_blk = last_blk - num_scan_bblks; 1091 1092 /* 1093 * We search for any instances of cycle number 0 that occur before 1094 * our current estimate of the head. What we're trying to detect is 1095 * 1 ... | 0 | 1 | 0... 1096 * ^ binary search ends here 1097 */ 1098 if ((error = xlog_find_verify_cycle(log, start_blk, 1099 (int)num_scan_bblks, 0, &new_blk))) 1100 goto bp_err; 1101 if (new_blk != -1) 1102 last_blk = new_blk; 1103 1104 /* 1105 * Potentially backup over partial log record write. We don't need 1106 * to search the end of the log because we know it is zero. 1107 */ 1108 if ((error = xlog_find_verify_log_record(log, start_blk, 1109 &last_blk, 0)) == -1) { 1110 error = XFS_ERROR(EIO); 1111 goto bp_err; 1112 } else if (error) 1113 goto bp_err; 1114 1115 *blk_no = last_blk; 1116 bp_err: 1117 xlog_put_bp(bp); 1118 if (error) 1119 return error; 1120 return -1; 1121 } 1122 1123 /* 1124 * These are simple subroutines used by xlog_clear_stale_blocks() below 1125 * to initialize a buffer full of empty log record headers and write 1126 * them into the log. 1127 */ 1128 STATIC void 1129 xlog_add_record( 1130 xlog_t *log, 1131 xfs_caddr_t buf, 1132 int cycle, 1133 int block, 1134 int tail_cycle, 1135 int tail_block) 1136 { 1137 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1138 1139 memset(buf, 0, BBSIZE); 1140 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1141 recp->h_cycle = cpu_to_be32(cycle); 1142 recp->h_version = cpu_to_be32( 1143 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1144 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1145 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1146 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1147 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1148 } 1149 1150 STATIC int 1151 xlog_write_log_records( 1152 xlog_t *log, 1153 int cycle, 1154 int start_block, 1155 int blocks, 1156 int tail_cycle, 1157 int tail_block) 1158 { 1159 xfs_caddr_t offset; 1160 xfs_buf_t *bp; 1161 int balign, ealign; 1162 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 1163 int end_block = start_block + blocks; 1164 int bufblks; 1165 int error = 0; 1166 int i, j = 0; 1167 1168 bufblks = 1 << ffs(blocks); 1169 while (!(bp = xlog_get_bp(log, bufblks))) { 1170 bufblks >>= 1; 1171 if (bufblks <= log->l_sectbb_log) 1172 return ENOMEM; 1173 } 1174 1175 /* We may need to do a read at the start to fill in part of 1176 * the buffer in the starting sector not covered by the first 1177 * write below. 1178 */ 1179 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block); 1180 if (balign != start_block) { 1181 error = xlog_bread_noalign(log, start_block, 1, bp); 1182 if (error) 1183 goto out_put_bp; 1184 1185 j = start_block - balign; 1186 } 1187 1188 for (i = start_block; i < end_block; i += bufblks) { 1189 int bcount, endcount; 1190 1191 bcount = min(bufblks, end_block - start_block); 1192 endcount = bcount - j; 1193 1194 /* We may need to do a read at the end to fill in part of 1195 * the buffer in the final sector not covered by the write. 1196 * If this is the same sector as the above read, skip it. 1197 */ 1198 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block); 1199 if (j == 0 && (start_block + endcount > ealign)) { 1200 offset = XFS_BUF_PTR(bp); 1201 balign = BBTOB(ealign - start_block); 1202 error = XFS_BUF_SET_PTR(bp, offset + balign, 1203 BBTOB(sectbb)); 1204 if (error) 1205 break; 1206 1207 error = xlog_bread_noalign(log, ealign, sectbb, bp); 1208 if (error) 1209 break; 1210 1211 error = XFS_BUF_SET_PTR(bp, offset, bufblks); 1212 if (error) 1213 break; 1214 } 1215 1216 offset = xlog_align(log, start_block, endcount, bp); 1217 for (; j < endcount; j++) { 1218 xlog_add_record(log, offset, cycle, i+j, 1219 tail_cycle, tail_block); 1220 offset += BBSIZE; 1221 } 1222 error = xlog_bwrite(log, start_block, endcount, bp); 1223 if (error) 1224 break; 1225 start_block += endcount; 1226 j = 0; 1227 } 1228 1229 out_put_bp: 1230 xlog_put_bp(bp); 1231 return error; 1232 } 1233 1234 /* 1235 * This routine is called to blow away any incomplete log writes out 1236 * in front of the log head. We do this so that we won't become confused 1237 * if we come up, write only a little bit more, and then crash again. 1238 * If we leave the partial log records out there, this situation could 1239 * cause us to think those partial writes are valid blocks since they 1240 * have the current cycle number. We get rid of them by overwriting them 1241 * with empty log records with the old cycle number rather than the 1242 * current one. 1243 * 1244 * The tail lsn is passed in rather than taken from 1245 * the log so that we will not write over the unmount record after a 1246 * clean unmount in a 512 block log. Doing so would leave the log without 1247 * any valid log records in it until a new one was written. If we crashed 1248 * during that time we would not be able to recover. 1249 */ 1250 STATIC int 1251 xlog_clear_stale_blocks( 1252 xlog_t *log, 1253 xfs_lsn_t tail_lsn) 1254 { 1255 int tail_cycle, head_cycle; 1256 int tail_block, head_block; 1257 int tail_distance, max_distance; 1258 int distance; 1259 int error; 1260 1261 tail_cycle = CYCLE_LSN(tail_lsn); 1262 tail_block = BLOCK_LSN(tail_lsn); 1263 head_cycle = log->l_curr_cycle; 1264 head_block = log->l_curr_block; 1265 1266 /* 1267 * Figure out the distance between the new head of the log 1268 * and the tail. We want to write over any blocks beyond the 1269 * head that we may have written just before the crash, but 1270 * we don't want to overwrite the tail of the log. 1271 */ 1272 if (head_cycle == tail_cycle) { 1273 /* 1274 * The tail is behind the head in the physical log, 1275 * so the distance from the head to the tail is the 1276 * distance from the head to the end of the log plus 1277 * the distance from the beginning of the log to the 1278 * tail. 1279 */ 1280 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1281 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1282 XFS_ERRLEVEL_LOW, log->l_mp); 1283 return XFS_ERROR(EFSCORRUPTED); 1284 } 1285 tail_distance = tail_block + (log->l_logBBsize - head_block); 1286 } else { 1287 /* 1288 * The head is behind the tail in the physical log, 1289 * so the distance from the head to the tail is just 1290 * the tail block minus the head block. 1291 */ 1292 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1293 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1294 XFS_ERRLEVEL_LOW, log->l_mp); 1295 return XFS_ERROR(EFSCORRUPTED); 1296 } 1297 tail_distance = tail_block - head_block; 1298 } 1299 1300 /* 1301 * If the head is right up against the tail, we can't clear 1302 * anything. 1303 */ 1304 if (tail_distance <= 0) { 1305 ASSERT(tail_distance == 0); 1306 return 0; 1307 } 1308 1309 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1310 /* 1311 * Take the smaller of the maximum amount of outstanding I/O 1312 * we could have and the distance to the tail to clear out. 1313 * We take the smaller so that we don't overwrite the tail and 1314 * we don't waste all day writing from the head to the tail 1315 * for no reason. 1316 */ 1317 max_distance = MIN(max_distance, tail_distance); 1318 1319 if ((head_block + max_distance) <= log->l_logBBsize) { 1320 /* 1321 * We can stomp all the blocks we need to without 1322 * wrapping around the end of the log. Just do it 1323 * in a single write. Use the cycle number of the 1324 * current cycle minus one so that the log will look like: 1325 * n ... | n - 1 ... 1326 */ 1327 error = xlog_write_log_records(log, (head_cycle - 1), 1328 head_block, max_distance, tail_cycle, 1329 tail_block); 1330 if (error) 1331 return error; 1332 } else { 1333 /* 1334 * We need to wrap around the end of the physical log in 1335 * order to clear all the blocks. Do it in two separate 1336 * I/Os. The first write should be from the head to the 1337 * end of the physical log, and it should use the current 1338 * cycle number minus one just like above. 1339 */ 1340 distance = log->l_logBBsize - head_block; 1341 error = xlog_write_log_records(log, (head_cycle - 1), 1342 head_block, distance, tail_cycle, 1343 tail_block); 1344 1345 if (error) 1346 return error; 1347 1348 /* 1349 * Now write the blocks at the start of the physical log. 1350 * This writes the remainder of the blocks we want to clear. 1351 * It uses the current cycle number since we're now on the 1352 * same cycle as the head so that we get: 1353 * n ... n ... | n - 1 ... 1354 * ^^^^^ blocks we're writing 1355 */ 1356 distance = max_distance - (log->l_logBBsize - head_block); 1357 error = xlog_write_log_records(log, head_cycle, 0, distance, 1358 tail_cycle, tail_block); 1359 if (error) 1360 return error; 1361 } 1362 1363 return 0; 1364 } 1365 1366 /****************************************************************************** 1367 * 1368 * Log recover routines 1369 * 1370 ****************************************************************************** 1371 */ 1372 1373 STATIC xlog_recover_t * 1374 xlog_recover_find_tid( 1375 xlog_recover_t *q, 1376 xlog_tid_t tid) 1377 { 1378 xlog_recover_t *p = q; 1379 1380 while (p != NULL) { 1381 if (p->r_log_tid == tid) 1382 break; 1383 p = p->r_next; 1384 } 1385 return p; 1386 } 1387 1388 STATIC void 1389 xlog_recover_put_hashq( 1390 xlog_recover_t **q, 1391 xlog_recover_t *trans) 1392 { 1393 trans->r_next = *q; 1394 *q = trans; 1395 } 1396 1397 STATIC void 1398 xlog_recover_add_item( 1399 xlog_recover_item_t **itemq) 1400 { 1401 xlog_recover_item_t *item; 1402 1403 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1404 xlog_recover_insert_item_backq(itemq, item); 1405 } 1406 1407 STATIC int 1408 xlog_recover_add_to_cont_trans( 1409 xlog_recover_t *trans, 1410 xfs_caddr_t dp, 1411 int len) 1412 { 1413 xlog_recover_item_t *item; 1414 xfs_caddr_t ptr, old_ptr; 1415 int old_len; 1416 1417 item = trans->r_itemq; 1418 if (item == NULL) { 1419 /* finish copying rest of trans header */ 1420 xlog_recover_add_item(&trans->r_itemq); 1421 ptr = (xfs_caddr_t) &trans->r_theader + 1422 sizeof(xfs_trans_header_t) - len; 1423 memcpy(ptr, dp, len); /* d, s, l */ 1424 return 0; 1425 } 1426 item = item->ri_prev; 1427 1428 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1429 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1430 1431 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u); 1432 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1433 item->ri_buf[item->ri_cnt-1].i_len += len; 1434 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1435 return 0; 1436 } 1437 1438 /* 1439 * The next region to add is the start of a new region. It could be 1440 * a whole region or it could be the first part of a new region. Because 1441 * of this, the assumption here is that the type and size fields of all 1442 * format structures fit into the first 32 bits of the structure. 1443 * 1444 * This works because all regions must be 32 bit aligned. Therefore, we 1445 * either have both fields or we have neither field. In the case we have 1446 * neither field, the data part of the region is zero length. We only have 1447 * a log_op_header and can throw away the header since a new one will appear 1448 * later. If we have at least 4 bytes, then we can determine how many regions 1449 * will appear in the current log item. 1450 */ 1451 STATIC int 1452 xlog_recover_add_to_trans( 1453 xlog_recover_t *trans, 1454 xfs_caddr_t dp, 1455 int len) 1456 { 1457 xfs_inode_log_format_t *in_f; /* any will do */ 1458 xlog_recover_item_t *item; 1459 xfs_caddr_t ptr; 1460 1461 if (!len) 1462 return 0; 1463 item = trans->r_itemq; 1464 if (item == NULL) { 1465 /* we need to catch log corruptions here */ 1466 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 1467 xlog_warn("XFS: xlog_recover_add_to_trans: " 1468 "bad header magic number"); 1469 ASSERT(0); 1470 return XFS_ERROR(EIO); 1471 } 1472 if (len == sizeof(xfs_trans_header_t)) 1473 xlog_recover_add_item(&trans->r_itemq); 1474 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1475 return 0; 1476 } 1477 1478 ptr = kmem_alloc(len, KM_SLEEP); 1479 memcpy(ptr, dp, len); 1480 in_f = (xfs_inode_log_format_t *)ptr; 1481 1482 if (item->ri_prev->ri_total != 0 && 1483 item->ri_prev->ri_total == item->ri_prev->ri_cnt) { 1484 xlog_recover_add_item(&trans->r_itemq); 1485 } 1486 item = trans->r_itemq; 1487 item = item->ri_prev; 1488 1489 if (item->ri_total == 0) { /* first region to be added */ 1490 if (in_f->ilf_size == 0 || 1491 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 1492 xlog_warn( 1493 "XFS: bad number of regions (%d) in inode log format", 1494 in_f->ilf_size); 1495 ASSERT(0); 1496 return XFS_ERROR(EIO); 1497 } 1498 1499 item->ri_total = in_f->ilf_size; 1500 item->ri_buf = 1501 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 1502 KM_SLEEP); 1503 } 1504 ASSERT(item->ri_total > item->ri_cnt); 1505 /* Description region is ri_buf[0] */ 1506 item->ri_buf[item->ri_cnt].i_addr = ptr; 1507 item->ri_buf[item->ri_cnt].i_len = len; 1508 item->ri_cnt++; 1509 return 0; 1510 } 1511 1512 STATIC void 1513 xlog_recover_new_tid( 1514 xlog_recover_t **q, 1515 xlog_tid_t tid, 1516 xfs_lsn_t lsn) 1517 { 1518 xlog_recover_t *trans; 1519 1520 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1521 trans->r_log_tid = tid; 1522 trans->r_lsn = lsn; 1523 xlog_recover_put_hashq(q, trans); 1524 } 1525 1526 STATIC int 1527 xlog_recover_unlink_tid( 1528 xlog_recover_t **q, 1529 xlog_recover_t *trans) 1530 { 1531 xlog_recover_t *tp; 1532 int found = 0; 1533 1534 ASSERT(trans != NULL); 1535 if (trans == *q) { 1536 *q = (*q)->r_next; 1537 } else { 1538 tp = *q; 1539 while (tp) { 1540 if (tp->r_next == trans) { 1541 found = 1; 1542 break; 1543 } 1544 tp = tp->r_next; 1545 } 1546 if (!found) { 1547 xlog_warn( 1548 "XFS: xlog_recover_unlink_tid: trans not found"); 1549 ASSERT(0); 1550 return XFS_ERROR(EIO); 1551 } 1552 tp->r_next = tp->r_next->r_next; 1553 } 1554 return 0; 1555 } 1556 1557 STATIC void 1558 xlog_recover_insert_item_backq( 1559 xlog_recover_item_t **q, 1560 xlog_recover_item_t *item) 1561 { 1562 if (*q == NULL) { 1563 item->ri_prev = item->ri_next = item; 1564 *q = item; 1565 } else { 1566 item->ri_next = *q; 1567 item->ri_prev = (*q)->ri_prev; 1568 (*q)->ri_prev = item; 1569 item->ri_prev->ri_next = item; 1570 } 1571 } 1572 1573 STATIC void 1574 xlog_recover_insert_item_frontq( 1575 xlog_recover_item_t **q, 1576 xlog_recover_item_t *item) 1577 { 1578 xlog_recover_insert_item_backq(q, item); 1579 *q = item; 1580 } 1581 1582 STATIC int 1583 xlog_recover_reorder_trans( 1584 xlog_recover_t *trans) 1585 { 1586 xlog_recover_item_t *first_item, *itemq, *itemq_next; 1587 xfs_buf_log_format_t *buf_f; 1588 ushort flags = 0; 1589 1590 first_item = itemq = trans->r_itemq; 1591 trans->r_itemq = NULL; 1592 do { 1593 itemq_next = itemq->ri_next; 1594 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr; 1595 1596 switch (ITEM_TYPE(itemq)) { 1597 case XFS_LI_BUF: 1598 flags = buf_f->blf_flags; 1599 if (!(flags & XFS_BLI_CANCEL)) { 1600 xlog_recover_insert_item_frontq(&trans->r_itemq, 1601 itemq); 1602 break; 1603 } 1604 case XFS_LI_INODE: 1605 case XFS_LI_DQUOT: 1606 case XFS_LI_QUOTAOFF: 1607 case XFS_LI_EFD: 1608 case XFS_LI_EFI: 1609 xlog_recover_insert_item_backq(&trans->r_itemq, itemq); 1610 break; 1611 default: 1612 xlog_warn( 1613 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); 1614 ASSERT(0); 1615 return XFS_ERROR(EIO); 1616 } 1617 itemq = itemq_next; 1618 } while (first_item != itemq); 1619 return 0; 1620 } 1621 1622 /* 1623 * Build up the table of buf cancel records so that we don't replay 1624 * cancelled data in the second pass. For buffer records that are 1625 * not cancel records, there is nothing to do here so we just return. 1626 * 1627 * If we get a cancel record which is already in the table, this indicates 1628 * that the buffer was cancelled multiple times. In order to ensure 1629 * that during pass 2 we keep the record in the table until we reach its 1630 * last occurrence in the log, we keep a reference count in the cancel 1631 * record in the table to tell us how many times we expect to see this 1632 * record during the second pass. 1633 */ 1634 STATIC void 1635 xlog_recover_do_buffer_pass1( 1636 xlog_t *log, 1637 xfs_buf_log_format_t *buf_f) 1638 { 1639 xfs_buf_cancel_t *bcp; 1640 xfs_buf_cancel_t *nextp; 1641 xfs_buf_cancel_t *prevp; 1642 xfs_buf_cancel_t **bucket; 1643 xfs_daddr_t blkno = 0; 1644 uint len = 0; 1645 ushort flags = 0; 1646 1647 switch (buf_f->blf_type) { 1648 case XFS_LI_BUF: 1649 blkno = buf_f->blf_blkno; 1650 len = buf_f->blf_len; 1651 flags = buf_f->blf_flags; 1652 break; 1653 } 1654 1655 /* 1656 * If this isn't a cancel buffer item, then just return. 1657 */ 1658 if (!(flags & XFS_BLI_CANCEL)) 1659 return; 1660 1661 /* 1662 * Insert an xfs_buf_cancel record into the hash table of 1663 * them. If there is already an identical record, bump 1664 * its reference count. 1665 */ 1666 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1667 XLOG_BC_TABLE_SIZE]; 1668 /* 1669 * If the hash bucket is empty then just insert a new record into 1670 * the bucket. 1671 */ 1672 if (*bucket == NULL) { 1673 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1674 KM_SLEEP); 1675 bcp->bc_blkno = blkno; 1676 bcp->bc_len = len; 1677 bcp->bc_refcount = 1; 1678 bcp->bc_next = NULL; 1679 *bucket = bcp; 1680 return; 1681 } 1682 1683 /* 1684 * The hash bucket is not empty, so search for duplicates of our 1685 * record. If we find one them just bump its refcount. If not 1686 * then add us at the end of the list. 1687 */ 1688 prevp = NULL; 1689 nextp = *bucket; 1690 while (nextp != NULL) { 1691 if (nextp->bc_blkno == blkno && nextp->bc_len == len) { 1692 nextp->bc_refcount++; 1693 return; 1694 } 1695 prevp = nextp; 1696 nextp = nextp->bc_next; 1697 } 1698 ASSERT(prevp != NULL); 1699 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1700 KM_SLEEP); 1701 bcp->bc_blkno = blkno; 1702 bcp->bc_len = len; 1703 bcp->bc_refcount = 1; 1704 bcp->bc_next = NULL; 1705 prevp->bc_next = bcp; 1706 } 1707 1708 /* 1709 * Check to see whether the buffer being recovered has a corresponding 1710 * entry in the buffer cancel record table. If it does then return 1 1711 * so that it will be cancelled, otherwise return 0. If the buffer is 1712 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement 1713 * the refcount on the entry in the table and remove it from the table 1714 * if this is the last reference. 1715 * 1716 * We remove the cancel record from the table when we encounter its 1717 * last occurrence in the log so that if the same buffer is re-used 1718 * again after its last cancellation we actually replay the changes 1719 * made at that point. 1720 */ 1721 STATIC int 1722 xlog_check_buffer_cancelled( 1723 xlog_t *log, 1724 xfs_daddr_t blkno, 1725 uint len, 1726 ushort flags) 1727 { 1728 xfs_buf_cancel_t *bcp; 1729 xfs_buf_cancel_t *prevp; 1730 xfs_buf_cancel_t **bucket; 1731 1732 if (log->l_buf_cancel_table == NULL) { 1733 /* 1734 * There is nothing in the table built in pass one, 1735 * so this buffer must not be cancelled. 1736 */ 1737 ASSERT(!(flags & XFS_BLI_CANCEL)); 1738 return 0; 1739 } 1740 1741 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1742 XLOG_BC_TABLE_SIZE]; 1743 bcp = *bucket; 1744 if (bcp == NULL) { 1745 /* 1746 * There is no corresponding entry in the table built 1747 * in pass one, so this buffer has not been cancelled. 1748 */ 1749 ASSERT(!(flags & XFS_BLI_CANCEL)); 1750 return 0; 1751 } 1752 1753 /* 1754 * Search for an entry in the buffer cancel table that 1755 * matches our buffer. 1756 */ 1757 prevp = NULL; 1758 while (bcp != NULL) { 1759 if (bcp->bc_blkno == blkno && bcp->bc_len == len) { 1760 /* 1761 * We've go a match, so return 1 so that the 1762 * recovery of this buffer is cancelled. 1763 * If this buffer is actually a buffer cancel 1764 * log item, then decrement the refcount on the 1765 * one in the table and remove it if this is the 1766 * last reference. 1767 */ 1768 if (flags & XFS_BLI_CANCEL) { 1769 bcp->bc_refcount--; 1770 if (bcp->bc_refcount == 0) { 1771 if (prevp == NULL) { 1772 *bucket = bcp->bc_next; 1773 } else { 1774 prevp->bc_next = bcp->bc_next; 1775 } 1776 kmem_free(bcp); 1777 } 1778 } 1779 return 1; 1780 } 1781 prevp = bcp; 1782 bcp = bcp->bc_next; 1783 } 1784 /* 1785 * We didn't find a corresponding entry in the table, so 1786 * return 0 so that the buffer is NOT cancelled. 1787 */ 1788 ASSERT(!(flags & XFS_BLI_CANCEL)); 1789 return 0; 1790 } 1791 1792 STATIC int 1793 xlog_recover_do_buffer_pass2( 1794 xlog_t *log, 1795 xfs_buf_log_format_t *buf_f) 1796 { 1797 xfs_daddr_t blkno = 0; 1798 ushort flags = 0; 1799 uint len = 0; 1800 1801 switch (buf_f->blf_type) { 1802 case XFS_LI_BUF: 1803 blkno = buf_f->blf_blkno; 1804 flags = buf_f->blf_flags; 1805 len = buf_f->blf_len; 1806 break; 1807 } 1808 1809 return xlog_check_buffer_cancelled(log, blkno, len, flags); 1810 } 1811 1812 /* 1813 * Perform recovery for a buffer full of inodes. In these buffers, 1814 * the only data which should be recovered is that which corresponds 1815 * to the di_next_unlinked pointers in the on disk inode structures. 1816 * The rest of the data for the inodes is always logged through the 1817 * inodes themselves rather than the inode buffer and is recovered 1818 * in xlog_recover_do_inode_trans(). 1819 * 1820 * The only time when buffers full of inodes are fully recovered is 1821 * when the buffer is full of newly allocated inodes. In this case 1822 * the buffer will not be marked as an inode buffer and so will be 1823 * sent to xlog_recover_do_reg_buffer() below during recovery. 1824 */ 1825 STATIC int 1826 xlog_recover_do_inode_buffer( 1827 xfs_mount_t *mp, 1828 xlog_recover_item_t *item, 1829 xfs_buf_t *bp, 1830 xfs_buf_log_format_t *buf_f) 1831 { 1832 int i; 1833 int item_index; 1834 int bit; 1835 int nbits; 1836 int reg_buf_offset; 1837 int reg_buf_bytes; 1838 int next_unlinked_offset; 1839 int inodes_per_buf; 1840 xfs_agino_t *logged_nextp; 1841 xfs_agino_t *buffer_nextp; 1842 unsigned int *data_map = NULL; 1843 unsigned int map_size = 0; 1844 1845 switch (buf_f->blf_type) { 1846 case XFS_LI_BUF: 1847 data_map = buf_f->blf_data_map; 1848 map_size = buf_f->blf_map_size; 1849 break; 1850 } 1851 /* 1852 * Set the variables corresponding to the current region to 1853 * 0 so that we'll initialize them on the first pass through 1854 * the loop. 1855 */ 1856 reg_buf_offset = 0; 1857 reg_buf_bytes = 0; 1858 bit = 0; 1859 nbits = 0; 1860 item_index = 0; 1861 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; 1862 for (i = 0; i < inodes_per_buf; i++) { 1863 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1864 offsetof(xfs_dinode_t, di_next_unlinked); 1865 1866 while (next_unlinked_offset >= 1867 (reg_buf_offset + reg_buf_bytes)) { 1868 /* 1869 * The next di_next_unlinked field is beyond 1870 * the current logged region. Find the next 1871 * logged region that contains or is beyond 1872 * the current di_next_unlinked field. 1873 */ 1874 bit += nbits; 1875 bit = xfs_next_bit(data_map, map_size, bit); 1876 1877 /* 1878 * If there are no more logged regions in the 1879 * buffer, then we're done. 1880 */ 1881 if (bit == -1) { 1882 return 0; 1883 } 1884 1885 nbits = xfs_contig_bits(data_map, map_size, 1886 bit); 1887 ASSERT(nbits > 0); 1888 reg_buf_offset = bit << XFS_BLI_SHIFT; 1889 reg_buf_bytes = nbits << XFS_BLI_SHIFT; 1890 item_index++; 1891 } 1892 1893 /* 1894 * If the current logged region starts after the current 1895 * di_next_unlinked field, then move on to the next 1896 * di_next_unlinked field. 1897 */ 1898 if (next_unlinked_offset < reg_buf_offset) { 1899 continue; 1900 } 1901 1902 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1903 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0); 1904 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); 1905 1906 /* 1907 * The current logged region contains a copy of the 1908 * current di_next_unlinked field. Extract its value 1909 * and copy it to the buffer copy. 1910 */ 1911 logged_nextp = (xfs_agino_t *) 1912 ((char *)(item->ri_buf[item_index].i_addr) + 1913 (next_unlinked_offset - reg_buf_offset)); 1914 if (unlikely(*logged_nextp == 0)) { 1915 xfs_fs_cmn_err(CE_ALERT, mp, 1916 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", 1917 item, bp); 1918 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1919 XFS_ERRLEVEL_LOW, mp); 1920 return XFS_ERROR(EFSCORRUPTED); 1921 } 1922 1923 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1924 next_unlinked_offset); 1925 *buffer_nextp = *logged_nextp; 1926 } 1927 1928 return 0; 1929 } 1930 1931 /* 1932 * Perform a 'normal' buffer recovery. Each logged region of the 1933 * buffer should be copied over the corresponding region in the 1934 * given buffer. The bitmap in the buf log format structure indicates 1935 * where to place the logged data. 1936 */ 1937 /*ARGSUSED*/ 1938 STATIC void 1939 xlog_recover_do_reg_buffer( 1940 xlog_recover_item_t *item, 1941 xfs_buf_t *bp, 1942 xfs_buf_log_format_t *buf_f) 1943 { 1944 int i; 1945 int bit; 1946 int nbits; 1947 unsigned int *data_map = NULL; 1948 unsigned int map_size = 0; 1949 int error; 1950 1951 switch (buf_f->blf_type) { 1952 case XFS_LI_BUF: 1953 data_map = buf_f->blf_data_map; 1954 map_size = buf_f->blf_map_size; 1955 break; 1956 } 1957 bit = 0; 1958 i = 1; /* 0 is the buf format structure */ 1959 while (1) { 1960 bit = xfs_next_bit(data_map, map_size, bit); 1961 if (bit == -1) 1962 break; 1963 nbits = xfs_contig_bits(data_map, map_size, bit); 1964 ASSERT(nbits > 0); 1965 ASSERT(item->ri_buf[i].i_addr != NULL); 1966 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0); 1967 ASSERT(XFS_BUF_COUNT(bp) >= 1968 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT)); 1969 1970 /* 1971 * Do a sanity check if this is a dquot buffer. Just checking 1972 * the first dquot in the buffer should do. XXXThis is 1973 * probably a good thing to do for other buf types also. 1974 */ 1975 error = 0; 1976 if (buf_f->blf_flags & 1977 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 1978 if (item->ri_buf[i].i_addr == NULL) { 1979 cmn_err(CE_ALERT, 1980 "XFS: NULL dquot in %s.", __func__); 1981 goto next; 1982 } 1983 if (item->ri_buf[i].i_len < sizeof(xfs_dqblk_t)) { 1984 cmn_err(CE_ALERT, 1985 "XFS: dquot too small (%d) in %s.", 1986 item->ri_buf[i].i_len, __func__); 1987 goto next; 1988 } 1989 error = xfs_qm_dqcheck((xfs_disk_dquot_t *) 1990 item->ri_buf[i].i_addr, 1991 -1, 0, XFS_QMOPT_DOWARN, 1992 "dquot_buf_recover"); 1993 if (error) 1994 goto next; 1995 } 1996 1997 memcpy(xfs_buf_offset(bp, 1998 (uint)bit << XFS_BLI_SHIFT), /* dest */ 1999 item->ri_buf[i].i_addr, /* source */ 2000 nbits<<XFS_BLI_SHIFT); /* length */ 2001 next: 2002 i++; 2003 bit += nbits; 2004 } 2005 2006 /* Shouldn't be any more regions */ 2007 ASSERT(i == item->ri_total); 2008 } 2009 2010 /* 2011 * Do some primitive error checking on ondisk dquot data structures. 2012 */ 2013 int 2014 xfs_qm_dqcheck( 2015 xfs_disk_dquot_t *ddq, 2016 xfs_dqid_t id, 2017 uint type, /* used only when IO_dorepair is true */ 2018 uint flags, 2019 char *str) 2020 { 2021 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 2022 int errs = 0; 2023 2024 /* 2025 * We can encounter an uninitialized dquot buffer for 2 reasons: 2026 * 1. If we crash while deleting the quotainode(s), and those blks got 2027 * used for user data. This is because we take the path of regular 2028 * file deletion; however, the size field of quotainodes is never 2029 * updated, so all the tricks that we play in itruncate_finish 2030 * don't quite matter. 2031 * 2032 * 2. We don't play the quota buffers when there's a quotaoff logitem. 2033 * But the allocation will be replayed so we'll end up with an 2034 * uninitialized quota block. 2035 * 2036 * This is all fine; things are still consistent, and we haven't lost 2037 * any quota information. Just don't complain about bad dquot blks. 2038 */ 2039 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) { 2040 if (flags & XFS_QMOPT_DOWARN) 2041 cmn_err(CE_ALERT, 2042 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 2043 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 2044 errs++; 2045 } 2046 if (ddq->d_version != XFS_DQUOT_VERSION) { 2047 if (flags & XFS_QMOPT_DOWARN) 2048 cmn_err(CE_ALERT, 2049 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 2050 str, id, ddq->d_version, XFS_DQUOT_VERSION); 2051 errs++; 2052 } 2053 2054 if (ddq->d_flags != XFS_DQ_USER && 2055 ddq->d_flags != XFS_DQ_PROJ && 2056 ddq->d_flags != XFS_DQ_GROUP) { 2057 if (flags & XFS_QMOPT_DOWARN) 2058 cmn_err(CE_ALERT, 2059 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 2060 str, id, ddq->d_flags); 2061 errs++; 2062 } 2063 2064 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 2065 if (flags & XFS_QMOPT_DOWARN) 2066 cmn_err(CE_ALERT, 2067 "%s : ondisk-dquot 0x%p, ID mismatch: " 2068 "0x%x expected, found id 0x%x", 2069 str, ddq, id, be32_to_cpu(ddq->d_id)); 2070 errs++; 2071 } 2072 2073 if (!errs && ddq->d_id) { 2074 if (ddq->d_blk_softlimit && 2075 be64_to_cpu(ddq->d_bcount) >= 2076 be64_to_cpu(ddq->d_blk_softlimit)) { 2077 if (!ddq->d_btimer) { 2078 if (flags & XFS_QMOPT_DOWARN) 2079 cmn_err(CE_ALERT, 2080 "%s : Dquot ID 0x%x (0x%p) " 2081 "BLK TIMER NOT STARTED", 2082 str, (int)be32_to_cpu(ddq->d_id), ddq); 2083 errs++; 2084 } 2085 } 2086 if (ddq->d_ino_softlimit && 2087 be64_to_cpu(ddq->d_icount) >= 2088 be64_to_cpu(ddq->d_ino_softlimit)) { 2089 if (!ddq->d_itimer) { 2090 if (flags & XFS_QMOPT_DOWARN) 2091 cmn_err(CE_ALERT, 2092 "%s : Dquot ID 0x%x (0x%p) " 2093 "INODE TIMER NOT STARTED", 2094 str, (int)be32_to_cpu(ddq->d_id), ddq); 2095 errs++; 2096 } 2097 } 2098 if (ddq->d_rtb_softlimit && 2099 be64_to_cpu(ddq->d_rtbcount) >= 2100 be64_to_cpu(ddq->d_rtb_softlimit)) { 2101 if (!ddq->d_rtbtimer) { 2102 if (flags & XFS_QMOPT_DOWARN) 2103 cmn_err(CE_ALERT, 2104 "%s : Dquot ID 0x%x (0x%p) " 2105 "RTBLK TIMER NOT STARTED", 2106 str, (int)be32_to_cpu(ddq->d_id), ddq); 2107 errs++; 2108 } 2109 } 2110 } 2111 2112 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2113 return errs; 2114 2115 if (flags & XFS_QMOPT_DOWARN) 2116 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); 2117 2118 /* 2119 * Typically, a repair is only requested by quotacheck. 2120 */ 2121 ASSERT(id != -1); 2122 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2123 memset(d, 0, sizeof(xfs_dqblk_t)); 2124 2125 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2126 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2127 d->dd_diskdq.d_flags = type; 2128 d->dd_diskdq.d_id = cpu_to_be32(id); 2129 2130 return errs; 2131 } 2132 2133 /* 2134 * Perform a dquot buffer recovery. 2135 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2136 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2137 * Else, treat it as a regular buffer and do recovery. 2138 */ 2139 STATIC void 2140 xlog_recover_do_dquot_buffer( 2141 xfs_mount_t *mp, 2142 xlog_t *log, 2143 xlog_recover_item_t *item, 2144 xfs_buf_t *bp, 2145 xfs_buf_log_format_t *buf_f) 2146 { 2147 uint type; 2148 2149 /* 2150 * Filesystems are required to send in quota flags at mount time. 2151 */ 2152 if (mp->m_qflags == 0) { 2153 return; 2154 } 2155 2156 type = 0; 2157 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF) 2158 type |= XFS_DQ_USER; 2159 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF) 2160 type |= XFS_DQ_PROJ; 2161 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF) 2162 type |= XFS_DQ_GROUP; 2163 /* 2164 * This type of quotas was turned off, so ignore this buffer 2165 */ 2166 if (log->l_quotaoffs_flag & type) 2167 return; 2168 2169 xlog_recover_do_reg_buffer(item, bp, buf_f); 2170 } 2171 2172 /* 2173 * This routine replays a modification made to a buffer at runtime. 2174 * There are actually two types of buffer, regular and inode, which 2175 * are handled differently. Inode buffers are handled differently 2176 * in that we only recover a specific set of data from them, namely 2177 * the inode di_next_unlinked fields. This is because all other inode 2178 * data is actually logged via inode records and any data we replay 2179 * here which overlaps that may be stale. 2180 * 2181 * When meta-data buffers are freed at run time we log a buffer item 2182 * with the XFS_BLI_CANCEL bit set to indicate that previous copies 2183 * of the buffer in the log should not be replayed at recovery time. 2184 * This is so that if the blocks covered by the buffer are reused for 2185 * file data before we crash we don't end up replaying old, freed 2186 * meta-data into a user's file. 2187 * 2188 * To handle the cancellation of buffer log items, we make two passes 2189 * over the log during recovery. During the first we build a table of 2190 * those buffers which have been cancelled, and during the second we 2191 * only replay those buffers which do not have corresponding cancel 2192 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2193 * for more details on the implementation of the table of cancel records. 2194 */ 2195 STATIC int 2196 xlog_recover_do_buffer_trans( 2197 xlog_t *log, 2198 xlog_recover_item_t *item, 2199 int pass) 2200 { 2201 xfs_buf_log_format_t *buf_f; 2202 xfs_mount_t *mp; 2203 xfs_buf_t *bp; 2204 int error; 2205 int cancel; 2206 xfs_daddr_t blkno; 2207 int len; 2208 ushort flags; 2209 2210 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr; 2211 2212 if (pass == XLOG_RECOVER_PASS1) { 2213 /* 2214 * In this pass we're only looking for buf items 2215 * with the XFS_BLI_CANCEL bit set. 2216 */ 2217 xlog_recover_do_buffer_pass1(log, buf_f); 2218 return 0; 2219 } else { 2220 /* 2221 * In this pass we want to recover all the buffers 2222 * which have not been cancelled and are not 2223 * cancellation buffers themselves. The routine 2224 * we call here will tell us whether or not to 2225 * continue with the replay of this buffer. 2226 */ 2227 cancel = xlog_recover_do_buffer_pass2(log, buf_f); 2228 if (cancel) { 2229 return 0; 2230 } 2231 } 2232 switch (buf_f->blf_type) { 2233 case XFS_LI_BUF: 2234 blkno = buf_f->blf_blkno; 2235 len = buf_f->blf_len; 2236 flags = buf_f->blf_flags; 2237 break; 2238 default: 2239 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 2240 "xfs_log_recover: unknown buffer type 0x%x, logdev %s", 2241 buf_f->blf_type, log->l_mp->m_logname ? 2242 log->l_mp->m_logname : "internal"); 2243 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", 2244 XFS_ERRLEVEL_LOW, log->l_mp); 2245 return XFS_ERROR(EFSCORRUPTED); 2246 } 2247 2248 mp = log->l_mp; 2249 if (flags & XFS_BLI_INODE_BUF) { 2250 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len, 2251 XFS_BUF_LOCK); 2252 } else { 2253 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0); 2254 } 2255 if (XFS_BUF_ISERROR(bp)) { 2256 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, 2257 bp, blkno); 2258 error = XFS_BUF_GETERROR(bp); 2259 xfs_buf_relse(bp); 2260 return error; 2261 } 2262 2263 error = 0; 2264 if (flags & XFS_BLI_INODE_BUF) { 2265 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2266 } else if (flags & 2267 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 2268 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2269 } else { 2270 xlog_recover_do_reg_buffer(item, bp, buf_f); 2271 } 2272 if (error) 2273 return XFS_ERROR(error); 2274 2275 /* 2276 * Perform delayed write on the buffer. Asynchronous writes will be 2277 * slower when taking into account all the buffers to be flushed. 2278 * 2279 * Also make sure that only inode buffers with good sizes stay in 2280 * the buffer cache. The kernel moves inodes in buffers of 1 block 2281 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2282 * buffers in the log can be a different size if the log was generated 2283 * by an older kernel using unclustered inode buffers or a newer kernel 2284 * running with a different inode cluster size. Regardless, if the 2285 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2286 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2287 * the buffer out of the buffer cache so that the buffer won't 2288 * overlap with future reads of those inodes. 2289 */ 2290 if (XFS_DINODE_MAGIC == 2291 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2292 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, 2293 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2294 XFS_BUF_STALE(bp); 2295 error = xfs_bwrite(mp, bp); 2296 } else { 2297 ASSERT(bp->b_mount == NULL || bp->b_mount == mp); 2298 bp->b_mount = mp; 2299 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2300 xfs_bdwrite(mp, bp); 2301 } 2302 2303 return (error); 2304 } 2305 2306 STATIC int 2307 xlog_recover_do_inode_trans( 2308 xlog_t *log, 2309 xlog_recover_item_t *item, 2310 int pass) 2311 { 2312 xfs_inode_log_format_t *in_f; 2313 xfs_mount_t *mp; 2314 xfs_buf_t *bp; 2315 xfs_dinode_t *dip; 2316 xfs_ino_t ino; 2317 int len; 2318 xfs_caddr_t src; 2319 xfs_caddr_t dest; 2320 int error; 2321 int attr_index; 2322 uint fields; 2323 xfs_icdinode_t *dicp; 2324 int need_free = 0; 2325 2326 if (pass == XLOG_RECOVER_PASS1) { 2327 return 0; 2328 } 2329 2330 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2331 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr; 2332 } else { 2333 in_f = (xfs_inode_log_format_t *)kmem_alloc( 2334 sizeof(xfs_inode_log_format_t), KM_SLEEP); 2335 need_free = 1; 2336 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2337 if (error) 2338 goto error; 2339 } 2340 ino = in_f->ilf_ino; 2341 mp = log->l_mp; 2342 2343 /* 2344 * Inode buffers can be freed, look out for it, 2345 * and do not replay the inode. 2346 */ 2347 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2348 in_f->ilf_len, 0)) { 2349 error = 0; 2350 goto error; 2351 } 2352 2353 bp = xfs_buf_read_flags(mp->m_ddev_targp, in_f->ilf_blkno, 2354 in_f->ilf_len, XFS_BUF_LOCK); 2355 if (XFS_BUF_ISERROR(bp)) { 2356 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, 2357 bp, in_f->ilf_blkno); 2358 error = XFS_BUF_GETERROR(bp); 2359 xfs_buf_relse(bp); 2360 goto error; 2361 } 2362 error = 0; 2363 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2364 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2365 2366 /* 2367 * Make sure the place we're flushing out to really looks 2368 * like an inode! 2369 */ 2370 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) { 2371 xfs_buf_relse(bp); 2372 xfs_fs_cmn_err(CE_ALERT, mp, 2373 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", 2374 dip, bp, ino); 2375 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", 2376 XFS_ERRLEVEL_LOW, mp); 2377 error = EFSCORRUPTED; 2378 goto error; 2379 } 2380 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr); 2381 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2382 xfs_buf_relse(bp); 2383 xfs_fs_cmn_err(CE_ALERT, mp, 2384 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", 2385 item, ino); 2386 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", 2387 XFS_ERRLEVEL_LOW, mp); 2388 error = EFSCORRUPTED; 2389 goto error; 2390 } 2391 2392 /* Skip replay when the on disk inode is newer than the log one */ 2393 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2394 /* 2395 * Deal with the wrap case, DI_MAX_FLUSH is less 2396 * than smaller numbers 2397 */ 2398 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2399 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2400 /* do nothing */ 2401 } else { 2402 xfs_buf_relse(bp); 2403 error = 0; 2404 goto error; 2405 } 2406 } 2407 /* Take the opportunity to reset the flush iteration count */ 2408 dicp->di_flushiter = 0; 2409 2410 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { 2411 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2412 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2413 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", 2414 XFS_ERRLEVEL_LOW, mp, dicp); 2415 xfs_buf_relse(bp); 2416 xfs_fs_cmn_err(CE_ALERT, mp, 2417 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2418 item, dip, bp, ino); 2419 error = EFSCORRUPTED; 2420 goto error; 2421 } 2422 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { 2423 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2424 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2425 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2426 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", 2427 XFS_ERRLEVEL_LOW, mp, dicp); 2428 xfs_buf_relse(bp); 2429 xfs_fs_cmn_err(CE_ALERT, mp, 2430 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2431 item, dip, bp, ino); 2432 error = EFSCORRUPTED; 2433 goto error; 2434 } 2435 } 2436 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2437 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", 2438 XFS_ERRLEVEL_LOW, mp, dicp); 2439 xfs_buf_relse(bp); 2440 xfs_fs_cmn_err(CE_ALERT, mp, 2441 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2442 item, dip, bp, ino, 2443 dicp->di_nextents + dicp->di_anextents, 2444 dicp->di_nblocks); 2445 error = EFSCORRUPTED; 2446 goto error; 2447 } 2448 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2449 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", 2450 XFS_ERRLEVEL_LOW, mp, dicp); 2451 xfs_buf_relse(bp); 2452 xfs_fs_cmn_err(CE_ALERT, mp, 2453 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", 2454 item, dip, bp, ino, dicp->di_forkoff); 2455 error = EFSCORRUPTED; 2456 goto error; 2457 } 2458 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) { 2459 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", 2460 XFS_ERRLEVEL_LOW, mp, dicp); 2461 xfs_buf_relse(bp); 2462 xfs_fs_cmn_err(CE_ALERT, mp, 2463 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", 2464 item->ri_buf[1].i_len, item); 2465 error = EFSCORRUPTED; 2466 goto error; 2467 } 2468 2469 /* The core is in in-core format */ 2470 xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr); 2471 2472 /* the rest is in on-disk format */ 2473 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) { 2474 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode), 2475 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode), 2476 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode)); 2477 } 2478 2479 fields = in_f->ilf_fields; 2480 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2481 case XFS_ILOG_DEV: 2482 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2483 break; 2484 case XFS_ILOG_UUID: 2485 memcpy(XFS_DFORK_DPTR(dip), 2486 &in_f->ilf_u.ilfu_uuid, 2487 sizeof(uuid_t)); 2488 break; 2489 } 2490 2491 if (in_f->ilf_size == 2) 2492 goto write_inode_buffer; 2493 len = item->ri_buf[2].i_len; 2494 src = item->ri_buf[2].i_addr; 2495 ASSERT(in_f->ilf_size <= 4); 2496 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2497 ASSERT(!(fields & XFS_ILOG_DFORK) || 2498 (len == in_f->ilf_dsize)); 2499 2500 switch (fields & XFS_ILOG_DFORK) { 2501 case XFS_ILOG_DDATA: 2502 case XFS_ILOG_DEXT: 2503 memcpy(XFS_DFORK_DPTR(dip), src, len); 2504 break; 2505 2506 case XFS_ILOG_DBROOT: 2507 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2508 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2509 XFS_DFORK_DSIZE(dip, mp)); 2510 break; 2511 2512 default: 2513 /* 2514 * There are no data fork flags set. 2515 */ 2516 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2517 break; 2518 } 2519 2520 /* 2521 * If we logged any attribute data, recover it. There may or 2522 * may not have been any other non-core data logged in this 2523 * transaction. 2524 */ 2525 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2526 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2527 attr_index = 3; 2528 } else { 2529 attr_index = 2; 2530 } 2531 len = item->ri_buf[attr_index].i_len; 2532 src = item->ri_buf[attr_index].i_addr; 2533 ASSERT(len == in_f->ilf_asize); 2534 2535 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2536 case XFS_ILOG_ADATA: 2537 case XFS_ILOG_AEXT: 2538 dest = XFS_DFORK_APTR(dip); 2539 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2540 memcpy(dest, src, len); 2541 break; 2542 2543 case XFS_ILOG_ABROOT: 2544 dest = XFS_DFORK_APTR(dip); 2545 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2546 len, (xfs_bmdr_block_t*)dest, 2547 XFS_DFORK_ASIZE(dip, mp)); 2548 break; 2549 2550 default: 2551 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); 2552 ASSERT(0); 2553 xfs_buf_relse(bp); 2554 error = EIO; 2555 goto error; 2556 } 2557 } 2558 2559 write_inode_buffer: 2560 ASSERT(bp->b_mount == NULL || bp->b_mount == mp); 2561 bp->b_mount = mp; 2562 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2563 xfs_bdwrite(mp, bp); 2564 error: 2565 if (need_free) 2566 kmem_free(in_f); 2567 return XFS_ERROR(error); 2568 } 2569 2570 /* 2571 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2572 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2573 * of that type. 2574 */ 2575 STATIC int 2576 xlog_recover_do_quotaoff_trans( 2577 xlog_t *log, 2578 xlog_recover_item_t *item, 2579 int pass) 2580 { 2581 xfs_qoff_logformat_t *qoff_f; 2582 2583 if (pass == XLOG_RECOVER_PASS2) { 2584 return (0); 2585 } 2586 2587 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr; 2588 ASSERT(qoff_f); 2589 2590 /* 2591 * The logitem format's flag tells us if this was user quotaoff, 2592 * group/project quotaoff or both. 2593 */ 2594 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2595 log->l_quotaoffs_flag |= XFS_DQ_USER; 2596 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2597 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2598 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2599 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2600 2601 return (0); 2602 } 2603 2604 /* 2605 * Recover a dquot record 2606 */ 2607 STATIC int 2608 xlog_recover_do_dquot_trans( 2609 xlog_t *log, 2610 xlog_recover_item_t *item, 2611 int pass) 2612 { 2613 xfs_mount_t *mp; 2614 xfs_buf_t *bp; 2615 struct xfs_disk_dquot *ddq, *recddq; 2616 int error; 2617 xfs_dq_logformat_t *dq_f; 2618 uint type; 2619 2620 if (pass == XLOG_RECOVER_PASS1) { 2621 return 0; 2622 } 2623 mp = log->l_mp; 2624 2625 /* 2626 * Filesystems are required to send in quota flags at mount time. 2627 */ 2628 if (mp->m_qflags == 0) 2629 return (0); 2630 2631 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr; 2632 2633 if (item->ri_buf[1].i_addr == NULL) { 2634 cmn_err(CE_ALERT, 2635 "XFS: NULL dquot in %s.", __func__); 2636 return XFS_ERROR(EIO); 2637 } 2638 if (item->ri_buf[1].i_len < sizeof(xfs_dqblk_t)) { 2639 cmn_err(CE_ALERT, 2640 "XFS: dquot too small (%d) in %s.", 2641 item->ri_buf[1].i_len, __func__); 2642 return XFS_ERROR(EIO); 2643 } 2644 2645 /* 2646 * This type of quotas was turned off, so ignore this record. 2647 */ 2648 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2649 ASSERT(type); 2650 if (log->l_quotaoffs_flag & type) 2651 return (0); 2652 2653 /* 2654 * At this point we know that quota was _not_ turned off. 2655 * Since the mount flags are not indicating to us otherwise, this 2656 * must mean that quota is on, and the dquot needs to be replayed. 2657 * Remember that we may not have fully recovered the superblock yet, 2658 * so we can't do the usual trick of looking at the SB quota bits. 2659 * 2660 * The other possibility, of course, is that the quota subsystem was 2661 * removed since the last mount - ENOSYS. 2662 */ 2663 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr; 2664 ASSERT(dq_f); 2665 if ((error = xfs_qm_dqcheck(recddq, 2666 dq_f->qlf_id, 2667 0, XFS_QMOPT_DOWARN, 2668 "xlog_recover_do_dquot_trans (log copy)"))) { 2669 return XFS_ERROR(EIO); 2670 } 2671 ASSERT(dq_f->qlf_len == 1); 2672 2673 error = xfs_read_buf(mp, mp->m_ddev_targp, 2674 dq_f->qlf_blkno, 2675 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 2676 0, &bp); 2677 if (error) { 2678 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, 2679 bp, dq_f->qlf_blkno); 2680 return error; 2681 } 2682 ASSERT(bp); 2683 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2684 2685 /* 2686 * At least the magic num portion should be on disk because this 2687 * was among a chunk of dquots created earlier, and we did some 2688 * minimal initialization then. 2689 */ 2690 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2691 "xlog_recover_do_dquot_trans")) { 2692 xfs_buf_relse(bp); 2693 return XFS_ERROR(EIO); 2694 } 2695 2696 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2697 2698 ASSERT(dq_f->qlf_size == 2); 2699 ASSERT(bp->b_mount == NULL || bp->b_mount == mp); 2700 bp->b_mount = mp; 2701 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2702 xfs_bdwrite(mp, bp); 2703 2704 return (0); 2705 } 2706 2707 /* 2708 * This routine is called to create an in-core extent free intent 2709 * item from the efi format structure which was logged on disk. 2710 * It allocates an in-core efi, copies the extents from the format 2711 * structure into it, and adds the efi to the AIL with the given 2712 * LSN. 2713 */ 2714 STATIC int 2715 xlog_recover_do_efi_trans( 2716 xlog_t *log, 2717 xlog_recover_item_t *item, 2718 xfs_lsn_t lsn, 2719 int pass) 2720 { 2721 int error; 2722 xfs_mount_t *mp; 2723 xfs_efi_log_item_t *efip; 2724 xfs_efi_log_format_t *efi_formatp; 2725 2726 if (pass == XLOG_RECOVER_PASS1) { 2727 return 0; 2728 } 2729 2730 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr; 2731 2732 mp = log->l_mp; 2733 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2734 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2735 &(efip->efi_format)))) { 2736 xfs_efi_item_free(efip); 2737 return error; 2738 } 2739 efip->efi_next_extent = efi_formatp->efi_nextents; 2740 efip->efi_flags |= XFS_EFI_COMMITTED; 2741 2742 spin_lock(&log->l_ailp->xa_lock); 2743 /* 2744 * xfs_trans_ail_update() drops the AIL lock. 2745 */ 2746 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn); 2747 return 0; 2748 } 2749 2750 2751 /* 2752 * This routine is called when an efd format structure is found in 2753 * a committed transaction in the log. It's purpose is to cancel 2754 * the corresponding efi if it was still in the log. To do this 2755 * it searches the AIL for the efi with an id equal to that in the 2756 * efd format structure. If we find it, we remove the efi from the 2757 * AIL and free it. 2758 */ 2759 STATIC void 2760 xlog_recover_do_efd_trans( 2761 xlog_t *log, 2762 xlog_recover_item_t *item, 2763 int pass) 2764 { 2765 xfs_efd_log_format_t *efd_formatp; 2766 xfs_efi_log_item_t *efip = NULL; 2767 xfs_log_item_t *lip; 2768 __uint64_t efi_id; 2769 struct xfs_ail_cursor cur; 2770 struct xfs_ail *ailp = log->l_ailp; 2771 2772 if (pass == XLOG_RECOVER_PASS1) { 2773 return; 2774 } 2775 2776 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr; 2777 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2778 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2779 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2780 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2781 efi_id = efd_formatp->efd_efi_id; 2782 2783 /* 2784 * Search for the efi with the id in the efd format structure 2785 * in the AIL. 2786 */ 2787 spin_lock(&ailp->xa_lock); 2788 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2789 while (lip != NULL) { 2790 if (lip->li_type == XFS_LI_EFI) { 2791 efip = (xfs_efi_log_item_t *)lip; 2792 if (efip->efi_format.efi_id == efi_id) { 2793 /* 2794 * xfs_trans_ail_delete() drops the 2795 * AIL lock. 2796 */ 2797 xfs_trans_ail_delete(ailp, lip); 2798 xfs_efi_item_free(efip); 2799 spin_lock(&ailp->xa_lock); 2800 break; 2801 } 2802 } 2803 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2804 } 2805 xfs_trans_ail_cursor_done(ailp, &cur); 2806 spin_unlock(&ailp->xa_lock); 2807 } 2808 2809 /* 2810 * Perform the transaction 2811 * 2812 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2813 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2814 */ 2815 STATIC int 2816 xlog_recover_do_trans( 2817 xlog_t *log, 2818 xlog_recover_t *trans, 2819 int pass) 2820 { 2821 int error = 0; 2822 xlog_recover_item_t *item, *first_item; 2823 2824 error = xlog_recover_reorder_trans(trans); 2825 if (error) 2826 return error; 2827 2828 first_item = item = trans->r_itemq; 2829 do { 2830 switch (ITEM_TYPE(item)) { 2831 case XFS_LI_BUF: 2832 error = xlog_recover_do_buffer_trans(log, item, pass); 2833 break; 2834 case XFS_LI_INODE: 2835 error = xlog_recover_do_inode_trans(log, item, pass); 2836 break; 2837 case XFS_LI_EFI: 2838 error = xlog_recover_do_efi_trans(log, item, 2839 trans->r_lsn, pass); 2840 break; 2841 case XFS_LI_EFD: 2842 xlog_recover_do_efd_trans(log, item, pass); 2843 error = 0; 2844 break; 2845 case XFS_LI_DQUOT: 2846 error = xlog_recover_do_dquot_trans(log, item, pass); 2847 break; 2848 case XFS_LI_QUOTAOFF: 2849 error = xlog_recover_do_quotaoff_trans(log, item, 2850 pass); 2851 break; 2852 default: 2853 xlog_warn( 2854 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item)); 2855 ASSERT(0); 2856 error = XFS_ERROR(EIO); 2857 break; 2858 } 2859 2860 if (error) 2861 return error; 2862 item = item->ri_next; 2863 } while (first_item != item); 2864 2865 return 0; 2866 } 2867 2868 /* 2869 * Free up any resources allocated by the transaction 2870 * 2871 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2872 */ 2873 STATIC void 2874 xlog_recover_free_trans( 2875 xlog_recover_t *trans) 2876 { 2877 xlog_recover_item_t *first_item, *item, *free_item; 2878 int i; 2879 2880 item = first_item = trans->r_itemq; 2881 do { 2882 free_item = item; 2883 item = item->ri_next; 2884 /* Free the regions in the item. */ 2885 for (i = 0; i < free_item->ri_cnt; i++) { 2886 kmem_free(free_item->ri_buf[i].i_addr); 2887 } 2888 /* Free the item itself */ 2889 kmem_free(free_item->ri_buf); 2890 kmem_free(free_item); 2891 } while (first_item != item); 2892 /* Free the transaction recover structure */ 2893 kmem_free(trans); 2894 } 2895 2896 STATIC int 2897 xlog_recover_commit_trans( 2898 xlog_t *log, 2899 xlog_recover_t **q, 2900 xlog_recover_t *trans, 2901 int pass) 2902 { 2903 int error; 2904 2905 if ((error = xlog_recover_unlink_tid(q, trans))) 2906 return error; 2907 if ((error = xlog_recover_do_trans(log, trans, pass))) 2908 return error; 2909 xlog_recover_free_trans(trans); /* no error */ 2910 return 0; 2911 } 2912 2913 STATIC int 2914 xlog_recover_unmount_trans( 2915 xlog_recover_t *trans) 2916 { 2917 /* Do nothing now */ 2918 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); 2919 return 0; 2920 } 2921 2922 /* 2923 * There are two valid states of the r_state field. 0 indicates that the 2924 * transaction structure is in a normal state. We have either seen the 2925 * start of the transaction or the last operation we added was not a partial 2926 * operation. If the last operation we added to the transaction was a 2927 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2928 * 2929 * NOTE: skip LRs with 0 data length. 2930 */ 2931 STATIC int 2932 xlog_recover_process_data( 2933 xlog_t *log, 2934 xlog_recover_t *rhash[], 2935 xlog_rec_header_t *rhead, 2936 xfs_caddr_t dp, 2937 int pass) 2938 { 2939 xfs_caddr_t lp; 2940 int num_logops; 2941 xlog_op_header_t *ohead; 2942 xlog_recover_t *trans; 2943 xlog_tid_t tid; 2944 int error; 2945 unsigned long hash; 2946 uint flags; 2947 2948 lp = dp + be32_to_cpu(rhead->h_len); 2949 num_logops = be32_to_cpu(rhead->h_num_logops); 2950 2951 /* check the log format matches our own - else we can't recover */ 2952 if (xlog_header_check_recover(log->l_mp, rhead)) 2953 return (XFS_ERROR(EIO)); 2954 2955 while ((dp < lp) && num_logops) { 2956 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2957 ohead = (xlog_op_header_t *)dp; 2958 dp += sizeof(xlog_op_header_t); 2959 if (ohead->oh_clientid != XFS_TRANSACTION && 2960 ohead->oh_clientid != XFS_LOG) { 2961 xlog_warn( 2962 "XFS: xlog_recover_process_data: bad clientid"); 2963 ASSERT(0); 2964 return (XFS_ERROR(EIO)); 2965 } 2966 tid = be32_to_cpu(ohead->oh_tid); 2967 hash = XLOG_RHASH(tid); 2968 trans = xlog_recover_find_tid(rhash[hash], tid); 2969 if (trans == NULL) { /* not found; add new tid */ 2970 if (ohead->oh_flags & XLOG_START_TRANS) 2971 xlog_recover_new_tid(&rhash[hash], tid, 2972 be64_to_cpu(rhead->h_lsn)); 2973 } else { 2974 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 2975 xlog_warn( 2976 "XFS: xlog_recover_process_data: bad length"); 2977 WARN_ON(1); 2978 return (XFS_ERROR(EIO)); 2979 } 2980 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2981 if (flags & XLOG_WAS_CONT_TRANS) 2982 flags &= ~XLOG_CONTINUE_TRANS; 2983 switch (flags) { 2984 case XLOG_COMMIT_TRANS: 2985 error = xlog_recover_commit_trans(log, 2986 &rhash[hash], trans, pass); 2987 break; 2988 case XLOG_UNMOUNT_TRANS: 2989 error = xlog_recover_unmount_trans(trans); 2990 break; 2991 case XLOG_WAS_CONT_TRANS: 2992 error = xlog_recover_add_to_cont_trans(trans, 2993 dp, be32_to_cpu(ohead->oh_len)); 2994 break; 2995 case XLOG_START_TRANS: 2996 xlog_warn( 2997 "XFS: xlog_recover_process_data: bad transaction"); 2998 ASSERT(0); 2999 error = XFS_ERROR(EIO); 3000 break; 3001 case 0: 3002 case XLOG_CONTINUE_TRANS: 3003 error = xlog_recover_add_to_trans(trans, 3004 dp, be32_to_cpu(ohead->oh_len)); 3005 break; 3006 default: 3007 xlog_warn( 3008 "XFS: xlog_recover_process_data: bad flag"); 3009 ASSERT(0); 3010 error = XFS_ERROR(EIO); 3011 break; 3012 } 3013 if (error) 3014 return error; 3015 } 3016 dp += be32_to_cpu(ohead->oh_len); 3017 num_logops--; 3018 } 3019 return 0; 3020 } 3021 3022 /* 3023 * Process an extent free intent item that was recovered from 3024 * the log. We need to free the extents that it describes. 3025 */ 3026 STATIC int 3027 xlog_recover_process_efi( 3028 xfs_mount_t *mp, 3029 xfs_efi_log_item_t *efip) 3030 { 3031 xfs_efd_log_item_t *efdp; 3032 xfs_trans_t *tp; 3033 int i; 3034 int error = 0; 3035 xfs_extent_t *extp; 3036 xfs_fsblock_t startblock_fsb; 3037 3038 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); 3039 3040 /* 3041 * First check the validity of the extents described by the 3042 * EFI. If any are bad, then assume that all are bad and 3043 * just toss the EFI. 3044 */ 3045 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3046 extp = &(efip->efi_format.efi_extents[i]); 3047 startblock_fsb = XFS_BB_TO_FSB(mp, 3048 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3049 if ((startblock_fsb == 0) || 3050 (extp->ext_len == 0) || 3051 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3052 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3053 /* 3054 * This will pull the EFI from the AIL and 3055 * free the memory associated with it. 3056 */ 3057 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3058 return XFS_ERROR(EIO); 3059 } 3060 } 3061 3062 tp = xfs_trans_alloc(mp, 0); 3063 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3064 if (error) 3065 goto abort_error; 3066 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3067 3068 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3069 extp = &(efip->efi_format.efi_extents[i]); 3070 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3071 if (error) 3072 goto abort_error; 3073 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3074 extp->ext_len); 3075 } 3076 3077 efip->efi_flags |= XFS_EFI_RECOVERED; 3078 error = xfs_trans_commit(tp, 0); 3079 return error; 3080 3081 abort_error: 3082 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3083 return error; 3084 } 3085 3086 /* 3087 * When this is called, all of the EFIs which did not have 3088 * corresponding EFDs should be in the AIL. What we do now 3089 * is free the extents associated with each one. 3090 * 3091 * Since we process the EFIs in normal transactions, they 3092 * will be removed at some point after the commit. This prevents 3093 * us from just walking down the list processing each one. 3094 * We'll use a flag in the EFI to skip those that we've already 3095 * processed and use the AIL iteration mechanism's generation 3096 * count to try to speed this up at least a bit. 3097 * 3098 * When we start, we know that the EFIs are the only things in 3099 * the AIL. As we process them, however, other items are added 3100 * to the AIL. Since everything added to the AIL must come after 3101 * everything already in the AIL, we stop processing as soon as 3102 * we see something other than an EFI in the AIL. 3103 */ 3104 STATIC int 3105 xlog_recover_process_efis( 3106 xlog_t *log) 3107 { 3108 xfs_log_item_t *lip; 3109 xfs_efi_log_item_t *efip; 3110 int error = 0; 3111 struct xfs_ail_cursor cur; 3112 struct xfs_ail *ailp; 3113 3114 ailp = log->l_ailp; 3115 spin_lock(&ailp->xa_lock); 3116 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3117 while (lip != NULL) { 3118 /* 3119 * We're done when we see something other than an EFI. 3120 * There should be no EFIs left in the AIL now. 3121 */ 3122 if (lip->li_type != XFS_LI_EFI) { 3123 #ifdef DEBUG 3124 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3125 ASSERT(lip->li_type != XFS_LI_EFI); 3126 #endif 3127 break; 3128 } 3129 3130 /* 3131 * Skip EFIs that we've already processed. 3132 */ 3133 efip = (xfs_efi_log_item_t *)lip; 3134 if (efip->efi_flags & XFS_EFI_RECOVERED) { 3135 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3136 continue; 3137 } 3138 3139 spin_unlock(&ailp->xa_lock); 3140 error = xlog_recover_process_efi(log->l_mp, efip); 3141 spin_lock(&ailp->xa_lock); 3142 if (error) 3143 goto out; 3144 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3145 } 3146 out: 3147 xfs_trans_ail_cursor_done(ailp, &cur); 3148 spin_unlock(&ailp->xa_lock); 3149 return error; 3150 } 3151 3152 /* 3153 * This routine performs a transaction to null out a bad inode pointer 3154 * in an agi unlinked inode hash bucket. 3155 */ 3156 STATIC void 3157 xlog_recover_clear_agi_bucket( 3158 xfs_mount_t *mp, 3159 xfs_agnumber_t agno, 3160 int bucket) 3161 { 3162 xfs_trans_t *tp; 3163 xfs_agi_t *agi; 3164 xfs_buf_t *agibp; 3165 int offset; 3166 int error; 3167 3168 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3169 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 3170 0, 0, 0); 3171 if (error) 3172 goto out_abort; 3173 3174 error = xfs_read_agi(mp, tp, agno, &agibp); 3175 if (error) 3176 goto out_abort; 3177 3178 agi = XFS_BUF_TO_AGI(agibp); 3179 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3180 offset = offsetof(xfs_agi_t, agi_unlinked) + 3181 (sizeof(xfs_agino_t) * bucket); 3182 xfs_trans_log_buf(tp, agibp, offset, 3183 (offset + sizeof(xfs_agino_t) - 1)); 3184 3185 error = xfs_trans_commit(tp, 0); 3186 if (error) 3187 goto out_error; 3188 return; 3189 3190 out_abort: 3191 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3192 out_error: 3193 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: " 3194 "failed to clear agi %d. Continuing.", agno); 3195 return; 3196 } 3197 3198 STATIC xfs_agino_t 3199 xlog_recover_process_one_iunlink( 3200 struct xfs_mount *mp, 3201 xfs_agnumber_t agno, 3202 xfs_agino_t agino, 3203 int bucket) 3204 { 3205 struct xfs_buf *ibp; 3206 struct xfs_dinode *dip; 3207 struct xfs_inode *ip; 3208 xfs_ino_t ino; 3209 int error; 3210 3211 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3212 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0); 3213 if (error) 3214 goto fail; 3215 3216 /* 3217 * Get the on disk inode to find the next inode in the bucket. 3218 */ 3219 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK); 3220 if (error) 3221 goto fail_iput; 3222 3223 ASSERT(ip->i_d.di_nlink == 0); 3224 ASSERT(ip->i_d.di_mode != 0); 3225 3226 /* setup for the next pass */ 3227 agino = be32_to_cpu(dip->di_next_unlinked); 3228 xfs_buf_relse(ibp); 3229 3230 /* 3231 * Prevent any DMAPI event from being sent when the reference on 3232 * the inode is dropped. 3233 */ 3234 ip->i_d.di_dmevmask = 0; 3235 3236 IRELE(ip); 3237 return agino; 3238 3239 fail_iput: 3240 IRELE(ip); 3241 fail: 3242 /* 3243 * We can't read in the inode this bucket points to, or this inode 3244 * is messed up. Just ditch this bucket of inodes. We will lose 3245 * some inodes and space, but at least we won't hang. 3246 * 3247 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3248 * clear the inode pointer in the bucket. 3249 */ 3250 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3251 return NULLAGINO; 3252 } 3253 3254 /* 3255 * xlog_iunlink_recover 3256 * 3257 * This is called during recovery to process any inodes which 3258 * we unlinked but not freed when the system crashed. These 3259 * inodes will be on the lists in the AGI blocks. What we do 3260 * here is scan all the AGIs and fully truncate and free any 3261 * inodes found on the lists. Each inode is removed from the 3262 * lists when it has been fully truncated and is freed. The 3263 * freeing of the inode and its removal from the list must be 3264 * atomic. 3265 */ 3266 STATIC void 3267 xlog_recover_process_iunlinks( 3268 xlog_t *log) 3269 { 3270 xfs_mount_t *mp; 3271 xfs_agnumber_t agno; 3272 xfs_agi_t *agi; 3273 xfs_buf_t *agibp; 3274 xfs_agino_t agino; 3275 int bucket; 3276 int error; 3277 uint mp_dmevmask; 3278 3279 mp = log->l_mp; 3280 3281 /* 3282 * Prevent any DMAPI event from being sent while in this function. 3283 */ 3284 mp_dmevmask = mp->m_dmevmask; 3285 mp->m_dmevmask = 0; 3286 3287 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3288 /* 3289 * Find the agi for this ag. 3290 */ 3291 error = xfs_read_agi(mp, NULL, agno, &agibp); 3292 if (error) { 3293 /* 3294 * AGI is b0rked. Don't process it. 3295 * 3296 * We should probably mark the filesystem as corrupt 3297 * after we've recovered all the ag's we can.... 3298 */ 3299 continue; 3300 } 3301 agi = XFS_BUF_TO_AGI(agibp); 3302 3303 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3304 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3305 while (agino != NULLAGINO) { 3306 /* 3307 * Release the agi buffer so that it can 3308 * be acquired in the normal course of the 3309 * transaction to truncate and free the inode. 3310 */ 3311 xfs_buf_relse(agibp); 3312 3313 agino = xlog_recover_process_one_iunlink(mp, 3314 agno, agino, bucket); 3315 3316 /* 3317 * Reacquire the agibuffer and continue around 3318 * the loop. This should never fail as we know 3319 * the buffer was good earlier on. 3320 */ 3321 error = xfs_read_agi(mp, NULL, agno, &agibp); 3322 ASSERT(error == 0); 3323 agi = XFS_BUF_TO_AGI(agibp); 3324 } 3325 } 3326 3327 /* 3328 * Release the buffer for the current agi so we can 3329 * go on to the next one. 3330 */ 3331 xfs_buf_relse(agibp); 3332 } 3333 3334 mp->m_dmevmask = mp_dmevmask; 3335 } 3336 3337 3338 #ifdef DEBUG 3339 STATIC void 3340 xlog_pack_data_checksum( 3341 xlog_t *log, 3342 xlog_in_core_t *iclog, 3343 int size) 3344 { 3345 int i; 3346 __be32 *up; 3347 uint chksum = 0; 3348 3349 up = (__be32 *)iclog->ic_datap; 3350 /* divide length by 4 to get # words */ 3351 for (i = 0; i < (size >> 2); i++) { 3352 chksum ^= be32_to_cpu(*up); 3353 up++; 3354 } 3355 iclog->ic_header.h_chksum = cpu_to_be32(chksum); 3356 } 3357 #else 3358 #define xlog_pack_data_checksum(log, iclog, size) 3359 #endif 3360 3361 /* 3362 * Stamp cycle number in every block 3363 */ 3364 void 3365 xlog_pack_data( 3366 xlog_t *log, 3367 xlog_in_core_t *iclog, 3368 int roundoff) 3369 { 3370 int i, j, k; 3371 int size = iclog->ic_offset + roundoff; 3372 __be32 cycle_lsn; 3373 xfs_caddr_t dp; 3374 3375 xlog_pack_data_checksum(log, iclog, size); 3376 3377 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3378 3379 dp = iclog->ic_datap; 3380 for (i = 0; i < BTOBB(size) && 3381 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3382 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 3383 *(__be32 *)dp = cycle_lsn; 3384 dp += BBSIZE; 3385 } 3386 3387 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3388 xlog_in_core_2_t *xhdr = iclog->ic_data; 3389 3390 for ( ; i < BTOBB(size); i++) { 3391 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3392 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3393 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 3394 *(__be32 *)dp = cycle_lsn; 3395 dp += BBSIZE; 3396 } 3397 3398 for (i = 1; i < log->l_iclog_heads; i++) { 3399 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3400 } 3401 } 3402 } 3403 3404 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) 3405 STATIC void 3406 xlog_unpack_data_checksum( 3407 xlog_rec_header_t *rhead, 3408 xfs_caddr_t dp, 3409 xlog_t *log) 3410 { 3411 __be32 *up = (__be32 *)dp; 3412 uint chksum = 0; 3413 int i; 3414 3415 /* divide length by 4 to get # words */ 3416 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) { 3417 chksum ^= be32_to_cpu(*up); 3418 up++; 3419 } 3420 if (chksum != be32_to_cpu(rhead->h_chksum)) { 3421 if (rhead->h_chksum || 3422 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) { 3423 cmn_err(CE_DEBUG, 3424 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n", 3425 be32_to_cpu(rhead->h_chksum), chksum); 3426 cmn_err(CE_DEBUG, 3427 "XFS: Disregard message if filesystem was created with non-DEBUG kernel"); 3428 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3429 cmn_err(CE_DEBUG, 3430 "XFS: LogR this is a LogV2 filesystem\n"); 3431 } 3432 log->l_flags |= XLOG_CHKSUM_MISMATCH; 3433 } 3434 } 3435 } 3436 #else 3437 #define xlog_unpack_data_checksum(rhead, dp, log) 3438 #endif 3439 3440 STATIC void 3441 xlog_unpack_data( 3442 xlog_rec_header_t *rhead, 3443 xfs_caddr_t dp, 3444 xlog_t *log) 3445 { 3446 int i, j, k; 3447 3448 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 3449 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3450 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 3451 dp += BBSIZE; 3452 } 3453 3454 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3455 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 3456 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 3457 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3458 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3459 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3460 dp += BBSIZE; 3461 } 3462 } 3463 3464 xlog_unpack_data_checksum(rhead, dp, log); 3465 } 3466 3467 STATIC int 3468 xlog_valid_rec_header( 3469 xlog_t *log, 3470 xlog_rec_header_t *rhead, 3471 xfs_daddr_t blkno) 3472 { 3473 int hlen; 3474 3475 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) { 3476 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3477 XFS_ERRLEVEL_LOW, log->l_mp); 3478 return XFS_ERROR(EFSCORRUPTED); 3479 } 3480 if (unlikely( 3481 (!rhead->h_version || 3482 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 3483 xlog_warn("XFS: %s: unrecognised log version (%d).", 3484 __func__, be32_to_cpu(rhead->h_version)); 3485 return XFS_ERROR(EIO); 3486 } 3487 3488 /* LR body must have data or it wouldn't have been written */ 3489 hlen = be32_to_cpu(rhead->h_len); 3490 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3491 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3492 XFS_ERRLEVEL_LOW, log->l_mp); 3493 return XFS_ERROR(EFSCORRUPTED); 3494 } 3495 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3496 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3497 XFS_ERRLEVEL_LOW, log->l_mp); 3498 return XFS_ERROR(EFSCORRUPTED); 3499 } 3500 return 0; 3501 } 3502 3503 /* 3504 * Read the log from tail to head and process the log records found. 3505 * Handle the two cases where the tail and head are in the same cycle 3506 * and where the active portion of the log wraps around the end of 3507 * the physical log separately. The pass parameter is passed through 3508 * to the routines called to process the data and is not looked at 3509 * here. 3510 */ 3511 STATIC int 3512 xlog_do_recovery_pass( 3513 xlog_t *log, 3514 xfs_daddr_t head_blk, 3515 xfs_daddr_t tail_blk, 3516 int pass) 3517 { 3518 xlog_rec_header_t *rhead; 3519 xfs_daddr_t blk_no; 3520 xfs_caddr_t bufaddr, offset; 3521 xfs_buf_t *hbp, *dbp; 3522 int error = 0, h_size; 3523 int bblks, split_bblks; 3524 int hblks, split_hblks, wrapped_hblks; 3525 xlog_recover_t *rhash[XLOG_RHASH_SIZE]; 3526 3527 ASSERT(head_blk != tail_blk); 3528 3529 /* 3530 * Read the header of the tail block and get the iclog buffer size from 3531 * h_size. Use this to tell how many sectors make up the log header. 3532 */ 3533 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3534 /* 3535 * When using variable length iclogs, read first sector of 3536 * iclog header and extract the header size from it. Get a 3537 * new hbp that is the correct size. 3538 */ 3539 hbp = xlog_get_bp(log, 1); 3540 if (!hbp) 3541 return ENOMEM; 3542 3543 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 3544 if (error) 3545 goto bread_err1; 3546 3547 rhead = (xlog_rec_header_t *)offset; 3548 error = xlog_valid_rec_header(log, rhead, tail_blk); 3549 if (error) 3550 goto bread_err1; 3551 h_size = be32_to_cpu(rhead->h_size); 3552 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3553 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3554 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3555 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3556 hblks++; 3557 xlog_put_bp(hbp); 3558 hbp = xlog_get_bp(log, hblks); 3559 } else { 3560 hblks = 1; 3561 } 3562 } else { 3563 ASSERT(log->l_sectbb_log == 0); 3564 hblks = 1; 3565 hbp = xlog_get_bp(log, 1); 3566 h_size = XLOG_BIG_RECORD_BSIZE; 3567 } 3568 3569 if (!hbp) 3570 return ENOMEM; 3571 dbp = xlog_get_bp(log, BTOBB(h_size)); 3572 if (!dbp) { 3573 xlog_put_bp(hbp); 3574 return ENOMEM; 3575 } 3576 3577 memset(rhash, 0, sizeof(rhash)); 3578 if (tail_blk <= head_blk) { 3579 for (blk_no = tail_blk; blk_no < head_blk; ) { 3580 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3581 if (error) 3582 goto bread_err2; 3583 3584 rhead = (xlog_rec_header_t *)offset; 3585 error = xlog_valid_rec_header(log, rhead, blk_no); 3586 if (error) 3587 goto bread_err2; 3588 3589 /* blocks in data section */ 3590 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3591 error = xlog_bread(log, blk_no + hblks, bblks, dbp, 3592 &offset); 3593 if (error) 3594 goto bread_err2; 3595 3596 xlog_unpack_data(rhead, offset, log); 3597 if ((error = xlog_recover_process_data(log, 3598 rhash, rhead, offset, pass))) 3599 goto bread_err2; 3600 blk_no += bblks + hblks; 3601 } 3602 } else { 3603 /* 3604 * Perform recovery around the end of the physical log. 3605 * When the head is not on the same cycle number as the tail, 3606 * we can't do a sequential recovery as above. 3607 */ 3608 blk_no = tail_blk; 3609 while (blk_no < log->l_logBBsize) { 3610 /* 3611 * Check for header wrapping around physical end-of-log 3612 */ 3613 offset = NULL; 3614 split_hblks = 0; 3615 wrapped_hblks = 0; 3616 if (blk_no + hblks <= log->l_logBBsize) { 3617 /* Read header in one read */ 3618 error = xlog_bread(log, blk_no, hblks, hbp, 3619 &offset); 3620 if (error) 3621 goto bread_err2; 3622 } else { 3623 /* This LR is split across physical log end */ 3624 if (blk_no != log->l_logBBsize) { 3625 /* some data before physical log end */ 3626 ASSERT(blk_no <= INT_MAX); 3627 split_hblks = log->l_logBBsize - (int)blk_no; 3628 ASSERT(split_hblks > 0); 3629 error = xlog_bread(log, blk_no, 3630 split_hblks, hbp, 3631 &offset); 3632 if (error) 3633 goto bread_err2; 3634 } 3635 3636 /* 3637 * Note: this black magic still works with 3638 * large sector sizes (non-512) only because: 3639 * - we increased the buffer size originally 3640 * by 1 sector giving us enough extra space 3641 * for the second read; 3642 * - the log start is guaranteed to be sector 3643 * aligned; 3644 * - we read the log end (LR header start) 3645 * _first_, then the log start (LR header end) 3646 * - order is important. 3647 */ 3648 wrapped_hblks = hblks - split_hblks; 3649 bufaddr = XFS_BUF_PTR(hbp); 3650 error = XFS_BUF_SET_PTR(hbp, 3651 bufaddr + BBTOB(split_hblks), 3652 BBTOB(hblks - split_hblks)); 3653 if (error) 3654 goto bread_err2; 3655 3656 error = xlog_bread_noalign(log, 0, 3657 wrapped_hblks, hbp); 3658 if (error) 3659 goto bread_err2; 3660 3661 error = XFS_BUF_SET_PTR(hbp, bufaddr, 3662 BBTOB(hblks)); 3663 if (error) 3664 goto bread_err2; 3665 3666 if (!offset) 3667 offset = xlog_align(log, 0, 3668 wrapped_hblks, hbp); 3669 } 3670 rhead = (xlog_rec_header_t *)offset; 3671 error = xlog_valid_rec_header(log, rhead, 3672 split_hblks ? blk_no : 0); 3673 if (error) 3674 goto bread_err2; 3675 3676 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3677 blk_no += hblks; 3678 3679 /* Read in data for log record */ 3680 if (blk_no + bblks <= log->l_logBBsize) { 3681 error = xlog_bread(log, blk_no, bblks, dbp, 3682 &offset); 3683 if (error) 3684 goto bread_err2; 3685 } else { 3686 /* This log record is split across the 3687 * physical end of log */ 3688 offset = NULL; 3689 split_bblks = 0; 3690 if (blk_no != log->l_logBBsize) { 3691 /* some data is before the physical 3692 * end of log */ 3693 ASSERT(!wrapped_hblks); 3694 ASSERT(blk_no <= INT_MAX); 3695 split_bblks = 3696 log->l_logBBsize - (int)blk_no; 3697 ASSERT(split_bblks > 0); 3698 error = xlog_bread(log, blk_no, 3699 split_bblks, dbp, 3700 &offset); 3701 if (error) 3702 goto bread_err2; 3703 } 3704 3705 /* 3706 * Note: this black magic still works with 3707 * large sector sizes (non-512) only because: 3708 * - we increased the buffer size originally 3709 * by 1 sector giving us enough extra space 3710 * for the second read; 3711 * - the log start is guaranteed to be sector 3712 * aligned; 3713 * - we read the log end (LR header start) 3714 * _first_, then the log start (LR header end) 3715 * - order is important. 3716 */ 3717 bufaddr = XFS_BUF_PTR(dbp); 3718 error = XFS_BUF_SET_PTR(dbp, 3719 bufaddr + BBTOB(split_bblks), 3720 BBTOB(bblks - split_bblks)); 3721 if (error) 3722 goto bread_err2; 3723 3724 error = xlog_bread_noalign(log, wrapped_hblks, 3725 bblks - split_bblks, 3726 dbp); 3727 if (error) 3728 goto bread_err2; 3729 3730 error = XFS_BUF_SET_PTR(dbp, bufaddr, h_size); 3731 if (error) 3732 goto bread_err2; 3733 3734 if (!offset) 3735 offset = xlog_align(log, wrapped_hblks, 3736 bblks - split_bblks, dbp); 3737 } 3738 xlog_unpack_data(rhead, offset, log); 3739 if ((error = xlog_recover_process_data(log, rhash, 3740 rhead, offset, pass))) 3741 goto bread_err2; 3742 blk_no += bblks; 3743 } 3744 3745 ASSERT(blk_no >= log->l_logBBsize); 3746 blk_no -= log->l_logBBsize; 3747 3748 /* read first part of physical log */ 3749 while (blk_no < head_blk) { 3750 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3751 if (error) 3752 goto bread_err2; 3753 3754 rhead = (xlog_rec_header_t *)offset; 3755 error = xlog_valid_rec_header(log, rhead, blk_no); 3756 if (error) 3757 goto bread_err2; 3758 3759 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3760 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3761 &offset); 3762 if (error) 3763 goto bread_err2; 3764 3765 xlog_unpack_data(rhead, offset, log); 3766 if ((error = xlog_recover_process_data(log, rhash, 3767 rhead, offset, pass))) 3768 goto bread_err2; 3769 blk_no += bblks + hblks; 3770 } 3771 } 3772 3773 bread_err2: 3774 xlog_put_bp(dbp); 3775 bread_err1: 3776 xlog_put_bp(hbp); 3777 return error; 3778 } 3779 3780 /* 3781 * Do the recovery of the log. We actually do this in two phases. 3782 * The two passes are necessary in order to implement the function 3783 * of cancelling a record written into the log. The first pass 3784 * determines those things which have been cancelled, and the 3785 * second pass replays log items normally except for those which 3786 * have been cancelled. The handling of the replay and cancellations 3787 * takes place in the log item type specific routines. 3788 * 3789 * The table of items which have cancel records in the log is allocated 3790 * and freed at this level, since only here do we know when all of 3791 * the log recovery has been completed. 3792 */ 3793 STATIC int 3794 xlog_do_log_recovery( 3795 xlog_t *log, 3796 xfs_daddr_t head_blk, 3797 xfs_daddr_t tail_blk) 3798 { 3799 int error; 3800 3801 ASSERT(head_blk != tail_blk); 3802 3803 /* 3804 * First do a pass to find all of the cancelled buf log items. 3805 * Store them in the buf_cancel_table for use in the second pass. 3806 */ 3807 log->l_buf_cancel_table = 3808 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * 3809 sizeof(xfs_buf_cancel_t*), 3810 KM_SLEEP); 3811 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3812 XLOG_RECOVER_PASS1); 3813 if (error != 0) { 3814 kmem_free(log->l_buf_cancel_table); 3815 log->l_buf_cancel_table = NULL; 3816 return error; 3817 } 3818 /* 3819 * Then do a second pass to actually recover the items in the log. 3820 * When it is complete free the table of buf cancel items. 3821 */ 3822 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3823 XLOG_RECOVER_PASS2); 3824 #ifdef DEBUG 3825 if (!error) { 3826 int i; 3827 3828 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3829 ASSERT(log->l_buf_cancel_table[i] == NULL); 3830 } 3831 #endif /* DEBUG */ 3832 3833 kmem_free(log->l_buf_cancel_table); 3834 log->l_buf_cancel_table = NULL; 3835 3836 return error; 3837 } 3838 3839 /* 3840 * Do the actual recovery 3841 */ 3842 STATIC int 3843 xlog_do_recover( 3844 xlog_t *log, 3845 xfs_daddr_t head_blk, 3846 xfs_daddr_t tail_blk) 3847 { 3848 int error; 3849 xfs_buf_t *bp; 3850 xfs_sb_t *sbp; 3851 3852 /* 3853 * First replay the images in the log. 3854 */ 3855 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3856 if (error) { 3857 return error; 3858 } 3859 3860 XFS_bflush(log->l_mp->m_ddev_targp); 3861 3862 /* 3863 * If IO errors happened during recovery, bail out. 3864 */ 3865 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3866 return (EIO); 3867 } 3868 3869 /* 3870 * We now update the tail_lsn since much of the recovery has completed 3871 * and there may be space available to use. If there were no extent 3872 * or iunlinks, we can free up the entire log and set the tail_lsn to 3873 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3874 * lsn of the last known good LR on disk. If there are extent frees 3875 * or iunlinks they will have some entries in the AIL; so we look at 3876 * the AIL to determine how to set the tail_lsn. 3877 */ 3878 xlog_assign_tail_lsn(log->l_mp); 3879 3880 /* 3881 * Now that we've finished replaying all buffer and inode 3882 * updates, re-read in the superblock. 3883 */ 3884 bp = xfs_getsb(log->l_mp, 0); 3885 XFS_BUF_UNDONE(bp); 3886 ASSERT(!(XFS_BUF_ISWRITE(bp))); 3887 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); 3888 XFS_BUF_READ(bp); 3889 XFS_BUF_UNASYNC(bp); 3890 xfsbdstrat(log->l_mp, bp); 3891 error = xfs_iowait(bp); 3892 if (error) { 3893 xfs_ioerror_alert("xlog_do_recover", 3894 log->l_mp, bp, XFS_BUF_ADDR(bp)); 3895 ASSERT(0); 3896 xfs_buf_relse(bp); 3897 return error; 3898 } 3899 3900 /* Convert superblock from on-disk format */ 3901 sbp = &log->l_mp->m_sb; 3902 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 3903 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3904 ASSERT(xfs_sb_good_version(sbp)); 3905 xfs_buf_relse(bp); 3906 3907 /* We've re-read the superblock so re-initialize per-cpu counters */ 3908 xfs_icsb_reinit_counters(log->l_mp); 3909 3910 xlog_recover_check_summary(log); 3911 3912 /* Normal transactions can now occur */ 3913 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3914 return 0; 3915 } 3916 3917 /* 3918 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3919 * 3920 * Return error or zero. 3921 */ 3922 int 3923 xlog_recover( 3924 xlog_t *log) 3925 { 3926 xfs_daddr_t head_blk, tail_blk; 3927 int error; 3928 3929 /* find the tail of the log */ 3930 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3931 return error; 3932 3933 if (tail_blk != head_blk) { 3934 /* There used to be a comment here: 3935 * 3936 * disallow recovery on read-only mounts. note -- mount 3937 * checks for ENOSPC and turns it into an intelligent 3938 * error message. 3939 * ...but this is no longer true. Now, unless you specify 3940 * NORECOVERY (in which case this function would never be 3941 * called), we just go ahead and recover. We do this all 3942 * under the vfs layer, so we can get away with it unless 3943 * the device itself is read-only, in which case we fail. 3944 */ 3945 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3946 return error; 3947 } 3948 3949 cmn_err(CE_NOTE, 3950 "Starting XFS recovery on filesystem: %s (logdev: %s)", 3951 log->l_mp->m_fsname, log->l_mp->m_logname ? 3952 log->l_mp->m_logname : "internal"); 3953 3954 error = xlog_do_recover(log, head_blk, tail_blk); 3955 log->l_flags |= XLOG_RECOVERY_NEEDED; 3956 } 3957 return error; 3958 } 3959 3960 /* 3961 * In the first part of recovery we replay inodes and buffers and build 3962 * up the list of extent free items which need to be processed. Here 3963 * we process the extent free items and clean up the on disk unlinked 3964 * inode lists. This is separated from the first part of recovery so 3965 * that the root and real-time bitmap inodes can be read in from disk in 3966 * between the two stages. This is necessary so that we can free space 3967 * in the real-time portion of the file system. 3968 */ 3969 int 3970 xlog_recover_finish( 3971 xlog_t *log) 3972 { 3973 /* 3974 * Now we're ready to do the transactions needed for the 3975 * rest of recovery. Start with completing all the extent 3976 * free intent records and then process the unlinked inode 3977 * lists. At this point, we essentially run in normal mode 3978 * except that we're still performing recovery actions 3979 * rather than accepting new requests. 3980 */ 3981 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3982 int error; 3983 error = xlog_recover_process_efis(log); 3984 if (error) { 3985 cmn_err(CE_ALERT, 3986 "Failed to recover EFIs on filesystem: %s", 3987 log->l_mp->m_fsname); 3988 return error; 3989 } 3990 /* 3991 * Sync the log to get all the EFIs out of the AIL. 3992 * This isn't absolutely necessary, but it helps in 3993 * case the unlink transactions would have problems 3994 * pushing the EFIs out of the way. 3995 */ 3996 xfs_log_force(log->l_mp, (xfs_lsn_t)0, 3997 (XFS_LOG_FORCE | XFS_LOG_SYNC)); 3998 3999 xlog_recover_process_iunlinks(log); 4000 4001 xlog_recover_check_summary(log); 4002 4003 cmn_err(CE_NOTE, 4004 "Ending XFS recovery on filesystem: %s (logdev: %s)", 4005 log->l_mp->m_fsname, log->l_mp->m_logname ? 4006 log->l_mp->m_logname : "internal"); 4007 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 4008 } else { 4009 cmn_err(CE_DEBUG, 4010 "!Ending clean XFS mount for filesystem: %s\n", 4011 log->l_mp->m_fsname); 4012 } 4013 return 0; 4014 } 4015 4016 4017 #if defined(DEBUG) 4018 /* 4019 * Read all of the agf and agi counters and check that they 4020 * are consistent with the superblock counters. 4021 */ 4022 void 4023 xlog_recover_check_summary( 4024 xlog_t *log) 4025 { 4026 xfs_mount_t *mp; 4027 xfs_agf_t *agfp; 4028 xfs_buf_t *agfbp; 4029 xfs_buf_t *agibp; 4030 xfs_buf_t *sbbp; 4031 #ifdef XFS_LOUD_RECOVERY 4032 xfs_sb_t *sbp; 4033 #endif 4034 xfs_agnumber_t agno; 4035 __uint64_t freeblks; 4036 __uint64_t itotal; 4037 __uint64_t ifree; 4038 int error; 4039 4040 mp = log->l_mp; 4041 4042 freeblks = 0LL; 4043 itotal = 0LL; 4044 ifree = 0LL; 4045 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4046 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 4047 if (error) { 4048 xfs_fs_cmn_err(CE_ALERT, mp, 4049 "xlog_recover_check_summary(agf)" 4050 "agf read failed agno %d error %d", 4051 agno, error); 4052 } else { 4053 agfp = XFS_BUF_TO_AGF(agfbp); 4054 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4055 be32_to_cpu(agfp->agf_flcount); 4056 xfs_buf_relse(agfbp); 4057 } 4058 4059 error = xfs_read_agi(mp, NULL, agno, &agibp); 4060 if (!error) { 4061 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 4062 4063 itotal += be32_to_cpu(agi->agi_count); 4064 ifree += be32_to_cpu(agi->agi_freecount); 4065 xfs_buf_relse(agibp); 4066 } 4067 } 4068 4069 sbbp = xfs_getsb(mp, 0); 4070 #ifdef XFS_LOUD_RECOVERY 4071 sbp = &mp->m_sb; 4072 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp)); 4073 cmn_err(CE_NOTE, 4074 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu", 4075 sbp->sb_icount, itotal); 4076 cmn_err(CE_NOTE, 4077 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu", 4078 sbp->sb_ifree, ifree); 4079 cmn_err(CE_NOTE, 4080 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu", 4081 sbp->sb_fdblocks, freeblks); 4082 #if 0 4083 /* 4084 * This is turned off until I account for the allocation 4085 * btree blocks which live in free space. 4086 */ 4087 ASSERT(sbp->sb_icount == itotal); 4088 ASSERT(sbp->sb_ifree == ifree); 4089 ASSERT(sbp->sb_fdblocks == freeblks); 4090 #endif 4091 #endif 4092 xfs_buf_relse(sbbp); 4093 } 4094 #endif /* DEBUG */ 4095