xref: /linux/fs/xfs/xfs_log_recover.c (revision bcefe12eff5dca6fdfa94ed85e5bee66380d5cd9)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
47 #include "xfs_rw.h"
48 #include "xfs_utils.h"
49 
50 STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51 STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52 STATIC void	xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53 					       xlog_recover_item_t *item);
54 #if defined(DEBUG)
55 STATIC void	xlog_recover_check_summary(xlog_t *);
56 #else
57 #define	xlog_recover_check_summary(log)
58 #endif
59 
60 
61 /*
62  * Sector aligned buffer routines for buffer create/read/write/access
63  */
64 
65 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)	\
66 	( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
67 	((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
68 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)	((bno) & ~(log)->l_sectbb_mask)
69 
70 xfs_buf_t *
71 xlog_get_bp(
72 	xlog_t		*log,
73 	int		nbblks)
74 {
75 	if (nbblks <= 0 || nbblks > log->l_logBBsize) {
76 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
77 		XFS_ERROR_REPORT("xlog_get_bp(1)",
78 				 XFS_ERRLEVEL_HIGH, log->l_mp);
79 		return NULL;
80 	}
81 
82 	if (log->l_sectbb_log) {
83 		if (nbblks > 1)
84 			nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
85 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
86 	}
87 	return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
88 }
89 
90 void
91 xlog_put_bp(
92 	xfs_buf_t	*bp)
93 {
94 	xfs_buf_free(bp);
95 }
96 
97 STATIC xfs_caddr_t
98 xlog_align(
99 	xlog_t		*log,
100 	xfs_daddr_t	blk_no,
101 	int		nbblks,
102 	xfs_buf_t	*bp)
103 {
104 	xfs_caddr_t	ptr;
105 
106 	if (!log->l_sectbb_log)
107 		return XFS_BUF_PTR(bp);
108 
109 	ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
110 	ASSERT(XFS_BUF_SIZE(bp) >=
111 		BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
112 	return ptr;
113 }
114 
115 
116 /*
117  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
118  */
119 STATIC int
120 xlog_bread_noalign(
121 	xlog_t		*log,
122 	xfs_daddr_t	blk_no,
123 	int		nbblks,
124 	xfs_buf_t	*bp)
125 {
126 	int		error;
127 
128 	if (nbblks <= 0 || nbblks > log->l_logBBsize) {
129 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
130 		XFS_ERROR_REPORT("xlog_bread(1)",
131 				 XFS_ERRLEVEL_HIGH, log->l_mp);
132 		return EFSCORRUPTED;
133 	}
134 
135 	if (log->l_sectbb_log) {
136 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
137 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
138 	}
139 
140 	ASSERT(nbblks > 0);
141 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
142 	ASSERT(bp);
143 
144 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
145 	XFS_BUF_READ(bp);
146 	XFS_BUF_BUSY(bp);
147 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
148 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
149 
150 	xfsbdstrat(log->l_mp, bp);
151 	error = xfs_iowait(bp);
152 	if (error)
153 		xfs_ioerror_alert("xlog_bread", log->l_mp,
154 				  bp, XFS_BUF_ADDR(bp));
155 	return error;
156 }
157 
158 STATIC int
159 xlog_bread(
160 	xlog_t		*log,
161 	xfs_daddr_t	blk_no,
162 	int		nbblks,
163 	xfs_buf_t	*bp,
164 	xfs_caddr_t	*offset)
165 {
166 	int		error;
167 
168 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
169 	if (error)
170 		return error;
171 
172 	*offset = xlog_align(log, blk_no, nbblks, bp);
173 	return 0;
174 }
175 
176 /*
177  * Write out the buffer at the given block for the given number of blocks.
178  * The buffer is kept locked across the write and is returned locked.
179  * This can only be used for synchronous log writes.
180  */
181 STATIC int
182 xlog_bwrite(
183 	xlog_t		*log,
184 	xfs_daddr_t	blk_no,
185 	int		nbblks,
186 	xfs_buf_t	*bp)
187 {
188 	int		error;
189 
190 	if (nbblks <= 0 || nbblks > log->l_logBBsize) {
191 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
192 		XFS_ERROR_REPORT("xlog_bwrite(1)",
193 				 XFS_ERRLEVEL_HIGH, log->l_mp);
194 		return EFSCORRUPTED;
195 	}
196 
197 	if (log->l_sectbb_log) {
198 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
199 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
200 	}
201 
202 	ASSERT(nbblks > 0);
203 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
204 
205 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
206 	XFS_BUF_ZEROFLAGS(bp);
207 	XFS_BUF_BUSY(bp);
208 	XFS_BUF_HOLD(bp);
209 	XFS_BUF_PSEMA(bp, PRIBIO);
210 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
211 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
212 
213 	if ((error = xfs_bwrite(log->l_mp, bp)))
214 		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
215 				  bp, XFS_BUF_ADDR(bp));
216 	return error;
217 }
218 
219 #ifdef DEBUG
220 /*
221  * dump debug superblock and log record information
222  */
223 STATIC void
224 xlog_header_check_dump(
225 	xfs_mount_t		*mp,
226 	xlog_rec_header_t	*head)
227 {
228 	int			b;
229 
230 	cmn_err(CE_DEBUG, "%s:  SB : uuid = ", __func__);
231 	for (b = 0; b < 16; b++)
232 		cmn_err(CE_DEBUG, "%02x", ((__uint8_t *)&mp->m_sb.sb_uuid)[b]);
233 	cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
234 	cmn_err(CE_DEBUG, "    log : uuid = ");
235 	for (b = 0; b < 16; b++)
236 		cmn_err(CE_DEBUG, "%02x", ((__uint8_t *)&head->h_fs_uuid)[b]);
237 	cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
238 }
239 #else
240 #define xlog_header_check_dump(mp, head)
241 #endif
242 
243 /*
244  * check log record header for recovery
245  */
246 STATIC int
247 xlog_header_check_recover(
248 	xfs_mount_t		*mp,
249 	xlog_rec_header_t	*head)
250 {
251 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
252 
253 	/*
254 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
255 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
256 	 * a dirty log created in IRIX.
257 	 */
258 	if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
259 		xlog_warn(
260 	"XFS: dirty log written in incompatible format - can't recover");
261 		xlog_header_check_dump(mp, head);
262 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
263 				 XFS_ERRLEVEL_HIGH, mp);
264 		return XFS_ERROR(EFSCORRUPTED);
265 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
266 		xlog_warn(
267 	"XFS: dirty log entry has mismatched uuid - can't recover");
268 		xlog_header_check_dump(mp, head);
269 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
270 				 XFS_ERRLEVEL_HIGH, mp);
271 		return XFS_ERROR(EFSCORRUPTED);
272 	}
273 	return 0;
274 }
275 
276 /*
277  * read the head block of the log and check the header
278  */
279 STATIC int
280 xlog_header_check_mount(
281 	xfs_mount_t		*mp,
282 	xlog_rec_header_t	*head)
283 {
284 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
285 
286 	if (uuid_is_nil(&head->h_fs_uuid)) {
287 		/*
288 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
289 		 * h_fs_uuid is nil, we assume this log was last mounted
290 		 * by IRIX and continue.
291 		 */
292 		xlog_warn("XFS: nil uuid in log - IRIX style log");
293 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
294 		xlog_warn("XFS: log has mismatched uuid - can't recover");
295 		xlog_header_check_dump(mp, head);
296 		XFS_ERROR_REPORT("xlog_header_check_mount",
297 				 XFS_ERRLEVEL_HIGH, mp);
298 		return XFS_ERROR(EFSCORRUPTED);
299 	}
300 	return 0;
301 }
302 
303 STATIC void
304 xlog_recover_iodone(
305 	struct xfs_buf	*bp)
306 {
307 	if (XFS_BUF_GETERROR(bp)) {
308 		/*
309 		 * We're not going to bother about retrying
310 		 * this during recovery. One strike!
311 		 */
312 		xfs_ioerror_alert("xlog_recover_iodone",
313 				  bp->b_mount, bp, XFS_BUF_ADDR(bp));
314 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
315 	}
316 	bp->b_mount = NULL;
317 	XFS_BUF_CLR_IODONE_FUNC(bp);
318 	xfs_biodone(bp);
319 }
320 
321 /*
322  * This routine finds (to an approximation) the first block in the physical
323  * log which contains the given cycle.  It uses a binary search algorithm.
324  * Note that the algorithm can not be perfect because the disk will not
325  * necessarily be perfect.
326  */
327 STATIC int
328 xlog_find_cycle_start(
329 	xlog_t		*log,
330 	xfs_buf_t	*bp,
331 	xfs_daddr_t	first_blk,
332 	xfs_daddr_t	*last_blk,
333 	uint		cycle)
334 {
335 	xfs_caddr_t	offset;
336 	xfs_daddr_t	mid_blk;
337 	uint		mid_cycle;
338 	int		error;
339 
340 	mid_blk = BLK_AVG(first_blk, *last_blk);
341 	while (mid_blk != first_blk && mid_blk != *last_blk) {
342 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
343 		if (error)
344 			return error;
345 		mid_cycle = xlog_get_cycle(offset);
346 		if (mid_cycle == cycle) {
347 			*last_blk = mid_blk;
348 			/* last_half_cycle == mid_cycle */
349 		} else {
350 			first_blk = mid_blk;
351 			/* first_half_cycle == mid_cycle */
352 		}
353 		mid_blk = BLK_AVG(first_blk, *last_blk);
354 	}
355 	ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
356 	       (mid_blk == *last_blk && mid_blk-1 == first_blk));
357 
358 	return 0;
359 }
360 
361 /*
362  * Check that the range of blocks does not contain the cycle number
363  * given.  The scan needs to occur from front to back and the ptr into the
364  * region must be updated since a later routine will need to perform another
365  * test.  If the region is completely good, we end up returning the same
366  * last block number.
367  *
368  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
369  * since we don't ever expect logs to get this large.
370  */
371 STATIC int
372 xlog_find_verify_cycle(
373 	xlog_t		*log,
374 	xfs_daddr_t	start_blk,
375 	int		nbblks,
376 	uint		stop_on_cycle_no,
377 	xfs_daddr_t	*new_blk)
378 {
379 	xfs_daddr_t	i, j;
380 	uint		cycle;
381 	xfs_buf_t	*bp;
382 	xfs_daddr_t	bufblks;
383 	xfs_caddr_t	buf = NULL;
384 	int		error = 0;
385 
386 	bufblks = 1 << ffs(nbblks);
387 
388 	while (!(bp = xlog_get_bp(log, bufblks))) {
389 		/* can't get enough memory to do everything in one big buffer */
390 		bufblks >>= 1;
391 		if (bufblks <= log->l_sectbb_log)
392 			return ENOMEM;
393 	}
394 
395 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
396 		int	bcount;
397 
398 		bcount = min(bufblks, (start_blk + nbblks - i));
399 
400 		error = xlog_bread(log, i, bcount, bp, &buf);
401 		if (error)
402 			goto out;
403 
404 		for (j = 0; j < bcount; j++) {
405 			cycle = xlog_get_cycle(buf);
406 			if (cycle == stop_on_cycle_no) {
407 				*new_blk = i+j;
408 				goto out;
409 			}
410 
411 			buf += BBSIZE;
412 		}
413 	}
414 
415 	*new_blk = -1;
416 
417 out:
418 	xlog_put_bp(bp);
419 	return error;
420 }
421 
422 /*
423  * Potentially backup over partial log record write.
424  *
425  * In the typical case, last_blk is the number of the block directly after
426  * a good log record.  Therefore, we subtract one to get the block number
427  * of the last block in the given buffer.  extra_bblks contains the number
428  * of blocks we would have read on a previous read.  This happens when the
429  * last log record is split over the end of the physical log.
430  *
431  * extra_bblks is the number of blocks potentially verified on a previous
432  * call to this routine.
433  */
434 STATIC int
435 xlog_find_verify_log_record(
436 	xlog_t			*log,
437 	xfs_daddr_t		start_blk,
438 	xfs_daddr_t		*last_blk,
439 	int			extra_bblks)
440 {
441 	xfs_daddr_t		i;
442 	xfs_buf_t		*bp;
443 	xfs_caddr_t		offset = NULL;
444 	xlog_rec_header_t	*head = NULL;
445 	int			error = 0;
446 	int			smallmem = 0;
447 	int			num_blks = *last_blk - start_blk;
448 	int			xhdrs;
449 
450 	ASSERT(start_blk != 0 || *last_blk != start_blk);
451 
452 	if (!(bp = xlog_get_bp(log, num_blks))) {
453 		if (!(bp = xlog_get_bp(log, 1)))
454 			return ENOMEM;
455 		smallmem = 1;
456 	} else {
457 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
458 		if (error)
459 			goto out;
460 		offset += ((num_blks - 1) << BBSHIFT);
461 	}
462 
463 	for (i = (*last_blk) - 1; i >= 0; i--) {
464 		if (i < start_blk) {
465 			/* valid log record not found */
466 			xlog_warn(
467 		"XFS: Log inconsistent (didn't find previous header)");
468 			ASSERT(0);
469 			error = XFS_ERROR(EIO);
470 			goto out;
471 		}
472 
473 		if (smallmem) {
474 			error = xlog_bread(log, i, 1, bp, &offset);
475 			if (error)
476 				goto out;
477 		}
478 
479 		head = (xlog_rec_header_t *)offset;
480 
481 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
482 			break;
483 
484 		if (!smallmem)
485 			offset -= BBSIZE;
486 	}
487 
488 	/*
489 	 * We hit the beginning of the physical log & still no header.  Return
490 	 * to caller.  If caller can handle a return of -1, then this routine
491 	 * will be called again for the end of the physical log.
492 	 */
493 	if (i == -1) {
494 		error = -1;
495 		goto out;
496 	}
497 
498 	/*
499 	 * We have the final block of the good log (the first block
500 	 * of the log record _before_ the head. So we check the uuid.
501 	 */
502 	if ((error = xlog_header_check_mount(log->l_mp, head)))
503 		goto out;
504 
505 	/*
506 	 * We may have found a log record header before we expected one.
507 	 * last_blk will be the 1st block # with a given cycle #.  We may end
508 	 * up reading an entire log record.  In this case, we don't want to
509 	 * reset last_blk.  Only when last_blk points in the middle of a log
510 	 * record do we update last_blk.
511 	 */
512 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
513 		uint	h_size = be32_to_cpu(head->h_size);
514 
515 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
516 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
517 			xhdrs++;
518 	} else {
519 		xhdrs = 1;
520 	}
521 
522 	if (*last_blk - i + extra_bblks !=
523 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
524 		*last_blk = i;
525 
526 out:
527 	xlog_put_bp(bp);
528 	return error;
529 }
530 
531 /*
532  * Head is defined to be the point of the log where the next log write
533  * write could go.  This means that incomplete LR writes at the end are
534  * eliminated when calculating the head.  We aren't guaranteed that previous
535  * LR have complete transactions.  We only know that a cycle number of
536  * current cycle number -1 won't be present in the log if we start writing
537  * from our current block number.
538  *
539  * last_blk contains the block number of the first block with a given
540  * cycle number.
541  *
542  * Return: zero if normal, non-zero if error.
543  */
544 STATIC int
545 xlog_find_head(
546 	xlog_t 		*log,
547 	xfs_daddr_t	*return_head_blk)
548 {
549 	xfs_buf_t	*bp;
550 	xfs_caddr_t	offset;
551 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
552 	int		num_scan_bblks;
553 	uint		first_half_cycle, last_half_cycle;
554 	uint		stop_on_cycle;
555 	int		error, log_bbnum = log->l_logBBsize;
556 
557 	/* Is the end of the log device zeroed? */
558 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
559 		*return_head_blk = first_blk;
560 
561 		/* Is the whole lot zeroed? */
562 		if (!first_blk) {
563 			/* Linux XFS shouldn't generate totally zeroed logs -
564 			 * mkfs etc write a dummy unmount record to a fresh
565 			 * log so we can store the uuid in there
566 			 */
567 			xlog_warn("XFS: totally zeroed log");
568 		}
569 
570 		return 0;
571 	} else if (error) {
572 		xlog_warn("XFS: empty log check failed");
573 		return error;
574 	}
575 
576 	first_blk = 0;			/* get cycle # of 1st block */
577 	bp = xlog_get_bp(log, 1);
578 	if (!bp)
579 		return ENOMEM;
580 
581 	error = xlog_bread(log, 0, 1, bp, &offset);
582 	if (error)
583 		goto bp_err;
584 
585 	first_half_cycle = xlog_get_cycle(offset);
586 
587 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
588 	error = xlog_bread(log, last_blk, 1, bp, &offset);
589 	if (error)
590 		goto bp_err;
591 
592 	last_half_cycle = xlog_get_cycle(offset);
593 	ASSERT(last_half_cycle != 0);
594 
595 	/*
596 	 * If the 1st half cycle number is equal to the last half cycle number,
597 	 * then the entire log is stamped with the same cycle number.  In this
598 	 * case, head_blk can't be set to zero (which makes sense).  The below
599 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
600 	 * we set it to log_bbnum which is an invalid block number, but this
601 	 * value makes the math correct.  If head_blk doesn't changed through
602 	 * all the tests below, *head_blk is set to zero at the very end rather
603 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
604 	 * in a circular file.
605 	 */
606 	if (first_half_cycle == last_half_cycle) {
607 		/*
608 		 * In this case we believe that the entire log should have
609 		 * cycle number last_half_cycle.  We need to scan backwards
610 		 * from the end verifying that there are no holes still
611 		 * containing last_half_cycle - 1.  If we find such a hole,
612 		 * then the start of that hole will be the new head.  The
613 		 * simple case looks like
614 		 *        x | x ... | x - 1 | x
615 		 * Another case that fits this picture would be
616 		 *        x | x + 1 | x ... | x
617 		 * In this case the head really is somewhere at the end of the
618 		 * log, as one of the latest writes at the beginning was
619 		 * incomplete.
620 		 * One more case is
621 		 *        x | x + 1 | x ... | x - 1 | x
622 		 * This is really the combination of the above two cases, and
623 		 * the head has to end up at the start of the x-1 hole at the
624 		 * end of the log.
625 		 *
626 		 * In the 256k log case, we will read from the beginning to the
627 		 * end of the log and search for cycle numbers equal to x-1.
628 		 * We don't worry about the x+1 blocks that we encounter,
629 		 * because we know that they cannot be the head since the log
630 		 * started with x.
631 		 */
632 		head_blk = log_bbnum;
633 		stop_on_cycle = last_half_cycle - 1;
634 	} else {
635 		/*
636 		 * In this case we want to find the first block with cycle
637 		 * number matching last_half_cycle.  We expect the log to be
638 		 * some variation on
639 		 *        x + 1 ... | x ...
640 		 * The first block with cycle number x (last_half_cycle) will
641 		 * be where the new head belongs.  First we do a binary search
642 		 * for the first occurrence of last_half_cycle.  The binary
643 		 * search may not be totally accurate, so then we scan back
644 		 * from there looking for occurrences of last_half_cycle before
645 		 * us.  If that backwards scan wraps around the beginning of
646 		 * the log, then we look for occurrences of last_half_cycle - 1
647 		 * at the end of the log.  The cases we're looking for look
648 		 * like
649 		 *        x + 1 ... | x | x + 1 | x ...
650 		 *                               ^ binary search stopped here
651 		 * or
652 		 *        x + 1 ... | x ... | x - 1 | x
653 		 *        <---------> less than scan distance
654 		 */
655 		stop_on_cycle = last_half_cycle;
656 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
657 						&head_blk, last_half_cycle)))
658 			goto bp_err;
659 	}
660 
661 	/*
662 	 * Now validate the answer.  Scan back some number of maximum possible
663 	 * blocks and make sure each one has the expected cycle number.  The
664 	 * maximum is determined by the total possible amount of buffering
665 	 * in the in-core log.  The following number can be made tighter if
666 	 * we actually look at the block size of the filesystem.
667 	 */
668 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
669 	if (head_blk >= num_scan_bblks) {
670 		/*
671 		 * We are guaranteed that the entire check can be performed
672 		 * in one buffer.
673 		 */
674 		start_blk = head_blk - num_scan_bblks;
675 		if ((error = xlog_find_verify_cycle(log,
676 						start_blk, num_scan_bblks,
677 						stop_on_cycle, &new_blk)))
678 			goto bp_err;
679 		if (new_blk != -1)
680 			head_blk = new_blk;
681 	} else {		/* need to read 2 parts of log */
682 		/*
683 		 * We are going to scan backwards in the log in two parts.
684 		 * First we scan the physical end of the log.  In this part
685 		 * of the log, we are looking for blocks with cycle number
686 		 * last_half_cycle - 1.
687 		 * If we find one, then we know that the log starts there, as
688 		 * we've found a hole that didn't get written in going around
689 		 * the end of the physical log.  The simple case for this is
690 		 *        x + 1 ... | x ... | x - 1 | x
691 		 *        <---------> less than scan distance
692 		 * If all of the blocks at the end of the log have cycle number
693 		 * last_half_cycle, then we check the blocks at the start of
694 		 * the log looking for occurrences of last_half_cycle.  If we
695 		 * find one, then our current estimate for the location of the
696 		 * first occurrence of last_half_cycle is wrong and we move
697 		 * back to the hole we've found.  This case looks like
698 		 *        x + 1 ... | x | x + 1 | x ...
699 		 *                               ^ binary search stopped here
700 		 * Another case we need to handle that only occurs in 256k
701 		 * logs is
702 		 *        x + 1 ... | x ... | x+1 | x ...
703 		 *                   ^ binary search stops here
704 		 * In a 256k log, the scan at the end of the log will see the
705 		 * x + 1 blocks.  We need to skip past those since that is
706 		 * certainly not the head of the log.  By searching for
707 		 * last_half_cycle-1 we accomplish that.
708 		 */
709 		start_blk = log_bbnum - num_scan_bblks + head_blk;
710 		ASSERT(head_blk <= INT_MAX &&
711 			(xfs_daddr_t) num_scan_bblks - head_blk >= 0);
712 		if ((error = xlog_find_verify_cycle(log, start_blk,
713 					num_scan_bblks - (int)head_blk,
714 					(stop_on_cycle - 1), &new_blk)))
715 			goto bp_err;
716 		if (new_blk != -1) {
717 			head_blk = new_blk;
718 			goto bad_blk;
719 		}
720 
721 		/*
722 		 * Scan beginning of log now.  The last part of the physical
723 		 * log is good.  This scan needs to verify that it doesn't find
724 		 * the last_half_cycle.
725 		 */
726 		start_blk = 0;
727 		ASSERT(head_blk <= INT_MAX);
728 		if ((error = xlog_find_verify_cycle(log,
729 					start_blk, (int)head_blk,
730 					stop_on_cycle, &new_blk)))
731 			goto bp_err;
732 		if (new_blk != -1)
733 			head_blk = new_blk;
734 	}
735 
736  bad_blk:
737 	/*
738 	 * Now we need to make sure head_blk is not pointing to a block in
739 	 * the middle of a log record.
740 	 */
741 	num_scan_bblks = XLOG_REC_SHIFT(log);
742 	if (head_blk >= num_scan_bblks) {
743 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
744 
745 		/* start ptr at last block ptr before head_blk */
746 		if ((error = xlog_find_verify_log_record(log, start_blk,
747 							&head_blk, 0)) == -1) {
748 			error = XFS_ERROR(EIO);
749 			goto bp_err;
750 		} else if (error)
751 			goto bp_err;
752 	} else {
753 		start_blk = 0;
754 		ASSERT(head_blk <= INT_MAX);
755 		if ((error = xlog_find_verify_log_record(log, start_blk,
756 							&head_blk, 0)) == -1) {
757 			/* We hit the beginning of the log during our search */
758 			start_blk = log_bbnum - num_scan_bblks + head_blk;
759 			new_blk = log_bbnum;
760 			ASSERT(start_blk <= INT_MAX &&
761 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
762 			ASSERT(head_blk <= INT_MAX);
763 			if ((error = xlog_find_verify_log_record(log,
764 							start_blk, &new_blk,
765 							(int)head_blk)) == -1) {
766 				error = XFS_ERROR(EIO);
767 				goto bp_err;
768 			} else if (error)
769 				goto bp_err;
770 			if (new_blk != log_bbnum)
771 				head_blk = new_blk;
772 		} else if (error)
773 			goto bp_err;
774 	}
775 
776 	xlog_put_bp(bp);
777 	if (head_blk == log_bbnum)
778 		*return_head_blk = 0;
779 	else
780 		*return_head_blk = head_blk;
781 	/*
782 	 * When returning here, we have a good block number.  Bad block
783 	 * means that during a previous crash, we didn't have a clean break
784 	 * from cycle number N to cycle number N-1.  In this case, we need
785 	 * to find the first block with cycle number N-1.
786 	 */
787 	return 0;
788 
789  bp_err:
790 	xlog_put_bp(bp);
791 
792 	if (error)
793 	    xlog_warn("XFS: failed to find log head");
794 	return error;
795 }
796 
797 /*
798  * Find the sync block number or the tail of the log.
799  *
800  * This will be the block number of the last record to have its
801  * associated buffers synced to disk.  Every log record header has
802  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
803  * to get a sync block number.  The only concern is to figure out which
804  * log record header to believe.
805  *
806  * The following algorithm uses the log record header with the largest
807  * lsn.  The entire log record does not need to be valid.  We only care
808  * that the header is valid.
809  *
810  * We could speed up search by using current head_blk buffer, but it is not
811  * available.
812  */
813 int
814 xlog_find_tail(
815 	xlog_t			*log,
816 	xfs_daddr_t		*head_blk,
817 	xfs_daddr_t		*tail_blk)
818 {
819 	xlog_rec_header_t	*rhead;
820 	xlog_op_header_t	*op_head;
821 	xfs_caddr_t		offset = NULL;
822 	xfs_buf_t		*bp;
823 	int			error, i, found;
824 	xfs_daddr_t		umount_data_blk;
825 	xfs_daddr_t		after_umount_blk;
826 	xfs_lsn_t		tail_lsn;
827 	int			hblks;
828 
829 	found = 0;
830 
831 	/*
832 	 * Find previous log record
833 	 */
834 	if ((error = xlog_find_head(log, head_blk)))
835 		return error;
836 
837 	bp = xlog_get_bp(log, 1);
838 	if (!bp)
839 		return ENOMEM;
840 	if (*head_blk == 0) {				/* special case */
841 		error = xlog_bread(log, 0, 1, bp, &offset);
842 		if (error)
843 			goto bread_err;
844 
845 		if (xlog_get_cycle(offset) == 0) {
846 			*tail_blk = 0;
847 			/* leave all other log inited values alone */
848 			goto exit;
849 		}
850 	}
851 
852 	/*
853 	 * Search backwards looking for log record header block
854 	 */
855 	ASSERT(*head_blk < INT_MAX);
856 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
857 		error = xlog_bread(log, i, 1, bp, &offset);
858 		if (error)
859 			goto bread_err;
860 
861 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
862 			found = 1;
863 			break;
864 		}
865 	}
866 	/*
867 	 * If we haven't found the log record header block, start looking
868 	 * again from the end of the physical log.  XXXmiken: There should be
869 	 * a check here to make sure we didn't search more than N blocks in
870 	 * the previous code.
871 	 */
872 	if (!found) {
873 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
874 			error = xlog_bread(log, i, 1, bp, &offset);
875 			if (error)
876 				goto bread_err;
877 
878 			if (XLOG_HEADER_MAGIC_NUM ==
879 			    be32_to_cpu(*(__be32 *)offset)) {
880 				found = 2;
881 				break;
882 			}
883 		}
884 	}
885 	if (!found) {
886 		xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
887 		ASSERT(0);
888 		return XFS_ERROR(EIO);
889 	}
890 
891 	/* find blk_no of tail of log */
892 	rhead = (xlog_rec_header_t *)offset;
893 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
894 
895 	/*
896 	 * Reset log values according to the state of the log when we
897 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
898 	 * one because the next write starts a new cycle rather than
899 	 * continuing the cycle of the last good log record.  At this
900 	 * point we have guaranteed that all partial log records have been
901 	 * accounted for.  Therefore, we know that the last good log record
902 	 * written was complete and ended exactly on the end boundary
903 	 * of the physical log.
904 	 */
905 	log->l_prev_block = i;
906 	log->l_curr_block = (int)*head_blk;
907 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
908 	if (found == 2)
909 		log->l_curr_cycle++;
910 	log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
911 	log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
912 	log->l_grant_reserve_cycle = log->l_curr_cycle;
913 	log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
914 	log->l_grant_write_cycle = log->l_curr_cycle;
915 	log->l_grant_write_bytes = BBTOB(log->l_curr_block);
916 
917 	/*
918 	 * Look for unmount record.  If we find it, then we know there
919 	 * was a clean unmount.  Since 'i' could be the last block in
920 	 * the physical log, we convert to a log block before comparing
921 	 * to the head_blk.
922 	 *
923 	 * Save the current tail lsn to use to pass to
924 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
925 	 * unmount record if there is one, so we pass the lsn of the
926 	 * unmount record rather than the block after it.
927 	 */
928 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
929 		int	h_size = be32_to_cpu(rhead->h_size);
930 		int	h_version = be32_to_cpu(rhead->h_version);
931 
932 		if ((h_version & XLOG_VERSION_2) &&
933 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
934 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
935 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
936 				hblks++;
937 		} else {
938 			hblks = 1;
939 		}
940 	} else {
941 		hblks = 1;
942 	}
943 	after_umount_blk = (i + hblks + (int)
944 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
945 	tail_lsn = log->l_tail_lsn;
946 	if (*head_blk == after_umount_blk &&
947 	    be32_to_cpu(rhead->h_num_logops) == 1) {
948 		umount_data_blk = (i + hblks) % log->l_logBBsize;
949 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
950 		if (error)
951 			goto bread_err;
952 
953 		op_head = (xlog_op_header_t *)offset;
954 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
955 			/*
956 			 * Set tail and last sync so that newly written
957 			 * log records will point recovery to after the
958 			 * current unmount record.
959 			 */
960 			log->l_tail_lsn =
961 				xlog_assign_lsn(log->l_curr_cycle,
962 						after_umount_blk);
963 			log->l_last_sync_lsn =
964 				xlog_assign_lsn(log->l_curr_cycle,
965 						after_umount_blk);
966 			*tail_blk = after_umount_blk;
967 
968 			/*
969 			 * Note that the unmount was clean. If the unmount
970 			 * was not clean, we need to know this to rebuild the
971 			 * superblock counters from the perag headers if we
972 			 * have a filesystem using non-persistent counters.
973 			 */
974 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
975 		}
976 	}
977 
978 	/*
979 	 * Make sure that there are no blocks in front of the head
980 	 * with the same cycle number as the head.  This can happen
981 	 * because we allow multiple outstanding log writes concurrently,
982 	 * and the later writes might make it out before earlier ones.
983 	 *
984 	 * We use the lsn from before modifying it so that we'll never
985 	 * overwrite the unmount record after a clean unmount.
986 	 *
987 	 * Do this only if we are going to recover the filesystem
988 	 *
989 	 * NOTE: This used to say "if (!readonly)"
990 	 * However on Linux, we can & do recover a read-only filesystem.
991 	 * We only skip recovery if NORECOVERY is specified on mount,
992 	 * in which case we would not be here.
993 	 *
994 	 * But... if the -device- itself is readonly, just skip this.
995 	 * We can't recover this device anyway, so it won't matter.
996 	 */
997 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
998 		error = xlog_clear_stale_blocks(log, tail_lsn);
999 	}
1000 
1001 bread_err:
1002 exit:
1003 	xlog_put_bp(bp);
1004 
1005 	if (error)
1006 		xlog_warn("XFS: failed to locate log tail");
1007 	return error;
1008 }
1009 
1010 /*
1011  * Is the log zeroed at all?
1012  *
1013  * The last binary search should be changed to perform an X block read
1014  * once X becomes small enough.  You can then search linearly through
1015  * the X blocks.  This will cut down on the number of reads we need to do.
1016  *
1017  * If the log is partially zeroed, this routine will pass back the blkno
1018  * of the first block with cycle number 0.  It won't have a complete LR
1019  * preceding it.
1020  *
1021  * Return:
1022  *	0  => the log is completely written to
1023  *	-1 => use *blk_no as the first block of the log
1024  *	>0 => error has occurred
1025  */
1026 STATIC int
1027 xlog_find_zeroed(
1028 	xlog_t		*log,
1029 	xfs_daddr_t	*blk_no)
1030 {
1031 	xfs_buf_t	*bp;
1032 	xfs_caddr_t	offset;
1033 	uint	        first_cycle, last_cycle;
1034 	xfs_daddr_t	new_blk, last_blk, start_blk;
1035 	xfs_daddr_t     num_scan_bblks;
1036 	int	        error, log_bbnum = log->l_logBBsize;
1037 
1038 	*blk_no = 0;
1039 
1040 	/* check totally zeroed log */
1041 	bp = xlog_get_bp(log, 1);
1042 	if (!bp)
1043 		return ENOMEM;
1044 	error = xlog_bread(log, 0, 1, bp, &offset);
1045 	if (error)
1046 		goto bp_err;
1047 
1048 	first_cycle = xlog_get_cycle(offset);
1049 	if (first_cycle == 0) {		/* completely zeroed log */
1050 		*blk_no = 0;
1051 		xlog_put_bp(bp);
1052 		return -1;
1053 	}
1054 
1055 	/* check partially zeroed log */
1056 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1057 	if (error)
1058 		goto bp_err;
1059 
1060 	last_cycle = xlog_get_cycle(offset);
1061 	if (last_cycle != 0) {		/* log completely written to */
1062 		xlog_put_bp(bp);
1063 		return 0;
1064 	} else if (first_cycle != 1) {
1065 		/*
1066 		 * If the cycle of the last block is zero, the cycle of
1067 		 * the first block must be 1. If it's not, maybe we're
1068 		 * not looking at a log... Bail out.
1069 		 */
1070 		xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1071 		return XFS_ERROR(EINVAL);
1072 	}
1073 
1074 	/* we have a partially zeroed log */
1075 	last_blk = log_bbnum-1;
1076 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1077 		goto bp_err;
1078 
1079 	/*
1080 	 * Validate the answer.  Because there is no way to guarantee that
1081 	 * the entire log is made up of log records which are the same size,
1082 	 * we scan over the defined maximum blocks.  At this point, the maximum
1083 	 * is not chosen to mean anything special.   XXXmiken
1084 	 */
1085 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1086 	ASSERT(num_scan_bblks <= INT_MAX);
1087 
1088 	if (last_blk < num_scan_bblks)
1089 		num_scan_bblks = last_blk;
1090 	start_blk = last_blk - num_scan_bblks;
1091 
1092 	/*
1093 	 * We search for any instances of cycle number 0 that occur before
1094 	 * our current estimate of the head.  What we're trying to detect is
1095 	 *        1 ... | 0 | 1 | 0...
1096 	 *                       ^ binary search ends here
1097 	 */
1098 	if ((error = xlog_find_verify_cycle(log, start_blk,
1099 					 (int)num_scan_bblks, 0, &new_blk)))
1100 		goto bp_err;
1101 	if (new_blk != -1)
1102 		last_blk = new_blk;
1103 
1104 	/*
1105 	 * Potentially backup over partial log record write.  We don't need
1106 	 * to search the end of the log because we know it is zero.
1107 	 */
1108 	if ((error = xlog_find_verify_log_record(log, start_blk,
1109 				&last_blk, 0)) == -1) {
1110 	    error = XFS_ERROR(EIO);
1111 	    goto bp_err;
1112 	} else if (error)
1113 	    goto bp_err;
1114 
1115 	*blk_no = last_blk;
1116 bp_err:
1117 	xlog_put_bp(bp);
1118 	if (error)
1119 		return error;
1120 	return -1;
1121 }
1122 
1123 /*
1124  * These are simple subroutines used by xlog_clear_stale_blocks() below
1125  * to initialize a buffer full of empty log record headers and write
1126  * them into the log.
1127  */
1128 STATIC void
1129 xlog_add_record(
1130 	xlog_t			*log,
1131 	xfs_caddr_t		buf,
1132 	int			cycle,
1133 	int			block,
1134 	int			tail_cycle,
1135 	int			tail_block)
1136 {
1137 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1138 
1139 	memset(buf, 0, BBSIZE);
1140 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1141 	recp->h_cycle = cpu_to_be32(cycle);
1142 	recp->h_version = cpu_to_be32(
1143 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1144 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1145 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1146 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1147 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1148 }
1149 
1150 STATIC int
1151 xlog_write_log_records(
1152 	xlog_t		*log,
1153 	int		cycle,
1154 	int		start_block,
1155 	int		blocks,
1156 	int		tail_cycle,
1157 	int		tail_block)
1158 {
1159 	xfs_caddr_t	offset;
1160 	xfs_buf_t	*bp;
1161 	int		balign, ealign;
1162 	int		sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1163 	int		end_block = start_block + blocks;
1164 	int		bufblks;
1165 	int		error = 0;
1166 	int		i, j = 0;
1167 
1168 	bufblks = 1 << ffs(blocks);
1169 	while (!(bp = xlog_get_bp(log, bufblks))) {
1170 		bufblks >>= 1;
1171 		if (bufblks <= log->l_sectbb_log)
1172 			return ENOMEM;
1173 	}
1174 
1175 	/* We may need to do a read at the start to fill in part of
1176 	 * the buffer in the starting sector not covered by the first
1177 	 * write below.
1178 	 */
1179 	balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1180 	if (balign != start_block) {
1181 		error = xlog_bread_noalign(log, start_block, 1, bp);
1182 		if (error)
1183 			goto out_put_bp;
1184 
1185 		j = start_block - balign;
1186 	}
1187 
1188 	for (i = start_block; i < end_block; i += bufblks) {
1189 		int		bcount, endcount;
1190 
1191 		bcount = min(bufblks, end_block - start_block);
1192 		endcount = bcount - j;
1193 
1194 		/* We may need to do a read at the end to fill in part of
1195 		 * the buffer in the final sector not covered by the write.
1196 		 * If this is the same sector as the above read, skip it.
1197 		 */
1198 		ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1199 		if (j == 0 && (start_block + endcount > ealign)) {
1200 			offset = XFS_BUF_PTR(bp);
1201 			balign = BBTOB(ealign - start_block);
1202 			error = XFS_BUF_SET_PTR(bp, offset + balign,
1203 						BBTOB(sectbb));
1204 			if (error)
1205 				break;
1206 
1207 			error = xlog_bread_noalign(log, ealign, sectbb, bp);
1208 			if (error)
1209 				break;
1210 
1211 			error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1212 			if (error)
1213 				break;
1214 		}
1215 
1216 		offset = xlog_align(log, start_block, endcount, bp);
1217 		for (; j < endcount; j++) {
1218 			xlog_add_record(log, offset, cycle, i+j,
1219 					tail_cycle, tail_block);
1220 			offset += BBSIZE;
1221 		}
1222 		error = xlog_bwrite(log, start_block, endcount, bp);
1223 		if (error)
1224 			break;
1225 		start_block += endcount;
1226 		j = 0;
1227 	}
1228 
1229  out_put_bp:
1230 	xlog_put_bp(bp);
1231 	return error;
1232 }
1233 
1234 /*
1235  * This routine is called to blow away any incomplete log writes out
1236  * in front of the log head.  We do this so that we won't become confused
1237  * if we come up, write only a little bit more, and then crash again.
1238  * If we leave the partial log records out there, this situation could
1239  * cause us to think those partial writes are valid blocks since they
1240  * have the current cycle number.  We get rid of them by overwriting them
1241  * with empty log records with the old cycle number rather than the
1242  * current one.
1243  *
1244  * The tail lsn is passed in rather than taken from
1245  * the log so that we will not write over the unmount record after a
1246  * clean unmount in a 512 block log.  Doing so would leave the log without
1247  * any valid log records in it until a new one was written.  If we crashed
1248  * during that time we would not be able to recover.
1249  */
1250 STATIC int
1251 xlog_clear_stale_blocks(
1252 	xlog_t		*log,
1253 	xfs_lsn_t	tail_lsn)
1254 {
1255 	int		tail_cycle, head_cycle;
1256 	int		tail_block, head_block;
1257 	int		tail_distance, max_distance;
1258 	int		distance;
1259 	int		error;
1260 
1261 	tail_cycle = CYCLE_LSN(tail_lsn);
1262 	tail_block = BLOCK_LSN(tail_lsn);
1263 	head_cycle = log->l_curr_cycle;
1264 	head_block = log->l_curr_block;
1265 
1266 	/*
1267 	 * Figure out the distance between the new head of the log
1268 	 * and the tail.  We want to write over any blocks beyond the
1269 	 * head that we may have written just before the crash, but
1270 	 * we don't want to overwrite the tail of the log.
1271 	 */
1272 	if (head_cycle == tail_cycle) {
1273 		/*
1274 		 * The tail is behind the head in the physical log,
1275 		 * so the distance from the head to the tail is the
1276 		 * distance from the head to the end of the log plus
1277 		 * the distance from the beginning of the log to the
1278 		 * tail.
1279 		 */
1280 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1281 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1282 					 XFS_ERRLEVEL_LOW, log->l_mp);
1283 			return XFS_ERROR(EFSCORRUPTED);
1284 		}
1285 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1286 	} else {
1287 		/*
1288 		 * The head is behind the tail in the physical log,
1289 		 * so the distance from the head to the tail is just
1290 		 * the tail block minus the head block.
1291 		 */
1292 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1293 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1294 					 XFS_ERRLEVEL_LOW, log->l_mp);
1295 			return XFS_ERROR(EFSCORRUPTED);
1296 		}
1297 		tail_distance = tail_block - head_block;
1298 	}
1299 
1300 	/*
1301 	 * If the head is right up against the tail, we can't clear
1302 	 * anything.
1303 	 */
1304 	if (tail_distance <= 0) {
1305 		ASSERT(tail_distance == 0);
1306 		return 0;
1307 	}
1308 
1309 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1310 	/*
1311 	 * Take the smaller of the maximum amount of outstanding I/O
1312 	 * we could have and the distance to the tail to clear out.
1313 	 * We take the smaller so that we don't overwrite the tail and
1314 	 * we don't waste all day writing from the head to the tail
1315 	 * for no reason.
1316 	 */
1317 	max_distance = MIN(max_distance, tail_distance);
1318 
1319 	if ((head_block + max_distance) <= log->l_logBBsize) {
1320 		/*
1321 		 * We can stomp all the blocks we need to without
1322 		 * wrapping around the end of the log.  Just do it
1323 		 * in a single write.  Use the cycle number of the
1324 		 * current cycle minus one so that the log will look like:
1325 		 *     n ... | n - 1 ...
1326 		 */
1327 		error = xlog_write_log_records(log, (head_cycle - 1),
1328 				head_block, max_distance, tail_cycle,
1329 				tail_block);
1330 		if (error)
1331 			return error;
1332 	} else {
1333 		/*
1334 		 * We need to wrap around the end of the physical log in
1335 		 * order to clear all the blocks.  Do it in two separate
1336 		 * I/Os.  The first write should be from the head to the
1337 		 * end of the physical log, and it should use the current
1338 		 * cycle number minus one just like above.
1339 		 */
1340 		distance = log->l_logBBsize - head_block;
1341 		error = xlog_write_log_records(log, (head_cycle - 1),
1342 				head_block, distance, tail_cycle,
1343 				tail_block);
1344 
1345 		if (error)
1346 			return error;
1347 
1348 		/*
1349 		 * Now write the blocks at the start of the physical log.
1350 		 * This writes the remainder of the blocks we want to clear.
1351 		 * It uses the current cycle number since we're now on the
1352 		 * same cycle as the head so that we get:
1353 		 *    n ... n ... | n - 1 ...
1354 		 *    ^^^^^ blocks we're writing
1355 		 */
1356 		distance = max_distance - (log->l_logBBsize - head_block);
1357 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1358 				tail_cycle, tail_block);
1359 		if (error)
1360 			return error;
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 /******************************************************************************
1367  *
1368  *		Log recover routines
1369  *
1370  ******************************************************************************
1371  */
1372 
1373 STATIC xlog_recover_t *
1374 xlog_recover_find_tid(
1375 	xlog_recover_t		*q,
1376 	xlog_tid_t		tid)
1377 {
1378 	xlog_recover_t		*p = q;
1379 
1380 	while (p != NULL) {
1381 		if (p->r_log_tid == tid)
1382 		    break;
1383 		p = p->r_next;
1384 	}
1385 	return p;
1386 }
1387 
1388 STATIC void
1389 xlog_recover_put_hashq(
1390 	xlog_recover_t		**q,
1391 	xlog_recover_t		*trans)
1392 {
1393 	trans->r_next = *q;
1394 	*q = trans;
1395 }
1396 
1397 STATIC void
1398 xlog_recover_add_item(
1399 	xlog_recover_item_t	**itemq)
1400 {
1401 	xlog_recover_item_t	*item;
1402 
1403 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1404 	xlog_recover_insert_item_backq(itemq, item);
1405 }
1406 
1407 STATIC int
1408 xlog_recover_add_to_cont_trans(
1409 	xlog_recover_t		*trans,
1410 	xfs_caddr_t		dp,
1411 	int			len)
1412 {
1413 	xlog_recover_item_t	*item;
1414 	xfs_caddr_t		ptr, old_ptr;
1415 	int			old_len;
1416 
1417 	item = trans->r_itemq;
1418 	if (item == NULL) {
1419 		/* finish copying rest of trans header */
1420 		xlog_recover_add_item(&trans->r_itemq);
1421 		ptr = (xfs_caddr_t) &trans->r_theader +
1422 				sizeof(xfs_trans_header_t) - len;
1423 		memcpy(ptr, dp, len); /* d, s, l */
1424 		return 0;
1425 	}
1426 	item = item->ri_prev;
1427 
1428 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1429 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1430 
1431 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1432 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1433 	item->ri_buf[item->ri_cnt-1].i_len += len;
1434 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1435 	return 0;
1436 }
1437 
1438 /*
1439  * The next region to add is the start of a new region.  It could be
1440  * a whole region or it could be the first part of a new region.  Because
1441  * of this, the assumption here is that the type and size fields of all
1442  * format structures fit into the first 32 bits of the structure.
1443  *
1444  * This works because all regions must be 32 bit aligned.  Therefore, we
1445  * either have both fields or we have neither field.  In the case we have
1446  * neither field, the data part of the region is zero length.  We only have
1447  * a log_op_header and can throw away the header since a new one will appear
1448  * later.  If we have at least 4 bytes, then we can determine how many regions
1449  * will appear in the current log item.
1450  */
1451 STATIC int
1452 xlog_recover_add_to_trans(
1453 	xlog_recover_t		*trans,
1454 	xfs_caddr_t		dp,
1455 	int			len)
1456 {
1457 	xfs_inode_log_format_t	*in_f;			/* any will do */
1458 	xlog_recover_item_t	*item;
1459 	xfs_caddr_t		ptr;
1460 
1461 	if (!len)
1462 		return 0;
1463 	item = trans->r_itemq;
1464 	if (item == NULL) {
1465 		/* we need to catch log corruptions here */
1466 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1467 			xlog_warn("XFS: xlog_recover_add_to_trans: "
1468 				  "bad header magic number");
1469 			ASSERT(0);
1470 			return XFS_ERROR(EIO);
1471 		}
1472 		if (len == sizeof(xfs_trans_header_t))
1473 			xlog_recover_add_item(&trans->r_itemq);
1474 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1475 		return 0;
1476 	}
1477 
1478 	ptr = kmem_alloc(len, KM_SLEEP);
1479 	memcpy(ptr, dp, len);
1480 	in_f = (xfs_inode_log_format_t *)ptr;
1481 
1482 	if (item->ri_prev->ri_total != 0 &&
1483 	     item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1484 		xlog_recover_add_item(&trans->r_itemq);
1485 	}
1486 	item = trans->r_itemq;
1487 	item = item->ri_prev;
1488 
1489 	if (item->ri_total == 0) {		/* first region to be added */
1490 		if (in_f->ilf_size == 0 ||
1491 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1492 			xlog_warn(
1493 	"XFS: bad number of regions (%d) in inode log format",
1494 				  in_f->ilf_size);
1495 			ASSERT(0);
1496 			return XFS_ERROR(EIO);
1497 		}
1498 
1499 		item->ri_total = in_f->ilf_size;
1500 		item->ri_buf =
1501 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1502 				    KM_SLEEP);
1503 	}
1504 	ASSERT(item->ri_total > item->ri_cnt);
1505 	/* Description region is ri_buf[0] */
1506 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1507 	item->ri_buf[item->ri_cnt].i_len  = len;
1508 	item->ri_cnt++;
1509 	return 0;
1510 }
1511 
1512 STATIC void
1513 xlog_recover_new_tid(
1514 	xlog_recover_t		**q,
1515 	xlog_tid_t		tid,
1516 	xfs_lsn_t		lsn)
1517 {
1518 	xlog_recover_t		*trans;
1519 
1520 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1521 	trans->r_log_tid   = tid;
1522 	trans->r_lsn	   = lsn;
1523 	xlog_recover_put_hashq(q, trans);
1524 }
1525 
1526 STATIC int
1527 xlog_recover_unlink_tid(
1528 	xlog_recover_t		**q,
1529 	xlog_recover_t		*trans)
1530 {
1531 	xlog_recover_t		*tp;
1532 	int			found = 0;
1533 
1534 	ASSERT(trans != NULL);
1535 	if (trans == *q) {
1536 		*q = (*q)->r_next;
1537 	} else {
1538 		tp = *q;
1539 		while (tp) {
1540 			if (tp->r_next == trans) {
1541 				found = 1;
1542 				break;
1543 			}
1544 			tp = tp->r_next;
1545 		}
1546 		if (!found) {
1547 			xlog_warn(
1548 			     "XFS: xlog_recover_unlink_tid: trans not found");
1549 			ASSERT(0);
1550 			return XFS_ERROR(EIO);
1551 		}
1552 		tp->r_next = tp->r_next->r_next;
1553 	}
1554 	return 0;
1555 }
1556 
1557 STATIC void
1558 xlog_recover_insert_item_backq(
1559 	xlog_recover_item_t	**q,
1560 	xlog_recover_item_t	*item)
1561 {
1562 	if (*q == NULL) {
1563 		item->ri_prev = item->ri_next = item;
1564 		*q = item;
1565 	} else {
1566 		item->ri_next		= *q;
1567 		item->ri_prev		= (*q)->ri_prev;
1568 		(*q)->ri_prev		= item;
1569 		item->ri_prev->ri_next	= item;
1570 	}
1571 }
1572 
1573 STATIC void
1574 xlog_recover_insert_item_frontq(
1575 	xlog_recover_item_t	**q,
1576 	xlog_recover_item_t	*item)
1577 {
1578 	xlog_recover_insert_item_backq(q, item);
1579 	*q = item;
1580 }
1581 
1582 STATIC int
1583 xlog_recover_reorder_trans(
1584 	xlog_recover_t		*trans)
1585 {
1586 	xlog_recover_item_t	*first_item, *itemq, *itemq_next;
1587 	xfs_buf_log_format_t	*buf_f;
1588 	ushort			flags = 0;
1589 
1590 	first_item = itemq = trans->r_itemq;
1591 	trans->r_itemq = NULL;
1592 	do {
1593 		itemq_next = itemq->ri_next;
1594 		buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1595 
1596 		switch (ITEM_TYPE(itemq)) {
1597 		case XFS_LI_BUF:
1598 			flags = buf_f->blf_flags;
1599 			if (!(flags & XFS_BLI_CANCEL)) {
1600 				xlog_recover_insert_item_frontq(&trans->r_itemq,
1601 								itemq);
1602 				break;
1603 			}
1604 		case XFS_LI_INODE:
1605 		case XFS_LI_DQUOT:
1606 		case XFS_LI_QUOTAOFF:
1607 		case XFS_LI_EFD:
1608 		case XFS_LI_EFI:
1609 			xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1610 			break;
1611 		default:
1612 			xlog_warn(
1613 	"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1614 			ASSERT(0);
1615 			return XFS_ERROR(EIO);
1616 		}
1617 		itemq = itemq_next;
1618 	} while (first_item != itemq);
1619 	return 0;
1620 }
1621 
1622 /*
1623  * Build up the table of buf cancel records so that we don't replay
1624  * cancelled data in the second pass.  For buffer records that are
1625  * not cancel records, there is nothing to do here so we just return.
1626  *
1627  * If we get a cancel record which is already in the table, this indicates
1628  * that the buffer was cancelled multiple times.  In order to ensure
1629  * that during pass 2 we keep the record in the table until we reach its
1630  * last occurrence in the log, we keep a reference count in the cancel
1631  * record in the table to tell us how many times we expect to see this
1632  * record during the second pass.
1633  */
1634 STATIC void
1635 xlog_recover_do_buffer_pass1(
1636 	xlog_t			*log,
1637 	xfs_buf_log_format_t	*buf_f)
1638 {
1639 	xfs_buf_cancel_t	*bcp;
1640 	xfs_buf_cancel_t	*nextp;
1641 	xfs_buf_cancel_t	*prevp;
1642 	xfs_buf_cancel_t	**bucket;
1643 	xfs_daddr_t		blkno = 0;
1644 	uint			len = 0;
1645 	ushort			flags = 0;
1646 
1647 	switch (buf_f->blf_type) {
1648 	case XFS_LI_BUF:
1649 		blkno = buf_f->blf_blkno;
1650 		len = buf_f->blf_len;
1651 		flags = buf_f->blf_flags;
1652 		break;
1653 	}
1654 
1655 	/*
1656 	 * If this isn't a cancel buffer item, then just return.
1657 	 */
1658 	if (!(flags & XFS_BLI_CANCEL))
1659 		return;
1660 
1661 	/*
1662 	 * Insert an xfs_buf_cancel record into the hash table of
1663 	 * them.  If there is already an identical record, bump
1664 	 * its reference count.
1665 	 */
1666 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1667 					  XLOG_BC_TABLE_SIZE];
1668 	/*
1669 	 * If the hash bucket is empty then just insert a new record into
1670 	 * the bucket.
1671 	 */
1672 	if (*bucket == NULL) {
1673 		bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1674 						     KM_SLEEP);
1675 		bcp->bc_blkno = blkno;
1676 		bcp->bc_len = len;
1677 		bcp->bc_refcount = 1;
1678 		bcp->bc_next = NULL;
1679 		*bucket = bcp;
1680 		return;
1681 	}
1682 
1683 	/*
1684 	 * The hash bucket is not empty, so search for duplicates of our
1685 	 * record.  If we find one them just bump its refcount.  If not
1686 	 * then add us at the end of the list.
1687 	 */
1688 	prevp = NULL;
1689 	nextp = *bucket;
1690 	while (nextp != NULL) {
1691 		if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1692 			nextp->bc_refcount++;
1693 			return;
1694 		}
1695 		prevp = nextp;
1696 		nextp = nextp->bc_next;
1697 	}
1698 	ASSERT(prevp != NULL);
1699 	bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1700 					     KM_SLEEP);
1701 	bcp->bc_blkno = blkno;
1702 	bcp->bc_len = len;
1703 	bcp->bc_refcount = 1;
1704 	bcp->bc_next = NULL;
1705 	prevp->bc_next = bcp;
1706 }
1707 
1708 /*
1709  * Check to see whether the buffer being recovered has a corresponding
1710  * entry in the buffer cancel record table.  If it does then return 1
1711  * so that it will be cancelled, otherwise return 0.  If the buffer is
1712  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1713  * the refcount on the entry in the table and remove it from the table
1714  * if this is the last reference.
1715  *
1716  * We remove the cancel record from the table when we encounter its
1717  * last occurrence in the log so that if the same buffer is re-used
1718  * again after its last cancellation we actually replay the changes
1719  * made at that point.
1720  */
1721 STATIC int
1722 xlog_check_buffer_cancelled(
1723 	xlog_t			*log,
1724 	xfs_daddr_t		blkno,
1725 	uint			len,
1726 	ushort			flags)
1727 {
1728 	xfs_buf_cancel_t	*bcp;
1729 	xfs_buf_cancel_t	*prevp;
1730 	xfs_buf_cancel_t	**bucket;
1731 
1732 	if (log->l_buf_cancel_table == NULL) {
1733 		/*
1734 		 * There is nothing in the table built in pass one,
1735 		 * so this buffer must not be cancelled.
1736 		 */
1737 		ASSERT(!(flags & XFS_BLI_CANCEL));
1738 		return 0;
1739 	}
1740 
1741 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1742 					  XLOG_BC_TABLE_SIZE];
1743 	bcp = *bucket;
1744 	if (bcp == NULL) {
1745 		/*
1746 		 * There is no corresponding entry in the table built
1747 		 * in pass one, so this buffer has not been cancelled.
1748 		 */
1749 		ASSERT(!(flags & XFS_BLI_CANCEL));
1750 		return 0;
1751 	}
1752 
1753 	/*
1754 	 * Search for an entry in the buffer cancel table that
1755 	 * matches our buffer.
1756 	 */
1757 	prevp = NULL;
1758 	while (bcp != NULL) {
1759 		if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1760 			/*
1761 			 * We've go a match, so return 1 so that the
1762 			 * recovery of this buffer is cancelled.
1763 			 * If this buffer is actually a buffer cancel
1764 			 * log item, then decrement the refcount on the
1765 			 * one in the table and remove it if this is the
1766 			 * last reference.
1767 			 */
1768 			if (flags & XFS_BLI_CANCEL) {
1769 				bcp->bc_refcount--;
1770 				if (bcp->bc_refcount == 0) {
1771 					if (prevp == NULL) {
1772 						*bucket = bcp->bc_next;
1773 					} else {
1774 						prevp->bc_next = bcp->bc_next;
1775 					}
1776 					kmem_free(bcp);
1777 				}
1778 			}
1779 			return 1;
1780 		}
1781 		prevp = bcp;
1782 		bcp = bcp->bc_next;
1783 	}
1784 	/*
1785 	 * We didn't find a corresponding entry in the table, so
1786 	 * return 0 so that the buffer is NOT cancelled.
1787 	 */
1788 	ASSERT(!(flags & XFS_BLI_CANCEL));
1789 	return 0;
1790 }
1791 
1792 STATIC int
1793 xlog_recover_do_buffer_pass2(
1794 	xlog_t			*log,
1795 	xfs_buf_log_format_t	*buf_f)
1796 {
1797 	xfs_daddr_t		blkno = 0;
1798 	ushort			flags = 0;
1799 	uint			len = 0;
1800 
1801 	switch (buf_f->blf_type) {
1802 	case XFS_LI_BUF:
1803 		blkno = buf_f->blf_blkno;
1804 		flags = buf_f->blf_flags;
1805 		len = buf_f->blf_len;
1806 		break;
1807 	}
1808 
1809 	return xlog_check_buffer_cancelled(log, blkno, len, flags);
1810 }
1811 
1812 /*
1813  * Perform recovery for a buffer full of inodes.  In these buffers,
1814  * the only data which should be recovered is that which corresponds
1815  * to the di_next_unlinked pointers in the on disk inode structures.
1816  * The rest of the data for the inodes is always logged through the
1817  * inodes themselves rather than the inode buffer and is recovered
1818  * in xlog_recover_do_inode_trans().
1819  *
1820  * The only time when buffers full of inodes are fully recovered is
1821  * when the buffer is full of newly allocated inodes.  In this case
1822  * the buffer will not be marked as an inode buffer and so will be
1823  * sent to xlog_recover_do_reg_buffer() below during recovery.
1824  */
1825 STATIC int
1826 xlog_recover_do_inode_buffer(
1827 	xfs_mount_t		*mp,
1828 	xlog_recover_item_t	*item,
1829 	xfs_buf_t		*bp,
1830 	xfs_buf_log_format_t	*buf_f)
1831 {
1832 	int			i;
1833 	int			item_index;
1834 	int			bit;
1835 	int			nbits;
1836 	int			reg_buf_offset;
1837 	int			reg_buf_bytes;
1838 	int			next_unlinked_offset;
1839 	int			inodes_per_buf;
1840 	xfs_agino_t		*logged_nextp;
1841 	xfs_agino_t		*buffer_nextp;
1842 	unsigned int		*data_map = NULL;
1843 	unsigned int		map_size = 0;
1844 
1845 	switch (buf_f->blf_type) {
1846 	case XFS_LI_BUF:
1847 		data_map = buf_f->blf_data_map;
1848 		map_size = buf_f->blf_map_size;
1849 		break;
1850 	}
1851 	/*
1852 	 * Set the variables corresponding to the current region to
1853 	 * 0 so that we'll initialize them on the first pass through
1854 	 * the loop.
1855 	 */
1856 	reg_buf_offset = 0;
1857 	reg_buf_bytes = 0;
1858 	bit = 0;
1859 	nbits = 0;
1860 	item_index = 0;
1861 	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1862 	for (i = 0; i < inodes_per_buf; i++) {
1863 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1864 			offsetof(xfs_dinode_t, di_next_unlinked);
1865 
1866 		while (next_unlinked_offset >=
1867 		       (reg_buf_offset + reg_buf_bytes)) {
1868 			/*
1869 			 * The next di_next_unlinked field is beyond
1870 			 * the current logged region.  Find the next
1871 			 * logged region that contains or is beyond
1872 			 * the current di_next_unlinked field.
1873 			 */
1874 			bit += nbits;
1875 			bit = xfs_next_bit(data_map, map_size, bit);
1876 
1877 			/*
1878 			 * If there are no more logged regions in the
1879 			 * buffer, then we're done.
1880 			 */
1881 			if (bit == -1) {
1882 				return 0;
1883 			}
1884 
1885 			nbits = xfs_contig_bits(data_map, map_size,
1886 							 bit);
1887 			ASSERT(nbits > 0);
1888 			reg_buf_offset = bit << XFS_BLI_SHIFT;
1889 			reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1890 			item_index++;
1891 		}
1892 
1893 		/*
1894 		 * If the current logged region starts after the current
1895 		 * di_next_unlinked field, then move on to the next
1896 		 * di_next_unlinked field.
1897 		 */
1898 		if (next_unlinked_offset < reg_buf_offset) {
1899 			continue;
1900 		}
1901 
1902 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1903 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1904 		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1905 
1906 		/*
1907 		 * The current logged region contains a copy of the
1908 		 * current di_next_unlinked field.  Extract its value
1909 		 * and copy it to the buffer copy.
1910 		 */
1911 		logged_nextp = (xfs_agino_t *)
1912 			       ((char *)(item->ri_buf[item_index].i_addr) +
1913 				(next_unlinked_offset - reg_buf_offset));
1914 		if (unlikely(*logged_nextp == 0)) {
1915 			xfs_fs_cmn_err(CE_ALERT, mp,
1916 				"bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1917 				item, bp);
1918 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1919 					 XFS_ERRLEVEL_LOW, mp);
1920 			return XFS_ERROR(EFSCORRUPTED);
1921 		}
1922 
1923 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1924 					      next_unlinked_offset);
1925 		*buffer_nextp = *logged_nextp;
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 /*
1932  * Perform a 'normal' buffer recovery.  Each logged region of the
1933  * buffer should be copied over the corresponding region in the
1934  * given buffer.  The bitmap in the buf log format structure indicates
1935  * where to place the logged data.
1936  */
1937 /*ARGSUSED*/
1938 STATIC void
1939 xlog_recover_do_reg_buffer(
1940 	xlog_recover_item_t	*item,
1941 	xfs_buf_t		*bp,
1942 	xfs_buf_log_format_t	*buf_f)
1943 {
1944 	int			i;
1945 	int			bit;
1946 	int			nbits;
1947 	unsigned int		*data_map = NULL;
1948 	unsigned int		map_size = 0;
1949 	int                     error;
1950 
1951 	switch (buf_f->blf_type) {
1952 	case XFS_LI_BUF:
1953 		data_map = buf_f->blf_data_map;
1954 		map_size = buf_f->blf_map_size;
1955 		break;
1956 	}
1957 	bit = 0;
1958 	i = 1;  /* 0 is the buf format structure */
1959 	while (1) {
1960 		bit = xfs_next_bit(data_map, map_size, bit);
1961 		if (bit == -1)
1962 			break;
1963 		nbits = xfs_contig_bits(data_map, map_size, bit);
1964 		ASSERT(nbits > 0);
1965 		ASSERT(item->ri_buf[i].i_addr != NULL);
1966 		ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1967 		ASSERT(XFS_BUF_COUNT(bp) >=
1968 		       ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1969 
1970 		/*
1971 		 * Do a sanity check if this is a dquot buffer. Just checking
1972 		 * the first dquot in the buffer should do. XXXThis is
1973 		 * probably a good thing to do for other buf types also.
1974 		 */
1975 		error = 0;
1976 		if (buf_f->blf_flags &
1977 		   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1978 			if (item->ri_buf[i].i_addr == NULL) {
1979 				cmn_err(CE_ALERT,
1980 					"XFS: NULL dquot in %s.", __func__);
1981 				goto next;
1982 			}
1983 			if (item->ri_buf[i].i_len < sizeof(xfs_dqblk_t)) {
1984 				cmn_err(CE_ALERT,
1985 					"XFS: dquot too small (%d) in %s.",
1986 					item->ri_buf[i].i_len, __func__);
1987 				goto next;
1988 			}
1989 			error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1990 					       item->ri_buf[i].i_addr,
1991 					       -1, 0, XFS_QMOPT_DOWARN,
1992 					       "dquot_buf_recover");
1993 			if (error)
1994 				goto next;
1995 		}
1996 
1997 		memcpy(xfs_buf_offset(bp,
1998 			(uint)bit << XFS_BLI_SHIFT),	/* dest */
1999 			item->ri_buf[i].i_addr,		/* source */
2000 			nbits<<XFS_BLI_SHIFT);		/* length */
2001  next:
2002 		i++;
2003 		bit += nbits;
2004 	}
2005 
2006 	/* Shouldn't be any more regions */
2007 	ASSERT(i == item->ri_total);
2008 }
2009 
2010 /*
2011  * Do some primitive error checking on ondisk dquot data structures.
2012  */
2013 int
2014 xfs_qm_dqcheck(
2015 	xfs_disk_dquot_t *ddq,
2016 	xfs_dqid_t	 id,
2017 	uint		 type,	  /* used only when IO_dorepair is true */
2018 	uint		 flags,
2019 	char		 *str)
2020 {
2021 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
2022 	int		errs = 0;
2023 
2024 	/*
2025 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
2026 	 * 1. If we crash while deleting the quotainode(s), and those blks got
2027 	 *    used for user data. This is because we take the path of regular
2028 	 *    file deletion; however, the size field of quotainodes is never
2029 	 *    updated, so all the tricks that we play in itruncate_finish
2030 	 *    don't quite matter.
2031 	 *
2032 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2033 	 *    But the allocation will be replayed so we'll end up with an
2034 	 *    uninitialized quota block.
2035 	 *
2036 	 * This is all fine; things are still consistent, and we haven't lost
2037 	 * any quota information. Just don't complain about bad dquot blks.
2038 	 */
2039 	if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2040 		if (flags & XFS_QMOPT_DOWARN)
2041 			cmn_err(CE_ALERT,
2042 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2043 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2044 		errs++;
2045 	}
2046 	if (ddq->d_version != XFS_DQUOT_VERSION) {
2047 		if (flags & XFS_QMOPT_DOWARN)
2048 			cmn_err(CE_ALERT,
2049 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2050 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
2051 		errs++;
2052 	}
2053 
2054 	if (ddq->d_flags != XFS_DQ_USER &&
2055 	    ddq->d_flags != XFS_DQ_PROJ &&
2056 	    ddq->d_flags != XFS_DQ_GROUP) {
2057 		if (flags & XFS_QMOPT_DOWARN)
2058 			cmn_err(CE_ALERT,
2059 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2060 			str, id, ddq->d_flags);
2061 		errs++;
2062 	}
2063 
2064 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2065 		if (flags & XFS_QMOPT_DOWARN)
2066 			cmn_err(CE_ALERT,
2067 			"%s : ondisk-dquot 0x%p, ID mismatch: "
2068 			"0x%x expected, found id 0x%x",
2069 			str, ddq, id, be32_to_cpu(ddq->d_id));
2070 		errs++;
2071 	}
2072 
2073 	if (!errs && ddq->d_id) {
2074 		if (ddq->d_blk_softlimit &&
2075 		    be64_to_cpu(ddq->d_bcount) >=
2076 				be64_to_cpu(ddq->d_blk_softlimit)) {
2077 			if (!ddq->d_btimer) {
2078 				if (flags & XFS_QMOPT_DOWARN)
2079 					cmn_err(CE_ALERT,
2080 					"%s : Dquot ID 0x%x (0x%p) "
2081 					"BLK TIMER NOT STARTED",
2082 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2083 				errs++;
2084 			}
2085 		}
2086 		if (ddq->d_ino_softlimit &&
2087 		    be64_to_cpu(ddq->d_icount) >=
2088 				be64_to_cpu(ddq->d_ino_softlimit)) {
2089 			if (!ddq->d_itimer) {
2090 				if (flags & XFS_QMOPT_DOWARN)
2091 					cmn_err(CE_ALERT,
2092 					"%s : Dquot ID 0x%x (0x%p) "
2093 					"INODE TIMER NOT STARTED",
2094 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2095 				errs++;
2096 			}
2097 		}
2098 		if (ddq->d_rtb_softlimit &&
2099 		    be64_to_cpu(ddq->d_rtbcount) >=
2100 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2101 			if (!ddq->d_rtbtimer) {
2102 				if (flags & XFS_QMOPT_DOWARN)
2103 					cmn_err(CE_ALERT,
2104 					"%s : Dquot ID 0x%x (0x%p) "
2105 					"RTBLK TIMER NOT STARTED",
2106 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2107 				errs++;
2108 			}
2109 		}
2110 	}
2111 
2112 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2113 		return errs;
2114 
2115 	if (flags & XFS_QMOPT_DOWARN)
2116 		cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2117 
2118 	/*
2119 	 * Typically, a repair is only requested by quotacheck.
2120 	 */
2121 	ASSERT(id != -1);
2122 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2123 	memset(d, 0, sizeof(xfs_dqblk_t));
2124 
2125 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2126 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2127 	d->dd_diskdq.d_flags = type;
2128 	d->dd_diskdq.d_id = cpu_to_be32(id);
2129 
2130 	return errs;
2131 }
2132 
2133 /*
2134  * Perform a dquot buffer recovery.
2135  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2136  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2137  * Else, treat it as a regular buffer and do recovery.
2138  */
2139 STATIC void
2140 xlog_recover_do_dquot_buffer(
2141 	xfs_mount_t		*mp,
2142 	xlog_t			*log,
2143 	xlog_recover_item_t	*item,
2144 	xfs_buf_t		*bp,
2145 	xfs_buf_log_format_t	*buf_f)
2146 {
2147 	uint			type;
2148 
2149 	/*
2150 	 * Filesystems are required to send in quota flags at mount time.
2151 	 */
2152 	if (mp->m_qflags == 0) {
2153 		return;
2154 	}
2155 
2156 	type = 0;
2157 	if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2158 		type |= XFS_DQ_USER;
2159 	if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2160 		type |= XFS_DQ_PROJ;
2161 	if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2162 		type |= XFS_DQ_GROUP;
2163 	/*
2164 	 * This type of quotas was turned off, so ignore this buffer
2165 	 */
2166 	if (log->l_quotaoffs_flag & type)
2167 		return;
2168 
2169 	xlog_recover_do_reg_buffer(item, bp, buf_f);
2170 }
2171 
2172 /*
2173  * This routine replays a modification made to a buffer at runtime.
2174  * There are actually two types of buffer, regular and inode, which
2175  * are handled differently.  Inode buffers are handled differently
2176  * in that we only recover a specific set of data from them, namely
2177  * the inode di_next_unlinked fields.  This is because all other inode
2178  * data is actually logged via inode records and any data we replay
2179  * here which overlaps that may be stale.
2180  *
2181  * When meta-data buffers are freed at run time we log a buffer item
2182  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2183  * of the buffer in the log should not be replayed at recovery time.
2184  * This is so that if the blocks covered by the buffer are reused for
2185  * file data before we crash we don't end up replaying old, freed
2186  * meta-data into a user's file.
2187  *
2188  * To handle the cancellation of buffer log items, we make two passes
2189  * over the log during recovery.  During the first we build a table of
2190  * those buffers which have been cancelled, and during the second we
2191  * only replay those buffers which do not have corresponding cancel
2192  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2193  * for more details on the implementation of the table of cancel records.
2194  */
2195 STATIC int
2196 xlog_recover_do_buffer_trans(
2197 	xlog_t			*log,
2198 	xlog_recover_item_t	*item,
2199 	int			pass)
2200 {
2201 	xfs_buf_log_format_t	*buf_f;
2202 	xfs_mount_t		*mp;
2203 	xfs_buf_t		*bp;
2204 	int			error;
2205 	int			cancel;
2206 	xfs_daddr_t		blkno;
2207 	int			len;
2208 	ushort			flags;
2209 
2210 	buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2211 
2212 	if (pass == XLOG_RECOVER_PASS1) {
2213 		/*
2214 		 * In this pass we're only looking for buf items
2215 		 * with the XFS_BLI_CANCEL bit set.
2216 		 */
2217 		xlog_recover_do_buffer_pass1(log, buf_f);
2218 		return 0;
2219 	} else {
2220 		/*
2221 		 * In this pass we want to recover all the buffers
2222 		 * which have not been cancelled and are not
2223 		 * cancellation buffers themselves.  The routine
2224 		 * we call here will tell us whether or not to
2225 		 * continue with the replay of this buffer.
2226 		 */
2227 		cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2228 		if (cancel) {
2229 			return 0;
2230 		}
2231 	}
2232 	switch (buf_f->blf_type) {
2233 	case XFS_LI_BUF:
2234 		blkno = buf_f->blf_blkno;
2235 		len = buf_f->blf_len;
2236 		flags = buf_f->blf_flags;
2237 		break;
2238 	default:
2239 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2240 			"xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2241 			buf_f->blf_type, log->l_mp->m_logname ?
2242 			log->l_mp->m_logname : "internal");
2243 		XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2244 				 XFS_ERRLEVEL_LOW, log->l_mp);
2245 		return XFS_ERROR(EFSCORRUPTED);
2246 	}
2247 
2248 	mp = log->l_mp;
2249 	if (flags & XFS_BLI_INODE_BUF) {
2250 		bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2251 								XFS_BUF_LOCK);
2252 	} else {
2253 		bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2254 	}
2255 	if (XFS_BUF_ISERROR(bp)) {
2256 		xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2257 				  bp, blkno);
2258 		error = XFS_BUF_GETERROR(bp);
2259 		xfs_buf_relse(bp);
2260 		return error;
2261 	}
2262 
2263 	error = 0;
2264 	if (flags & XFS_BLI_INODE_BUF) {
2265 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2266 	} else if (flags &
2267 		  (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2268 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2269 	} else {
2270 		xlog_recover_do_reg_buffer(item, bp, buf_f);
2271 	}
2272 	if (error)
2273 		return XFS_ERROR(error);
2274 
2275 	/*
2276 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2277 	 * slower when taking into account all the buffers to be flushed.
2278 	 *
2279 	 * Also make sure that only inode buffers with good sizes stay in
2280 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2281 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2282 	 * buffers in the log can be a different size if the log was generated
2283 	 * by an older kernel using unclustered inode buffers or a newer kernel
2284 	 * running with a different inode cluster size.  Regardless, if the
2285 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2286 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2287 	 * the buffer out of the buffer cache so that the buffer won't
2288 	 * overlap with future reads of those inodes.
2289 	 */
2290 	if (XFS_DINODE_MAGIC ==
2291 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2292 	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2293 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2294 		XFS_BUF_STALE(bp);
2295 		error = xfs_bwrite(mp, bp);
2296 	} else {
2297 		ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2298 		bp->b_mount = mp;
2299 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2300 		xfs_bdwrite(mp, bp);
2301 	}
2302 
2303 	return (error);
2304 }
2305 
2306 STATIC int
2307 xlog_recover_do_inode_trans(
2308 	xlog_t			*log,
2309 	xlog_recover_item_t	*item,
2310 	int			pass)
2311 {
2312 	xfs_inode_log_format_t	*in_f;
2313 	xfs_mount_t		*mp;
2314 	xfs_buf_t		*bp;
2315 	xfs_dinode_t		*dip;
2316 	xfs_ino_t		ino;
2317 	int			len;
2318 	xfs_caddr_t		src;
2319 	xfs_caddr_t		dest;
2320 	int			error;
2321 	int			attr_index;
2322 	uint			fields;
2323 	xfs_icdinode_t		*dicp;
2324 	int			need_free = 0;
2325 
2326 	if (pass == XLOG_RECOVER_PASS1) {
2327 		return 0;
2328 	}
2329 
2330 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2331 		in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2332 	} else {
2333 		in_f = (xfs_inode_log_format_t *)kmem_alloc(
2334 			sizeof(xfs_inode_log_format_t), KM_SLEEP);
2335 		need_free = 1;
2336 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2337 		if (error)
2338 			goto error;
2339 	}
2340 	ino = in_f->ilf_ino;
2341 	mp = log->l_mp;
2342 
2343 	/*
2344 	 * Inode buffers can be freed, look out for it,
2345 	 * and do not replay the inode.
2346 	 */
2347 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2348 					in_f->ilf_len, 0)) {
2349 		error = 0;
2350 		goto error;
2351 	}
2352 
2353 	bp = xfs_buf_read_flags(mp->m_ddev_targp, in_f->ilf_blkno,
2354 				in_f->ilf_len, XFS_BUF_LOCK);
2355 	if (XFS_BUF_ISERROR(bp)) {
2356 		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2357 				  bp, in_f->ilf_blkno);
2358 		error = XFS_BUF_GETERROR(bp);
2359 		xfs_buf_relse(bp);
2360 		goto error;
2361 	}
2362 	error = 0;
2363 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2364 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2365 
2366 	/*
2367 	 * Make sure the place we're flushing out to really looks
2368 	 * like an inode!
2369 	 */
2370 	if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2371 		xfs_buf_relse(bp);
2372 		xfs_fs_cmn_err(CE_ALERT, mp,
2373 			"xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2374 			dip, bp, ino);
2375 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2376 				 XFS_ERRLEVEL_LOW, mp);
2377 		error = EFSCORRUPTED;
2378 		goto error;
2379 	}
2380 	dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2381 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2382 		xfs_buf_relse(bp);
2383 		xfs_fs_cmn_err(CE_ALERT, mp,
2384 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2385 			item, ino);
2386 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2387 				 XFS_ERRLEVEL_LOW, mp);
2388 		error = EFSCORRUPTED;
2389 		goto error;
2390 	}
2391 
2392 	/* Skip replay when the on disk inode is newer than the log one */
2393 	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2394 		/*
2395 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2396 		 * than smaller numbers
2397 		 */
2398 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2399 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2400 			/* do nothing */
2401 		} else {
2402 			xfs_buf_relse(bp);
2403 			error = 0;
2404 			goto error;
2405 		}
2406 	}
2407 	/* Take the opportunity to reset the flush iteration count */
2408 	dicp->di_flushiter = 0;
2409 
2410 	if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2411 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2412 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2413 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2414 					 XFS_ERRLEVEL_LOW, mp, dicp);
2415 			xfs_buf_relse(bp);
2416 			xfs_fs_cmn_err(CE_ALERT, mp,
2417 				"xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2418 				item, dip, bp, ino);
2419 			error = EFSCORRUPTED;
2420 			goto error;
2421 		}
2422 	} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2423 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2424 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2425 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2426 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2427 					     XFS_ERRLEVEL_LOW, mp, dicp);
2428 			xfs_buf_relse(bp);
2429 			xfs_fs_cmn_err(CE_ALERT, mp,
2430 				"xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2431 				item, dip, bp, ino);
2432 			error = EFSCORRUPTED;
2433 			goto error;
2434 		}
2435 	}
2436 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2437 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2438 				     XFS_ERRLEVEL_LOW, mp, dicp);
2439 		xfs_buf_relse(bp);
2440 		xfs_fs_cmn_err(CE_ALERT, mp,
2441 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2442 			item, dip, bp, ino,
2443 			dicp->di_nextents + dicp->di_anextents,
2444 			dicp->di_nblocks);
2445 		error = EFSCORRUPTED;
2446 		goto error;
2447 	}
2448 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2449 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2450 				     XFS_ERRLEVEL_LOW, mp, dicp);
2451 		xfs_buf_relse(bp);
2452 		xfs_fs_cmn_err(CE_ALERT, mp,
2453 			"xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2454 			item, dip, bp, ino, dicp->di_forkoff);
2455 		error = EFSCORRUPTED;
2456 		goto error;
2457 	}
2458 	if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2459 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2460 				     XFS_ERRLEVEL_LOW, mp, dicp);
2461 		xfs_buf_relse(bp);
2462 		xfs_fs_cmn_err(CE_ALERT, mp,
2463 			"xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2464 			item->ri_buf[1].i_len, item);
2465 		error = EFSCORRUPTED;
2466 		goto error;
2467 	}
2468 
2469 	/* The core is in in-core format */
2470 	xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2471 
2472 	/* the rest is in on-disk format */
2473 	if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2474 		memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2475 			item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2476 			item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2477 	}
2478 
2479 	fields = in_f->ilf_fields;
2480 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2481 	case XFS_ILOG_DEV:
2482 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2483 		break;
2484 	case XFS_ILOG_UUID:
2485 		memcpy(XFS_DFORK_DPTR(dip),
2486 		       &in_f->ilf_u.ilfu_uuid,
2487 		       sizeof(uuid_t));
2488 		break;
2489 	}
2490 
2491 	if (in_f->ilf_size == 2)
2492 		goto write_inode_buffer;
2493 	len = item->ri_buf[2].i_len;
2494 	src = item->ri_buf[2].i_addr;
2495 	ASSERT(in_f->ilf_size <= 4);
2496 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2497 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2498 	       (len == in_f->ilf_dsize));
2499 
2500 	switch (fields & XFS_ILOG_DFORK) {
2501 	case XFS_ILOG_DDATA:
2502 	case XFS_ILOG_DEXT:
2503 		memcpy(XFS_DFORK_DPTR(dip), src, len);
2504 		break;
2505 
2506 	case XFS_ILOG_DBROOT:
2507 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2508 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2509 				 XFS_DFORK_DSIZE(dip, mp));
2510 		break;
2511 
2512 	default:
2513 		/*
2514 		 * There are no data fork flags set.
2515 		 */
2516 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2517 		break;
2518 	}
2519 
2520 	/*
2521 	 * If we logged any attribute data, recover it.  There may or
2522 	 * may not have been any other non-core data logged in this
2523 	 * transaction.
2524 	 */
2525 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2526 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2527 			attr_index = 3;
2528 		} else {
2529 			attr_index = 2;
2530 		}
2531 		len = item->ri_buf[attr_index].i_len;
2532 		src = item->ri_buf[attr_index].i_addr;
2533 		ASSERT(len == in_f->ilf_asize);
2534 
2535 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2536 		case XFS_ILOG_ADATA:
2537 		case XFS_ILOG_AEXT:
2538 			dest = XFS_DFORK_APTR(dip);
2539 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2540 			memcpy(dest, src, len);
2541 			break;
2542 
2543 		case XFS_ILOG_ABROOT:
2544 			dest = XFS_DFORK_APTR(dip);
2545 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2546 					 len, (xfs_bmdr_block_t*)dest,
2547 					 XFS_DFORK_ASIZE(dip, mp));
2548 			break;
2549 
2550 		default:
2551 			xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2552 			ASSERT(0);
2553 			xfs_buf_relse(bp);
2554 			error = EIO;
2555 			goto error;
2556 		}
2557 	}
2558 
2559 write_inode_buffer:
2560 	ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2561 	bp->b_mount = mp;
2562 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2563 	xfs_bdwrite(mp, bp);
2564 error:
2565 	if (need_free)
2566 		kmem_free(in_f);
2567 	return XFS_ERROR(error);
2568 }
2569 
2570 /*
2571  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2572  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2573  * of that type.
2574  */
2575 STATIC int
2576 xlog_recover_do_quotaoff_trans(
2577 	xlog_t			*log,
2578 	xlog_recover_item_t	*item,
2579 	int			pass)
2580 {
2581 	xfs_qoff_logformat_t	*qoff_f;
2582 
2583 	if (pass == XLOG_RECOVER_PASS2) {
2584 		return (0);
2585 	}
2586 
2587 	qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2588 	ASSERT(qoff_f);
2589 
2590 	/*
2591 	 * The logitem format's flag tells us if this was user quotaoff,
2592 	 * group/project quotaoff or both.
2593 	 */
2594 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2595 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2596 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2597 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2598 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2599 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2600 
2601 	return (0);
2602 }
2603 
2604 /*
2605  * Recover a dquot record
2606  */
2607 STATIC int
2608 xlog_recover_do_dquot_trans(
2609 	xlog_t			*log,
2610 	xlog_recover_item_t	*item,
2611 	int			pass)
2612 {
2613 	xfs_mount_t		*mp;
2614 	xfs_buf_t		*bp;
2615 	struct xfs_disk_dquot	*ddq, *recddq;
2616 	int			error;
2617 	xfs_dq_logformat_t	*dq_f;
2618 	uint			type;
2619 
2620 	if (pass == XLOG_RECOVER_PASS1) {
2621 		return 0;
2622 	}
2623 	mp = log->l_mp;
2624 
2625 	/*
2626 	 * Filesystems are required to send in quota flags at mount time.
2627 	 */
2628 	if (mp->m_qflags == 0)
2629 		return (0);
2630 
2631 	recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2632 
2633 	if (item->ri_buf[1].i_addr == NULL) {
2634 		cmn_err(CE_ALERT,
2635 			"XFS: NULL dquot in %s.", __func__);
2636 		return XFS_ERROR(EIO);
2637 	}
2638 	if (item->ri_buf[1].i_len < sizeof(xfs_dqblk_t)) {
2639 		cmn_err(CE_ALERT,
2640 			"XFS: dquot too small (%d) in %s.",
2641 			item->ri_buf[1].i_len, __func__);
2642 		return XFS_ERROR(EIO);
2643 	}
2644 
2645 	/*
2646 	 * This type of quotas was turned off, so ignore this record.
2647 	 */
2648 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2649 	ASSERT(type);
2650 	if (log->l_quotaoffs_flag & type)
2651 		return (0);
2652 
2653 	/*
2654 	 * At this point we know that quota was _not_ turned off.
2655 	 * Since the mount flags are not indicating to us otherwise, this
2656 	 * must mean that quota is on, and the dquot needs to be replayed.
2657 	 * Remember that we may not have fully recovered the superblock yet,
2658 	 * so we can't do the usual trick of looking at the SB quota bits.
2659 	 *
2660 	 * The other possibility, of course, is that the quota subsystem was
2661 	 * removed since the last mount - ENOSYS.
2662 	 */
2663 	dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2664 	ASSERT(dq_f);
2665 	if ((error = xfs_qm_dqcheck(recddq,
2666 			   dq_f->qlf_id,
2667 			   0, XFS_QMOPT_DOWARN,
2668 			   "xlog_recover_do_dquot_trans (log copy)"))) {
2669 		return XFS_ERROR(EIO);
2670 	}
2671 	ASSERT(dq_f->qlf_len == 1);
2672 
2673 	error = xfs_read_buf(mp, mp->m_ddev_targp,
2674 			     dq_f->qlf_blkno,
2675 			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2676 			     0, &bp);
2677 	if (error) {
2678 		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2679 				  bp, dq_f->qlf_blkno);
2680 		return error;
2681 	}
2682 	ASSERT(bp);
2683 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2684 
2685 	/*
2686 	 * At least the magic num portion should be on disk because this
2687 	 * was among a chunk of dquots created earlier, and we did some
2688 	 * minimal initialization then.
2689 	 */
2690 	if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2691 			   "xlog_recover_do_dquot_trans")) {
2692 		xfs_buf_relse(bp);
2693 		return XFS_ERROR(EIO);
2694 	}
2695 
2696 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2697 
2698 	ASSERT(dq_f->qlf_size == 2);
2699 	ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2700 	bp->b_mount = mp;
2701 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2702 	xfs_bdwrite(mp, bp);
2703 
2704 	return (0);
2705 }
2706 
2707 /*
2708  * This routine is called to create an in-core extent free intent
2709  * item from the efi format structure which was logged on disk.
2710  * It allocates an in-core efi, copies the extents from the format
2711  * structure into it, and adds the efi to the AIL with the given
2712  * LSN.
2713  */
2714 STATIC int
2715 xlog_recover_do_efi_trans(
2716 	xlog_t			*log,
2717 	xlog_recover_item_t	*item,
2718 	xfs_lsn_t		lsn,
2719 	int			pass)
2720 {
2721 	int			error;
2722 	xfs_mount_t		*mp;
2723 	xfs_efi_log_item_t	*efip;
2724 	xfs_efi_log_format_t	*efi_formatp;
2725 
2726 	if (pass == XLOG_RECOVER_PASS1) {
2727 		return 0;
2728 	}
2729 
2730 	efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2731 
2732 	mp = log->l_mp;
2733 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2734 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2735 					 &(efip->efi_format)))) {
2736 		xfs_efi_item_free(efip);
2737 		return error;
2738 	}
2739 	efip->efi_next_extent = efi_formatp->efi_nextents;
2740 	efip->efi_flags |= XFS_EFI_COMMITTED;
2741 
2742 	spin_lock(&log->l_ailp->xa_lock);
2743 	/*
2744 	 * xfs_trans_ail_update() drops the AIL lock.
2745 	 */
2746 	xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2747 	return 0;
2748 }
2749 
2750 
2751 /*
2752  * This routine is called when an efd format structure is found in
2753  * a committed transaction in the log.  It's purpose is to cancel
2754  * the corresponding efi if it was still in the log.  To do this
2755  * it searches the AIL for the efi with an id equal to that in the
2756  * efd format structure.  If we find it, we remove the efi from the
2757  * AIL and free it.
2758  */
2759 STATIC void
2760 xlog_recover_do_efd_trans(
2761 	xlog_t			*log,
2762 	xlog_recover_item_t	*item,
2763 	int			pass)
2764 {
2765 	xfs_efd_log_format_t	*efd_formatp;
2766 	xfs_efi_log_item_t	*efip = NULL;
2767 	xfs_log_item_t		*lip;
2768 	__uint64_t		efi_id;
2769 	struct xfs_ail_cursor	cur;
2770 	struct xfs_ail		*ailp = log->l_ailp;
2771 
2772 	if (pass == XLOG_RECOVER_PASS1) {
2773 		return;
2774 	}
2775 
2776 	efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2777 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2778 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2779 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2780 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2781 	efi_id = efd_formatp->efd_efi_id;
2782 
2783 	/*
2784 	 * Search for the efi with the id in the efd format structure
2785 	 * in the AIL.
2786 	 */
2787 	spin_lock(&ailp->xa_lock);
2788 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2789 	while (lip != NULL) {
2790 		if (lip->li_type == XFS_LI_EFI) {
2791 			efip = (xfs_efi_log_item_t *)lip;
2792 			if (efip->efi_format.efi_id == efi_id) {
2793 				/*
2794 				 * xfs_trans_ail_delete() drops the
2795 				 * AIL lock.
2796 				 */
2797 				xfs_trans_ail_delete(ailp, lip);
2798 				xfs_efi_item_free(efip);
2799 				spin_lock(&ailp->xa_lock);
2800 				break;
2801 			}
2802 		}
2803 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2804 	}
2805 	xfs_trans_ail_cursor_done(ailp, &cur);
2806 	spin_unlock(&ailp->xa_lock);
2807 }
2808 
2809 /*
2810  * Perform the transaction
2811  *
2812  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2813  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2814  */
2815 STATIC int
2816 xlog_recover_do_trans(
2817 	xlog_t			*log,
2818 	xlog_recover_t		*trans,
2819 	int			pass)
2820 {
2821 	int			error = 0;
2822 	xlog_recover_item_t	*item, *first_item;
2823 
2824 	error = xlog_recover_reorder_trans(trans);
2825 	if (error)
2826 		return error;
2827 
2828 	first_item = item = trans->r_itemq;
2829 	do {
2830 		switch (ITEM_TYPE(item)) {
2831 		case XFS_LI_BUF:
2832 			error = xlog_recover_do_buffer_trans(log, item, pass);
2833 			break;
2834 		case XFS_LI_INODE:
2835 			error = xlog_recover_do_inode_trans(log, item, pass);
2836 			break;
2837 		case XFS_LI_EFI:
2838 			error = xlog_recover_do_efi_trans(log, item,
2839 							  trans->r_lsn, pass);
2840 			break;
2841 		case XFS_LI_EFD:
2842 			xlog_recover_do_efd_trans(log, item, pass);
2843 			error = 0;
2844 			break;
2845 		case XFS_LI_DQUOT:
2846 			error = xlog_recover_do_dquot_trans(log, item, pass);
2847 			break;
2848 		case XFS_LI_QUOTAOFF:
2849 			error = xlog_recover_do_quotaoff_trans(log, item,
2850 							       pass);
2851 			break;
2852 		default:
2853 			xlog_warn(
2854 	"XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
2855 			ASSERT(0);
2856 			error = XFS_ERROR(EIO);
2857 			break;
2858 		}
2859 
2860 		if (error)
2861 			return error;
2862 		item = item->ri_next;
2863 	} while (first_item != item);
2864 
2865 	return 0;
2866 }
2867 
2868 /*
2869  * Free up any resources allocated by the transaction
2870  *
2871  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2872  */
2873 STATIC void
2874 xlog_recover_free_trans(
2875 	xlog_recover_t		*trans)
2876 {
2877 	xlog_recover_item_t	*first_item, *item, *free_item;
2878 	int			i;
2879 
2880 	item = first_item = trans->r_itemq;
2881 	do {
2882 		free_item = item;
2883 		item = item->ri_next;
2884 		 /* Free the regions in the item. */
2885 		for (i = 0; i < free_item->ri_cnt; i++) {
2886 			kmem_free(free_item->ri_buf[i].i_addr);
2887 		}
2888 		/* Free the item itself */
2889 		kmem_free(free_item->ri_buf);
2890 		kmem_free(free_item);
2891 	} while (first_item != item);
2892 	/* Free the transaction recover structure */
2893 	kmem_free(trans);
2894 }
2895 
2896 STATIC int
2897 xlog_recover_commit_trans(
2898 	xlog_t			*log,
2899 	xlog_recover_t		**q,
2900 	xlog_recover_t		*trans,
2901 	int			pass)
2902 {
2903 	int			error;
2904 
2905 	if ((error = xlog_recover_unlink_tid(q, trans)))
2906 		return error;
2907 	if ((error = xlog_recover_do_trans(log, trans, pass)))
2908 		return error;
2909 	xlog_recover_free_trans(trans);			/* no error */
2910 	return 0;
2911 }
2912 
2913 STATIC int
2914 xlog_recover_unmount_trans(
2915 	xlog_recover_t		*trans)
2916 {
2917 	/* Do nothing now */
2918 	xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2919 	return 0;
2920 }
2921 
2922 /*
2923  * There are two valid states of the r_state field.  0 indicates that the
2924  * transaction structure is in a normal state.  We have either seen the
2925  * start of the transaction or the last operation we added was not a partial
2926  * operation.  If the last operation we added to the transaction was a
2927  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2928  *
2929  * NOTE: skip LRs with 0 data length.
2930  */
2931 STATIC int
2932 xlog_recover_process_data(
2933 	xlog_t			*log,
2934 	xlog_recover_t		*rhash[],
2935 	xlog_rec_header_t	*rhead,
2936 	xfs_caddr_t		dp,
2937 	int			pass)
2938 {
2939 	xfs_caddr_t		lp;
2940 	int			num_logops;
2941 	xlog_op_header_t	*ohead;
2942 	xlog_recover_t		*trans;
2943 	xlog_tid_t		tid;
2944 	int			error;
2945 	unsigned long		hash;
2946 	uint			flags;
2947 
2948 	lp = dp + be32_to_cpu(rhead->h_len);
2949 	num_logops = be32_to_cpu(rhead->h_num_logops);
2950 
2951 	/* check the log format matches our own - else we can't recover */
2952 	if (xlog_header_check_recover(log->l_mp, rhead))
2953 		return (XFS_ERROR(EIO));
2954 
2955 	while ((dp < lp) && num_logops) {
2956 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2957 		ohead = (xlog_op_header_t *)dp;
2958 		dp += sizeof(xlog_op_header_t);
2959 		if (ohead->oh_clientid != XFS_TRANSACTION &&
2960 		    ohead->oh_clientid != XFS_LOG) {
2961 			xlog_warn(
2962 		"XFS: xlog_recover_process_data: bad clientid");
2963 			ASSERT(0);
2964 			return (XFS_ERROR(EIO));
2965 		}
2966 		tid = be32_to_cpu(ohead->oh_tid);
2967 		hash = XLOG_RHASH(tid);
2968 		trans = xlog_recover_find_tid(rhash[hash], tid);
2969 		if (trans == NULL) {		   /* not found; add new tid */
2970 			if (ohead->oh_flags & XLOG_START_TRANS)
2971 				xlog_recover_new_tid(&rhash[hash], tid,
2972 					be64_to_cpu(rhead->h_lsn));
2973 		} else {
2974 			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2975 				xlog_warn(
2976 			"XFS: xlog_recover_process_data: bad length");
2977 				WARN_ON(1);
2978 				return (XFS_ERROR(EIO));
2979 			}
2980 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2981 			if (flags & XLOG_WAS_CONT_TRANS)
2982 				flags &= ~XLOG_CONTINUE_TRANS;
2983 			switch (flags) {
2984 			case XLOG_COMMIT_TRANS:
2985 				error = xlog_recover_commit_trans(log,
2986 						&rhash[hash], trans, pass);
2987 				break;
2988 			case XLOG_UNMOUNT_TRANS:
2989 				error = xlog_recover_unmount_trans(trans);
2990 				break;
2991 			case XLOG_WAS_CONT_TRANS:
2992 				error = xlog_recover_add_to_cont_trans(trans,
2993 						dp, be32_to_cpu(ohead->oh_len));
2994 				break;
2995 			case XLOG_START_TRANS:
2996 				xlog_warn(
2997 			"XFS: xlog_recover_process_data: bad transaction");
2998 				ASSERT(0);
2999 				error = XFS_ERROR(EIO);
3000 				break;
3001 			case 0:
3002 			case XLOG_CONTINUE_TRANS:
3003 				error = xlog_recover_add_to_trans(trans,
3004 						dp, be32_to_cpu(ohead->oh_len));
3005 				break;
3006 			default:
3007 				xlog_warn(
3008 			"XFS: xlog_recover_process_data: bad flag");
3009 				ASSERT(0);
3010 				error = XFS_ERROR(EIO);
3011 				break;
3012 			}
3013 			if (error)
3014 				return error;
3015 		}
3016 		dp += be32_to_cpu(ohead->oh_len);
3017 		num_logops--;
3018 	}
3019 	return 0;
3020 }
3021 
3022 /*
3023  * Process an extent free intent item that was recovered from
3024  * the log.  We need to free the extents that it describes.
3025  */
3026 STATIC int
3027 xlog_recover_process_efi(
3028 	xfs_mount_t		*mp,
3029 	xfs_efi_log_item_t	*efip)
3030 {
3031 	xfs_efd_log_item_t	*efdp;
3032 	xfs_trans_t		*tp;
3033 	int			i;
3034 	int			error = 0;
3035 	xfs_extent_t		*extp;
3036 	xfs_fsblock_t		startblock_fsb;
3037 
3038 	ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3039 
3040 	/*
3041 	 * First check the validity of the extents described by the
3042 	 * EFI.  If any are bad, then assume that all are bad and
3043 	 * just toss the EFI.
3044 	 */
3045 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3046 		extp = &(efip->efi_format.efi_extents[i]);
3047 		startblock_fsb = XFS_BB_TO_FSB(mp,
3048 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3049 		if ((startblock_fsb == 0) ||
3050 		    (extp->ext_len == 0) ||
3051 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3052 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3053 			/*
3054 			 * This will pull the EFI from the AIL and
3055 			 * free the memory associated with it.
3056 			 */
3057 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3058 			return XFS_ERROR(EIO);
3059 		}
3060 	}
3061 
3062 	tp = xfs_trans_alloc(mp, 0);
3063 	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3064 	if (error)
3065 		goto abort_error;
3066 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3067 
3068 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3069 		extp = &(efip->efi_format.efi_extents[i]);
3070 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3071 		if (error)
3072 			goto abort_error;
3073 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3074 					 extp->ext_len);
3075 	}
3076 
3077 	efip->efi_flags |= XFS_EFI_RECOVERED;
3078 	error = xfs_trans_commit(tp, 0);
3079 	return error;
3080 
3081 abort_error:
3082 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3083 	return error;
3084 }
3085 
3086 /*
3087  * When this is called, all of the EFIs which did not have
3088  * corresponding EFDs should be in the AIL.  What we do now
3089  * is free the extents associated with each one.
3090  *
3091  * Since we process the EFIs in normal transactions, they
3092  * will be removed at some point after the commit.  This prevents
3093  * us from just walking down the list processing each one.
3094  * We'll use a flag in the EFI to skip those that we've already
3095  * processed and use the AIL iteration mechanism's generation
3096  * count to try to speed this up at least a bit.
3097  *
3098  * When we start, we know that the EFIs are the only things in
3099  * the AIL.  As we process them, however, other items are added
3100  * to the AIL.  Since everything added to the AIL must come after
3101  * everything already in the AIL, we stop processing as soon as
3102  * we see something other than an EFI in the AIL.
3103  */
3104 STATIC int
3105 xlog_recover_process_efis(
3106 	xlog_t			*log)
3107 {
3108 	xfs_log_item_t		*lip;
3109 	xfs_efi_log_item_t	*efip;
3110 	int			error = 0;
3111 	struct xfs_ail_cursor	cur;
3112 	struct xfs_ail		*ailp;
3113 
3114 	ailp = log->l_ailp;
3115 	spin_lock(&ailp->xa_lock);
3116 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3117 	while (lip != NULL) {
3118 		/*
3119 		 * We're done when we see something other than an EFI.
3120 		 * There should be no EFIs left in the AIL now.
3121 		 */
3122 		if (lip->li_type != XFS_LI_EFI) {
3123 #ifdef DEBUG
3124 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3125 				ASSERT(lip->li_type != XFS_LI_EFI);
3126 #endif
3127 			break;
3128 		}
3129 
3130 		/*
3131 		 * Skip EFIs that we've already processed.
3132 		 */
3133 		efip = (xfs_efi_log_item_t *)lip;
3134 		if (efip->efi_flags & XFS_EFI_RECOVERED) {
3135 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3136 			continue;
3137 		}
3138 
3139 		spin_unlock(&ailp->xa_lock);
3140 		error = xlog_recover_process_efi(log->l_mp, efip);
3141 		spin_lock(&ailp->xa_lock);
3142 		if (error)
3143 			goto out;
3144 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3145 	}
3146 out:
3147 	xfs_trans_ail_cursor_done(ailp, &cur);
3148 	spin_unlock(&ailp->xa_lock);
3149 	return error;
3150 }
3151 
3152 /*
3153  * This routine performs a transaction to null out a bad inode pointer
3154  * in an agi unlinked inode hash bucket.
3155  */
3156 STATIC void
3157 xlog_recover_clear_agi_bucket(
3158 	xfs_mount_t	*mp,
3159 	xfs_agnumber_t	agno,
3160 	int		bucket)
3161 {
3162 	xfs_trans_t	*tp;
3163 	xfs_agi_t	*agi;
3164 	xfs_buf_t	*agibp;
3165 	int		offset;
3166 	int		error;
3167 
3168 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3169 	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3170 				  0, 0, 0);
3171 	if (error)
3172 		goto out_abort;
3173 
3174 	error = xfs_read_agi(mp, tp, agno, &agibp);
3175 	if (error)
3176 		goto out_abort;
3177 
3178 	agi = XFS_BUF_TO_AGI(agibp);
3179 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3180 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3181 		 (sizeof(xfs_agino_t) * bucket);
3182 	xfs_trans_log_buf(tp, agibp, offset,
3183 			  (offset + sizeof(xfs_agino_t) - 1));
3184 
3185 	error = xfs_trans_commit(tp, 0);
3186 	if (error)
3187 		goto out_error;
3188 	return;
3189 
3190 out_abort:
3191 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3192 out_error:
3193 	xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3194 			"failed to clear agi %d. Continuing.", agno);
3195 	return;
3196 }
3197 
3198 STATIC xfs_agino_t
3199 xlog_recover_process_one_iunlink(
3200 	struct xfs_mount		*mp,
3201 	xfs_agnumber_t			agno,
3202 	xfs_agino_t			agino,
3203 	int				bucket)
3204 {
3205 	struct xfs_buf			*ibp;
3206 	struct xfs_dinode		*dip;
3207 	struct xfs_inode		*ip;
3208 	xfs_ino_t			ino;
3209 	int				error;
3210 
3211 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3212 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3213 	if (error)
3214 		goto fail;
3215 
3216 	/*
3217 	 * Get the on disk inode to find the next inode in the bucket.
3218 	 */
3219 	error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK);
3220 	if (error)
3221 		goto fail_iput;
3222 
3223 	ASSERT(ip->i_d.di_nlink == 0);
3224 	ASSERT(ip->i_d.di_mode != 0);
3225 
3226 	/* setup for the next pass */
3227 	agino = be32_to_cpu(dip->di_next_unlinked);
3228 	xfs_buf_relse(ibp);
3229 
3230 	/*
3231 	 * Prevent any DMAPI event from being sent when the reference on
3232 	 * the inode is dropped.
3233 	 */
3234 	ip->i_d.di_dmevmask = 0;
3235 
3236 	IRELE(ip);
3237 	return agino;
3238 
3239  fail_iput:
3240 	IRELE(ip);
3241  fail:
3242 	/*
3243 	 * We can't read in the inode this bucket points to, or this inode
3244 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3245 	 * some inodes and space, but at least we won't hang.
3246 	 *
3247 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3248 	 * clear the inode pointer in the bucket.
3249 	 */
3250 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3251 	return NULLAGINO;
3252 }
3253 
3254 /*
3255  * xlog_iunlink_recover
3256  *
3257  * This is called during recovery to process any inodes which
3258  * we unlinked but not freed when the system crashed.  These
3259  * inodes will be on the lists in the AGI blocks.  What we do
3260  * here is scan all the AGIs and fully truncate and free any
3261  * inodes found on the lists.  Each inode is removed from the
3262  * lists when it has been fully truncated and is freed.  The
3263  * freeing of the inode and its removal from the list must be
3264  * atomic.
3265  */
3266 STATIC void
3267 xlog_recover_process_iunlinks(
3268 	xlog_t		*log)
3269 {
3270 	xfs_mount_t	*mp;
3271 	xfs_agnumber_t	agno;
3272 	xfs_agi_t	*agi;
3273 	xfs_buf_t	*agibp;
3274 	xfs_agino_t	agino;
3275 	int		bucket;
3276 	int		error;
3277 	uint		mp_dmevmask;
3278 
3279 	mp = log->l_mp;
3280 
3281 	/*
3282 	 * Prevent any DMAPI event from being sent while in this function.
3283 	 */
3284 	mp_dmevmask = mp->m_dmevmask;
3285 	mp->m_dmevmask = 0;
3286 
3287 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3288 		/*
3289 		 * Find the agi for this ag.
3290 		 */
3291 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3292 		if (error) {
3293 			/*
3294 			 * AGI is b0rked. Don't process it.
3295 			 *
3296 			 * We should probably mark the filesystem as corrupt
3297 			 * after we've recovered all the ag's we can....
3298 			 */
3299 			continue;
3300 		}
3301 		agi = XFS_BUF_TO_AGI(agibp);
3302 
3303 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3304 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3305 			while (agino != NULLAGINO) {
3306 				/*
3307 				 * Release the agi buffer so that it can
3308 				 * be acquired in the normal course of the
3309 				 * transaction to truncate and free the inode.
3310 				 */
3311 				xfs_buf_relse(agibp);
3312 
3313 				agino = xlog_recover_process_one_iunlink(mp,
3314 							agno, agino, bucket);
3315 
3316 				/*
3317 				 * Reacquire the agibuffer and continue around
3318 				 * the loop. This should never fail as we know
3319 				 * the buffer was good earlier on.
3320 				 */
3321 				error = xfs_read_agi(mp, NULL, agno, &agibp);
3322 				ASSERT(error == 0);
3323 				agi = XFS_BUF_TO_AGI(agibp);
3324 			}
3325 		}
3326 
3327 		/*
3328 		 * Release the buffer for the current agi so we can
3329 		 * go on to the next one.
3330 		 */
3331 		xfs_buf_relse(agibp);
3332 	}
3333 
3334 	mp->m_dmevmask = mp_dmevmask;
3335 }
3336 
3337 
3338 #ifdef DEBUG
3339 STATIC void
3340 xlog_pack_data_checksum(
3341 	xlog_t		*log,
3342 	xlog_in_core_t	*iclog,
3343 	int		size)
3344 {
3345 	int		i;
3346 	__be32		*up;
3347 	uint		chksum = 0;
3348 
3349 	up = (__be32 *)iclog->ic_datap;
3350 	/* divide length by 4 to get # words */
3351 	for (i = 0; i < (size >> 2); i++) {
3352 		chksum ^= be32_to_cpu(*up);
3353 		up++;
3354 	}
3355 	iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3356 }
3357 #else
3358 #define xlog_pack_data_checksum(log, iclog, size)
3359 #endif
3360 
3361 /*
3362  * Stamp cycle number in every block
3363  */
3364 void
3365 xlog_pack_data(
3366 	xlog_t			*log,
3367 	xlog_in_core_t		*iclog,
3368 	int			roundoff)
3369 {
3370 	int			i, j, k;
3371 	int			size = iclog->ic_offset + roundoff;
3372 	__be32			cycle_lsn;
3373 	xfs_caddr_t		dp;
3374 
3375 	xlog_pack_data_checksum(log, iclog, size);
3376 
3377 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3378 
3379 	dp = iclog->ic_datap;
3380 	for (i = 0; i < BTOBB(size) &&
3381 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3382 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3383 		*(__be32 *)dp = cycle_lsn;
3384 		dp += BBSIZE;
3385 	}
3386 
3387 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3388 		xlog_in_core_2_t *xhdr = iclog->ic_data;
3389 
3390 		for ( ; i < BTOBB(size); i++) {
3391 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3392 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3393 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3394 			*(__be32 *)dp = cycle_lsn;
3395 			dp += BBSIZE;
3396 		}
3397 
3398 		for (i = 1; i < log->l_iclog_heads; i++) {
3399 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3400 		}
3401 	}
3402 }
3403 
3404 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3405 STATIC void
3406 xlog_unpack_data_checksum(
3407 	xlog_rec_header_t	*rhead,
3408 	xfs_caddr_t		dp,
3409 	xlog_t			*log)
3410 {
3411 	__be32			*up = (__be32 *)dp;
3412 	uint			chksum = 0;
3413 	int			i;
3414 
3415 	/* divide length by 4 to get # words */
3416 	for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3417 		chksum ^= be32_to_cpu(*up);
3418 		up++;
3419 	}
3420 	if (chksum != be32_to_cpu(rhead->h_chksum)) {
3421 	    if (rhead->h_chksum ||
3422 		((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3423 		    cmn_err(CE_DEBUG,
3424 			"XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3425 			    be32_to_cpu(rhead->h_chksum), chksum);
3426 		    cmn_err(CE_DEBUG,
3427 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3428 		    if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3429 			    cmn_err(CE_DEBUG,
3430 				"XFS: LogR this is a LogV2 filesystem\n");
3431 		    }
3432 		    log->l_flags |= XLOG_CHKSUM_MISMATCH;
3433 	    }
3434 	}
3435 }
3436 #else
3437 #define xlog_unpack_data_checksum(rhead, dp, log)
3438 #endif
3439 
3440 STATIC void
3441 xlog_unpack_data(
3442 	xlog_rec_header_t	*rhead,
3443 	xfs_caddr_t		dp,
3444 	xlog_t			*log)
3445 {
3446 	int			i, j, k;
3447 
3448 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3449 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3450 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3451 		dp += BBSIZE;
3452 	}
3453 
3454 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3455 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3456 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3457 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3458 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3459 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3460 			dp += BBSIZE;
3461 		}
3462 	}
3463 
3464 	xlog_unpack_data_checksum(rhead, dp, log);
3465 }
3466 
3467 STATIC int
3468 xlog_valid_rec_header(
3469 	xlog_t			*log,
3470 	xlog_rec_header_t	*rhead,
3471 	xfs_daddr_t		blkno)
3472 {
3473 	int			hlen;
3474 
3475 	if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3476 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3477 				XFS_ERRLEVEL_LOW, log->l_mp);
3478 		return XFS_ERROR(EFSCORRUPTED);
3479 	}
3480 	if (unlikely(
3481 	    (!rhead->h_version ||
3482 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3483 		xlog_warn("XFS: %s: unrecognised log version (%d).",
3484 			__func__, be32_to_cpu(rhead->h_version));
3485 		return XFS_ERROR(EIO);
3486 	}
3487 
3488 	/* LR body must have data or it wouldn't have been written */
3489 	hlen = be32_to_cpu(rhead->h_len);
3490 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3491 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3492 				XFS_ERRLEVEL_LOW, log->l_mp);
3493 		return XFS_ERROR(EFSCORRUPTED);
3494 	}
3495 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3496 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3497 				XFS_ERRLEVEL_LOW, log->l_mp);
3498 		return XFS_ERROR(EFSCORRUPTED);
3499 	}
3500 	return 0;
3501 }
3502 
3503 /*
3504  * Read the log from tail to head and process the log records found.
3505  * Handle the two cases where the tail and head are in the same cycle
3506  * and where the active portion of the log wraps around the end of
3507  * the physical log separately.  The pass parameter is passed through
3508  * to the routines called to process the data and is not looked at
3509  * here.
3510  */
3511 STATIC int
3512 xlog_do_recovery_pass(
3513 	xlog_t			*log,
3514 	xfs_daddr_t		head_blk,
3515 	xfs_daddr_t		tail_blk,
3516 	int			pass)
3517 {
3518 	xlog_rec_header_t	*rhead;
3519 	xfs_daddr_t		blk_no;
3520 	xfs_caddr_t		bufaddr, offset;
3521 	xfs_buf_t		*hbp, *dbp;
3522 	int			error = 0, h_size;
3523 	int			bblks, split_bblks;
3524 	int			hblks, split_hblks, wrapped_hblks;
3525 	xlog_recover_t		*rhash[XLOG_RHASH_SIZE];
3526 
3527 	ASSERT(head_blk != tail_blk);
3528 
3529 	/*
3530 	 * Read the header of the tail block and get the iclog buffer size from
3531 	 * h_size.  Use this to tell how many sectors make up the log header.
3532 	 */
3533 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3534 		/*
3535 		 * When using variable length iclogs, read first sector of
3536 		 * iclog header and extract the header size from it.  Get a
3537 		 * new hbp that is the correct size.
3538 		 */
3539 		hbp = xlog_get_bp(log, 1);
3540 		if (!hbp)
3541 			return ENOMEM;
3542 
3543 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3544 		if (error)
3545 			goto bread_err1;
3546 
3547 		rhead = (xlog_rec_header_t *)offset;
3548 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3549 		if (error)
3550 			goto bread_err1;
3551 		h_size = be32_to_cpu(rhead->h_size);
3552 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3553 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3554 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3555 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3556 				hblks++;
3557 			xlog_put_bp(hbp);
3558 			hbp = xlog_get_bp(log, hblks);
3559 		} else {
3560 			hblks = 1;
3561 		}
3562 	} else {
3563 		ASSERT(log->l_sectbb_log == 0);
3564 		hblks = 1;
3565 		hbp = xlog_get_bp(log, 1);
3566 		h_size = XLOG_BIG_RECORD_BSIZE;
3567 	}
3568 
3569 	if (!hbp)
3570 		return ENOMEM;
3571 	dbp = xlog_get_bp(log, BTOBB(h_size));
3572 	if (!dbp) {
3573 		xlog_put_bp(hbp);
3574 		return ENOMEM;
3575 	}
3576 
3577 	memset(rhash, 0, sizeof(rhash));
3578 	if (tail_blk <= head_blk) {
3579 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3580 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3581 			if (error)
3582 				goto bread_err2;
3583 
3584 			rhead = (xlog_rec_header_t *)offset;
3585 			error = xlog_valid_rec_header(log, rhead, blk_no);
3586 			if (error)
3587 				goto bread_err2;
3588 
3589 			/* blocks in data section */
3590 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3591 			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3592 					   &offset);
3593 			if (error)
3594 				goto bread_err2;
3595 
3596 			xlog_unpack_data(rhead, offset, log);
3597 			if ((error = xlog_recover_process_data(log,
3598 						rhash, rhead, offset, pass)))
3599 				goto bread_err2;
3600 			blk_no += bblks + hblks;
3601 		}
3602 	} else {
3603 		/*
3604 		 * Perform recovery around the end of the physical log.
3605 		 * When the head is not on the same cycle number as the tail,
3606 		 * we can't do a sequential recovery as above.
3607 		 */
3608 		blk_no = tail_blk;
3609 		while (blk_no < log->l_logBBsize) {
3610 			/*
3611 			 * Check for header wrapping around physical end-of-log
3612 			 */
3613 			offset = NULL;
3614 			split_hblks = 0;
3615 			wrapped_hblks = 0;
3616 			if (blk_no + hblks <= log->l_logBBsize) {
3617 				/* Read header in one read */
3618 				error = xlog_bread(log, blk_no, hblks, hbp,
3619 						   &offset);
3620 				if (error)
3621 					goto bread_err2;
3622 			} else {
3623 				/* This LR is split across physical log end */
3624 				if (blk_no != log->l_logBBsize) {
3625 					/* some data before physical log end */
3626 					ASSERT(blk_no <= INT_MAX);
3627 					split_hblks = log->l_logBBsize - (int)blk_no;
3628 					ASSERT(split_hblks > 0);
3629 					error = xlog_bread(log, blk_no,
3630 							   split_hblks, hbp,
3631 							   &offset);
3632 					if (error)
3633 						goto bread_err2;
3634 				}
3635 
3636 				/*
3637 				 * Note: this black magic still works with
3638 				 * large sector sizes (non-512) only because:
3639 				 * - we increased the buffer size originally
3640 				 *   by 1 sector giving us enough extra space
3641 				 *   for the second read;
3642 				 * - the log start is guaranteed to be sector
3643 				 *   aligned;
3644 				 * - we read the log end (LR header start)
3645 				 *   _first_, then the log start (LR header end)
3646 				 *   - order is important.
3647 				 */
3648 				wrapped_hblks = hblks - split_hblks;
3649 				bufaddr = XFS_BUF_PTR(hbp);
3650 				error = XFS_BUF_SET_PTR(hbp,
3651 						bufaddr + BBTOB(split_hblks),
3652 						BBTOB(hblks - split_hblks));
3653 				if (error)
3654 					goto bread_err2;
3655 
3656 				error = xlog_bread_noalign(log, 0,
3657 							   wrapped_hblks, hbp);
3658 				if (error)
3659 					goto bread_err2;
3660 
3661 				error = XFS_BUF_SET_PTR(hbp, bufaddr,
3662 							BBTOB(hblks));
3663 				if (error)
3664 					goto bread_err2;
3665 
3666 				if (!offset)
3667 					offset = xlog_align(log, 0,
3668 							wrapped_hblks, hbp);
3669 			}
3670 			rhead = (xlog_rec_header_t *)offset;
3671 			error = xlog_valid_rec_header(log, rhead,
3672 						split_hblks ? blk_no : 0);
3673 			if (error)
3674 				goto bread_err2;
3675 
3676 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3677 			blk_no += hblks;
3678 
3679 			/* Read in data for log record */
3680 			if (blk_no + bblks <= log->l_logBBsize) {
3681 				error = xlog_bread(log, blk_no, bblks, dbp,
3682 						   &offset);
3683 				if (error)
3684 					goto bread_err2;
3685 			} else {
3686 				/* This log record is split across the
3687 				 * physical end of log */
3688 				offset = NULL;
3689 				split_bblks = 0;
3690 				if (blk_no != log->l_logBBsize) {
3691 					/* some data is before the physical
3692 					 * end of log */
3693 					ASSERT(!wrapped_hblks);
3694 					ASSERT(blk_no <= INT_MAX);
3695 					split_bblks =
3696 						log->l_logBBsize - (int)blk_no;
3697 					ASSERT(split_bblks > 0);
3698 					error = xlog_bread(log, blk_no,
3699 							split_bblks, dbp,
3700 							&offset);
3701 					if (error)
3702 						goto bread_err2;
3703 				}
3704 
3705 				/*
3706 				 * Note: this black magic still works with
3707 				 * large sector sizes (non-512) only because:
3708 				 * - we increased the buffer size originally
3709 				 *   by 1 sector giving us enough extra space
3710 				 *   for the second read;
3711 				 * - the log start is guaranteed to be sector
3712 				 *   aligned;
3713 				 * - we read the log end (LR header start)
3714 				 *   _first_, then the log start (LR header end)
3715 				 *   - order is important.
3716 				 */
3717 				bufaddr = XFS_BUF_PTR(dbp);
3718 				error = XFS_BUF_SET_PTR(dbp,
3719 						bufaddr + BBTOB(split_bblks),
3720 						BBTOB(bblks - split_bblks));
3721 				if (error)
3722 					goto bread_err2;
3723 
3724 				error = xlog_bread_noalign(log, wrapped_hblks,
3725 						bblks - split_bblks,
3726 						dbp);
3727 				if (error)
3728 					goto bread_err2;
3729 
3730 				error = XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3731 				if (error)
3732 					goto bread_err2;
3733 
3734 				if (!offset)
3735 					offset = xlog_align(log, wrapped_hblks,
3736 						bblks - split_bblks, dbp);
3737 			}
3738 			xlog_unpack_data(rhead, offset, log);
3739 			if ((error = xlog_recover_process_data(log, rhash,
3740 							rhead, offset, pass)))
3741 				goto bread_err2;
3742 			blk_no += bblks;
3743 		}
3744 
3745 		ASSERT(blk_no >= log->l_logBBsize);
3746 		blk_no -= log->l_logBBsize;
3747 
3748 		/* read first part of physical log */
3749 		while (blk_no < head_blk) {
3750 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3751 			if (error)
3752 				goto bread_err2;
3753 
3754 			rhead = (xlog_rec_header_t *)offset;
3755 			error = xlog_valid_rec_header(log, rhead, blk_no);
3756 			if (error)
3757 				goto bread_err2;
3758 
3759 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3760 			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3761 					   &offset);
3762 			if (error)
3763 				goto bread_err2;
3764 
3765 			xlog_unpack_data(rhead, offset, log);
3766 			if ((error = xlog_recover_process_data(log, rhash,
3767 							rhead, offset, pass)))
3768 				goto bread_err2;
3769 			blk_no += bblks + hblks;
3770 		}
3771 	}
3772 
3773  bread_err2:
3774 	xlog_put_bp(dbp);
3775  bread_err1:
3776 	xlog_put_bp(hbp);
3777 	return error;
3778 }
3779 
3780 /*
3781  * Do the recovery of the log.  We actually do this in two phases.
3782  * The two passes are necessary in order to implement the function
3783  * of cancelling a record written into the log.  The first pass
3784  * determines those things which have been cancelled, and the
3785  * second pass replays log items normally except for those which
3786  * have been cancelled.  The handling of the replay and cancellations
3787  * takes place in the log item type specific routines.
3788  *
3789  * The table of items which have cancel records in the log is allocated
3790  * and freed at this level, since only here do we know when all of
3791  * the log recovery has been completed.
3792  */
3793 STATIC int
3794 xlog_do_log_recovery(
3795 	xlog_t		*log,
3796 	xfs_daddr_t	head_blk,
3797 	xfs_daddr_t	tail_blk)
3798 {
3799 	int		error;
3800 
3801 	ASSERT(head_blk != tail_blk);
3802 
3803 	/*
3804 	 * First do a pass to find all of the cancelled buf log items.
3805 	 * Store them in the buf_cancel_table for use in the second pass.
3806 	 */
3807 	log->l_buf_cancel_table =
3808 		(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3809 						 sizeof(xfs_buf_cancel_t*),
3810 						 KM_SLEEP);
3811 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3812 				      XLOG_RECOVER_PASS1);
3813 	if (error != 0) {
3814 		kmem_free(log->l_buf_cancel_table);
3815 		log->l_buf_cancel_table = NULL;
3816 		return error;
3817 	}
3818 	/*
3819 	 * Then do a second pass to actually recover the items in the log.
3820 	 * When it is complete free the table of buf cancel items.
3821 	 */
3822 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3823 				      XLOG_RECOVER_PASS2);
3824 #ifdef DEBUG
3825 	if (!error) {
3826 		int	i;
3827 
3828 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3829 			ASSERT(log->l_buf_cancel_table[i] == NULL);
3830 	}
3831 #endif	/* DEBUG */
3832 
3833 	kmem_free(log->l_buf_cancel_table);
3834 	log->l_buf_cancel_table = NULL;
3835 
3836 	return error;
3837 }
3838 
3839 /*
3840  * Do the actual recovery
3841  */
3842 STATIC int
3843 xlog_do_recover(
3844 	xlog_t		*log,
3845 	xfs_daddr_t	head_blk,
3846 	xfs_daddr_t	tail_blk)
3847 {
3848 	int		error;
3849 	xfs_buf_t	*bp;
3850 	xfs_sb_t	*sbp;
3851 
3852 	/*
3853 	 * First replay the images in the log.
3854 	 */
3855 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3856 	if (error) {
3857 		return error;
3858 	}
3859 
3860 	XFS_bflush(log->l_mp->m_ddev_targp);
3861 
3862 	/*
3863 	 * If IO errors happened during recovery, bail out.
3864 	 */
3865 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3866 		return (EIO);
3867 	}
3868 
3869 	/*
3870 	 * We now update the tail_lsn since much of the recovery has completed
3871 	 * and there may be space available to use.  If there were no extent
3872 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3873 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3874 	 * lsn of the last known good LR on disk.  If there are extent frees
3875 	 * or iunlinks they will have some entries in the AIL; so we look at
3876 	 * the AIL to determine how to set the tail_lsn.
3877 	 */
3878 	xlog_assign_tail_lsn(log->l_mp);
3879 
3880 	/*
3881 	 * Now that we've finished replaying all buffer and inode
3882 	 * updates, re-read in the superblock.
3883 	 */
3884 	bp = xfs_getsb(log->l_mp, 0);
3885 	XFS_BUF_UNDONE(bp);
3886 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
3887 	ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3888 	XFS_BUF_READ(bp);
3889 	XFS_BUF_UNASYNC(bp);
3890 	xfsbdstrat(log->l_mp, bp);
3891 	error = xfs_iowait(bp);
3892 	if (error) {
3893 		xfs_ioerror_alert("xlog_do_recover",
3894 				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3895 		ASSERT(0);
3896 		xfs_buf_relse(bp);
3897 		return error;
3898 	}
3899 
3900 	/* Convert superblock from on-disk format */
3901 	sbp = &log->l_mp->m_sb;
3902 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3903 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3904 	ASSERT(xfs_sb_good_version(sbp));
3905 	xfs_buf_relse(bp);
3906 
3907 	/* We've re-read the superblock so re-initialize per-cpu counters */
3908 	xfs_icsb_reinit_counters(log->l_mp);
3909 
3910 	xlog_recover_check_summary(log);
3911 
3912 	/* Normal transactions can now occur */
3913 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3914 	return 0;
3915 }
3916 
3917 /*
3918  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3919  *
3920  * Return error or zero.
3921  */
3922 int
3923 xlog_recover(
3924 	xlog_t		*log)
3925 {
3926 	xfs_daddr_t	head_blk, tail_blk;
3927 	int		error;
3928 
3929 	/* find the tail of the log */
3930 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3931 		return error;
3932 
3933 	if (tail_blk != head_blk) {
3934 		/* There used to be a comment here:
3935 		 *
3936 		 * disallow recovery on read-only mounts.  note -- mount
3937 		 * checks for ENOSPC and turns it into an intelligent
3938 		 * error message.
3939 		 * ...but this is no longer true.  Now, unless you specify
3940 		 * NORECOVERY (in which case this function would never be
3941 		 * called), we just go ahead and recover.  We do this all
3942 		 * under the vfs layer, so we can get away with it unless
3943 		 * the device itself is read-only, in which case we fail.
3944 		 */
3945 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3946 			return error;
3947 		}
3948 
3949 		cmn_err(CE_NOTE,
3950 			"Starting XFS recovery on filesystem: %s (logdev: %s)",
3951 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3952 			log->l_mp->m_logname : "internal");
3953 
3954 		error = xlog_do_recover(log, head_blk, tail_blk);
3955 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3956 	}
3957 	return error;
3958 }
3959 
3960 /*
3961  * In the first part of recovery we replay inodes and buffers and build
3962  * up the list of extent free items which need to be processed.  Here
3963  * we process the extent free items and clean up the on disk unlinked
3964  * inode lists.  This is separated from the first part of recovery so
3965  * that the root and real-time bitmap inodes can be read in from disk in
3966  * between the two stages.  This is necessary so that we can free space
3967  * in the real-time portion of the file system.
3968  */
3969 int
3970 xlog_recover_finish(
3971 	xlog_t		*log)
3972 {
3973 	/*
3974 	 * Now we're ready to do the transactions needed for the
3975 	 * rest of recovery.  Start with completing all the extent
3976 	 * free intent records and then process the unlinked inode
3977 	 * lists.  At this point, we essentially run in normal mode
3978 	 * except that we're still performing recovery actions
3979 	 * rather than accepting new requests.
3980 	 */
3981 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3982 		int	error;
3983 		error = xlog_recover_process_efis(log);
3984 		if (error) {
3985 			cmn_err(CE_ALERT,
3986 				"Failed to recover EFIs on filesystem: %s",
3987 				log->l_mp->m_fsname);
3988 			return error;
3989 		}
3990 		/*
3991 		 * Sync the log to get all the EFIs out of the AIL.
3992 		 * This isn't absolutely necessary, but it helps in
3993 		 * case the unlink transactions would have problems
3994 		 * pushing the EFIs out of the way.
3995 		 */
3996 		xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3997 			      (XFS_LOG_FORCE | XFS_LOG_SYNC));
3998 
3999 		xlog_recover_process_iunlinks(log);
4000 
4001 		xlog_recover_check_summary(log);
4002 
4003 		cmn_err(CE_NOTE,
4004 			"Ending XFS recovery on filesystem: %s (logdev: %s)",
4005 			log->l_mp->m_fsname, log->l_mp->m_logname ?
4006 			log->l_mp->m_logname : "internal");
4007 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4008 	} else {
4009 		cmn_err(CE_DEBUG,
4010 			"!Ending clean XFS mount for filesystem: %s\n",
4011 			log->l_mp->m_fsname);
4012 	}
4013 	return 0;
4014 }
4015 
4016 
4017 #if defined(DEBUG)
4018 /*
4019  * Read all of the agf and agi counters and check that they
4020  * are consistent with the superblock counters.
4021  */
4022 void
4023 xlog_recover_check_summary(
4024 	xlog_t		*log)
4025 {
4026 	xfs_mount_t	*mp;
4027 	xfs_agf_t	*agfp;
4028 	xfs_buf_t	*agfbp;
4029 	xfs_buf_t	*agibp;
4030 	xfs_buf_t	*sbbp;
4031 #ifdef XFS_LOUD_RECOVERY
4032 	xfs_sb_t	*sbp;
4033 #endif
4034 	xfs_agnumber_t	agno;
4035 	__uint64_t	freeblks;
4036 	__uint64_t	itotal;
4037 	__uint64_t	ifree;
4038 	int		error;
4039 
4040 	mp = log->l_mp;
4041 
4042 	freeblks = 0LL;
4043 	itotal = 0LL;
4044 	ifree = 0LL;
4045 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4046 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4047 		if (error) {
4048 			xfs_fs_cmn_err(CE_ALERT, mp,
4049 					"xlog_recover_check_summary(agf)"
4050 					"agf read failed agno %d error %d",
4051 							agno, error);
4052 		} else {
4053 			agfp = XFS_BUF_TO_AGF(agfbp);
4054 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
4055 				    be32_to_cpu(agfp->agf_flcount);
4056 			xfs_buf_relse(agfbp);
4057 		}
4058 
4059 		error = xfs_read_agi(mp, NULL, agno, &agibp);
4060 		if (!error) {
4061 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
4062 
4063 			itotal += be32_to_cpu(agi->agi_count);
4064 			ifree += be32_to_cpu(agi->agi_freecount);
4065 			xfs_buf_relse(agibp);
4066 		}
4067 	}
4068 
4069 	sbbp = xfs_getsb(mp, 0);
4070 #ifdef XFS_LOUD_RECOVERY
4071 	sbp = &mp->m_sb;
4072 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
4073 	cmn_err(CE_NOTE,
4074 		"xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4075 		sbp->sb_icount, itotal);
4076 	cmn_err(CE_NOTE,
4077 		"xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4078 		sbp->sb_ifree, ifree);
4079 	cmn_err(CE_NOTE,
4080 		"xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4081 		sbp->sb_fdblocks, freeblks);
4082 #if 0
4083 	/*
4084 	 * This is turned off until I account for the allocation
4085 	 * btree blocks which live in free space.
4086 	 */
4087 	ASSERT(sbp->sb_icount == itotal);
4088 	ASSERT(sbp->sb_ifree == ifree);
4089 	ASSERT(sbp->sb_fdblocks == freeblks);
4090 #endif
4091 #endif
4092 	xfs_buf_relse(sbbp);
4093 }
4094 #endif /* DEBUG */
4095