xref: /linux/fs/xfs/xfs_log_recover.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_log_recover.h"
21 #include "xfs_inode_item.h"
22 #include "xfs_extfree_item.h"
23 #include "xfs_trans_priv.h"
24 #include "xfs_alloc.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_quota.h"
27 #include "xfs_trace.h"
28 #include "xfs_icache.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_error.h"
31 #include "xfs_dir2.h"
32 #include "xfs_rmap_item.h"
33 #include "xfs_buf_item.h"
34 #include "xfs_refcount_item.h"
35 #include "xfs_bmap_item.h"
36 
37 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
38 
39 STATIC int
40 xlog_find_zeroed(
41 	struct xlog	*,
42 	xfs_daddr_t	*);
43 STATIC int
44 xlog_clear_stale_blocks(
45 	struct xlog	*,
46 	xfs_lsn_t);
47 #if defined(DEBUG)
48 STATIC void
49 xlog_recover_check_summary(
50 	struct xlog *);
51 #else
52 #define	xlog_recover_check_summary(log)
53 #endif
54 STATIC int
55 xlog_do_recovery_pass(
56         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
57 
58 /*
59  * This structure is used during recovery to record the buf log items which
60  * have been canceled and should not be replayed.
61  */
62 struct xfs_buf_cancel {
63 	xfs_daddr_t		bc_blkno;
64 	uint			bc_len;
65 	int			bc_refcount;
66 	struct list_head	bc_list;
67 };
68 
69 /*
70  * Sector aligned buffer routines for buffer create/read/write/access
71  */
72 
73 /*
74  * Verify the log-relative block number and length in basic blocks are valid for
75  * an operation involving the given XFS log buffer. Returns true if the fields
76  * are valid, false otherwise.
77  */
78 static inline bool
79 xlog_verify_bno(
80 	struct xlog	*log,
81 	xfs_daddr_t	blk_no,
82 	int		bbcount)
83 {
84 	if (blk_no < 0 || blk_no >= log->l_logBBsize)
85 		return false;
86 	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
87 		return false;
88 	return true;
89 }
90 
91 /*
92  * Allocate a buffer to hold log data.  The buffer needs to be able to map to
93  * a range of nbblks basic blocks at any valid offset within the log.
94  */
95 static char *
96 xlog_alloc_buffer(
97 	struct xlog	*log,
98 	int		nbblks)
99 {
100 	int align_mask = xfs_buftarg_dma_alignment(log->l_targ);
101 
102 	/*
103 	 * Pass log block 0 since we don't have an addr yet, buffer will be
104 	 * verified on read.
105 	 */
106 	if (!xlog_verify_bno(log, 0, nbblks)) {
107 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
108 			nbblks);
109 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
110 		return NULL;
111 	}
112 
113 	/*
114 	 * We do log I/O in units of log sectors (a power-of-2 multiple of the
115 	 * basic block size), so we round up the requested size to accommodate
116 	 * the basic blocks required for complete log sectors.
117 	 *
118 	 * In addition, the buffer may be used for a non-sector-aligned block
119 	 * offset, in which case an I/O of the requested size could extend
120 	 * beyond the end of the buffer.  If the requested size is only 1 basic
121 	 * block it will never straddle a sector boundary, so this won't be an
122 	 * issue.  Nor will this be a problem if the log I/O is done in basic
123 	 * blocks (sector size 1).  But otherwise we extend the buffer by one
124 	 * extra log sector to ensure there's space to accommodate this
125 	 * possibility.
126 	 */
127 	if (nbblks > 1 && log->l_sectBBsize > 1)
128 		nbblks += log->l_sectBBsize;
129 	nbblks = round_up(nbblks, log->l_sectBBsize);
130 	return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO);
131 }
132 
133 /*
134  * Return the address of the start of the given block number's data
135  * in a log buffer.  The buffer covers a log sector-aligned region.
136  */
137 static inline unsigned int
138 xlog_align(
139 	struct xlog	*log,
140 	xfs_daddr_t	blk_no)
141 {
142 	return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
143 }
144 
145 static int
146 xlog_do_io(
147 	struct xlog		*log,
148 	xfs_daddr_t		blk_no,
149 	unsigned int		nbblks,
150 	char			*data,
151 	unsigned int		op)
152 {
153 	int			error;
154 
155 	if (!xlog_verify_bno(log, blk_no, nbblks)) {
156 		xfs_warn(log->l_mp,
157 			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
158 			 blk_no, nbblks);
159 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
160 		return -EFSCORRUPTED;
161 	}
162 
163 	blk_no = round_down(blk_no, log->l_sectBBsize);
164 	nbblks = round_up(nbblks, log->l_sectBBsize);
165 	ASSERT(nbblks > 0);
166 
167 	error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
168 			BBTOB(nbblks), data, op);
169 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
170 		xfs_alert(log->l_mp,
171 			  "log recovery %s I/O error at daddr 0x%llx len %d error %d",
172 			  op == REQ_OP_WRITE ? "write" : "read",
173 			  blk_no, nbblks, error);
174 	}
175 	return error;
176 }
177 
178 STATIC int
179 xlog_bread_noalign(
180 	struct xlog	*log,
181 	xfs_daddr_t	blk_no,
182 	int		nbblks,
183 	char		*data)
184 {
185 	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
186 }
187 
188 STATIC int
189 xlog_bread(
190 	struct xlog	*log,
191 	xfs_daddr_t	blk_no,
192 	int		nbblks,
193 	char		*data,
194 	char		**offset)
195 {
196 	int		error;
197 
198 	error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
199 	if (!error)
200 		*offset = data + xlog_align(log, blk_no);
201 	return error;
202 }
203 
204 STATIC int
205 xlog_bwrite(
206 	struct xlog	*log,
207 	xfs_daddr_t	blk_no,
208 	int		nbblks,
209 	char		*data)
210 {
211 	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
212 }
213 
214 #ifdef DEBUG
215 /*
216  * dump debug superblock and log record information
217  */
218 STATIC void
219 xlog_header_check_dump(
220 	xfs_mount_t		*mp,
221 	xlog_rec_header_t	*head)
222 {
223 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
224 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
225 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
226 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
227 }
228 #else
229 #define xlog_header_check_dump(mp, head)
230 #endif
231 
232 /*
233  * check log record header for recovery
234  */
235 STATIC int
236 xlog_header_check_recover(
237 	xfs_mount_t		*mp,
238 	xlog_rec_header_t	*head)
239 {
240 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
241 
242 	/*
243 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
244 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
245 	 * a dirty log created in IRIX.
246 	 */
247 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
248 		xfs_warn(mp,
249 	"dirty log written in incompatible format - can't recover");
250 		xlog_header_check_dump(mp, head);
251 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
252 				 XFS_ERRLEVEL_HIGH, mp);
253 		return -EFSCORRUPTED;
254 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
255 		xfs_warn(mp,
256 	"dirty log entry has mismatched uuid - can't recover");
257 		xlog_header_check_dump(mp, head);
258 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
259 				 XFS_ERRLEVEL_HIGH, mp);
260 		return -EFSCORRUPTED;
261 	}
262 	return 0;
263 }
264 
265 /*
266  * read the head block of the log and check the header
267  */
268 STATIC int
269 xlog_header_check_mount(
270 	xfs_mount_t		*mp,
271 	xlog_rec_header_t	*head)
272 {
273 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
274 
275 	if (uuid_is_null(&head->h_fs_uuid)) {
276 		/*
277 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
278 		 * h_fs_uuid is null, we assume this log was last mounted
279 		 * by IRIX and continue.
280 		 */
281 		xfs_warn(mp, "null uuid in log - IRIX style log");
282 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
283 		xfs_warn(mp, "log has mismatched uuid - can't recover");
284 		xlog_header_check_dump(mp, head);
285 		XFS_ERROR_REPORT("xlog_header_check_mount",
286 				 XFS_ERRLEVEL_HIGH, mp);
287 		return -EFSCORRUPTED;
288 	}
289 	return 0;
290 }
291 
292 STATIC void
293 xlog_recover_iodone(
294 	struct xfs_buf	*bp)
295 {
296 	if (bp->b_error) {
297 		/*
298 		 * We're not going to bother about retrying
299 		 * this during recovery. One strike!
300 		 */
301 		if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) {
302 			xfs_buf_ioerror_alert(bp, __func__);
303 			xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
304 		}
305 	}
306 
307 	/*
308 	 * On v5 supers, a bli could be attached to update the metadata LSN.
309 	 * Clean it up.
310 	 */
311 	if (bp->b_log_item)
312 		xfs_buf_item_relse(bp);
313 	ASSERT(bp->b_log_item == NULL);
314 
315 	bp->b_iodone = NULL;
316 	xfs_buf_ioend(bp);
317 }
318 
319 /*
320  * This routine finds (to an approximation) the first block in the physical
321  * log which contains the given cycle.  It uses a binary search algorithm.
322  * Note that the algorithm can not be perfect because the disk will not
323  * necessarily be perfect.
324  */
325 STATIC int
326 xlog_find_cycle_start(
327 	struct xlog	*log,
328 	char		*buffer,
329 	xfs_daddr_t	first_blk,
330 	xfs_daddr_t	*last_blk,
331 	uint		cycle)
332 {
333 	char		*offset;
334 	xfs_daddr_t	mid_blk;
335 	xfs_daddr_t	end_blk;
336 	uint		mid_cycle;
337 	int		error;
338 
339 	end_blk = *last_blk;
340 	mid_blk = BLK_AVG(first_blk, end_blk);
341 	while (mid_blk != first_blk && mid_blk != end_blk) {
342 		error = xlog_bread(log, mid_blk, 1, buffer, &offset);
343 		if (error)
344 			return error;
345 		mid_cycle = xlog_get_cycle(offset);
346 		if (mid_cycle == cycle)
347 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
348 		else
349 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
350 		mid_blk = BLK_AVG(first_blk, end_blk);
351 	}
352 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
353 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
354 
355 	*last_blk = end_blk;
356 
357 	return 0;
358 }
359 
360 /*
361  * Check that a range of blocks does not contain stop_on_cycle_no.
362  * Fill in *new_blk with the block offset where such a block is
363  * found, or with -1 (an invalid block number) if there is no such
364  * block in the range.  The scan needs to occur from front to back
365  * and the pointer into the region must be updated since a later
366  * routine will need to perform another test.
367  */
368 STATIC int
369 xlog_find_verify_cycle(
370 	struct xlog	*log,
371 	xfs_daddr_t	start_blk,
372 	int		nbblks,
373 	uint		stop_on_cycle_no,
374 	xfs_daddr_t	*new_blk)
375 {
376 	xfs_daddr_t	i, j;
377 	uint		cycle;
378 	char		*buffer;
379 	xfs_daddr_t	bufblks;
380 	char		*buf = NULL;
381 	int		error = 0;
382 
383 	/*
384 	 * Greedily allocate a buffer big enough to handle the full
385 	 * range of basic blocks we'll be examining.  If that fails,
386 	 * try a smaller size.  We need to be able to read at least
387 	 * a log sector, or we're out of luck.
388 	 */
389 	bufblks = 1 << ffs(nbblks);
390 	while (bufblks > log->l_logBBsize)
391 		bufblks >>= 1;
392 	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
393 		bufblks >>= 1;
394 		if (bufblks < log->l_sectBBsize)
395 			return -ENOMEM;
396 	}
397 
398 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
399 		int	bcount;
400 
401 		bcount = min(bufblks, (start_blk + nbblks - i));
402 
403 		error = xlog_bread(log, i, bcount, buffer, &buf);
404 		if (error)
405 			goto out;
406 
407 		for (j = 0; j < bcount; j++) {
408 			cycle = xlog_get_cycle(buf);
409 			if (cycle == stop_on_cycle_no) {
410 				*new_blk = i+j;
411 				goto out;
412 			}
413 
414 			buf += BBSIZE;
415 		}
416 	}
417 
418 	*new_blk = -1;
419 
420 out:
421 	kmem_free(buffer);
422 	return error;
423 }
424 
425 /*
426  * Potentially backup over partial log record write.
427  *
428  * In the typical case, last_blk is the number of the block directly after
429  * a good log record.  Therefore, we subtract one to get the block number
430  * of the last block in the given buffer.  extra_bblks contains the number
431  * of blocks we would have read on a previous read.  This happens when the
432  * last log record is split over the end of the physical log.
433  *
434  * extra_bblks is the number of blocks potentially verified on a previous
435  * call to this routine.
436  */
437 STATIC int
438 xlog_find_verify_log_record(
439 	struct xlog		*log,
440 	xfs_daddr_t		start_blk,
441 	xfs_daddr_t		*last_blk,
442 	int			extra_bblks)
443 {
444 	xfs_daddr_t		i;
445 	char			*buffer;
446 	char			*offset = NULL;
447 	xlog_rec_header_t	*head = NULL;
448 	int			error = 0;
449 	int			smallmem = 0;
450 	int			num_blks = *last_blk - start_blk;
451 	int			xhdrs;
452 
453 	ASSERT(start_blk != 0 || *last_blk != start_blk);
454 
455 	buffer = xlog_alloc_buffer(log, num_blks);
456 	if (!buffer) {
457 		buffer = xlog_alloc_buffer(log, 1);
458 		if (!buffer)
459 			return -ENOMEM;
460 		smallmem = 1;
461 	} else {
462 		error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
463 		if (error)
464 			goto out;
465 		offset += ((num_blks - 1) << BBSHIFT);
466 	}
467 
468 	for (i = (*last_blk) - 1; i >= 0; i--) {
469 		if (i < start_blk) {
470 			/* valid log record not found */
471 			xfs_warn(log->l_mp,
472 		"Log inconsistent (didn't find previous header)");
473 			ASSERT(0);
474 			error = -EIO;
475 			goto out;
476 		}
477 
478 		if (smallmem) {
479 			error = xlog_bread(log, i, 1, buffer, &offset);
480 			if (error)
481 				goto out;
482 		}
483 
484 		head = (xlog_rec_header_t *)offset;
485 
486 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
487 			break;
488 
489 		if (!smallmem)
490 			offset -= BBSIZE;
491 	}
492 
493 	/*
494 	 * We hit the beginning of the physical log & still no header.  Return
495 	 * to caller.  If caller can handle a return of -1, then this routine
496 	 * will be called again for the end of the physical log.
497 	 */
498 	if (i == -1) {
499 		error = 1;
500 		goto out;
501 	}
502 
503 	/*
504 	 * We have the final block of the good log (the first block
505 	 * of the log record _before_ the head. So we check the uuid.
506 	 */
507 	if ((error = xlog_header_check_mount(log->l_mp, head)))
508 		goto out;
509 
510 	/*
511 	 * We may have found a log record header before we expected one.
512 	 * last_blk will be the 1st block # with a given cycle #.  We may end
513 	 * up reading an entire log record.  In this case, we don't want to
514 	 * reset last_blk.  Only when last_blk points in the middle of a log
515 	 * record do we update last_blk.
516 	 */
517 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
518 		uint	h_size = be32_to_cpu(head->h_size);
519 
520 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
521 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
522 			xhdrs++;
523 	} else {
524 		xhdrs = 1;
525 	}
526 
527 	if (*last_blk - i + extra_bblks !=
528 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
529 		*last_blk = i;
530 
531 out:
532 	kmem_free(buffer);
533 	return error;
534 }
535 
536 /*
537  * Head is defined to be the point of the log where the next log write
538  * could go.  This means that incomplete LR writes at the end are
539  * eliminated when calculating the head.  We aren't guaranteed that previous
540  * LR have complete transactions.  We only know that a cycle number of
541  * current cycle number -1 won't be present in the log if we start writing
542  * from our current block number.
543  *
544  * last_blk contains the block number of the first block with a given
545  * cycle number.
546  *
547  * Return: zero if normal, non-zero if error.
548  */
549 STATIC int
550 xlog_find_head(
551 	struct xlog	*log,
552 	xfs_daddr_t	*return_head_blk)
553 {
554 	char		*buffer;
555 	char		*offset;
556 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
557 	int		num_scan_bblks;
558 	uint		first_half_cycle, last_half_cycle;
559 	uint		stop_on_cycle;
560 	int		error, log_bbnum = log->l_logBBsize;
561 
562 	/* Is the end of the log device zeroed? */
563 	error = xlog_find_zeroed(log, &first_blk);
564 	if (error < 0) {
565 		xfs_warn(log->l_mp, "empty log check failed");
566 		return error;
567 	}
568 	if (error == 1) {
569 		*return_head_blk = first_blk;
570 
571 		/* Is the whole lot zeroed? */
572 		if (!first_blk) {
573 			/* Linux XFS shouldn't generate totally zeroed logs -
574 			 * mkfs etc write a dummy unmount record to a fresh
575 			 * log so we can store the uuid in there
576 			 */
577 			xfs_warn(log->l_mp, "totally zeroed log");
578 		}
579 
580 		return 0;
581 	}
582 
583 	first_blk = 0;			/* get cycle # of 1st block */
584 	buffer = xlog_alloc_buffer(log, 1);
585 	if (!buffer)
586 		return -ENOMEM;
587 
588 	error = xlog_bread(log, 0, 1, buffer, &offset);
589 	if (error)
590 		goto out_free_buffer;
591 
592 	first_half_cycle = xlog_get_cycle(offset);
593 
594 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
595 	error = xlog_bread(log, last_blk, 1, buffer, &offset);
596 	if (error)
597 		goto out_free_buffer;
598 
599 	last_half_cycle = xlog_get_cycle(offset);
600 	ASSERT(last_half_cycle != 0);
601 
602 	/*
603 	 * If the 1st half cycle number is equal to the last half cycle number,
604 	 * then the entire log is stamped with the same cycle number.  In this
605 	 * case, head_blk can't be set to zero (which makes sense).  The below
606 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
607 	 * we set it to log_bbnum which is an invalid block number, but this
608 	 * value makes the math correct.  If head_blk doesn't changed through
609 	 * all the tests below, *head_blk is set to zero at the very end rather
610 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
611 	 * in a circular file.
612 	 */
613 	if (first_half_cycle == last_half_cycle) {
614 		/*
615 		 * In this case we believe that the entire log should have
616 		 * cycle number last_half_cycle.  We need to scan backwards
617 		 * from the end verifying that there are no holes still
618 		 * containing last_half_cycle - 1.  If we find such a hole,
619 		 * then the start of that hole will be the new head.  The
620 		 * simple case looks like
621 		 *        x | x ... | x - 1 | x
622 		 * Another case that fits this picture would be
623 		 *        x | x + 1 | x ... | x
624 		 * In this case the head really is somewhere at the end of the
625 		 * log, as one of the latest writes at the beginning was
626 		 * incomplete.
627 		 * One more case is
628 		 *        x | x + 1 | x ... | x - 1 | x
629 		 * This is really the combination of the above two cases, and
630 		 * the head has to end up at the start of the x-1 hole at the
631 		 * end of the log.
632 		 *
633 		 * In the 256k log case, we will read from the beginning to the
634 		 * end of the log and search for cycle numbers equal to x-1.
635 		 * We don't worry about the x+1 blocks that we encounter,
636 		 * because we know that they cannot be the head since the log
637 		 * started with x.
638 		 */
639 		head_blk = log_bbnum;
640 		stop_on_cycle = last_half_cycle - 1;
641 	} else {
642 		/*
643 		 * In this case we want to find the first block with cycle
644 		 * number matching last_half_cycle.  We expect the log to be
645 		 * some variation on
646 		 *        x + 1 ... | x ... | x
647 		 * The first block with cycle number x (last_half_cycle) will
648 		 * be where the new head belongs.  First we do a binary search
649 		 * for the first occurrence of last_half_cycle.  The binary
650 		 * search may not be totally accurate, so then we scan back
651 		 * from there looking for occurrences of last_half_cycle before
652 		 * us.  If that backwards scan wraps around the beginning of
653 		 * the log, then we look for occurrences of last_half_cycle - 1
654 		 * at the end of the log.  The cases we're looking for look
655 		 * like
656 		 *                               v binary search stopped here
657 		 *        x + 1 ... | x | x + 1 | x ... | x
658 		 *                   ^ but we want to locate this spot
659 		 * or
660 		 *        <---------> less than scan distance
661 		 *        x + 1 ... | x ... | x - 1 | x
662 		 *                           ^ we want to locate this spot
663 		 */
664 		stop_on_cycle = last_half_cycle;
665 		error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
666 				last_half_cycle);
667 		if (error)
668 			goto out_free_buffer;
669 	}
670 
671 	/*
672 	 * Now validate the answer.  Scan back some number of maximum possible
673 	 * blocks and make sure each one has the expected cycle number.  The
674 	 * maximum is determined by the total possible amount of buffering
675 	 * in the in-core log.  The following number can be made tighter if
676 	 * we actually look at the block size of the filesystem.
677 	 */
678 	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
679 	if (head_blk >= num_scan_bblks) {
680 		/*
681 		 * We are guaranteed that the entire check can be performed
682 		 * in one buffer.
683 		 */
684 		start_blk = head_blk - num_scan_bblks;
685 		if ((error = xlog_find_verify_cycle(log,
686 						start_blk, num_scan_bblks,
687 						stop_on_cycle, &new_blk)))
688 			goto out_free_buffer;
689 		if (new_blk != -1)
690 			head_blk = new_blk;
691 	} else {		/* need to read 2 parts of log */
692 		/*
693 		 * We are going to scan backwards in the log in two parts.
694 		 * First we scan the physical end of the log.  In this part
695 		 * of the log, we are looking for blocks with cycle number
696 		 * last_half_cycle - 1.
697 		 * If we find one, then we know that the log starts there, as
698 		 * we've found a hole that didn't get written in going around
699 		 * the end of the physical log.  The simple case for this is
700 		 *        x + 1 ... | x ... | x - 1 | x
701 		 *        <---------> less than scan distance
702 		 * If all of the blocks at the end of the log have cycle number
703 		 * last_half_cycle, then we check the blocks at the start of
704 		 * the log looking for occurrences of last_half_cycle.  If we
705 		 * find one, then our current estimate for the location of the
706 		 * first occurrence of last_half_cycle is wrong and we move
707 		 * back to the hole we've found.  This case looks like
708 		 *        x + 1 ... | x | x + 1 | x ...
709 		 *                               ^ binary search stopped here
710 		 * Another case we need to handle that only occurs in 256k
711 		 * logs is
712 		 *        x + 1 ... | x ... | x+1 | x ...
713 		 *                   ^ binary search stops here
714 		 * In a 256k log, the scan at the end of the log will see the
715 		 * x + 1 blocks.  We need to skip past those since that is
716 		 * certainly not the head of the log.  By searching for
717 		 * last_half_cycle-1 we accomplish that.
718 		 */
719 		ASSERT(head_blk <= INT_MAX &&
720 			(xfs_daddr_t) num_scan_bblks >= head_blk);
721 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
722 		if ((error = xlog_find_verify_cycle(log, start_blk,
723 					num_scan_bblks - (int)head_blk,
724 					(stop_on_cycle - 1), &new_blk)))
725 			goto out_free_buffer;
726 		if (new_blk != -1) {
727 			head_blk = new_blk;
728 			goto validate_head;
729 		}
730 
731 		/*
732 		 * Scan beginning of log now.  The last part of the physical
733 		 * log is good.  This scan needs to verify that it doesn't find
734 		 * the last_half_cycle.
735 		 */
736 		start_blk = 0;
737 		ASSERT(head_blk <= INT_MAX);
738 		if ((error = xlog_find_verify_cycle(log,
739 					start_blk, (int)head_blk,
740 					stop_on_cycle, &new_blk)))
741 			goto out_free_buffer;
742 		if (new_blk != -1)
743 			head_blk = new_blk;
744 	}
745 
746 validate_head:
747 	/*
748 	 * Now we need to make sure head_blk is not pointing to a block in
749 	 * the middle of a log record.
750 	 */
751 	num_scan_bblks = XLOG_REC_SHIFT(log);
752 	if (head_blk >= num_scan_bblks) {
753 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
754 
755 		/* start ptr at last block ptr before head_blk */
756 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
757 		if (error == 1)
758 			error = -EIO;
759 		if (error)
760 			goto out_free_buffer;
761 	} else {
762 		start_blk = 0;
763 		ASSERT(head_blk <= INT_MAX);
764 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
765 		if (error < 0)
766 			goto out_free_buffer;
767 		if (error == 1) {
768 			/* We hit the beginning of the log during our search */
769 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
770 			new_blk = log_bbnum;
771 			ASSERT(start_blk <= INT_MAX &&
772 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
773 			ASSERT(head_blk <= INT_MAX);
774 			error = xlog_find_verify_log_record(log, start_blk,
775 							&new_blk, (int)head_blk);
776 			if (error == 1)
777 				error = -EIO;
778 			if (error)
779 				goto out_free_buffer;
780 			if (new_blk != log_bbnum)
781 				head_blk = new_blk;
782 		} else if (error)
783 			goto out_free_buffer;
784 	}
785 
786 	kmem_free(buffer);
787 	if (head_blk == log_bbnum)
788 		*return_head_blk = 0;
789 	else
790 		*return_head_blk = head_blk;
791 	/*
792 	 * When returning here, we have a good block number.  Bad block
793 	 * means that during a previous crash, we didn't have a clean break
794 	 * from cycle number N to cycle number N-1.  In this case, we need
795 	 * to find the first block with cycle number N-1.
796 	 */
797 	return 0;
798 
799 out_free_buffer:
800 	kmem_free(buffer);
801 	if (error)
802 		xfs_warn(log->l_mp, "failed to find log head");
803 	return error;
804 }
805 
806 /*
807  * Seek backwards in the log for log record headers.
808  *
809  * Given a starting log block, walk backwards until we find the provided number
810  * of records or hit the provided tail block. The return value is the number of
811  * records encountered or a negative error code. The log block and buffer
812  * pointer of the last record seen are returned in rblk and rhead respectively.
813  */
814 STATIC int
815 xlog_rseek_logrec_hdr(
816 	struct xlog		*log,
817 	xfs_daddr_t		head_blk,
818 	xfs_daddr_t		tail_blk,
819 	int			count,
820 	char			*buffer,
821 	xfs_daddr_t		*rblk,
822 	struct xlog_rec_header	**rhead,
823 	bool			*wrapped)
824 {
825 	int			i;
826 	int			error;
827 	int			found = 0;
828 	char			*offset = NULL;
829 	xfs_daddr_t		end_blk;
830 
831 	*wrapped = false;
832 
833 	/*
834 	 * Walk backwards from the head block until we hit the tail or the first
835 	 * block in the log.
836 	 */
837 	end_blk = head_blk > tail_blk ? tail_blk : 0;
838 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
839 		error = xlog_bread(log, i, 1, buffer, &offset);
840 		if (error)
841 			goto out_error;
842 
843 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
844 			*rblk = i;
845 			*rhead = (struct xlog_rec_header *) offset;
846 			if (++found == count)
847 				break;
848 		}
849 	}
850 
851 	/*
852 	 * If we haven't hit the tail block or the log record header count,
853 	 * start looking again from the end of the physical log. Note that
854 	 * callers can pass head == tail if the tail is not yet known.
855 	 */
856 	if (tail_blk >= head_blk && found != count) {
857 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
858 			error = xlog_bread(log, i, 1, buffer, &offset);
859 			if (error)
860 				goto out_error;
861 
862 			if (*(__be32 *)offset ==
863 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
864 				*wrapped = true;
865 				*rblk = i;
866 				*rhead = (struct xlog_rec_header *) offset;
867 				if (++found == count)
868 					break;
869 			}
870 		}
871 	}
872 
873 	return found;
874 
875 out_error:
876 	return error;
877 }
878 
879 /*
880  * Seek forward in the log for log record headers.
881  *
882  * Given head and tail blocks, walk forward from the tail block until we find
883  * the provided number of records or hit the head block. The return value is the
884  * number of records encountered or a negative error code. The log block and
885  * buffer pointer of the last record seen are returned in rblk and rhead
886  * respectively.
887  */
888 STATIC int
889 xlog_seek_logrec_hdr(
890 	struct xlog		*log,
891 	xfs_daddr_t		head_blk,
892 	xfs_daddr_t		tail_blk,
893 	int			count,
894 	char			*buffer,
895 	xfs_daddr_t		*rblk,
896 	struct xlog_rec_header	**rhead,
897 	bool			*wrapped)
898 {
899 	int			i;
900 	int			error;
901 	int			found = 0;
902 	char			*offset = NULL;
903 	xfs_daddr_t		end_blk;
904 
905 	*wrapped = false;
906 
907 	/*
908 	 * Walk forward from the tail block until we hit the head or the last
909 	 * block in the log.
910 	 */
911 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
912 	for (i = (int) tail_blk; i <= end_blk; i++) {
913 		error = xlog_bread(log, i, 1, buffer, &offset);
914 		if (error)
915 			goto out_error;
916 
917 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
918 			*rblk = i;
919 			*rhead = (struct xlog_rec_header *) offset;
920 			if (++found == count)
921 				break;
922 		}
923 	}
924 
925 	/*
926 	 * If we haven't hit the head block or the log record header count,
927 	 * start looking again from the start of the physical log.
928 	 */
929 	if (tail_blk > head_blk && found != count) {
930 		for (i = 0; i < (int) head_blk; i++) {
931 			error = xlog_bread(log, i, 1, buffer, &offset);
932 			if (error)
933 				goto out_error;
934 
935 			if (*(__be32 *)offset ==
936 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
937 				*wrapped = true;
938 				*rblk = i;
939 				*rhead = (struct xlog_rec_header *) offset;
940 				if (++found == count)
941 					break;
942 			}
943 		}
944 	}
945 
946 	return found;
947 
948 out_error:
949 	return error;
950 }
951 
952 /*
953  * Calculate distance from head to tail (i.e., unused space in the log).
954  */
955 static inline int
956 xlog_tail_distance(
957 	struct xlog	*log,
958 	xfs_daddr_t	head_blk,
959 	xfs_daddr_t	tail_blk)
960 {
961 	if (head_blk < tail_blk)
962 		return tail_blk - head_blk;
963 
964 	return tail_blk + (log->l_logBBsize - head_blk);
965 }
966 
967 /*
968  * Verify the log tail. This is particularly important when torn or incomplete
969  * writes have been detected near the front of the log and the head has been
970  * walked back accordingly.
971  *
972  * We also have to handle the case where the tail was pinned and the head
973  * blocked behind the tail right before a crash. If the tail had been pushed
974  * immediately prior to the crash and the subsequent checkpoint was only
975  * partially written, it's possible it overwrote the last referenced tail in the
976  * log with garbage. This is not a coherency problem because the tail must have
977  * been pushed before it can be overwritten, but appears as log corruption to
978  * recovery because we have no way to know the tail was updated if the
979  * subsequent checkpoint didn't write successfully.
980  *
981  * Therefore, CRC check the log from tail to head. If a failure occurs and the
982  * offending record is within max iclog bufs from the head, walk the tail
983  * forward and retry until a valid tail is found or corruption is detected out
984  * of the range of a possible overwrite.
985  */
986 STATIC int
987 xlog_verify_tail(
988 	struct xlog		*log,
989 	xfs_daddr_t		head_blk,
990 	xfs_daddr_t		*tail_blk,
991 	int			hsize)
992 {
993 	struct xlog_rec_header	*thead;
994 	char			*buffer;
995 	xfs_daddr_t		first_bad;
996 	int			error = 0;
997 	bool			wrapped;
998 	xfs_daddr_t		tmp_tail;
999 	xfs_daddr_t		orig_tail = *tail_blk;
1000 
1001 	buffer = xlog_alloc_buffer(log, 1);
1002 	if (!buffer)
1003 		return -ENOMEM;
1004 
1005 	/*
1006 	 * Make sure the tail points to a record (returns positive count on
1007 	 * success).
1008 	 */
1009 	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
1010 			&tmp_tail, &thead, &wrapped);
1011 	if (error < 0)
1012 		goto out;
1013 	if (*tail_blk != tmp_tail)
1014 		*tail_blk = tmp_tail;
1015 
1016 	/*
1017 	 * Run a CRC check from the tail to the head. We can't just check
1018 	 * MAX_ICLOGS records past the tail because the tail may point to stale
1019 	 * blocks cleared during the search for the head/tail. These blocks are
1020 	 * overwritten with zero-length records and thus record count is not a
1021 	 * reliable indicator of the iclog state before a crash.
1022 	 */
1023 	first_bad = 0;
1024 	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1025 				      XLOG_RECOVER_CRCPASS, &first_bad);
1026 	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1027 		int	tail_distance;
1028 
1029 		/*
1030 		 * Is corruption within range of the head? If so, retry from
1031 		 * the next record. Otherwise return an error.
1032 		 */
1033 		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1034 		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1035 			break;
1036 
1037 		/* skip to the next record; returns positive count on success */
1038 		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
1039 				buffer, &tmp_tail, &thead, &wrapped);
1040 		if (error < 0)
1041 			goto out;
1042 
1043 		*tail_blk = tmp_tail;
1044 		first_bad = 0;
1045 		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1046 					      XLOG_RECOVER_CRCPASS, &first_bad);
1047 	}
1048 
1049 	if (!error && *tail_blk != orig_tail)
1050 		xfs_warn(log->l_mp,
1051 		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1052 			 orig_tail, *tail_blk);
1053 out:
1054 	kmem_free(buffer);
1055 	return error;
1056 }
1057 
1058 /*
1059  * Detect and trim torn writes from the head of the log.
1060  *
1061  * Storage without sector atomicity guarantees can result in torn writes in the
1062  * log in the event of a crash. Our only means to detect this scenario is via
1063  * CRC verification. While we can't always be certain that CRC verification
1064  * failure is due to a torn write vs. an unrelated corruption, we do know that
1065  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1066  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1067  * the log and treat failures in this range as torn writes as a matter of
1068  * policy. In the event of CRC failure, the head is walked back to the last good
1069  * record in the log and the tail is updated from that record and verified.
1070  */
1071 STATIC int
1072 xlog_verify_head(
1073 	struct xlog		*log,
1074 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1075 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1076 	char			*buffer,
1077 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1078 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1079 	bool			*wrapped)	/* last rec. wraps phys. log */
1080 {
1081 	struct xlog_rec_header	*tmp_rhead;
1082 	char			*tmp_buffer;
1083 	xfs_daddr_t		first_bad;
1084 	xfs_daddr_t		tmp_rhead_blk;
1085 	int			found;
1086 	int			error;
1087 	bool			tmp_wrapped;
1088 
1089 	/*
1090 	 * Check the head of the log for torn writes. Search backwards from the
1091 	 * head until we hit the tail or the maximum number of log record I/Os
1092 	 * that could have been in flight at one time. Use a temporary buffer so
1093 	 * we don't trash the rhead/buffer pointers from the caller.
1094 	 */
1095 	tmp_buffer = xlog_alloc_buffer(log, 1);
1096 	if (!tmp_buffer)
1097 		return -ENOMEM;
1098 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1099 				      XLOG_MAX_ICLOGS, tmp_buffer,
1100 				      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1101 	kmem_free(tmp_buffer);
1102 	if (error < 0)
1103 		return error;
1104 
1105 	/*
1106 	 * Now run a CRC verification pass over the records starting at the
1107 	 * block found above to the current head. If a CRC failure occurs, the
1108 	 * log block of the first bad record is saved in first_bad.
1109 	 */
1110 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1111 				      XLOG_RECOVER_CRCPASS, &first_bad);
1112 	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1113 		/*
1114 		 * We've hit a potential torn write. Reset the error and warn
1115 		 * about it.
1116 		 */
1117 		error = 0;
1118 		xfs_warn(log->l_mp,
1119 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1120 			 first_bad, *head_blk);
1121 
1122 		/*
1123 		 * Get the header block and buffer pointer for the last good
1124 		 * record before the bad record.
1125 		 *
1126 		 * Note that xlog_find_tail() clears the blocks at the new head
1127 		 * (i.e., the records with invalid CRC) if the cycle number
1128 		 * matches the the current cycle.
1129 		 */
1130 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1131 				buffer, rhead_blk, rhead, wrapped);
1132 		if (found < 0)
1133 			return found;
1134 		if (found == 0)		/* XXX: right thing to do here? */
1135 			return -EIO;
1136 
1137 		/*
1138 		 * Reset the head block to the starting block of the first bad
1139 		 * log record and set the tail block based on the last good
1140 		 * record.
1141 		 *
1142 		 * Bail out if the updated head/tail match as this indicates
1143 		 * possible corruption outside of the acceptable
1144 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1145 		 */
1146 		*head_blk = first_bad;
1147 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1148 		if (*head_blk == *tail_blk) {
1149 			ASSERT(0);
1150 			return 0;
1151 		}
1152 	}
1153 	if (error)
1154 		return error;
1155 
1156 	return xlog_verify_tail(log, *head_blk, tail_blk,
1157 				be32_to_cpu((*rhead)->h_size));
1158 }
1159 
1160 /*
1161  * We need to make sure we handle log wrapping properly, so we can't use the
1162  * calculated logbno directly. Make sure it wraps to the correct bno inside the
1163  * log.
1164  *
1165  * The log is limited to 32 bit sizes, so we use the appropriate modulus
1166  * operation here and cast it back to a 64 bit daddr on return.
1167  */
1168 static inline xfs_daddr_t
1169 xlog_wrap_logbno(
1170 	struct xlog		*log,
1171 	xfs_daddr_t		bno)
1172 {
1173 	int			mod;
1174 
1175 	div_s64_rem(bno, log->l_logBBsize, &mod);
1176 	return mod;
1177 }
1178 
1179 /*
1180  * Check whether the head of the log points to an unmount record. In other
1181  * words, determine whether the log is clean. If so, update the in-core state
1182  * appropriately.
1183  */
1184 static int
1185 xlog_check_unmount_rec(
1186 	struct xlog		*log,
1187 	xfs_daddr_t		*head_blk,
1188 	xfs_daddr_t		*tail_blk,
1189 	struct xlog_rec_header	*rhead,
1190 	xfs_daddr_t		rhead_blk,
1191 	char			*buffer,
1192 	bool			*clean)
1193 {
1194 	struct xlog_op_header	*op_head;
1195 	xfs_daddr_t		umount_data_blk;
1196 	xfs_daddr_t		after_umount_blk;
1197 	int			hblks;
1198 	int			error;
1199 	char			*offset;
1200 
1201 	*clean = false;
1202 
1203 	/*
1204 	 * Look for unmount record. If we find it, then we know there was a
1205 	 * clean unmount. Since 'i' could be the last block in the physical
1206 	 * log, we convert to a log block before comparing to the head_blk.
1207 	 *
1208 	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1209 	 * below. We won't want to clear the unmount record if there is one, so
1210 	 * we pass the lsn of the unmount record rather than the block after it.
1211 	 */
1212 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1213 		int	h_size = be32_to_cpu(rhead->h_size);
1214 		int	h_version = be32_to_cpu(rhead->h_version);
1215 
1216 		if ((h_version & XLOG_VERSION_2) &&
1217 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1218 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1219 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1220 				hblks++;
1221 		} else {
1222 			hblks = 1;
1223 		}
1224 	} else {
1225 		hblks = 1;
1226 	}
1227 
1228 	after_umount_blk = xlog_wrap_logbno(log,
1229 			rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1230 
1231 	if (*head_blk == after_umount_blk &&
1232 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1233 		umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1234 		error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1235 		if (error)
1236 			return error;
1237 
1238 		op_head = (struct xlog_op_header *)offset;
1239 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1240 			/*
1241 			 * Set tail and last sync so that newly written log
1242 			 * records will point recovery to after the current
1243 			 * unmount record.
1244 			 */
1245 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1246 					log->l_curr_cycle, after_umount_blk);
1247 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1248 					log->l_curr_cycle, after_umount_blk);
1249 			*tail_blk = after_umount_blk;
1250 
1251 			*clean = true;
1252 		}
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 static void
1259 xlog_set_state(
1260 	struct xlog		*log,
1261 	xfs_daddr_t		head_blk,
1262 	struct xlog_rec_header	*rhead,
1263 	xfs_daddr_t		rhead_blk,
1264 	bool			bump_cycle)
1265 {
1266 	/*
1267 	 * Reset log values according to the state of the log when we
1268 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1269 	 * one because the next write starts a new cycle rather than
1270 	 * continuing the cycle of the last good log record.  At this
1271 	 * point we have guaranteed that all partial log records have been
1272 	 * accounted for.  Therefore, we know that the last good log record
1273 	 * written was complete and ended exactly on the end boundary
1274 	 * of the physical log.
1275 	 */
1276 	log->l_prev_block = rhead_blk;
1277 	log->l_curr_block = (int)head_blk;
1278 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1279 	if (bump_cycle)
1280 		log->l_curr_cycle++;
1281 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1282 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1283 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1284 					BBTOB(log->l_curr_block));
1285 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1286 					BBTOB(log->l_curr_block));
1287 }
1288 
1289 /*
1290  * Find the sync block number or the tail of the log.
1291  *
1292  * This will be the block number of the last record to have its
1293  * associated buffers synced to disk.  Every log record header has
1294  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1295  * to get a sync block number.  The only concern is to figure out which
1296  * log record header to believe.
1297  *
1298  * The following algorithm uses the log record header with the largest
1299  * lsn.  The entire log record does not need to be valid.  We only care
1300  * that the header is valid.
1301  *
1302  * We could speed up search by using current head_blk buffer, but it is not
1303  * available.
1304  */
1305 STATIC int
1306 xlog_find_tail(
1307 	struct xlog		*log,
1308 	xfs_daddr_t		*head_blk,
1309 	xfs_daddr_t		*tail_blk)
1310 {
1311 	xlog_rec_header_t	*rhead;
1312 	char			*offset = NULL;
1313 	char			*buffer;
1314 	int			error;
1315 	xfs_daddr_t		rhead_blk;
1316 	xfs_lsn_t		tail_lsn;
1317 	bool			wrapped = false;
1318 	bool			clean = false;
1319 
1320 	/*
1321 	 * Find previous log record
1322 	 */
1323 	if ((error = xlog_find_head(log, head_blk)))
1324 		return error;
1325 	ASSERT(*head_blk < INT_MAX);
1326 
1327 	buffer = xlog_alloc_buffer(log, 1);
1328 	if (!buffer)
1329 		return -ENOMEM;
1330 	if (*head_blk == 0) {				/* special case */
1331 		error = xlog_bread(log, 0, 1, buffer, &offset);
1332 		if (error)
1333 			goto done;
1334 
1335 		if (xlog_get_cycle(offset) == 0) {
1336 			*tail_blk = 0;
1337 			/* leave all other log inited values alone */
1338 			goto done;
1339 		}
1340 	}
1341 
1342 	/*
1343 	 * Search backwards through the log looking for the log record header
1344 	 * block. This wraps all the way back around to the head so something is
1345 	 * seriously wrong if we can't find it.
1346 	 */
1347 	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1348 				      &rhead_blk, &rhead, &wrapped);
1349 	if (error < 0)
1350 		return error;
1351 	if (!error) {
1352 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1353 		return -EIO;
1354 	}
1355 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1356 
1357 	/*
1358 	 * Set the log state based on the current head record.
1359 	 */
1360 	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1361 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1362 
1363 	/*
1364 	 * Look for an unmount record at the head of the log. This sets the log
1365 	 * state to determine whether recovery is necessary.
1366 	 */
1367 	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1368 				       rhead_blk, buffer, &clean);
1369 	if (error)
1370 		goto done;
1371 
1372 	/*
1373 	 * Verify the log head if the log is not clean (e.g., we have anything
1374 	 * but an unmount record at the head). This uses CRC verification to
1375 	 * detect and trim torn writes. If discovered, CRC failures are
1376 	 * considered torn writes and the log head is trimmed accordingly.
1377 	 *
1378 	 * Note that we can only run CRC verification when the log is dirty
1379 	 * because there's no guarantee that the log data behind an unmount
1380 	 * record is compatible with the current architecture.
1381 	 */
1382 	if (!clean) {
1383 		xfs_daddr_t	orig_head = *head_blk;
1384 
1385 		error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1386 					 &rhead_blk, &rhead, &wrapped);
1387 		if (error)
1388 			goto done;
1389 
1390 		/* update in-core state again if the head changed */
1391 		if (*head_blk != orig_head) {
1392 			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1393 				       wrapped);
1394 			tail_lsn = atomic64_read(&log->l_tail_lsn);
1395 			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1396 						       rhead, rhead_blk, buffer,
1397 						       &clean);
1398 			if (error)
1399 				goto done;
1400 		}
1401 	}
1402 
1403 	/*
1404 	 * Note that the unmount was clean. If the unmount was not clean, we
1405 	 * need to know this to rebuild the superblock counters from the perag
1406 	 * headers if we have a filesystem using non-persistent counters.
1407 	 */
1408 	if (clean)
1409 		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1410 
1411 	/*
1412 	 * Make sure that there are no blocks in front of the head
1413 	 * with the same cycle number as the head.  This can happen
1414 	 * because we allow multiple outstanding log writes concurrently,
1415 	 * and the later writes might make it out before earlier ones.
1416 	 *
1417 	 * We use the lsn from before modifying it so that we'll never
1418 	 * overwrite the unmount record after a clean unmount.
1419 	 *
1420 	 * Do this only if we are going to recover the filesystem
1421 	 *
1422 	 * NOTE: This used to say "if (!readonly)"
1423 	 * However on Linux, we can & do recover a read-only filesystem.
1424 	 * We only skip recovery if NORECOVERY is specified on mount,
1425 	 * in which case we would not be here.
1426 	 *
1427 	 * But... if the -device- itself is readonly, just skip this.
1428 	 * We can't recover this device anyway, so it won't matter.
1429 	 */
1430 	if (!xfs_readonly_buftarg(log->l_targ))
1431 		error = xlog_clear_stale_blocks(log, tail_lsn);
1432 
1433 done:
1434 	kmem_free(buffer);
1435 
1436 	if (error)
1437 		xfs_warn(log->l_mp, "failed to locate log tail");
1438 	return error;
1439 }
1440 
1441 /*
1442  * Is the log zeroed at all?
1443  *
1444  * The last binary search should be changed to perform an X block read
1445  * once X becomes small enough.  You can then search linearly through
1446  * the X blocks.  This will cut down on the number of reads we need to do.
1447  *
1448  * If the log is partially zeroed, this routine will pass back the blkno
1449  * of the first block with cycle number 0.  It won't have a complete LR
1450  * preceding it.
1451  *
1452  * Return:
1453  *	0  => the log is completely written to
1454  *	1 => use *blk_no as the first block of the log
1455  *	<0 => error has occurred
1456  */
1457 STATIC int
1458 xlog_find_zeroed(
1459 	struct xlog	*log,
1460 	xfs_daddr_t	*blk_no)
1461 {
1462 	char		*buffer;
1463 	char		*offset;
1464 	uint	        first_cycle, last_cycle;
1465 	xfs_daddr_t	new_blk, last_blk, start_blk;
1466 	xfs_daddr_t     num_scan_bblks;
1467 	int	        error, log_bbnum = log->l_logBBsize;
1468 
1469 	*blk_no = 0;
1470 
1471 	/* check totally zeroed log */
1472 	buffer = xlog_alloc_buffer(log, 1);
1473 	if (!buffer)
1474 		return -ENOMEM;
1475 	error = xlog_bread(log, 0, 1, buffer, &offset);
1476 	if (error)
1477 		goto out_free_buffer;
1478 
1479 	first_cycle = xlog_get_cycle(offset);
1480 	if (first_cycle == 0) {		/* completely zeroed log */
1481 		*blk_no = 0;
1482 		kmem_free(buffer);
1483 		return 1;
1484 	}
1485 
1486 	/* check partially zeroed log */
1487 	error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1488 	if (error)
1489 		goto out_free_buffer;
1490 
1491 	last_cycle = xlog_get_cycle(offset);
1492 	if (last_cycle != 0) {		/* log completely written to */
1493 		kmem_free(buffer);
1494 		return 0;
1495 	}
1496 
1497 	/* we have a partially zeroed log */
1498 	last_blk = log_bbnum-1;
1499 	error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1500 	if (error)
1501 		goto out_free_buffer;
1502 
1503 	/*
1504 	 * Validate the answer.  Because there is no way to guarantee that
1505 	 * the entire log is made up of log records which are the same size,
1506 	 * we scan over the defined maximum blocks.  At this point, the maximum
1507 	 * is not chosen to mean anything special.   XXXmiken
1508 	 */
1509 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1510 	ASSERT(num_scan_bblks <= INT_MAX);
1511 
1512 	if (last_blk < num_scan_bblks)
1513 		num_scan_bblks = last_blk;
1514 	start_blk = last_blk - num_scan_bblks;
1515 
1516 	/*
1517 	 * We search for any instances of cycle number 0 that occur before
1518 	 * our current estimate of the head.  What we're trying to detect is
1519 	 *        1 ... | 0 | 1 | 0...
1520 	 *                       ^ binary search ends here
1521 	 */
1522 	if ((error = xlog_find_verify_cycle(log, start_blk,
1523 					 (int)num_scan_bblks, 0, &new_blk)))
1524 		goto out_free_buffer;
1525 	if (new_blk != -1)
1526 		last_blk = new_blk;
1527 
1528 	/*
1529 	 * Potentially backup over partial log record write.  We don't need
1530 	 * to search the end of the log because we know it is zero.
1531 	 */
1532 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1533 	if (error == 1)
1534 		error = -EIO;
1535 	if (error)
1536 		goto out_free_buffer;
1537 
1538 	*blk_no = last_blk;
1539 out_free_buffer:
1540 	kmem_free(buffer);
1541 	if (error)
1542 		return error;
1543 	return 1;
1544 }
1545 
1546 /*
1547  * These are simple subroutines used by xlog_clear_stale_blocks() below
1548  * to initialize a buffer full of empty log record headers and write
1549  * them into the log.
1550  */
1551 STATIC void
1552 xlog_add_record(
1553 	struct xlog		*log,
1554 	char			*buf,
1555 	int			cycle,
1556 	int			block,
1557 	int			tail_cycle,
1558 	int			tail_block)
1559 {
1560 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1561 
1562 	memset(buf, 0, BBSIZE);
1563 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1564 	recp->h_cycle = cpu_to_be32(cycle);
1565 	recp->h_version = cpu_to_be32(
1566 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1567 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1568 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1569 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1570 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1571 }
1572 
1573 STATIC int
1574 xlog_write_log_records(
1575 	struct xlog	*log,
1576 	int		cycle,
1577 	int		start_block,
1578 	int		blocks,
1579 	int		tail_cycle,
1580 	int		tail_block)
1581 {
1582 	char		*offset;
1583 	char		*buffer;
1584 	int		balign, ealign;
1585 	int		sectbb = log->l_sectBBsize;
1586 	int		end_block = start_block + blocks;
1587 	int		bufblks;
1588 	int		error = 0;
1589 	int		i, j = 0;
1590 
1591 	/*
1592 	 * Greedily allocate a buffer big enough to handle the full
1593 	 * range of basic blocks to be written.  If that fails, try
1594 	 * a smaller size.  We need to be able to write at least a
1595 	 * log sector, or we're out of luck.
1596 	 */
1597 	bufblks = 1 << ffs(blocks);
1598 	while (bufblks > log->l_logBBsize)
1599 		bufblks >>= 1;
1600 	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1601 		bufblks >>= 1;
1602 		if (bufblks < sectbb)
1603 			return -ENOMEM;
1604 	}
1605 
1606 	/* We may need to do a read at the start to fill in part of
1607 	 * the buffer in the starting sector not covered by the first
1608 	 * write below.
1609 	 */
1610 	balign = round_down(start_block, sectbb);
1611 	if (balign != start_block) {
1612 		error = xlog_bread_noalign(log, start_block, 1, buffer);
1613 		if (error)
1614 			goto out_free_buffer;
1615 
1616 		j = start_block - balign;
1617 	}
1618 
1619 	for (i = start_block; i < end_block; i += bufblks) {
1620 		int		bcount, endcount;
1621 
1622 		bcount = min(bufblks, end_block - start_block);
1623 		endcount = bcount - j;
1624 
1625 		/* We may need to do a read at the end to fill in part of
1626 		 * the buffer in the final sector not covered by the write.
1627 		 * If this is the same sector as the above read, skip it.
1628 		 */
1629 		ealign = round_down(end_block, sectbb);
1630 		if (j == 0 && (start_block + endcount > ealign)) {
1631 			error = xlog_bread_noalign(log, ealign, sectbb,
1632 					buffer + BBTOB(ealign - start_block));
1633 			if (error)
1634 				break;
1635 
1636 		}
1637 
1638 		offset = buffer + xlog_align(log, start_block);
1639 		for (; j < endcount; j++) {
1640 			xlog_add_record(log, offset, cycle, i+j,
1641 					tail_cycle, tail_block);
1642 			offset += BBSIZE;
1643 		}
1644 		error = xlog_bwrite(log, start_block, endcount, buffer);
1645 		if (error)
1646 			break;
1647 		start_block += endcount;
1648 		j = 0;
1649 	}
1650 
1651 out_free_buffer:
1652 	kmem_free(buffer);
1653 	return error;
1654 }
1655 
1656 /*
1657  * This routine is called to blow away any incomplete log writes out
1658  * in front of the log head.  We do this so that we won't become confused
1659  * if we come up, write only a little bit more, and then crash again.
1660  * If we leave the partial log records out there, this situation could
1661  * cause us to think those partial writes are valid blocks since they
1662  * have the current cycle number.  We get rid of them by overwriting them
1663  * with empty log records with the old cycle number rather than the
1664  * current one.
1665  *
1666  * The tail lsn is passed in rather than taken from
1667  * the log so that we will not write over the unmount record after a
1668  * clean unmount in a 512 block log.  Doing so would leave the log without
1669  * any valid log records in it until a new one was written.  If we crashed
1670  * during that time we would not be able to recover.
1671  */
1672 STATIC int
1673 xlog_clear_stale_blocks(
1674 	struct xlog	*log,
1675 	xfs_lsn_t	tail_lsn)
1676 {
1677 	int		tail_cycle, head_cycle;
1678 	int		tail_block, head_block;
1679 	int		tail_distance, max_distance;
1680 	int		distance;
1681 	int		error;
1682 
1683 	tail_cycle = CYCLE_LSN(tail_lsn);
1684 	tail_block = BLOCK_LSN(tail_lsn);
1685 	head_cycle = log->l_curr_cycle;
1686 	head_block = log->l_curr_block;
1687 
1688 	/*
1689 	 * Figure out the distance between the new head of the log
1690 	 * and the tail.  We want to write over any blocks beyond the
1691 	 * head that we may have written just before the crash, but
1692 	 * we don't want to overwrite the tail of the log.
1693 	 */
1694 	if (head_cycle == tail_cycle) {
1695 		/*
1696 		 * The tail is behind the head in the physical log,
1697 		 * so the distance from the head to the tail is the
1698 		 * distance from the head to the end of the log plus
1699 		 * the distance from the beginning of the log to the
1700 		 * tail.
1701 		 */
1702 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1703 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1704 					 XFS_ERRLEVEL_LOW, log->l_mp);
1705 			return -EFSCORRUPTED;
1706 		}
1707 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1708 	} else {
1709 		/*
1710 		 * The head is behind the tail in the physical log,
1711 		 * so the distance from the head to the tail is just
1712 		 * the tail block minus the head block.
1713 		 */
1714 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1715 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1716 					 XFS_ERRLEVEL_LOW, log->l_mp);
1717 			return -EFSCORRUPTED;
1718 		}
1719 		tail_distance = tail_block - head_block;
1720 	}
1721 
1722 	/*
1723 	 * If the head is right up against the tail, we can't clear
1724 	 * anything.
1725 	 */
1726 	if (tail_distance <= 0) {
1727 		ASSERT(tail_distance == 0);
1728 		return 0;
1729 	}
1730 
1731 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1732 	/*
1733 	 * Take the smaller of the maximum amount of outstanding I/O
1734 	 * we could have and the distance to the tail to clear out.
1735 	 * We take the smaller so that we don't overwrite the tail and
1736 	 * we don't waste all day writing from the head to the tail
1737 	 * for no reason.
1738 	 */
1739 	max_distance = min(max_distance, tail_distance);
1740 
1741 	if ((head_block + max_distance) <= log->l_logBBsize) {
1742 		/*
1743 		 * We can stomp all the blocks we need to without
1744 		 * wrapping around the end of the log.  Just do it
1745 		 * in a single write.  Use the cycle number of the
1746 		 * current cycle minus one so that the log will look like:
1747 		 *     n ... | n - 1 ...
1748 		 */
1749 		error = xlog_write_log_records(log, (head_cycle - 1),
1750 				head_block, max_distance, tail_cycle,
1751 				tail_block);
1752 		if (error)
1753 			return error;
1754 	} else {
1755 		/*
1756 		 * We need to wrap around the end of the physical log in
1757 		 * order to clear all the blocks.  Do it in two separate
1758 		 * I/Os.  The first write should be from the head to the
1759 		 * end of the physical log, and it should use the current
1760 		 * cycle number minus one just like above.
1761 		 */
1762 		distance = log->l_logBBsize - head_block;
1763 		error = xlog_write_log_records(log, (head_cycle - 1),
1764 				head_block, distance, tail_cycle,
1765 				tail_block);
1766 
1767 		if (error)
1768 			return error;
1769 
1770 		/*
1771 		 * Now write the blocks at the start of the physical log.
1772 		 * This writes the remainder of the blocks we want to clear.
1773 		 * It uses the current cycle number since we're now on the
1774 		 * same cycle as the head so that we get:
1775 		 *    n ... n ... | n - 1 ...
1776 		 *    ^^^^^ blocks we're writing
1777 		 */
1778 		distance = max_distance - (log->l_logBBsize - head_block);
1779 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1780 				tail_cycle, tail_block);
1781 		if (error)
1782 			return error;
1783 	}
1784 
1785 	return 0;
1786 }
1787 
1788 /******************************************************************************
1789  *
1790  *		Log recover routines
1791  *
1792  ******************************************************************************
1793  */
1794 
1795 /*
1796  * Sort the log items in the transaction.
1797  *
1798  * The ordering constraints are defined by the inode allocation and unlink
1799  * behaviour. The rules are:
1800  *
1801  *	1. Every item is only logged once in a given transaction. Hence it
1802  *	   represents the last logged state of the item. Hence ordering is
1803  *	   dependent on the order in which operations need to be performed so
1804  *	   required initial conditions are always met.
1805  *
1806  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1807  *	   there's nothing to replay from them so we can simply cull them
1808  *	   from the transaction. However, we can't do that until after we've
1809  *	   replayed all the other items because they may be dependent on the
1810  *	   cancelled buffer and replaying the cancelled buffer can remove it
1811  *	   form the cancelled buffer table. Hence they have tobe done last.
1812  *
1813  *	3. Inode allocation buffers must be replayed before inode items that
1814  *	   read the buffer and replay changes into it. For filesystems using the
1815  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1816  *	   treated the same as inode allocation buffers as they create and
1817  *	   initialise the buffers directly.
1818  *
1819  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1820  *	   This ensures that inodes are completely flushed to the inode buffer
1821  *	   in a "free" state before we remove the unlinked inode list pointer.
1822  *
1823  * Hence the ordering needs to be inode allocation buffers first, inode items
1824  * second, inode unlink buffers third and cancelled buffers last.
1825  *
1826  * But there's a problem with that - we can't tell an inode allocation buffer
1827  * apart from a regular buffer, so we can't separate them. We can, however,
1828  * tell an inode unlink buffer from the others, and so we can separate them out
1829  * from all the other buffers and move them to last.
1830  *
1831  * Hence, 4 lists, in order from head to tail:
1832  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1833  *	- item_list for all non-buffer items
1834  *	- inode_buffer_list for inode unlink buffers
1835  *	- cancel_list for the cancelled buffers
1836  *
1837  * Note that we add objects to the tail of the lists so that first-to-last
1838  * ordering is preserved within the lists. Adding objects to the head of the
1839  * list means when we traverse from the head we walk them in last-to-first
1840  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1841  * but for all other items there may be specific ordering that we need to
1842  * preserve.
1843  */
1844 STATIC int
1845 xlog_recover_reorder_trans(
1846 	struct xlog		*log,
1847 	struct xlog_recover	*trans,
1848 	int			pass)
1849 {
1850 	xlog_recover_item_t	*item, *n;
1851 	int			error = 0;
1852 	LIST_HEAD(sort_list);
1853 	LIST_HEAD(cancel_list);
1854 	LIST_HEAD(buffer_list);
1855 	LIST_HEAD(inode_buffer_list);
1856 	LIST_HEAD(inode_list);
1857 
1858 	list_splice_init(&trans->r_itemq, &sort_list);
1859 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1860 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1861 
1862 		switch (ITEM_TYPE(item)) {
1863 		case XFS_LI_ICREATE:
1864 			list_move_tail(&item->ri_list, &buffer_list);
1865 			break;
1866 		case XFS_LI_BUF:
1867 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1868 				trace_xfs_log_recover_item_reorder_head(log,
1869 							trans, item, pass);
1870 				list_move(&item->ri_list, &cancel_list);
1871 				break;
1872 			}
1873 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1874 				list_move(&item->ri_list, &inode_buffer_list);
1875 				break;
1876 			}
1877 			list_move_tail(&item->ri_list, &buffer_list);
1878 			break;
1879 		case XFS_LI_INODE:
1880 		case XFS_LI_DQUOT:
1881 		case XFS_LI_QUOTAOFF:
1882 		case XFS_LI_EFD:
1883 		case XFS_LI_EFI:
1884 		case XFS_LI_RUI:
1885 		case XFS_LI_RUD:
1886 		case XFS_LI_CUI:
1887 		case XFS_LI_CUD:
1888 		case XFS_LI_BUI:
1889 		case XFS_LI_BUD:
1890 			trace_xfs_log_recover_item_reorder_tail(log,
1891 							trans, item, pass);
1892 			list_move_tail(&item->ri_list, &inode_list);
1893 			break;
1894 		default:
1895 			xfs_warn(log->l_mp,
1896 				"%s: unrecognized type of log operation",
1897 				__func__);
1898 			ASSERT(0);
1899 			/*
1900 			 * return the remaining items back to the transaction
1901 			 * item list so they can be freed in caller.
1902 			 */
1903 			if (!list_empty(&sort_list))
1904 				list_splice_init(&sort_list, &trans->r_itemq);
1905 			error = -EIO;
1906 			goto out;
1907 		}
1908 	}
1909 out:
1910 	ASSERT(list_empty(&sort_list));
1911 	if (!list_empty(&buffer_list))
1912 		list_splice(&buffer_list, &trans->r_itemq);
1913 	if (!list_empty(&inode_list))
1914 		list_splice_tail(&inode_list, &trans->r_itemq);
1915 	if (!list_empty(&inode_buffer_list))
1916 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1917 	if (!list_empty(&cancel_list))
1918 		list_splice_tail(&cancel_list, &trans->r_itemq);
1919 	return error;
1920 }
1921 
1922 /*
1923  * Build up the table of buf cancel records so that we don't replay
1924  * cancelled data in the second pass.  For buffer records that are
1925  * not cancel records, there is nothing to do here so we just return.
1926  *
1927  * If we get a cancel record which is already in the table, this indicates
1928  * that the buffer was cancelled multiple times.  In order to ensure
1929  * that during pass 2 we keep the record in the table until we reach its
1930  * last occurrence in the log, we keep a reference count in the cancel
1931  * record in the table to tell us how many times we expect to see this
1932  * record during the second pass.
1933  */
1934 STATIC int
1935 xlog_recover_buffer_pass1(
1936 	struct xlog			*log,
1937 	struct xlog_recover_item	*item)
1938 {
1939 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1940 	struct list_head	*bucket;
1941 	struct xfs_buf_cancel	*bcp;
1942 
1943 	/*
1944 	 * If this isn't a cancel buffer item, then just return.
1945 	 */
1946 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1947 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1948 		return 0;
1949 	}
1950 
1951 	/*
1952 	 * Insert an xfs_buf_cancel record into the hash table of them.
1953 	 * If there is already an identical record, bump its reference count.
1954 	 */
1955 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1956 	list_for_each_entry(bcp, bucket, bc_list) {
1957 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1958 		    bcp->bc_len == buf_f->blf_len) {
1959 			bcp->bc_refcount++;
1960 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1961 			return 0;
1962 		}
1963 	}
1964 
1965 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0);
1966 	bcp->bc_blkno = buf_f->blf_blkno;
1967 	bcp->bc_len = buf_f->blf_len;
1968 	bcp->bc_refcount = 1;
1969 	list_add_tail(&bcp->bc_list, bucket);
1970 
1971 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1972 	return 0;
1973 }
1974 
1975 /*
1976  * Check to see whether the buffer being recovered has a corresponding
1977  * entry in the buffer cancel record table. If it is, return the cancel
1978  * buffer structure to the caller.
1979  */
1980 STATIC struct xfs_buf_cancel *
1981 xlog_peek_buffer_cancelled(
1982 	struct xlog		*log,
1983 	xfs_daddr_t		blkno,
1984 	uint			len,
1985 	unsigned short			flags)
1986 {
1987 	struct list_head	*bucket;
1988 	struct xfs_buf_cancel	*bcp;
1989 
1990 	if (!log->l_buf_cancel_table) {
1991 		/* empty table means no cancelled buffers in the log */
1992 		ASSERT(!(flags & XFS_BLF_CANCEL));
1993 		return NULL;
1994 	}
1995 
1996 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1997 	list_for_each_entry(bcp, bucket, bc_list) {
1998 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1999 			return bcp;
2000 	}
2001 
2002 	/*
2003 	 * We didn't find a corresponding entry in the table, so return 0 so
2004 	 * that the buffer is NOT cancelled.
2005 	 */
2006 	ASSERT(!(flags & XFS_BLF_CANCEL));
2007 	return NULL;
2008 }
2009 
2010 /*
2011  * If the buffer is being cancelled then return 1 so that it will be cancelled,
2012  * otherwise return 0.  If the buffer is actually a buffer cancel item
2013  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2014  * table and remove it from the table if this is the last reference.
2015  *
2016  * We remove the cancel record from the table when we encounter its last
2017  * occurrence in the log so that if the same buffer is re-used again after its
2018  * last cancellation we actually replay the changes made at that point.
2019  */
2020 STATIC int
2021 xlog_check_buffer_cancelled(
2022 	struct xlog		*log,
2023 	xfs_daddr_t		blkno,
2024 	uint			len,
2025 	unsigned short			flags)
2026 {
2027 	struct xfs_buf_cancel	*bcp;
2028 
2029 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2030 	if (!bcp)
2031 		return 0;
2032 
2033 	/*
2034 	 * We've go a match, so return 1 so that the recovery of this buffer
2035 	 * is cancelled.  If this buffer is actually a buffer cancel log
2036 	 * item, then decrement the refcount on the one in the table and
2037 	 * remove it if this is the last reference.
2038 	 */
2039 	if (flags & XFS_BLF_CANCEL) {
2040 		if (--bcp->bc_refcount == 0) {
2041 			list_del(&bcp->bc_list);
2042 			kmem_free(bcp);
2043 		}
2044 	}
2045 	return 1;
2046 }
2047 
2048 /*
2049  * Perform recovery for a buffer full of inodes.  In these buffers, the only
2050  * data which should be recovered is that which corresponds to the
2051  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2052  * data for the inodes is always logged through the inodes themselves rather
2053  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2054  *
2055  * The only time when buffers full of inodes are fully recovered is when the
2056  * buffer is full of newly allocated inodes.  In this case the buffer will
2057  * not be marked as an inode buffer and so will be sent to
2058  * xlog_recover_do_reg_buffer() below during recovery.
2059  */
2060 STATIC int
2061 xlog_recover_do_inode_buffer(
2062 	struct xfs_mount	*mp,
2063 	xlog_recover_item_t	*item,
2064 	struct xfs_buf		*bp,
2065 	xfs_buf_log_format_t	*buf_f)
2066 {
2067 	int			i;
2068 	int			item_index = 0;
2069 	int			bit = 0;
2070 	int			nbits = 0;
2071 	int			reg_buf_offset = 0;
2072 	int			reg_buf_bytes = 0;
2073 	int			next_unlinked_offset;
2074 	int			inodes_per_buf;
2075 	xfs_agino_t		*logged_nextp;
2076 	xfs_agino_t		*buffer_nextp;
2077 
2078 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2079 
2080 	/*
2081 	 * Post recovery validation only works properly on CRC enabled
2082 	 * filesystems.
2083 	 */
2084 	if (xfs_sb_version_hascrc(&mp->m_sb))
2085 		bp->b_ops = &xfs_inode_buf_ops;
2086 
2087 	inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
2088 	for (i = 0; i < inodes_per_buf; i++) {
2089 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2090 			offsetof(xfs_dinode_t, di_next_unlinked);
2091 
2092 		while (next_unlinked_offset >=
2093 		       (reg_buf_offset + reg_buf_bytes)) {
2094 			/*
2095 			 * The next di_next_unlinked field is beyond
2096 			 * the current logged region.  Find the next
2097 			 * logged region that contains or is beyond
2098 			 * the current di_next_unlinked field.
2099 			 */
2100 			bit += nbits;
2101 			bit = xfs_next_bit(buf_f->blf_data_map,
2102 					   buf_f->blf_map_size, bit);
2103 
2104 			/*
2105 			 * If there are no more logged regions in the
2106 			 * buffer, then we're done.
2107 			 */
2108 			if (bit == -1)
2109 				return 0;
2110 
2111 			nbits = xfs_contig_bits(buf_f->blf_data_map,
2112 						buf_f->blf_map_size, bit);
2113 			ASSERT(nbits > 0);
2114 			reg_buf_offset = bit << XFS_BLF_SHIFT;
2115 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2116 			item_index++;
2117 		}
2118 
2119 		/*
2120 		 * If the current logged region starts after the current
2121 		 * di_next_unlinked field, then move on to the next
2122 		 * di_next_unlinked field.
2123 		 */
2124 		if (next_unlinked_offset < reg_buf_offset)
2125 			continue;
2126 
2127 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
2128 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2129 		ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
2130 
2131 		/*
2132 		 * The current logged region contains a copy of the
2133 		 * current di_next_unlinked field.  Extract its value
2134 		 * and copy it to the buffer copy.
2135 		 */
2136 		logged_nextp = item->ri_buf[item_index].i_addr +
2137 				next_unlinked_offset - reg_buf_offset;
2138 		if (unlikely(*logged_nextp == 0)) {
2139 			xfs_alert(mp,
2140 		"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
2141 		"Trying to replay bad (0) inode di_next_unlinked field.",
2142 				item, bp);
2143 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2144 					 XFS_ERRLEVEL_LOW, mp);
2145 			return -EFSCORRUPTED;
2146 		}
2147 
2148 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2149 		*buffer_nextp = *logged_nextp;
2150 
2151 		/*
2152 		 * If necessary, recalculate the CRC in the on-disk inode. We
2153 		 * have to leave the inode in a consistent state for whoever
2154 		 * reads it next....
2155 		 */
2156 		xfs_dinode_calc_crc(mp,
2157 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2158 
2159 	}
2160 
2161 	return 0;
2162 }
2163 
2164 /*
2165  * V5 filesystems know the age of the buffer on disk being recovered. We can
2166  * have newer objects on disk than we are replaying, and so for these cases we
2167  * don't want to replay the current change as that will make the buffer contents
2168  * temporarily invalid on disk.
2169  *
2170  * The magic number might not match the buffer type we are going to recover
2171  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2172  * extract the LSN of the existing object in the buffer based on it's current
2173  * magic number.  If we don't recognise the magic number in the buffer, then
2174  * return a LSN of -1 so that the caller knows it was an unrecognised block and
2175  * so can recover the buffer.
2176  *
2177  * Note: we cannot rely solely on magic number matches to determine that the
2178  * buffer has a valid LSN - we also need to verify that it belongs to this
2179  * filesystem, so we need to extract the object's LSN and compare it to that
2180  * which we read from the superblock. If the UUIDs don't match, then we've got a
2181  * stale metadata block from an old filesystem instance that we need to recover
2182  * over the top of.
2183  */
2184 static xfs_lsn_t
2185 xlog_recover_get_buf_lsn(
2186 	struct xfs_mount	*mp,
2187 	struct xfs_buf		*bp)
2188 {
2189 	uint32_t		magic32;
2190 	uint16_t		magic16;
2191 	uint16_t		magicda;
2192 	void			*blk = bp->b_addr;
2193 	uuid_t			*uuid;
2194 	xfs_lsn_t		lsn = -1;
2195 
2196 	/* v4 filesystems always recover immediately */
2197 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2198 		goto recover_immediately;
2199 
2200 	magic32 = be32_to_cpu(*(__be32 *)blk);
2201 	switch (magic32) {
2202 	case XFS_ABTB_CRC_MAGIC:
2203 	case XFS_ABTC_CRC_MAGIC:
2204 	case XFS_ABTB_MAGIC:
2205 	case XFS_ABTC_MAGIC:
2206 	case XFS_RMAP_CRC_MAGIC:
2207 	case XFS_REFC_CRC_MAGIC:
2208 	case XFS_IBT_CRC_MAGIC:
2209 	case XFS_IBT_MAGIC: {
2210 		struct xfs_btree_block *btb = blk;
2211 
2212 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2213 		uuid = &btb->bb_u.s.bb_uuid;
2214 		break;
2215 	}
2216 	case XFS_BMAP_CRC_MAGIC:
2217 	case XFS_BMAP_MAGIC: {
2218 		struct xfs_btree_block *btb = blk;
2219 
2220 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2221 		uuid = &btb->bb_u.l.bb_uuid;
2222 		break;
2223 	}
2224 	case XFS_AGF_MAGIC:
2225 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2226 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2227 		break;
2228 	case XFS_AGFL_MAGIC:
2229 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2230 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2231 		break;
2232 	case XFS_AGI_MAGIC:
2233 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2234 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2235 		break;
2236 	case XFS_SYMLINK_MAGIC:
2237 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2238 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2239 		break;
2240 	case XFS_DIR3_BLOCK_MAGIC:
2241 	case XFS_DIR3_DATA_MAGIC:
2242 	case XFS_DIR3_FREE_MAGIC:
2243 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2244 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2245 		break;
2246 	case XFS_ATTR3_RMT_MAGIC:
2247 		/*
2248 		 * Remote attr blocks are written synchronously, rather than
2249 		 * being logged. That means they do not contain a valid LSN
2250 		 * (i.e. transactionally ordered) in them, and hence any time we
2251 		 * see a buffer to replay over the top of a remote attribute
2252 		 * block we should simply do so.
2253 		 */
2254 		goto recover_immediately;
2255 	case XFS_SB_MAGIC:
2256 		/*
2257 		 * superblock uuids are magic. We may or may not have a
2258 		 * sb_meta_uuid on disk, but it will be set in the in-core
2259 		 * superblock. We set the uuid pointer for verification
2260 		 * according to the superblock feature mask to ensure we check
2261 		 * the relevant UUID in the superblock.
2262 		 */
2263 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2264 		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2265 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2266 		else
2267 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2268 		break;
2269 	default:
2270 		break;
2271 	}
2272 
2273 	if (lsn != (xfs_lsn_t)-1) {
2274 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2275 			goto recover_immediately;
2276 		return lsn;
2277 	}
2278 
2279 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2280 	switch (magicda) {
2281 	case XFS_DIR3_LEAF1_MAGIC:
2282 	case XFS_DIR3_LEAFN_MAGIC:
2283 	case XFS_DA3_NODE_MAGIC:
2284 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2285 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2286 		break;
2287 	default:
2288 		break;
2289 	}
2290 
2291 	if (lsn != (xfs_lsn_t)-1) {
2292 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2293 			goto recover_immediately;
2294 		return lsn;
2295 	}
2296 
2297 	/*
2298 	 * We do individual object checks on dquot and inode buffers as they
2299 	 * have their own individual LSN records. Also, we could have a stale
2300 	 * buffer here, so we have to at least recognise these buffer types.
2301 	 *
2302 	 * A notd complexity here is inode unlinked list processing - it logs
2303 	 * the inode directly in the buffer, but we don't know which inodes have
2304 	 * been modified, and there is no global buffer LSN. Hence we need to
2305 	 * recover all inode buffer types immediately. This problem will be
2306 	 * fixed by logical logging of the unlinked list modifications.
2307 	 */
2308 	magic16 = be16_to_cpu(*(__be16 *)blk);
2309 	switch (magic16) {
2310 	case XFS_DQUOT_MAGIC:
2311 	case XFS_DINODE_MAGIC:
2312 		goto recover_immediately;
2313 	default:
2314 		break;
2315 	}
2316 
2317 	/* unknown buffer contents, recover immediately */
2318 
2319 recover_immediately:
2320 	return (xfs_lsn_t)-1;
2321 
2322 }
2323 
2324 /*
2325  * Validate the recovered buffer is of the correct type and attach the
2326  * appropriate buffer operations to them for writeback. Magic numbers are in a
2327  * few places:
2328  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2329  *	the first 32 bits of the buffer (most blocks),
2330  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2331  */
2332 static void
2333 xlog_recover_validate_buf_type(
2334 	struct xfs_mount	*mp,
2335 	struct xfs_buf		*bp,
2336 	xfs_buf_log_format_t	*buf_f,
2337 	xfs_lsn_t		current_lsn)
2338 {
2339 	struct xfs_da_blkinfo	*info = bp->b_addr;
2340 	uint32_t		magic32;
2341 	uint16_t		magic16;
2342 	uint16_t		magicda;
2343 	char			*warnmsg = NULL;
2344 
2345 	/*
2346 	 * We can only do post recovery validation on items on CRC enabled
2347 	 * fielsystems as we need to know when the buffer was written to be able
2348 	 * to determine if we should have replayed the item. If we replay old
2349 	 * metadata over a newer buffer, then it will enter a temporarily
2350 	 * inconsistent state resulting in verification failures. Hence for now
2351 	 * just avoid the verification stage for non-crc filesystems
2352 	 */
2353 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2354 		return;
2355 
2356 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2357 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2358 	magicda = be16_to_cpu(info->magic);
2359 	switch (xfs_blft_from_flags(buf_f)) {
2360 	case XFS_BLFT_BTREE_BUF:
2361 		switch (magic32) {
2362 		case XFS_ABTB_CRC_MAGIC:
2363 		case XFS_ABTB_MAGIC:
2364 			bp->b_ops = &xfs_bnobt_buf_ops;
2365 			break;
2366 		case XFS_ABTC_CRC_MAGIC:
2367 		case XFS_ABTC_MAGIC:
2368 			bp->b_ops = &xfs_cntbt_buf_ops;
2369 			break;
2370 		case XFS_IBT_CRC_MAGIC:
2371 		case XFS_IBT_MAGIC:
2372 			bp->b_ops = &xfs_inobt_buf_ops;
2373 			break;
2374 		case XFS_FIBT_CRC_MAGIC:
2375 		case XFS_FIBT_MAGIC:
2376 			bp->b_ops = &xfs_finobt_buf_ops;
2377 			break;
2378 		case XFS_BMAP_CRC_MAGIC:
2379 		case XFS_BMAP_MAGIC:
2380 			bp->b_ops = &xfs_bmbt_buf_ops;
2381 			break;
2382 		case XFS_RMAP_CRC_MAGIC:
2383 			bp->b_ops = &xfs_rmapbt_buf_ops;
2384 			break;
2385 		case XFS_REFC_CRC_MAGIC:
2386 			bp->b_ops = &xfs_refcountbt_buf_ops;
2387 			break;
2388 		default:
2389 			warnmsg = "Bad btree block magic!";
2390 			break;
2391 		}
2392 		break;
2393 	case XFS_BLFT_AGF_BUF:
2394 		if (magic32 != XFS_AGF_MAGIC) {
2395 			warnmsg = "Bad AGF block magic!";
2396 			break;
2397 		}
2398 		bp->b_ops = &xfs_agf_buf_ops;
2399 		break;
2400 	case XFS_BLFT_AGFL_BUF:
2401 		if (magic32 != XFS_AGFL_MAGIC) {
2402 			warnmsg = "Bad AGFL block magic!";
2403 			break;
2404 		}
2405 		bp->b_ops = &xfs_agfl_buf_ops;
2406 		break;
2407 	case XFS_BLFT_AGI_BUF:
2408 		if (magic32 != XFS_AGI_MAGIC) {
2409 			warnmsg = "Bad AGI block magic!";
2410 			break;
2411 		}
2412 		bp->b_ops = &xfs_agi_buf_ops;
2413 		break;
2414 	case XFS_BLFT_UDQUOT_BUF:
2415 	case XFS_BLFT_PDQUOT_BUF:
2416 	case XFS_BLFT_GDQUOT_BUF:
2417 #ifdef CONFIG_XFS_QUOTA
2418 		if (magic16 != XFS_DQUOT_MAGIC) {
2419 			warnmsg = "Bad DQUOT block magic!";
2420 			break;
2421 		}
2422 		bp->b_ops = &xfs_dquot_buf_ops;
2423 #else
2424 		xfs_alert(mp,
2425 	"Trying to recover dquots without QUOTA support built in!");
2426 		ASSERT(0);
2427 #endif
2428 		break;
2429 	case XFS_BLFT_DINO_BUF:
2430 		if (magic16 != XFS_DINODE_MAGIC) {
2431 			warnmsg = "Bad INODE block magic!";
2432 			break;
2433 		}
2434 		bp->b_ops = &xfs_inode_buf_ops;
2435 		break;
2436 	case XFS_BLFT_SYMLINK_BUF:
2437 		if (magic32 != XFS_SYMLINK_MAGIC) {
2438 			warnmsg = "Bad symlink block magic!";
2439 			break;
2440 		}
2441 		bp->b_ops = &xfs_symlink_buf_ops;
2442 		break;
2443 	case XFS_BLFT_DIR_BLOCK_BUF:
2444 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2445 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2446 			warnmsg = "Bad dir block magic!";
2447 			break;
2448 		}
2449 		bp->b_ops = &xfs_dir3_block_buf_ops;
2450 		break;
2451 	case XFS_BLFT_DIR_DATA_BUF:
2452 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2453 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2454 			warnmsg = "Bad dir data magic!";
2455 			break;
2456 		}
2457 		bp->b_ops = &xfs_dir3_data_buf_ops;
2458 		break;
2459 	case XFS_BLFT_DIR_FREE_BUF:
2460 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2461 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2462 			warnmsg = "Bad dir3 free magic!";
2463 			break;
2464 		}
2465 		bp->b_ops = &xfs_dir3_free_buf_ops;
2466 		break;
2467 	case XFS_BLFT_DIR_LEAF1_BUF:
2468 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2469 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2470 			warnmsg = "Bad dir leaf1 magic!";
2471 			break;
2472 		}
2473 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2474 		break;
2475 	case XFS_BLFT_DIR_LEAFN_BUF:
2476 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2477 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2478 			warnmsg = "Bad dir leafn magic!";
2479 			break;
2480 		}
2481 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2482 		break;
2483 	case XFS_BLFT_DA_NODE_BUF:
2484 		if (magicda != XFS_DA_NODE_MAGIC &&
2485 		    magicda != XFS_DA3_NODE_MAGIC) {
2486 			warnmsg = "Bad da node magic!";
2487 			break;
2488 		}
2489 		bp->b_ops = &xfs_da3_node_buf_ops;
2490 		break;
2491 	case XFS_BLFT_ATTR_LEAF_BUF:
2492 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2493 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2494 			warnmsg = "Bad attr leaf magic!";
2495 			break;
2496 		}
2497 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2498 		break;
2499 	case XFS_BLFT_ATTR_RMT_BUF:
2500 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2501 			warnmsg = "Bad attr remote magic!";
2502 			break;
2503 		}
2504 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2505 		break;
2506 	case XFS_BLFT_SB_BUF:
2507 		if (magic32 != XFS_SB_MAGIC) {
2508 			warnmsg = "Bad SB block magic!";
2509 			break;
2510 		}
2511 		bp->b_ops = &xfs_sb_buf_ops;
2512 		break;
2513 #ifdef CONFIG_XFS_RT
2514 	case XFS_BLFT_RTBITMAP_BUF:
2515 	case XFS_BLFT_RTSUMMARY_BUF:
2516 		/* no magic numbers for verification of RT buffers */
2517 		bp->b_ops = &xfs_rtbuf_ops;
2518 		break;
2519 #endif /* CONFIG_XFS_RT */
2520 	default:
2521 		xfs_warn(mp, "Unknown buffer type %d!",
2522 			 xfs_blft_from_flags(buf_f));
2523 		break;
2524 	}
2525 
2526 	/*
2527 	 * Nothing else to do in the case of a NULL current LSN as this means
2528 	 * the buffer is more recent than the change in the log and will be
2529 	 * skipped.
2530 	 */
2531 	if (current_lsn == NULLCOMMITLSN)
2532 		return;
2533 
2534 	if (warnmsg) {
2535 		xfs_warn(mp, warnmsg);
2536 		ASSERT(0);
2537 	}
2538 
2539 	/*
2540 	 * We must update the metadata LSN of the buffer as it is written out to
2541 	 * ensure that older transactions never replay over this one and corrupt
2542 	 * the buffer. This can occur if log recovery is interrupted at some
2543 	 * point after the current transaction completes, at which point a
2544 	 * subsequent mount starts recovery from the beginning.
2545 	 *
2546 	 * Write verifiers update the metadata LSN from log items attached to
2547 	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2548 	 * the verifier. We'll clean it up in our ->iodone() callback.
2549 	 */
2550 	if (bp->b_ops) {
2551 		struct xfs_buf_log_item	*bip;
2552 
2553 		ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2554 		bp->b_iodone = xlog_recover_iodone;
2555 		xfs_buf_item_init(bp, mp);
2556 		bip = bp->b_log_item;
2557 		bip->bli_item.li_lsn = current_lsn;
2558 	}
2559 }
2560 
2561 /*
2562  * Perform a 'normal' buffer recovery.  Each logged region of the
2563  * buffer should be copied over the corresponding region in the
2564  * given buffer.  The bitmap in the buf log format structure indicates
2565  * where to place the logged data.
2566  */
2567 STATIC void
2568 xlog_recover_do_reg_buffer(
2569 	struct xfs_mount	*mp,
2570 	xlog_recover_item_t	*item,
2571 	struct xfs_buf		*bp,
2572 	xfs_buf_log_format_t	*buf_f,
2573 	xfs_lsn_t		current_lsn)
2574 {
2575 	int			i;
2576 	int			bit;
2577 	int			nbits;
2578 	xfs_failaddr_t		fa;
2579 
2580 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2581 
2582 	bit = 0;
2583 	i = 1;  /* 0 is the buf format structure */
2584 	while (1) {
2585 		bit = xfs_next_bit(buf_f->blf_data_map,
2586 				   buf_f->blf_map_size, bit);
2587 		if (bit == -1)
2588 			break;
2589 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2590 					buf_f->blf_map_size, bit);
2591 		ASSERT(nbits > 0);
2592 		ASSERT(item->ri_buf[i].i_addr != NULL);
2593 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2594 		ASSERT(BBTOB(bp->b_length) >=
2595 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2596 
2597 		/*
2598 		 * The dirty regions logged in the buffer, even though
2599 		 * contiguous, may span multiple chunks. This is because the
2600 		 * dirty region may span a physical page boundary in a buffer
2601 		 * and hence be split into two separate vectors for writing into
2602 		 * the log. Hence we need to trim nbits back to the length of
2603 		 * the current region being copied out of the log.
2604 		 */
2605 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2606 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2607 
2608 		/*
2609 		 * Do a sanity check if this is a dquot buffer. Just checking
2610 		 * the first dquot in the buffer should do. XXXThis is
2611 		 * probably a good thing to do for other buf types also.
2612 		 */
2613 		fa = NULL;
2614 		if (buf_f->blf_flags &
2615 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2616 			if (item->ri_buf[i].i_addr == NULL) {
2617 				xfs_alert(mp,
2618 					"XFS: NULL dquot in %s.", __func__);
2619 				goto next;
2620 			}
2621 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2622 				xfs_alert(mp,
2623 					"XFS: dquot too small (%d) in %s.",
2624 					item->ri_buf[i].i_len, __func__);
2625 				goto next;
2626 			}
2627 			fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2628 					       -1, 0);
2629 			if (fa) {
2630 				xfs_alert(mp,
2631 	"dquot corrupt at %pS trying to replay into block 0x%llx",
2632 					fa, bp->b_bn);
2633 				goto next;
2634 			}
2635 		}
2636 
2637 		memcpy(xfs_buf_offset(bp,
2638 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2639 			item->ri_buf[i].i_addr,		/* source */
2640 			nbits<<XFS_BLF_SHIFT);		/* length */
2641  next:
2642 		i++;
2643 		bit += nbits;
2644 	}
2645 
2646 	/* Shouldn't be any more regions */
2647 	ASSERT(i == item->ri_total);
2648 
2649 	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2650 }
2651 
2652 /*
2653  * Perform a dquot buffer recovery.
2654  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2655  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2656  * Else, treat it as a regular buffer and do recovery.
2657  *
2658  * Return false if the buffer was tossed and true if we recovered the buffer to
2659  * indicate to the caller if the buffer needs writing.
2660  */
2661 STATIC bool
2662 xlog_recover_do_dquot_buffer(
2663 	struct xfs_mount		*mp,
2664 	struct xlog			*log,
2665 	struct xlog_recover_item	*item,
2666 	struct xfs_buf			*bp,
2667 	struct xfs_buf_log_format	*buf_f)
2668 {
2669 	uint			type;
2670 
2671 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2672 
2673 	/*
2674 	 * Filesystems are required to send in quota flags at mount time.
2675 	 */
2676 	if (!mp->m_qflags)
2677 		return false;
2678 
2679 	type = 0;
2680 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2681 		type |= XFS_DQ_USER;
2682 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2683 		type |= XFS_DQ_PROJ;
2684 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2685 		type |= XFS_DQ_GROUP;
2686 	/*
2687 	 * This type of quotas was turned off, so ignore this buffer
2688 	 */
2689 	if (log->l_quotaoffs_flag & type)
2690 		return false;
2691 
2692 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2693 	return true;
2694 }
2695 
2696 /*
2697  * This routine replays a modification made to a buffer at runtime.
2698  * There are actually two types of buffer, regular and inode, which
2699  * are handled differently.  Inode buffers are handled differently
2700  * in that we only recover a specific set of data from them, namely
2701  * the inode di_next_unlinked fields.  This is because all other inode
2702  * data is actually logged via inode records and any data we replay
2703  * here which overlaps that may be stale.
2704  *
2705  * When meta-data buffers are freed at run time we log a buffer item
2706  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2707  * of the buffer in the log should not be replayed at recovery time.
2708  * This is so that if the blocks covered by the buffer are reused for
2709  * file data before we crash we don't end up replaying old, freed
2710  * meta-data into a user's file.
2711  *
2712  * To handle the cancellation of buffer log items, we make two passes
2713  * over the log during recovery.  During the first we build a table of
2714  * those buffers which have been cancelled, and during the second we
2715  * only replay those buffers which do not have corresponding cancel
2716  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2717  * for more details on the implementation of the table of cancel records.
2718  */
2719 STATIC int
2720 xlog_recover_buffer_pass2(
2721 	struct xlog			*log,
2722 	struct list_head		*buffer_list,
2723 	struct xlog_recover_item	*item,
2724 	xfs_lsn_t			current_lsn)
2725 {
2726 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2727 	xfs_mount_t		*mp = log->l_mp;
2728 	xfs_buf_t		*bp;
2729 	int			error;
2730 	uint			buf_flags;
2731 	xfs_lsn_t		lsn;
2732 
2733 	/*
2734 	 * In this pass we only want to recover all the buffers which have
2735 	 * not been cancelled and are not cancellation buffers themselves.
2736 	 */
2737 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2738 			buf_f->blf_len, buf_f->blf_flags)) {
2739 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2740 		return 0;
2741 	}
2742 
2743 	trace_xfs_log_recover_buf_recover(log, buf_f);
2744 
2745 	buf_flags = 0;
2746 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2747 		buf_flags |= XBF_UNMAPPED;
2748 
2749 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2750 			  buf_flags, NULL);
2751 	if (!bp)
2752 		return -ENOMEM;
2753 	error = bp->b_error;
2754 	if (error) {
2755 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2756 		goto out_release;
2757 	}
2758 
2759 	/*
2760 	 * Recover the buffer only if we get an LSN from it and it's less than
2761 	 * the lsn of the transaction we are replaying.
2762 	 *
2763 	 * Note that we have to be extremely careful of readahead here.
2764 	 * Readahead does not attach verfiers to the buffers so if we don't
2765 	 * actually do any replay after readahead because of the LSN we found
2766 	 * in the buffer if more recent than that current transaction then we
2767 	 * need to attach the verifier directly. Failure to do so can lead to
2768 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2769 	 * operate on the buffers and they won't get the verifier attached. This
2770 	 * can lead to blocks on disk having the correct content but a stale
2771 	 * CRC.
2772 	 *
2773 	 * It is safe to assume these clean buffers are currently up to date.
2774 	 * If the buffer is dirtied by a later transaction being replayed, then
2775 	 * the verifier will be reset to match whatever recover turns that
2776 	 * buffer into.
2777 	 */
2778 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2779 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2780 		trace_xfs_log_recover_buf_skip(log, buf_f);
2781 		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2782 		goto out_release;
2783 	}
2784 
2785 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2786 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2787 		if (error)
2788 			goto out_release;
2789 	} else if (buf_f->blf_flags &
2790 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2791 		bool	dirty;
2792 
2793 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2794 		if (!dirty)
2795 			goto out_release;
2796 	} else {
2797 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2798 	}
2799 
2800 	/*
2801 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2802 	 * slower when taking into account all the buffers to be flushed.
2803 	 *
2804 	 * Also make sure that only inode buffers with good sizes stay in
2805 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2806 	 * or inode_cluster_size bytes, whichever is bigger.  The inode
2807 	 * buffers in the log can be a different size if the log was generated
2808 	 * by an older kernel using unclustered inode buffers or a newer kernel
2809 	 * running with a different inode cluster size.  Regardless, if the
2810 	 * the inode buffer size isn't max(blocksize, inode_cluster_size)
2811 	 * for *our* value of inode_cluster_size, then we need to keep
2812 	 * the buffer out of the buffer cache so that the buffer won't
2813 	 * overlap with future reads of those inodes.
2814 	 */
2815 	if (XFS_DINODE_MAGIC ==
2816 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2817 	    (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
2818 		xfs_buf_stale(bp);
2819 		error = xfs_bwrite(bp);
2820 	} else {
2821 		ASSERT(bp->b_mount == mp);
2822 		bp->b_iodone = xlog_recover_iodone;
2823 		xfs_buf_delwri_queue(bp, buffer_list);
2824 	}
2825 
2826 out_release:
2827 	xfs_buf_relse(bp);
2828 	return error;
2829 }
2830 
2831 /*
2832  * Inode fork owner changes
2833  *
2834  * If we have been told that we have to reparent the inode fork, it's because an
2835  * extent swap operation on a CRC enabled filesystem has been done and we are
2836  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2837  * owners of it.
2838  *
2839  * The complexity here is that we don't have an inode context to work with, so
2840  * after we've replayed the inode we need to instantiate one.  This is where the
2841  * fun begins.
2842  *
2843  * We are in the middle of log recovery, so we can't run transactions. That
2844  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2845  * that will result in the corresponding iput() running the inode through
2846  * xfs_inactive(). If we've just replayed an inode core that changes the link
2847  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2848  * transactions (bad!).
2849  *
2850  * So, to avoid this, we instantiate an inode directly from the inode core we've
2851  * just recovered. We have the buffer still locked, and all we really need to
2852  * instantiate is the inode core and the forks being modified. We can do this
2853  * manually, then run the inode btree owner change, and then tear down the
2854  * xfs_inode without having to run any transactions at all.
2855  *
2856  * Also, because we don't have a transaction context available here but need to
2857  * gather all the buffers we modify for writeback so we pass the buffer_list
2858  * instead for the operation to use.
2859  */
2860 
2861 STATIC int
2862 xfs_recover_inode_owner_change(
2863 	struct xfs_mount	*mp,
2864 	struct xfs_dinode	*dip,
2865 	struct xfs_inode_log_format *in_f,
2866 	struct list_head	*buffer_list)
2867 {
2868 	struct xfs_inode	*ip;
2869 	int			error;
2870 
2871 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2872 
2873 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2874 	if (!ip)
2875 		return -ENOMEM;
2876 
2877 	/* instantiate the inode */
2878 	xfs_inode_from_disk(ip, dip);
2879 	ASSERT(ip->i_d.di_version >= 3);
2880 
2881 	error = xfs_iformat_fork(ip, dip);
2882 	if (error)
2883 		goto out_free_ip;
2884 
2885 	if (!xfs_inode_verify_forks(ip)) {
2886 		error = -EFSCORRUPTED;
2887 		goto out_free_ip;
2888 	}
2889 
2890 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2891 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2892 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2893 					      ip->i_ino, buffer_list);
2894 		if (error)
2895 			goto out_free_ip;
2896 	}
2897 
2898 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2899 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2900 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2901 					      ip->i_ino, buffer_list);
2902 		if (error)
2903 			goto out_free_ip;
2904 	}
2905 
2906 out_free_ip:
2907 	xfs_inode_free(ip);
2908 	return error;
2909 }
2910 
2911 STATIC int
2912 xlog_recover_inode_pass2(
2913 	struct xlog			*log,
2914 	struct list_head		*buffer_list,
2915 	struct xlog_recover_item	*item,
2916 	xfs_lsn_t			current_lsn)
2917 {
2918 	struct xfs_inode_log_format	*in_f;
2919 	xfs_mount_t		*mp = log->l_mp;
2920 	xfs_buf_t		*bp;
2921 	xfs_dinode_t		*dip;
2922 	int			len;
2923 	char			*src;
2924 	char			*dest;
2925 	int			error;
2926 	int			attr_index;
2927 	uint			fields;
2928 	struct xfs_log_dinode	*ldip;
2929 	uint			isize;
2930 	int			need_free = 0;
2931 
2932 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
2933 		in_f = item->ri_buf[0].i_addr;
2934 	} else {
2935 		in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), 0);
2936 		need_free = 1;
2937 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2938 		if (error)
2939 			goto error;
2940 	}
2941 
2942 	/*
2943 	 * Inode buffers can be freed, look out for it,
2944 	 * and do not replay the inode.
2945 	 */
2946 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2947 					in_f->ilf_len, 0)) {
2948 		error = 0;
2949 		trace_xfs_log_recover_inode_cancel(log, in_f);
2950 		goto error;
2951 	}
2952 	trace_xfs_log_recover_inode_recover(log, in_f);
2953 
2954 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2955 			  &xfs_inode_buf_ops);
2956 	if (!bp) {
2957 		error = -ENOMEM;
2958 		goto error;
2959 	}
2960 	error = bp->b_error;
2961 	if (error) {
2962 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2963 		goto out_release;
2964 	}
2965 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2966 	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2967 
2968 	/*
2969 	 * Make sure the place we're flushing out to really looks
2970 	 * like an inode!
2971 	 */
2972 	if (unlikely(!xfs_verify_magic16(bp, dip->di_magic))) {
2973 		xfs_alert(mp,
2974 	"%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
2975 			__func__, dip, bp, in_f->ilf_ino);
2976 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2977 				 XFS_ERRLEVEL_LOW, mp);
2978 		error = -EFSCORRUPTED;
2979 		goto out_release;
2980 	}
2981 	ldip = item->ri_buf[1].i_addr;
2982 	if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
2983 		xfs_alert(mp,
2984 			"%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
2985 			__func__, item, in_f->ilf_ino);
2986 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2987 				 XFS_ERRLEVEL_LOW, mp);
2988 		error = -EFSCORRUPTED;
2989 		goto out_release;
2990 	}
2991 
2992 	/*
2993 	 * If the inode has an LSN in it, recover the inode only if it's less
2994 	 * than the lsn of the transaction we are replaying. Note: we still
2995 	 * need to replay an owner change even though the inode is more recent
2996 	 * than the transaction as there is no guarantee that all the btree
2997 	 * blocks are more recent than this transaction, too.
2998 	 */
2999 	if (dip->di_version >= 3) {
3000 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
3001 
3002 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3003 			trace_xfs_log_recover_inode_skip(log, in_f);
3004 			error = 0;
3005 			goto out_owner_change;
3006 		}
3007 	}
3008 
3009 	/*
3010 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3011 	 * are transactional and if ordering is necessary we can determine that
3012 	 * more accurately by the LSN field in the V3 inode core. Don't trust
3013 	 * the inode versions we might be changing them here - use the
3014 	 * superblock flag to determine whether we need to look at di_flushiter
3015 	 * to skip replay when the on disk inode is newer than the log one
3016 	 */
3017 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3018 	    ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3019 		/*
3020 		 * Deal with the wrap case, DI_MAX_FLUSH is less
3021 		 * than smaller numbers
3022 		 */
3023 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3024 		    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3025 			/* do nothing */
3026 		} else {
3027 			trace_xfs_log_recover_inode_skip(log, in_f);
3028 			error = 0;
3029 			goto out_release;
3030 		}
3031 	}
3032 
3033 	/* Take the opportunity to reset the flush iteration count */
3034 	ldip->di_flushiter = 0;
3035 
3036 	if (unlikely(S_ISREG(ldip->di_mode))) {
3037 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3038 		    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3039 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3040 					 XFS_ERRLEVEL_LOW, mp, ldip,
3041 					 sizeof(*ldip));
3042 			xfs_alert(mp,
3043 		"%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3044 		"ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3045 				__func__, item, dip, bp, in_f->ilf_ino);
3046 			error = -EFSCORRUPTED;
3047 			goto out_release;
3048 		}
3049 	} else if (unlikely(S_ISDIR(ldip->di_mode))) {
3050 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3051 		    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3052 		    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3053 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3054 					     XFS_ERRLEVEL_LOW, mp, ldip,
3055 					     sizeof(*ldip));
3056 			xfs_alert(mp,
3057 		"%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3058 		"ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3059 				__func__, item, dip, bp, in_f->ilf_ino);
3060 			error = -EFSCORRUPTED;
3061 			goto out_release;
3062 		}
3063 	}
3064 	if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3065 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3066 				     XFS_ERRLEVEL_LOW, mp, ldip,
3067 				     sizeof(*ldip));
3068 		xfs_alert(mp,
3069 	"%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3070 	"dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
3071 			__func__, item, dip, bp, in_f->ilf_ino,
3072 			ldip->di_nextents + ldip->di_anextents,
3073 			ldip->di_nblocks);
3074 		error = -EFSCORRUPTED;
3075 		goto out_release;
3076 	}
3077 	if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3078 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3079 				     XFS_ERRLEVEL_LOW, mp, ldip,
3080 				     sizeof(*ldip));
3081 		xfs_alert(mp,
3082 	"%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3083 	"dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
3084 			item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3085 		error = -EFSCORRUPTED;
3086 		goto out_release;
3087 	}
3088 	isize = xfs_log_dinode_size(ldip->di_version);
3089 	if (unlikely(item->ri_buf[1].i_len > isize)) {
3090 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3091 				     XFS_ERRLEVEL_LOW, mp, ldip,
3092 				     sizeof(*ldip));
3093 		xfs_alert(mp,
3094 			"%s: Bad inode log record length %d, rec ptr "PTR_FMT,
3095 			__func__, item->ri_buf[1].i_len, item);
3096 		error = -EFSCORRUPTED;
3097 		goto out_release;
3098 	}
3099 
3100 	/* recover the log dinode inode into the on disk inode */
3101 	xfs_log_dinode_to_disk(ldip, dip);
3102 
3103 	fields = in_f->ilf_fields;
3104 	if (fields & XFS_ILOG_DEV)
3105 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3106 
3107 	if (in_f->ilf_size == 2)
3108 		goto out_owner_change;
3109 	len = item->ri_buf[2].i_len;
3110 	src = item->ri_buf[2].i_addr;
3111 	ASSERT(in_f->ilf_size <= 4);
3112 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3113 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
3114 	       (len == in_f->ilf_dsize));
3115 
3116 	switch (fields & XFS_ILOG_DFORK) {
3117 	case XFS_ILOG_DDATA:
3118 	case XFS_ILOG_DEXT:
3119 		memcpy(XFS_DFORK_DPTR(dip), src, len);
3120 		break;
3121 
3122 	case XFS_ILOG_DBROOT:
3123 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3124 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3125 				 XFS_DFORK_DSIZE(dip, mp));
3126 		break;
3127 
3128 	default:
3129 		/*
3130 		 * There are no data fork flags set.
3131 		 */
3132 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
3133 		break;
3134 	}
3135 
3136 	/*
3137 	 * If we logged any attribute data, recover it.  There may or
3138 	 * may not have been any other non-core data logged in this
3139 	 * transaction.
3140 	 */
3141 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3142 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3143 			attr_index = 3;
3144 		} else {
3145 			attr_index = 2;
3146 		}
3147 		len = item->ri_buf[attr_index].i_len;
3148 		src = item->ri_buf[attr_index].i_addr;
3149 		ASSERT(len == in_f->ilf_asize);
3150 
3151 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3152 		case XFS_ILOG_ADATA:
3153 		case XFS_ILOG_AEXT:
3154 			dest = XFS_DFORK_APTR(dip);
3155 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3156 			memcpy(dest, src, len);
3157 			break;
3158 
3159 		case XFS_ILOG_ABROOT:
3160 			dest = XFS_DFORK_APTR(dip);
3161 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3162 					 len, (xfs_bmdr_block_t*)dest,
3163 					 XFS_DFORK_ASIZE(dip, mp));
3164 			break;
3165 
3166 		default:
3167 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3168 			ASSERT(0);
3169 			error = -EIO;
3170 			goto out_release;
3171 		}
3172 	}
3173 
3174 out_owner_change:
3175 	/* Recover the swapext owner change unless inode has been deleted */
3176 	if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3177 	    (dip->di_mode != 0))
3178 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
3179 						       buffer_list);
3180 	/* re-generate the checksum. */
3181 	xfs_dinode_calc_crc(log->l_mp, dip);
3182 
3183 	ASSERT(bp->b_mount == mp);
3184 	bp->b_iodone = xlog_recover_iodone;
3185 	xfs_buf_delwri_queue(bp, buffer_list);
3186 
3187 out_release:
3188 	xfs_buf_relse(bp);
3189 error:
3190 	if (need_free)
3191 		kmem_free(in_f);
3192 	return error;
3193 }
3194 
3195 /*
3196  * Recover QUOTAOFF records. We simply make a note of it in the xlog
3197  * structure, so that we know not to do any dquot item or dquot buffer recovery,
3198  * of that type.
3199  */
3200 STATIC int
3201 xlog_recover_quotaoff_pass1(
3202 	struct xlog			*log,
3203 	struct xlog_recover_item	*item)
3204 {
3205 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
3206 	ASSERT(qoff_f);
3207 
3208 	/*
3209 	 * The logitem format's flag tells us if this was user quotaoff,
3210 	 * group/project quotaoff or both.
3211 	 */
3212 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3213 		log->l_quotaoffs_flag |= XFS_DQ_USER;
3214 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3215 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3216 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3217 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3218 
3219 	return 0;
3220 }
3221 
3222 /*
3223  * Recover a dquot record
3224  */
3225 STATIC int
3226 xlog_recover_dquot_pass2(
3227 	struct xlog			*log,
3228 	struct list_head		*buffer_list,
3229 	struct xlog_recover_item	*item,
3230 	xfs_lsn_t			current_lsn)
3231 {
3232 	xfs_mount_t		*mp = log->l_mp;
3233 	xfs_buf_t		*bp;
3234 	struct xfs_disk_dquot	*ddq, *recddq;
3235 	xfs_failaddr_t		fa;
3236 	int			error;
3237 	xfs_dq_logformat_t	*dq_f;
3238 	uint			type;
3239 
3240 
3241 	/*
3242 	 * Filesystems are required to send in quota flags at mount time.
3243 	 */
3244 	if (mp->m_qflags == 0)
3245 		return 0;
3246 
3247 	recddq = item->ri_buf[1].i_addr;
3248 	if (recddq == NULL) {
3249 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3250 		return -EIO;
3251 	}
3252 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3253 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3254 			item->ri_buf[1].i_len, __func__);
3255 		return -EIO;
3256 	}
3257 
3258 	/*
3259 	 * This type of quotas was turned off, so ignore this record.
3260 	 */
3261 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3262 	ASSERT(type);
3263 	if (log->l_quotaoffs_flag & type)
3264 		return 0;
3265 
3266 	/*
3267 	 * At this point we know that quota was _not_ turned off.
3268 	 * Since the mount flags are not indicating to us otherwise, this
3269 	 * must mean that quota is on, and the dquot needs to be replayed.
3270 	 * Remember that we may not have fully recovered the superblock yet,
3271 	 * so we can't do the usual trick of looking at the SB quota bits.
3272 	 *
3273 	 * The other possibility, of course, is that the quota subsystem was
3274 	 * removed since the last mount - ENOSYS.
3275 	 */
3276 	dq_f = item->ri_buf[0].i_addr;
3277 	ASSERT(dq_f);
3278 	fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0);
3279 	if (fa) {
3280 		xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3281 				dq_f->qlf_id, fa);
3282 		return -EIO;
3283 	}
3284 	ASSERT(dq_f->qlf_len == 1);
3285 
3286 	/*
3287 	 * At this point we are assuming that the dquots have been allocated
3288 	 * and hence the buffer has valid dquots stamped in it. It should,
3289 	 * therefore, pass verifier validation. If the dquot is bad, then the
3290 	 * we'll return an error here, so we don't need to specifically check
3291 	 * the dquot in the buffer after the verifier has run.
3292 	 */
3293 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3294 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3295 				   &xfs_dquot_buf_ops);
3296 	if (error)
3297 		return error;
3298 
3299 	ASSERT(bp);
3300 	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3301 
3302 	/*
3303 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3304 	 * than the lsn of the transaction we are replaying.
3305 	 */
3306 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3307 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3308 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3309 
3310 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3311 			goto out_release;
3312 		}
3313 	}
3314 
3315 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3316 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3317 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3318 				 XFS_DQUOT_CRC_OFF);
3319 	}
3320 
3321 	ASSERT(dq_f->qlf_size == 2);
3322 	ASSERT(bp->b_mount == mp);
3323 	bp->b_iodone = xlog_recover_iodone;
3324 	xfs_buf_delwri_queue(bp, buffer_list);
3325 
3326 out_release:
3327 	xfs_buf_relse(bp);
3328 	return 0;
3329 }
3330 
3331 /*
3332  * This routine is called to create an in-core extent free intent
3333  * item from the efi format structure which was logged on disk.
3334  * It allocates an in-core efi, copies the extents from the format
3335  * structure into it, and adds the efi to the AIL with the given
3336  * LSN.
3337  */
3338 STATIC int
3339 xlog_recover_efi_pass2(
3340 	struct xlog			*log,
3341 	struct xlog_recover_item	*item,
3342 	xfs_lsn_t			lsn)
3343 {
3344 	int				error;
3345 	struct xfs_mount		*mp = log->l_mp;
3346 	struct xfs_efi_log_item		*efip;
3347 	struct xfs_efi_log_format	*efi_formatp;
3348 
3349 	efi_formatp = item->ri_buf[0].i_addr;
3350 
3351 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3352 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3353 	if (error) {
3354 		xfs_efi_item_free(efip);
3355 		return error;
3356 	}
3357 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3358 
3359 	spin_lock(&log->l_ailp->ail_lock);
3360 	/*
3361 	 * The EFI has two references. One for the EFD and one for EFI to ensure
3362 	 * it makes it into the AIL. Insert the EFI into the AIL directly and
3363 	 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3364 	 * AIL lock.
3365 	 */
3366 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3367 	xfs_efi_release(efip);
3368 	return 0;
3369 }
3370 
3371 
3372 /*
3373  * This routine is called when an EFD format structure is found in a committed
3374  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3375  * was still in the log. To do this it searches the AIL for the EFI with an id
3376  * equal to that in the EFD format structure. If we find it we drop the EFD
3377  * reference, which removes the EFI from the AIL and frees it.
3378  */
3379 STATIC int
3380 xlog_recover_efd_pass2(
3381 	struct xlog			*log,
3382 	struct xlog_recover_item	*item)
3383 {
3384 	xfs_efd_log_format_t	*efd_formatp;
3385 	xfs_efi_log_item_t	*efip = NULL;
3386 	struct xfs_log_item	*lip;
3387 	uint64_t		efi_id;
3388 	struct xfs_ail_cursor	cur;
3389 	struct xfs_ail		*ailp = log->l_ailp;
3390 
3391 	efd_formatp = item->ri_buf[0].i_addr;
3392 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3393 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3394 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3395 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3396 	efi_id = efd_formatp->efd_efi_id;
3397 
3398 	/*
3399 	 * Search for the EFI with the id in the EFD format structure in the
3400 	 * AIL.
3401 	 */
3402 	spin_lock(&ailp->ail_lock);
3403 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3404 	while (lip != NULL) {
3405 		if (lip->li_type == XFS_LI_EFI) {
3406 			efip = (xfs_efi_log_item_t *)lip;
3407 			if (efip->efi_format.efi_id == efi_id) {
3408 				/*
3409 				 * Drop the EFD reference to the EFI. This
3410 				 * removes the EFI from the AIL and frees it.
3411 				 */
3412 				spin_unlock(&ailp->ail_lock);
3413 				xfs_efi_release(efip);
3414 				spin_lock(&ailp->ail_lock);
3415 				break;
3416 			}
3417 		}
3418 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3419 	}
3420 
3421 	xfs_trans_ail_cursor_done(&cur);
3422 	spin_unlock(&ailp->ail_lock);
3423 
3424 	return 0;
3425 }
3426 
3427 /*
3428  * This routine is called to create an in-core extent rmap update
3429  * item from the rui format structure which was logged on disk.
3430  * It allocates an in-core rui, copies the extents from the format
3431  * structure into it, and adds the rui to the AIL with the given
3432  * LSN.
3433  */
3434 STATIC int
3435 xlog_recover_rui_pass2(
3436 	struct xlog			*log,
3437 	struct xlog_recover_item	*item,
3438 	xfs_lsn_t			lsn)
3439 {
3440 	int				error;
3441 	struct xfs_mount		*mp = log->l_mp;
3442 	struct xfs_rui_log_item		*ruip;
3443 	struct xfs_rui_log_format	*rui_formatp;
3444 
3445 	rui_formatp = item->ri_buf[0].i_addr;
3446 
3447 	ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3448 	error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3449 	if (error) {
3450 		xfs_rui_item_free(ruip);
3451 		return error;
3452 	}
3453 	atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3454 
3455 	spin_lock(&log->l_ailp->ail_lock);
3456 	/*
3457 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3458 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3459 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3460 	 * AIL lock.
3461 	 */
3462 	xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3463 	xfs_rui_release(ruip);
3464 	return 0;
3465 }
3466 
3467 
3468 /*
3469  * This routine is called when an RUD format structure is found in a committed
3470  * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3471  * was still in the log. To do this it searches the AIL for the RUI with an id
3472  * equal to that in the RUD format structure. If we find it we drop the RUD
3473  * reference, which removes the RUI from the AIL and frees it.
3474  */
3475 STATIC int
3476 xlog_recover_rud_pass2(
3477 	struct xlog			*log,
3478 	struct xlog_recover_item	*item)
3479 {
3480 	struct xfs_rud_log_format	*rud_formatp;
3481 	struct xfs_rui_log_item		*ruip = NULL;
3482 	struct xfs_log_item		*lip;
3483 	uint64_t			rui_id;
3484 	struct xfs_ail_cursor		cur;
3485 	struct xfs_ail			*ailp = log->l_ailp;
3486 
3487 	rud_formatp = item->ri_buf[0].i_addr;
3488 	ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3489 	rui_id = rud_formatp->rud_rui_id;
3490 
3491 	/*
3492 	 * Search for the RUI with the id in the RUD format structure in the
3493 	 * AIL.
3494 	 */
3495 	spin_lock(&ailp->ail_lock);
3496 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3497 	while (lip != NULL) {
3498 		if (lip->li_type == XFS_LI_RUI) {
3499 			ruip = (struct xfs_rui_log_item *)lip;
3500 			if (ruip->rui_format.rui_id == rui_id) {
3501 				/*
3502 				 * Drop the RUD reference to the RUI. This
3503 				 * removes the RUI from the AIL and frees it.
3504 				 */
3505 				spin_unlock(&ailp->ail_lock);
3506 				xfs_rui_release(ruip);
3507 				spin_lock(&ailp->ail_lock);
3508 				break;
3509 			}
3510 		}
3511 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3512 	}
3513 
3514 	xfs_trans_ail_cursor_done(&cur);
3515 	spin_unlock(&ailp->ail_lock);
3516 
3517 	return 0;
3518 }
3519 
3520 /*
3521  * Copy an CUI format buffer from the given buf, and into the destination
3522  * CUI format structure.  The CUI/CUD items were designed not to need any
3523  * special alignment handling.
3524  */
3525 static int
3526 xfs_cui_copy_format(
3527 	struct xfs_log_iovec		*buf,
3528 	struct xfs_cui_log_format	*dst_cui_fmt)
3529 {
3530 	struct xfs_cui_log_format	*src_cui_fmt;
3531 	uint				len;
3532 
3533 	src_cui_fmt = buf->i_addr;
3534 	len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3535 
3536 	if (buf->i_len == len) {
3537 		memcpy(dst_cui_fmt, src_cui_fmt, len);
3538 		return 0;
3539 	}
3540 	return -EFSCORRUPTED;
3541 }
3542 
3543 /*
3544  * This routine is called to create an in-core extent refcount update
3545  * item from the cui format structure which was logged on disk.
3546  * It allocates an in-core cui, copies the extents from the format
3547  * structure into it, and adds the cui to the AIL with the given
3548  * LSN.
3549  */
3550 STATIC int
3551 xlog_recover_cui_pass2(
3552 	struct xlog			*log,
3553 	struct xlog_recover_item	*item,
3554 	xfs_lsn_t			lsn)
3555 {
3556 	int				error;
3557 	struct xfs_mount		*mp = log->l_mp;
3558 	struct xfs_cui_log_item		*cuip;
3559 	struct xfs_cui_log_format	*cui_formatp;
3560 
3561 	cui_formatp = item->ri_buf[0].i_addr;
3562 
3563 	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3564 	error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3565 	if (error) {
3566 		xfs_cui_item_free(cuip);
3567 		return error;
3568 	}
3569 	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3570 
3571 	spin_lock(&log->l_ailp->ail_lock);
3572 	/*
3573 	 * The CUI has two references. One for the CUD and one for CUI to ensure
3574 	 * it makes it into the AIL. Insert the CUI into the AIL directly and
3575 	 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3576 	 * AIL lock.
3577 	 */
3578 	xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3579 	xfs_cui_release(cuip);
3580 	return 0;
3581 }
3582 
3583 
3584 /*
3585  * This routine is called when an CUD format structure is found in a committed
3586  * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3587  * was still in the log. To do this it searches the AIL for the CUI with an id
3588  * equal to that in the CUD format structure. If we find it we drop the CUD
3589  * reference, which removes the CUI from the AIL and frees it.
3590  */
3591 STATIC int
3592 xlog_recover_cud_pass2(
3593 	struct xlog			*log,
3594 	struct xlog_recover_item	*item)
3595 {
3596 	struct xfs_cud_log_format	*cud_formatp;
3597 	struct xfs_cui_log_item		*cuip = NULL;
3598 	struct xfs_log_item		*lip;
3599 	uint64_t			cui_id;
3600 	struct xfs_ail_cursor		cur;
3601 	struct xfs_ail			*ailp = log->l_ailp;
3602 
3603 	cud_formatp = item->ri_buf[0].i_addr;
3604 	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3605 		return -EFSCORRUPTED;
3606 	cui_id = cud_formatp->cud_cui_id;
3607 
3608 	/*
3609 	 * Search for the CUI with the id in the CUD format structure in the
3610 	 * AIL.
3611 	 */
3612 	spin_lock(&ailp->ail_lock);
3613 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3614 	while (lip != NULL) {
3615 		if (lip->li_type == XFS_LI_CUI) {
3616 			cuip = (struct xfs_cui_log_item *)lip;
3617 			if (cuip->cui_format.cui_id == cui_id) {
3618 				/*
3619 				 * Drop the CUD reference to the CUI. This
3620 				 * removes the CUI from the AIL and frees it.
3621 				 */
3622 				spin_unlock(&ailp->ail_lock);
3623 				xfs_cui_release(cuip);
3624 				spin_lock(&ailp->ail_lock);
3625 				break;
3626 			}
3627 		}
3628 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3629 	}
3630 
3631 	xfs_trans_ail_cursor_done(&cur);
3632 	spin_unlock(&ailp->ail_lock);
3633 
3634 	return 0;
3635 }
3636 
3637 /*
3638  * Copy an BUI format buffer from the given buf, and into the destination
3639  * BUI format structure.  The BUI/BUD items were designed not to need any
3640  * special alignment handling.
3641  */
3642 static int
3643 xfs_bui_copy_format(
3644 	struct xfs_log_iovec		*buf,
3645 	struct xfs_bui_log_format	*dst_bui_fmt)
3646 {
3647 	struct xfs_bui_log_format	*src_bui_fmt;
3648 	uint				len;
3649 
3650 	src_bui_fmt = buf->i_addr;
3651 	len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3652 
3653 	if (buf->i_len == len) {
3654 		memcpy(dst_bui_fmt, src_bui_fmt, len);
3655 		return 0;
3656 	}
3657 	return -EFSCORRUPTED;
3658 }
3659 
3660 /*
3661  * This routine is called to create an in-core extent bmap update
3662  * item from the bui format structure which was logged on disk.
3663  * It allocates an in-core bui, copies the extents from the format
3664  * structure into it, and adds the bui to the AIL with the given
3665  * LSN.
3666  */
3667 STATIC int
3668 xlog_recover_bui_pass2(
3669 	struct xlog			*log,
3670 	struct xlog_recover_item	*item,
3671 	xfs_lsn_t			lsn)
3672 {
3673 	int				error;
3674 	struct xfs_mount		*mp = log->l_mp;
3675 	struct xfs_bui_log_item		*buip;
3676 	struct xfs_bui_log_format	*bui_formatp;
3677 
3678 	bui_formatp = item->ri_buf[0].i_addr;
3679 
3680 	if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3681 		return -EFSCORRUPTED;
3682 	buip = xfs_bui_init(mp);
3683 	error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3684 	if (error) {
3685 		xfs_bui_item_free(buip);
3686 		return error;
3687 	}
3688 	atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3689 
3690 	spin_lock(&log->l_ailp->ail_lock);
3691 	/*
3692 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3693 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3694 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3695 	 * AIL lock.
3696 	 */
3697 	xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3698 	xfs_bui_release(buip);
3699 	return 0;
3700 }
3701 
3702 
3703 /*
3704  * This routine is called when an BUD format structure is found in a committed
3705  * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3706  * was still in the log. To do this it searches the AIL for the BUI with an id
3707  * equal to that in the BUD format structure. If we find it we drop the BUD
3708  * reference, which removes the BUI from the AIL and frees it.
3709  */
3710 STATIC int
3711 xlog_recover_bud_pass2(
3712 	struct xlog			*log,
3713 	struct xlog_recover_item	*item)
3714 {
3715 	struct xfs_bud_log_format	*bud_formatp;
3716 	struct xfs_bui_log_item		*buip = NULL;
3717 	struct xfs_log_item		*lip;
3718 	uint64_t			bui_id;
3719 	struct xfs_ail_cursor		cur;
3720 	struct xfs_ail			*ailp = log->l_ailp;
3721 
3722 	bud_formatp = item->ri_buf[0].i_addr;
3723 	if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3724 		return -EFSCORRUPTED;
3725 	bui_id = bud_formatp->bud_bui_id;
3726 
3727 	/*
3728 	 * Search for the BUI with the id in the BUD format structure in the
3729 	 * AIL.
3730 	 */
3731 	spin_lock(&ailp->ail_lock);
3732 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3733 	while (lip != NULL) {
3734 		if (lip->li_type == XFS_LI_BUI) {
3735 			buip = (struct xfs_bui_log_item *)lip;
3736 			if (buip->bui_format.bui_id == bui_id) {
3737 				/*
3738 				 * Drop the BUD reference to the BUI. This
3739 				 * removes the BUI from the AIL and frees it.
3740 				 */
3741 				spin_unlock(&ailp->ail_lock);
3742 				xfs_bui_release(buip);
3743 				spin_lock(&ailp->ail_lock);
3744 				break;
3745 			}
3746 		}
3747 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3748 	}
3749 
3750 	xfs_trans_ail_cursor_done(&cur);
3751 	spin_unlock(&ailp->ail_lock);
3752 
3753 	return 0;
3754 }
3755 
3756 /*
3757  * This routine is called when an inode create format structure is found in a
3758  * committed transaction in the log.  It's purpose is to initialise the inodes
3759  * being allocated on disk. This requires us to get inode cluster buffers that
3760  * match the range to be initialised, stamped with inode templates and written
3761  * by delayed write so that subsequent modifications will hit the cached buffer
3762  * and only need writing out at the end of recovery.
3763  */
3764 STATIC int
3765 xlog_recover_do_icreate_pass2(
3766 	struct xlog		*log,
3767 	struct list_head	*buffer_list,
3768 	xlog_recover_item_t	*item)
3769 {
3770 	struct xfs_mount	*mp = log->l_mp;
3771 	struct xfs_icreate_log	*icl;
3772 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
3773 	xfs_agnumber_t		agno;
3774 	xfs_agblock_t		agbno;
3775 	unsigned int		count;
3776 	unsigned int		isize;
3777 	xfs_agblock_t		length;
3778 	int			bb_per_cluster;
3779 	int			cancel_count;
3780 	int			nbufs;
3781 	int			i;
3782 
3783 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3784 	if (icl->icl_type != XFS_LI_ICREATE) {
3785 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3786 		return -EINVAL;
3787 	}
3788 
3789 	if (icl->icl_size != 1) {
3790 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3791 		return -EINVAL;
3792 	}
3793 
3794 	agno = be32_to_cpu(icl->icl_ag);
3795 	if (agno >= mp->m_sb.sb_agcount) {
3796 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3797 		return -EINVAL;
3798 	}
3799 	agbno = be32_to_cpu(icl->icl_agbno);
3800 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3801 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3802 		return -EINVAL;
3803 	}
3804 	isize = be32_to_cpu(icl->icl_isize);
3805 	if (isize != mp->m_sb.sb_inodesize) {
3806 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3807 		return -EINVAL;
3808 	}
3809 	count = be32_to_cpu(icl->icl_count);
3810 	if (!count) {
3811 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3812 		return -EINVAL;
3813 	}
3814 	length = be32_to_cpu(icl->icl_length);
3815 	if (!length || length >= mp->m_sb.sb_agblocks) {
3816 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3817 		return -EINVAL;
3818 	}
3819 
3820 	/*
3821 	 * The inode chunk is either full or sparse and we only support
3822 	 * m_ino_geo.ialloc_min_blks sized sparse allocations at this time.
3823 	 */
3824 	if (length != igeo->ialloc_blks &&
3825 	    length != igeo->ialloc_min_blks) {
3826 		xfs_warn(log->l_mp,
3827 			 "%s: unsupported chunk length", __FUNCTION__);
3828 		return -EINVAL;
3829 	}
3830 
3831 	/* verify inode count is consistent with extent length */
3832 	if ((count >> mp->m_sb.sb_inopblog) != length) {
3833 		xfs_warn(log->l_mp,
3834 			 "%s: inconsistent inode count and chunk length",
3835 			 __FUNCTION__);
3836 		return -EINVAL;
3837 	}
3838 
3839 	/*
3840 	 * The icreate transaction can cover multiple cluster buffers and these
3841 	 * buffers could have been freed and reused. Check the individual
3842 	 * buffers for cancellation so we don't overwrite anything written after
3843 	 * a cancellation.
3844 	 */
3845 	bb_per_cluster = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster);
3846 	nbufs = length / igeo->blocks_per_cluster;
3847 	for (i = 0, cancel_count = 0; i < nbufs; i++) {
3848 		xfs_daddr_t	daddr;
3849 
3850 		daddr = XFS_AGB_TO_DADDR(mp, agno,
3851 				agbno + i * igeo->blocks_per_cluster);
3852 		if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3853 			cancel_count++;
3854 	}
3855 
3856 	/*
3857 	 * We currently only use icreate for a single allocation at a time. This
3858 	 * means we should expect either all or none of the buffers to be
3859 	 * cancelled. Be conservative and skip replay if at least one buffer is
3860 	 * cancelled, but warn the user that something is awry if the buffers
3861 	 * are not consistent.
3862 	 *
3863 	 * XXX: This must be refined to only skip cancelled clusters once we use
3864 	 * icreate for multiple chunk allocations.
3865 	 */
3866 	ASSERT(!cancel_count || cancel_count == nbufs);
3867 	if (cancel_count) {
3868 		if (cancel_count != nbufs)
3869 			xfs_warn(mp,
3870 	"WARNING: partial inode chunk cancellation, skipped icreate.");
3871 		trace_xfs_log_recover_icreate_cancel(log, icl);
3872 		return 0;
3873 	}
3874 
3875 	trace_xfs_log_recover_icreate_recover(log, icl);
3876 	return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3877 				     length, be32_to_cpu(icl->icl_gen));
3878 }
3879 
3880 STATIC void
3881 xlog_recover_buffer_ra_pass2(
3882 	struct xlog                     *log,
3883 	struct xlog_recover_item        *item)
3884 {
3885 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3886 	struct xfs_mount		*mp = log->l_mp;
3887 
3888 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3889 			buf_f->blf_len, buf_f->blf_flags)) {
3890 		return;
3891 	}
3892 
3893 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3894 				buf_f->blf_len, NULL);
3895 }
3896 
3897 STATIC void
3898 xlog_recover_inode_ra_pass2(
3899 	struct xlog                     *log,
3900 	struct xlog_recover_item        *item)
3901 {
3902 	struct xfs_inode_log_format	ilf_buf;
3903 	struct xfs_inode_log_format	*ilfp;
3904 	struct xfs_mount		*mp = log->l_mp;
3905 	int			error;
3906 
3907 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3908 		ilfp = item->ri_buf[0].i_addr;
3909 	} else {
3910 		ilfp = &ilf_buf;
3911 		memset(ilfp, 0, sizeof(*ilfp));
3912 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3913 		if (error)
3914 			return;
3915 	}
3916 
3917 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3918 		return;
3919 
3920 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3921 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3922 }
3923 
3924 STATIC void
3925 xlog_recover_dquot_ra_pass2(
3926 	struct xlog			*log,
3927 	struct xlog_recover_item	*item)
3928 {
3929 	struct xfs_mount	*mp = log->l_mp;
3930 	struct xfs_disk_dquot	*recddq;
3931 	struct xfs_dq_logformat	*dq_f;
3932 	uint			type;
3933 	int			len;
3934 
3935 
3936 	if (mp->m_qflags == 0)
3937 		return;
3938 
3939 	recddq = item->ri_buf[1].i_addr;
3940 	if (recddq == NULL)
3941 		return;
3942 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3943 		return;
3944 
3945 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3946 	ASSERT(type);
3947 	if (log->l_quotaoffs_flag & type)
3948 		return;
3949 
3950 	dq_f = item->ri_buf[0].i_addr;
3951 	ASSERT(dq_f);
3952 	ASSERT(dq_f->qlf_len == 1);
3953 
3954 	len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3955 	if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3956 		return;
3957 
3958 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3959 			  &xfs_dquot_buf_ra_ops);
3960 }
3961 
3962 STATIC void
3963 xlog_recover_ra_pass2(
3964 	struct xlog			*log,
3965 	struct xlog_recover_item	*item)
3966 {
3967 	switch (ITEM_TYPE(item)) {
3968 	case XFS_LI_BUF:
3969 		xlog_recover_buffer_ra_pass2(log, item);
3970 		break;
3971 	case XFS_LI_INODE:
3972 		xlog_recover_inode_ra_pass2(log, item);
3973 		break;
3974 	case XFS_LI_DQUOT:
3975 		xlog_recover_dquot_ra_pass2(log, item);
3976 		break;
3977 	case XFS_LI_EFI:
3978 	case XFS_LI_EFD:
3979 	case XFS_LI_QUOTAOFF:
3980 	case XFS_LI_RUI:
3981 	case XFS_LI_RUD:
3982 	case XFS_LI_CUI:
3983 	case XFS_LI_CUD:
3984 	case XFS_LI_BUI:
3985 	case XFS_LI_BUD:
3986 	default:
3987 		break;
3988 	}
3989 }
3990 
3991 STATIC int
3992 xlog_recover_commit_pass1(
3993 	struct xlog			*log,
3994 	struct xlog_recover		*trans,
3995 	struct xlog_recover_item	*item)
3996 {
3997 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3998 
3999 	switch (ITEM_TYPE(item)) {
4000 	case XFS_LI_BUF:
4001 		return xlog_recover_buffer_pass1(log, item);
4002 	case XFS_LI_QUOTAOFF:
4003 		return xlog_recover_quotaoff_pass1(log, item);
4004 	case XFS_LI_INODE:
4005 	case XFS_LI_EFI:
4006 	case XFS_LI_EFD:
4007 	case XFS_LI_DQUOT:
4008 	case XFS_LI_ICREATE:
4009 	case XFS_LI_RUI:
4010 	case XFS_LI_RUD:
4011 	case XFS_LI_CUI:
4012 	case XFS_LI_CUD:
4013 	case XFS_LI_BUI:
4014 	case XFS_LI_BUD:
4015 		/* nothing to do in pass 1 */
4016 		return 0;
4017 	default:
4018 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4019 			__func__, ITEM_TYPE(item));
4020 		ASSERT(0);
4021 		return -EIO;
4022 	}
4023 }
4024 
4025 STATIC int
4026 xlog_recover_commit_pass2(
4027 	struct xlog			*log,
4028 	struct xlog_recover		*trans,
4029 	struct list_head		*buffer_list,
4030 	struct xlog_recover_item	*item)
4031 {
4032 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4033 
4034 	switch (ITEM_TYPE(item)) {
4035 	case XFS_LI_BUF:
4036 		return xlog_recover_buffer_pass2(log, buffer_list, item,
4037 						 trans->r_lsn);
4038 	case XFS_LI_INODE:
4039 		return xlog_recover_inode_pass2(log, buffer_list, item,
4040 						 trans->r_lsn);
4041 	case XFS_LI_EFI:
4042 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4043 	case XFS_LI_EFD:
4044 		return xlog_recover_efd_pass2(log, item);
4045 	case XFS_LI_RUI:
4046 		return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4047 	case XFS_LI_RUD:
4048 		return xlog_recover_rud_pass2(log, item);
4049 	case XFS_LI_CUI:
4050 		return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4051 	case XFS_LI_CUD:
4052 		return xlog_recover_cud_pass2(log, item);
4053 	case XFS_LI_BUI:
4054 		return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4055 	case XFS_LI_BUD:
4056 		return xlog_recover_bud_pass2(log, item);
4057 	case XFS_LI_DQUOT:
4058 		return xlog_recover_dquot_pass2(log, buffer_list, item,
4059 						trans->r_lsn);
4060 	case XFS_LI_ICREATE:
4061 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4062 	case XFS_LI_QUOTAOFF:
4063 		/* nothing to do in pass2 */
4064 		return 0;
4065 	default:
4066 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4067 			__func__, ITEM_TYPE(item));
4068 		ASSERT(0);
4069 		return -EIO;
4070 	}
4071 }
4072 
4073 STATIC int
4074 xlog_recover_items_pass2(
4075 	struct xlog                     *log,
4076 	struct xlog_recover             *trans,
4077 	struct list_head                *buffer_list,
4078 	struct list_head                *item_list)
4079 {
4080 	struct xlog_recover_item	*item;
4081 	int				error = 0;
4082 
4083 	list_for_each_entry(item, item_list, ri_list) {
4084 		error = xlog_recover_commit_pass2(log, trans,
4085 					  buffer_list, item);
4086 		if (error)
4087 			return error;
4088 	}
4089 
4090 	return error;
4091 }
4092 
4093 /*
4094  * Perform the transaction.
4095  *
4096  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
4097  * EFIs and EFDs get queued up by adding entries into the AIL for them.
4098  */
4099 STATIC int
4100 xlog_recover_commit_trans(
4101 	struct xlog		*log,
4102 	struct xlog_recover	*trans,
4103 	int			pass,
4104 	struct list_head	*buffer_list)
4105 {
4106 	int				error = 0;
4107 	int				items_queued = 0;
4108 	struct xlog_recover_item	*item;
4109 	struct xlog_recover_item	*next;
4110 	LIST_HEAD			(ra_list);
4111 	LIST_HEAD			(done_list);
4112 
4113 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4114 
4115 	hlist_del_init(&trans->r_list);
4116 
4117 	error = xlog_recover_reorder_trans(log, trans, pass);
4118 	if (error)
4119 		return error;
4120 
4121 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4122 		switch (pass) {
4123 		case XLOG_RECOVER_PASS1:
4124 			error = xlog_recover_commit_pass1(log, trans, item);
4125 			break;
4126 		case XLOG_RECOVER_PASS2:
4127 			xlog_recover_ra_pass2(log, item);
4128 			list_move_tail(&item->ri_list, &ra_list);
4129 			items_queued++;
4130 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4131 				error = xlog_recover_items_pass2(log, trans,
4132 						buffer_list, &ra_list);
4133 				list_splice_tail_init(&ra_list, &done_list);
4134 				items_queued = 0;
4135 			}
4136 
4137 			break;
4138 		default:
4139 			ASSERT(0);
4140 		}
4141 
4142 		if (error)
4143 			goto out;
4144 	}
4145 
4146 out:
4147 	if (!list_empty(&ra_list)) {
4148 		if (!error)
4149 			error = xlog_recover_items_pass2(log, trans,
4150 					buffer_list, &ra_list);
4151 		list_splice_tail_init(&ra_list, &done_list);
4152 	}
4153 
4154 	if (!list_empty(&done_list))
4155 		list_splice_init(&done_list, &trans->r_itemq);
4156 
4157 	return error;
4158 }
4159 
4160 STATIC void
4161 xlog_recover_add_item(
4162 	struct list_head	*head)
4163 {
4164 	xlog_recover_item_t	*item;
4165 
4166 	item = kmem_zalloc(sizeof(xlog_recover_item_t), 0);
4167 	INIT_LIST_HEAD(&item->ri_list);
4168 	list_add_tail(&item->ri_list, head);
4169 }
4170 
4171 STATIC int
4172 xlog_recover_add_to_cont_trans(
4173 	struct xlog		*log,
4174 	struct xlog_recover	*trans,
4175 	char			*dp,
4176 	int			len)
4177 {
4178 	xlog_recover_item_t	*item;
4179 	char			*ptr, *old_ptr;
4180 	int			old_len;
4181 
4182 	/*
4183 	 * If the transaction is empty, the header was split across this and the
4184 	 * previous record. Copy the rest of the header.
4185 	 */
4186 	if (list_empty(&trans->r_itemq)) {
4187 		ASSERT(len <= sizeof(struct xfs_trans_header));
4188 		if (len > sizeof(struct xfs_trans_header)) {
4189 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4190 			return -EIO;
4191 		}
4192 
4193 		xlog_recover_add_item(&trans->r_itemq);
4194 		ptr = (char *)&trans->r_theader +
4195 				sizeof(struct xfs_trans_header) - len;
4196 		memcpy(ptr, dp, len);
4197 		return 0;
4198 	}
4199 
4200 	/* take the tail entry */
4201 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4202 
4203 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4204 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
4205 
4206 	ptr = kmem_realloc(old_ptr, len + old_len, 0);
4207 	memcpy(&ptr[old_len], dp, len);
4208 	item->ri_buf[item->ri_cnt-1].i_len += len;
4209 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4210 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4211 	return 0;
4212 }
4213 
4214 /*
4215  * The next region to add is the start of a new region.  It could be
4216  * a whole region or it could be the first part of a new region.  Because
4217  * of this, the assumption here is that the type and size fields of all
4218  * format structures fit into the first 32 bits of the structure.
4219  *
4220  * This works because all regions must be 32 bit aligned.  Therefore, we
4221  * either have both fields or we have neither field.  In the case we have
4222  * neither field, the data part of the region is zero length.  We only have
4223  * a log_op_header and can throw away the header since a new one will appear
4224  * later.  If we have at least 4 bytes, then we can determine how many regions
4225  * will appear in the current log item.
4226  */
4227 STATIC int
4228 xlog_recover_add_to_trans(
4229 	struct xlog		*log,
4230 	struct xlog_recover	*trans,
4231 	char			*dp,
4232 	int			len)
4233 {
4234 	struct xfs_inode_log_format	*in_f;			/* any will do */
4235 	xlog_recover_item_t	*item;
4236 	char			*ptr;
4237 
4238 	if (!len)
4239 		return 0;
4240 	if (list_empty(&trans->r_itemq)) {
4241 		/* we need to catch log corruptions here */
4242 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4243 			xfs_warn(log->l_mp, "%s: bad header magic number",
4244 				__func__);
4245 			ASSERT(0);
4246 			return -EIO;
4247 		}
4248 
4249 		if (len > sizeof(struct xfs_trans_header)) {
4250 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4251 			ASSERT(0);
4252 			return -EIO;
4253 		}
4254 
4255 		/*
4256 		 * The transaction header can be arbitrarily split across op
4257 		 * records. If we don't have the whole thing here, copy what we
4258 		 * do have and handle the rest in the next record.
4259 		 */
4260 		if (len == sizeof(struct xfs_trans_header))
4261 			xlog_recover_add_item(&trans->r_itemq);
4262 		memcpy(&trans->r_theader, dp, len);
4263 		return 0;
4264 	}
4265 
4266 	ptr = kmem_alloc(len, 0);
4267 	memcpy(ptr, dp, len);
4268 	in_f = (struct xfs_inode_log_format *)ptr;
4269 
4270 	/* take the tail entry */
4271 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4272 	if (item->ri_total != 0 &&
4273 	     item->ri_total == item->ri_cnt) {
4274 		/* tail item is in use, get a new one */
4275 		xlog_recover_add_item(&trans->r_itemq);
4276 		item = list_entry(trans->r_itemq.prev,
4277 					xlog_recover_item_t, ri_list);
4278 	}
4279 
4280 	if (item->ri_total == 0) {		/* first region to be added */
4281 		if (in_f->ilf_size == 0 ||
4282 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4283 			xfs_warn(log->l_mp,
4284 		"bad number of regions (%d) in inode log format",
4285 				  in_f->ilf_size);
4286 			ASSERT(0);
4287 			kmem_free(ptr);
4288 			return -EIO;
4289 		}
4290 
4291 		item->ri_total = in_f->ilf_size;
4292 		item->ri_buf =
4293 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4294 				    0);
4295 	}
4296 	ASSERT(item->ri_total > item->ri_cnt);
4297 	/* Description region is ri_buf[0] */
4298 	item->ri_buf[item->ri_cnt].i_addr = ptr;
4299 	item->ri_buf[item->ri_cnt].i_len  = len;
4300 	item->ri_cnt++;
4301 	trace_xfs_log_recover_item_add(log, trans, item, 0);
4302 	return 0;
4303 }
4304 
4305 /*
4306  * Free up any resources allocated by the transaction
4307  *
4308  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4309  */
4310 STATIC void
4311 xlog_recover_free_trans(
4312 	struct xlog_recover	*trans)
4313 {
4314 	xlog_recover_item_t	*item, *n;
4315 	int			i;
4316 
4317 	hlist_del_init(&trans->r_list);
4318 
4319 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4320 		/* Free the regions in the item. */
4321 		list_del(&item->ri_list);
4322 		for (i = 0; i < item->ri_cnt; i++)
4323 			kmem_free(item->ri_buf[i].i_addr);
4324 		/* Free the item itself */
4325 		kmem_free(item->ri_buf);
4326 		kmem_free(item);
4327 	}
4328 	/* Free the transaction recover structure */
4329 	kmem_free(trans);
4330 }
4331 
4332 /*
4333  * On error or completion, trans is freed.
4334  */
4335 STATIC int
4336 xlog_recovery_process_trans(
4337 	struct xlog		*log,
4338 	struct xlog_recover	*trans,
4339 	char			*dp,
4340 	unsigned int		len,
4341 	unsigned int		flags,
4342 	int			pass,
4343 	struct list_head	*buffer_list)
4344 {
4345 	int			error = 0;
4346 	bool			freeit = false;
4347 
4348 	/* mask off ophdr transaction container flags */
4349 	flags &= ~XLOG_END_TRANS;
4350 	if (flags & XLOG_WAS_CONT_TRANS)
4351 		flags &= ~XLOG_CONTINUE_TRANS;
4352 
4353 	/*
4354 	 * Callees must not free the trans structure. We'll decide if we need to
4355 	 * free it or not based on the operation being done and it's result.
4356 	 */
4357 	switch (flags) {
4358 	/* expected flag values */
4359 	case 0:
4360 	case XLOG_CONTINUE_TRANS:
4361 		error = xlog_recover_add_to_trans(log, trans, dp, len);
4362 		break;
4363 	case XLOG_WAS_CONT_TRANS:
4364 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4365 		break;
4366 	case XLOG_COMMIT_TRANS:
4367 		error = xlog_recover_commit_trans(log, trans, pass,
4368 						  buffer_list);
4369 		/* success or fail, we are now done with this transaction. */
4370 		freeit = true;
4371 		break;
4372 
4373 	/* unexpected flag values */
4374 	case XLOG_UNMOUNT_TRANS:
4375 		/* just skip trans */
4376 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4377 		freeit = true;
4378 		break;
4379 	case XLOG_START_TRANS:
4380 	default:
4381 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4382 		ASSERT(0);
4383 		error = -EIO;
4384 		break;
4385 	}
4386 	if (error || freeit)
4387 		xlog_recover_free_trans(trans);
4388 	return error;
4389 }
4390 
4391 /*
4392  * Lookup the transaction recovery structure associated with the ID in the
4393  * current ophdr. If the transaction doesn't exist and the start flag is set in
4394  * the ophdr, then allocate a new transaction for future ID matches to find.
4395  * Either way, return what we found during the lookup - an existing transaction
4396  * or nothing.
4397  */
4398 STATIC struct xlog_recover *
4399 xlog_recover_ophdr_to_trans(
4400 	struct hlist_head	rhash[],
4401 	struct xlog_rec_header	*rhead,
4402 	struct xlog_op_header	*ohead)
4403 {
4404 	struct xlog_recover	*trans;
4405 	xlog_tid_t		tid;
4406 	struct hlist_head	*rhp;
4407 
4408 	tid = be32_to_cpu(ohead->oh_tid);
4409 	rhp = &rhash[XLOG_RHASH(tid)];
4410 	hlist_for_each_entry(trans, rhp, r_list) {
4411 		if (trans->r_log_tid == tid)
4412 			return trans;
4413 	}
4414 
4415 	/*
4416 	 * skip over non-start transaction headers - we could be
4417 	 * processing slack space before the next transaction starts
4418 	 */
4419 	if (!(ohead->oh_flags & XLOG_START_TRANS))
4420 		return NULL;
4421 
4422 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4423 
4424 	/*
4425 	 * This is a new transaction so allocate a new recovery container to
4426 	 * hold the recovery ops that will follow.
4427 	 */
4428 	trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
4429 	trans->r_log_tid = tid;
4430 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4431 	INIT_LIST_HEAD(&trans->r_itemq);
4432 	INIT_HLIST_NODE(&trans->r_list);
4433 	hlist_add_head(&trans->r_list, rhp);
4434 
4435 	/*
4436 	 * Nothing more to do for this ophdr. Items to be added to this new
4437 	 * transaction will be in subsequent ophdr containers.
4438 	 */
4439 	return NULL;
4440 }
4441 
4442 STATIC int
4443 xlog_recover_process_ophdr(
4444 	struct xlog		*log,
4445 	struct hlist_head	rhash[],
4446 	struct xlog_rec_header	*rhead,
4447 	struct xlog_op_header	*ohead,
4448 	char			*dp,
4449 	char			*end,
4450 	int			pass,
4451 	struct list_head	*buffer_list)
4452 {
4453 	struct xlog_recover	*trans;
4454 	unsigned int		len;
4455 	int			error;
4456 
4457 	/* Do we understand who wrote this op? */
4458 	if (ohead->oh_clientid != XFS_TRANSACTION &&
4459 	    ohead->oh_clientid != XFS_LOG) {
4460 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4461 			__func__, ohead->oh_clientid);
4462 		ASSERT(0);
4463 		return -EIO;
4464 	}
4465 
4466 	/*
4467 	 * Check the ophdr contains all the data it is supposed to contain.
4468 	 */
4469 	len = be32_to_cpu(ohead->oh_len);
4470 	if (dp + len > end) {
4471 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4472 		WARN_ON(1);
4473 		return -EIO;
4474 	}
4475 
4476 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4477 	if (!trans) {
4478 		/* nothing to do, so skip over this ophdr */
4479 		return 0;
4480 	}
4481 
4482 	/*
4483 	 * The recovered buffer queue is drained only once we know that all
4484 	 * recovery items for the current LSN have been processed. This is
4485 	 * required because:
4486 	 *
4487 	 * - Buffer write submission updates the metadata LSN of the buffer.
4488 	 * - Log recovery skips items with a metadata LSN >= the current LSN of
4489 	 *   the recovery item.
4490 	 * - Separate recovery items against the same metadata buffer can share
4491 	 *   a current LSN. I.e., consider that the LSN of a recovery item is
4492 	 *   defined as the starting LSN of the first record in which its
4493 	 *   transaction appears, that a record can hold multiple transactions,
4494 	 *   and/or that a transaction can span multiple records.
4495 	 *
4496 	 * In other words, we are allowed to submit a buffer from log recovery
4497 	 * once per current LSN. Otherwise, we may incorrectly skip recovery
4498 	 * items and cause corruption.
4499 	 *
4500 	 * We don't know up front whether buffers are updated multiple times per
4501 	 * LSN. Therefore, track the current LSN of each commit log record as it
4502 	 * is processed and drain the queue when it changes. Use commit records
4503 	 * because they are ordered correctly by the logging code.
4504 	 */
4505 	if (log->l_recovery_lsn != trans->r_lsn &&
4506 	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
4507 		error = xfs_buf_delwri_submit(buffer_list);
4508 		if (error)
4509 			return error;
4510 		log->l_recovery_lsn = trans->r_lsn;
4511 	}
4512 
4513 	return xlog_recovery_process_trans(log, trans, dp, len,
4514 					   ohead->oh_flags, pass, buffer_list);
4515 }
4516 
4517 /*
4518  * There are two valid states of the r_state field.  0 indicates that the
4519  * transaction structure is in a normal state.  We have either seen the
4520  * start of the transaction or the last operation we added was not a partial
4521  * operation.  If the last operation we added to the transaction was a
4522  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4523  *
4524  * NOTE: skip LRs with 0 data length.
4525  */
4526 STATIC int
4527 xlog_recover_process_data(
4528 	struct xlog		*log,
4529 	struct hlist_head	rhash[],
4530 	struct xlog_rec_header	*rhead,
4531 	char			*dp,
4532 	int			pass,
4533 	struct list_head	*buffer_list)
4534 {
4535 	struct xlog_op_header	*ohead;
4536 	char			*end;
4537 	int			num_logops;
4538 	int			error;
4539 
4540 	end = dp + be32_to_cpu(rhead->h_len);
4541 	num_logops = be32_to_cpu(rhead->h_num_logops);
4542 
4543 	/* check the log format matches our own - else we can't recover */
4544 	if (xlog_header_check_recover(log->l_mp, rhead))
4545 		return -EIO;
4546 
4547 	trace_xfs_log_recover_record(log, rhead, pass);
4548 	while ((dp < end) && num_logops) {
4549 
4550 		ohead = (struct xlog_op_header *)dp;
4551 		dp += sizeof(*ohead);
4552 		ASSERT(dp <= end);
4553 
4554 		/* errors will abort recovery */
4555 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4556 						   dp, end, pass, buffer_list);
4557 		if (error)
4558 			return error;
4559 
4560 		dp += be32_to_cpu(ohead->oh_len);
4561 		num_logops--;
4562 	}
4563 	return 0;
4564 }
4565 
4566 /* Recover the EFI if necessary. */
4567 STATIC int
4568 xlog_recover_process_efi(
4569 	struct xfs_mount		*mp,
4570 	struct xfs_ail			*ailp,
4571 	struct xfs_log_item		*lip)
4572 {
4573 	struct xfs_efi_log_item		*efip;
4574 	int				error;
4575 
4576 	/*
4577 	 * Skip EFIs that we've already processed.
4578 	 */
4579 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4580 	if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4581 		return 0;
4582 
4583 	spin_unlock(&ailp->ail_lock);
4584 	error = xfs_efi_recover(mp, efip);
4585 	spin_lock(&ailp->ail_lock);
4586 
4587 	return error;
4588 }
4589 
4590 /* Release the EFI since we're cancelling everything. */
4591 STATIC void
4592 xlog_recover_cancel_efi(
4593 	struct xfs_mount		*mp,
4594 	struct xfs_ail			*ailp,
4595 	struct xfs_log_item		*lip)
4596 {
4597 	struct xfs_efi_log_item		*efip;
4598 
4599 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4600 
4601 	spin_unlock(&ailp->ail_lock);
4602 	xfs_efi_release(efip);
4603 	spin_lock(&ailp->ail_lock);
4604 }
4605 
4606 /* Recover the RUI if necessary. */
4607 STATIC int
4608 xlog_recover_process_rui(
4609 	struct xfs_mount		*mp,
4610 	struct xfs_ail			*ailp,
4611 	struct xfs_log_item		*lip)
4612 {
4613 	struct xfs_rui_log_item		*ruip;
4614 	int				error;
4615 
4616 	/*
4617 	 * Skip RUIs that we've already processed.
4618 	 */
4619 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4620 	if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4621 		return 0;
4622 
4623 	spin_unlock(&ailp->ail_lock);
4624 	error = xfs_rui_recover(mp, ruip);
4625 	spin_lock(&ailp->ail_lock);
4626 
4627 	return error;
4628 }
4629 
4630 /* Release the RUI since we're cancelling everything. */
4631 STATIC void
4632 xlog_recover_cancel_rui(
4633 	struct xfs_mount		*mp,
4634 	struct xfs_ail			*ailp,
4635 	struct xfs_log_item		*lip)
4636 {
4637 	struct xfs_rui_log_item		*ruip;
4638 
4639 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4640 
4641 	spin_unlock(&ailp->ail_lock);
4642 	xfs_rui_release(ruip);
4643 	spin_lock(&ailp->ail_lock);
4644 }
4645 
4646 /* Recover the CUI if necessary. */
4647 STATIC int
4648 xlog_recover_process_cui(
4649 	struct xfs_trans		*parent_tp,
4650 	struct xfs_ail			*ailp,
4651 	struct xfs_log_item		*lip)
4652 {
4653 	struct xfs_cui_log_item		*cuip;
4654 	int				error;
4655 
4656 	/*
4657 	 * Skip CUIs that we've already processed.
4658 	 */
4659 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4660 	if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4661 		return 0;
4662 
4663 	spin_unlock(&ailp->ail_lock);
4664 	error = xfs_cui_recover(parent_tp, cuip);
4665 	spin_lock(&ailp->ail_lock);
4666 
4667 	return error;
4668 }
4669 
4670 /* Release the CUI since we're cancelling everything. */
4671 STATIC void
4672 xlog_recover_cancel_cui(
4673 	struct xfs_mount		*mp,
4674 	struct xfs_ail			*ailp,
4675 	struct xfs_log_item		*lip)
4676 {
4677 	struct xfs_cui_log_item		*cuip;
4678 
4679 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4680 
4681 	spin_unlock(&ailp->ail_lock);
4682 	xfs_cui_release(cuip);
4683 	spin_lock(&ailp->ail_lock);
4684 }
4685 
4686 /* Recover the BUI if necessary. */
4687 STATIC int
4688 xlog_recover_process_bui(
4689 	struct xfs_trans		*parent_tp,
4690 	struct xfs_ail			*ailp,
4691 	struct xfs_log_item		*lip)
4692 {
4693 	struct xfs_bui_log_item		*buip;
4694 	int				error;
4695 
4696 	/*
4697 	 * Skip BUIs that we've already processed.
4698 	 */
4699 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4700 	if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4701 		return 0;
4702 
4703 	spin_unlock(&ailp->ail_lock);
4704 	error = xfs_bui_recover(parent_tp, buip);
4705 	spin_lock(&ailp->ail_lock);
4706 
4707 	return error;
4708 }
4709 
4710 /* Release the BUI since we're cancelling everything. */
4711 STATIC void
4712 xlog_recover_cancel_bui(
4713 	struct xfs_mount		*mp,
4714 	struct xfs_ail			*ailp,
4715 	struct xfs_log_item		*lip)
4716 {
4717 	struct xfs_bui_log_item		*buip;
4718 
4719 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4720 
4721 	spin_unlock(&ailp->ail_lock);
4722 	xfs_bui_release(buip);
4723 	spin_lock(&ailp->ail_lock);
4724 }
4725 
4726 /* Is this log item a deferred action intent? */
4727 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4728 {
4729 	switch (lip->li_type) {
4730 	case XFS_LI_EFI:
4731 	case XFS_LI_RUI:
4732 	case XFS_LI_CUI:
4733 	case XFS_LI_BUI:
4734 		return true;
4735 	default:
4736 		return false;
4737 	}
4738 }
4739 
4740 /* Take all the collected deferred ops and finish them in order. */
4741 static int
4742 xlog_finish_defer_ops(
4743 	struct xfs_trans	*parent_tp)
4744 {
4745 	struct xfs_mount	*mp = parent_tp->t_mountp;
4746 	struct xfs_trans	*tp;
4747 	int64_t			freeblks;
4748 	uint			resblks;
4749 	int			error;
4750 
4751 	/*
4752 	 * We're finishing the defer_ops that accumulated as a result of
4753 	 * recovering unfinished intent items during log recovery.  We
4754 	 * reserve an itruncate transaction because it is the largest
4755 	 * permanent transaction type.  Since we're the only user of the fs
4756 	 * right now, take 93% (15/16) of the available free blocks.  Use
4757 	 * weird math to avoid a 64-bit division.
4758 	 */
4759 	freeblks = percpu_counter_sum(&mp->m_fdblocks);
4760 	if (freeblks <= 0)
4761 		return -ENOSPC;
4762 	resblks = min_t(int64_t, UINT_MAX, freeblks);
4763 	resblks = (resblks * 15) >> 4;
4764 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4765 			0, XFS_TRANS_RESERVE, &tp);
4766 	if (error)
4767 		return error;
4768 	/* transfer all collected dfops to this transaction */
4769 	xfs_defer_move(tp, parent_tp);
4770 
4771 	return xfs_trans_commit(tp);
4772 }
4773 
4774 /*
4775  * When this is called, all of the log intent items which did not have
4776  * corresponding log done items should be in the AIL.  What we do now
4777  * is update the data structures associated with each one.
4778  *
4779  * Since we process the log intent items in normal transactions, they
4780  * will be removed at some point after the commit.  This prevents us
4781  * from just walking down the list processing each one.  We'll use a
4782  * flag in the intent item to skip those that we've already processed
4783  * and use the AIL iteration mechanism's generation count to try to
4784  * speed this up at least a bit.
4785  *
4786  * When we start, we know that the intents are the only things in the
4787  * AIL.  As we process them, however, other items are added to the
4788  * AIL.
4789  */
4790 STATIC int
4791 xlog_recover_process_intents(
4792 	struct xlog		*log)
4793 {
4794 	struct xfs_trans	*parent_tp;
4795 	struct xfs_ail_cursor	cur;
4796 	struct xfs_log_item	*lip;
4797 	struct xfs_ail		*ailp;
4798 	int			error;
4799 #if defined(DEBUG) || defined(XFS_WARN)
4800 	xfs_lsn_t		last_lsn;
4801 #endif
4802 
4803 	/*
4804 	 * The intent recovery handlers commit transactions to complete recovery
4805 	 * for individual intents, but any new deferred operations that are
4806 	 * queued during that process are held off until the very end. The
4807 	 * purpose of this transaction is to serve as a container for deferred
4808 	 * operations. Each intent recovery handler must transfer dfops here
4809 	 * before its local transaction commits, and we'll finish the entire
4810 	 * list below.
4811 	 */
4812 	error = xfs_trans_alloc_empty(log->l_mp, &parent_tp);
4813 	if (error)
4814 		return error;
4815 
4816 	ailp = log->l_ailp;
4817 	spin_lock(&ailp->ail_lock);
4818 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4819 #if defined(DEBUG) || defined(XFS_WARN)
4820 	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4821 #endif
4822 	while (lip != NULL) {
4823 		/*
4824 		 * We're done when we see something other than an intent.
4825 		 * There should be no intents left in the AIL now.
4826 		 */
4827 		if (!xlog_item_is_intent(lip)) {
4828 #ifdef DEBUG
4829 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4830 				ASSERT(!xlog_item_is_intent(lip));
4831 #endif
4832 			break;
4833 		}
4834 
4835 		/*
4836 		 * We should never see a redo item with a LSN higher than
4837 		 * the last transaction we found in the log at the start
4838 		 * of recovery.
4839 		 */
4840 		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4841 
4842 		/*
4843 		 * NOTE: If your intent processing routine can create more
4844 		 * deferred ops, you /must/ attach them to the dfops in this
4845 		 * routine or else those subsequent intents will get
4846 		 * replayed in the wrong order!
4847 		 */
4848 		switch (lip->li_type) {
4849 		case XFS_LI_EFI:
4850 			error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4851 			break;
4852 		case XFS_LI_RUI:
4853 			error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4854 			break;
4855 		case XFS_LI_CUI:
4856 			error = xlog_recover_process_cui(parent_tp, ailp, lip);
4857 			break;
4858 		case XFS_LI_BUI:
4859 			error = xlog_recover_process_bui(parent_tp, ailp, lip);
4860 			break;
4861 		}
4862 		if (error)
4863 			goto out;
4864 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4865 	}
4866 out:
4867 	xfs_trans_ail_cursor_done(&cur);
4868 	spin_unlock(&ailp->ail_lock);
4869 	if (!error)
4870 		error = xlog_finish_defer_ops(parent_tp);
4871 	xfs_trans_cancel(parent_tp);
4872 
4873 	return error;
4874 }
4875 
4876 /*
4877  * A cancel occurs when the mount has failed and we're bailing out.
4878  * Release all pending log intent items so they don't pin the AIL.
4879  */
4880 STATIC void
4881 xlog_recover_cancel_intents(
4882 	struct xlog		*log)
4883 {
4884 	struct xfs_log_item	*lip;
4885 	struct xfs_ail_cursor	cur;
4886 	struct xfs_ail		*ailp;
4887 
4888 	ailp = log->l_ailp;
4889 	spin_lock(&ailp->ail_lock);
4890 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4891 	while (lip != NULL) {
4892 		/*
4893 		 * We're done when we see something other than an intent.
4894 		 * There should be no intents left in the AIL now.
4895 		 */
4896 		if (!xlog_item_is_intent(lip)) {
4897 #ifdef DEBUG
4898 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4899 				ASSERT(!xlog_item_is_intent(lip));
4900 #endif
4901 			break;
4902 		}
4903 
4904 		switch (lip->li_type) {
4905 		case XFS_LI_EFI:
4906 			xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4907 			break;
4908 		case XFS_LI_RUI:
4909 			xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4910 			break;
4911 		case XFS_LI_CUI:
4912 			xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4913 			break;
4914 		case XFS_LI_BUI:
4915 			xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4916 			break;
4917 		}
4918 
4919 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4920 	}
4921 
4922 	xfs_trans_ail_cursor_done(&cur);
4923 	spin_unlock(&ailp->ail_lock);
4924 }
4925 
4926 /*
4927  * This routine performs a transaction to null out a bad inode pointer
4928  * in an agi unlinked inode hash bucket.
4929  */
4930 STATIC void
4931 xlog_recover_clear_agi_bucket(
4932 	xfs_mount_t	*mp,
4933 	xfs_agnumber_t	agno,
4934 	int		bucket)
4935 {
4936 	xfs_trans_t	*tp;
4937 	xfs_agi_t	*agi;
4938 	xfs_buf_t	*agibp;
4939 	int		offset;
4940 	int		error;
4941 
4942 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4943 	if (error)
4944 		goto out_error;
4945 
4946 	error = xfs_read_agi(mp, tp, agno, &agibp);
4947 	if (error)
4948 		goto out_abort;
4949 
4950 	agi = XFS_BUF_TO_AGI(agibp);
4951 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4952 	offset = offsetof(xfs_agi_t, agi_unlinked) +
4953 		 (sizeof(xfs_agino_t) * bucket);
4954 	xfs_trans_log_buf(tp, agibp, offset,
4955 			  (offset + sizeof(xfs_agino_t) - 1));
4956 
4957 	error = xfs_trans_commit(tp);
4958 	if (error)
4959 		goto out_error;
4960 	return;
4961 
4962 out_abort:
4963 	xfs_trans_cancel(tp);
4964 out_error:
4965 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4966 	return;
4967 }
4968 
4969 STATIC xfs_agino_t
4970 xlog_recover_process_one_iunlink(
4971 	struct xfs_mount		*mp,
4972 	xfs_agnumber_t			agno,
4973 	xfs_agino_t			agino,
4974 	int				bucket)
4975 {
4976 	struct xfs_buf			*ibp;
4977 	struct xfs_dinode		*dip;
4978 	struct xfs_inode		*ip;
4979 	xfs_ino_t			ino;
4980 	int				error;
4981 
4982 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
4983 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4984 	if (error)
4985 		goto fail;
4986 
4987 	/*
4988 	 * Get the on disk inode to find the next inode in the bucket.
4989 	 */
4990 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4991 	if (error)
4992 		goto fail_iput;
4993 
4994 	xfs_iflags_clear(ip, XFS_IRECOVERY);
4995 	ASSERT(VFS_I(ip)->i_nlink == 0);
4996 	ASSERT(VFS_I(ip)->i_mode != 0);
4997 
4998 	/* setup for the next pass */
4999 	agino = be32_to_cpu(dip->di_next_unlinked);
5000 	xfs_buf_relse(ibp);
5001 
5002 	/*
5003 	 * Prevent any DMAPI event from being sent when the reference on
5004 	 * the inode is dropped.
5005 	 */
5006 	ip->i_d.di_dmevmask = 0;
5007 
5008 	xfs_irele(ip);
5009 	return agino;
5010 
5011  fail_iput:
5012 	xfs_irele(ip);
5013  fail:
5014 	/*
5015 	 * We can't read in the inode this bucket points to, or this inode
5016 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
5017 	 * some inodes and space, but at least we won't hang.
5018 	 *
5019 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5020 	 * clear the inode pointer in the bucket.
5021 	 */
5022 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
5023 	return NULLAGINO;
5024 }
5025 
5026 /*
5027  * Recover AGI unlinked lists
5028  *
5029  * This is called during recovery to process any inodes which we unlinked but
5030  * not freed when the system crashed.  These inodes will be on the lists in the
5031  * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
5032  * any inodes found on the lists. Each inode is removed from the lists when it
5033  * has been fully truncated and is freed. The freeing of the inode and its
5034  * removal from the list must be atomic.
5035  *
5036  * If everything we touch in the agi processing loop is already in memory, this
5037  * loop can hold the cpu for a long time. It runs without lock contention,
5038  * memory allocation contention, the need wait for IO, etc, and so will run
5039  * until we either run out of inodes to process, run low on memory or we run out
5040  * of log space.
5041  *
5042  * This behaviour is bad for latency on single CPU and non-preemptible kernels,
5043  * and can prevent other filesytem work (such as CIL pushes) from running. This
5044  * can lead to deadlocks if the recovery process runs out of log reservation
5045  * space. Hence we need to yield the CPU when there is other kernel work
5046  * scheduled on this CPU to ensure other scheduled work can run without undue
5047  * latency.
5048  */
5049 STATIC void
5050 xlog_recover_process_iunlinks(
5051 	struct xlog	*log)
5052 {
5053 	xfs_mount_t	*mp;
5054 	xfs_agnumber_t	agno;
5055 	xfs_agi_t	*agi;
5056 	xfs_buf_t	*agibp;
5057 	xfs_agino_t	agino;
5058 	int		bucket;
5059 	int		error;
5060 
5061 	mp = log->l_mp;
5062 
5063 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5064 		/*
5065 		 * Find the agi for this ag.
5066 		 */
5067 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5068 		if (error) {
5069 			/*
5070 			 * AGI is b0rked. Don't process it.
5071 			 *
5072 			 * We should probably mark the filesystem as corrupt
5073 			 * after we've recovered all the ag's we can....
5074 			 */
5075 			continue;
5076 		}
5077 		/*
5078 		 * Unlock the buffer so that it can be acquired in the normal
5079 		 * course of the transaction to truncate and free each inode.
5080 		 * Because we are not racing with anyone else here for the AGI
5081 		 * buffer, we don't even need to hold it locked to read the
5082 		 * initial unlinked bucket entries out of the buffer. We keep
5083 		 * buffer reference though, so that it stays pinned in memory
5084 		 * while we need the buffer.
5085 		 */
5086 		agi = XFS_BUF_TO_AGI(agibp);
5087 		xfs_buf_unlock(agibp);
5088 
5089 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5090 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5091 			while (agino != NULLAGINO) {
5092 				agino = xlog_recover_process_one_iunlink(mp,
5093 							agno, agino, bucket);
5094 				cond_resched();
5095 			}
5096 		}
5097 		xfs_buf_rele(agibp);
5098 	}
5099 }
5100 
5101 STATIC void
5102 xlog_unpack_data(
5103 	struct xlog_rec_header	*rhead,
5104 	char			*dp,
5105 	struct xlog		*log)
5106 {
5107 	int			i, j, k;
5108 
5109 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5110 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5111 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5112 		dp += BBSIZE;
5113 	}
5114 
5115 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5116 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5117 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5118 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5119 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5120 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5121 			dp += BBSIZE;
5122 		}
5123 	}
5124 }
5125 
5126 /*
5127  * CRC check, unpack and process a log record.
5128  */
5129 STATIC int
5130 xlog_recover_process(
5131 	struct xlog		*log,
5132 	struct hlist_head	rhash[],
5133 	struct xlog_rec_header	*rhead,
5134 	char			*dp,
5135 	int			pass,
5136 	struct list_head	*buffer_list)
5137 {
5138 	__le32			old_crc = rhead->h_crc;
5139 	__le32			crc;
5140 
5141 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5142 
5143 	/*
5144 	 * Nothing else to do if this is a CRC verification pass. Just return
5145 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
5146 	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5147 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5148 	 * know precisely what failed.
5149 	 */
5150 	if (pass == XLOG_RECOVER_CRCPASS) {
5151 		if (old_crc && crc != old_crc)
5152 			return -EFSBADCRC;
5153 		return 0;
5154 	}
5155 
5156 	/*
5157 	 * We're in the normal recovery path. Issue a warning if and only if the
5158 	 * CRC in the header is non-zero. This is an advisory warning and the
5159 	 * zero CRC check prevents warnings from being emitted when upgrading
5160 	 * the kernel from one that does not add CRCs by default.
5161 	 */
5162 	if (crc != old_crc) {
5163 		if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5164 			xfs_alert(log->l_mp,
5165 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
5166 					le32_to_cpu(old_crc),
5167 					le32_to_cpu(crc));
5168 			xfs_hex_dump(dp, 32);
5169 		}
5170 
5171 		/*
5172 		 * If the filesystem is CRC enabled, this mismatch becomes a
5173 		 * fatal log corruption failure.
5174 		 */
5175 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5176 			return -EFSCORRUPTED;
5177 	}
5178 
5179 	xlog_unpack_data(rhead, dp, log);
5180 
5181 	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5182 					 buffer_list);
5183 }
5184 
5185 STATIC int
5186 xlog_valid_rec_header(
5187 	struct xlog		*log,
5188 	struct xlog_rec_header	*rhead,
5189 	xfs_daddr_t		blkno)
5190 {
5191 	int			hlen;
5192 
5193 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5194 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5195 				XFS_ERRLEVEL_LOW, log->l_mp);
5196 		return -EFSCORRUPTED;
5197 	}
5198 	if (unlikely(
5199 	    (!rhead->h_version ||
5200 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5201 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5202 			__func__, be32_to_cpu(rhead->h_version));
5203 		return -EIO;
5204 	}
5205 
5206 	/* LR body must have data or it wouldn't have been written */
5207 	hlen = be32_to_cpu(rhead->h_len);
5208 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5209 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5210 				XFS_ERRLEVEL_LOW, log->l_mp);
5211 		return -EFSCORRUPTED;
5212 	}
5213 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5214 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5215 				XFS_ERRLEVEL_LOW, log->l_mp);
5216 		return -EFSCORRUPTED;
5217 	}
5218 	return 0;
5219 }
5220 
5221 /*
5222  * Read the log from tail to head and process the log records found.
5223  * Handle the two cases where the tail and head are in the same cycle
5224  * and where the active portion of the log wraps around the end of
5225  * the physical log separately.  The pass parameter is passed through
5226  * to the routines called to process the data and is not looked at
5227  * here.
5228  */
5229 STATIC int
5230 xlog_do_recovery_pass(
5231 	struct xlog		*log,
5232 	xfs_daddr_t		head_blk,
5233 	xfs_daddr_t		tail_blk,
5234 	int			pass,
5235 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
5236 {
5237 	xlog_rec_header_t	*rhead;
5238 	xfs_daddr_t		blk_no, rblk_no;
5239 	xfs_daddr_t		rhead_blk;
5240 	char			*offset;
5241 	char			*hbp, *dbp;
5242 	int			error = 0, h_size, h_len;
5243 	int			error2 = 0;
5244 	int			bblks, split_bblks;
5245 	int			hblks, split_hblks, wrapped_hblks;
5246 	int			i;
5247 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
5248 	LIST_HEAD		(buffer_list);
5249 
5250 	ASSERT(head_blk != tail_blk);
5251 	blk_no = rhead_blk = tail_blk;
5252 
5253 	for (i = 0; i < XLOG_RHASH_SIZE; i++)
5254 		INIT_HLIST_HEAD(&rhash[i]);
5255 
5256 	/*
5257 	 * Read the header of the tail block and get the iclog buffer size from
5258 	 * h_size.  Use this to tell how many sectors make up the log header.
5259 	 */
5260 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5261 		/*
5262 		 * When using variable length iclogs, read first sector of
5263 		 * iclog header and extract the header size from it.  Get a
5264 		 * new hbp that is the correct size.
5265 		 */
5266 		hbp = xlog_alloc_buffer(log, 1);
5267 		if (!hbp)
5268 			return -ENOMEM;
5269 
5270 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5271 		if (error)
5272 			goto bread_err1;
5273 
5274 		rhead = (xlog_rec_header_t *)offset;
5275 		error = xlog_valid_rec_header(log, rhead, tail_blk);
5276 		if (error)
5277 			goto bread_err1;
5278 
5279 		/*
5280 		 * xfsprogs has a bug where record length is based on lsunit but
5281 		 * h_size (iclog size) is hardcoded to 32k. Now that we
5282 		 * unconditionally CRC verify the unmount record, this means the
5283 		 * log buffer can be too small for the record and cause an
5284 		 * overrun.
5285 		 *
5286 		 * Detect this condition here. Use lsunit for the buffer size as
5287 		 * long as this looks like the mkfs case. Otherwise, return an
5288 		 * error to avoid a buffer overrun.
5289 		 */
5290 		h_size = be32_to_cpu(rhead->h_size);
5291 		h_len = be32_to_cpu(rhead->h_len);
5292 		if (h_len > h_size) {
5293 			if (h_len <= log->l_mp->m_logbsize &&
5294 			    be32_to_cpu(rhead->h_num_logops) == 1) {
5295 				xfs_warn(log->l_mp,
5296 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
5297 					 h_size, log->l_mp->m_logbsize);
5298 				h_size = log->l_mp->m_logbsize;
5299 			} else
5300 				return -EFSCORRUPTED;
5301 		}
5302 
5303 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5304 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5305 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5306 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
5307 				hblks++;
5308 			kmem_free(hbp);
5309 			hbp = xlog_alloc_buffer(log, hblks);
5310 		} else {
5311 			hblks = 1;
5312 		}
5313 	} else {
5314 		ASSERT(log->l_sectBBsize == 1);
5315 		hblks = 1;
5316 		hbp = xlog_alloc_buffer(log, 1);
5317 		h_size = XLOG_BIG_RECORD_BSIZE;
5318 	}
5319 
5320 	if (!hbp)
5321 		return -ENOMEM;
5322 	dbp = xlog_alloc_buffer(log, BTOBB(h_size));
5323 	if (!dbp) {
5324 		kmem_free(hbp);
5325 		return -ENOMEM;
5326 	}
5327 
5328 	memset(rhash, 0, sizeof(rhash));
5329 	if (tail_blk > head_blk) {
5330 		/*
5331 		 * Perform recovery around the end of the physical log.
5332 		 * When the head is not on the same cycle number as the tail,
5333 		 * we can't do a sequential recovery.
5334 		 */
5335 		while (blk_no < log->l_logBBsize) {
5336 			/*
5337 			 * Check for header wrapping around physical end-of-log
5338 			 */
5339 			offset = hbp;
5340 			split_hblks = 0;
5341 			wrapped_hblks = 0;
5342 			if (blk_no + hblks <= log->l_logBBsize) {
5343 				/* Read header in one read */
5344 				error = xlog_bread(log, blk_no, hblks, hbp,
5345 						   &offset);
5346 				if (error)
5347 					goto bread_err2;
5348 			} else {
5349 				/* This LR is split across physical log end */
5350 				if (blk_no != log->l_logBBsize) {
5351 					/* some data before physical log end */
5352 					ASSERT(blk_no <= INT_MAX);
5353 					split_hblks = log->l_logBBsize - (int)blk_no;
5354 					ASSERT(split_hblks > 0);
5355 					error = xlog_bread(log, blk_no,
5356 							   split_hblks, hbp,
5357 							   &offset);
5358 					if (error)
5359 						goto bread_err2;
5360 				}
5361 
5362 				/*
5363 				 * Note: this black magic still works with
5364 				 * large sector sizes (non-512) only because:
5365 				 * - we increased the buffer size originally
5366 				 *   by 1 sector giving us enough extra space
5367 				 *   for the second read;
5368 				 * - the log start is guaranteed to be sector
5369 				 *   aligned;
5370 				 * - we read the log end (LR header start)
5371 				 *   _first_, then the log start (LR header end)
5372 				 *   - order is important.
5373 				 */
5374 				wrapped_hblks = hblks - split_hblks;
5375 				error = xlog_bread_noalign(log, 0,
5376 						wrapped_hblks,
5377 						offset + BBTOB(split_hblks));
5378 				if (error)
5379 					goto bread_err2;
5380 			}
5381 			rhead = (xlog_rec_header_t *)offset;
5382 			error = xlog_valid_rec_header(log, rhead,
5383 						split_hblks ? blk_no : 0);
5384 			if (error)
5385 				goto bread_err2;
5386 
5387 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5388 			blk_no += hblks;
5389 
5390 			/*
5391 			 * Read the log record data in multiple reads if it
5392 			 * wraps around the end of the log. Note that if the
5393 			 * header already wrapped, blk_no could point past the
5394 			 * end of the log. The record data is contiguous in
5395 			 * that case.
5396 			 */
5397 			if (blk_no + bblks <= log->l_logBBsize ||
5398 			    blk_no >= log->l_logBBsize) {
5399 				rblk_no = xlog_wrap_logbno(log, blk_no);
5400 				error = xlog_bread(log, rblk_no, bblks, dbp,
5401 						   &offset);
5402 				if (error)
5403 					goto bread_err2;
5404 			} else {
5405 				/* This log record is split across the
5406 				 * physical end of log */
5407 				offset = dbp;
5408 				split_bblks = 0;
5409 				if (blk_no != log->l_logBBsize) {
5410 					/* some data is before the physical
5411 					 * end of log */
5412 					ASSERT(!wrapped_hblks);
5413 					ASSERT(blk_no <= INT_MAX);
5414 					split_bblks =
5415 						log->l_logBBsize - (int)blk_no;
5416 					ASSERT(split_bblks > 0);
5417 					error = xlog_bread(log, blk_no,
5418 							split_bblks, dbp,
5419 							&offset);
5420 					if (error)
5421 						goto bread_err2;
5422 				}
5423 
5424 				/*
5425 				 * Note: this black magic still works with
5426 				 * large sector sizes (non-512) only because:
5427 				 * - we increased the buffer size originally
5428 				 *   by 1 sector giving us enough extra space
5429 				 *   for the second read;
5430 				 * - the log start is guaranteed to be sector
5431 				 *   aligned;
5432 				 * - we read the log end (LR header start)
5433 				 *   _first_, then the log start (LR header end)
5434 				 *   - order is important.
5435 				 */
5436 				error = xlog_bread_noalign(log, 0,
5437 						bblks - split_bblks,
5438 						offset + BBTOB(split_bblks));
5439 				if (error)
5440 					goto bread_err2;
5441 			}
5442 
5443 			error = xlog_recover_process(log, rhash, rhead, offset,
5444 						     pass, &buffer_list);
5445 			if (error)
5446 				goto bread_err2;
5447 
5448 			blk_no += bblks;
5449 			rhead_blk = blk_no;
5450 		}
5451 
5452 		ASSERT(blk_no >= log->l_logBBsize);
5453 		blk_no -= log->l_logBBsize;
5454 		rhead_blk = blk_no;
5455 	}
5456 
5457 	/* read first part of physical log */
5458 	while (blk_no < head_blk) {
5459 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5460 		if (error)
5461 			goto bread_err2;
5462 
5463 		rhead = (xlog_rec_header_t *)offset;
5464 		error = xlog_valid_rec_header(log, rhead, blk_no);
5465 		if (error)
5466 			goto bread_err2;
5467 
5468 		/* blocks in data section */
5469 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5470 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5471 				   &offset);
5472 		if (error)
5473 			goto bread_err2;
5474 
5475 		error = xlog_recover_process(log, rhash, rhead, offset, pass,
5476 					     &buffer_list);
5477 		if (error)
5478 			goto bread_err2;
5479 
5480 		blk_no += bblks + hblks;
5481 		rhead_blk = blk_no;
5482 	}
5483 
5484  bread_err2:
5485 	kmem_free(dbp);
5486  bread_err1:
5487 	kmem_free(hbp);
5488 
5489 	/*
5490 	 * Submit buffers that have been added from the last record processed,
5491 	 * regardless of error status.
5492 	 */
5493 	if (!list_empty(&buffer_list))
5494 		error2 = xfs_buf_delwri_submit(&buffer_list);
5495 
5496 	if (error && first_bad)
5497 		*first_bad = rhead_blk;
5498 
5499 	/*
5500 	 * Transactions are freed at commit time but transactions without commit
5501 	 * records on disk are never committed. Free any that may be left in the
5502 	 * hash table.
5503 	 */
5504 	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5505 		struct hlist_node	*tmp;
5506 		struct xlog_recover	*trans;
5507 
5508 		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5509 			xlog_recover_free_trans(trans);
5510 	}
5511 
5512 	return error ? error : error2;
5513 }
5514 
5515 /*
5516  * Do the recovery of the log.  We actually do this in two phases.
5517  * The two passes are necessary in order to implement the function
5518  * of cancelling a record written into the log.  The first pass
5519  * determines those things which have been cancelled, and the
5520  * second pass replays log items normally except for those which
5521  * have been cancelled.  The handling of the replay and cancellations
5522  * takes place in the log item type specific routines.
5523  *
5524  * The table of items which have cancel records in the log is allocated
5525  * and freed at this level, since only here do we know when all of
5526  * the log recovery has been completed.
5527  */
5528 STATIC int
5529 xlog_do_log_recovery(
5530 	struct xlog	*log,
5531 	xfs_daddr_t	head_blk,
5532 	xfs_daddr_t	tail_blk)
5533 {
5534 	int		error, i;
5535 
5536 	ASSERT(head_blk != tail_blk);
5537 
5538 	/*
5539 	 * First do a pass to find all of the cancelled buf log items.
5540 	 * Store them in the buf_cancel_table for use in the second pass.
5541 	 */
5542 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5543 						 sizeof(struct list_head),
5544 						 0);
5545 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5546 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5547 
5548 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5549 				      XLOG_RECOVER_PASS1, NULL);
5550 	if (error != 0) {
5551 		kmem_free(log->l_buf_cancel_table);
5552 		log->l_buf_cancel_table = NULL;
5553 		return error;
5554 	}
5555 	/*
5556 	 * Then do a second pass to actually recover the items in the log.
5557 	 * When it is complete free the table of buf cancel items.
5558 	 */
5559 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5560 				      XLOG_RECOVER_PASS2, NULL);
5561 #ifdef DEBUG
5562 	if (!error) {
5563 		int	i;
5564 
5565 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5566 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5567 	}
5568 #endif	/* DEBUG */
5569 
5570 	kmem_free(log->l_buf_cancel_table);
5571 	log->l_buf_cancel_table = NULL;
5572 
5573 	return error;
5574 }
5575 
5576 /*
5577  * Do the actual recovery
5578  */
5579 STATIC int
5580 xlog_do_recover(
5581 	struct xlog	*log,
5582 	xfs_daddr_t	head_blk,
5583 	xfs_daddr_t	tail_blk)
5584 {
5585 	struct xfs_mount *mp = log->l_mp;
5586 	int		error;
5587 	xfs_buf_t	*bp;
5588 	xfs_sb_t	*sbp;
5589 
5590 	trace_xfs_log_recover(log, head_blk, tail_blk);
5591 
5592 	/*
5593 	 * First replay the images in the log.
5594 	 */
5595 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
5596 	if (error)
5597 		return error;
5598 
5599 	/*
5600 	 * If IO errors happened during recovery, bail out.
5601 	 */
5602 	if (XFS_FORCED_SHUTDOWN(mp)) {
5603 		return -EIO;
5604 	}
5605 
5606 	/*
5607 	 * We now update the tail_lsn since much of the recovery has completed
5608 	 * and there may be space available to use.  If there were no extent
5609 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
5610 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5611 	 * lsn of the last known good LR on disk.  If there are extent frees
5612 	 * or iunlinks they will have some entries in the AIL; so we look at
5613 	 * the AIL to determine how to set the tail_lsn.
5614 	 */
5615 	xlog_assign_tail_lsn(mp);
5616 
5617 	/*
5618 	 * Now that we've finished replaying all buffer and inode
5619 	 * updates, re-read in the superblock and reverify it.
5620 	 */
5621 	bp = xfs_getsb(mp);
5622 	bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5623 	ASSERT(!(bp->b_flags & XBF_WRITE));
5624 	bp->b_flags |= XBF_READ;
5625 	bp->b_ops = &xfs_sb_buf_ops;
5626 
5627 	error = xfs_buf_submit(bp);
5628 	if (error) {
5629 		if (!XFS_FORCED_SHUTDOWN(mp)) {
5630 			xfs_buf_ioerror_alert(bp, __func__);
5631 			ASSERT(0);
5632 		}
5633 		xfs_buf_relse(bp);
5634 		return error;
5635 	}
5636 
5637 	/* Convert superblock from on-disk format */
5638 	sbp = &mp->m_sb;
5639 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5640 	xfs_buf_relse(bp);
5641 
5642 	/* re-initialise in-core superblock and geometry structures */
5643 	xfs_reinit_percpu_counters(mp);
5644 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5645 	if (error) {
5646 		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5647 		return error;
5648 	}
5649 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5650 
5651 	xlog_recover_check_summary(log);
5652 
5653 	/* Normal transactions can now occur */
5654 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5655 	return 0;
5656 }
5657 
5658 /*
5659  * Perform recovery and re-initialize some log variables in xlog_find_tail.
5660  *
5661  * Return error or zero.
5662  */
5663 int
5664 xlog_recover(
5665 	struct xlog	*log)
5666 {
5667 	xfs_daddr_t	head_blk, tail_blk;
5668 	int		error;
5669 
5670 	/* find the tail of the log */
5671 	error = xlog_find_tail(log, &head_blk, &tail_blk);
5672 	if (error)
5673 		return error;
5674 
5675 	/*
5676 	 * The superblock was read before the log was available and thus the LSN
5677 	 * could not be verified. Check the superblock LSN against the current
5678 	 * LSN now that it's known.
5679 	 */
5680 	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5681 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5682 		return -EINVAL;
5683 
5684 	if (tail_blk != head_blk) {
5685 		/* There used to be a comment here:
5686 		 *
5687 		 * disallow recovery on read-only mounts.  note -- mount
5688 		 * checks for ENOSPC and turns it into an intelligent
5689 		 * error message.
5690 		 * ...but this is no longer true.  Now, unless you specify
5691 		 * NORECOVERY (in which case this function would never be
5692 		 * called), we just go ahead and recover.  We do this all
5693 		 * under the vfs layer, so we can get away with it unless
5694 		 * the device itself is read-only, in which case we fail.
5695 		 */
5696 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5697 			return error;
5698 		}
5699 
5700 		/*
5701 		 * Version 5 superblock log feature mask validation. We know the
5702 		 * log is dirty so check if there are any unknown log features
5703 		 * in what we need to recover. If there are unknown features
5704 		 * (e.g. unsupported transactions, then simply reject the
5705 		 * attempt at recovery before touching anything.
5706 		 */
5707 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5708 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5709 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5710 			xfs_warn(log->l_mp,
5711 "Superblock has unknown incompatible log features (0x%x) enabled.",
5712 				(log->l_mp->m_sb.sb_features_log_incompat &
5713 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5714 			xfs_warn(log->l_mp,
5715 "The log can not be fully and/or safely recovered by this kernel.");
5716 			xfs_warn(log->l_mp,
5717 "Please recover the log on a kernel that supports the unknown features.");
5718 			return -EINVAL;
5719 		}
5720 
5721 		/*
5722 		 * Delay log recovery if the debug hook is set. This is debug
5723 		 * instrumention to coordinate simulation of I/O failures with
5724 		 * log recovery.
5725 		 */
5726 		if (xfs_globals.log_recovery_delay) {
5727 			xfs_notice(log->l_mp,
5728 				"Delaying log recovery for %d seconds.",
5729 				xfs_globals.log_recovery_delay);
5730 			msleep(xfs_globals.log_recovery_delay * 1000);
5731 		}
5732 
5733 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5734 				log->l_mp->m_logname ? log->l_mp->m_logname
5735 						     : "internal");
5736 
5737 		error = xlog_do_recover(log, head_blk, tail_blk);
5738 		log->l_flags |= XLOG_RECOVERY_NEEDED;
5739 	}
5740 	return error;
5741 }
5742 
5743 /*
5744  * In the first part of recovery we replay inodes and buffers and build
5745  * up the list of extent free items which need to be processed.  Here
5746  * we process the extent free items and clean up the on disk unlinked
5747  * inode lists.  This is separated from the first part of recovery so
5748  * that the root and real-time bitmap inodes can be read in from disk in
5749  * between the two stages.  This is necessary so that we can free space
5750  * in the real-time portion of the file system.
5751  */
5752 int
5753 xlog_recover_finish(
5754 	struct xlog	*log)
5755 {
5756 	/*
5757 	 * Now we're ready to do the transactions needed for the
5758 	 * rest of recovery.  Start with completing all the extent
5759 	 * free intent records and then process the unlinked inode
5760 	 * lists.  At this point, we essentially run in normal mode
5761 	 * except that we're still performing recovery actions
5762 	 * rather than accepting new requests.
5763 	 */
5764 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5765 		int	error;
5766 		error = xlog_recover_process_intents(log);
5767 		if (error) {
5768 			xfs_alert(log->l_mp, "Failed to recover intents");
5769 			return error;
5770 		}
5771 
5772 		/*
5773 		 * Sync the log to get all the intents out of the AIL.
5774 		 * This isn't absolutely necessary, but it helps in
5775 		 * case the unlink transactions would have problems
5776 		 * pushing the intents out of the way.
5777 		 */
5778 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5779 
5780 		xlog_recover_process_iunlinks(log);
5781 
5782 		xlog_recover_check_summary(log);
5783 
5784 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5785 				log->l_mp->m_logname ? log->l_mp->m_logname
5786 						     : "internal");
5787 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5788 	} else {
5789 		xfs_info(log->l_mp, "Ending clean mount");
5790 	}
5791 	return 0;
5792 }
5793 
5794 void
5795 xlog_recover_cancel(
5796 	struct xlog	*log)
5797 {
5798 	if (log->l_flags & XLOG_RECOVERY_NEEDED)
5799 		xlog_recover_cancel_intents(log);
5800 }
5801 
5802 #if defined(DEBUG)
5803 /*
5804  * Read all of the agf and agi counters and check that they
5805  * are consistent with the superblock counters.
5806  */
5807 STATIC void
5808 xlog_recover_check_summary(
5809 	struct xlog	*log)
5810 {
5811 	xfs_mount_t	*mp;
5812 	xfs_agf_t	*agfp;
5813 	xfs_buf_t	*agfbp;
5814 	xfs_buf_t	*agibp;
5815 	xfs_agnumber_t	agno;
5816 	uint64_t	freeblks;
5817 	uint64_t	itotal;
5818 	uint64_t	ifree;
5819 	int		error;
5820 
5821 	mp = log->l_mp;
5822 
5823 	freeblks = 0LL;
5824 	itotal = 0LL;
5825 	ifree = 0LL;
5826 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5827 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5828 		if (error) {
5829 			xfs_alert(mp, "%s agf read failed agno %d error %d",
5830 						__func__, agno, error);
5831 		} else {
5832 			agfp = XFS_BUF_TO_AGF(agfbp);
5833 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
5834 				    be32_to_cpu(agfp->agf_flcount);
5835 			xfs_buf_relse(agfbp);
5836 		}
5837 
5838 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5839 		if (error) {
5840 			xfs_alert(mp, "%s agi read failed agno %d error %d",
5841 						__func__, agno, error);
5842 		} else {
5843 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
5844 
5845 			itotal += be32_to_cpu(agi->agi_count);
5846 			ifree += be32_to_cpu(agi->agi_freecount);
5847 			xfs_buf_relse(agibp);
5848 		}
5849 	}
5850 }
5851 #endif /* DEBUG */
5852