xref: /linux/fs/xfs/xfs_log_recover.c (revision b6ebbac51bedf9e98e837688bc838f400196da5e)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
45 #include "xfs_dir2.h"
46 #include "xfs_rmap_item.h"
47 
48 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
49 
50 STATIC int
51 xlog_find_zeroed(
52 	struct xlog	*,
53 	xfs_daddr_t	*);
54 STATIC int
55 xlog_clear_stale_blocks(
56 	struct xlog	*,
57 	xfs_lsn_t);
58 #if defined(DEBUG)
59 STATIC void
60 xlog_recover_check_summary(
61 	struct xlog *);
62 #else
63 #define	xlog_recover_check_summary(log)
64 #endif
65 STATIC int
66 xlog_do_recovery_pass(
67         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
68 
69 /*
70  * This structure is used during recovery to record the buf log items which
71  * have been canceled and should not be replayed.
72  */
73 struct xfs_buf_cancel {
74 	xfs_daddr_t		bc_blkno;
75 	uint			bc_len;
76 	int			bc_refcount;
77 	struct list_head	bc_list;
78 };
79 
80 /*
81  * Sector aligned buffer routines for buffer create/read/write/access
82  */
83 
84 /*
85  * Verify the given count of basic blocks is valid number of blocks
86  * to specify for an operation involving the given XFS log buffer.
87  * Returns nonzero if the count is valid, 0 otherwise.
88  */
89 
90 static inline int
91 xlog_buf_bbcount_valid(
92 	struct xlog	*log,
93 	int		bbcount)
94 {
95 	return bbcount > 0 && bbcount <= log->l_logBBsize;
96 }
97 
98 /*
99  * Allocate a buffer to hold log data.  The buffer needs to be able
100  * to map to a range of nbblks basic blocks at any valid (basic
101  * block) offset within the log.
102  */
103 STATIC xfs_buf_t *
104 xlog_get_bp(
105 	struct xlog	*log,
106 	int		nbblks)
107 {
108 	struct xfs_buf	*bp;
109 
110 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
111 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
112 			nbblks);
113 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
114 		return NULL;
115 	}
116 
117 	/*
118 	 * We do log I/O in units of log sectors (a power-of-2
119 	 * multiple of the basic block size), so we round up the
120 	 * requested size to accommodate the basic blocks required
121 	 * for complete log sectors.
122 	 *
123 	 * In addition, the buffer may be used for a non-sector-
124 	 * aligned block offset, in which case an I/O of the
125 	 * requested size could extend beyond the end of the
126 	 * buffer.  If the requested size is only 1 basic block it
127 	 * will never straddle a sector boundary, so this won't be
128 	 * an issue.  Nor will this be a problem if the log I/O is
129 	 * done in basic blocks (sector size 1).  But otherwise we
130 	 * extend the buffer by one extra log sector to ensure
131 	 * there's space to accommodate this possibility.
132 	 */
133 	if (nbblks > 1 && log->l_sectBBsize > 1)
134 		nbblks += log->l_sectBBsize;
135 	nbblks = round_up(nbblks, log->l_sectBBsize);
136 
137 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
138 	if (bp)
139 		xfs_buf_unlock(bp);
140 	return bp;
141 }
142 
143 STATIC void
144 xlog_put_bp(
145 	xfs_buf_t	*bp)
146 {
147 	xfs_buf_free(bp);
148 }
149 
150 /*
151  * Return the address of the start of the given block number's data
152  * in a log buffer.  The buffer covers a log sector-aligned region.
153  */
154 STATIC char *
155 xlog_align(
156 	struct xlog	*log,
157 	xfs_daddr_t	blk_no,
158 	int		nbblks,
159 	struct xfs_buf	*bp)
160 {
161 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
162 
163 	ASSERT(offset + nbblks <= bp->b_length);
164 	return bp->b_addr + BBTOB(offset);
165 }
166 
167 
168 /*
169  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
170  */
171 STATIC int
172 xlog_bread_noalign(
173 	struct xlog	*log,
174 	xfs_daddr_t	blk_no,
175 	int		nbblks,
176 	struct xfs_buf	*bp)
177 {
178 	int		error;
179 
180 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
181 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
182 			nbblks);
183 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
184 		return -EFSCORRUPTED;
185 	}
186 
187 	blk_no = round_down(blk_no, log->l_sectBBsize);
188 	nbblks = round_up(nbblks, log->l_sectBBsize);
189 
190 	ASSERT(nbblks > 0);
191 	ASSERT(nbblks <= bp->b_length);
192 
193 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
194 	bp->b_flags |= XBF_READ;
195 	bp->b_io_length = nbblks;
196 	bp->b_error = 0;
197 
198 	error = xfs_buf_submit_wait(bp);
199 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
200 		xfs_buf_ioerror_alert(bp, __func__);
201 	return error;
202 }
203 
204 STATIC int
205 xlog_bread(
206 	struct xlog	*log,
207 	xfs_daddr_t	blk_no,
208 	int		nbblks,
209 	struct xfs_buf	*bp,
210 	char		**offset)
211 {
212 	int		error;
213 
214 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
215 	if (error)
216 		return error;
217 
218 	*offset = xlog_align(log, blk_no, nbblks, bp);
219 	return 0;
220 }
221 
222 /*
223  * Read at an offset into the buffer. Returns with the buffer in it's original
224  * state regardless of the result of the read.
225  */
226 STATIC int
227 xlog_bread_offset(
228 	struct xlog	*log,
229 	xfs_daddr_t	blk_no,		/* block to read from */
230 	int		nbblks,		/* blocks to read */
231 	struct xfs_buf	*bp,
232 	char		*offset)
233 {
234 	char		*orig_offset = bp->b_addr;
235 	int		orig_len = BBTOB(bp->b_length);
236 	int		error, error2;
237 
238 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
239 	if (error)
240 		return error;
241 
242 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
243 
244 	/* must reset buffer pointer even on error */
245 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
246 	if (error)
247 		return error;
248 	return error2;
249 }
250 
251 /*
252  * Write out the buffer at the given block for the given number of blocks.
253  * The buffer is kept locked across the write and is returned locked.
254  * This can only be used for synchronous log writes.
255  */
256 STATIC int
257 xlog_bwrite(
258 	struct xlog	*log,
259 	xfs_daddr_t	blk_no,
260 	int		nbblks,
261 	struct xfs_buf	*bp)
262 {
263 	int		error;
264 
265 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
266 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
267 			nbblks);
268 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
269 		return -EFSCORRUPTED;
270 	}
271 
272 	blk_no = round_down(blk_no, log->l_sectBBsize);
273 	nbblks = round_up(nbblks, log->l_sectBBsize);
274 
275 	ASSERT(nbblks > 0);
276 	ASSERT(nbblks <= bp->b_length);
277 
278 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
279 	xfs_buf_hold(bp);
280 	xfs_buf_lock(bp);
281 	bp->b_io_length = nbblks;
282 	bp->b_error = 0;
283 
284 	error = xfs_bwrite(bp);
285 	if (error)
286 		xfs_buf_ioerror_alert(bp, __func__);
287 	xfs_buf_relse(bp);
288 	return error;
289 }
290 
291 #ifdef DEBUG
292 /*
293  * dump debug superblock and log record information
294  */
295 STATIC void
296 xlog_header_check_dump(
297 	xfs_mount_t		*mp,
298 	xlog_rec_header_t	*head)
299 {
300 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
301 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
302 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
303 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
304 }
305 #else
306 #define xlog_header_check_dump(mp, head)
307 #endif
308 
309 /*
310  * check log record header for recovery
311  */
312 STATIC int
313 xlog_header_check_recover(
314 	xfs_mount_t		*mp,
315 	xlog_rec_header_t	*head)
316 {
317 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
318 
319 	/*
320 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
321 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
322 	 * a dirty log created in IRIX.
323 	 */
324 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
325 		xfs_warn(mp,
326 	"dirty log written in incompatible format - can't recover");
327 		xlog_header_check_dump(mp, head);
328 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
329 				 XFS_ERRLEVEL_HIGH, mp);
330 		return -EFSCORRUPTED;
331 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
332 		xfs_warn(mp,
333 	"dirty log entry has mismatched uuid - can't recover");
334 		xlog_header_check_dump(mp, head);
335 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
336 				 XFS_ERRLEVEL_HIGH, mp);
337 		return -EFSCORRUPTED;
338 	}
339 	return 0;
340 }
341 
342 /*
343  * read the head block of the log and check the header
344  */
345 STATIC int
346 xlog_header_check_mount(
347 	xfs_mount_t		*mp,
348 	xlog_rec_header_t	*head)
349 {
350 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
351 
352 	if (uuid_is_nil(&head->h_fs_uuid)) {
353 		/*
354 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
355 		 * h_fs_uuid is nil, we assume this log was last mounted
356 		 * by IRIX and continue.
357 		 */
358 		xfs_warn(mp, "nil uuid in log - IRIX style log");
359 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
360 		xfs_warn(mp, "log has mismatched uuid - can't recover");
361 		xlog_header_check_dump(mp, head);
362 		XFS_ERROR_REPORT("xlog_header_check_mount",
363 				 XFS_ERRLEVEL_HIGH, mp);
364 		return -EFSCORRUPTED;
365 	}
366 	return 0;
367 }
368 
369 STATIC void
370 xlog_recover_iodone(
371 	struct xfs_buf	*bp)
372 {
373 	if (bp->b_error) {
374 		/*
375 		 * We're not going to bother about retrying
376 		 * this during recovery. One strike!
377 		 */
378 		if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
379 			xfs_buf_ioerror_alert(bp, __func__);
380 			xfs_force_shutdown(bp->b_target->bt_mount,
381 						SHUTDOWN_META_IO_ERROR);
382 		}
383 	}
384 	bp->b_iodone = NULL;
385 	xfs_buf_ioend(bp);
386 }
387 
388 /*
389  * This routine finds (to an approximation) the first block in the physical
390  * log which contains the given cycle.  It uses a binary search algorithm.
391  * Note that the algorithm can not be perfect because the disk will not
392  * necessarily be perfect.
393  */
394 STATIC int
395 xlog_find_cycle_start(
396 	struct xlog	*log,
397 	struct xfs_buf	*bp,
398 	xfs_daddr_t	first_blk,
399 	xfs_daddr_t	*last_blk,
400 	uint		cycle)
401 {
402 	char		*offset;
403 	xfs_daddr_t	mid_blk;
404 	xfs_daddr_t	end_blk;
405 	uint		mid_cycle;
406 	int		error;
407 
408 	end_blk = *last_blk;
409 	mid_blk = BLK_AVG(first_blk, end_blk);
410 	while (mid_blk != first_blk && mid_blk != end_blk) {
411 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
412 		if (error)
413 			return error;
414 		mid_cycle = xlog_get_cycle(offset);
415 		if (mid_cycle == cycle)
416 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
417 		else
418 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
419 		mid_blk = BLK_AVG(first_blk, end_blk);
420 	}
421 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
422 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
423 
424 	*last_blk = end_blk;
425 
426 	return 0;
427 }
428 
429 /*
430  * Check that a range of blocks does not contain stop_on_cycle_no.
431  * Fill in *new_blk with the block offset where such a block is
432  * found, or with -1 (an invalid block number) if there is no such
433  * block in the range.  The scan needs to occur from front to back
434  * and the pointer into the region must be updated since a later
435  * routine will need to perform another test.
436  */
437 STATIC int
438 xlog_find_verify_cycle(
439 	struct xlog	*log,
440 	xfs_daddr_t	start_blk,
441 	int		nbblks,
442 	uint		stop_on_cycle_no,
443 	xfs_daddr_t	*new_blk)
444 {
445 	xfs_daddr_t	i, j;
446 	uint		cycle;
447 	xfs_buf_t	*bp;
448 	xfs_daddr_t	bufblks;
449 	char		*buf = NULL;
450 	int		error = 0;
451 
452 	/*
453 	 * Greedily allocate a buffer big enough to handle the full
454 	 * range of basic blocks we'll be examining.  If that fails,
455 	 * try a smaller size.  We need to be able to read at least
456 	 * a log sector, or we're out of luck.
457 	 */
458 	bufblks = 1 << ffs(nbblks);
459 	while (bufblks > log->l_logBBsize)
460 		bufblks >>= 1;
461 	while (!(bp = xlog_get_bp(log, bufblks))) {
462 		bufblks >>= 1;
463 		if (bufblks < log->l_sectBBsize)
464 			return -ENOMEM;
465 	}
466 
467 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
468 		int	bcount;
469 
470 		bcount = min(bufblks, (start_blk + nbblks - i));
471 
472 		error = xlog_bread(log, i, bcount, bp, &buf);
473 		if (error)
474 			goto out;
475 
476 		for (j = 0; j < bcount; j++) {
477 			cycle = xlog_get_cycle(buf);
478 			if (cycle == stop_on_cycle_no) {
479 				*new_blk = i+j;
480 				goto out;
481 			}
482 
483 			buf += BBSIZE;
484 		}
485 	}
486 
487 	*new_blk = -1;
488 
489 out:
490 	xlog_put_bp(bp);
491 	return error;
492 }
493 
494 /*
495  * Potentially backup over partial log record write.
496  *
497  * In the typical case, last_blk is the number of the block directly after
498  * a good log record.  Therefore, we subtract one to get the block number
499  * of the last block in the given buffer.  extra_bblks contains the number
500  * of blocks we would have read on a previous read.  This happens when the
501  * last log record is split over the end of the physical log.
502  *
503  * extra_bblks is the number of blocks potentially verified on a previous
504  * call to this routine.
505  */
506 STATIC int
507 xlog_find_verify_log_record(
508 	struct xlog		*log,
509 	xfs_daddr_t		start_blk,
510 	xfs_daddr_t		*last_blk,
511 	int			extra_bblks)
512 {
513 	xfs_daddr_t		i;
514 	xfs_buf_t		*bp;
515 	char			*offset = NULL;
516 	xlog_rec_header_t	*head = NULL;
517 	int			error = 0;
518 	int			smallmem = 0;
519 	int			num_blks = *last_blk - start_blk;
520 	int			xhdrs;
521 
522 	ASSERT(start_blk != 0 || *last_blk != start_blk);
523 
524 	if (!(bp = xlog_get_bp(log, num_blks))) {
525 		if (!(bp = xlog_get_bp(log, 1)))
526 			return -ENOMEM;
527 		smallmem = 1;
528 	} else {
529 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
530 		if (error)
531 			goto out;
532 		offset += ((num_blks - 1) << BBSHIFT);
533 	}
534 
535 	for (i = (*last_blk) - 1; i >= 0; i--) {
536 		if (i < start_blk) {
537 			/* valid log record not found */
538 			xfs_warn(log->l_mp,
539 		"Log inconsistent (didn't find previous header)");
540 			ASSERT(0);
541 			error = -EIO;
542 			goto out;
543 		}
544 
545 		if (smallmem) {
546 			error = xlog_bread(log, i, 1, bp, &offset);
547 			if (error)
548 				goto out;
549 		}
550 
551 		head = (xlog_rec_header_t *)offset;
552 
553 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
554 			break;
555 
556 		if (!smallmem)
557 			offset -= BBSIZE;
558 	}
559 
560 	/*
561 	 * We hit the beginning of the physical log & still no header.  Return
562 	 * to caller.  If caller can handle a return of -1, then this routine
563 	 * will be called again for the end of the physical log.
564 	 */
565 	if (i == -1) {
566 		error = 1;
567 		goto out;
568 	}
569 
570 	/*
571 	 * We have the final block of the good log (the first block
572 	 * of the log record _before_ the head. So we check the uuid.
573 	 */
574 	if ((error = xlog_header_check_mount(log->l_mp, head)))
575 		goto out;
576 
577 	/*
578 	 * We may have found a log record header before we expected one.
579 	 * last_blk will be the 1st block # with a given cycle #.  We may end
580 	 * up reading an entire log record.  In this case, we don't want to
581 	 * reset last_blk.  Only when last_blk points in the middle of a log
582 	 * record do we update last_blk.
583 	 */
584 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
585 		uint	h_size = be32_to_cpu(head->h_size);
586 
587 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
588 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
589 			xhdrs++;
590 	} else {
591 		xhdrs = 1;
592 	}
593 
594 	if (*last_blk - i + extra_bblks !=
595 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
596 		*last_blk = i;
597 
598 out:
599 	xlog_put_bp(bp);
600 	return error;
601 }
602 
603 /*
604  * Head is defined to be the point of the log where the next log write
605  * could go.  This means that incomplete LR writes at the end are
606  * eliminated when calculating the head.  We aren't guaranteed that previous
607  * LR have complete transactions.  We only know that a cycle number of
608  * current cycle number -1 won't be present in the log if we start writing
609  * from our current block number.
610  *
611  * last_blk contains the block number of the first block with a given
612  * cycle number.
613  *
614  * Return: zero if normal, non-zero if error.
615  */
616 STATIC int
617 xlog_find_head(
618 	struct xlog	*log,
619 	xfs_daddr_t	*return_head_blk)
620 {
621 	xfs_buf_t	*bp;
622 	char		*offset;
623 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
624 	int		num_scan_bblks;
625 	uint		first_half_cycle, last_half_cycle;
626 	uint		stop_on_cycle;
627 	int		error, log_bbnum = log->l_logBBsize;
628 
629 	/* Is the end of the log device zeroed? */
630 	error = xlog_find_zeroed(log, &first_blk);
631 	if (error < 0) {
632 		xfs_warn(log->l_mp, "empty log check failed");
633 		return error;
634 	}
635 	if (error == 1) {
636 		*return_head_blk = first_blk;
637 
638 		/* Is the whole lot zeroed? */
639 		if (!first_blk) {
640 			/* Linux XFS shouldn't generate totally zeroed logs -
641 			 * mkfs etc write a dummy unmount record to a fresh
642 			 * log so we can store the uuid in there
643 			 */
644 			xfs_warn(log->l_mp, "totally zeroed log");
645 		}
646 
647 		return 0;
648 	}
649 
650 	first_blk = 0;			/* get cycle # of 1st block */
651 	bp = xlog_get_bp(log, 1);
652 	if (!bp)
653 		return -ENOMEM;
654 
655 	error = xlog_bread(log, 0, 1, bp, &offset);
656 	if (error)
657 		goto bp_err;
658 
659 	first_half_cycle = xlog_get_cycle(offset);
660 
661 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
662 	error = xlog_bread(log, last_blk, 1, bp, &offset);
663 	if (error)
664 		goto bp_err;
665 
666 	last_half_cycle = xlog_get_cycle(offset);
667 	ASSERT(last_half_cycle != 0);
668 
669 	/*
670 	 * If the 1st half cycle number is equal to the last half cycle number,
671 	 * then the entire log is stamped with the same cycle number.  In this
672 	 * case, head_blk can't be set to zero (which makes sense).  The below
673 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
674 	 * we set it to log_bbnum which is an invalid block number, but this
675 	 * value makes the math correct.  If head_blk doesn't changed through
676 	 * all the tests below, *head_blk is set to zero at the very end rather
677 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
678 	 * in a circular file.
679 	 */
680 	if (first_half_cycle == last_half_cycle) {
681 		/*
682 		 * In this case we believe that the entire log should have
683 		 * cycle number last_half_cycle.  We need to scan backwards
684 		 * from the end verifying that there are no holes still
685 		 * containing last_half_cycle - 1.  If we find such a hole,
686 		 * then the start of that hole will be the new head.  The
687 		 * simple case looks like
688 		 *        x | x ... | x - 1 | x
689 		 * Another case that fits this picture would be
690 		 *        x | x + 1 | x ... | x
691 		 * In this case the head really is somewhere at the end of the
692 		 * log, as one of the latest writes at the beginning was
693 		 * incomplete.
694 		 * One more case is
695 		 *        x | x + 1 | x ... | x - 1 | x
696 		 * This is really the combination of the above two cases, and
697 		 * the head has to end up at the start of the x-1 hole at the
698 		 * end of the log.
699 		 *
700 		 * In the 256k log case, we will read from the beginning to the
701 		 * end of the log and search for cycle numbers equal to x-1.
702 		 * We don't worry about the x+1 blocks that we encounter,
703 		 * because we know that they cannot be the head since the log
704 		 * started with x.
705 		 */
706 		head_blk = log_bbnum;
707 		stop_on_cycle = last_half_cycle - 1;
708 	} else {
709 		/*
710 		 * In this case we want to find the first block with cycle
711 		 * number matching last_half_cycle.  We expect the log to be
712 		 * some variation on
713 		 *        x + 1 ... | x ... | x
714 		 * The first block with cycle number x (last_half_cycle) will
715 		 * be where the new head belongs.  First we do a binary search
716 		 * for the first occurrence of last_half_cycle.  The binary
717 		 * search may not be totally accurate, so then we scan back
718 		 * from there looking for occurrences of last_half_cycle before
719 		 * us.  If that backwards scan wraps around the beginning of
720 		 * the log, then we look for occurrences of last_half_cycle - 1
721 		 * at the end of the log.  The cases we're looking for look
722 		 * like
723 		 *                               v binary search stopped here
724 		 *        x + 1 ... | x | x + 1 | x ... | x
725 		 *                   ^ but we want to locate this spot
726 		 * or
727 		 *        <---------> less than scan distance
728 		 *        x + 1 ... | x ... | x - 1 | x
729 		 *                           ^ we want to locate this spot
730 		 */
731 		stop_on_cycle = last_half_cycle;
732 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
733 						&head_blk, last_half_cycle)))
734 			goto bp_err;
735 	}
736 
737 	/*
738 	 * Now validate the answer.  Scan back some number of maximum possible
739 	 * blocks and make sure each one has the expected cycle number.  The
740 	 * maximum is determined by the total possible amount of buffering
741 	 * in the in-core log.  The following number can be made tighter if
742 	 * we actually look at the block size of the filesystem.
743 	 */
744 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
745 	if (head_blk >= num_scan_bblks) {
746 		/*
747 		 * We are guaranteed that the entire check can be performed
748 		 * in one buffer.
749 		 */
750 		start_blk = head_blk - num_scan_bblks;
751 		if ((error = xlog_find_verify_cycle(log,
752 						start_blk, num_scan_bblks,
753 						stop_on_cycle, &new_blk)))
754 			goto bp_err;
755 		if (new_blk != -1)
756 			head_blk = new_blk;
757 	} else {		/* need to read 2 parts of log */
758 		/*
759 		 * We are going to scan backwards in the log in two parts.
760 		 * First we scan the physical end of the log.  In this part
761 		 * of the log, we are looking for blocks with cycle number
762 		 * last_half_cycle - 1.
763 		 * If we find one, then we know that the log starts there, as
764 		 * we've found a hole that didn't get written in going around
765 		 * the end of the physical log.  The simple case for this is
766 		 *        x + 1 ... | x ... | x - 1 | x
767 		 *        <---------> less than scan distance
768 		 * If all of the blocks at the end of the log have cycle number
769 		 * last_half_cycle, then we check the blocks at the start of
770 		 * the log looking for occurrences of last_half_cycle.  If we
771 		 * find one, then our current estimate for the location of the
772 		 * first occurrence of last_half_cycle is wrong and we move
773 		 * back to the hole we've found.  This case looks like
774 		 *        x + 1 ... | x | x + 1 | x ...
775 		 *                               ^ binary search stopped here
776 		 * Another case we need to handle that only occurs in 256k
777 		 * logs is
778 		 *        x + 1 ... | x ... | x+1 | x ...
779 		 *                   ^ binary search stops here
780 		 * In a 256k log, the scan at the end of the log will see the
781 		 * x + 1 blocks.  We need to skip past those since that is
782 		 * certainly not the head of the log.  By searching for
783 		 * last_half_cycle-1 we accomplish that.
784 		 */
785 		ASSERT(head_blk <= INT_MAX &&
786 			(xfs_daddr_t) num_scan_bblks >= head_blk);
787 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
788 		if ((error = xlog_find_verify_cycle(log, start_blk,
789 					num_scan_bblks - (int)head_blk,
790 					(stop_on_cycle - 1), &new_blk)))
791 			goto bp_err;
792 		if (new_blk != -1) {
793 			head_blk = new_blk;
794 			goto validate_head;
795 		}
796 
797 		/*
798 		 * Scan beginning of log now.  The last part of the physical
799 		 * log is good.  This scan needs to verify that it doesn't find
800 		 * the last_half_cycle.
801 		 */
802 		start_blk = 0;
803 		ASSERT(head_blk <= INT_MAX);
804 		if ((error = xlog_find_verify_cycle(log,
805 					start_blk, (int)head_blk,
806 					stop_on_cycle, &new_blk)))
807 			goto bp_err;
808 		if (new_blk != -1)
809 			head_blk = new_blk;
810 	}
811 
812 validate_head:
813 	/*
814 	 * Now we need to make sure head_blk is not pointing to a block in
815 	 * the middle of a log record.
816 	 */
817 	num_scan_bblks = XLOG_REC_SHIFT(log);
818 	if (head_blk >= num_scan_bblks) {
819 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
820 
821 		/* start ptr at last block ptr before head_blk */
822 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
823 		if (error == 1)
824 			error = -EIO;
825 		if (error)
826 			goto bp_err;
827 	} else {
828 		start_blk = 0;
829 		ASSERT(head_blk <= INT_MAX);
830 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
831 		if (error < 0)
832 			goto bp_err;
833 		if (error == 1) {
834 			/* We hit the beginning of the log during our search */
835 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
836 			new_blk = log_bbnum;
837 			ASSERT(start_blk <= INT_MAX &&
838 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
839 			ASSERT(head_blk <= INT_MAX);
840 			error = xlog_find_verify_log_record(log, start_blk,
841 							&new_blk, (int)head_blk);
842 			if (error == 1)
843 				error = -EIO;
844 			if (error)
845 				goto bp_err;
846 			if (new_blk != log_bbnum)
847 				head_blk = new_blk;
848 		} else if (error)
849 			goto bp_err;
850 	}
851 
852 	xlog_put_bp(bp);
853 	if (head_blk == log_bbnum)
854 		*return_head_blk = 0;
855 	else
856 		*return_head_blk = head_blk;
857 	/*
858 	 * When returning here, we have a good block number.  Bad block
859 	 * means that during a previous crash, we didn't have a clean break
860 	 * from cycle number N to cycle number N-1.  In this case, we need
861 	 * to find the first block with cycle number N-1.
862 	 */
863 	return 0;
864 
865  bp_err:
866 	xlog_put_bp(bp);
867 
868 	if (error)
869 		xfs_warn(log->l_mp, "failed to find log head");
870 	return error;
871 }
872 
873 /*
874  * Seek backwards in the log for log record headers.
875  *
876  * Given a starting log block, walk backwards until we find the provided number
877  * of records or hit the provided tail block. The return value is the number of
878  * records encountered or a negative error code. The log block and buffer
879  * pointer of the last record seen are returned in rblk and rhead respectively.
880  */
881 STATIC int
882 xlog_rseek_logrec_hdr(
883 	struct xlog		*log,
884 	xfs_daddr_t		head_blk,
885 	xfs_daddr_t		tail_blk,
886 	int			count,
887 	struct xfs_buf		*bp,
888 	xfs_daddr_t		*rblk,
889 	struct xlog_rec_header	**rhead,
890 	bool			*wrapped)
891 {
892 	int			i;
893 	int			error;
894 	int			found = 0;
895 	char			*offset = NULL;
896 	xfs_daddr_t		end_blk;
897 
898 	*wrapped = false;
899 
900 	/*
901 	 * Walk backwards from the head block until we hit the tail or the first
902 	 * block in the log.
903 	 */
904 	end_blk = head_blk > tail_blk ? tail_blk : 0;
905 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
906 		error = xlog_bread(log, i, 1, bp, &offset);
907 		if (error)
908 			goto out_error;
909 
910 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
911 			*rblk = i;
912 			*rhead = (struct xlog_rec_header *) offset;
913 			if (++found == count)
914 				break;
915 		}
916 	}
917 
918 	/*
919 	 * If we haven't hit the tail block or the log record header count,
920 	 * start looking again from the end of the physical log. Note that
921 	 * callers can pass head == tail if the tail is not yet known.
922 	 */
923 	if (tail_blk >= head_blk && found != count) {
924 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
925 			error = xlog_bread(log, i, 1, bp, &offset);
926 			if (error)
927 				goto out_error;
928 
929 			if (*(__be32 *)offset ==
930 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
931 				*wrapped = true;
932 				*rblk = i;
933 				*rhead = (struct xlog_rec_header *) offset;
934 				if (++found == count)
935 					break;
936 			}
937 		}
938 	}
939 
940 	return found;
941 
942 out_error:
943 	return error;
944 }
945 
946 /*
947  * Seek forward in the log for log record headers.
948  *
949  * Given head and tail blocks, walk forward from the tail block until we find
950  * the provided number of records or hit the head block. The return value is the
951  * number of records encountered or a negative error code. The log block and
952  * buffer pointer of the last record seen are returned in rblk and rhead
953  * respectively.
954  */
955 STATIC int
956 xlog_seek_logrec_hdr(
957 	struct xlog		*log,
958 	xfs_daddr_t		head_blk,
959 	xfs_daddr_t		tail_blk,
960 	int			count,
961 	struct xfs_buf		*bp,
962 	xfs_daddr_t		*rblk,
963 	struct xlog_rec_header	**rhead,
964 	bool			*wrapped)
965 {
966 	int			i;
967 	int			error;
968 	int			found = 0;
969 	char			*offset = NULL;
970 	xfs_daddr_t		end_blk;
971 
972 	*wrapped = false;
973 
974 	/*
975 	 * Walk forward from the tail block until we hit the head or the last
976 	 * block in the log.
977 	 */
978 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
979 	for (i = (int) tail_blk; i <= end_blk; i++) {
980 		error = xlog_bread(log, i, 1, bp, &offset);
981 		if (error)
982 			goto out_error;
983 
984 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
985 			*rblk = i;
986 			*rhead = (struct xlog_rec_header *) offset;
987 			if (++found == count)
988 				break;
989 		}
990 	}
991 
992 	/*
993 	 * If we haven't hit the head block or the log record header count,
994 	 * start looking again from the start of the physical log.
995 	 */
996 	if (tail_blk > head_blk && found != count) {
997 		for (i = 0; i < (int) head_blk; i++) {
998 			error = xlog_bread(log, i, 1, bp, &offset);
999 			if (error)
1000 				goto out_error;
1001 
1002 			if (*(__be32 *)offset ==
1003 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1004 				*wrapped = true;
1005 				*rblk = i;
1006 				*rhead = (struct xlog_rec_header *) offset;
1007 				if (++found == count)
1008 					break;
1009 			}
1010 		}
1011 	}
1012 
1013 	return found;
1014 
1015 out_error:
1016 	return error;
1017 }
1018 
1019 /*
1020  * Check the log tail for torn writes. This is required when torn writes are
1021  * detected at the head and the head had to be walked back to a previous record.
1022  * The tail of the previous record must now be verified to ensure the torn
1023  * writes didn't corrupt the previous tail.
1024  *
1025  * Return an error if CRC verification fails as recovery cannot proceed.
1026  */
1027 STATIC int
1028 xlog_verify_tail(
1029 	struct xlog		*log,
1030 	xfs_daddr_t		head_blk,
1031 	xfs_daddr_t		tail_blk)
1032 {
1033 	struct xlog_rec_header	*thead;
1034 	struct xfs_buf		*bp;
1035 	xfs_daddr_t		first_bad;
1036 	int			count;
1037 	int			error = 0;
1038 	bool			wrapped;
1039 	xfs_daddr_t		tmp_head;
1040 
1041 	bp = xlog_get_bp(log, 1);
1042 	if (!bp)
1043 		return -ENOMEM;
1044 
1045 	/*
1046 	 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1047 	 * a temporary head block that points after the last possible
1048 	 * concurrently written record of the tail.
1049 	 */
1050 	count = xlog_seek_logrec_hdr(log, head_blk, tail_blk,
1051 				     XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead,
1052 				     &wrapped);
1053 	if (count < 0) {
1054 		error = count;
1055 		goto out;
1056 	}
1057 
1058 	/*
1059 	 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1060 	 * into the actual log head. tmp_head points to the start of the record
1061 	 * so update it to the actual head block.
1062 	 */
1063 	if (count < XLOG_MAX_ICLOGS + 1)
1064 		tmp_head = head_blk;
1065 
1066 	/*
1067 	 * We now have a tail and temporary head block that covers at least
1068 	 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1069 	 * records were completely written. Run a CRC verification pass from
1070 	 * tail to head and return the result.
1071 	 */
1072 	error = xlog_do_recovery_pass(log, tmp_head, tail_blk,
1073 				      XLOG_RECOVER_CRCPASS, &first_bad);
1074 
1075 out:
1076 	xlog_put_bp(bp);
1077 	return error;
1078 }
1079 
1080 /*
1081  * Detect and trim torn writes from the head of the log.
1082  *
1083  * Storage without sector atomicity guarantees can result in torn writes in the
1084  * log in the event of a crash. Our only means to detect this scenario is via
1085  * CRC verification. While we can't always be certain that CRC verification
1086  * failure is due to a torn write vs. an unrelated corruption, we do know that
1087  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1088  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1089  * the log and treat failures in this range as torn writes as a matter of
1090  * policy. In the event of CRC failure, the head is walked back to the last good
1091  * record in the log and the tail is updated from that record and verified.
1092  */
1093 STATIC int
1094 xlog_verify_head(
1095 	struct xlog		*log,
1096 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1097 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1098 	struct xfs_buf		*bp,
1099 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1100 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1101 	bool			*wrapped)	/* last rec. wraps phys. log */
1102 {
1103 	struct xlog_rec_header	*tmp_rhead;
1104 	struct xfs_buf		*tmp_bp;
1105 	xfs_daddr_t		first_bad;
1106 	xfs_daddr_t		tmp_rhead_blk;
1107 	int			found;
1108 	int			error;
1109 	bool			tmp_wrapped;
1110 
1111 	/*
1112 	 * Check the head of the log for torn writes. Search backwards from the
1113 	 * head until we hit the tail or the maximum number of log record I/Os
1114 	 * that could have been in flight at one time. Use a temporary buffer so
1115 	 * we don't trash the rhead/bp pointers from the caller.
1116 	 */
1117 	tmp_bp = xlog_get_bp(log, 1);
1118 	if (!tmp_bp)
1119 		return -ENOMEM;
1120 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1121 				      XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1122 				      &tmp_rhead, &tmp_wrapped);
1123 	xlog_put_bp(tmp_bp);
1124 	if (error < 0)
1125 		return error;
1126 
1127 	/*
1128 	 * Now run a CRC verification pass over the records starting at the
1129 	 * block found above to the current head. If a CRC failure occurs, the
1130 	 * log block of the first bad record is saved in first_bad.
1131 	 */
1132 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1133 				      XLOG_RECOVER_CRCPASS, &first_bad);
1134 	if (error == -EFSBADCRC) {
1135 		/*
1136 		 * We've hit a potential torn write. Reset the error and warn
1137 		 * about it.
1138 		 */
1139 		error = 0;
1140 		xfs_warn(log->l_mp,
1141 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1142 			 first_bad, *head_blk);
1143 
1144 		/*
1145 		 * Get the header block and buffer pointer for the last good
1146 		 * record before the bad record.
1147 		 *
1148 		 * Note that xlog_find_tail() clears the blocks at the new head
1149 		 * (i.e., the records with invalid CRC) if the cycle number
1150 		 * matches the the current cycle.
1151 		 */
1152 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1153 					      rhead_blk, rhead, wrapped);
1154 		if (found < 0)
1155 			return found;
1156 		if (found == 0)		/* XXX: right thing to do here? */
1157 			return -EIO;
1158 
1159 		/*
1160 		 * Reset the head block to the starting block of the first bad
1161 		 * log record and set the tail block based on the last good
1162 		 * record.
1163 		 *
1164 		 * Bail out if the updated head/tail match as this indicates
1165 		 * possible corruption outside of the acceptable
1166 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1167 		 */
1168 		*head_blk = first_bad;
1169 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1170 		if (*head_blk == *tail_blk) {
1171 			ASSERT(0);
1172 			return 0;
1173 		}
1174 
1175 		/*
1176 		 * Now verify the tail based on the updated head. This is
1177 		 * required because the torn writes trimmed from the head could
1178 		 * have been written over the tail of a previous record. Return
1179 		 * any errors since recovery cannot proceed if the tail is
1180 		 * corrupt.
1181 		 *
1182 		 * XXX: This leaves a gap in truly robust protection from torn
1183 		 * writes in the log. If the head is behind the tail, the tail
1184 		 * pushes forward to create some space and then a crash occurs
1185 		 * causing the writes into the previous record's tail region to
1186 		 * tear, log recovery isn't able to recover.
1187 		 *
1188 		 * How likely is this to occur? If possible, can we do something
1189 		 * more intelligent here? Is it safe to push the tail forward if
1190 		 * we can determine that the tail is within the range of the
1191 		 * torn write (e.g., the kernel can only overwrite the tail if
1192 		 * it has actually been pushed forward)? Alternatively, could we
1193 		 * somehow prevent this condition at runtime?
1194 		 */
1195 		error = xlog_verify_tail(log, *head_blk, *tail_blk);
1196 	}
1197 
1198 	return error;
1199 }
1200 
1201 /*
1202  * Check whether the head of the log points to an unmount record. In other
1203  * words, determine whether the log is clean. If so, update the in-core state
1204  * appropriately.
1205  */
1206 static int
1207 xlog_check_unmount_rec(
1208 	struct xlog		*log,
1209 	xfs_daddr_t		*head_blk,
1210 	xfs_daddr_t		*tail_blk,
1211 	struct xlog_rec_header	*rhead,
1212 	xfs_daddr_t		rhead_blk,
1213 	struct xfs_buf		*bp,
1214 	bool			*clean)
1215 {
1216 	struct xlog_op_header	*op_head;
1217 	xfs_daddr_t		umount_data_blk;
1218 	xfs_daddr_t		after_umount_blk;
1219 	int			hblks;
1220 	int			error;
1221 	char			*offset;
1222 
1223 	*clean = false;
1224 
1225 	/*
1226 	 * Look for unmount record. If we find it, then we know there was a
1227 	 * clean unmount. Since 'i' could be the last block in the physical
1228 	 * log, we convert to a log block before comparing to the head_blk.
1229 	 *
1230 	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1231 	 * below. We won't want to clear the unmount record if there is one, so
1232 	 * we pass the lsn of the unmount record rather than the block after it.
1233 	 */
1234 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1235 		int	h_size = be32_to_cpu(rhead->h_size);
1236 		int	h_version = be32_to_cpu(rhead->h_version);
1237 
1238 		if ((h_version & XLOG_VERSION_2) &&
1239 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1240 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1241 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1242 				hblks++;
1243 		} else {
1244 			hblks = 1;
1245 		}
1246 	} else {
1247 		hblks = 1;
1248 	}
1249 	after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1250 	after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1251 	if (*head_blk == after_umount_blk &&
1252 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1253 		umount_data_blk = rhead_blk + hblks;
1254 		umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1255 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1256 		if (error)
1257 			return error;
1258 
1259 		op_head = (struct xlog_op_header *)offset;
1260 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1261 			/*
1262 			 * Set tail and last sync so that newly written log
1263 			 * records will point recovery to after the current
1264 			 * unmount record.
1265 			 */
1266 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1267 					log->l_curr_cycle, after_umount_blk);
1268 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1269 					log->l_curr_cycle, after_umount_blk);
1270 			*tail_blk = after_umount_blk;
1271 
1272 			*clean = true;
1273 		}
1274 	}
1275 
1276 	return 0;
1277 }
1278 
1279 static void
1280 xlog_set_state(
1281 	struct xlog		*log,
1282 	xfs_daddr_t		head_blk,
1283 	struct xlog_rec_header	*rhead,
1284 	xfs_daddr_t		rhead_blk,
1285 	bool			bump_cycle)
1286 {
1287 	/*
1288 	 * Reset log values according to the state of the log when we
1289 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1290 	 * one because the next write starts a new cycle rather than
1291 	 * continuing the cycle of the last good log record.  At this
1292 	 * point we have guaranteed that all partial log records have been
1293 	 * accounted for.  Therefore, we know that the last good log record
1294 	 * written was complete and ended exactly on the end boundary
1295 	 * of the physical log.
1296 	 */
1297 	log->l_prev_block = rhead_blk;
1298 	log->l_curr_block = (int)head_blk;
1299 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1300 	if (bump_cycle)
1301 		log->l_curr_cycle++;
1302 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1303 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1304 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1305 					BBTOB(log->l_curr_block));
1306 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1307 					BBTOB(log->l_curr_block));
1308 }
1309 
1310 /*
1311  * Find the sync block number or the tail of the log.
1312  *
1313  * This will be the block number of the last record to have its
1314  * associated buffers synced to disk.  Every log record header has
1315  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1316  * to get a sync block number.  The only concern is to figure out which
1317  * log record header to believe.
1318  *
1319  * The following algorithm uses the log record header with the largest
1320  * lsn.  The entire log record does not need to be valid.  We only care
1321  * that the header is valid.
1322  *
1323  * We could speed up search by using current head_blk buffer, but it is not
1324  * available.
1325  */
1326 STATIC int
1327 xlog_find_tail(
1328 	struct xlog		*log,
1329 	xfs_daddr_t		*head_blk,
1330 	xfs_daddr_t		*tail_blk)
1331 {
1332 	xlog_rec_header_t	*rhead;
1333 	char			*offset = NULL;
1334 	xfs_buf_t		*bp;
1335 	int			error;
1336 	xfs_daddr_t		rhead_blk;
1337 	xfs_lsn_t		tail_lsn;
1338 	bool			wrapped = false;
1339 	bool			clean = false;
1340 
1341 	/*
1342 	 * Find previous log record
1343 	 */
1344 	if ((error = xlog_find_head(log, head_blk)))
1345 		return error;
1346 	ASSERT(*head_blk < INT_MAX);
1347 
1348 	bp = xlog_get_bp(log, 1);
1349 	if (!bp)
1350 		return -ENOMEM;
1351 	if (*head_blk == 0) {				/* special case */
1352 		error = xlog_bread(log, 0, 1, bp, &offset);
1353 		if (error)
1354 			goto done;
1355 
1356 		if (xlog_get_cycle(offset) == 0) {
1357 			*tail_blk = 0;
1358 			/* leave all other log inited values alone */
1359 			goto done;
1360 		}
1361 	}
1362 
1363 	/*
1364 	 * Search backwards through the log looking for the log record header
1365 	 * block. This wraps all the way back around to the head so something is
1366 	 * seriously wrong if we can't find it.
1367 	 */
1368 	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1369 				      &rhead_blk, &rhead, &wrapped);
1370 	if (error < 0)
1371 		return error;
1372 	if (!error) {
1373 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1374 		return -EIO;
1375 	}
1376 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1377 
1378 	/*
1379 	 * Set the log state based on the current head record.
1380 	 */
1381 	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1382 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1383 
1384 	/*
1385 	 * Look for an unmount record at the head of the log. This sets the log
1386 	 * state to determine whether recovery is necessary.
1387 	 */
1388 	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1389 				       rhead_blk, bp, &clean);
1390 	if (error)
1391 		goto done;
1392 
1393 	/*
1394 	 * Verify the log head if the log is not clean (e.g., we have anything
1395 	 * but an unmount record at the head). This uses CRC verification to
1396 	 * detect and trim torn writes. If discovered, CRC failures are
1397 	 * considered torn writes and the log head is trimmed accordingly.
1398 	 *
1399 	 * Note that we can only run CRC verification when the log is dirty
1400 	 * because there's no guarantee that the log data behind an unmount
1401 	 * record is compatible with the current architecture.
1402 	 */
1403 	if (!clean) {
1404 		xfs_daddr_t	orig_head = *head_blk;
1405 
1406 		error = xlog_verify_head(log, head_blk, tail_blk, bp,
1407 					 &rhead_blk, &rhead, &wrapped);
1408 		if (error)
1409 			goto done;
1410 
1411 		/* update in-core state again if the head changed */
1412 		if (*head_blk != orig_head) {
1413 			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1414 				       wrapped);
1415 			tail_lsn = atomic64_read(&log->l_tail_lsn);
1416 			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1417 						       rhead, rhead_blk, bp,
1418 						       &clean);
1419 			if (error)
1420 				goto done;
1421 		}
1422 	}
1423 
1424 	/*
1425 	 * Note that the unmount was clean. If the unmount was not clean, we
1426 	 * need to know this to rebuild the superblock counters from the perag
1427 	 * headers if we have a filesystem using non-persistent counters.
1428 	 */
1429 	if (clean)
1430 		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1431 
1432 	/*
1433 	 * Make sure that there are no blocks in front of the head
1434 	 * with the same cycle number as the head.  This can happen
1435 	 * because we allow multiple outstanding log writes concurrently,
1436 	 * and the later writes might make it out before earlier ones.
1437 	 *
1438 	 * We use the lsn from before modifying it so that we'll never
1439 	 * overwrite the unmount record after a clean unmount.
1440 	 *
1441 	 * Do this only if we are going to recover the filesystem
1442 	 *
1443 	 * NOTE: This used to say "if (!readonly)"
1444 	 * However on Linux, we can & do recover a read-only filesystem.
1445 	 * We only skip recovery if NORECOVERY is specified on mount,
1446 	 * in which case we would not be here.
1447 	 *
1448 	 * But... if the -device- itself is readonly, just skip this.
1449 	 * We can't recover this device anyway, so it won't matter.
1450 	 */
1451 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1452 		error = xlog_clear_stale_blocks(log, tail_lsn);
1453 
1454 done:
1455 	xlog_put_bp(bp);
1456 
1457 	if (error)
1458 		xfs_warn(log->l_mp, "failed to locate log tail");
1459 	return error;
1460 }
1461 
1462 /*
1463  * Is the log zeroed at all?
1464  *
1465  * The last binary search should be changed to perform an X block read
1466  * once X becomes small enough.  You can then search linearly through
1467  * the X blocks.  This will cut down on the number of reads we need to do.
1468  *
1469  * If the log is partially zeroed, this routine will pass back the blkno
1470  * of the first block with cycle number 0.  It won't have a complete LR
1471  * preceding it.
1472  *
1473  * Return:
1474  *	0  => the log is completely written to
1475  *	1 => use *blk_no as the first block of the log
1476  *	<0 => error has occurred
1477  */
1478 STATIC int
1479 xlog_find_zeroed(
1480 	struct xlog	*log,
1481 	xfs_daddr_t	*blk_no)
1482 {
1483 	xfs_buf_t	*bp;
1484 	char		*offset;
1485 	uint	        first_cycle, last_cycle;
1486 	xfs_daddr_t	new_blk, last_blk, start_blk;
1487 	xfs_daddr_t     num_scan_bblks;
1488 	int	        error, log_bbnum = log->l_logBBsize;
1489 
1490 	*blk_no = 0;
1491 
1492 	/* check totally zeroed log */
1493 	bp = xlog_get_bp(log, 1);
1494 	if (!bp)
1495 		return -ENOMEM;
1496 	error = xlog_bread(log, 0, 1, bp, &offset);
1497 	if (error)
1498 		goto bp_err;
1499 
1500 	first_cycle = xlog_get_cycle(offset);
1501 	if (first_cycle == 0) {		/* completely zeroed log */
1502 		*blk_no = 0;
1503 		xlog_put_bp(bp);
1504 		return 1;
1505 	}
1506 
1507 	/* check partially zeroed log */
1508 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1509 	if (error)
1510 		goto bp_err;
1511 
1512 	last_cycle = xlog_get_cycle(offset);
1513 	if (last_cycle != 0) {		/* log completely written to */
1514 		xlog_put_bp(bp);
1515 		return 0;
1516 	} else if (first_cycle != 1) {
1517 		/*
1518 		 * If the cycle of the last block is zero, the cycle of
1519 		 * the first block must be 1. If it's not, maybe we're
1520 		 * not looking at a log... Bail out.
1521 		 */
1522 		xfs_warn(log->l_mp,
1523 			"Log inconsistent or not a log (last==0, first!=1)");
1524 		error = -EINVAL;
1525 		goto bp_err;
1526 	}
1527 
1528 	/* we have a partially zeroed log */
1529 	last_blk = log_bbnum-1;
1530 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1531 		goto bp_err;
1532 
1533 	/*
1534 	 * Validate the answer.  Because there is no way to guarantee that
1535 	 * the entire log is made up of log records which are the same size,
1536 	 * we scan over the defined maximum blocks.  At this point, the maximum
1537 	 * is not chosen to mean anything special.   XXXmiken
1538 	 */
1539 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1540 	ASSERT(num_scan_bblks <= INT_MAX);
1541 
1542 	if (last_blk < num_scan_bblks)
1543 		num_scan_bblks = last_blk;
1544 	start_blk = last_blk - num_scan_bblks;
1545 
1546 	/*
1547 	 * We search for any instances of cycle number 0 that occur before
1548 	 * our current estimate of the head.  What we're trying to detect is
1549 	 *        1 ... | 0 | 1 | 0...
1550 	 *                       ^ binary search ends here
1551 	 */
1552 	if ((error = xlog_find_verify_cycle(log, start_blk,
1553 					 (int)num_scan_bblks, 0, &new_blk)))
1554 		goto bp_err;
1555 	if (new_blk != -1)
1556 		last_blk = new_blk;
1557 
1558 	/*
1559 	 * Potentially backup over partial log record write.  We don't need
1560 	 * to search the end of the log because we know it is zero.
1561 	 */
1562 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1563 	if (error == 1)
1564 		error = -EIO;
1565 	if (error)
1566 		goto bp_err;
1567 
1568 	*blk_no = last_blk;
1569 bp_err:
1570 	xlog_put_bp(bp);
1571 	if (error)
1572 		return error;
1573 	return 1;
1574 }
1575 
1576 /*
1577  * These are simple subroutines used by xlog_clear_stale_blocks() below
1578  * to initialize a buffer full of empty log record headers and write
1579  * them into the log.
1580  */
1581 STATIC void
1582 xlog_add_record(
1583 	struct xlog		*log,
1584 	char			*buf,
1585 	int			cycle,
1586 	int			block,
1587 	int			tail_cycle,
1588 	int			tail_block)
1589 {
1590 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1591 
1592 	memset(buf, 0, BBSIZE);
1593 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1594 	recp->h_cycle = cpu_to_be32(cycle);
1595 	recp->h_version = cpu_to_be32(
1596 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1597 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1598 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1599 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1600 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1601 }
1602 
1603 STATIC int
1604 xlog_write_log_records(
1605 	struct xlog	*log,
1606 	int		cycle,
1607 	int		start_block,
1608 	int		blocks,
1609 	int		tail_cycle,
1610 	int		tail_block)
1611 {
1612 	char		*offset;
1613 	xfs_buf_t	*bp;
1614 	int		balign, ealign;
1615 	int		sectbb = log->l_sectBBsize;
1616 	int		end_block = start_block + blocks;
1617 	int		bufblks;
1618 	int		error = 0;
1619 	int		i, j = 0;
1620 
1621 	/*
1622 	 * Greedily allocate a buffer big enough to handle the full
1623 	 * range of basic blocks to be written.  If that fails, try
1624 	 * a smaller size.  We need to be able to write at least a
1625 	 * log sector, or we're out of luck.
1626 	 */
1627 	bufblks = 1 << ffs(blocks);
1628 	while (bufblks > log->l_logBBsize)
1629 		bufblks >>= 1;
1630 	while (!(bp = xlog_get_bp(log, bufblks))) {
1631 		bufblks >>= 1;
1632 		if (bufblks < sectbb)
1633 			return -ENOMEM;
1634 	}
1635 
1636 	/* We may need to do a read at the start to fill in part of
1637 	 * the buffer in the starting sector not covered by the first
1638 	 * write below.
1639 	 */
1640 	balign = round_down(start_block, sectbb);
1641 	if (balign != start_block) {
1642 		error = xlog_bread_noalign(log, start_block, 1, bp);
1643 		if (error)
1644 			goto out_put_bp;
1645 
1646 		j = start_block - balign;
1647 	}
1648 
1649 	for (i = start_block; i < end_block; i += bufblks) {
1650 		int		bcount, endcount;
1651 
1652 		bcount = min(bufblks, end_block - start_block);
1653 		endcount = bcount - j;
1654 
1655 		/* We may need to do a read at the end to fill in part of
1656 		 * the buffer in the final sector not covered by the write.
1657 		 * If this is the same sector as the above read, skip it.
1658 		 */
1659 		ealign = round_down(end_block, sectbb);
1660 		if (j == 0 && (start_block + endcount > ealign)) {
1661 			offset = bp->b_addr + BBTOB(ealign - start_block);
1662 			error = xlog_bread_offset(log, ealign, sectbb,
1663 							bp, offset);
1664 			if (error)
1665 				break;
1666 
1667 		}
1668 
1669 		offset = xlog_align(log, start_block, endcount, bp);
1670 		for (; j < endcount; j++) {
1671 			xlog_add_record(log, offset, cycle, i+j,
1672 					tail_cycle, tail_block);
1673 			offset += BBSIZE;
1674 		}
1675 		error = xlog_bwrite(log, start_block, endcount, bp);
1676 		if (error)
1677 			break;
1678 		start_block += endcount;
1679 		j = 0;
1680 	}
1681 
1682  out_put_bp:
1683 	xlog_put_bp(bp);
1684 	return error;
1685 }
1686 
1687 /*
1688  * This routine is called to blow away any incomplete log writes out
1689  * in front of the log head.  We do this so that we won't become confused
1690  * if we come up, write only a little bit more, and then crash again.
1691  * If we leave the partial log records out there, this situation could
1692  * cause us to think those partial writes are valid blocks since they
1693  * have the current cycle number.  We get rid of them by overwriting them
1694  * with empty log records with the old cycle number rather than the
1695  * current one.
1696  *
1697  * The tail lsn is passed in rather than taken from
1698  * the log so that we will not write over the unmount record after a
1699  * clean unmount in a 512 block log.  Doing so would leave the log without
1700  * any valid log records in it until a new one was written.  If we crashed
1701  * during that time we would not be able to recover.
1702  */
1703 STATIC int
1704 xlog_clear_stale_blocks(
1705 	struct xlog	*log,
1706 	xfs_lsn_t	tail_lsn)
1707 {
1708 	int		tail_cycle, head_cycle;
1709 	int		tail_block, head_block;
1710 	int		tail_distance, max_distance;
1711 	int		distance;
1712 	int		error;
1713 
1714 	tail_cycle = CYCLE_LSN(tail_lsn);
1715 	tail_block = BLOCK_LSN(tail_lsn);
1716 	head_cycle = log->l_curr_cycle;
1717 	head_block = log->l_curr_block;
1718 
1719 	/*
1720 	 * Figure out the distance between the new head of the log
1721 	 * and the tail.  We want to write over any blocks beyond the
1722 	 * head that we may have written just before the crash, but
1723 	 * we don't want to overwrite the tail of the log.
1724 	 */
1725 	if (head_cycle == tail_cycle) {
1726 		/*
1727 		 * The tail is behind the head in the physical log,
1728 		 * so the distance from the head to the tail is the
1729 		 * distance from the head to the end of the log plus
1730 		 * the distance from the beginning of the log to the
1731 		 * tail.
1732 		 */
1733 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1734 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1735 					 XFS_ERRLEVEL_LOW, log->l_mp);
1736 			return -EFSCORRUPTED;
1737 		}
1738 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1739 	} else {
1740 		/*
1741 		 * The head is behind the tail in the physical log,
1742 		 * so the distance from the head to the tail is just
1743 		 * the tail block minus the head block.
1744 		 */
1745 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1746 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1747 					 XFS_ERRLEVEL_LOW, log->l_mp);
1748 			return -EFSCORRUPTED;
1749 		}
1750 		tail_distance = tail_block - head_block;
1751 	}
1752 
1753 	/*
1754 	 * If the head is right up against the tail, we can't clear
1755 	 * anything.
1756 	 */
1757 	if (tail_distance <= 0) {
1758 		ASSERT(tail_distance == 0);
1759 		return 0;
1760 	}
1761 
1762 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1763 	/*
1764 	 * Take the smaller of the maximum amount of outstanding I/O
1765 	 * we could have and the distance to the tail to clear out.
1766 	 * We take the smaller so that we don't overwrite the tail and
1767 	 * we don't waste all day writing from the head to the tail
1768 	 * for no reason.
1769 	 */
1770 	max_distance = MIN(max_distance, tail_distance);
1771 
1772 	if ((head_block + max_distance) <= log->l_logBBsize) {
1773 		/*
1774 		 * We can stomp all the blocks we need to without
1775 		 * wrapping around the end of the log.  Just do it
1776 		 * in a single write.  Use the cycle number of the
1777 		 * current cycle minus one so that the log will look like:
1778 		 *     n ... | n - 1 ...
1779 		 */
1780 		error = xlog_write_log_records(log, (head_cycle - 1),
1781 				head_block, max_distance, tail_cycle,
1782 				tail_block);
1783 		if (error)
1784 			return error;
1785 	} else {
1786 		/*
1787 		 * We need to wrap around the end of the physical log in
1788 		 * order to clear all the blocks.  Do it in two separate
1789 		 * I/Os.  The first write should be from the head to the
1790 		 * end of the physical log, and it should use the current
1791 		 * cycle number minus one just like above.
1792 		 */
1793 		distance = log->l_logBBsize - head_block;
1794 		error = xlog_write_log_records(log, (head_cycle - 1),
1795 				head_block, distance, tail_cycle,
1796 				tail_block);
1797 
1798 		if (error)
1799 			return error;
1800 
1801 		/*
1802 		 * Now write the blocks at the start of the physical log.
1803 		 * This writes the remainder of the blocks we want to clear.
1804 		 * It uses the current cycle number since we're now on the
1805 		 * same cycle as the head so that we get:
1806 		 *    n ... n ... | n - 1 ...
1807 		 *    ^^^^^ blocks we're writing
1808 		 */
1809 		distance = max_distance - (log->l_logBBsize - head_block);
1810 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1811 				tail_cycle, tail_block);
1812 		if (error)
1813 			return error;
1814 	}
1815 
1816 	return 0;
1817 }
1818 
1819 /******************************************************************************
1820  *
1821  *		Log recover routines
1822  *
1823  ******************************************************************************
1824  */
1825 
1826 /*
1827  * Sort the log items in the transaction.
1828  *
1829  * The ordering constraints are defined by the inode allocation and unlink
1830  * behaviour. The rules are:
1831  *
1832  *	1. Every item is only logged once in a given transaction. Hence it
1833  *	   represents the last logged state of the item. Hence ordering is
1834  *	   dependent on the order in which operations need to be performed so
1835  *	   required initial conditions are always met.
1836  *
1837  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1838  *	   there's nothing to replay from them so we can simply cull them
1839  *	   from the transaction. However, we can't do that until after we've
1840  *	   replayed all the other items because they may be dependent on the
1841  *	   cancelled buffer and replaying the cancelled buffer can remove it
1842  *	   form the cancelled buffer table. Hence they have tobe done last.
1843  *
1844  *	3. Inode allocation buffers must be replayed before inode items that
1845  *	   read the buffer and replay changes into it. For filesystems using the
1846  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1847  *	   treated the same as inode allocation buffers as they create and
1848  *	   initialise the buffers directly.
1849  *
1850  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1851  *	   This ensures that inodes are completely flushed to the inode buffer
1852  *	   in a "free" state before we remove the unlinked inode list pointer.
1853  *
1854  * Hence the ordering needs to be inode allocation buffers first, inode items
1855  * second, inode unlink buffers third and cancelled buffers last.
1856  *
1857  * But there's a problem with that - we can't tell an inode allocation buffer
1858  * apart from a regular buffer, so we can't separate them. We can, however,
1859  * tell an inode unlink buffer from the others, and so we can separate them out
1860  * from all the other buffers and move them to last.
1861  *
1862  * Hence, 4 lists, in order from head to tail:
1863  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1864  *	- item_list for all non-buffer items
1865  *	- inode_buffer_list for inode unlink buffers
1866  *	- cancel_list for the cancelled buffers
1867  *
1868  * Note that we add objects to the tail of the lists so that first-to-last
1869  * ordering is preserved within the lists. Adding objects to the head of the
1870  * list means when we traverse from the head we walk them in last-to-first
1871  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1872  * but for all other items there may be specific ordering that we need to
1873  * preserve.
1874  */
1875 STATIC int
1876 xlog_recover_reorder_trans(
1877 	struct xlog		*log,
1878 	struct xlog_recover	*trans,
1879 	int			pass)
1880 {
1881 	xlog_recover_item_t	*item, *n;
1882 	int			error = 0;
1883 	LIST_HEAD(sort_list);
1884 	LIST_HEAD(cancel_list);
1885 	LIST_HEAD(buffer_list);
1886 	LIST_HEAD(inode_buffer_list);
1887 	LIST_HEAD(inode_list);
1888 
1889 	list_splice_init(&trans->r_itemq, &sort_list);
1890 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1891 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1892 
1893 		switch (ITEM_TYPE(item)) {
1894 		case XFS_LI_ICREATE:
1895 			list_move_tail(&item->ri_list, &buffer_list);
1896 			break;
1897 		case XFS_LI_BUF:
1898 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1899 				trace_xfs_log_recover_item_reorder_head(log,
1900 							trans, item, pass);
1901 				list_move(&item->ri_list, &cancel_list);
1902 				break;
1903 			}
1904 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1905 				list_move(&item->ri_list, &inode_buffer_list);
1906 				break;
1907 			}
1908 			list_move_tail(&item->ri_list, &buffer_list);
1909 			break;
1910 		case XFS_LI_INODE:
1911 		case XFS_LI_DQUOT:
1912 		case XFS_LI_QUOTAOFF:
1913 		case XFS_LI_EFD:
1914 		case XFS_LI_EFI:
1915 		case XFS_LI_RUI:
1916 		case XFS_LI_RUD:
1917 			trace_xfs_log_recover_item_reorder_tail(log,
1918 							trans, item, pass);
1919 			list_move_tail(&item->ri_list, &inode_list);
1920 			break;
1921 		default:
1922 			xfs_warn(log->l_mp,
1923 				"%s: unrecognized type of log operation",
1924 				__func__);
1925 			ASSERT(0);
1926 			/*
1927 			 * return the remaining items back to the transaction
1928 			 * item list so they can be freed in caller.
1929 			 */
1930 			if (!list_empty(&sort_list))
1931 				list_splice_init(&sort_list, &trans->r_itemq);
1932 			error = -EIO;
1933 			goto out;
1934 		}
1935 	}
1936 out:
1937 	ASSERT(list_empty(&sort_list));
1938 	if (!list_empty(&buffer_list))
1939 		list_splice(&buffer_list, &trans->r_itemq);
1940 	if (!list_empty(&inode_list))
1941 		list_splice_tail(&inode_list, &trans->r_itemq);
1942 	if (!list_empty(&inode_buffer_list))
1943 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1944 	if (!list_empty(&cancel_list))
1945 		list_splice_tail(&cancel_list, &trans->r_itemq);
1946 	return error;
1947 }
1948 
1949 /*
1950  * Build up the table of buf cancel records so that we don't replay
1951  * cancelled data in the second pass.  For buffer records that are
1952  * not cancel records, there is nothing to do here so we just return.
1953  *
1954  * If we get a cancel record which is already in the table, this indicates
1955  * that the buffer was cancelled multiple times.  In order to ensure
1956  * that during pass 2 we keep the record in the table until we reach its
1957  * last occurrence in the log, we keep a reference count in the cancel
1958  * record in the table to tell us how many times we expect to see this
1959  * record during the second pass.
1960  */
1961 STATIC int
1962 xlog_recover_buffer_pass1(
1963 	struct xlog			*log,
1964 	struct xlog_recover_item	*item)
1965 {
1966 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1967 	struct list_head	*bucket;
1968 	struct xfs_buf_cancel	*bcp;
1969 
1970 	/*
1971 	 * If this isn't a cancel buffer item, then just return.
1972 	 */
1973 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1974 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1975 		return 0;
1976 	}
1977 
1978 	/*
1979 	 * Insert an xfs_buf_cancel record into the hash table of them.
1980 	 * If there is already an identical record, bump its reference count.
1981 	 */
1982 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1983 	list_for_each_entry(bcp, bucket, bc_list) {
1984 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1985 		    bcp->bc_len == buf_f->blf_len) {
1986 			bcp->bc_refcount++;
1987 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1988 			return 0;
1989 		}
1990 	}
1991 
1992 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1993 	bcp->bc_blkno = buf_f->blf_blkno;
1994 	bcp->bc_len = buf_f->blf_len;
1995 	bcp->bc_refcount = 1;
1996 	list_add_tail(&bcp->bc_list, bucket);
1997 
1998 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1999 	return 0;
2000 }
2001 
2002 /*
2003  * Check to see whether the buffer being recovered has a corresponding
2004  * entry in the buffer cancel record table. If it is, return the cancel
2005  * buffer structure to the caller.
2006  */
2007 STATIC struct xfs_buf_cancel *
2008 xlog_peek_buffer_cancelled(
2009 	struct xlog		*log,
2010 	xfs_daddr_t		blkno,
2011 	uint			len,
2012 	ushort			flags)
2013 {
2014 	struct list_head	*bucket;
2015 	struct xfs_buf_cancel	*bcp;
2016 
2017 	if (!log->l_buf_cancel_table) {
2018 		/* empty table means no cancelled buffers in the log */
2019 		ASSERT(!(flags & XFS_BLF_CANCEL));
2020 		return NULL;
2021 	}
2022 
2023 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2024 	list_for_each_entry(bcp, bucket, bc_list) {
2025 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2026 			return bcp;
2027 	}
2028 
2029 	/*
2030 	 * We didn't find a corresponding entry in the table, so return 0 so
2031 	 * that the buffer is NOT cancelled.
2032 	 */
2033 	ASSERT(!(flags & XFS_BLF_CANCEL));
2034 	return NULL;
2035 }
2036 
2037 /*
2038  * If the buffer is being cancelled then return 1 so that it will be cancelled,
2039  * otherwise return 0.  If the buffer is actually a buffer cancel item
2040  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2041  * table and remove it from the table if this is the last reference.
2042  *
2043  * We remove the cancel record from the table when we encounter its last
2044  * occurrence in the log so that if the same buffer is re-used again after its
2045  * last cancellation we actually replay the changes made at that point.
2046  */
2047 STATIC int
2048 xlog_check_buffer_cancelled(
2049 	struct xlog		*log,
2050 	xfs_daddr_t		blkno,
2051 	uint			len,
2052 	ushort			flags)
2053 {
2054 	struct xfs_buf_cancel	*bcp;
2055 
2056 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2057 	if (!bcp)
2058 		return 0;
2059 
2060 	/*
2061 	 * We've go a match, so return 1 so that the recovery of this buffer
2062 	 * is cancelled.  If this buffer is actually a buffer cancel log
2063 	 * item, then decrement the refcount on the one in the table and
2064 	 * remove it if this is the last reference.
2065 	 */
2066 	if (flags & XFS_BLF_CANCEL) {
2067 		if (--bcp->bc_refcount == 0) {
2068 			list_del(&bcp->bc_list);
2069 			kmem_free(bcp);
2070 		}
2071 	}
2072 	return 1;
2073 }
2074 
2075 /*
2076  * Perform recovery for a buffer full of inodes.  In these buffers, the only
2077  * data which should be recovered is that which corresponds to the
2078  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2079  * data for the inodes is always logged through the inodes themselves rather
2080  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2081  *
2082  * The only time when buffers full of inodes are fully recovered is when the
2083  * buffer is full of newly allocated inodes.  In this case the buffer will
2084  * not be marked as an inode buffer and so will be sent to
2085  * xlog_recover_do_reg_buffer() below during recovery.
2086  */
2087 STATIC int
2088 xlog_recover_do_inode_buffer(
2089 	struct xfs_mount	*mp,
2090 	xlog_recover_item_t	*item,
2091 	struct xfs_buf		*bp,
2092 	xfs_buf_log_format_t	*buf_f)
2093 {
2094 	int			i;
2095 	int			item_index = 0;
2096 	int			bit = 0;
2097 	int			nbits = 0;
2098 	int			reg_buf_offset = 0;
2099 	int			reg_buf_bytes = 0;
2100 	int			next_unlinked_offset;
2101 	int			inodes_per_buf;
2102 	xfs_agino_t		*logged_nextp;
2103 	xfs_agino_t		*buffer_nextp;
2104 
2105 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2106 
2107 	/*
2108 	 * Post recovery validation only works properly on CRC enabled
2109 	 * filesystems.
2110 	 */
2111 	if (xfs_sb_version_hascrc(&mp->m_sb))
2112 		bp->b_ops = &xfs_inode_buf_ops;
2113 
2114 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2115 	for (i = 0; i < inodes_per_buf; i++) {
2116 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2117 			offsetof(xfs_dinode_t, di_next_unlinked);
2118 
2119 		while (next_unlinked_offset >=
2120 		       (reg_buf_offset + reg_buf_bytes)) {
2121 			/*
2122 			 * The next di_next_unlinked field is beyond
2123 			 * the current logged region.  Find the next
2124 			 * logged region that contains or is beyond
2125 			 * the current di_next_unlinked field.
2126 			 */
2127 			bit += nbits;
2128 			bit = xfs_next_bit(buf_f->blf_data_map,
2129 					   buf_f->blf_map_size, bit);
2130 
2131 			/*
2132 			 * If there are no more logged regions in the
2133 			 * buffer, then we're done.
2134 			 */
2135 			if (bit == -1)
2136 				return 0;
2137 
2138 			nbits = xfs_contig_bits(buf_f->blf_data_map,
2139 						buf_f->blf_map_size, bit);
2140 			ASSERT(nbits > 0);
2141 			reg_buf_offset = bit << XFS_BLF_SHIFT;
2142 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2143 			item_index++;
2144 		}
2145 
2146 		/*
2147 		 * If the current logged region starts after the current
2148 		 * di_next_unlinked field, then move on to the next
2149 		 * di_next_unlinked field.
2150 		 */
2151 		if (next_unlinked_offset < reg_buf_offset)
2152 			continue;
2153 
2154 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
2155 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2156 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
2157 							BBTOB(bp->b_io_length));
2158 
2159 		/*
2160 		 * The current logged region contains a copy of the
2161 		 * current di_next_unlinked field.  Extract its value
2162 		 * and copy it to the buffer copy.
2163 		 */
2164 		logged_nextp = item->ri_buf[item_index].i_addr +
2165 				next_unlinked_offset - reg_buf_offset;
2166 		if (unlikely(*logged_nextp == 0)) {
2167 			xfs_alert(mp,
2168 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2169 		"Trying to replay bad (0) inode di_next_unlinked field.",
2170 				item, bp);
2171 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2172 					 XFS_ERRLEVEL_LOW, mp);
2173 			return -EFSCORRUPTED;
2174 		}
2175 
2176 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2177 		*buffer_nextp = *logged_nextp;
2178 
2179 		/*
2180 		 * If necessary, recalculate the CRC in the on-disk inode. We
2181 		 * have to leave the inode in a consistent state for whoever
2182 		 * reads it next....
2183 		 */
2184 		xfs_dinode_calc_crc(mp,
2185 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2186 
2187 	}
2188 
2189 	return 0;
2190 }
2191 
2192 /*
2193  * V5 filesystems know the age of the buffer on disk being recovered. We can
2194  * have newer objects on disk than we are replaying, and so for these cases we
2195  * don't want to replay the current change as that will make the buffer contents
2196  * temporarily invalid on disk.
2197  *
2198  * The magic number might not match the buffer type we are going to recover
2199  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2200  * extract the LSN of the existing object in the buffer based on it's current
2201  * magic number.  If we don't recognise the magic number in the buffer, then
2202  * return a LSN of -1 so that the caller knows it was an unrecognised block and
2203  * so can recover the buffer.
2204  *
2205  * Note: we cannot rely solely on magic number matches to determine that the
2206  * buffer has a valid LSN - we also need to verify that it belongs to this
2207  * filesystem, so we need to extract the object's LSN and compare it to that
2208  * which we read from the superblock. If the UUIDs don't match, then we've got a
2209  * stale metadata block from an old filesystem instance that we need to recover
2210  * over the top of.
2211  */
2212 static xfs_lsn_t
2213 xlog_recover_get_buf_lsn(
2214 	struct xfs_mount	*mp,
2215 	struct xfs_buf		*bp)
2216 {
2217 	__uint32_t		magic32;
2218 	__uint16_t		magic16;
2219 	__uint16_t		magicda;
2220 	void			*blk = bp->b_addr;
2221 	uuid_t			*uuid;
2222 	xfs_lsn_t		lsn = -1;
2223 
2224 	/* v4 filesystems always recover immediately */
2225 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2226 		goto recover_immediately;
2227 
2228 	magic32 = be32_to_cpu(*(__be32 *)blk);
2229 	switch (magic32) {
2230 	case XFS_ABTB_CRC_MAGIC:
2231 	case XFS_ABTC_CRC_MAGIC:
2232 	case XFS_ABTB_MAGIC:
2233 	case XFS_ABTC_MAGIC:
2234 	case XFS_RMAP_CRC_MAGIC:
2235 	case XFS_IBT_CRC_MAGIC:
2236 	case XFS_IBT_MAGIC: {
2237 		struct xfs_btree_block *btb = blk;
2238 
2239 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2240 		uuid = &btb->bb_u.s.bb_uuid;
2241 		break;
2242 	}
2243 	case XFS_BMAP_CRC_MAGIC:
2244 	case XFS_BMAP_MAGIC: {
2245 		struct xfs_btree_block *btb = blk;
2246 
2247 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2248 		uuid = &btb->bb_u.l.bb_uuid;
2249 		break;
2250 	}
2251 	case XFS_AGF_MAGIC:
2252 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2253 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2254 		break;
2255 	case XFS_AGFL_MAGIC:
2256 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2257 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2258 		break;
2259 	case XFS_AGI_MAGIC:
2260 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2261 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2262 		break;
2263 	case XFS_SYMLINK_MAGIC:
2264 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2265 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2266 		break;
2267 	case XFS_DIR3_BLOCK_MAGIC:
2268 	case XFS_DIR3_DATA_MAGIC:
2269 	case XFS_DIR3_FREE_MAGIC:
2270 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2271 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2272 		break;
2273 	case XFS_ATTR3_RMT_MAGIC:
2274 		/*
2275 		 * Remote attr blocks are written synchronously, rather than
2276 		 * being logged. That means they do not contain a valid LSN
2277 		 * (i.e. transactionally ordered) in them, and hence any time we
2278 		 * see a buffer to replay over the top of a remote attribute
2279 		 * block we should simply do so.
2280 		 */
2281 		goto recover_immediately;
2282 	case XFS_SB_MAGIC:
2283 		/*
2284 		 * superblock uuids are magic. We may or may not have a
2285 		 * sb_meta_uuid on disk, but it will be set in the in-core
2286 		 * superblock. We set the uuid pointer for verification
2287 		 * according to the superblock feature mask to ensure we check
2288 		 * the relevant UUID in the superblock.
2289 		 */
2290 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2291 		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2292 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2293 		else
2294 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2295 		break;
2296 	default:
2297 		break;
2298 	}
2299 
2300 	if (lsn != (xfs_lsn_t)-1) {
2301 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2302 			goto recover_immediately;
2303 		return lsn;
2304 	}
2305 
2306 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2307 	switch (magicda) {
2308 	case XFS_DIR3_LEAF1_MAGIC:
2309 	case XFS_DIR3_LEAFN_MAGIC:
2310 	case XFS_DA3_NODE_MAGIC:
2311 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2312 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2313 		break;
2314 	default:
2315 		break;
2316 	}
2317 
2318 	if (lsn != (xfs_lsn_t)-1) {
2319 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2320 			goto recover_immediately;
2321 		return lsn;
2322 	}
2323 
2324 	/*
2325 	 * We do individual object checks on dquot and inode buffers as they
2326 	 * have their own individual LSN records. Also, we could have a stale
2327 	 * buffer here, so we have to at least recognise these buffer types.
2328 	 *
2329 	 * A notd complexity here is inode unlinked list processing - it logs
2330 	 * the inode directly in the buffer, but we don't know which inodes have
2331 	 * been modified, and there is no global buffer LSN. Hence we need to
2332 	 * recover all inode buffer types immediately. This problem will be
2333 	 * fixed by logical logging of the unlinked list modifications.
2334 	 */
2335 	magic16 = be16_to_cpu(*(__be16 *)blk);
2336 	switch (magic16) {
2337 	case XFS_DQUOT_MAGIC:
2338 	case XFS_DINODE_MAGIC:
2339 		goto recover_immediately;
2340 	default:
2341 		break;
2342 	}
2343 
2344 	/* unknown buffer contents, recover immediately */
2345 
2346 recover_immediately:
2347 	return (xfs_lsn_t)-1;
2348 
2349 }
2350 
2351 /*
2352  * Validate the recovered buffer is of the correct type and attach the
2353  * appropriate buffer operations to them for writeback. Magic numbers are in a
2354  * few places:
2355  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2356  *	the first 32 bits of the buffer (most blocks),
2357  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2358  */
2359 static void
2360 xlog_recover_validate_buf_type(
2361 	struct xfs_mount	*mp,
2362 	struct xfs_buf		*bp,
2363 	xfs_buf_log_format_t	*buf_f)
2364 {
2365 	struct xfs_da_blkinfo	*info = bp->b_addr;
2366 	__uint32_t		magic32;
2367 	__uint16_t		magic16;
2368 	__uint16_t		magicda;
2369 
2370 	/*
2371 	 * We can only do post recovery validation on items on CRC enabled
2372 	 * fielsystems as we need to know when the buffer was written to be able
2373 	 * to determine if we should have replayed the item. If we replay old
2374 	 * metadata over a newer buffer, then it will enter a temporarily
2375 	 * inconsistent state resulting in verification failures. Hence for now
2376 	 * just avoid the verification stage for non-crc filesystems
2377 	 */
2378 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2379 		return;
2380 
2381 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2382 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2383 	magicda = be16_to_cpu(info->magic);
2384 	switch (xfs_blft_from_flags(buf_f)) {
2385 	case XFS_BLFT_BTREE_BUF:
2386 		switch (magic32) {
2387 		case XFS_ABTB_CRC_MAGIC:
2388 		case XFS_ABTC_CRC_MAGIC:
2389 		case XFS_ABTB_MAGIC:
2390 		case XFS_ABTC_MAGIC:
2391 			bp->b_ops = &xfs_allocbt_buf_ops;
2392 			break;
2393 		case XFS_IBT_CRC_MAGIC:
2394 		case XFS_FIBT_CRC_MAGIC:
2395 		case XFS_IBT_MAGIC:
2396 		case XFS_FIBT_MAGIC:
2397 			bp->b_ops = &xfs_inobt_buf_ops;
2398 			break;
2399 		case XFS_BMAP_CRC_MAGIC:
2400 		case XFS_BMAP_MAGIC:
2401 			bp->b_ops = &xfs_bmbt_buf_ops;
2402 			break;
2403 		case XFS_RMAP_CRC_MAGIC:
2404 			bp->b_ops = &xfs_rmapbt_buf_ops;
2405 			break;
2406 		default:
2407 			xfs_warn(mp, "Bad btree block magic!");
2408 			ASSERT(0);
2409 			break;
2410 		}
2411 		break;
2412 	case XFS_BLFT_AGF_BUF:
2413 		if (magic32 != XFS_AGF_MAGIC) {
2414 			xfs_warn(mp, "Bad AGF block magic!");
2415 			ASSERT(0);
2416 			break;
2417 		}
2418 		bp->b_ops = &xfs_agf_buf_ops;
2419 		break;
2420 	case XFS_BLFT_AGFL_BUF:
2421 		if (magic32 != XFS_AGFL_MAGIC) {
2422 			xfs_warn(mp, "Bad AGFL block magic!");
2423 			ASSERT(0);
2424 			break;
2425 		}
2426 		bp->b_ops = &xfs_agfl_buf_ops;
2427 		break;
2428 	case XFS_BLFT_AGI_BUF:
2429 		if (magic32 != XFS_AGI_MAGIC) {
2430 			xfs_warn(mp, "Bad AGI block magic!");
2431 			ASSERT(0);
2432 			break;
2433 		}
2434 		bp->b_ops = &xfs_agi_buf_ops;
2435 		break;
2436 	case XFS_BLFT_UDQUOT_BUF:
2437 	case XFS_BLFT_PDQUOT_BUF:
2438 	case XFS_BLFT_GDQUOT_BUF:
2439 #ifdef CONFIG_XFS_QUOTA
2440 		if (magic16 != XFS_DQUOT_MAGIC) {
2441 			xfs_warn(mp, "Bad DQUOT block magic!");
2442 			ASSERT(0);
2443 			break;
2444 		}
2445 		bp->b_ops = &xfs_dquot_buf_ops;
2446 #else
2447 		xfs_alert(mp,
2448 	"Trying to recover dquots without QUOTA support built in!");
2449 		ASSERT(0);
2450 #endif
2451 		break;
2452 	case XFS_BLFT_DINO_BUF:
2453 		if (magic16 != XFS_DINODE_MAGIC) {
2454 			xfs_warn(mp, "Bad INODE block magic!");
2455 			ASSERT(0);
2456 			break;
2457 		}
2458 		bp->b_ops = &xfs_inode_buf_ops;
2459 		break;
2460 	case XFS_BLFT_SYMLINK_BUF:
2461 		if (magic32 != XFS_SYMLINK_MAGIC) {
2462 			xfs_warn(mp, "Bad symlink block magic!");
2463 			ASSERT(0);
2464 			break;
2465 		}
2466 		bp->b_ops = &xfs_symlink_buf_ops;
2467 		break;
2468 	case XFS_BLFT_DIR_BLOCK_BUF:
2469 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2470 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2471 			xfs_warn(mp, "Bad dir block magic!");
2472 			ASSERT(0);
2473 			break;
2474 		}
2475 		bp->b_ops = &xfs_dir3_block_buf_ops;
2476 		break;
2477 	case XFS_BLFT_DIR_DATA_BUF:
2478 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2479 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2480 			xfs_warn(mp, "Bad dir data magic!");
2481 			ASSERT(0);
2482 			break;
2483 		}
2484 		bp->b_ops = &xfs_dir3_data_buf_ops;
2485 		break;
2486 	case XFS_BLFT_DIR_FREE_BUF:
2487 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2488 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2489 			xfs_warn(mp, "Bad dir3 free magic!");
2490 			ASSERT(0);
2491 			break;
2492 		}
2493 		bp->b_ops = &xfs_dir3_free_buf_ops;
2494 		break;
2495 	case XFS_BLFT_DIR_LEAF1_BUF:
2496 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2497 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2498 			xfs_warn(mp, "Bad dir leaf1 magic!");
2499 			ASSERT(0);
2500 			break;
2501 		}
2502 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2503 		break;
2504 	case XFS_BLFT_DIR_LEAFN_BUF:
2505 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2506 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2507 			xfs_warn(mp, "Bad dir leafn magic!");
2508 			ASSERT(0);
2509 			break;
2510 		}
2511 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2512 		break;
2513 	case XFS_BLFT_DA_NODE_BUF:
2514 		if (magicda != XFS_DA_NODE_MAGIC &&
2515 		    magicda != XFS_DA3_NODE_MAGIC) {
2516 			xfs_warn(mp, "Bad da node magic!");
2517 			ASSERT(0);
2518 			break;
2519 		}
2520 		bp->b_ops = &xfs_da3_node_buf_ops;
2521 		break;
2522 	case XFS_BLFT_ATTR_LEAF_BUF:
2523 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2524 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2525 			xfs_warn(mp, "Bad attr leaf magic!");
2526 			ASSERT(0);
2527 			break;
2528 		}
2529 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2530 		break;
2531 	case XFS_BLFT_ATTR_RMT_BUF:
2532 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2533 			xfs_warn(mp, "Bad attr remote magic!");
2534 			ASSERT(0);
2535 			break;
2536 		}
2537 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2538 		break;
2539 	case XFS_BLFT_SB_BUF:
2540 		if (magic32 != XFS_SB_MAGIC) {
2541 			xfs_warn(mp, "Bad SB block magic!");
2542 			ASSERT(0);
2543 			break;
2544 		}
2545 		bp->b_ops = &xfs_sb_buf_ops;
2546 		break;
2547 #ifdef CONFIG_XFS_RT
2548 	case XFS_BLFT_RTBITMAP_BUF:
2549 	case XFS_BLFT_RTSUMMARY_BUF:
2550 		/* no magic numbers for verification of RT buffers */
2551 		bp->b_ops = &xfs_rtbuf_ops;
2552 		break;
2553 #endif /* CONFIG_XFS_RT */
2554 	default:
2555 		xfs_warn(mp, "Unknown buffer type %d!",
2556 			 xfs_blft_from_flags(buf_f));
2557 		break;
2558 	}
2559 }
2560 
2561 /*
2562  * Perform a 'normal' buffer recovery.  Each logged region of the
2563  * buffer should be copied over the corresponding region in the
2564  * given buffer.  The bitmap in the buf log format structure indicates
2565  * where to place the logged data.
2566  */
2567 STATIC void
2568 xlog_recover_do_reg_buffer(
2569 	struct xfs_mount	*mp,
2570 	xlog_recover_item_t	*item,
2571 	struct xfs_buf		*bp,
2572 	xfs_buf_log_format_t	*buf_f)
2573 {
2574 	int			i;
2575 	int			bit;
2576 	int			nbits;
2577 	int                     error;
2578 
2579 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2580 
2581 	bit = 0;
2582 	i = 1;  /* 0 is the buf format structure */
2583 	while (1) {
2584 		bit = xfs_next_bit(buf_f->blf_data_map,
2585 				   buf_f->blf_map_size, bit);
2586 		if (bit == -1)
2587 			break;
2588 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2589 					buf_f->blf_map_size, bit);
2590 		ASSERT(nbits > 0);
2591 		ASSERT(item->ri_buf[i].i_addr != NULL);
2592 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2593 		ASSERT(BBTOB(bp->b_io_length) >=
2594 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2595 
2596 		/*
2597 		 * The dirty regions logged in the buffer, even though
2598 		 * contiguous, may span multiple chunks. This is because the
2599 		 * dirty region may span a physical page boundary in a buffer
2600 		 * and hence be split into two separate vectors for writing into
2601 		 * the log. Hence we need to trim nbits back to the length of
2602 		 * the current region being copied out of the log.
2603 		 */
2604 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2605 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2606 
2607 		/*
2608 		 * Do a sanity check if this is a dquot buffer. Just checking
2609 		 * the first dquot in the buffer should do. XXXThis is
2610 		 * probably a good thing to do for other buf types also.
2611 		 */
2612 		error = 0;
2613 		if (buf_f->blf_flags &
2614 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2615 			if (item->ri_buf[i].i_addr == NULL) {
2616 				xfs_alert(mp,
2617 					"XFS: NULL dquot in %s.", __func__);
2618 				goto next;
2619 			}
2620 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2621 				xfs_alert(mp,
2622 					"XFS: dquot too small (%d) in %s.",
2623 					item->ri_buf[i].i_len, __func__);
2624 				goto next;
2625 			}
2626 			error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2627 					       -1, 0, XFS_QMOPT_DOWARN,
2628 					       "dquot_buf_recover");
2629 			if (error)
2630 				goto next;
2631 		}
2632 
2633 		memcpy(xfs_buf_offset(bp,
2634 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2635 			item->ri_buf[i].i_addr,		/* source */
2636 			nbits<<XFS_BLF_SHIFT);		/* length */
2637  next:
2638 		i++;
2639 		bit += nbits;
2640 	}
2641 
2642 	/* Shouldn't be any more regions */
2643 	ASSERT(i == item->ri_total);
2644 
2645 	xlog_recover_validate_buf_type(mp, bp, buf_f);
2646 }
2647 
2648 /*
2649  * Perform a dquot buffer recovery.
2650  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2651  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2652  * Else, treat it as a regular buffer and do recovery.
2653  *
2654  * Return false if the buffer was tossed and true if we recovered the buffer to
2655  * indicate to the caller if the buffer needs writing.
2656  */
2657 STATIC bool
2658 xlog_recover_do_dquot_buffer(
2659 	struct xfs_mount		*mp,
2660 	struct xlog			*log,
2661 	struct xlog_recover_item	*item,
2662 	struct xfs_buf			*bp,
2663 	struct xfs_buf_log_format	*buf_f)
2664 {
2665 	uint			type;
2666 
2667 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2668 
2669 	/*
2670 	 * Filesystems are required to send in quota flags at mount time.
2671 	 */
2672 	if (!mp->m_qflags)
2673 		return false;
2674 
2675 	type = 0;
2676 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2677 		type |= XFS_DQ_USER;
2678 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2679 		type |= XFS_DQ_PROJ;
2680 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2681 		type |= XFS_DQ_GROUP;
2682 	/*
2683 	 * This type of quotas was turned off, so ignore this buffer
2684 	 */
2685 	if (log->l_quotaoffs_flag & type)
2686 		return false;
2687 
2688 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2689 	return true;
2690 }
2691 
2692 /*
2693  * This routine replays a modification made to a buffer at runtime.
2694  * There are actually two types of buffer, regular and inode, which
2695  * are handled differently.  Inode buffers are handled differently
2696  * in that we only recover a specific set of data from them, namely
2697  * the inode di_next_unlinked fields.  This is because all other inode
2698  * data is actually logged via inode records and any data we replay
2699  * here which overlaps that may be stale.
2700  *
2701  * When meta-data buffers are freed at run time we log a buffer item
2702  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2703  * of the buffer in the log should not be replayed at recovery time.
2704  * This is so that if the blocks covered by the buffer are reused for
2705  * file data before we crash we don't end up replaying old, freed
2706  * meta-data into a user's file.
2707  *
2708  * To handle the cancellation of buffer log items, we make two passes
2709  * over the log during recovery.  During the first we build a table of
2710  * those buffers which have been cancelled, and during the second we
2711  * only replay those buffers which do not have corresponding cancel
2712  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2713  * for more details on the implementation of the table of cancel records.
2714  */
2715 STATIC int
2716 xlog_recover_buffer_pass2(
2717 	struct xlog			*log,
2718 	struct list_head		*buffer_list,
2719 	struct xlog_recover_item	*item,
2720 	xfs_lsn_t			current_lsn)
2721 {
2722 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2723 	xfs_mount_t		*mp = log->l_mp;
2724 	xfs_buf_t		*bp;
2725 	int			error;
2726 	uint			buf_flags;
2727 	xfs_lsn_t		lsn;
2728 
2729 	/*
2730 	 * In this pass we only want to recover all the buffers which have
2731 	 * not been cancelled and are not cancellation buffers themselves.
2732 	 */
2733 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2734 			buf_f->blf_len, buf_f->blf_flags)) {
2735 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2736 		return 0;
2737 	}
2738 
2739 	trace_xfs_log_recover_buf_recover(log, buf_f);
2740 
2741 	buf_flags = 0;
2742 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2743 		buf_flags |= XBF_UNMAPPED;
2744 
2745 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2746 			  buf_flags, NULL);
2747 	if (!bp)
2748 		return -ENOMEM;
2749 	error = bp->b_error;
2750 	if (error) {
2751 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2752 		goto out_release;
2753 	}
2754 
2755 	/*
2756 	 * Recover the buffer only if we get an LSN from it and it's less than
2757 	 * the lsn of the transaction we are replaying.
2758 	 *
2759 	 * Note that we have to be extremely careful of readahead here.
2760 	 * Readahead does not attach verfiers to the buffers so if we don't
2761 	 * actually do any replay after readahead because of the LSN we found
2762 	 * in the buffer if more recent than that current transaction then we
2763 	 * need to attach the verifier directly. Failure to do so can lead to
2764 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2765 	 * operate on the buffers and they won't get the verifier attached. This
2766 	 * can lead to blocks on disk having the correct content but a stale
2767 	 * CRC.
2768 	 *
2769 	 * It is safe to assume these clean buffers are currently up to date.
2770 	 * If the buffer is dirtied by a later transaction being replayed, then
2771 	 * the verifier will be reset to match whatever recover turns that
2772 	 * buffer into.
2773 	 */
2774 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2775 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2776 		xlog_recover_validate_buf_type(mp, bp, buf_f);
2777 		goto out_release;
2778 	}
2779 
2780 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2781 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2782 		if (error)
2783 			goto out_release;
2784 	} else if (buf_f->blf_flags &
2785 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2786 		bool	dirty;
2787 
2788 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2789 		if (!dirty)
2790 			goto out_release;
2791 	} else {
2792 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2793 	}
2794 
2795 	/*
2796 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2797 	 * slower when taking into account all the buffers to be flushed.
2798 	 *
2799 	 * Also make sure that only inode buffers with good sizes stay in
2800 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2801 	 * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2802 	 * buffers in the log can be a different size if the log was generated
2803 	 * by an older kernel using unclustered inode buffers or a newer kernel
2804 	 * running with a different inode cluster size.  Regardless, if the
2805 	 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2806 	 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2807 	 * the buffer out of the buffer cache so that the buffer won't
2808 	 * overlap with future reads of those inodes.
2809 	 */
2810 	if (XFS_DINODE_MAGIC ==
2811 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2812 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2813 			(__uint32_t)log->l_mp->m_inode_cluster_size))) {
2814 		xfs_buf_stale(bp);
2815 		error = xfs_bwrite(bp);
2816 	} else {
2817 		ASSERT(bp->b_target->bt_mount == mp);
2818 		bp->b_iodone = xlog_recover_iodone;
2819 		xfs_buf_delwri_queue(bp, buffer_list);
2820 	}
2821 
2822 out_release:
2823 	xfs_buf_relse(bp);
2824 	return error;
2825 }
2826 
2827 /*
2828  * Inode fork owner changes
2829  *
2830  * If we have been told that we have to reparent the inode fork, it's because an
2831  * extent swap operation on a CRC enabled filesystem has been done and we are
2832  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2833  * owners of it.
2834  *
2835  * The complexity here is that we don't have an inode context to work with, so
2836  * after we've replayed the inode we need to instantiate one.  This is where the
2837  * fun begins.
2838  *
2839  * We are in the middle of log recovery, so we can't run transactions. That
2840  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2841  * that will result in the corresponding iput() running the inode through
2842  * xfs_inactive(). If we've just replayed an inode core that changes the link
2843  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2844  * transactions (bad!).
2845  *
2846  * So, to avoid this, we instantiate an inode directly from the inode core we've
2847  * just recovered. We have the buffer still locked, and all we really need to
2848  * instantiate is the inode core and the forks being modified. We can do this
2849  * manually, then run the inode btree owner change, and then tear down the
2850  * xfs_inode without having to run any transactions at all.
2851  *
2852  * Also, because we don't have a transaction context available here but need to
2853  * gather all the buffers we modify for writeback so we pass the buffer_list
2854  * instead for the operation to use.
2855  */
2856 
2857 STATIC int
2858 xfs_recover_inode_owner_change(
2859 	struct xfs_mount	*mp,
2860 	struct xfs_dinode	*dip,
2861 	struct xfs_inode_log_format *in_f,
2862 	struct list_head	*buffer_list)
2863 {
2864 	struct xfs_inode	*ip;
2865 	int			error;
2866 
2867 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2868 
2869 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2870 	if (!ip)
2871 		return -ENOMEM;
2872 
2873 	/* instantiate the inode */
2874 	xfs_inode_from_disk(ip, dip);
2875 	ASSERT(ip->i_d.di_version >= 3);
2876 
2877 	error = xfs_iformat_fork(ip, dip);
2878 	if (error)
2879 		goto out_free_ip;
2880 
2881 
2882 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2883 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2884 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2885 					      ip->i_ino, buffer_list);
2886 		if (error)
2887 			goto out_free_ip;
2888 	}
2889 
2890 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2891 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2892 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2893 					      ip->i_ino, buffer_list);
2894 		if (error)
2895 			goto out_free_ip;
2896 	}
2897 
2898 out_free_ip:
2899 	xfs_inode_free(ip);
2900 	return error;
2901 }
2902 
2903 STATIC int
2904 xlog_recover_inode_pass2(
2905 	struct xlog			*log,
2906 	struct list_head		*buffer_list,
2907 	struct xlog_recover_item	*item,
2908 	xfs_lsn_t			current_lsn)
2909 {
2910 	xfs_inode_log_format_t	*in_f;
2911 	xfs_mount_t		*mp = log->l_mp;
2912 	xfs_buf_t		*bp;
2913 	xfs_dinode_t		*dip;
2914 	int			len;
2915 	char			*src;
2916 	char			*dest;
2917 	int			error;
2918 	int			attr_index;
2919 	uint			fields;
2920 	struct xfs_log_dinode	*ldip;
2921 	uint			isize;
2922 	int			need_free = 0;
2923 
2924 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2925 		in_f = item->ri_buf[0].i_addr;
2926 	} else {
2927 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2928 		need_free = 1;
2929 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2930 		if (error)
2931 			goto error;
2932 	}
2933 
2934 	/*
2935 	 * Inode buffers can be freed, look out for it,
2936 	 * and do not replay the inode.
2937 	 */
2938 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2939 					in_f->ilf_len, 0)) {
2940 		error = 0;
2941 		trace_xfs_log_recover_inode_cancel(log, in_f);
2942 		goto error;
2943 	}
2944 	trace_xfs_log_recover_inode_recover(log, in_f);
2945 
2946 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2947 			  &xfs_inode_buf_ops);
2948 	if (!bp) {
2949 		error = -ENOMEM;
2950 		goto error;
2951 	}
2952 	error = bp->b_error;
2953 	if (error) {
2954 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2955 		goto out_release;
2956 	}
2957 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2958 	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2959 
2960 	/*
2961 	 * Make sure the place we're flushing out to really looks
2962 	 * like an inode!
2963 	 */
2964 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2965 		xfs_alert(mp,
2966 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2967 			__func__, dip, bp, in_f->ilf_ino);
2968 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2969 				 XFS_ERRLEVEL_LOW, mp);
2970 		error = -EFSCORRUPTED;
2971 		goto out_release;
2972 	}
2973 	ldip = item->ri_buf[1].i_addr;
2974 	if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
2975 		xfs_alert(mp,
2976 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2977 			__func__, item, in_f->ilf_ino);
2978 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2979 				 XFS_ERRLEVEL_LOW, mp);
2980 		error = -EFSCORRUPTED;
2981 		goto out_release;
2982 	}
2983 
2984 	/*
2985 	 * If the inode has an LSN in it, recover the inode only if it's less
2986 	 * than the lsn of the transaction we are replaying. Note: we still
2987 	 * need to replay an owner change even though the inode is more recent
2988 	 * than the transaction as there is no guarantee that all the btree
2989 	 * blocks are more recent than this transaction, too.
2990 	 */
2991 	if (dip->di_version >= 3) {
2992 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
2993 
2994 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2995 			trace_xfs_log_recover_inode_skip(log, in_f);
2996 			error = 0;
2997 			goto out_owner_change;
2998 		}
2999 	}
3000 
3001 	/*
3002 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3003 	 * are transactional and if ordering is necessary we can determine that
3004 	 * more accurately by the LSN field in the V3 inode core. Don't trust
3005 	 * the inode versions we might be changing them here - use the
3006 	 * superblock flag to determine whether we need to look at di_flushiter
3007 	 * to skip replay when the on disk inode is newer than the log one
3008 	 */
3009 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3010 	    ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3011 		/*
3012 		 * Deal with the wrap case, DI_MAX_FLUSH is less
3013 		 * than smaller numbers
3014 		 */
3015 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3016 		    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3017 			/* do nothing */
3018 		} else {
3019 			trace_xfs_log_recover_inode_skip(log, in_f);
3020 			error = 0;
3021 			goto out_release;
3022 		}
3023 	}
3024 
3025 	/* Take the opportunity to reset the flush iteration count */
3026 	ldip->di_flushiter = 0;
3027 
3028 	if (unlikely(S_ISREG(ldip->di_mode))) {
3029 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3030 		    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3031 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3032 					 XFS_ERRLEVEL_LOW, mp, ldip);
3033 			xfs_alert(mp,
3034 		"%s: Bad regular inode log record, rec ptr 0x%p, "
3035 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3036 				__func__, item, dip, bp, in_f->ilf_ino);
3037 			error = -EFSCORRUPTED;
3038 			goto out_release;
3039 		}
3040 	} else if (unlikely(S_ISDIR(ldip->di_mode))) {
3041 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3042 		    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3043 		    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3044 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3045 					     XFS_ERRLEVEL_LOW, mp, ldip);
3046 			xfs_alert(mp,
3047 		"%s: Bad dir inode log record, rec ptr 0x%p, "
3048 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3049 				__func__, item, dip, bp, in_f->ilf_ino);
3050 			error = -EFSCORRUPTED;
3051 			goto out_release;
3052 		}
3053 	}
3054 	if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3055 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3056 				     XFS_ERRLEVEL_LOW, mp, ldip);
3057 		xfs_alert(mp,
3058 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3059 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3060 			__func__, item, dip, bp, in_f->ilf_ino,
3061 			ldip->di_nextents + ldip->di_anextents,
3062 			ldip->di_nblocks);
3063 		error = -EFSCORRUPTED;
3064 		goto out_release;
3065 	}
3066 	if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3067 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3068 				     XFS_ERRLEVEL_LOW, mp, ldip);
3069 		xfs_alert(mp,
3070 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3071 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3072 			item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3073 		error = -EFSCORRUPTED;
3074 		goto out_release;
3075 	}
3076 	isize = xfs_log_dinode_size(ldip->di_version);
3077 	if (unlikely(item->ri_buf[1].i_len > isize)) {
3078 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3079 				     XFS_ERRLEVEL_LOW, mp, ldip);
3080 		xfs_alert(mp,
3081 			"%s: Bad inode log record length %d, rec ptr 0x%p",
3082 			__func__, item->ri_buf[1].i_len, item);
3083 		error = -EFSCORRUPTED;
3084 		goto out_release;
3085 	}
3086 
3087 	/* recover the log dinode inode into the on disk inode */
3088 	xfs_log_dinode_to_disk(ldip, dip);
3089 
3090 	/* the rest is in on-disk format */
3091 	if (item->ri_buf[1].i_len > isize) {
3092 		memcpy((char *)dip + isize,
3093 			item->ri_buf[1].i_addr + isize,
3094 			item->ri_buf[1].i_len - isize);
3095 	}
3096 
3097 	fields = in_f->ilf_fields;
3098 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3099 	case XFS_ILOG_DEV:
3100 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3101 		break;
3102 	case XFS_ILOG_UUID:
3103 		memcpy(XFS_DFORK_DPTR(dip),
3104 		       &in_f->ilf_u.ilfu_uuid,
3105 		       sizeof(uuid_t));
3106 		break;
3107 	}
3108 
3109 	if (in_f->ilf_size == 2)
3110 		goto out_owner_change;
3111 	len = item->ri_buf[2].i_len;
3112 	src = item->ri_buf[2].i_addr;
3113 	ASSERT(in_f->ilf_size <= 4);
3114 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3115 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
3116 	       (len == in_f->ilf_dsize));
3117 
3118 	switch (fields & XFS_ILOG_DFORK) {
3119 	case XFS_ILOG_DDATA:
3120 	case XFS_ILOG_DEXT:
3121 		memcpy(XFS_DFORK_DPTR(dip), src, len);
3122 		break;
3123 
3124 	case XFS_ILOG_DBROOT:
3125 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3126 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3127 				 XFS_DFORK_DSIZE(dip, mp));
3128 		break;
3129 
3130 	default:
3131 		/*
3132 		 * There are no data fork flags set.
3133 		 */
3134 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
3135 		break;
3136 	}
3137 
3138 	/*
3139 	 * If we logged any attribute data, recover it.  There may or
3140 	 * may not have been any other non-core data logged in this
3141 	 * transaction.
3142 	 */
3143 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3144 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3145 			attr_index = 3;
3146 		} else {
3147 			attr_index = 2;
3148 		}
3149 		len = item->ri_buf[attr_index].i_len;
3150 		src = item->ri_buf[attr_index].i_addr;
3151 		ASSERT(len == in_f->ilf_asize);
3152 
3153 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3154 		case XFS_ILOG_ADATA:
3155 		case XFS_ILOG_AEXT:
3156 			dest = XFS_DFORK_APTR(dip);
3157 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3158 			memcpy(dest, src, len);
3159 			break;
3160 
3161 		case XFS_ILOG_ABROOT:
3162 			dest = XFS_DFORK_APTR(dip);
3163 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3164 					 len, (xfs_bmdr_block_t*)dest,
3165 					 XFS_DFORK_ASIZE(dip, mp));
3166 			break;
3167 
3168 		default:
3169 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3170 			ASSERT(0);
3171 			error = -EIO;
3172 			goto out_release;
3173 		}
3174 	}
3175 
3176 out_owner_change:
3177 	if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3178 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
3179 						       buffer_list);
3180 	/* re-generate the checksum. */
3181 	xfs_dinode_calc_crc(log->l_mp, dip);
3182 
3183 	ASSERT(bp->b_target->bt_mount == mp);
3184 	bp->b_iodone = xlog_recover_iodone;
3185 	xfs_buf_delwri_queue(bp, buffer_list);
3186 
3187 out_release:
3188 	xfs_buf_relse(bp);
3189 error:
3190 	if (need_free)
3191 		kmem_free(in_f);
3192 	return error;
3193 }
3194 
3195 /*
3196  * Recover QUOTAOFF records. We simply make a note of it in the xlog
3197  * structure, so that we know not to do any dquot item or dquot buffer recovery,
3198  * of that type.
3199  */
3200 STATIC int
3201 xlog_recover_quotaoff_pass1(
3202 	struct xlog			*log,
3203 	struct xlog_recover_item	*item)
3204 {
3205 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
3206 	ASSERT(qoff_f);
3207 
3208 	/*
3209 	 * The logitem format's flag tells us if this was user quotaoff,
3210 	 * group/project quotaoff or both.
3211 	 */
3212 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3213 		log->l_quotaoffs_flag |= XFS_DQ_USER;
3214 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3215 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3216 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3217 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3218 
3219 	return 0;
3220 }
3221 
3222 /*
3223  * Recover a dquot record
3224  */
3225 STATIC int
3226 xlog_recover_dquot_pass2(
3227 	struct xlog			*log,
3228 	struct list_head		*buffer_list,
3229 	struct xlog_recover_item	*item,
3230 	xfs_lsn_t			current_lsn)
3231 {
3232 	xfs_mount_t		*mp = log->l_mp;
3233 	xfs_buf_t		*bp;
3234 	struct xfs_disk_dquot	*ddq, *recddq;
3235 	int			error;
3236 	xfs_dq_logformat_t	*dq_f;
3237 	uint			type;
3238 
3239 
3240 	/*
3241 	 * Filesystems are required to send in quota flags at mount time.
3242 	 */
3243 	if (mp->m_qflags == 0)
3244 		return 0;
3245 
3246 	recddq = item->ri_buf[1].i_addr;
3247 	if (recddq == NULL) {
3248 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3249 		return -EIO;
3250 	}
3251 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3252 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3253 			item->ri_buf[1].i_len, __func__);
3254 		return -EIO;
3255 	}
3256 
3257 	/*
3258 	 * This type of quotas was turned off, so ignore this record.
3259 	 */
3260 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3261 	ASSERT(type);
3262 	if (log->l_quotaoffs_flag & type)
3263 		return 0;
3264 
3265 	/*
3266 	 * At this point we know that quota was _not_ turned off.
3267 	 * Since the mount flags are not indicating to us otherwise, this
3268 	 * must mean that quota is on, and the dquot needs to be replayed.
3269 	 * Remember that we may not have fully recovered the superblock yet,
3270 	 * so we can't do the usual trick of looking at the SB quota bits.
3271 	 *
3272 	 * The other possibility, of course, is that the quota subsystem was
3273 	 * removed since the last mount - ENOSYS.
3274 	 */
3275 	dq_f = item->ri_buf[0].i_addr;
3276 	ASSERT(dq_f);
3277 	error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3278 			   "xlog_recover_dquot_pass2 (log copy)");
3279 	if (error)
3280 		return -EIO;
3281 	ASSERT(dq_f->qlf_len == 1);
3282 
3283 	/*
3284 	 * At this point we are assuming that the dquots have been allocated
3285 	 * and hence the buffer has valid dquots stamped in it. It should,
3286 	 * therefore, pass verifier validation. If the dquot is bad, then the
3287 	 * we'll return an error here, so we don't need to specifically check
3288 	 * the dquot in the buffer after the verifier has run.
3289 	 */
3290 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3291 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3292 				   &xfs_dquot_buf_ops);
3293 	if (error)
3294 		return error;
3295 
3296 	ASSERT(bp);
3297 	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3298 
3299 	/*
3300 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3301 	 * than the lsn of the transaction we are replaying.
3302 	 */
3303 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3304 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3305 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3306 
3307 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3308 			goto out_release;
3309 		}
3310 	}
3311 
3312 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3313 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3314 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3315 				 XFS_DQUOT_CRC_OFF);
3316 	}
3317 
3318 	ASSERT(dq_f->qlf_size == 2);
3319 	ASSERT(bp->b_target->bt_mount == mp);
3320 	bp->b_iodone = xlog_recover_iodone;
3321 	xfs_buf_delwri_queue(bp, buffer_list);
3322 
3323 out_release:
3324 	xfs_buf_relse(bp);
3325 	return 0;
3326 }
3327 
3328 /*
3329  * This routine is called to create an in-core extent free intent
3330  * item from the efi format structure which was logged on disk.
3331  * It allocates an in-core efi, copies the extents from the format
3332  * structure into it, and adds the efi to the AIL with the given
3333  * LSN.
3334  */
3335 STATIC int
3336 xlog_recover_efi_pass2(
3337 	struct xlog			*log,
3338 	struct xlog_recover_item	*item,
3339 	xfs_lsn_t			lsn)
3340 {
3341 	int				error;
3342 	struct xfs_mount		*mp = log->l_mp;
3343 	struct xfs_efi_log_item		*efip;
3344 	struct xfs_efi_log_format	*efi_formatp;
3345 
3346 	efi_formatp = item->ri_buf[0].i_addr;
3347 
3348 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3349 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3350 	if (error) {
3351 		xfs_efi_item_free(efip);
3352 		return error;
3353 	}
3354 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3355 
3356 	spin_lock(&log->l_ailp->xa_lock);
3357 	/*
3358 	 * The EFI has two references. One for the EFD and one for EFI to ensure
3359 	 * it makes it into the AIL. Insert the EFI into the AIL directly and
3360 	 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3361 	 * AIL lock.
3362 	 */
3363 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3364 	xfs_efi_release(efip);
3365 	return 0;
3366 }
3367 
3368 
3369 /*
3370  * This routine is called when an EFD format structure is found in a committed
3371  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3372  * was still in the log. To do this it searches the AIL for the EFI with an id
3373  * equal to that in the EFD format structure. If we find it we drop the EFD
3374  * reference, which removes the EFI from the AIL and frees it.
3375  */
3376 STATIC int
3377 xlog_recover_efd_pass2(
3378 	struct xlog			*log,
3379 	struct xlog_recover_item	*item)
3380 {
3381 	xfs_efd_log_format_t	*efd_formatp;
3382 	xfs_efi_log_item_t	*efip = NULL;
3383 	xfs_log_item_t		*lip;
3384 	__uint64_t		efi_id;
3385 	struct xfs_ail_cursor	cur;
3386 	struct xfs_ail		*ailp = log->l_ailp;
3387 
3388 	efd_formatp = item->ri_buf[0].i_addr;
3389 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3390 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3391 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3392 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3393 	efi_id = efd_formatp->efd_efi_id;
3394 
3395 	/*
3396 	 * Search for the EFI with the id in the EFD format structure in the
3397 	 * AIL.
3398 	 */
3399 	spin_lock(&ailp->xa_lock);
3400 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3401 	while (lip != NULL) {
3402 		if (lip->li_type == XFS_LI_EFI) {
3403 			efip = (xfs_efi_log_item_t *)lip;
3404 			if (efip->efi_format.efi_id == efi_id) {
3405 				/*
3406 				 * Drop the EFD reference to the EFI. This
3407 				 * removes the EFI from the AIL and frees it.
3408 				 */
3409 				spin_unlock(&ailp->xa_lock);
3410 				xfs_efi_release(efip);
3411 				spin_lock(&ailp->xa_lock);
3412 				break;
3413 			}
3414 		}
3415 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3416 	}
3417 
3418 	xfs_trans_ail_cursor_done(&cur);
3419 	spin_unlock(&ailp->xa_lock);
3420 
3421 	return 0;
3422 }
3423 
3424 /*
3425  * This routine is called to create an in-core extent rmap update
3426  * item from the rui format structure which was logged on disk.
3427  * It allocates an in-core rui, copies the extents from the format
3428  * structure into it, and adds the rui to the AIL with the given
3429  * LSN.
3430  */
3431 STATIC int
3432 xlog_recover_rui_pass2(
3433 	struct xlog			*log,
3434 	struct xlog_recover_item	*item,
3435 	xfs_lsn_t			lsn)
3436 {
3437 	int				error;
3438 	struct xfs_mount		*mp = log->l_mp;
3439 	struct xfs_rui_log_item		*ruip;
3440 	struct xfs_rui_log_format	*rui_formatp;
3441 
3442 	rui_formatp = item->ri_buf[0].i_addr;
3443 
3444 	ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3445 	error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3446 	if (error) {
3447 		xfs_rui_item_free(ruip);
3448 		return error;
3449 	}
3450 	atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3451 
3452 	spin_lock(&log->l_ailp->xa_lock);
3453 	/*
3454 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3455 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3456 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3457 	 * AIL lock.
3458 	 */
3459 	xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3460 	xfs_rui_release(ruip);
3461 	return 0;
3462 }
3463 
3464 
3465 /*
3466  * This routine is called when an RUD format structure is found in a committed
3467  * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3468  * was still in the log. To do this it searches the AIL for the RUI with an id
3469  * equal to that in the RUD format structure. If we find it we drop the RUD
3470  * reference, which removes the RUI from the AIL and frees it.
3471  */
3472 STATIC int
3473 xlog_recover_rud_pass2(
3474 	struct xlog			*log,
3475 	struct xlog_recover_item	*item)
3476 {
3477 	struct xfs_rud_log_format	*rud_formatp;
3478 	struct xfs_rui_log_item		*ruip = NULL;
3479 	struct xfs_log_item		*lip;
3480 	__uint64_t			rui_id;
3481 	struct xfs_ail_cursor		cur;
3482 	struct xfs_ail			*ailp = log->l_ailp;
3483 
3484 	rud_formatp = item->ri_buf[0].i_addr;
3485 	ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3486 	rui_id = rud_formatp->rud_rui_id;
3487 
3488 	/*
3489 	 * Search for the RUI with the id in the RUD format structure in the
3490 	 * AIL.
3491 	 */
3492 	spin_lock(&ailp->xa_lock);
3493 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3494 	while (lip != NULL) {
3495 		if (lip->li_type == XFS_LI_RUI) {
3496 			ruip = (struct xfs_rui_log_item *)lip;
3497 			if (ruip->rui_format.rui_id == rui_id) {
3498 				/*
3499 				 * Drop the RUD reference to the RUI. This
3500 				 * removes the RUI from the AIL and frees it.
3501 				 */
3502 				spin_unlock(&ailp->xa_lock);
3503 				xfs_rui_release(ruip);
3504 				spin_lock(&ailp->xa_lock);
3505 				break;
3506 			}
3507 		}
3508 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3509 	}
3510 
3511 	xfs_trans_ail_cursor_done(&cur);
3512 	spin_unlock(&ailp->xa_lock);
3513 
3514 	return 0;
3515 }
3516 
3517 /*
3518  * This routine is called when an inode create format structure is found in a
3519  * committed transaction in the log.  It's purpose is to initialise the inodes
3520  * being allocated on disk. This requires us to get inode cluster buffers that
3521  * match the range to be intialised, stamped with inode templates and written
3522  * by delayed write so that subsequent modifications will hit the cached buffer
3523  * and only need writing out at the end of recovery.
3524  */
3525 STATIC int
3526 xlog_recover_do_icreate_pass2(
3527 	struct xlog		*log,
3528 	struct list_head	*buffer_list,
3529 	xlog_recover_item_t	*item)
3530 {
3531 	struct xfs_mount	*mp = log->l_mp;
3532 	struct xfs_icreate_log	*icl;
3533 	xfs_agnumber_t		agno;
3534 	xfs_agblock_t		agbno;
3535 	unsigned int		count;
3536 	unsigned int		isize;
3537 	xfs_agblock_t		length;
3538 	int			blks_per_cluster;
3539 	int			bb_per_cluster;
3540 	int			cancel_count;
3541 	int			nbufs;
3542 	int			i;
3543 
3544 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3545 	if (icl->icl_type != XFS_LI_ICREATE) {
3546 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3547 		return -EINVAL;
3548 	}
3549 
3550 	if (icl->icl_size != 1) {
3551 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3552 		return -EINVAL;
3553 	}
3554 
3555 	agno = be32_to_cpu(icl->icl_ag);
3556 	if (agno >= mp->m_sb.sb_agcount) {
3557 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3558 		return -EINVAL;
3559 	}
3560 	agbno = be32_to_cpu(icl->icl_agbno);
3561 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3562 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3563 		return -EINVAL;
3564 	}
3565 	isize = be32_to_cpu(icl->icl_isize);
3566 	if (isize != mp->m_sb.sb_inodesize) {
3567 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3568 		return -EINVAL;
3569 	}
3570 	count = be32_to_cpu(icl->icl_count);
3571 	if (!count) {
3572 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3573 		return -EINVAL;
3574 	}
3575 	length = be32_to_cpu(icl->icl_length);
3576 	if (!length || length >= mp->m_sb.sb_agblocks) {
3577 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3578 		return -EINVAL;
3579 	}
3580 
3581 	/*
3582 	 * The inode chunk is either full or sparse and we only support
3583 	 * m_ialloc_min_blks sized sparse allocations at this time.
3584 	 */
3585 	if (length != mp->m_ialloc_blks &&
3586 	    length != mp->m_ialloc_min_blks) {
3587 		xfs_warn(log->l_mp,
3588 			 "%s: unsupported chunk length", __FUNCTION__);
3589 		return -EINVAL;
3590 	}
3591 
3592 	/* verify inode count is consistent with extent length */
3593 	if ((count >> mp->m_sb.sb_inopblog) != length) {
3594 		xfs_warn(log->l_mp,
3595 			 "%s: inconsistent inode count and chunk length",
3596 			 __FUNCTION__);
3597 		return -EINVAL;
3598 	}
3599 
3600 	/*
3601 	 * The icreate transaction can cover multiple cluster buffers and these
3602 	 * buffers could have been freed and reused. Check the individual
3603 	 * buffers for cancellation so we don't overwrite anything written after
3604 	 * a cancellation.
3605 	 */
3606 	blks_per_cluster = xfs_icluster_size_fsb(mp);
3607 	bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3608 	nbufs = length / blks_per_cluster;
3609 	for (i = 0, cancel_count = 0; i < nbufs; i++) {
3610 		xfs_daddr_t	daddr;
3611 
3612 		daddr = XFS_AGB_TO_DADDR(mp, agno,
3613 					 agbno + i * blks_per_cluster);
3614 		if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3615 			cancel_count++;
3616 	}
3617 
3618 	/*
3619 	 * We currently only use icreate for a single allocation at a time. This
3620 	 * means we should expect either all or none of the buffers to be
3621 	 * cancelled. Be conservative and skip replay if at least one buffer is
3622 	 * cancelled, but warn the user that something is awry if the buffers
3623 	 * are not consistent.
3624 	 *
3625 	 * XXX: This must be refined to only skip cancelled clusters once we use
3626 	 * icreate for multiple chunk allocations.
3627 	 */
3628 	ASSERT(!cancel_count || cancel_count == nbufs);
3629 	if (cancel_count) {
3630 		if (cancel_count != nbufs)
3631 			xfs_warn(mp,
3632 	"WARNING: partial inode chunk cancellation, skipped icreate.");
3633 		trace_xfs_log_recover_icreate_cancel(log, icl);
3634 		return 0;
3635 	}
3636 
3637 	trace_xfs_log_recover_icreate_recover(log, icl);
3638 	return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3639 				     length, be32_to_cpu(icl->icl_gen));
3640 }
3641 
3642 STATIC void
3643 xlog_recover_buffer_ra_pass2(
3644 	struct xlog                     *log,
3645 	struct xlog_recover_item        *item)
3646 {
3647 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3648 	struct xfs_mount		*mp = log->l_mp;
3649 
3650 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3651 			buf_f->blf_len, buf_f->blf_flags)) {
3652 		return;
3653 	}
3654 
3655 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3656 				buf_f->blf_len, NULL);
3657 }
3658 
3659 STATIC void
3660 xlog_recover_inode_ra_pass2(
3661 	struct xlog                     *log,
3662 	struct xlog_recover_item        *item)
3663 {
3664 	struct xfs_inode_log_format	ilf_buf;
3665 	struct xfs_inode_log_format	*ilfp;
3666 	struct xfs_mount		*mp = log->l_mp;
3667 	int			error;
3668 
3669 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3670 		ilfp = item->ri_buf[0].i_addr;
3671 	} else {
3672 		ilfp = &ilf_buf;
3673 		memset(ilfp, 0, sizeof(*ilfp));
3674 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3675 		if (error)
3676 			return;
3677 	}
3678 
3679 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3680 		return;
3681 
3682 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3683 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3684 }
3685 
3686 STATIC void
3687 xlog_recover_dquot_ra_pass2(
3688 	struct xlog			*log,
3689 	struct xlog_recover_item	*item)
3690 {
3691 	struct xfs_mount	*mp = log->l_mp;
3692 	struct xfs_disk_dquot	*recddq;
3693 	struct xfs_dq_logformat	*dq_f;
3694 	uint			type;
3695 	int			len;
3696 
3697 
3698 	if (mp->m_qflags == 0)
3699 		return;
3700 
3701 	recddq = item->ri_buf[1].i_addr;
3702 	if (recddq == NULL)
3703 		return;
3704 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3705 		return;
3706 
3707 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3708 	ASSERT(type);
3709 	if (log->l_quotaoffs_flag & type)
3710 		return;
3711 
3712 	dq_f = item->ri_buf[0].i_addr;
3713 	ASSERT(dq_f);
3714 	ASSERT(dq_f->qlf_len == 1);
3715 
3716 	len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3717 	if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3718 		return;
3719 
3720 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3721 			  &xfs_dquot_buf_ra_ops);
3722 }
3723 
3724 STATIC void
3725 xlog_recover_ra_pass2(
3726 	struct xlog			*log,
3727 	struct xlog_recover_item	*item)
3728 {
3729 	switch (ITEM_TYPE(item)) {
3730 	case XFS_LI_BUF:
3731 		xlog_recover_buffer_ra_pass2(log, item);
3732 		break;
3733 	case XFS_LI_INODE:
3734 		xlog_recover_inode_ra_pass2(log, item);
3735 		break;
3736 	case XFS_LI_DQUOT:
3737 		xlog_recover_dquot_ra_pass2(log, item);
3738 		break;
3739 	case XFS_LI_EFI:
3740 	case XFS_LI_EFD:
3741 	case XFS_LI_QUOTAOFF:
3742 	case XFS_LI_RUI:
3743 	case XFS_LI_RUD:
3744 	default:
3745 		break;
3746 	}
3747 }
3748 
3749 STATIC int
3750 xlog_recover_commit_pass1(
3751 	struct xlog			*log,
3752 	struct xlog_recover		*trans,
3753 	struct xlog_recover_item	*item)
3754 {
3755 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3756 
3757 	switch (ITEM_TYPE(item)) {
3758 	case XFS_LI_BUF:
3759 		return xlog_recover_buffer_pass1(log, item);
3760 	case XFS_LI_QUOTAOFF:
3761 		return xlog_recover_quotaoff_pass1(log, item);
3762 	case XFS_LI_INODE:
3763 	case XFS_LI_EFI:
3764 	case XFS_LI_EFD:
3765 	case XFS_LI_DQUOT:
3766 	case XFS_LI_ICREATE:
3767 	case XFS_LI_RUI:
3768 	case XFS_LI_RUD:
3769 		/* nothing to do in pass 1 */
3770 		return 0;
3771 	default:
3772 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3773 			__func__, ITEM_TYPE(item));
3774 		ASSERT(0);
3775 		return -EIO;
3776 	}
3777 }
3778 
3779 STATIC int
3780 xlog_recover_commit_pass2(
3781 	struct xlog			*log,
3782 	struct xlog_recover		*trans,
3783 	struct list_head		*buffer_list,
3784 	struct xlog_recover_item	*item)
3785 {
3786 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3787 
3788 	switch (ITEM_TYPE(item)) {
3789 	case XFS_LI_BUF:
3790 		return xlog_recover_buffer_pass2(log, buffer_list, item,
3791 						 trans->r_lsn);
3792 	case XFS_LI_INODE:
3793 		return xlog_recover_inode_pass2(log, buffer_list, item,
3794 						 trans->r_lsn);
3795 	case XFS_LI_EFI:
3796 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3797 	case XFS_LI_EFD:
3798 		return xlog_recover_efd_pass2(log, item);
3799 	case XFS_LI_RUI:
3800 		return xlog_recover_rui_pass2(log, item, trans->r_lsn);
3801 	case XFS_LI_RUD:
3802 		return xlog_recover_rud_pass2(log, item);
3803 	case XFS_LI_DQUOT:
3804 		return xlog_recover_dquot_pass2(log, buffer_list, item,
3805 						trans->r_lsn);
3806 	case XFS_LI_ICREATE:
3807 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3808 	case XFS_LI_QUOTAOFF:
3809 		/* nothing to do in pass2 */
3810 		return 0;
3811 	default:
3812 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3813 			__func__, ITEM_TYPE(item));
3814 		ASSERT(0);
3815 		return -EIO;
3816 	}
3817 }
3818 
3819 STATIC int
3820 xlog_recover_items_pass2(
3821 	struct xlog                     *log,
3822 	struct xlog_recover             *trans,
3823 	struct list_head                *buffer_list,
3824 	struct list_head                *item_list)
3825 {
3826 	struct xlog_recover_item	*item;
3827 	int				error = 0;
3828 
3829 	list_for_each_entry(item, item_list, ri_list) {
3830 		error = xlog_recover_commit_pass2(log, trans,
3831 					  buffer_list, item);
3832 		if (error)
3833 			return error;
3834 	}
3835 
3836 	return error;
3837 }
3838 
3839 /*
3840  * Perform the transaction.
3841  *
3842  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
3843  * EFIs and EFDs get queued up by adding entries into the AIL for them.
3844  */
3845 STATIC int
3846 xlog_recover_commit_trans(
3847 	struct xlog		*log,
3848 	struct xlog_recover	*trans,
3849 	int			pass)
3850 {
3851 	int				error = 0;
3852 	int				error2;
3853 	int				items_queued = 0;
3854 	struct xlog_recover_item	*item;
3855 	struct xlog_recover_item	*next;
3856 	LIST_HEAD			(buffer_list);
3857 	LIST_HEAD			(ra_list);
3858 	LIST_HEAD			(done_list);
3859 
3860 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3861 
3862 	hlist_del(&trans->r_list);
3863 
3864 	error = xlog_recover_reorder_trans(log, trans, pass);
3865 	if (error)
3866 		return error;
3867 
3868 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3869 		switch (pass) {
3870 		case XLOG_RECOVER_PASS1:
3871 			error = xlog_recover_commit_pass1(log, trans, item);
3872 			break;
3873 		case XLOG_RECOVER_PASS2:
3874 			xlog_recover_ra_pass2(log, item);
3875 			list_move_tail(&item->ri_list, &ra_list);
3876 			items_queued++;
3877 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3878 				error = xlog_recover_items_pass2(log, trans,
3879 						&buffer_list, &ra_list);
3880 				list_splice_tail_init(&ra_list, &done_list);
3881 				items_queued = 0;
3882 			}
3883 
3884 			break;
3885 		default:
3886 			ASSERT(0);
3887 		}
3888 
3889 		if (error)
3890 			goto out;
3891 	}
3892 
3893 out:
3894 	if (!list_empty(&ra_list)) {
3895 		if (!error)
3896 			error = xlog_recover_items_pass2(log, trans,
3897 					&buffer_list, &ra_list);
3898 		list_splice_tail_init(&ra_list, &done_list);
3899 	}
3900 
3901 	if (!list_empty(&done_list))
3902 		list_splice_init(&done_list, &trans->r_itemq);
3903 
3904 	error2 = xfs_buf_delwri_submit(&buffer_list);
3905 	return error ? error : error2;
3906 }
3907 
3908 STATIC void
3909 xlog_recover_add_item(
3910 	struct list_head	*head)
3911 {
3912 	xlog_recover_item_t	*item;
3913 
3914 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3915 	INIT_LIST_HEAD(&item->ri_list);
3916 	list_add_tail(&item->ri_list, head);
3917 }
3918 
3919 STATIC int
3920 xlog_recover_add_to_cont_trans(
3921 	struct xlog		*log,
3922 	struct xlog_recover	*trans,
3923 	char			*dp,
3924 	int			len)
3925 {
3926 	xlog_recover_item_t	*item;
3927 	char			*ptr, *old_ptr;
3928 	int			old_len;
3929 
3930 	/*
3931 	 * If the transaction is empty, the header was split across this and the
3932 	 * previous record. Copy the rest of the header.
3933 	 */
3934 	if (list_empty(&trans->r_itemq)) {
3935 		ASSERT(len <= sizeof(struct xfs_trans_header));
3936 		if (len > sizeof(struct xfs_trans_header)) {
3937 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
3938 			return -EIO;
3939 		}
3940 
3941 		xlog_recover_add_item(&trans->r_itemq);
3942 		ptr = (char *)&trans->r_theader +
3943 				sizeof(struct xfs_trans_header) - len;
3944 		memcpy(ptr, dp, len);
3945 		return 0;
3946 	}
3947 
3948 	/* take the tail entry */
3949 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3950 
3951 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3952 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
3953 
3954 	ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
3955 	memcpy(&ptr[old_len], dp, len);
3956 	item->ri_buf[item->ri_cnt-1].i_len += len;
3957 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3958 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
3959 	return 0;
3960 }
3961 
3962 /*
3963  * The next region to add is the start of a new region.  It could be
3964  * a whole region or it could be the first part of a new region.  Because
3965  * of this, the assumption here is that the type and size fields of all
3966  * format structures fit into the first 32 bits of the structure.
3967  *
3968  * This works because all regions must be 32 bit aligned.  Therefore, we
3969  * either have both fields or we have neither field.  In the case we have
3970  * neither field, the data part of the region is zero length.  We only have
3971  * a log_op_header and can throw away the header since a new one will appear
3972  * later.  If we have at least 4 bytes, then we can determine how many regions
3973  * will appear in the current log item.
3974  */
3975 STATIC int
3976 xlog_recover_add_to_trans(
3977 	struct xlog		*log,
3978 	struct xlog_recover	*trans,
3979 	char			*dp,
3980 	int			len)
3981 {
3982 	xfs_inode_log_format_t	*in_f;			/* any will do */
3983 	xlog_recover_item_t	*item;
3984 	char			*ptr;
3985 
3986 	if (!len)
3987 		return 0;
3988 	if (list_empty(&trans->r_itemq)) {
3989 		/* we need to catch log corruptions here */
3990 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3991 			xfs_warn(log->l_mp, "%s: bad header magic number",
3992 				__func__);
3993 			ASSERT(0);
3994 			return -EIO;
3995 		}
3996 
3997 		if (len > sizeof(struct xfs_trans_header)) {
3998 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
3999 			ASSERT(0);
4000 			return -EIO;
4001 		}
4002 
4003 		/*
4004 		 * The transaction header can be arbitrarily split across op
4005 		 * records. If we don't have the whole thing here, copy what we
4006 		 * do have and handle the rest in the next record.
4007 		 */
4008 		if (len == sizeof(struct xfs_trans_header))
4009 			xlog_recover_add_item(&trans->r_itemq);
4010 		memcpy(&trans->r_theader, dp, len);
4011 		return 0;
4012 	}
4013 
4014 	ptr = kmem_alloc(len, KM_SLEEP);
4015 	memcpy(ptr, dp, len);
4016 	in_f = (xfs_inode_log_format_t *)ptr;
4017 
4018 	/* take the tail entry */
4019 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4020 	if (item->ri_total != 0 &&
4021 	     item->ri_total == item->ri_cnt) {
4022 		/* tail item is in use, get a new one */
4023 		xlog_recover_add_item(&trans->r_itemq);
4024 		item = list_entry(trans->r_itemq.prev,
4025 					xlog_recover_item_t, ri_list);
4026 	}
4027 
4028 	if (item->ri_total == 0) {		/* first region to be added */
4029 		if (in_f->ilf_size == 0 ||
4030 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4031 			xfs_warn(log->l_mp,
4032 		"bad number of regions (%d) in inode log format",
4033 				  in_f->ilf_size);
4034 			ASSERT(0);
4035 			kmem_free(ptr);
4036 			return -EIO;
4037 		}
4038 
4039 		item->ri_total = in_f->ilf_size;
4040 		item->ri_buf =
4041 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4042 				    KM_SLEEP);
4043 	}
4044 	ASSERT(item->ri_total > item->ri_cnt);
4045 	/* Description region is ri_buf[0] */
4046 	item->ri_buf[item->ri_cnt].i_addr = ptr;
4047 	item->ri_buf[item->ri_cnt].i_len  = len;
4048 	item->ri_cnt++;
4049 	trace_xfs_log_recover_item_add(log, trans, item, 0);
4050 	return 0;
4051 }
4052 
4053 /*
4054  * Free up any resources allocated by the transaction
4055  *
4056  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4057  */
4058 STATIC void
4059 xlog_recover_free_trans(
4060 	struct xlog_recover	*trans)
4061 {
4062 	xlog_recover_item_t	*item, *n;
4063 	int			i;
4064 
4065 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4066 		/* Free the regions in the item. */
4067 		list_del(&item->ri_list);
4068 		for (i = 0; i < item->ri_cnt; i++)
4069 			kmem_free(item->ri_buf[i].i_addr);
4070 		/* Free the item itself */
4071 		kmem_free(item->ri_buf);
4072 		kmem_free(item);
4073 	}
4074 	/* Free the transaction recover structure */
4075 	kmem_free(trans);
4076 }
4077 
4078 /*
4079  * On error or completion, trans is freed.
4080  */
4081 STATIC int
4082 xlog_recovery_process_trans(
4083 	struct xlog		*log,
4084 	struct xlog_recover	*trans,
4085 	char			*dp,
4086 	unsigned int		len,
4087 	unsigned int		flags,
4088 	int			pass)
4089 {
4090 	int			error = 0;
4091 	bool			freeit = false;
4092 
4093 	/* mask off ophdr transaction container flags */
4094 	flags &= ~XLOG_END_TRANS;
4095 	if (flags & XLOG_WAS_CONT_TRANS)
4096 		flags &= ~XLOG_CONTINUE_TRANS;
4097 
4098 	/*
4099 	 * Callees must not free the trans structure. We'll decide if we need to
4100 	 * free it or not based on the operation being done and it's result.
4101 	 */
4102 	switch (flags) {
4103 	/* expected flag values */
4104 	case 0:
4105 	case XLOG_CONTINUE_TRANS:
4106 		error = xlog_recover_add_to_trans(log, trans, dp, len);
4107 		break;
4108 	case XLOG_WAS_CONT_TRANS:
4109 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4110 		break;
4111 	case XLOG_COMMIT_TRANS:
4112 		error = xlog_recover_commit_trans(log, trans, pass);
4113 		/* success or fail, we are now done with this transaction. */
4114 		freeit = true;
4115 		break;
4116 
4117 	/* unexpected flag values */
4118 	case XLOG_UNMOUNT_TRANS:
4119 		/* just skip trans */
4120 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4121 		freeit = true;
4122 		break;
4123 	case XLOG_START_TRANS:
4124 	default:
4125 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4126 		ASSERT(0);
4127 		error = -EIO;
4128 		break;
4129 	}
4130 	if (error || freeit)
4131 		xlog_recover_free_trans(trans);
4132 	return error;
4133 }
4134 
4135 /*
4136  * Lookup the transaction recovery structure associated with the ID in the
4137  * current ophdr. If the transaction doesn't exist and the start flag is set in
4138  * the ophdr, then allocate a new transaction for future ID matches to find.
4139  * Either way, return what we found during the lookup - an existing transaction
4140  * or nothing.
4141  */
4142 STATIC struct xlog_recover *
4143 xlog_recover_ophdr_to_trans(
4144 	struct hlist_head	rhash[],
4145 	struct xlog_rec_header	*rhead,
4146 	struct xlog_op_header	*ohead)
4147 {
4148 	struct xlog_recover	*trans;
4149 	xlog_tid_t		tid;
4150 	struct hlist_head	*rhp;
4151 
4152 	tid = be32_to_cpu(ohead->oh_tid);
4153 	rhp = &rhash[XLOG_RHASH(tid)];
4154 	hlist_for_each_entry(trans, rhp, r_list) {
4155 		if (trans->r_log_tid == tid)
4156 			return trans;
4157 	}
4158 
4159 	/*
4160 	 * skip over non-start transaction headers - we could be
4161 	 * processing slack space before the next transaction starts
4162 	 */
4163 	if (!(ohead->oh_flags & XLOG_START_TRANS))
4164 		return NULL;
4165 
4166 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4167 
4168 	/*
4169 	 * This is a new transaction so allocate a new recovery container to
4170 	 * hold the recovery ops that will follow.
4171 	 */
4172 	trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4173 	trans->r_log_tid = tid;
4174 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4175 	INIT_LIST_HEAD(&trans->r_itemq);
4176 	INIT_HLIST_NODE(&trans->r_list);
4177 	hlist_add_head(&trans->r_list, rhp);
4178 
4179 	/*
4180 	 * Nothing more to do for this ophdr. Items to be added to this new
4181 	 * transaction will be in subsequent ophdr containers.
4182 	 */
4183 	return NULL;
4184 }
4185 
4186 STATIC int
4187 xlog_recover_process_ophdr(
4188 	struct xlog		*log,
4189 	struct hlist_head	rhash[],
4190 	struct xlog_rec_header	*rhead,
4191 	struct xlog_op_header	*ohead,
4192 	char			*dp,
4193 	char			*end,
4194 	int			pass)
4195 {
4196 	struct xlog_recover	*trans;
4197 	unsigned int		len;
4198 
4199 	/* Do we understand who wrote this op? */
4200 	if (ohead->oh_clientid != XFS_TRANSACTION &&
4201 	    ohead->oh_clientid != XFS_LOG) {
4202 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4203 			__func__, ohead->oh_clientid);
4204 		ASSERT(0);
4205 		return -EIO;
4206 	}
4207 
4208 	/*
4209 	 * Check the ophdr contains all the data it is supposed to contain.
4210 	 */
4211 	len = be32_to_cpu(ohead->oh_len);
4212 	if (dp + len > end) {
4213 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4214 		WARN_ON(1);
4215 		return -EIO;
4216 	}
4217 
4218 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4219 	if (!trans) {
4220 		/* nothing to do, so skip over this ophdr */
4221 		return 0;
4222 	}
4223 
4224 	return xlog_recovery_process_trans(log, trans, dp, len,
4225 					   ohead->oh_flags, pass);
4226 }
4227 
4228 /*
4229  * There are two valid states of the r_state field.  0 indicates that the
4230  * transaction structure is in a normal state.  We have either seen the
4231  * start of the transaction or the last operation we added was not a partial
4232  * operation.  If the last operation we added to the transaction was a
4233  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4234  *
4235  * NOTE: skip LRs with 0 data length.
4236  */
4237 STATIC int
4238 xlog_recover_process_data(
4239 	struct xlog		*log,
4240 	struct hlist_head	rhash[],
4241 	struct xlog_rec_header	*rhead,
4242 	char			*dp,
4243 	int			pass)
4244 {
4245 	struct xlog_op_header	*ohead;
4246 	char			*end;
4247 	int			num_logops;
4248 	int			error;
4249 
4250 	end = dp + be32_to_cpu(rhead->h_len);
4251 	num_logops = be32_to_cpu(rhead->h_num_logops);
4252 
4253 	/* check the log format matches our own - else we can't recover */
4254 	if (xlog_header_check_recover(log->l_mp, rhead))
4255 		return -EIO;
4256 
4257 	while ((dp < end) && num_logops) {
4258 
4259 		ohead = (struct xlog_op_header *)dp;
4260 		dp += sizeof(*ohead);
4261 		ASSERT(dp <= end);
4262 
4263 		/* errors will abort recovery */
4264 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4265 						    dp, end, pass);
4266 		if (error)
4267 			return error;
4268 
4269 		dp += be32_to_cpu(ohead->oh_len);
4270 		num_logops--;
4271 	}
4272 	return 0;
4273 }
4274 
4275 /* Recover the EFI if necessary. */
4276 STATIC int
4277 xlog_recover_process_efi(
4278 	struct xfs_mount		*mp,
4279 	struct xfs_ail			*ailp,
4280 	struct xfs_log_item		*lip)
4281 {
4282 	struct xfs_efi_log_item		*efip;
4283 	int				error;
4284 
4285 	/*
4286 	 * Skip EFIs that we've already processed.
4287 	 */
4288 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4289 	if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4290 		return 0;
4291 
4292 	spin_unlock(&ailp->xa_lock);
4293 	error = xfs_efi_recover(mp, efip);
4294 	spin_lock(&ailp->xa_lock);
4295 
4296 	return error;
4297 }
4298 
4299 /* Release the EFI since we're cancelling everything. */
4300 STATIC void
4301 xlog_recover_cancel_efi(
4302 	struct xfs_mount		*mp,
4303 	struct xfs_ail			*ailp,
4304 	struct xfs_log_item		*lip)
4305 {
4306 	struct xfs_efi_log_item		*efip;
4307 
4308 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4309 
4310 	spin_unlock(&ailp->xa_lock);
4311 	xfs_efi_release(efip);
4312 	spin_lock(&ailp->xa_lock);
4313 }
4314 
4315 /* Recover the RUI if necessary. */
4316 STATIC int
4317 xlog_recover_process_rui(
4318 	struct xfs_mount		*mp,
4319 	struct xfs_ail			*ailp,
4320 	struct xfs_log_item		*lip)
4321 {
4322 	struct xfs_rui_log_item		*ruip;
4323 	int				error;
4324 
4325 	/*
4326 	 * Skip RUIs that we've already processed.
4327 	 */
4328 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4329 	if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4330 		return 0;
4331 
4332 	spin_unlock(&ailp->xa_lock);
4333 	error = xfs_rui_recover(mp, ruip);
4334 	spin_lock(&ailp->xa_lock);
4335 
4336 	return error;
4337 }
4338 
4339 /* Release the RUI since we're cancelling everything. */
4340 STATIC void
4341 xlog_recover_cancel_rui(
4342 	struct xfs_mount		*mp,
4343 	struct xfs_ail			*ailp,
4344 	struct xfs_log_item		*lip)
4345 {
4346 	struct xfs_rui_log_item		*ruip;
4347 
4348 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4349 
4350 	spin_unlock(&ailp->xa_lock);
4351 	xfs_rui_release(ruip);
4352 	spin_lock(&ailp->xa_lock);
4353 }
4354 
4355 /* Is this log item a deferred action intent? */
4356 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4357 {
4358 	switch (lip->li_type) {
4359 	case XFS_LI_EFI:
4360 	case XFS_LI_RUI:
4361 		return true;
4362 	default:
4363 		return false;
4364 	}
4365 }
4366 
4367 /*
4368  * When this is called, all of the log intent items which did not have
4369  * corresponding log done items should be in the AIL.  What we do now
4370  * is update the data structures associated with each one.
4371  *
4372  * Since we process the log intent items in normal transactions, they
4373  * will be removed at some point after the commit.  This prevents us
4374  * from just walking down the list processing each one.  We'll use a
4375  * flag in the intent item to skip those that we've already processed
4376  * and use the AIL iteration mechanism's generation count to try to
4377  * speed this up at least a bit.
4378  *
4379  * When we start, we know that the intents are the only things in the
4380  * AIL.  As we process them, however, other items are added to the
4381  * AIL.
4382  */
4383 STATIC int
4384 xlog_recover_process_intents(
4385 	struct xlog		*log)
4386 {
4387 	struct xfs_log_item	*lip;
4388 	int			error = 0;
4389 	struct xfs_ail_cursor	cur;
4390 	struct xfs_ail		*ailp;
4391 	xfs_lsn_t		last_lsn;
4392 
4393 	ailp = log->l_ailp;
4394 	spin_lock(&ailp->xa_lock);
4395 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4396 	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4397 	while (lip != NULL) {
4398 		/*
4399 		 * We're done when we see something other than an intent.
4400 		 * There should be no intents left in the AIL now.
4401 		 */
4402 		if (!xlog_item_is_intent(lip)) {
4403 #ifdef DEBUG
4404 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4405 				ASSERT(!xlog_item_is_intent(lip));
4406 #endif
4407 			break;
4408 		}
4409 
4410 		/*
4411 		 * We should never see a redo item with a LSN higher than
4412 		 * the last transaction we found in the log at the start
4413 		 * of recovery.
4414 		 */
4415 		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4416 
4417 		switch (lip->li_type) {
4418 		case XFS_LI_EFI:
4419 			error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4420 			break;
4421 		case XFS_LI_RUI:
4422 			error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4423 			break;
4424 		}
4425 		if (error)
4426 			goto out;
4427 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4428 	}
4429 out:
4430 	xfs_trans_ail_cursor_done(&cur);
4431 	spin_unlock(&ailp->xa_lock);
4432 	return error;
4433 }
4434 
4435 /*
4436  * A cancel occurs when the mount has failed and we're bailing out.
4437  * Release all pending log intent items so they don't pin the AIL.
4438  */
4439 STATIC int
4440 xlog_recover_cancel_intents(
4441 	struct xlog		*log)
4442 {
4443 	struct xfs_log_item	*lip;
4444 	int			error = 0;
4445 	struct xfs_ail_cursor	cur;
4446 	struct xfs_ail		*ailp;
4447 
4448 	ailp = log->l_ailp;
4449 	spin_lock(&ailp->xa_lock);
4450 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4451 	while (lip != NULL) {
4452 		/*
4453 		 * We're done when we see something other than an intent.
4454 		 * There should be no intents left in the AIL now.
4455 		 */
4456 		if (!xlog_item_is_intent(lip)) {
4457 #ifdef DEBUG
4458 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4459 				ASSERT(!xlog_item_is_intent(lip));
4460 #endif
4461 			break;
4462 		}
4463 
4464 		switch (lip->li_type) {
4465 		case XFS_LI_EFI:
4466 			xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4467 			break;
4468 		case XFS_LI_RUI:
4469 			xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4470 			break;
4471 		}
4472 
4473 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4474 	}
4475 
4476 	xfs_trans_ail_cursor_done(&cur);
4477 	spin_unlock(&ailp->xa_lock);
4478 	return error;
4479 }
4480 
4481 /*
4482  * This routine performs a transaction to null out a bad inode pointer
4483  * in an agi unlinked inode hash bucket.
4484  */
4485 STATIC void
4486 xlog_recover_clear_agi_bucket(
4487 	xfs_mount_t	*mp,
4488 	xfs_agnumber_t	agno,
4489 	int		bucket)
4490 {
4491 	xfs_trans_t	*tp;
4492 	xfs_agi_t	*agi;
4493 	xfs_buf_t	*agibp;
4494 	int		offset;
4495 	int		error;
4496 
4497 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4498 	if (error)
4499 		goto out_error;
4500 
4501 	error = xfs_read_agi(mp, tp, agno, &agibp);
4502 	if (error)
4503 		goto out_abort;
4504 
4505 	agi = XFS_BUF_TO_AGI(agibp);
4506 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4507 	offset = offsetof(xfs_agi_t, agi_unlinked) +
4508 		 (sizeof(xfs_agino_t) * bucket);
4509 	xfs_trans_log_buf(tp, agibp, offset,
4510 			  (offset + sizeof(xfs_agino_t) - 1));
4511 
4512 	error = xfs_trans_commit(tp);
4513 	if (error)
4514 		goto out_error;
4515 	return;
4516 
4517 out_abort:
4518 	xfs_trans_cancel(tp);
4519 out_error:
4520 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4521 	return;
4522 }
4523 
4524 STATIC xfs_agino_t
4525 xlog_recover_process_one_iunlink(
4526 	struct xfs_mount		*mp,
4527 	xfs_agnumber_t			agno,
4528 	xfs_agino_t			agino,
4529 	int				bucket)
4530 {
4531 	struct xfs_buf			*ibp;
4532 	struct xfs_dinode		*dip;
4533 	struct xfs_inode		*ip;
4534 	xfs_ino_t			ino;
4535 	int				error;
4536 
4537 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
4538 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4539 	if (error)
4540 		goto fail;
4541 
4542 	/*
4543 	 * Get the on disk inode to find the next inode in the bucket.
4544 	 */
4545 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4546 	if (error)
4547 		goto fail_iput;
4548 
4549 	ASSERT(VFS_I(ip)->i_nlink == 0);
4550 	ASSERT(VFS_I(ip)->i_mode != 0);
4551 
4552 	/* setup for the next pass */
4553 	agino = be32_to_cpu(dip->di_next_unlinked);
4554 	xfs_buf_relse(ibp);
4555 
4556 	/*
4557 	 * Prevent any DMAPI event from being sent when the reference on
4558 	 * the inode is dropped.
4559 	 */
4560 	ip->i_d.di_dmevmask = 0;
4561 
4562 	IRELE(ip);
4563 	return agino;
4564 
4565  fail_iput:
4566 	IRELE(ip);
4567  fail:
4568 	/*
4569 	 * We can't read in the inode this bucket points to, or this inode
4570 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
4571 	 * some inodes and space, but at least we won't hang.
4572 	 *
4573 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4574 	 * clear the inode pointer in the bucket.
4575 	 */
4576 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
4577 	return NULLAGINO;
4578 }
4579 
4580 /*
4581  * xlog_iunlink_recover
4582  *
4583  * This is called during recovery to process any inodes which
4584  * we unlinked but not freed when the system crashed.  These
4585  * inodes will be on the lists in the AGI blocks.  What we do
4586  * here is scan all the AGIs and fully truncate and free any
4587  * inodes found on the lists.  Each inode is removed from the
4588  * lists when it has been fully truncated and is freed.  The
4589  * freeing of the inode and its removal from the list must be
4590  * atomic.
4591  */
4592 STATIC void
4593 xlog_recover_process_iunlinks(
4594 	struct xlog	*log)
4595 {
4596 	xfs_mount_t	*mp;
4597 	xfs_agnumber_t	agno;
4598 	xfs_agi_t	*agi;
4599 	xfs_buf_t	*agibp;
4600 	xfs_agino_t	agino;
4601 	int		bucket;
4602 	int		error;
4603 	uint		mp_dmevmask;
4604 
4605 	mp = log->l_mp;
4606 
4607 	/*
4608 	 * Prevent any DMAPI event from being sent while in this function.
4609 	 */
4610 	mp_dmevmask = mp->m_dmevmask;
4611 	mp->m_dmevmask = 0;
4612 
4613 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4614 		/*
4615 		 * Find the agi for this ag.
4616 		 */
4617 		error = xfs_read_agi(mp, NULL, agno, &agibp);
4618 		if (error) {
4619 			/*
4620 			 * AGI is b0rked. Don't process it.
4621 			 *
4622 			 * We should probably mark the filesystem as corrupt
4623 			 * after we've recovered all the ag's we can....
4624 			 */
4625 			continue;
4626 		}
4627 		/*
4628 		 * Unlock the buffer so that it can be acquired in the normal
4629 		 * course of the transaction to truncate and free each inode.
4630 		 * Because we are not racing with anyone else here for the AGI
4631 		 * buffer, we don't even need to hold it locked to read the
4632 		 * initial unlinked bucket entries out of the buffer. We keep
4633 		 * buffer reference though, so that it stays pinned in memory
4634 		 * while we need the buffer.
4635 		 */
4636 		agi = XFS_BUF_TO_AGI(agibp);
4637 		xfs_buf_unlock(agibp);
4638 
4639 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
4640 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
4641 			while (agino != NULLAGINO) {
4642 				agino = xlog_recover_process_one_iunlink(mp,
4643 							agno, agino, bucket);
4644 			}
4645 		}
4646 		xfs_buf_rele(agibp);
4647 	}
4648 
4649 	mp->m_dmevmask = mp_dmevmask;
4650 }
4651 
4652 STATIC int
4653 xlog_unpack_data(
4654 	struct xlog_rec_header	*rhead,
4655 	char			*dp,
4656 	struct xlog		*log)
4657 {
4658 	int			i, j, k;
4659 
4660 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4661 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4662 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4663 		dp += BBSIZE;
4664 	}
4665 
4666 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4667 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4668 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4669 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4670 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4671 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4672 			dp += BBSIZE;
4673 		}
4674 	}
4675 
4676 	return 0;
4677 }
4678 
4679 /*
4680  * CRC check, unpack and process a log record.
4681  */
4682 STATIC int
4683 xlog_recover_process(
4684 	struct xlog		*log,
4685 	struct hlist_head	rhash[],
4686 	struct xlog_rec_header	*rhead,
4687 	char			*dp,
4688 	int			pass)
4689 {
4690 	int			error;
4691 	__le32			crc;
4692 
4693 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4694 
4695 	/*
4696 	 * Nothing else to do if this is a CRC verification pass. Just return
4697 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
4698 	 * sets h_crc to 0 so we must consider this valid even on v5 supers.
4699 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
4700 	 * know precisely what failed.
4701 	 */
4702 	if (pass == XLOG_RECOVER_CRCPASS) {
4703 		if (rhead->h_crc && crc != rhead->h_crc)
4704 			return -EFSBADCRC;
4705 		return 0;
4706 	}
4707 
4708 	/*
4709 	 * We're in the normal recovery path. Issue a warning if and only if the
4710 	 * CRC in the header is non-zero. This is an advisory warning and the
4711 	 * zero CRC check prevents warnings from being emitted when upgrading
4712 	 * the kernel from one that does not add CRCs by default.
4713 	 */
4714 	if (crc != rhead->h_crc) {
4715 		if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4716 			xfs_alert(log->l_mp,
4717 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
4718 					le32_to_cpu(rhead->h_crc),
4719 					le32_to_cpu(crc));
4720 			xfs_hex_dump(dp, 32);
4721 		}
4722 
4723 		/*
4724 		 * If the filesystem is CRC enabled, this mismatch becomes a
4725 		 * fatal log corruption failure.
4726 		 */
4727 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4728 			return -EFSCORRUPTED;
4729 	}
4730 
4731 	error = xlog_unpack_data(rhead, dp, log);
4732 	if (error)
4733 		return error;
4734 
4735 	return xlog_recover_process_data(log, rhash, rhead, dp, pass);
4736 }
4737 
4738 STATIC int
4739 xlog_valid_rec_header(
4740 	struct xlog		*log,
4741 	struct xlog_rec_header	*rhead,
4742 	xfs_daddr_t		blkno)
4743 {
4744 	int			hlen;
4745 
4746 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4747 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4748 				XFS_ERRLEVEL_LOW, log->l_mp);
4749 		return -EFSCORRUPTED;
4750 	}
4751 	if (unlikely(
4752 	    (!rhead->h_version ||
4753 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4754 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4755 			__func__, be32_to_cpu(rhead->h_version));
4756 		return -EIO;
4757 	}
4758 
4759 	/* LR body must have data or it wouldn't have been written */
4760 	hlen = be32_to_cpu(rhead->h_len);
4761 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4762 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4763 				XFS_ERRLEVEL_LOW, log->l_mp);
4764 		return -EFSCORRUPTED;
4765 	}
4766 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4767 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4768 				XFS_ERRLEVEL_LOW, log->l_mp);
4769 		return -EFSCORRUPTED;
4770 	}
4771 	return 0;
4772 }
4773 
4774 /*
4775  * Read the log from tail to head and process the log records found.
4776  * Handle the two cases where the tail and head are in the same cycle
4777  * and where the active portion of the log wraps around the end of
4778  * the physical log separately.  The pass parameter is passed through
4779  * to the routines called to process the data and is not looked at
4780  * here.
4781  */
4782 STATIC int
4783 xlog_do_recovery_pass(
4784 	struct xlog		*log,
4785 	xfs_daddr_t		head_blk,
4786 	xfs_daddr_t		tail_blk,
4787 	int			pass,
4788 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
4789 {
4790 	xlog_rec_header_t	*rhead;
4791 	xfs_daddr_t		blk_no;
4792 	xfs_daddr_t		rhead_blk;
4793 	char			*offset;
4794 	xfs_buf_t		*hbp, *dbp;
4795 	int			error = 0, h_size, h_len;
4796 	int			bblks, split_bblks;
4797 	int			hblks, split_hblks, wrapped_hblks;
4798 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
4799 
4800 	ASSERT(head_blk != tail_blk);
4801 	rhead_blk = 0;
4802 
4803 	/*
4804 	 * Read the header of the tail block and get the iclog buffer size from
4805 	 * h_size.  Use this to tell how many sectors make up the log header.
4806 	 */
4807 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4808 		/*
4809 		 * When using variable length iclogs, read first sector of
4810 		 * iclog header and extract the header size from it.  Get a
4811 		 * new hbp that is the correct size.
4812 		 */
4813 		hbp = xlog_get_bp(log, 1);
4814 		if (!hbp)
4815 			return -ENOMEM;
4816 
4817 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4818 		if (error)
4819 			goto bread_err1;
4820 
4821 		rhead = (xlog_rec_header_t *)offset;
4822 		error = xlog_valid_rec_header(log, rhead, tail_blk);
4823 		if (error)
4824 			goto bread_err1;
4825 
4826 		/*
4827 		 * xfsprogs has a bug where record length is based on lsunit but
4828 		 * h_size (iclog size) is hardcoded to 32k. Now that we
4829 		 * unconditionally CRC verify the unmount record, this means the
4830 		 * log buffer can be too small for the record and cause an
4831 		 * overrun.
4832 		 *
4833 		 * Detect this condition here. Use lsunit for the buffer size as
4834 		 * long as this looks like the mkfs case. Otherwise, return an
4835 		 * error to avoid a buffer overrun.
4836 		 */
4837 		h_size = be32_to_cpu(rhead->h_size);
4838 		h_len = be32_to_cpu(rhead->h_len);
4839 		if (h_len > h_size) {
4840 			if (h_len <= log->l_mp->m_logbsize &&
4841 			    be32_to_cpu(rhead->h_num_logops) == 1) {
4842 				xfs_warn(log->l_mp,
4843 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
4844 					 h_size, log->l_mp->m_logbsize);
4845 				h_size = log->l_mp->m_logbsize;
4846 			} else
4847 				return -EFSCORRUPTED;
4848 		}
4849 
4850 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4851 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4852 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4853 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
4854 				hblks++;
4855 			xlog_put_bp(hbp);
4856 			hbp = xlog_get_bp(log, hblks);
4857 		} else {
4858 			hblks = 1;
4859 		}
4860 	} else {
4861 		ASSERT(log->l_sectBBsize == 1);
4862 		hblks = 1;
4863 		hbp = xlog_get_bp(log, 1);
4864 		h_size = XLOG_BIG_RECORD_BSIZE;
4865 	}
4866 
4867 	if (!hbp)
4868 		return -ENOMEM;
4869 	dbp = xlog_get_bp(log, BTOBB(h_size));
4870 	if (!dbp) {
4871 		xlog_put_bp(hbp);
4872 		return -ENOMEM;
4873 	}
4874 
4875 	memset(rhash, 0, sizeof(rhash));
4876 	blk_no = rhead_blk = tail_blk;
4877 	if (tail_blk > head_blk) {
4878 		/*
4879 		 * Perform recovery around the end of the physical log.
4880 		 * When the head is not on the same cycle number as the tail,
4881 		 * we can't do a sequential recovery.
4882 		 */
4883 		while (blk_no < log->l_logBBsize) {
4884 			/*
4885 			 * Check for header wrapping around physical end-of-log
4886 			 */
4887 			offset = hbp->b_addr;
4888 			split_hblks = 0;
4889 			wrapped_hblks = 0;
4890 			if (blk_no + hblks <= log->l_logBBsize) {
4891 				/* Read header in one read */
4892 				error = xlog_bread(log, blk_no, hblks, hbp,
4893 						   &offset);
4894 				if (error)
4895 					goto bread_err2;
4896 			} else {
4897 				/* This LR is split across physical log end */
4898 				if (blk_no != log->l_logBBsize) {
4899 					/* some data before physical log end */
4900 					ASSERT(blk_no <= INT_MAX);
4901 					split_hblks = log->l_logBBsize - (int)blk_no;
4902 					ASSERT(split_hblks > 0);
4903 					error = xlog_bread(log, blk_no,
4904 							   split_hblks, hbp,
4905 							   &offset);
4906 					if (error)
4907 						goto bread_err2;
4908 				}
4909 
4910 				/*
4911 				 * Note: this black magic still works with
4912 				 * large sector sizes (non-512) only because:
4913 				 * - we increased the buffer size originally
4914 				 *   by 1 sector giving us enough extra space
4915 				 *   for the second read;
4916 				 * - the log start is guaranteed to be sector
4917 				 *   aligned;
4918 				 * - we read the log end (LR header start)
4919 				 *   _first_, then the log start (LR header end)
4920 				 *   - order is important.
4921 				 */
4922 				wrapped_hblks = hblks - split_hblks;
4923 				error = xlog_bread_offset(log, 0,
4924 						wrapped_hblks, hbp,
4925 						offset + BBTOB(split_hblks));
4926 				if (error)
4927 					goto bread_err2;
4928 			}
4929 			rhead = (xlog_rec_header_t *)offset;
4930 			error = xlog_valid_rec_header(log, rhead,
4931 						split_hblks ? blk_no : 0);
4932 			if (error)
4933 				goto bread_err2;
4934 
4935 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4936 			blk_no += hblks;
4937 
4938 			/* Read in data for log record */
4939 			if (blk_no + bblks <= log->l_logBBsize) {
4940 				error = xlog_bread(log, blk_no, bblks, dbp,
4941 						   &offset);
4942 				if (error)
4943 					goto bread_err2;
4944 			} else {
4945 				/* This log record is split across the
4946 				 * physical end of log */
4947 				offset = dbp->b_addr;
4948 				split_bblks = 0;
4949 				if (blk_no != log->l_logBBsize) {
4950 					/* some data is before the physical
4951 					 * end of log */
4952 					ASSERT(!wrapped_hblks);
4953 					ASSERT(blk_no <= INT_MAX);
4954 					split_bblks =
4955 						log->l_logBBsize - (int)blk_no;
4956 					ASSERT(split_bblks > 0);
4957 					error = xlog_bread(log, blk_no,
4958 							split_bblks, dbp,
4959 							&offset);
4960 					if (error)
4961 						goto bread_err2;
4962 				}
4963 
4964 				/*
4965 				 * Note: this black magic still works with
4966 				 * large sector sizes (non-512) only because:
4967 				 * - we increased the buffer size originally
4968 				 *   by 1 sector giving us enough extra space
4969 				 *   for the second read;
4970 				 * - the log start is guaranteed to be sector
4971 				 *   aligned;
4972 				 * - we read the log end (LR header start)
4973 				 *   _first_, then the log start (LR header end)
4974 				 *   - order is important.
4975 				 */
4976 				error = xlog_bread_offset(log, 0,
4977 						bblks - split_bblks, dbp,
4978 						offset + BBTOB(split_bblks));
4979 				if (error)
4980 					goto bread_err2;
4981 			}
4982 
4983 			error = xlog_recover_process(log, rhash, rhead, offset,
4984 						     pass);
4985 			if (error)
4986 				goto bread_err2;
4987 
4988 			blk_no += bblks;
4989 			rhead_blk = blk_no;
4990 		}
4991 
4992 		ASSERT(blk_no >= log->l_logBBsize);
4993 		blk_no -= log->l_logBBsize;
4994 		rhead_blk = blk_no;
4995 	}
4996 
4997 	/* read first part of physical log */
4998 	while (blk_no < head_blk) {
4999 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5000 		if (error)
5001 			goto bread_err2;
5002 
5003 		rhead = (xlog_rec_header_t *)offset;
5004 		error = xlog_valid_rec_header(log, rhead, blk_no);
5005 		if (error)
5006 			goto bread_err2;
5007 
5008 		/* blocks in data section */
5009 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5010 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5011 				   &offset);
5012 		if (error)
5013 			goto bread_err2;
5014 
5015 		error = xlog_recover_process(log, rhash, rhead, offset, pass);
5016 		if (error)
5017 			goto bread_err2;
5018 
5019 		blk_no += bblks + hblks;
5020 		rhead_blk = blk_no;
5021 	}
5022 
5023  bread_err2:
5024 	xlog_put_bp(dbp);
5025  bread_err1:
5026 	xlog_put_bp(hbp);
5027 
5028 	if (error && first_bad)
5029 		*first_bad = rhead_blk;
5030 
5031 	return error;
5032 }
5033 
5034 /*
5035  * Do the recovery of the log.  We actually do this in two phases.
5036  * The two passes are necessary in order to implement the function
5037  * of cancelling a record written into the log.  The first pass
5038  * determines those things which have been cancelled, and the
5039  * second pass replays log items normally except for those which
5040  * have been cancelled.  The handling of the replay and cancellations
5041  * takes place in the log item type specific routines.
5042  *
5043  * The table of items which have cancel records in the log is allocated
5044  * and freed at this level, since only here do we know when all of
5045  * the log recovery has been completed.
5046  */
5047 STATIC int
5048 xlog_do_log_recovery(
5049 	struct xlog	*log,
5050 	xfs_daddr_t	head_blk,
5051 	xfs_daddr_t	tail_blk)
5052 {
5053 	int		error, i;
5054 
5055 	ASSERT(head_blk != tail_blk);
5056 
5057 	/*
5058 	 * First do a pass to find all of the cancelled buf log items.
5059 	 * Store them in the buf_cancel_table for use in the second pass.
5060 	 */
5061 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5062 						 sizeof(struct list_head),
5063 						 KM_SLEEP);
5064 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5065 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5066 
5067 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5068 				      XLOG_RECOVER_PASS1, NULL);
5069 	if (error != 0) {
5070 		kmem_free(log->l_buf_cancel_table);
5071 		log->l_buf_cancel_table = NULL;
5072 		return error;
5073 	}
5074 	/*
5075 	 * Then do a second pass to actually recover the items in the log.
5076 	 * When it is complete free the table of buf cancel items.
5077 	 */
5078 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5079 				      XLOG_RECOVER_PASS2, NULL);
5080 #ifdef DEBUG
5081 	if (!error) {
5082 		int	i;
5083 
5084 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5085 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5086 	}
5087 #endif	/* DEBUG */
5088 
5089 	kmem_free(log->l_buf_cancel_table);
5090 	log->l_buf_cancel_table = NULL;
5091 
5092 	return error;
5093 }
5094 
5095 /*
5096  * Do the actual recovery
5097  */
5098 STATIC int
5099 xlog_do_recover(
5100 	struct xlog	*log,
5101 	xfs_daddr_t	head_blk,
5102 	xfs_daddr_t	tail_blk)
5103 {
5104 	struct xfs_mount *mp = log->l_mp;
5105 	int		error;
5106 	xfs_buf_t	*bp;
5107 	xfs_sb_t	*sbp;
5108 
5109 	/*
5110 	 * First replay the images in the log.
5111 	 */
5112 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
5113 	if (error)
5114 		return error;
5115 
5116 	/*
5117 	 * If IO errors happened during recovery, bail out.
5118 	 */
5119 	if (XFS_FORCED_SHUTDOWN(mp)) {
5120 		return -EIO;
5121 	}
5122 
5123 	/*
5124 	 * We now update the tail_lsn since much of the recovery has completed
5125 	 * and there may be space available to use.  If there were no extent
5126 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
5127 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5128 	 * lsn of the last known good LR on disk.  If there are extent frees
5129 	 * or iunlinks they will have some entries in the AIL; so we look at
5130 	 * the AIL to determine how to set the tail_lsn.
5131 	 */
5132 	xlog_assign_tail_lsn(mp);
5133 
5134 	/*
5135 	 * Now that we've finished replaying all buffer and inode
5136 	 * updates, re-read in the superblock and reverify it.
5137 	 */
5138 	bp = xfs_getsb(mp, 0);
5139 	bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5140 	ASSERT(!(bp->b_flags & XBF_WRITE));
5141 	bp->b_flags |= XBF_READ;
5142 	bp->b_ops = &xfs_sb_buf_ops;
5143 
5144 	error = xfs_buf_submit_wait(bp);
5145 	if (error) {
5146 		if (!XFS_FORCED_SHUTDOWN(mp)) {
5147 			xfs_buf_ioerror_alert(bp, __func__);
5148 			ASSERT(0);
5149 		}
5150 		xfs_buf_relse(bp);
5151 		return error;
5152 	}
5153 
5154 	/* Convert superblock from on-disk format */
5155 	sbp = &mp->m_sb;
5156 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5157 	xfs_buf_relse(bp);
5158 
5159 	/* re-initialise in-core superblock and geometry structures */
5160 	xfs_reinit_percpu_counters(mp);
5161 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5162 	if (error) {
5163 		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5164 		return error;
5165 	}
5166 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5167 
5168 	xlog_recover_check_summary(log);
5169 
5170 	/* Normal transactions can now occur */
5171 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5172 	return 0;
5173 }
5174 
5175 /*
5176  * Perform recovery and re-initialize some log variables in xlog_find_tail.
5177  *
5178  * Return error or zero.
5179  */
5180 int
5181 xlog_recover(
5182 	struct xlog	*log)
5183 {
5184 	xfs_daddr_t	head_blk, tail_blk;
5185 	int		error;
5186 
5187 	/* find the tail of the log */
5188 	error = xlog_find_tail(log, &head_blk, &tail_blk);
5189 	if (error)
5190 		return error;
5191 
5192 	/*
5193 	 * The superblock was read before the log was available and thus the LSN
5194 	 * could not be verified. Check the superblock LSN against the current
5195 	 * LSN now that it's known.
5196 	 */
5197 	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5198 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5199 		return -EINVAL;
5200 
5201 	if (tail_blk != head_blk) {
5202 		/* There used to be a comment here:
5203 		 *
5204 		 * disallow recovery on read-only mounts.  note -- mount
5205 		 * checks for ENOSPC and turns it into an intelligent
5206 		 * error message.
5207 		 * ...but this is no longer true.  Now, unless you specify
5208 		 * NORECOVERY (in which case this function would never be
5209 		 * called), we just go ahead and recover.  We do this all
5210 		 * under the vfs layer, so we can get away with it unless
5211 		 * the device itself is read-only, in which case we fail.
5212 		 */
5213 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5214 			return error;
5215 		}
5216 
5217 		/*
5218 		 * Version 5 superblock log feature mask validation. We know the
5219 		 * log is dirty so check if there are any unknown log features
5220 		 * in what we need to recover. If there are unknown features
5221 		 * (e.g. unsupported transactions, then simply reject the
5222 		 * attempt at recovery before touching anything.
5223 		 */
5224 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5225 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5226 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5227 			xfs_warn(log->l_mp,
5228 "Superblock has unknown incompatible log features (0x%x) enabled.",
5229 				(log->l_mp->m_sb.sb_features_log_incompat &
5230 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5231 			xfs_warn(log->l_mp,
5232 "The log can not be fully and/or safely recovered by this kernel.");
5233 			xfs_warn(log->l_mp,
5234 "Please recover the log on a kernel that supports the unknown features.");
5235 			return -EINVAL;
5236 		}
5237 
5238 		/*
5239 		 * Delay log recovery if the debug hook is set. This is debug
5240 		 * instrumention to coordinate simulation of I/O failures with
5241 		 * log recovery.
5242 		 */
5243 		if (xfs_globals.log_recovery_delay) {
5244 			xfs_notice(log->l_mp,
5245 				"Delaying log recovery for %d seconds.",
5246 				xfs_globals.log_recovery_delay);
5247 			msleep(xfs_globals.log_recovery_delay * 1000);
5248 		}
5249 
5250 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5251 				log->l_mp->m_logname ? log->l_mp->m_logname
5252 						     : "internal");
5253 
5254 		error = xlog_do_recover(log, head_blk, tail_blk);
5255 		log->l_flags |= XLOG_RECOVERY_NEEDED;
5256 	}
5257 	return error;
5258 }
5259 
5260 /*
5261  * In the first part of recovery we replay inodes and buffers and build
5262  * up the list of extent free items which need to be processed.  Here
5263  * we process the extent free items and clean up the on disk unlinked
5264  * inode lists.  This is separated from the first part of recovery so
5265  * that the root and real-time bitmap inodes can be read in from disk in
5266  * between the two stages.  This is necessary so that we can free space
5267  * in the real-time portion of the file system.
5268  */
5269 int
5270 xlog_recover_finish(
5271 	struct xlog	*log)
5272 {
5273 	/*
5274 	 * Now we're ready to do the transactions needed for the
5275 	 * rest of recovery.  Start with completing all the extent
5276 	 * free intent records and then process the unlinked inode
5277 	 * lists.  At this point, we essentially run in normal mode
5278 	 * except that we're still performing recovery actions
5279 	 * rather than accepting new requests.
5280 	 */
5281 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5282 		int	error;
5283 		error = xlog_recover_process_intents(log);
5284 		if (error) {
5285 			xfs_alert(log->l_mp, "Failed to recover intents");
5286 			return error;
5287 		}
5288 
5289 		/*
5290 		 * Sync the log to get all the intents out of the AIL.
5291 		 * This isn't absolutely necessary, but it helps in
5292 		 * case the unlink transactions would have problems
5293 		 * pushing the intents out of the way.
5294 		 */
5295 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5296 
5297 		xlog_recover_process_iunlinks(log);
5298 
5299 		xlog_recover_check_summary(log);
5300 
5301 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5302 				log->l_mp->m_logname ? log->l_mp->m_logname
5303 						     : "internal");
5304 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5305 	} else {
5306 		xfs_info(log->l_mp, "Ending clean mount");
5307 	}
5308 	return 0;
5309 }
5310 
5311 int
5312 xlog_recover_cancel(
5313 	struct xlog	*log)
5314 {
5315 	int		error = 0;
5316 
5317 	if (log->l_flags & XLOG_RECOVERY_NEEDED)
5318 		error = xlog_recover_cancel_intents(log);
5319 
5320 	return error;
5321 }
5322 
5323 #if defined(DEBUG)
5324 /*
5325  * Read all of the agf and agi counters and check that they
5326  * are consistent with the superblock counters.
5327  */
5328 void
5329 xlog_recover_check_summary(
5330 	struct xlog	*log)
5331 {
5332 	xfs_mount_t	*mp;
5333 	xfs_agf_t	*agfp;
5334 	xfs_buf_t	*agfbp;
5335 	xfs_buf_t	*agibp;
5336 	xfs_agnumber_t	agno;
5337 	__uint64_t	freeblks;
5338 	__uint64_t	itotal;
5339 	__uint64_t	ifree;
5340 	int		error;
5341 
5342 	mp = log->l_mp;
5343 
5344 	freeblks = 0LL;
5345 	itotal = 0LL;
5346 	ifree = 0LL;
5347 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5348 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5349 		if (error) {
5350 			xfs_alert(mp, "%s agf read failed agno %d error %d",
5351 						__func__, agno, error);
5352 		} else {
5353 			agfp = XFS_BUF_TO_AGF(agfbp);
5354 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
5355 				    be32_to_cpu(agfp->agf_flcount);
5356 			xfs_buf_relse(agfbp);
5357 		}
5358 
5359 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5360 		if (error) {
5361 			xfs_alert(mp, "%s agi read failed agno %d error %d",
5362 						__func__, agno, error);
5363 		} else {
5364 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
5365 
5366 			itotal += be32_to_cpu(agi->agi_count);
5367 			ifree += be32_to_cpu(agi->agi_freecount);
5368 			xfs_buf_relse(agibp);
5369 		}
5370 	}
5371 }
5372 #endif /* DEBUG */
5373