xref: /linux/fs/xfs/xfs_log_recover.c (revision 93df8a1ed6231727c5db94a80b1a6bd5ee67cec3)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
45 #include "xfs_dir2.h"
46 
47 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
48 
49 STATIC int
50 xlog_find_zeroed(
51 	struct xlog	*,
52 	xfs_daddr_t	*);
53 STATIC int
54 xlog_clear_stale_blocks(
55 	struct xlog	*,
56 	xfs_lsn_t);
57 #if defined(DEBUG)
58 STATIC void
59 xlog_recover_check_summary(
60 	struct xlog *);
61 #else
62 #define	xlog_recover_check_summary(log)
63 #endif
64 
65 /*
66  * This structure is used during recovery to record the buf log items which
67  * have been canceled and should not be replayed.
68  */
69 struct xfs_buf_cancel {
70 	xfs_daddr_t		bc_blkno;
71 	uint			bc_len;
72 	int			bc_refcount;
73 	struct list_head	bc_list;
74 };
75 
76 /*
77  * Sector aligned buffer routines for buffer create/read/write/access
78  */
79 
80 /*
81  * Verify the given count of basic blocks is valid number of blocks
82  * to specify for an operation involving the given XFS log buffer.
83  * Returns nonzero if the count is valid, 0 otherwise.
84  */
85 
86 static inline int
87 xlog_buf_bbcount_valid(
88 	struct xlog	*log,
89 	int		bbcount)
90 {
91 	return bbcount > 0 && bbcount <= log->l_logBBsize;
92 }
93 
94 /*
95  * Allocate a buffer to hold log data.  The buffer needs to be able
96  * to map to a range of nbblks basic blocks at any valid (basic
97  * block) offset within the log.
98  */
99 STATIC xfs_buf_t *
100 xlog_get_bp(
101 	struct xlog	*log,
102 	int		nbblks)
103 {
104 	struct xfs_buf	*bp;
105 
106 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
107 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
108 			nbblks);
109 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
110 		return NULL;
111 	}
112 
113 	/*
114 	 * We do log I/O in units of log sectors (a power-of-2
115 	 * multiple of the basic block size), so we round up the
116 	 * requested size to accommodate the basic blocks required
117 	 * for complete log sectors.
118 	 *
119 	 * In addition, the buffer may be used for a non-sector-
120 	 * aligned block offset, in which case an I/O of the
121 	 * requested size could extend beyond the end of the
122 	 * buffer.  If the requested size is only 1 basic block it
123 	 * will never straddle a sector boundary, so this won't be
124 	 * an issue.  Nor will this be a problem if the log I/O is
125 	 * done in basic blocks (sector size 1).  But otherwise we
126 	 * extend the buffer by one extra log sector to ensure
127 	 * there's space to accommodate this possibility.
128 	 */
129 	if (nbblks > 1 && log->l_sectBBsize > 1)
130 		nbblks += log->l_sectBBsize;
131 	nbblks = round_up(nbblks, log->l_sectBBsize);
132 
133 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
134 	if (bp)
135 		xfs_buf_unlock(bp);
136 	return bp;
137 }
138 
139 STATIC void
140 xlog_put_bp(
141 	xfs_buf_t	*bp)
142 {
143 	xfs_buf_free(bp);
144 }
145 
146 /*
147  * Return the address of the start of the given block number's data
148  * in a log buffer.  The buffer covers a log sector-aligned region.
149  */
150 STATIC char *
151 xlog_align(
152 	struct xlog	*log,
153 	xfs_daddr_t	blk_no,
154 	int		nbblks,
155 	struct xfs_buf	*bp)
156 {
157 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
158 
159 	ASSERT(offset + nbblks <= bp->b_length);
160 	return bp->b_addr + BBTOB(offset);
161 }
162 
163 
164 /*
165  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
166  */
167 STATIC int
168 xlog_bread_noalign(
169 	struct xlog	*log,
170 	xfs_daddr_t	blk_no,
171 	int		nbblks,
172 	struct xfs_buf	*bp)
173 {
174 	int		error;
175 
176 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
177 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
178 			nbblks);
179 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
180 		return -EFSCORRUPTED;
181 	}
182 
183 	blk_no = round_down(blk_no, log->l_sectBBsize);
184 	nbblks = round_up(nbblks, log->l_sectBBsize);
185 
186 	ASSERT(nbblks > 0);
187 	ASSERT(nbblks <= bp->b_length);
188 
189 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
190 	XFS_BUF_READ(bp);
191 	bp->b_io_length = nbblks;
192 	bp->b_error = 0;
193 
194 	error = xfs_buf_submit_wait(bp);
195 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
196 		xfs_buf_ioerror_alert(bp, __func__);
197 	return error;
198 }
199 
200 STATIC int
201 xlog_bread(
202 	struct xlog	*log,
203 	xfs_daddr_t	blk_no,
204 	int		nbblks,
205 	struct xfs_buf	*bp,
206 	char		**offset)
207 {
208 	int		error;
209 
210 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
211 	if (error)
212 		return error;
213 
214 	*offset = xlog_align(log, blk_no, nbblks, bp);
215 	return 0;
216 }
217 
218 /*
219  * Read at an offset into the buffer. Returns with the buffer in it's original
220  * state regardless of the result of the read.
221  */
222 STATIC int
223 xlog_bread_offset(
224 	struct xlog	*log,
225 	xfs_daddr_t	blk_no,		/* block to read from */
226 	int		nbblks,		/* blocks to read */
227 	struct xfs_buf	*bp,
228 	char		*offset)
229 {
230 	char		*orig_offset = bp->b_addr;
231 	int		orig_len = BBTOB(bp->b_length);
232 	int		error, error2;
233 
234 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
235 	if (error)
236 		return error;
237 
238 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
239 
240 	/* must reset buffer pointer even on error */
241 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
242 	if (error)
243 		return error;
244 	return error2;
245 }
246 
247 /*
248  * Write out the buffer at the given block for the given number of blocks.
249  * The buffer is kept locked across the write and is returned locked.
250  * This can only be used for synchronous log writes.
251  */
252 STATIC int
253 xlog_bwrite(
254 	struct xlog	*log,
255 	xfs_daddr_t	blk_no,
256 	int		nbblks,
257 	struct xfs_buf	*bp)
258 {
259 	int		error;
260 
261 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
262 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
263 			nbblks);
264 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
265 		return -EFSCORRUPTED;
266 	}
267 
268 	blk_no = round_down(blk_no, log->l_sectBBsize);
269 	nbblks = round_up(nbblks, log->l_sectBBsize);
270 
271 	ASSERT(nbblks > 0);
272 	ASSERT(nbblks <= bp->b_length);
273 
274 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
275 	XFS_BUF_ZEROFLAGS(bp);
276 	xfs_buf_hold(bp);
277 	xfs_buf_lock(bp);
278 	bp->b_io_length = nbblks;
279 	bp->b_error = 0;
280 
281 	error = xfs_bwrite(bp);
282 	if (error)
283 		xfs_buf_ioerror_alert(bp, __func__);
284 	xfs_buf_relse(bp);
285 	return error;
286 }
287 
288 #ifdef DEBUG
289 /*
290  * dump debug superblock and log record information
291  */
292 STATIC void
293 xlog_header_check_dump(
294 	xfs_mount_t		*mp,
295 	xlog_rec_header_t	*head)
296 {
297 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
298 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
299 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
300 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
301 }
302 #else
303 #define xlog_header_check_dump(mp, head)
304 #endif
305 
306 /*
307  * check log record header for recovery
308  */
309 STATIC int
310 xlog_header_check_recover(
311 	xfs_mount_t		*mp,
312 	xlog_rec_header_t	*head)
313 {
314 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
315 
316 	/*
317 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
318 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
319 	 * a dirty log created in IRIX.
320 	 */
321 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
322 		xfs_warn(mp,
323 	"dirty log written in incompatible format - can't recover");
324 		xlog_header_check_dump(mp, head);
325 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
326 				 XFS_ERRLEVEL_HIGH, mp);
327 		return -EFSCORRUPTED;
328 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
329 		xfs_warn(mp,
330 	"dirty log entry has mismatched uuid - can't recover");
331 		xlog_header_check_dump(mp, head);
332 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
333 				 XFS_ERRLEVEL_HIGH, mp);
334 		return -EFSCORRUPTED;
335 	}
336 	return 0;
337 }
338 
339 /*
340  * read the head block of the log and check the header
341  */
342 STATIC int
343 xlog_header_check_mount(
344 	xfs_mount_t		*mp,
345 	xlog_rec_header_t	*head)
346 {
347 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
348 
349 	if (uuid_is_nil(&head->h_fs_uuid)) {
350 		/*
351 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
352 		 * h_fs_uuid is nil, we assume this log was last mounted
353 		 * by IRIX and continue.
354 		 */
355 		xfs_warn(mp, "nil uuid in log - IRIX style log");
356 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
357 		xfs_warn(mp, "log has mismatched uuid - can't recover");
358 		xlog_header_check_dump(mp, head);
359 		XFS_ERROR_REPORT("xlog_header_check_mount",
360 				 XFS_ERRLEVEL_HIGH, mp);
361 		return -EFSCORRUPTED;
362 	}
363 	return 0;
364 }
365 
366 STATIC void
367 xlog_recover_iodone(
368 	struct xfs_buf	*bp)
369 {
370 	if (bp->b_error) {
371 		/*
372 		 * We're not going to bother about retrying
373 		 * this during recovery. One strike!
374 		 */
375 		if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
376 			xfs_buf_ioerror_alert(bp, __func__);
377 			xfs_force_shutdown(bp->b_target->bt_mount,
378 						SHUTDOWN_META_IO_ERROR);
379 		}
380 	}
381 	bp->b_iodone = NULL;
382 	xfs_buf_ioend(bp);
383 }
384 
385 /*
386  * This routine finds (to an approximation) the first block in the physical
387  * log which contains the given cycle.  It uses a binary search algorithm.
388  * Note that the algorithm can not be perfect because the disk will not
389  * necessarily be perfect.
390  */
391 STATIC int
392 xlog_find_cycle_start(
393 	struct xlog	*log,
394 	struct xfs_buf	*bp,
395 	xfs_daddr_t	first_blk,
396 	xfs_daddr_t	*last_blk,
397 	uint		cycle)
398 {
399 	char		*offset;
400 	xfs_daddr_t	mid_blk;
401 	xfs_daddr_t	end_blk;
402 	uint		mid_cycle;
403 	int		error;
404 
405 	end_blk = *last_blk;
406 	mid_blk = BLK_AVG(first_blk, end_blk);
407 	while (mid_blk != first_blk && mid_blk != end_blk) {
408 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
409 		if (error)
410 			return error;
411 		mid_cycle = xlog_get_cycle(offset);
412 		if (mid_cycle == cycle)
413 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
414 		else
415 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
416 		mid_blk = BLK_AVG(first_blk, end_blk);
417 	}
418 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
419 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
420 
421 	*last_blk = end_blk;
422 
423 	return 0;
424 }
425 
426 /*
427  * Check that a range of blocks does not contain stop_on_cycle_no.
428  * Fill in *new_blk with the block offset where such a block is
429  * found, or with -1 (an invalid block number) if there is no such
430  * block in the range.  The scan needs to occur from front to back
431  * and the pointer into the region must be updated since a later
432  * routine will need to perform another test.
433  */
434 STATIC int
435 xlog_find_verify_cycle(
436 	struct xlog	*log,
437 	xfs_daddr_t	start_blk,
438 	int		nbblks,
439 	uint		stop_on_cycle_no,
440 	xfs_daddr_t	*new_blk)
441 {
442 	xfs_daddr_t	i, j;
443 	uint		cycle;
444 	xfs_buf_t	*bp;
445 	xfs_daddr_t	bufblks;
446 	char		*buf = NULL;
447 	int		error = 0;
448 
449 	/*
450 	 * Greedily allocate a buffer big enough to handle the full
451 	 * range of basic blocks we'll be examining.  If that fails,
452 	 * try a smaller size.  We need to be able to read at least
453 	 * a log sector, or we're out of luck.
454 	 */
455 	bufblks = 1 << ffs(nbblks);
456 	while (bufblks > log->l_logBBsize)
457 		bufblks >>= 1;
458 	while (!(bp = xlog_get_bp(log, bufblks))) {
459 		bufblks >>= 1;
460 		if (bufblks < log->l_sectBBsize)
461 			return -ENOMEM;
462 	}
463 
464 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
465 		int	bcount;
466 
467 		bcount = min(bufblks, (start_blk + nbblks - i));
468 
469 		error = xlog_bread(log, i, bcount, bp, &buf);
470 		if (error)
471 			goto out;
472 
473 		for (j = 0; j < bcount; j++) {
474 			cycle = xlog_get_cycle(buf);
475 			if (cycle == stop_on_cycle_no) {
476 				*new_blk = i+j;
477 				goto out;
478 			}
479 
480 			buf += BBSIZE;
481 		}
482 	}
483 
484 	*new_blk = -1;
485 
486 out:
487 	xlog_put_bp(bp);
488 	return error;
489 }
490 
491 /*
492  * Potentially backup over partial log record write.
493  *
494  * In the typical case, last_blk is the number of the block directly after
495  * a good log record.  Therefore, we subtract one to get the block number
496  * of the last block in the given buffer.  extra_bblks contains the number
497  * of blocks we would have read on a previous read.  This happens when the
498  * last log record is split over the end of the physical log.
499  *
500  * extra_bblks is the number of blocks potentially verified on a previous
501  * call to this routine.
502  */
503 STATIC int
504 xlog_find_verify_log_record(
505 	struct xlog		*log,
506 	xfs_daddr_t		start_blk,
507 	xfs_daddr_t		*last_blk,
508 	int			extra_bblks)
509 {
510 	xfs_daddr_t		i;
511 	xfs_buf_t		*bp;
512 	char			*offset = NULL;
513 	xlog_rec_header_t	*head = NULL;
514 	int			error = 0;
515 	int			smallmem = 0;
516 	int			num_blks = *last_blk - start_blk;
517 	int			xhdrs;
518 
519 	ASSERT(start_blk != 0 || *last_blk != start_blk);
520 
521 	if (!(bp = xlog_get_bp(log, num_blks))) {
522 		if (!(bp = xlog_get_bp(log, 1)))
523 			return -ENOMEM;
524 		smallmem = 1;
525 	} else {
526 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
527 		if (error)
528 			goto out;
529 		offset += ((num_blks - 1) << BBSHIFT);
530 	}
531 
532 	for (i = (*last_blk) - 1; i >= 0; i--) {
533 		if (i < start_blk) {
534 			/* valid log record not found */
535 			xfs_warn(log->l_mp,
536 		"Log inconsistent (didn't find previous header)");
537 			ASSERT(0);
538 			error = -EIO;
539 			goto out;
540 		}
541 
542 		if (smallmem) {
543 			error = xlog_bread(log, i, 1, bp, &offset);
544 			if (error)
545 				goto out;
546 		}
547 
548 		head = (xlog_rec_header_t *)offset;
549 
550 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
551 			break;
552 
553 		if (!smallmem)
554 			offset -= BBSIZE;
555 	}
556 
557 	/*
558 	 * We hit the beginning of the physical log & still no header.  Return
559 	 * to caller.  If caller can handle a return of -1, then this routine
560 	 * will be called again for the end of the physical log.
561 	 */
562 	if (i == -1) {
563 		error = 1;
564 		goto out;
565 	}
566 
567 	/*
568 	 * We have the final block of the good log (the first block
569 	 * of the log record _before_ the head. So we check the uuid.
570 	 */
571 	if ((error = xlog_header_check_mount(log->l_mp, head)))
572 		goto out;
573 
574 	/*
575 	 * We may have found a log record header before we expected one.
576 	 * last_blk will be the 1st block # with a given cycle #.  We may end
577 	 * up reading an entire log record.  In this case, we don't want to
578 	 * reset last_blk.  Only when last_blk points in the middle of a log
579 	 * record do we update last_blk.
580 	 */
581 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
582 		uint	h_size = be32_to_cpu(head->h_size);
583 
584 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
585 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
586 			xhdrs++;
587 	} else {
588 		xhdrs = 1;
589 	}
590 
591 	if (*last_blk - i + extra_bblks !=
592 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
593 		*last_blk = i;
594 
595 out:
596 	xlog_put_bp(bp);
597 	return error;
598 }
599 
600 /*
601  * Head is defined to be the point of the log where the next log write
602  * could go.  This means that incomplete LR writes at the end are
603  * eliminated when calculating the head.  We aren't guaranteed that previous
604  * LR have complete transactions.  We only know that a cycle number of
605  * current cycle number -1 won't be present in the log if we start writing
606  * from our current block number.
607  *
608  * last_blk contains the block number of the first block with a given
609  * cycle number.
610  *
611  * Return: zero if normal, non-zero if error.
612  */
613 STATIC int
614 xlog_find_head(
615 	struct xlog	*log,
616 	xfs_daddr_t	*return_head_blk)
617 {
618 	xfs_buf_t	*bp;
619 	char		*offset;
620 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
621 	int		num_scan_bblks;
622 	uint		first_half_cycle, last_half_cycle;
623 	uint		stop_on_cycle;
624 	int		error, log_bbnum = log->l_logBBsize;
625 
626 	/* Is the end of the log device zeroed? */
627 	error = xlog_find_zeroed(log, &first_blk);
628 	if (error < 0) {
629 		xfs_warn(log->l_mp, "empty log check failed");
630 		return error;
631 	}
632 	if (error == 1) {
633 		*return_head_blk = first_blk;
634 
635 		/* Is the whole lot zeroed? */
636 		if (!first_blk) {
637 			/* Linux XFS shouldn't generate totally zeroed logs -
638 			 * mkfs etc write a dummy unmount record to a fresh
639 			 * log so we can store the uuid in there
640 			 */
641 			xfs_warn(log->l_mp, "totally zeroed log");
642 		}
643 
644 		return 0;
645 	}
646 
647 	first_blk = 0;			/* get cycle # of 1st block */
648 	bp = xlog_get_bp(log, 1);
649 	if (!bp)
650 		return -ENOMEM;
651 
652 	error = xlog_bread(log, 0, 1, bp, &offset);
653 	if (error)
654 		goto bp_err;
655 
656 	first_half_cycle = xlog_get_cycle(offset);
657 
658 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
659 	error = xlog_bread(log, last_blk, 1, bp, &offset);
660 	if (error)
661 		goto bp_err;
662 
663 	last_half_cycle = xlog_get_cycle(offset);
664 	ASSERT(last_half_cycle != 0);
665 
666 	/*
667 	 * If the 1st half cycle number is equal to the last half cycle number,
668 	 * then the entire log is stamped with the same cycle number.  In this
669 	 * case, head_blk can't be set to zero (which makes sense).  The below
670 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
671 	 * we set it to log_bbnum which is an invalid block number, but this
672 	 * value makes the math correct.  If head_blk doesn't changed through
673 	 * all the tests below, *head_blk is set to zero at the very end rather
674 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
675 	 * in a circular file.
676 	 */
677 	if (first_half_cycle == last_half_cycle) {
678 		/*
679 		 * In this case we believe that the entire log should have
680 		 * cycle number last_half_cycle.  We need to scan backwards
681 		 * from the end verifying that there are no holes still
682 		 * containing last_half_cycle - 1.  If we find such a hole,
683 		 * then the start of that hole will be the new head.  The
684 		 * simple case looks like
685 		 *        x | x ... | x - 1 | x
686 		 * Another case that fits this picture would be
687 		 *        x | x + 1 | x ... | x
688 		 * In this case the head really is somewhere at the end of the
689 		 * log, as one of the latest writes at the beginning was
690 		 * incomplete.
691 		 * One more case is
692 		 *        x | x + 1 | x ... | x - 1 | x
693 		 * This is really the combination of the above two cases, and
694 		 * the head has to end up at the start of the x-1 hole at the
695 		 * end of the log.
696 		 *
697 		 * In the 256k log case, we will read from the beginning to the
698 		 * end of the log and search for cycle numbers equal to x-1.
699 		 * We don't worry about the x+1 blocks that we encounter,
700 		 * because we know that they cannot be the head since the log
701 		 * started with x.
702 		 */
703 		head_blk = log_bbnum;
704 		stop_on_cycle = last_half_cycle - 1;
705 	} else {
706 		/*
707 		 * In this case we want to find the first block with cycle
708 		 * number matching last_half_cycle.  We expect the log to be
709 		 * some variation on
710 		 *        x + 1 ... | x ... | x
711 		 * The first block with cycle number x (last_half_cycle) will
712 		 * be where the new head belongs.  First we do a binary search
713 		 * for the first occurrence of last_half_cycle.  The binary
714 		 * search may not be totally accurate, so then we scan back
715 		 * from there looking for occurrences of last_half_cycle before
716 		 * us.  If that backwards scan wraps around the beginning of
717 		 * the log, then we look for occurrences of last_half_cycle - 1
718 		 * at the end of the log.  The cases we're looking for look
719 		 * like
720 		 *                               v binary search stopped here
721 		 *        x + 1 ... | x | x + 1 | x ... | x
722 		 *                   ^ but we want to locate this spot
723 		 * or
724 		 *        <---------> less than scan distance
725 		 *        x + 1 ... | x ... | x - 1 | x
726 		 *                           ^ we want to locate this spot
727 		 */
728 		stop_on_cycle = last_half_cycle;
729 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
730 						&head_blk, last_half_cycle)))
731 			goto bp_err;
732 	}
733 
734 	/*
735 	 * Now validate the answer.  Scan back some number of maximum possible
736 	 * blocks and make sure each one has the expected cycle number.  The
737 	 * maximum is determined by the total possible amount of buffering
738 	 * in the in-core log.  The following number can be made tighter if
739 	 * we actually look at the block size of the filesystem.
740 	 */
741 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
742 	if (head_blk >= num_scan_bblks) {
743 		/*
744 		 * We are guaranteed that the entire check can be performed
745 		 * in one buffer.
746 		 */
747 		start_blk = head_blk - num_scan_bblks;
748 		if ((error = xlog_find_verify_cycle(log,
749 						start_blk, num_scan_bblks,
750 						stop_on_cycle, &new_blk)))
751 			goto bp_err;
752 		if (new_blk != -1)
753 			head_blk = new_blk;
754 	} else {		/* need to read 2 parts of log */
755 		/*
756 		 * We are going to scan backwards in the log in two parts.
757 		 * First we scan the physical end of the log.  In this part
758 		 * of the log, we are looking for blocks with cycle number
759 		 * last_half_cycle - 1.
760 		 * If we find one, then we know that the log starts there, as
761 		 * we've found a hole that didn't get written in going around
762 		 * the end of the physical log.  The simple case for this is
763 		 *        x + 1 ... | x ... | x - 1 | x
764 		 *        <---------> less than scan distance
765 		 * If all of the blocks at the end of the log have cycle number
766 		 * last_half_cycle, then we check the blocks at the start of
767 		 * the log looking for occurrences of last_half_cycle.  If we
768 		 * find one, then our current estimate for the location of the
769 		 * first occurrence of last_half_cycle is wrong and we move
770 		 * back to the hole we've found.  This case looks like
771 		 *        x + 1 ... | x | x + 1 | x ...
772 		 *                               ^ binary search stopped here
773 		 * Another case we need to handle that only occurs in 256k
774 		 * logs is
775 		 *        x + 1 ... | x ... | x+1 | x ...
776 		 *                   ^ binary search stops here
777 		 * In a 256k log, the scan at the end of the log will see the
778 		 * x + 1 blocks.  We need to skip past those since that is
779 		 * certainly not the head of the log.  By searching for
780 		 * last_half_cycle-1 we accomplish that.
781 		 */
782 		ASSERT(head_blk <= INT_MAX &&
783 			(xfs_daddr_t) num_scan_bblks >= head_blk);
784 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
785 		if ((error = xlog_find_verify_cycle(log, start_blk,
786 					num_scan_bblks - (int)head_blk,
787 					(stop_on_cycle - 1), &new_blk)))
788 			goto bp_err;
789 		if (new_blk != -1) {
790 			head_blk = new_blk;
791 			goto validate_head;
792 		}
793 
794 		/*
795 		 * Scan beginning of log now.  The last part of the physical
796 		 * log is good.  This scan needs to verify that it doesn't find
797 		 * the last_half_cycle.
798 		 */
799 		start_blk = 0;
800 		ASSERT(head_blk <= INT_MAX);
801 		if ((error = xlog_find_verify_cycle(log,
802 					start_blk, (int)head_blk,
803 					stop_on_cycle, &new_blk)))
804 			goto bp_err;
805 		if (new_blk != -1)
806 			head_blk = new_blk;
807 	}
808 
809 validate_head:
810 	/*
811 	 * Now we need to make sure head_blk is not pointing to a block in
812 	 * the middle of a log record.
813 	 */
814 	num_scan_bblks = XLOG_REC_SHIFT(log);
815 	if (head_blk >= num_scan_bblks) {
816 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
817 
818 		/* start ptr at last block ptr before head_blk */
819 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
820 		if (error == 1)
821 			error = -EIO;
822 		if (error)
823 			goto bp_err;
824 	} else {
825 		start_blk = 0;
826 		ASSERT(head_blk <= INT_MAX);
827 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
828 		if (error < 0)
829 			goto bp_err;
830 		if (error == 1) {
831 			/* We hit the beginning of the log during our search */
832 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
833 			new_blk = log_bbnum;
834 			ASSERT(start_blk <= INT_MAX &&
835 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
836 			ASSERT(head_blk <= INT_MAX);
837 			error = xlog_find_verify_log_record(log, start_blk,
838 							&new_blk, (int)head_blk);
839 			if (error == 1)
840 				error = -EIO;
841 			if (error)
842 				goto bp_err;
843 			if (new_blk != log_bbnum)
844 				head_blk = new_blk;
845 		} else if (error)
846 			goto bp_err;
847 	}
848 
849 	xlog_put_bp(bp);
850 	if (head_blk == log_bbnum)
851 		*return_head_blk = 0;
852 	else
853 		*return_head_blk = head_blk;
854 	/*
855 	 * When returning here, we have a good block number.  Bad block
856 	 * means that during a previous crash, we didn't have a clean break
857 	 * from cycle number N to cycle number N-1.  In this case, we need
858 	 * to find the first block with cycle number N-1.
859 	 */
860 	return 0;
861 
862  bp_err:
863 	xlog_put_bp(bp);
864 
865 	if (error)
866 		xfs_warn(log->l_mp, "failed to find log head");
867 	return error;
868 }
869 
870 /*
871  * Find the sync block number or the tail of the log.
872  *
873  * This will be the block number of the last record to have its
874  * associated buffers synced to disk.  Every log record header has
875  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
876  * to get a sync block number.  The only concern is to figure out which
877  * log record header to believe.
878  *
879  * The following algorithm uses the log record header with the largest
880  * lsn.  The entire log record does not need to be valid.  We only care
881  * that the header is valid.
882  *
883  * We could speed up search by using current head_blk buffer, but it is not
884  * available.
885  */
886 STATIC int
887 xlog_find_tail(
888 	struct xlog		*log,
889 	xfs_daddr_t		*head_blk,
890 	xfs_daddr_t		*tail_blk)
891 {
892 	xlog_rec_header_t	*rhead;
893 	xlog_op_header_t	*op_head;
894 	char			*offset = NULL;
895 	xfs_buf_t		*bp;
896 	int			error, i, found;
897 	xfs_daddr_t		umount_data_blk;
898 	xfs_daddr_t		after_umount_blk;
899 	xfs_lsn_t		tail_lsn;
900 	int			hblks;
901 
902 	found = 0;
903 
904 	/*
905 	 * Find previous log record
906 	 */
907 	if ((error = xlog_find_head(log, head_blk)))
908 		return error;
909 
910 	bp = xlog_get_bp(log, 1);
911 	if (!bp)
912 		return -ENOMEM;
913 	if (*head_blk == 0) {				/* special case */
914 		error = xlog_bread(log, 0, 1, bp, &offset);
915 		if (error)
916 			goto done;
917 
918 		if (xlog_get_cycle(offset) == 0) {
919 			*tail_blk = 0;
920 			/* leave all other log inited values alone */
921 			goto done;
922 		}
923 	}
924 
925 	/*
926 	 * Search backwards looking for log record header block
927 	 */
928 	ASSERT(*head_blk < INT_MAX);
929 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
930 		error = xlog_bread(log, i, 1, bp, &offset);
931 		if (error)
932 			goto done;
933 
934 		if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
935 			found = 1;
936 			break;
937 		}
938 	}
939 	/*
940 	 * If we haven't found the log record header block, start looking
941 	 * again from the end of the physical log.  XXXmiken: There should be
942 	 * a check here to make sure we didn't search more than N blocks in
943 	 * the previous code.
944 	 */
945 	if (!found) {
946 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
947 			error = xlog_bread(log, i, 1, bp, &offset);
948 			if (error)
949 				goto done;
950 
951 			if (*(__be32 *)offset ==
952 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
953 				found = 2;
954 				break;
955 			}
956 		}
957 	}
958 	if (!found) {
959 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
960 		xlog_put_bp(bp);
961 		ASSERT(0);
962 		return -EIO;
963 	}
964 
965 	/* find blk_no of tail of log */
966 	rhead = (xlog_rec_header_t *)offset;
967 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
968 
969 	/*
970 	 * Reset log values according to the state of the log when we
971 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
972 	 * one because the next write starts a new cycle rather than
973 	 * continuing the cycle of the last good log record.  At this
974 	 * point we have guaranteed that all partial log records have been
975 	 * accounted for.  Therefore, we know that the last good log record
976 	 * written was complete and ended exactly on the end boundary
977 	 * of the physical log.
978 	 */
979 	log->l_prev_block = i;
980 	log->l_curr_block = (int)*head_blk;
981 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
982 	if (found == 2)
983 		log->l_curr_cycle++;
984 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
985 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
986 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
987 					BBTOB(log->l_curr_block));
988 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
989 					BBTOB(log->l_curr_block));
990 
991 	/*
992 	 * Look for unmount record.  If we find it, then we know there
993 	 * was a clean unmount.  Since 'i' could be the last block in
994 	 * the physical log, we convert to a log block before comparing
995 	 * to the head_blk.
996 	 *
997 	 * Save the current tail lsn to use to pass to
998 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
999 	 * unmount record if there is one, so we pass the lsn of the
1000 	 * unmount record rather than the block after it.
1001 	 */
1002 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1003 		int	h_size = be32_to_cpu(rhead->h_size);
1004 		int	h_version = be32_to_cpu(rhead->h_version);
1005 
1006 		if ((h_version & XLOG_VERSION_2) &&
1007 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1008 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1009 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1010 				hblks++;
1011 		} else {
1012 			hblks = 1;
1013 		}
1014 	} else {
1015 		hblks = 1;
1016 	}
1017 	after_umount_blk = (i + hblks + (int)
1018 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1019 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1020 	if (*head_blk == after_umount_blk &&
1021 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1022 		umount_data_blk = (i + hblks) % log->l_logBBsize;
1023 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1024 		if (error)
1025 			goto done;
1026 
1027 		op_head = (xlog_op_header_t *)offset;
1028 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1029 			/*
1030 			 * Set tail and last sync so that newly written
1031 			 * log records will point recovery to after the
1032 			 * current unmount record.
1033 			 */
1034 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1035 					log->l_curr_cycle, after_umount_blk);
1036 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1037 					log->l_curr_cycle, after_umount_blk);
1038 			*tail_blk = after_umount_blk;
1039 
1040 			/*
1041 			 * Note that the unmount was clean. If the unmount
1042 			 * was not clean, we need to know this to rebuild the
1043 			 * superblock counters from the perag headers if we
1044 			 * have a filesystem using non-persistent counters.
1045 			 */
1046 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1047 		}
1048 	}
1049 
1050 	/*
1051 	 * Make sure that there are no blocks in front of the head
1052 	 * with the same cycle number as the head.  This can happen
1053 	 * because we allow multiple outstanding log writes concurrently,
1054 	 * and the later writes might make it out before earlier ones.
1055 	 *
1056 	 * We use the lsn from before modifying it so that we'll never
1057 	 * overwrite the unmount record after a clean unmount.
1058 	 *
1059 	 * Do this only if we are going to recover the filesystem
1060 	 *
1061 	 * NOTE: This used to say "if (!readonly)"
1062 	 * However on Linux, we can & do recover a read-only filesystem.
1063 	 * We only skip recovery if NORECOVERY is specified on mount,
1064 	 * in which case we would not be here.
1065 	 *
1066 	 * But... if the -device- itself is readonly, just skip this.
1067 	 * We can't recover this device anyway, so it won't matter.
1068 	 */
1069 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1070 		error = xlog_clear_stale_blocks(log, tail_lsn);
1071 
1072 done:
1073 	xlog_put_bp(bp);
1074 
1075 	if (error)
1076 		xfs_warn(log->l_mp, "failed to locate log tail");
1077 	return error;
1078 }
1079 
1080 /*
1081  * Is the log zeroed at all?
1082  *
1083  * The last binary search should be changed to perform an X block read
1084  * once X becomes small enough.  You can then search linearly through
1085  * the X blocks.  This will cut down on the number of reads we need to do.
1086  *
1087  * If the log is partially zeroed, this routine will pass back the blkno
1088  * of the first block with cycle number 0.  It won't have a complete LR
1089  * preceding it.
1090  *
1091  * Return:
1092  *	0  => the log is completely written to
1093  *	1 => use *blk_no as the first block of the log
1094  *	<0 => error has occurred
1095  */
1096 STATIC int
1097 xlog_find_zeroed(
1098 	struct xlog	*log,
1099 	xfs_daddr_t	*blk_no)
1100 {
1101 	xfs_buf_t	*bp;
1102 	char		*offset;
1103 	uint	        first_cycle, last_cycle;
1104 	xfs_daddr_t	new_blk, last_blk, start_blk;
1105 	xfs_daddr_t     num_scan_bblks;
1106 	int	        error, log_bbnum = log->l_logBBsize;
1107 
1108 	*blk_no = 0;
1109 
1110 	/* check totally zeroed log */
1111 	bp = xlog_get_bp(log, 1);
1112 	if (!bp)
1113 		return -ENOMEM;
1114 	error = xlog_bread(log, 0, 1, bp, &offset);
1115 	if (error)
1116 		goto bp_err;
1117 
1118 	first_cycle = xlog_get_cycle(offset);
1119 	if (first_cycle == 0) {		/* completely zeroed log */
1120 		*blk_no = 0;
1121 		xlog_put_bp(bp);
1122 		return 1;
1123 	}
1124 
1125 	/* check partially zeroed log */
1126 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1127 	if (error)
1128 		goto bp_err;
1129 
1130 	last_cycle = xlog_get_cycle(offset);
1131 	if (last_cycle != 0) {		/* log completely written to */
1132 		xlog_put_bp(bp);
1133 		return 0;
1134 	} else if (first_cycle != 1) {
1135 		/*
1136 		 * If the cycle of the last block is zero, the cycle of
1137 		 * the first block must be 1. If it's not, maybe we're
1138 		 * not looking at a log... Bail out.
1139 		 */
1140 		xfs_warn(log->l_mp,
1141 			"Log inconsistent or not a log (last==0, first!=1)");
1142 		error = -EINVAL;
1143 		goto bp_err;
1144 	}
1145 
1146 	/* we have a partially zeroed log */
1147 	last_blk = log_bbnum-1;
1148 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1149 		goto bp_err;
1150 
1151 	/*
1152 	 * Validate the answer.  Because there is no way to guarantee that
1153 	 * the entire log is made up of log records which are the same size,
1154 	 * we scan over the defined maximum blocks.  At this point, the maximum
1155 	 * is not chosen to mean anything special.   XXXmiken
1156 	 */
1157 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1158 	ASSERT(num_scan_bblks <= INT_MAX);
1159 
1160 	if (last_blk < num_scan_bblks)
1161 		num_scan_bblks = last_blk;
1162 	start_blk = last_blk - num_scan_bblks;
1163 
1164 	/*
1165 	 * We search for any instances of cycle number 0 that occur before
1166 	 * our current estimate of the head.  What we're trying to detect is
1167 	 *        1 ... | 0 | 1 | 0...
1168 	 *                       ^ binary search ends here
1169 	 */
1170 	if ((error = xlog_find_verify_cycle(log, start_blk,
1171 					 (int)num_scan_bblks, 0, &new_blk)))
1172 		goto bp_err;
1173 	if (new_blk != -1)
1174 		last_blk = new_blk;
1175 
1176 	/*
1177 	 * Potentially backup over partial log record write.  We don't need
1178 	 * to search the end of the log because we know it is zero.
1179 	 */
1180 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1181 	if (error == 1)
1182 		error = -EIO;
1183 	if (error)
1184 		goto bp_err;
1185 
1186 	*blk_no = last_blk;
1187 bp_err:
1188 	xlog_put_bp(bp);
1189 	if (error)
1190 		return error;
1191 	return 1;
1192 }
1193 
1194 /*
1195  * These are simple subroutines used by xlog_clear_stale_blocks() below
1196  * to initialize a buffer full of empty log record headers and write
1197  * them into the log.
1198  */
1199 STATIC void
1200 xlog_add_record(
1201 	struct xlog		*log,
1202 	char			*buf,
1203 	int			cycle,
1204 	int			block,
1205 	int			tail_cycle,
1206 	int			tail_block)
1207 {
1208 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1209 
1210 	memset(buf, 0, BBSIZE);
1211 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1212 	recp->h_cycle = cpu_to_be32(cycle);
1213 	recp->h_version = cpu_to_be32(
1214 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1215 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1216 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1217 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1218 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1219 }
1220 
1221 STATIC int
1222 xlog_write_log_records(
1223 	struct xlog	*log,
1224 	int		cycle,
1225 	int		start_block,
1226 	int		blocks,
1227 	int		tail_cycle,
1228 	int		tail_block)
1229 {
1230 	char		*offset;
1231 	xfs_buf_t	*bp;
1232 	int		balign, ealign;
1233 	int		sectbb = log->l_sectBBsize;
1234 	int		end_block = start_block + blocks;
1235 	int		bufblks;
1236 	int		error = 0;
1237 	int		i, j = 0;
1238 
1239 	/*
1240 	 * Greedily allocate a buffer big enough to handle the full
1241 	 * range of basic blocks to be written.  If that fails, try
1242 	 * a smaller size.  We need to be able to write at least a
1243 	 * log sector, or we're out of luck.
1244 	 */
1245 	bufblks = 1 << ffs(blocks);
1246 	while (bufblks > log->l_logBBsize)
1247 		bufblks >>= 1;
1248 	while (!(bp = xlog_get_bp(log, bufblks))) {
1249 		bufblks >>= 1;
1250 		if (bufblks < sectbb)
1251 			return -ENOMEM;
1252 	}
1253 
1254 	/* We may need to do a read at the start to fill in part of
1255 	 * the buffer in the starting sector not covered by the first
1256 	 * write below.
1257 	 */
1258 	balign = round_down(start_block, sectbb);
1259 	if (balign != start_block) {
1260 		error = xlog_bread_noalign(log, start_block, 1, bp);
1261 		if (error)
1262 			goto out_put_bp;
1263 
1264 		j = start_block - balign;
1265 	}
1266 
1267 	for (i = start_block; i < end_block; i += bufblks) {
1268 		int		bcount, endcount;
1269 
1270 		bcount = min(bufblks, end_block - start_block);
1271 		endcount = bcount - j;
1272 
1273 		/* We may need to do a read at the end to fill in part of
1274 		 * the buffer in the final sector not covered by the write.
1275 		 * If this is the same sector as the above read, skip it.
1276 		 */
1277 		ealign = round_down(end_block, sectbb);
1278 		if (j == 0 && (start_block + endcount > ealign)) {
1279 			offset = bp->b_addr + BBTOB(ealign - start_block);
1280 			error = xlog_bread_offset(log, ealign, sectbb,
1281 							bp, offset);
1282 			if (error)
1283 				break;
1284 
1285 		}
1286 
1287 		offset = xlog_align(log, start_block, endcount, bp);
1288 		for (; j < endcount; j++) {
1289 			xlog_add_record(log, offset, cycle, i+j,
1290 					tail_cycle, tail_block);
1291 			offset += BBSIZE;
1292 		}
1293 		error = xlog_bwrite(log, start_block, endcount, bp);
1294 		if (error)
1295 			break;
1296 		start_block += endcount;
1297 		j = 0;
1298 	}
1299 
1300  out_put_bp:
1301 	xlog_put_bp(bp);
1302 	return error;
1303 }
1304 
1305 /*
1306  * This routine is called to blow away any incomplete log writes out
1307  * in front of the log head.  We do this so that we won't become confused
1308  * if we come up, write only a little bit more, and then crash again.
1309  * If we leave the partial log records out there, this situation could
1310  * cause us to think those partial writes are valid blocks since they
1311  * have the current cycle number.  We get rid of them by overwriting them
1312  * with empty log records with the old cycle number rather than the
1313  * current one.
1314  *
1315  * The tail lsn is passed in rather than taken from
1316  * the log so that we will not write over the unmount record after a
1317  * clean unmount in a 512 block log.  Doing so would leave the log without
1318  * any valid log records in it until a new one was written.  If we crashed
1319  * during that time we would not be able to recover.
1320  */
1321 STATIC int
1322 xlog_clear_stale_blocks(
1323 	struct xlog	*log,
1324 	xfs_lsn_t	tail_lsn)
1325 {
1326 	int		tail_cycle, head_cycle;
1327 	int		tail_block, head_block;
1328 	int		tail_distance, max_distance;
1329 	int		distance;
1330 	int		error;
1331 
1332 	tail_cycle = CYCLE_LSN(tail_lsn);
1333 	tail_block = BLOCK_LSN(tail_lsn);
1334 	head_cycle = log->l_curr_cycle;
1335 	head_block = log->l_curr_block;
1336 
1337 	/*
1338 	 * Figure out the distance between the new head of the log
1339 	 * and the tail.  We want to write over any blocks beyond the
1340 	 * head that we may have written just before the crash, but
1341 	 * we don't want to overwrite the tail of the log.
1342 	 */
1343 	if (head_cycle == tail_cycle) {
1344 		/*
1345 		 * The tail is behind the head in the physical log,
1346 		 * so the distance from the head to the tail is the
1347 		 * distance from the head to the end of the log plus
1348 		 * the distance from the beginning of the log to the
1349 		 * tail.
1350 		 */
1351 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1352 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1353 					 XFS_ERRLEVEL_LOW, log->l_mp);
1354 			return -EFSCORRUPTED;
1355 		}
1356 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1357 	} else {
1358 		/*
1359 		 * The head is behind the tail in the physical log,
1360 		 * so the distance from the head to the tail is just
1361 		 * the tail block minus the head block.
1362 		 */
1363 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1364 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1365 					 XFS_ERRLEVEL_LOW, log->l_mp);
1366 			return -EFSCORRUPTED;
1367 		}
1368 		tail_distance = tail_block - head_block;
1369 	}
1370 
1371 	/*
1372 	 * If the head is right up against the tail, we can't clear
1373 	 * anything.
1374 	 */
1375 	if (tail_distance <= 0) {
1376 		ASSERT(tail_distance == 0);
1377 		return 0;
1378 	}
1379 
1380 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1381 	/*
1382 	 * Take the smaller of the maximum amount of outstanding I/O
1383 	 * we could have and the distance to the tail to clear out.
1384 	 * We take the smaller so that we don't overwrite the tail and
1385 	 * we don't waste all day writing from the head to the tail
1386 	 * for no reason.
1387 	 */
1388 	max_distance = MIN(max_distance, tail_distance);
1389 
1390 	if ((head_block + max_distance) <= log->l_logBBsize) {
1391 		/*
1392 		 * We can stomp all the blocks we need to without
1393 		 * wrapping around the end of the log.  Just do it
1394 		 * in a single write.  Use the cycle number of the
1395 		 * current cycle minus one so that the log will look like:
1396 		 *     n ... | n - 1 ...
1397 		 */
1398 		error = xlog_write_log_records(log, (head_cycle - 1),
1399 				head_block, max_distance, tail_cycle,
1400 				tail_block);
1401 		if (error)
1402 			return error;
1403 	} else {
1404 		/*
1405 		 * We need to wrap around the end of the physical log in
1406 		 * order to clear all the blocks.  Do it in two separate
1407 		 * I/Os.  The first write should be from the head to the
1408 		 * end of the physical log, and it should use the current
1409 		 * cycle number minus one just like above.
1410 		 */
1411 		distance = log->l_logBBsize - head_block;
1412 		error = xlog_write_log_records(log, (head_cycle - 1),
1413 				head_block, distance, tail_cycle,
1414 				tail_block);
1415 
1416 		if (error)
1417 			return error;
1418 
1419 		/*
1420 		 * Now write the blocks at the start of the physical log.
1421 		 * This writes the remainder of the blocks we want to clear.
1422 		 * It uses the current cycle number since we're now on the
1423 		 * same cycle as the head so that we get:
1424 		 *    n ... n ... | n - 1 ...
1425 		 *    ^^^^^ blocks we're writing
1426 		 */
1427 		distance = max_distance - (log->l_logBBsize - head_block);
1428 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1429 				tail_cycle, tail_block);
1430 		if (error)
1431 			return error;
1432 	}
1433 
1434 	return 0;
1435 }
1436 
1437 /******************************************************************************
1438  *
1439  *		Log recover routines
1440  *
1441  ******************************************************************************
1442  */
1443 
1444 /*
1445  * Sort the log items in the transaction.
1446  *
1447  * The ordering constraints are defined by the inode allocation and unlink
1448  * behaviour. The rules are:
1449  *
1450  *	1. Every item is only logged once in a given transaction. Hence it
1451  *	   represents the last logged state of the item. Hence ordering is
1452  *	   dependent on the order in which operations need to be performed so
1453  *	   required initial conditions are always met.
1454  *
1455  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1456  *	   there's nothing to replay from them so we can simply cull them
1457  *	   from the transaction. However, we can't do that until after we've
1458  *	   replayed all the other items because they may be dependent on the
1459  *	   cancelled buffer and replaying the cancelled buffer can remove it
1460  *	   form the cancelled buffer table. Hence they have tobe done last.
1461  *
1462  *	3. Inode allocation buffers must be replayed before inode items that
1463  *	   read the buffer and replay changes into it. For filesystems using the
1464  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1465  *	   treated the same as inode allocation buffers as they create and
1466  *	   initialise the buffers directly.
1467  *
1468  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1469  *	   This ensures that inodes are completely flushed to the inode buffer
1470  *	   in a "free" state before we remove the unlinked inode list pointer.
1471  *
1472  * Hence the ordering needs to be inode allocation buffers first, inode items
1473  * second, inode unlink buffers third and cancelled buffers last.
1474  *
1475  * But there's a problem with that - we can't tell an inode allocation buffer
1476  * apart from a regular buffer, so we can't separate them. We can, however,
1477  * tell an inode unlink buffer from the others, and so we can separate them out
1478  * from all the other buffers and move them to last.
1479  *
1480  * Hence, 4 lists, in order from head to tail:
1481  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1482  *	- item_list for all non-buffer items
1483  *	- inode_buffer_list for inode unlink buffers
1484  *	- cancel_list for the cancelled buffers
1485  *
1486  * Note that we add objects to the tail of the lists so that first-to-last
1487  * ordering is preserved within the lists. Adding objects to the head of the
1488  * list means when we traverse from the head we walk them in last-to-first
1489  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1490  * but for all other items there may be specific ordering that we need to
1491  * preserve.
1492  */
1493 STATIC int
1494 xlog_recover_reorder_trans(
1495 	struct xlog		*log,
1496 	struct xlog_recover	*trans,
1497 	int			pass)
1498 {
1499 	xlog_recover_item_t	*item, *n;
1500 	int			error = 0;
1501 	LIST_HEAD(sort_list);
1502 	LIST_HEAD(cancel_list);
1503 	LIST_HEAD(buffer_list);
1504 	LIST_HEAD(inode_buffer_list);
1505 	LIST_HEAD(inode_list);
1506 
1507 	list_splice_init(&trans->r_itemq, &sort_list);
1508 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1509 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1510 
1511 		switch (ITEM_TYPE(item)) {
1512 		case XFS_LI_ICREATE:
1513 			list_move_tail(&item->ri_list, &buffer_list);
1514 			break;
1515 		case XFS_LI_BUF:
1516 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1517 				trace_xfs_log_recover_item_reorder_head(log,
1518 							trans, item, pass);
1519 				list_move(&item->ri_list, &cancel_list);
1520 				break;
1521 			}
1522 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1523 				list_move(&item->ri_list, &inode_buffer_list);
1524 				break;
1525 			}
1526 			list_move_tail(&item->ri_list, &buffer_list);
1527 			break;
1528 		case XFS_LI_INODE:
1529 		case XFS_LI_DQUOT:
1530 		case XFS_LI_QUOTAOFF:
1531 		case XFS_LI_EFD:
1532 		case XFS_LI_EFI:
1533 			trace_xfs_log_recover_item_reorder_tail(log,
1534 							trans, item, pass);
1535 			list_move_tail(&item->ri_list, &inode_list);
1536 			break;
1537 		default:
1538 			xfs_warn(log->l_mp,
1539 				"%s: unrecognized type of log operation",
1540 				__func__);
1541 			ASSERT(0);
1542 			/*
1543 			 * return the remaining items back to the transaction
1544 			 * item list so they can be freed in caller.
1545 			 */
1546 			if (!list_empty(&sort_list))
1547 				list_splice_init(&sort_list, &trans->r_itemq);
1548 			error = -EIO;
1549 			goto out;
1550 		}
1551 	}
1552 out:
1553 	ASSERT(list_empty(&sort_list));
1554 	if (!list_empty(&buffer_list))
1555 		list_splice(&buffer_list, &trans->r_itemq);
1556 	if (!list_empty(&inode_list))
1557 		list_splice_tail(&inode_list, &trans->r_itemq);
1558 	if (!list_empty(&inode_buffer_list))
1559 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1560 	if (!list_empty(&cancel_list))
1561 		list_splice_tail(&cancel_list, &trans->r_itemq);
1562 	return error;
1563 }
1564 
1565 /*
1566  * Build up the table of buf cancel records so that we don't replay
1567  * cancelled data in the second pass.  For buffer records that are
1568  * not cancel records, there is nothing to do here so we just return.
1569  *
1570  * If we get a cancel record which is already in the table, this indicates
1571  * that the buffer was cancelled multiple times.  In order to ensure
1572  * that during pass 2 we keep the record in the table until we reach its
1573  * last occurrence in the log, we keep a reference count in the cancel
1574  * record in the table to tell us how many times we expect to see this
1575  * record during the second pass.
1576  */
1577 STATIC int
1578 xlog_recover_buffer_pass1(
1579 	struct xlog			*log,
1580 	struct xlog_recover_item	*item)
1581 {
1582 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1583 	struct list_head	*bucket;
1584 	struct xfs_buf_cancel	*bcp;
1585 
1586 	/*
1587 	 * If this isn't a cancel buffer item, then just return.
1588 	 */
1589 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1590 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1591 		return 0;
1592 	}
1593 
1594 	/*
1595 	 * Insert an xfs_buf_cancel record into the hash table of them.
1596 	 * If there is already an identical record, bump its reference count.
1597 	 */
1598 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1599 	list_for_each_entry(bcp, bucket, bc_list) {
1600 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1601 		    bcp->bc_len == buf_f->blf_len) {
1602 			bcp->bc_refcount++;
1603 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1604 			return 0;
1605 		}
1606 	}
1607 
1608 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1609 	bcp->bc_blkno = buf_f->blf_blkno;
1610 	bcp->bc_len = buf_f->blf_len;
1611 	bcp->bc_refcount = 1;
1612 	list_add_tail(&bcp->bc_list, bucket);
1613 
1614 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1615 	return 0;
1616 }
1617 
1618 /*
1619  * Check to see whether the buffer being recovered has a corresponding
1620  * entry in the buffer cancel record table. If it is, return the cancel
1621  * buffer structure to the caller.
1622  */
1623 STATIC struct xfs_buf_cancel *
1624 xlog_peek_buffer_cancelled(
1625 	struct xlog		*log,
1626 	xfs_daddr_t		blkno,
1627 	uint			len,
1628 	ushort			flags)
1629 {
1630 	struct list_head	*bucket;
1631 	struct xfs_buf_cancel	*bcp;
1632 
1633 	if (!log->l_buf_cancel_table) {
1634 		/* empty table means no cancelled buffers in the log */
1635 		ASSERT(!(flags & XFS_BLF_CANCEL));
1636 		return NULL;
1637 	}
1638 
1639 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1640 	list_for_each_entry(bcp, bucket, bc_list) {
1641 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1642 			return bcp;
1643 	}
1644 
1645 	/*
1646 	 * We didn't find a corresponding entry in the table, so return 0 so
1647 	 * that the buffer is NOT cancelled.
1648 	 */
1649 	ASSERT(!(flags & XFS_BLF_CANCEL));
1650 	return NULL;
1651 }
1652 
1653 /*
1654  * If the buffer is being cancelled then return 1 so that it will be cancelled,
1655  * otherwise return 0.  If the buffer is actually a buffer cancel item
1656  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1657  * table and remove it from the table if this is the last reference.
1658  *
1659  * We remove the cancel record from the table when we encounter its last
1660  * occurrence in the log so that if the same buffer is re-used again after its
1661  * last cancellation we actually replay the changes made at that point.
1662  */
1663 STATIC int
1664 xlog_check_buffer_cancelled(
1665 	struct xlog		*log,
1666 	xfs_daddr_t		blkno,
1667 	uint			len,
1668 	ushort			flags)
1669 {
1670 	struct xfs_buf_cancel	*bcp;
1671 
1672 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1673 	if (!bcp)
1674 		return 0;
1675 
1676 	/*
1677 	 * We've go a match, so return 1 so that the recovery of this buffer
1678 	 * is cancelled.  If this buffer is actually a buffer cancel log
1679 	 * item, then decrement the refcount on the one in the table and
1680 	 * remove it if this is the last reference.
1681 	 */
1682 	if (flags & XFS_BLF_CANCEL) {
1683 		if (--bcp->bc_refcount == 0) {
1684 			list_del(&bcp->bc_list);
1685 			kmem_free(bcp);
1686 		}
1687 	}
1688 	return 1;
1689 }
1690 
1691 /*
1692  * Perform recovery for a buffer full of inodes.  In these buffers, the only
1693  * data which should be recovered is that which corresponds to the
1694  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1695  * data for the inodes is always logged through the inodes themselves rather
1696  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1697  *
1698  * The only time when buffers full of inodes are fully recovered is when the
1699  * buffer is full of newly allocated inodes.  In this case the buffer will
1700  * not be marked as an inode buffer and so will be sent to
1701  * xlog_recover_do_reg_buffer() below during recovery.
1702  */
1703 STATIC int
1704 xlog_recover_do_inode_buffer(
1705 	struct xfs_mount	*mp,
1706 	xlog_recover_item_t	*item,
1707 	struct xfs_buf		*bp,
1708 	xfs_buf_log_format_t	*buf_f)
1709 {
1710 	int			i;
1711 	int			item_index = 0;
1712 	int			bit = 0;
1713 	int			nbits = 0;
1714 	int			reg_buf_offset = 0;
1715 	int			reg_buf_bytes = 0;
1716 	int			next_unlinked_offset;
1717 	int			inodes_per_buf;
1718 	xfs_agino_t		*logged_nextp;
1719 	xfs_agino_t		*buffer_nextp;
1720 
1721 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1722 
1723 	/*
1724 	 * Post recovery validation only works properly on CRC enabled
1725 	 * filesystems.
1726 	 */
1727 	if (xfs_sb_version_hascrc(&mp->m_sb))
1728 		bp->b_ops = &xfs_inode_buf_ops;
1729 
1730 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1731 	for (i = 0; i < inodes_per_buf; i++) {
1732 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1733 			offsetof(xfs_dinode_t, di_next_unlinked);
1734 
1735 		while (next_unlinked_offset >=
1736 		       (reg_buf_offset + reg_buf_bytes)) {
1737 			/*
1738 			 * The next di_next_unlinked field is beyond
1739 			 * the current logged region.  Find the next
1740 			 * logged region that contains or is beyond
1741 			 * the current di_next_unlinked field.
1742 			 */
1743 			bit += nbits;
1744 			bit = xfs_next_bit(buf_f->blf_data_map,
1745 					   buf_f->blf_map_size, bit);
1746 
1747 			/*
1748 			 * If there are no more logged regions in the
1749 			 * buffer, then we're done.
1750 			 */
1751 			if (bit == -1)
1752 				return 0;
1753 
1754 			nbits = xfs_contig_bits(buf_f->blf_data_map,
1755 						buf_f->blf_map_size, bit);
1756 			ASSERT(nbits > 0);
1757 			reg_buf_offset = bit << XFS_BLF_SHIFT;
1758 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1759 			item_index++;
1760 		}
1761 
1762 		/*
1763 		 * If the current logged region starts after the current
1764 		 * di_next_unlinked field, then move on to the next
1765 		 * di_next_unlinked field.
1766 		 */
1767 		if (next_unlinked_offset < reg_buf_offset)
1768 			continue;
1769 
1770 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1771 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1772 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
1773 							BBTOB(bp->b_io_length));
1774 
1775 		/*
1776 		 * The current logged region contains a copy of the
1777 		 * current di_next_unlinked field.  Extract its value
1778 		 * and copy it to the buffer copy.
1779 		 */
1780 		logged_nextp = item->ri_buf[item_index].i_addr +
1781 				next_unlinked_offset - reg_buf_offset;
1782 		if (unlikely(*logged_nextp == 0)) {
1783 			xfs_alert(mp,
1784 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1785 		"Trying to replay bad (0) inode di_next_unlinked field.",
1786 				item, bp);
1787 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1788 					 XFS_ERRLEVEL_LOW, mp);
1789 			return -EFSCORRUPTED;
1790 		}
1791 
1792 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
1793 		*buffer_nextp = *logged_nextp;
1794 
1795 		/*
1796 		 * If necessary, recalculate the CRC in the on-disk inode. We
1797 		 * have to leave the inode in a consistent state for whoever
1798 		 * reads it next....
1799 		 */
1800 		xfs_dinode_calc_crc(mp,
1801 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1802 
1803 	}
1804 
1805 	return 0;
1806 }
1807 
1808 /*
1809  * V5 filesystems know the age of the buffer on disk being recovered. We can
1810  * have newer objects on disk than we are replaying, and so for these cases we
1811  * don't want to replay the current change as that will make the buffer contents
1812  * temporarily invalid on disk.
1813  *
1814  * The magic number might not match the buffer type we are going to recover
1815  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
1816  * extract the LSN of the existing object in the buffer based on it's current
1817  * magic number.  If we don't recognise the magic number in the buffer, then
1818  * return a LSN of -1 so that the caller knows it was an unrecognised block and
1819  * so can recover the buffer.
1820  *
1821  * Note: we cannot rely solely on magic number matches to determine that the
1822  * buffer has a valid LSN - we also need to verify that it belongs to this
1823  * filesystem, so we need to extract the object's LSN and compare it to that
1824  * which we read from the superblock. If the UUIDs don't match, then we've got a
1825  * stale metadata block from an old filesystem instance that we need to recover
1826  * over the top of.
1827  */
1828 static xfs_lsn_t
1829 xlog_recover_get_buf_lsn(
1830 	struct xfs_mount	*mp,
1831 	struct xfs_buf		*bp)
1832 {
1833 	__uint32_t		magic32;
1834 	__uint16_t		magic16;
1835 	__uint16_t		magicda;
1836 	void			*blk = bp->b_addr;
1837 	uuid_t			*uuid;
1838 	xfs_lsn_t		lsn = -1;
1839 
1840 	/* v4 filesystems always recover immediately */
1841 	if (!xfs_sb_version_hascrc(&mp->m_sb))
1842 		goto recover_immediately;
1843 
1844 	magic32 = be32_to_cpu(*(__be32 *)blk);
1845 	switch (magic32) {
1846 	case XFS_ABTB_CRC_MAGIC:
1847 	case XFS_ABTC_CRC_MAGIC:
1848 	case XFS_ABTB_MAGIC:
1849 	case XFS_ABTC_MAGIC:
1850 	case XFS_IBT_CRC_MAGIC:
1851 	case XFS_IBT_MAGIC: {
1852 		struct xfs_btree_block *btb = blk;
1853 
1854 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
1855 		uuid = &btb->bb_u.s.bb_uuid;
1856 		break;
1857 	}
1858 	case XFS_BMAP_CRC_MAGIC:
1859 	case XFS_BMAP_MAGIC: {
1860 		struct xfs_btree_block *btb = blk;
1861 
1862 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
1863 		uuid = &btb->bb_u.l.bb_uuid;
1864 		break;
1865 	}
1866 	case XFS_AGF_MAGIC:
1867 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
1868 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
1869 		break;
1870 	case XFS_AGFL_MAGIC:
1871 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
1872 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
1873 		break;
1874 	case XFS_AGI_MAGIC:
1875 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
1876 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
1877 		break;
1878 	case XFS_SYMLINK_MAGIC:
1879 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
1880 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
1881 		break;
1882 	case XFS_DIR3_BLOCK_MAGIC:
1883 	case XFS_DIR3_DATA_MAGIC:
1884 	case XFS_DIR3_FREE_MAGIC:
1885 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
1886 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
1887 		break;
1888 	case XFS_ATTR3_RMT_MAGIC:
1889 		lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
1890 		uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
1891 		break;
1892 	case XFS_SB_MAGIC:
1893 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
1894 		uuid = &((struct xfs_dsb *)blk)->sb_uuid;
1895 		break;
1896 	default:
1897 		break;
1898 	}
1899 
1900 	if (lsn != (xfs_lsn_t)-1) {
1901 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
1902 			goto recover_immediately;
1903 		return lsn;
1904 	}
1905 
1906 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
1907 	switch (magicda) {
1908 	case XFS_DIR3_LEAF1_MAGIC:
1909 	case XFS_DIR3_LEAFN_MAGIC:
1910 	case XFS_DA3_NODE_MAGIC:
1911 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
1912 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
1913 		break;
1914 	default:
1915 		break;
1916 	}
1917 
1918 	if (lsn != (xfs_lsn_t)-1) {
1919 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
1920 			goto recover_immediately;
1921 		return lsn;
1922 	}
1923 
1924 	/*
1925 	 * We do individual object checks on dquot and inode buffers as they
1926 	 * have their own individual LSN records. Also, we could have a stale
1927 	 * buffer here, so we have to at least recognise these buffer types.
1928 	 *
1929 	 * A notd complexity here is inode unlinked list processing - it logs
1930 	 * the inode directly in the buffer, but we don't know which inodes have
1931 	 * been modified, and there is no global buffer LSN. Hence we need to
1932 	 * recover all inode buffer types immediately. This problem will be
1933 	 * fixed by logical logging of the unlinked list modifications.
1934 	 */
1935 	magic16 = be16_to_cpu(*(__be16 *)blk);
1936 	switch (magic16) {
1937 	case XFS_DQUOT_MAGIC:
1938 	case XFS_DINODE_MAGIC:
1939 		goto recover_immediately;
1940 	default:
1941 		break;
1942 	}
1943 
1944 	/* unknown buffer contents, recover immediately */
1945 
1946 recover_immediately:
1947 	return (xfs_lsn_t)-1;
1948 
1949 }
1950 
1951 /*
1952  * Validate the recovered buffer is of the correct type and attach the
1953  * appropriate buffer operations to them for writeback. Magic numbers are in a
1954  * few places:
1955  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
1956  *	the first 32 bits of the buffer (most blocks),
1957  *	inside a struct xfs_da_blkinfo at the start of the buffer.
1958  */
1959 static void
1960 xlog_recover_validate_buf_type(
1961 	struct xfs_mount	*mp,
1962 	struct xfs_buf		*bp,
1963 	xfs_buf_log_format_t	*buf_f)
1964 {
1965 	struct xfs_da_blkinfo	*info = bp->b_addr;
1966 	__uint32_t		magic32;
1967 	__uint16_t		magic16;
1968 	__uint16_t		magicda;
1969 
1970 	/*
1971 	 * We can only do post recovery validation on items on CRC enabled
1972 	 * fielsystems as we need to know when the buffer was written to be able
1973 	 * to determine if we should have replayed the item. If we replay old
1974 	 * metadata over a newer buffer, then it will enter a temporarily
1975 	 * inconsistent state resulting in verification failures. Hence for now
1976 	 * just avoid the verification stage for non-crc filesystems
1977 	 */
1978 	if (!xfs_sb_version_hascrc(&mp->m_sb))
1979 		return;
1980 
1981 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1982 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1983 	magicda = be16_to_cpu(info->magic);
1984 	switch (xfs_blft_from_flags(buf_f)) {
1985 	case XFS_BLFT_BTREE_BUF:
1986 		switch (magic32) {
1987 		case XFS_ABTB_CRC_MAGIC:
1988 		case XFS_ABTC_CRC_MAGIC:
1989 		case XFS_ABTB_MAGIC:
1990 		case XFS_ABTC_MAGIC:
1991 			bp->b_ops = &xfs_allocbt_buf_ops;
1992 			break;
1993 		case XFS_IBT_CRC_MAGIC:
1994 		case XFS_FIBT_CRC_MAGIC:
1995 		case XFS_IBT_MAGIC:
1996 		case XFS_FIBT_MAGIC:
1997 			bp->b_ops = &xfs_inobt_buf_ops;
1998 			break;
1999 		case XFS_BMAP_CRC_MAGIC:
2000 		case XFS_BMAP_MAGIC:
2001 			bp->b_ops = &xfs_bmbt_buf_ops;
2002 			break;
2003 		default:
2004 			xfs_warn(mp, "Bad btree block magic!");
2005 			ASSERT(0);
2006 			break;
2007 		}
2008 		break;
2009 	case XFS_BLFT_AGF_BUF:
2010 		if (magic32 != XFS_AGF_MAGIC) {
2011 			xfs_warn(mp, "Bad AGF block magic!");
2012 			ASSERT(0);
2013 			break;
2014 		}
2015 		bp->b_ops = &xfs_agf_buf_ops;
2016 		break;
2017 	case XFS_BLFT_AGFL_BUF:
2018 		if (magic32 != XFS_AGFL_MAGIC) {
2019 			xfs_warn(mp, "Bad AGFL block magic!");
2020 			ASSERT(0);
2021 			break;
2022 		}
2023 		bp->b_ops = &xfs_agfl_buf_ops;
2024 		break;
2025 	case XFS_BLFT_AGI_BUF:
2026 		if (magic32 != XFS_AGI_MAGIC) {
2027 			xfs_warn(mp, "Bad AGI block magic!");
2028 			ASSERT(0);
2029 			break;
2030 		}
2031 		bp->b_ops = &xfs_agi_buf_ops;
2032 		break;
2033 	case XFS_BLFT_UDQUOT_BUF:
2034 	case XFS_BLFT_PDQUOT_BUF:
2035 	case XFS_BLFT_GDQUOT_BUF:
2036 #ifdef CONFIG_XFS_QUOTA
2037 		if (magic16 != XFS_DQUOT_MAGIC) {
2038 			xfs_warn(mp, "Bad DQUOT block magic!");
2039 			ASSERT(0);
2040 			break;
2041 		}
2042 		bp->b_ops = &xfs_dquot_buf_ops;
2043 #else
2044 		xfs_alert(mp,
2045 	"Trying to recover dquots without QUOTA support built in!");
2046 		ASSERT(0);
2047 #endif
2048 		break;
2049 	case XFS_BLFT_DINO_BUF:
2050 		if (magic16 != XFS_DINODE_MAGIC) {
2051 			xfs_warn(mp, "Bad INODE block magic!");
2052 			ASSERT(0);
2053 			break;
2054 		}
2055 		bp->b_ops = &xfs_inode_buf_ops;
2056 		break;
2057 	case XFS_BLFT_SYMLINK_BUF:
2058 		if (magic32 != XFS_SYMLINK_MAGIC) {
2059 			xfs_warn(mp, "Bad symlink block magic!");
2060 			ASSERT(0);
2061 			break;
2062 		}
2063 		bp->b_ops = &xfs_symlink_buf_ops;
2064 		break;
2065 	case XFS_BLFT_DIR_BLOCK_BUF:
2066 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2067 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2068 			xfs_warn(mp, "Bad dir block magic!");
2069 			ASSERT(0);
2070 			break;
2071 		}
2072 		bp->b_ops = &xfs_dir3_block_buf_ops;
2073 		break;
2074 	case XFS_BLFT_DIR_DATA_BUF:
2075 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2076 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2077 			xfs_warn(mp, "Bad dir data magic!");
2078 			ASSERT(0);
2079 			break;
2080 		}
2081 		bp->b_ops = &xfs_dir3_data_buf_ops;
2082 		break;
2083 	case XFS_BLFT_DIR_FREE_BUF:
2084 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2085 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2086 			xfs_warn(mp, "Bad dir3 free magic!");
2087 			ASSERT(0);
2088 			break;
2089 		}
2090 		bp->b_ops = &xfs_dir3_free_buf_ops;
2091 		break;
2092 	case XFS_BLFT_DIR_LEAF1_BUF:
2093 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2094 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2095 			xfs_warn(mp, "Bad dir leaf1 magic!");
2096 			ASSERT(0);
2097 			break;
2098 		}
2099 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2100 		break;
2101 	case XFS_BLFT_DIR_LEAFN_BUF:
2102 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2103 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2104 			xfs_warn(mp, "Bad dir leafn magic!");
2105 			ASSERT(0);
2106 			break;
2107 		}
2108 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2109 		break;
2110 	case XFS_BLFT_DA_NODE_BUF:
2111 		if (magicda != XFS_DA_NODE_MAGIC &&
2112 		    magicda != XFS_DA3_NODE_MAGIC) {
2113 			xfs_warn(mp, "Bad da node magic!");
2114 			ASSERT(0);
2115 			break;
2116 		}
2117 		bp->b_ops = &xfs_da3_node_buf_ops;
2118 		break;
2119 	case XFS_BLFT_ATTR_LEAF_BUF:
2120 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2121 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2122 			xfs_warn(mp, "Bad attr leaf magic!");
2123 			ASSERT(0);
2124 			break;
2125 		}
2126 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2127 		break;
2128 	case XFS_BLFT_ATTR_RMT_BUF:
2129 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2130 			xfs_warn(mp, "Bad attr remote magic!");
2131 			ASSERT(0);
2132 			break;
2133 		}
2134 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2135 		break;
2136 	case XFS_BLFT_SB_BUF:
2137 		if (magic32 != XFS_SB_MAGIC) {
2138 			xfs_warn(mp, "Bad SB block magic!");
2139 			ASSERT(0);
2140 			break;
2141 		}
2142 		bp->b_ops = &xfs_sb_buf_ops;
2143 		break;
2144 	default:
2145 		xfs_warn(mp, "Unknown buffer type %d!",
2146 			 xfs_blft_from_flags(buf_f));
2147 		break;
2148 	}
2149 }
2150 
2151 /*
2152  * Perform a 'normal' buffer recovery.  Each logged region of the
2153  * buffer should be copied over the corresponding region in the
2154  * given buffer.  The bitmap in the buf log format structure indicates
2155  * where to place the logged data.
2156  */
2157 STATIC void
2158 xlog_recover_do_reg_buffer(
2159 	struct xfs_mount	*mp,
2160 	xlog_recover_item_t	*item,
2161 	struct xfs_buf		*bp,
2162 	xfs_buf_log_format_t	*buf_f)
2163 {
2164 	int			i;
2165 	int			bit;
2166 	int			nbits;
2167 	int                     error;
2168 
2169 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2170 
2171 	bit = 0;
2172 	i = 1;  /* 0 is the buf format structure */
2173 	while (1) {
2174 		bit = xfs_next_bit(buf_f->blf_data_map,
2175 				   buf_f->blf_map_size, bit);
2176 		if (bit == -1)
2177 			break;
2178 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2179 					buf_f->blf_map_size, bit);
2180 		ASSERT(nbits > 0);
2181 		ASSERT(item->ri_buf[i].i_addr != NULL);
2182 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2183 		ASSERT(BBTOB(bp->b_io_length) >=
2184 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2185 
2186 		/*
2187 		 * The dirty regions logged in the buffer, even though
2188 		 * contiguous, may span multiple chunks. This is because the
2189 		 * dirty region may span a physical page boundary in a buffer
2190 		 * and hence be split into two separate vectors for writing into
2191 		 * the log. Hence we need to trim nbits back to the length of
2192 		 * the current region being copied out of the log.
2193 		 */
2194 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2195 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2196 
2197 		/*
2198 		 * Do a sanity check if this is a dquot buffer. Just checking
2199 		 * the first dquot in the buffer should do. XXXThis is
2200 		 * probably a good thing to do for other buf types also.
2201 		 */
2202 		error = 0;
2203 		if (buf_f->blf_flags &
2204 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2205 			if (item->ri_buf[i].i_addr == NULL) {
2206 				xfs_alert(mp,
2207 					"XFS: NULL dquot in %s.", __func__);
2208 				goto next;
2209 			}
2210 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2211 				xfs_alert(mp,
2212 					"XFS: dquot too small (%d) in %s.",
2213 					item->ri_buf[i].i_len, __func__);
2214 				goto next;
2215 			}
2216 			error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2217 					       -1, 0, XFS_QMOPT_DOWARN,
2218 					       "dquot_buf_recover");
2219 			if (error)
2220 				goto next;
2221 		}
2222 
2223 		memcpy(xfs_buf_offset(bp,
2224 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2225 			item->ri_buf[i].i_addr,		/* source */
2226 			nbits<<XFS_BLF_SHIFT);		/* length */
2227  next:
2228 		i++;
2229 		bit += nbits;
2230 	}
2231 
2232 	/* Shouldn't be any more regions */
2233 	ASSERT(i == item->ri_total);
2234 
2235 	xlog_recover_validate_buf_type(mp, bp, buf_f);
2236 }
2237 
2238 /*
2239  * Perform a dquot buffer recovery.
2240  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2241  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2242  * Else, treat it as a regular buffer and do recovery.
2243  *
2244  * Return false if the buffer was tossed and true if we recovered the buffer to
2245  * indicate to the caller if the buffer needs writing.
2246  */
2247 STATIC bool
2248 xlog_recover_do_dquot_buffer(
2249 	struct xfs_mount		*mp,
2250 	struct xlog			*log,
2251 	struct xlog_recover_item	*item,
2252 	struct xfs_buf			*bp,
2253 	struct xfs_buf_log_format	*buf_f)
2254 {
2255 	uint			type;
2256 
2257 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2258 
2259 	/*
2260 	 * Filesystems are required to send in quota flags at mount time.
2261 	 */
2262 	if (!mp->m_qflags)
2263 		return false;
2264 
2265 	type = 0;
2266 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2267 		type |= XFS_DQ_USER;
2268 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2269 		type |= XFS_DQ_PROJ;
2270 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2271 		type |= XFS_DQ_GROUP;
2272 	/*
2273 	 * This type of quotas was turned off, so ignore this buffer
2274 	 */
2275 	if (log->l_quotaoffs_flag & type)
2276 		return false;
2277 
2278 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2279 	return true;
2280 }
2281 
2282 /*
2283  * This routine replays a modification made to a buffer at runtime.
2284  * There are actually two types of buffer, regular and inode, which
2285  * are handled differently.  Inode buffers are handled differently
2286  * in that we only recover a specific set of data from them, namely
2287  * the inode di_next_unlinked fields.  This is because all other inode
2288  * data is actually logged via inode records and any data we replay
2289  * here which overlaps that may be stale.
2290  *
2291  * When meta-data buffers are freed at run time we log a buffer item
2292  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2293  * of the buffer in the log should not be replayed at recovery time.
2294  * This is so that if the blocks covered by the buffer are reused for
2295  * file data before we crash we don't end up replaying old, freed
2296  * meta-data into a user's file.
2297  *
2298  * To handle the cancellation of buffer log items, we make two passes
2299  * over the log during recovery.  During the first we build a table of
2300  * those buffers which have been cancelled, and during the second we
2301  * only replay those buffers which do not have corresponding cancel
2302  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2303  * for more details on the implementation of the table of cancel records.
2304  */
2305 STATIC int
2306 xlog_recover_buffer_pass2(
2307 	struct xlog			*log,
2308 	struct list_head		*buffer_list,
2309 	struct xlog_recover_item	*item,
2310 	xfs_lsn_t			current_lsn)
2311 {
2312 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2313 	xfs_mount_t		*mp = log->l_mp;
2314 	xfs_buf_t		*bp;
2315 	int			error;
2316 	uint			buf_flags;
2317 	xfs_lsn_t		lsn;
2318 
2319 	/*
2320 	 * In this pass we only want to recover all the buffers which have
2321 	 * not been cancelled and are not cancellation buffers themselves.
2322 	 */
2323 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2324 			buf_f->blf_len, buf_f->blf_flags)) {
2325 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2326 		return 0;
2327 	}
2328 
2329 	trace_xfs_log_recover_buf_recover(log, buf_f);
2330 
2331 	buf_flags = 0;
2332 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2333 		buf_flags |= XBF_UNMAPPED;
2334 
2335 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2336 			  buf_flags, NULL);
2337 	if (!bp)
2338 		return -ENOMEM;
2339 	error = bp->b_error;
2340 	if (error) {
2341 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2342 		goto out_release;
2343 	}
2344 
2345 	/*
2346 	 * Recover the buffer only if we get an LSN from it and it's less than
2347 	 * the lsn of the transaction we are replaying.
2348 	 *
2349 	 * Note that we have to be extremely careful of readahead here.
2350 	 * Readahead does not attach verfiers to the buffers so if we don't
2351 	 * actually do any replay after readahead because of the LSN we found
2352 	 * in the buffer if more recent than that current transaction then we
2353 	 * need to attach the verifier directly. Failure to do so can lead to
2354 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2355 	 * operate on the buffers and they won't get the verifier attached. This
2356 	 * can lead to blocks on disk having the correct content but a stale
2357 	 * CRC.
2358 	 *
2359 	 * It is safe to assume these clean buffers are currently up to date.
2360 	 * If the buffer is dirtied by a later transaction being replayed, then
2361 	 * the verifier will be reset to match whatever recover turns that
2362 	 * buffer into.
2363 	 */
2364 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2365 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2366 		xlog_recover_validate_buf_type(mp, bp, buf_f);
2367 		goto out_release;
2368 	}
2369 
2370 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2371 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2372 		if (error)
2373 			goto out_release;
2374 	} else if (buf_f->blf_flags &
2375 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2376 		bool	dirty;
2377 
2378 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2379 		if (!dirty)
2380 			goto out_release;
2381 	} else {
2382 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2383 	}
2384 
2385 	/*
2386 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2387 	 * slower when taking into account all the buffers to be flushed.
2388 	 *
2389 	 * Also make sure that only inode buffers with good sizes stay in
2390 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2391 	 * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2392 	 * buffers in the log can be a different size if the log was generated
2393 	 * by an older kernel using unclustered inode buffers or a newer kernel
2394 	 * running with a different inode cluster size.  Regardless, if the
2395 	 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2396 	 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2397 	 * the buffer out of the buffer cache so that the buffer won't
2398 	 * overlap with future reads of those inodes.
2399 	 */
2400 	if (XFS_DINODE_MAGIC ==
2401 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2402 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2403 			(__uint32_t)log->l_mp->m_inode_cluster_size))) {
2404 		xfs_buf_stale(bp);
2405 		error = xfs_bwrite(bp);
2406 	} else {
2407 		ASSERT(bp->b_target->bt_mount == mp);
2408 		bp->b_iodone = xlog_recover_iodone;
2409 		xfs_buf_delwri_queue(bp, buffer_list);
2410 	}
2411 
2412 out_release:
2413 	xfs_buf_relse(bp);
2414 	return error;
2415 }
2416 
2417 /*
2418  * Inode fork owner changes
2419  *
2420  * If we have been told that we have to reparent the inode fork, it's because an
2421  * extent swap operation on a CRC enabled filesystem has been done and we are
2422  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2423  * owners of it.
2424  *
2425  * The complexity here is that we don't have an inode context to work with, so
2426  * after we've replayed the inode we need to instantiate one.  This is where the
2427  * fun begins.
2428  *
2429  * We are in the middle of log recovery, so we can't run transactions. That
2430  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2431  * that will result in the corresponding iput() running the inode through
2432  * xfs_inactive(). If we've just replayed an inode core that changes the link
2433  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2434  * transactions (bad!).
2435  *
2436  * So, to avoid this, we instantiate an inode directly from the inode core we've
2437  * just recovered. We have the buffer still locked, and all we really need to
2438  * instantiate is the inode core and the forks being modified. We can do this
2439  * manually, then run the inode btree owner change, and then tear down the
2440  * xfs_inode without having to run any transactions at all.
2441  *
2442  * Also, because we don't have a transaction context available here but need to
2443  * gather all the buffers we modify for writeback so we pass the buffer_list
2444  * instead for the operation to use.
2445  */
2446 
2447 STATIC int
2448 xfs_recover_inode_owner_change(
2449 	struct xfs_mount	*mp,
2450 	struct xfs_dinode	*dip,
2451 	struct xfs_inode_log_format *in_f,
2452 	struct list_head	*buffer_list)
2453 {
2454 	struct xfs_inode	*ip;
2455 	int			error;
2456 
2457 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2458 
2459 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2460 	if (!ip)
2461 		return -ENOMEM;
2462 
2463 	/* instantiate the inode */
2464 	xfs_dinode_from_disk(&ip->i_d, dip);
2465 	ASSERT(ip->i_d.di_version >= 3);
2466 
2467 	error = xfs_iformat_fork(ip, dip);
2468 	if (error)
2469 		goto out_free_ip;
2470 
2471 
2472 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2473 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2474 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2475 					      ip->i_ino, buffer_list);
2476 		if (error)
2477 			goto out_free_ip;
2478 	}
2479 
2480 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2481 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2482 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2483 					      ip->i_ino, buffer_list);
2484 		if (error)
2485 			goto out_free_ip;
2486 	}
2487 
2488 out_free_ip:
2489 	xfs_inode_free(ip);
2490 	return error;
2491 }
2492 
2493 STATIC int
2494 xlog_recover_inode_pass2(
2495 	struct xlog			*log,
2496 	struct list_head		*buffer_list,
2497 	struct xlog_recover_item	*item,
2498 	xfs_lsn_t			current_lsn)
2499 {
2500 	xfs_inode_log_format_t	*in_f;
2501 	xfs_mount_t		*mp = log->l_mp;
2502 	xfs_buf_t		*bp;
2503 	xfs_dinode_t		*dip;
2504 	int			len;
2505 	char			*src;
2506 	char			*dest;
2507 	int			error;
2508 	int			attr_index;
2509 	uint			fields;
2510 	xfs_icdinode_t		*dicp;
2511 	uint			isize;
2512 	int			need_free = 0;
2513 
2514 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2515 		in_f = item->ri_buf[0].i_addr;
2516 	} else {
2517 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2518 		need_free = 1;
2519 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2520 		if (error)
2521 			goto error;
2522 	}
2523 
2524 	/*
2525 	 * Inode buffers can be freed, look out for it,
2526 	 * and do not replay the inode.
2527 	 */
2528 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2529 					in_f->ilf_len, 0)) {
2530 		error = 0;
2531 		trace_xfs_log_recover_inode_cancel(log, in_f);
2532 		goto error;
2533 	}
2534 	trace_xfs_log_recover_inode_recover(log, in_f);
2535 
2536 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2537 			  &xfs_inode_buf_ops);
2538 	if (!bp) {
2539 		error = -ENOMEM;
2540 		goto error;
2541 	}
2542 	error = bp->b_error;
2543 	if (error) {
2544 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2545 		goto out_release;
2546 	}
2547 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2548 	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2549 
2550 	/*
2551 	 * Make sure the place we're flushing out to really looks
2552 	 * like an inode!
2553 	 */
2554 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2555 		xfs_alert(mp,
2556 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2557 			__func__, dip, bp, in_f->ilf_ino);
2558 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2559 				 XFS_ERRLEVEL_LOW, mp);
2560 		error = -EFSCORRUPTED;
2561 		goto out_release;
2562 	}
2563 	dicp = item->ri_buf[1].i_addr;
2564 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2565 		xfs_alert(mp,
2566 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2567 			__func__, item, in_f->ilf_ino);
2568 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2569 				 XFS_ERRLEVEL_LOW, mp);
2570 		error = -EFSCORRUPTED;
2571 		goto out_release;
2572 	}
2573 
2574 	/*
2575 	 * If the inode has an LSN in it, recover the inode only if it's less
2576 	 * than the lsn of the transaction we are replaying. Note: we still
2577 	 * need to replay an owner change even though the inode is more recent
2578 	 * than the transaction as there is no guarantee that all the btree
2579 	 * blocks are more recent than this transaction, too.
2580 	 */
2581 	if (dip->di_version >= 3) {
2582 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
2583 
2584 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2585 			trace_xfs_log_recover_inode_skip(log, in_f);
2586 			error = 0;
2587 			goto out_owner_change;
2588 		}
2589 	}
2590 
2591 	/*
2592 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2593 	 * are transactional and if ordering is necessary we can determine that
2594 	 * more accurately by the LSN field in the V3 inode core. Don't trust
2595 	 * the inode versions we might be changing them here - use the
2596 	 * superblock flag to determine whether we need to look at di_flushiter
2597 	 * to skip replay when the on disk inode is newer than the log one
2598 	 */
2599 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2600 	    dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2601 		/*
2602 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2603 		 * than smaller numbers
2604 		 */
2605 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2606 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2607 			/* do nothing */
2608 		} else {
2609 			trace_xfs_log_recover_inode_skip(log, in_f);
2610 			error = 0;
2611 			goto out_release;
2612 		}
2613 	}
2614 
2615 	/* Take the opportunity to reset the flush iteration count */
2616 	dicp->di_flushiter = 0;
2617 
2618 	if (unlikely(S_ISREG(dicp->di_mode))) {
2619 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2620 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2621 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2622 					 XFS_ERRLEVEL_LOW, mp, dicp);
2623 			xfs_alert(mp,
2624 		"%s: Bad regular inode log record, rec ptr 0x%p, "
2625 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2626 				__func__, item, dip, bp, in_f->ilf_ino);
2627 			error = -EFSCORRUPTED;
2628 			goto out_release;
2629 		}
2630 	} else if (unlikely(S_ISDIR(dicp->di_mode))) {
2631 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2632 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2633 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2634 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2635 					     XFS_ERRLEVEL_LOW, mp, dicp);
2636 			xfs_alert(mp,
2637 		"%s: Bad dir inode log record, rec ptr 0x%p, "
2638 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2639 				__func__, item, dip, bp, in_f->ilf_ino);
2640 			error = -EFSCORRUPTED;
2641 			goto out_release;
2642 		}
2643 	}
2644 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2645 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2646 				     XFS_ERRLEVEL_LOW, mp, dicp);
2647 		xfs_alert(mp,
2648 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2649 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2650 			__func__, item, dip, bp, in_f->ilf_ino,
2651 			dicp->di_nextents + dicp->di_anextents,
2652 			dicp->di_nblocks);
2653 		error = -EFSCORRUPTED;
2654 		goto out_release;
2655 	}
2656 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2657 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2658 				     XFS_ERRLEVEL_LOW, mp, dicp);
2659 		xfs_alert(mp,
2660 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2661 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2662 			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2663 		error = -EFSCORRUPTED;
2664 		goto out_release;
2665 	}
2666 	isize = xfs_icdinode_size(dicp->di_version);
2667 	if (unlikely(item->ri_buf[1].i_len > isize)) {
2668 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2669 				     XFS_ERRLEVEL_LOW, mp, dicp);
2670 		xfs_alert(mp,
2671 			"%s: Bad inode log record length %d, rec ptr 0x%p",
2672 			__func__, item->ri_buf[1].i_len, item);
2673 		error = -EFSCORRUPTED;
2674 		goto out_release;
2675 	}
2676 
2677 	/* The core is in in-core format */
2678 	xfs_dinode_to_disk(dip, dicp);
2679 
2680 	/* the rest is in on-disk format */
2681 	if (item->ri_buf[1].i_len > isize) {
2682 		memcpy((char *)dip + isize,
2683 			item->ri_buf[1].i_addr + isize,
2684 			item->ri_buf[1].i_len - isize);
2685 	}
2686 
2687 	fields = in_f->ilf_fields;
2688 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2689 	case XFS_ILOG_DEV:
2690 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2691 		break;
2692 	case XFS_ILOG_UUID:
2693 		memcpy(XFS_DFORK_DPTR(dip),
2694 		       &in_f->ilf_u.ilfu_uuid,
2695 		       sizeof(uuid_t));
2696 		break;
2697 	}
2698 
2699 	if (in_f->ilf_size == 2)
2700 		goto out_owner_change;
2701 	len = item->ri_buf[2].i_len;
2702 	src = item->ri_buf[2].i_addr;
2703 	ASSERT(in_f->ilf_size <= 4);
2704 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2705 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2706 	       (len == in_f->ilf_dsize));
2707 
2708 	switch (fields & XFS_ILOG_DFORK) {
2709 	case XFS_ILOG_DDATA:
2710 	case XFS_ILOG_DEXT:
2711 		memcpy(XFS_DFORK_DPTR(dip), src, len);
2712 		break;
2713 
2714 	case XFS_ILOG_DBROOT:
2715 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2716 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2717 				 XFS_DFORK_DSIZE(dip, mp));
2718 		break;
2719 
2720 	default:
2721 		/*
2722 		 * There are no data fork flags set.
2723 		 */
2724 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2725 		break;
2726 	}
2727 
2728 	/*
2729 	 * If we logged any attribute data, recover it.  There may or
2730 	 * may not have been any other non-core data logged in this
2731 	 * transaction.
2732 	 */
2733 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2734 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2735 			attr_index = 3;
2736 		} else {
2737 			attr_index = 2;
2738 		}
2739 		len = item->ri_buf[attr_index].i_len;
2740 		src = item->ri_buf[attr_index].i_addr;
2741 		ASSERT(len == in_f->ilf_asize);
2742 
2743 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2744 		case XFS_ILOG_ADATA:
2745 		case XFS_ILOG_AEXT:
2746 			dest = XFS_DFORK_APTR(dip);
2747 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2748 			memcpy(dest, src, len);
2749 			break;
2750 
2751 		case XFS_ILOG_ABROOT:
2752 			dest = XFS_DFORK_APTR(dip);
2753 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2754 					 len, (xfs_bmdr_block_t*)dest,
2755 					 XFS_DFORK_ASIZE(dip, mp));
2756 			break;
2757 
2758 		default:
2759 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2760 			ASSERT(0);
2761 			error = -EIO;
2762 			goto out_release;
2763 		}
2764 	}
2765 
2766 out_owner_change:
2767 	if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2768 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
2769 						       buffer_list);
2770 	/* re-generate the checksum. */
2771 	xfs_dinode_calc_crc(log->l_mp, dip);
2772 
2773 	ASSERT(bp->b_target->bt_mount == mp);
2774 	bp->b_iodone = xlog_recover_iodone;
2775 	xfs_buf_delwri_queue(bp, buffer_list);
2776 
2777 out_release:
2778 	xfs_buf_relse(bp);
2779 error:
2780 	if (need_free)
2781 		kmem_free(in_f);
2782 	return error;
2783 }
2784 
2785 /*
2786  * Recover QUOTAOFF records. We simply make a note of it in the xlog
2787  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2788  * of that type.
2789  */
2790 STATIC int
2791 xlog_recover_quotaoff_pass1(
2792 	struct xlog			*log,
2793 	struct xlog_recover_item	*item)
2794 {
2795 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
2796 	ASSERT(qoff_f);
2797 
2798 	/*
2799 	 * The logitem format's flag tells us if this was user quotaoff,
2800 	 * group/project quotaoff or both.
2801 	 */
2802 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2803 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2804 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2805 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2806 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2807 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2808 
2809 	return 0;
2810 }
2811 
2812 /*
2813  * Recover a dquot record
2814  */
2815 STATIC int
2816 xlog_recover_dquot_pass2(
2817 	struct xlog			*log,
2818 	struct list_head		*buffer_list,
2819 	struct xlog_recover_item	*item,
2820 	xfs_lsn_t			current_lsn)
2821 {
2822 	xfs_mount_t		*mp = log->l_mp;
2823 	xfs_buf_t		*bp;
2824 	struct xfs_disk_dquot	*ddq, *recddq;
2825 	int			error;
2826 	xfs_dq_logformat_t	*dq_f;
2827 	uint			type;
2828 
2829 
2830 	/*
2831 	 * Filesystems are required to send in quota flags at mount time.
2832 	 */
2833 	if (mp->m_qflags == 0)
2834 		return 0;
2835 
2836 	recddq = item->ri_buf[1].i_addr;
2837 	if (recddq == NULL) {
2838 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2839 		return -EIO;
2840 	}
2841 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2842 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2843 			item->ri_buf[1].i_len, __func__);
2844 		return -EIO;
2845 	}
2846 
2847 	/*
2848 	 * This type of quotas was turned off, so ignore this record.
2849 	 */
2850 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2851 	ASSERT(type);
2852 	if (log->l_quotaoffs_flag & type)
2853 		return 0;
2854 
2855 	/*
2856 	 * At this point we know that quota was _not_ turned off.
2857 	 * Since the mount flags are not indicating to us otherwise, this
2858 	 * must mean that quota is on, and the dquot needs to be replayed.
2859 	 * Remember that we may not have fully recovered the superblock yet,
2860 	 * so we can't do the usual trick of looking at the SB quota bits.
2861 	 *
2862 	 * The other possibility, of course, is that the quota subsystem was
2863 	 * removed since the last mount - ENOSYS.
2864 	 */
2865 	dq_f = item->ri_buf[0].i_addr;
2866 	ASSERT(dq_f);
2867 	error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2868 			   "xlog_recover_dquot_pass2 (log copy)");
2869 	if (error)
2870 		return -EIO;
2871 	ASSERT(dq_f->qlf_len == 1);
2872 
2873 	/*
2874 	 * At this point we are assuming that the dquots have been allocated
2875 	 * and hence the buffer has valid dquots stamped in it. It should,
2876 	 * therefore, pass verifier validation. If the dquot is bad, then the
2877 	 * we'll return an error here, so we don't need to specifically check
2878 	 * the dquot in the buffer after the verifier has run.
2879 	 */
2880 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2881 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2882 				   &xfs_dquot_buf_ops);
2883 	if (error)
2884 		return error;
2885 
2886 	ASSERT(bp);
2887 	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
2888 
2889 	/*
2890 	 * If the dquot has an LSN in it, recover the dquot only if it's less
2891 	 * than the lsn of the transaction we are replaying.
2892 	 */
2893 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2894 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
2895 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
2896 
2897 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2898 			goto out_release;
2899 		}
2900 	}
2901 
2902 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2903 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2904 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
2905 				 XFS_DQUOT_CRC_OFF);
2906 	}
2907 
2908 	ASSERT(dq_f->qlf_size == 2);
2909 	ASSERT(bp->b_target->bt_mount == mp);
2910 	bp->b_iodone = xlog_recover_iodone;
2911 	xfs_buf_delwri_queue(bp, buffer_list);
2912 
2913 out_release:
2914 	xfs_buf_relse(bp);
2915 	return 0;
2916 }
2917 
2918 /*
2919  * This routine is called to create an in-core extent free intent
2920  * item from the efi format structure which was logged on disk.
2921  * It allocates an in-core efi, copies the extents from the format
2922  * structure into it, and adds the efi to the AIL with the given
2923  * LSN.
2924  */
2925 STATIC int
2926 xlog_recover_efi_pass2(
2927 	struct xlog			*log,
2928 	struct xlog_recover_item	*item,
2929 	xfs_lsn_t			lsn)
2930 {
2931 	int			error;
2932 	xfs_mount_t		*mp = log->l_mp;
2933 	xfs_efi_log_item_t	*efip;
2934 	xfs_efi_log_format_t	*efi_formatp;
2935 
2936 	efi_formatp = item->ri_buf[0].i_addr;
2937 
2938 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2939 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2940 					 &(efip->efi_format)))) {
2941 		xfs_efi_item_free(efip);
2942 		return error;
2943 	}
2944 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2945 
2946 	spin_lock(&log->l_ailp->xa_lock);
2947 	/*
2948 	 * xfs_trans_ail_update() drops the AIL lock.
2949 	 */
2950 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2951 	return 0;
2952 }
2953 
2954 
2955 /*
2956  * This routine is called when an efd format structure is found in
2957  * a committed transaction in the log.  It's purpose is to cancel
2958  * the corresponding efi if it was still in the log.  To do this
2959  * it searches the AIL for the efi with an id equal to that in the
2960  * efd format structure.  If we find it, we remove the efi from the
2961  * AIL and free it.
2962  */
2963 STATIC int
2964 xlog_recover_efd_pass2(
2965 	struct xlog			*log,
2966 	struct xlog_recover_item	*item)
2967 {
2968 	xfs_efd_log_format_t	*efd_formatp;
2969 	xfs_efi_log_item_t	*efip = NULL;
2970 	xfs_log_item_t		*lip;
2971 	__uint64_t		efi_id;
2972 	struct xfs_ail_cursor	cur;
2973 	struct xfs_ail		*ailp = log->l_ailp;
2974 
2975 	efd_formatp = item->ri_buf[0].i_addr;
2976 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2977 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2978 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2979 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2980 	efi_id = efd_formatp->efd_efi_id;
2981 
2982 	/*
2983 	 * Search for the efi with the id in the efd format structure
2984 	 * in the AIL.
2985 	 */
2986 	spin_lock(&ailp->xa_lock);
2987 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2988 	while (lip != NULL) {
2989 		if (lip->li_type == XFS_LI_EFI) {
2990 			efip = (xfs_efi_log_item_t *)lip;
2991 			if (efip->efi_format.efi_id == efi_id) {
2992 				/*
2993 				 * xfs_trans_ail_delete() drops the
2994 				 * AIL lock.
2995 				 */
2996 				xfs_trans_ail_delete(ailp, lip,
2997 						     SHUTDOWN_CORRUPT_INCORE);
2998 				xfs_efi_item_free(efip);
2999 				spin_lock(&ailp->xa_lock);
3000 				break;
3001 			}
3002 		}
3003 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3004 	}
3005 	xfs_trans_ail_cursor_done(&cur);
3006 	spin_unlock(&ailp->xa_lock);
3007 
3008 	return 0;
3009 }
3010 
3011 /*
3012  * This routine is called when an inode create format structure is found in a
3013  * committed transaction in the log.  It's purpose is to initialise the inodes
3014  * being allocated on disk. This requires us to get inode cluster buffers that
3015  * match the range to be intialised, stamped with inode templates and written
3016  * by delayed write so that subsequent modifications will hit the cached buffer
3017  * and only need writing out at the end of recovery.
3018  */
3019 STATIC int
3020 xlog_recover_do_icreate_pass2(
3021 	struct xlog		*log,
3022 	struct list_head	*buffer_list,
3023 	xlog_recover_item_t	*item)
3024 {
3025 	struct xfs_mount	*mp = log->l_mp;
3026 	struct xfs_icreate_log	*icl;
3027 	xfs_agnumber_t		agno;
3028 	xfs_agblock_t		agbno;
3029 	unsigned int		count;
3030 	unsigned int		isize;
3031 	xfs_agblock_t		length;
3032 
3033 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3034 	if (icl->icl_type != XFS_LI_ICREATE) {
3035 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3036 		return -EINVAL;
3037 	}
3038 
3039 	if (icl->icl_size != 1) {
3040 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3041 		return -EINVAL;
3042 	}
3043 
3044 	agno = be32_to_cpu(icl->icl_ag);
3045 	if (agno >= mp->m_sb.sb_agcount) {
3046 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3047 		return -EINVAL;
3048 	}
3049 	agbno = be32_to_cpu(icl->icl_agbno);
3050 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3051 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3052 		return -EINVAL;
3053 	}
3054 	isize = be32_to_cpu(icl->icl_isize);
3055 	if (isize != mp->m_sb.sb_inodesize) {
3056 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3057 		return -EINVAL;
3058 	}
3059 	count = be32_to_cpu(icl->icl_count);
3060 	if (!count) {
3061 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3062 		return -EINVAL;
3063 	}
3064 	length = be32_to_cpu(icl->icl_length);
3065 	if (!length || length >= mp->m_sb.sb_agblocks) {
3066 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3067 		return -EINVAL;
3068 	}
3069 
3070 	/*
3071 	 * The inode chunk is either full or sparse and we only support
3072 	 * m_ialloc_min_blks sized sparse allocations at this time.
3073 	 */
3074 	if (length != mp->m_ialloc_blks &&
3075 	    length != mp->m_ialloc_min_blks) {
3076 		xfs_warn(log->l_mp,
3077 			 "%s: unsupported chunk length", __FUNCTION__);
3078 		return -EINVAL;
3079 	}
3080 
3081 	/* verify inode count is consistent with extent length */
3082 	if ((count >> mp->m_sb.sb_inopblog) != length) {
3083 		xfs_warn(log->l_mp,
3084 			 "%s: inconsistent inode count and chunk length",
3085 			 __FUNCTION__);
3086 		return -EINVAL;
3087 	}
3088 
3089 	/*
3090 	 * Inode buffers can be freed. Do not replay the inode initialisation as
3091 	 * we could be overwriting something written after this inode buffer was
3092 	 * cancelled.
3093 	 *
3094 	 * XXX: we need to iterate all buffers and only init those that are not
3095 	 * cancelled. I think that a more fine grained factoring of
3096 	 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3097 	 * done easily.
3098 	 */
3099 	if (xlog_check_buffer_cancelled(log,
3100 			XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3101 		return 0;
3102 
3103 	xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, length,
3104 			      be32_to_cpu(icl->icl_gen));
3105 	return 0;
3106 }
3107 
3108 STATIC void
3109 xlog_recover_buffer_ra_pass2(
3110 	struct xlog                     *log,
3111 	struct xlog_recover_item        *item)
3112 {
3113 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3114 	struct xfs_mount		*mp = log->l_mp;
3115 
3116 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3117 			buf_f->blf_len, buf_f->blf_flags)) {
3118 		return;
3119 	}
3120 
3121 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3122 				buf_f->blf_len, NULL);
3123 }
3124 
3125 STATIC void
3126 xlog_recover_inode_ra_pass2(
3127 	struct xlog                     *log,
3128 	struct xlog_recover_item        *item)
3129 {
3130 	struct xfs_inode_log_format	ilf_buf;
3131 	struct xfs_inode_log_format	*ilfp;
3132 	struct xfs_mount		*mp = log->l_mp;
3133 	int			error;
3134 
3135 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3136 		ilfp = item->ri_buf[0].i_addr;
3137 	} else {
3138 		ilfp = &ilf_buf;
3139 		memset(ilfp, 0, sizeof(*ilfp));
3140 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3141 		if (error)
3142 			return;
3143 	}
3144 
3145 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3146 		return;
3147 
3148 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3149 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3150 }
3151 
3152 STATIC void
3153 xlog_recover_dquot_ra_pass2(
3154 	struct xlog			*log,
3155 	struct xlog_recover_item	*item)
3156 {
3157 	struct xfs_mount	*mp = log->l_mp;
3158 	struct xfs_disk_dquot	*recddq;
3159 	struct xfs_dq_logformat	*dq_f;
3160 	uint			type;
3161 
3162 
3163 	if (mp->m_qflags == 0)
3164 		return;
3165 
3166 	recddq = item->ri_buf[1].i_addr;
3167 	if (recddq == NULL)
3168 		return;
3169 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3170 		return;
3171 
3172 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3173 	ASSERT(type);
3174 	if (log->l_quotaoffs_flag & type)
3175 		return;
3176 
3177 	dq_f = item->ri_buf[0].i_addr;
3178 	ASSERT(dq_f);
3179 	ASSERT(dq_f->qlf_len == 1);
3180 
3181 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
3182 			  XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
3183 }
3184 
3185 STATIC void
3186 xlog_recover_ra_pass2(
3187 	struct xlog			*log,
3188 	struct xlog_recover_item	*item)
3189 {
3190 	switch (ITEM_TYPE(item)) {
3191 	case XFS_LI_BUF:
3192 		xlog_recover_buffer_ra_pass2(log, item);
3193 		break;
3194 	case XFS_LI_INODE:
3195 		xlog_recover_inode_ra_pass2(log, item);
3196 		break;
3197 	case XFS_LI_DQUOT:
3198 		xlog_recover_dquot_ra_pass2(log, item);
3199 		break;
3200 	case XFS_LI_EFI:
3201 	case XFS_LI_EFD:
3202 	case XFS_LI_QUOTAOFF:
3203 	default:
3204 		break;
3205 	}
3206 }
3207 
3208 STATIC int
3209 xlog_recover_commit_pass1(
3210 	struct xlog			*log,
3211 	struct xlog_recover		*trans,
3212 	struct xlog_recover_item	*item)
3213 {
3214 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3215 
3216 	switch (ITEM_TYPE(item)) {
3217 	case XFS_LI_BUF:
3218 		return xlog_recover_buffer_pass1(log, item);
3219 	case XFS_LI_QUOTAOFF:
3220 		return xlog_recover_quotaoff_pass1(log, item);
3221 	case XFS_LI_INODE:
3222 	case XFS_LI_EFI:
3223 	case XFS_LI_EFD:
3224 	case XFS_LI_DQUOT:
3225 	case XFS_LI_ICREATE:
3226 		/* nothing to do in pass 1 */
3227 		return 0;
3228 	default:
3229 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3230 			__func__, ITEM_TYPE(item));
3231 		ASSERT(0);
3232 		return -EIO;
3233 	}
3234 }
3235 
3236 STATIC int
3237 xlog_recover_commit_pass2(
3238 	struct xlog			*log,
3239 	struct xlog_recover		*trans,
3240 	struct list_head		*buffer_list,
3241 	struct xlog_recover_item	*item)
3242 {
3243 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3244 
3245 	switch (ITEM_TYPE(item)) {
3246 	case XFS_LI_BUF:
3247 		return xlog_recover_buffer_pass2(log, buffer_list, item,
3248 						 trans->r_lsn);
3249 	case XFS_LI_INODE:
3250 		return xlog_recover_inode_pass2(log, buffer_list, item,
3251 						 trans->r_lsn);
3252 	case XFS_LI_EFI:
3253 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3254 	case XFS_LI_EFD:
3255 		return xlog_recover_efd_pass2(log, item);
3256 	case XFS_LI_DQUOT:
3257 		return xlog_recover_dquot_pass2(log, buffer_list, item,
3258 						trans->r_lsn);
3259 	case XFS_LI_ICREATE:
3260 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3261 	case XFS_LI_QUOTAOFF:
3262 		/* nothing to do in pass2 */
3263 		return 0;
3264 	default:
3265 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3266 			__func__, ITEM_TYPE(item));
3267 		ASSERT(0);
3268 		return -EIO;
3269 	}
3270 }
3271 
3272 STATIC int
3273 xlog_recover_items_pass2(
3274 	struct xlog                     *log,
3275 	struct xlog_recover             *trans,
3276 	struct list_head                *buffer_list,
3277 	struct list_head                *item_list)
3278 {
3279 	struct xlog_recover_item	*item;
3280 	int				error = 0;
3281 
3282 	list_for_each_entry(item, item_list, ri_list) {
3283 		error = xlog_recover_commit_pass2(log, trans,
3284 					  buffer_list, item);
3285 		if (error)
3286 			return error;
3287 	}
3288 
3289 	return error;
3290 }
3291 
3292 /*
3293  * Perform the transaction.
3294  *
3295  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
3296  * EFIs and EFDs get queued up by adding entries into the AIL for them.
3297  */
3298 STATIC int
3299 xlog_recover_commit_trans(
3300 	struct xlog		*log,
3301 	struct xlog_recover	*trans,
3302 	int			pass)
3303 {
3304 	int				error = 0;
3305 	int				error2;
3306 	int				items_queued = 0;
3307 	struct xlog_recover_item	*item;
3308 	struct xlog_recover_item	*next;
3309 	LIST_HEAD			(buffer_list);
3310 	LIST_HEAD			(ra_list);
3311 	LIST_HEAD			(done_list);
3312 
3313 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3314 
3315 	hlist_del(&trans->r_list);
3316 
3317 	error = xlog_recover_reorder_trans(log, trans, pass);
3318 	if (error)
3319 		return error;
3320 
3321 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3322 		switch (pass) {
3323 		case XLOG_RECOVER_PASS1:
3324 			error = xlog_recover_commit_pass1(log, trans, item);
3325 			break;
3326 		case XLOG_RECOVER_PASS2:
3327 			xlog_recover_ra_pass2(log, item);
3328 			list_move_tail(&item->ri_list, &ra_list);
3329 			items_queued++;
3330 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3331 				error = xlog_recover_items_pass2(log, trans,
3332 						&buffer_list, &ra_list);
3333 				list_splice_tail_init(&ra_list, &done_list);
3334 				items_queued = 0;
3335 			}
3336 
3337 			break;
3338 		default:
3339 			ASSERT(0);
3340 		}
3341 
3342 		if (error)
3343 			goto out;
3344 	}
3345 
3346 out:
3347 	if (!list_empty(&ra_list)) {
3348 		if (!error)
3349 			error = xlog_recover_items_pass2(log, trans,
3350 					&buffer_list, &ra_list);
3351 		list_splice_tail_init(&ra_list, &done_list);
3352 	}
3353 
3354 	if (!list_empty(&done_list))
3355 		list_splice_init(&done_list, &trans->r_itemq);
3356 
3357 	error2 = xfs_buf_delwri_submit(&buffer_list);
3358 	return error ? error : error2;
3359 }
3360 
3361 STATIC void
3362 xlog_recover_add_item(
3363 	struct list_head	*head)
3364 {
3365 	xlog_recover_item_t	*item;
3366 
3367 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3368 	INIT_LIST_HEAD(&item->ri_list);
3369 	list_add_tail(&item->ri_list, head);
3370 }
3371 
3372 STATIC int
3373 xlog_recover_add_to_cont_trans(
3374 	struct xlog		*log,
3375 	struct xlog_recover	*trans,
3376 	char			*dp,
3377 	int			len)
3378 {
3379 	xlog_recover_item_t	*item;
3380 	char			*ptr, *old_ptr;
3381 	int			old_len;
3382 
3383 	if (list_empty(&trans->r_itemq)) {
3384 		/* finish copying rest of trans header */
3385 		xlog_recover_add_item(&trans->r_itemq);
3386 		ptr = (char *)&trans->r_theader +
3387 				sizeof(xfs_trans_header_t) - len;
3388 		memcpy(ptr, dp, len);
3389 		return 0;
3390 	}
3391 	/* take the tail entry */
3392 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3393 
3394 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3395 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
3396 
3397 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
3398 	memcpy(&ptr[old_len], dp, len);
3399 	item->ri_buf[item->ri_cnt-1].i_len += len;
3400 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3401 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
3402 	return 0;
3403 }
3404 
3405 /*
3406  * The next region to add is the start of a new region.  It could be
3407  * a whole region or it could be the first part of a new region.  Because
3408  * of this, the assumption here is that the type and size fields of all
3409  * format structures fit into the first 32 bits of the structure.
3410  *
3411  * This works because all regions must be 32 bit aligned.  Therefore, we
3412  * either have both fields or we have neither field.  In the case we have
3413  * neither field, the data part of the region is zero length.  We only have
3414  * a log_op_header and can throw away the header since a new one will appear
3415  * later.  If we have at least 4 bytes, then we can determine how many regions
3416  * will appear in the current log item.
3417  */
3418 STATIC int
3419 xlog_recover_add_to_trans(
3420 	struct xlog		*log,
3421 	struct xlog_recover	*trans,
3422 	char			*dp,
3423 	int			len)
3424 {
3425 	xfs_inode_log_format_t	*in_f;			/* any will do */
3426 	xlog_recover_item_t	*item;
3427 	char			*ptr;
3428 
3429 	if (!len)
3430 		return 0;
3431 	if (list_empty(&trans->r_itemq)) {
3432 		/* we need to catch log corruptions here */
3433 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3434 			xfs_warn(log->l_mp, "%s: bad header magic number",
3435 				__func__);
3436 			ASSERT(0);
3437 			return -EIO;
3438 		}
3439 		if (len == sizeof(xfs_trans_header_t))
3440 			xlog_recover_add_item(&trans->r_itemq);
3441 		memcpy(&trans->r_theader, dp, len);
3442 		return 0;
3443 	}
3444 
3445 	ptr = kmem_alloc(len, KM_SLEEP);
3446 	memcpy(ptr, dp, len);
3447 	in_f = (xfs_inode_log_format_t *)ptr;
3448 
3449 	/* take the tail entry */
3450 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3451 	if (item->ri_total != 0 &&
3452 	     item->ri_total == item->ri_cnt) {
3453 		/* tail item is in use, get a new one */
3454 		xlog_recover_add_item(&trans->r_itemq);
3455 		item = list_entry(trans->r_itemq.prev,
3456 					xlog_recover_item_t, ri_list);
3457 	}
3458 
3459 	if (item->ri_total == 0) {		/* first region to be added */
3460 		if (in_f->ilf_size == 0 ||
3461 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
3462 			xfs_warn(log->l_mp,
3463 		"bad number of regions (%d) in inode log format",
3464 				  in_f->ilf_size);
3465 			ASSERT(0);
3466 			kmem_free(ptr);
3467 			return -EIO;
3468 		}
3469 
3470 		item->ri_total = in_f->ilf_size;
3471 		item->ri_buf =
3472 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
3473 				    KM_SLEEP);
3474 	}
3475 	ASSERT(item->ri_total > item->ri_cnt);
3476 	/* Description region is ri_buf[0] */
3477 	item->ri_buf[item->ri_cnt].i_addr = ptr;
3478 	item->ri_buf[item->ri_cnt].i_len  = len;
3479 	item->ri_cnt++;
3480 	trace_xfs_log_recover_item_add(log, trans, item, 0);
3481 	return 0;
3482 }
3483 
3484 /*
3485  * Free up any resources allocated by the transaction
3486  *
3487  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3488  */
3489 STATIC void
3490 xlog_recover_free_trans(
3491 	struct xlog_recover	*trans)
3492 {
3493 	xlog_recover_item_t	*item, *n;
3494 	int			i;
3495 
3496 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3497 		/* Free the regions in the item. */
3498 		list_del(&item->ri_list);
3499 		for (i = 0; i < item->ri_cnt; i++)
3500 			kmem_free(item->ri_buf[i].i_addr);
3501 		/* Free the item itself */
3502 		kmem_free(item->ri_buf);
3503 		kmem_free(item);
3504 	}
3505 	/* Free the transaction recover structure */
3506 	kmem_free(trans);
3507 }
3508 
3509 /*
3510  * On error or completion, trans is freed.
3511  */
3512 STATIC int
3513 xlog_recovery_process_trans(
3514 	struct xlog		*log,
3515 	struct xlog_recover	*trans,
3516 	char			*dp,
3517 	unsigned int		len,
3518 	unsigned int		flags,
3519 	int			pass)
3520 {
3521 	int			error = 0;
3522 	bool			freeit = false;
3523 
3524 	/* mask off ophdr transaction container flags */
3525 	flags &= ~XLOG_END_TRANS;
3526 	if (flags & XLOG_WAS_CONT_TRANS)
3527 		flags &= ~XLOG_CONTINUE_TRANS;
3528 
3529 	/*
3530 	 * Callees must not free the trans structure. We'll decide if we need to
3531 	 * free it or not based on the operation being done and it's result.
3532 	 */
3533 	switch (flags) {
3534 	/* expected flag values */
3535 	case 0:
3536 	case XLOG_CONTINUE_TRANS:
3537 		error = xlog_recover_add_to_trans(log, trans, dp, len);
3538 		break;
3539 	case XLOG_WAS_CONT_TRANS:
3540 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
3541 		break;
3542 	case XLOG_COMMIT_TRANS:
3543 		error = xlog_recover_commit_trans(log, trans, pass);
3544 		/* success or fail, we are now done with this transaction. */
3545 		freeit = true;
3546 		break;
3547 
3548 	/* unexpected flag values */
3549 	case XLOG_UNMOUNT_TRANS:
3550 		/* just skip trans */
3551 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3552 		freeit = true;
3553 		break;
3554 	case XLOG_START_TRANS:
3555 	default:
3556 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
3557 		ASSERT(0);
3558 		error = -EIO;
3559 		break;
3560 	}
3561 	if (error || freeit)
3562 		xlog_recover_free_trans(trans);
3563 	return error;
3564 }
3565 
3566 /*
3567  * Lookup the transaction recovery structure associated with the ID in the
3568  * current ophdr. If the transaction doesn't exist and the start flag is set in
3569  * the ophdr, then allocate a new transaction for future ID matches to find.
3570  * Either way, return what we found during the lookup - an existing transaction
3571  * or nothing.
3572  */
3573 STATIC struct xlog_recover *
3574 xlog_recover_ophdr_to_trans(
3575 	struct hlist_head	rhash[],
3576 	struct xlog_rec_header	*rhead,
3577 	struct xlog_op_header	*ohead)
3578 {
3579 	struct xlog_recover	*trans;
3580 	xlog_tid_t		tid;
3581 	struct hlist_head	*rhp;
3582 
3583 	tid = be32_to_cpu(ohead->oh_tid);
3584 	rhp = &rhash[XLOG_RHASH(tid)];
3585 	hlist_for_each_entry(trans, rhp, r_list) {
3586 		if (trans->r_log_tid == tid)
3587 			return trans;
3588 	}
3589 
3590 	/*
3591 	 * skip over non-start transaction headers - we could be
3592 	 * processing slack space before the next transaction starts
3593 	 */
3594 	if (!(ohead->oh_flags & XLOG_START_TRANS))
3595 		return NULL;
3596 
3597 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
3598 
3599 	/*
3600 	 * This is a new transaction so allocate a new recovery container to
3601 	 * hold the recovery ops that will follow.
3602 	 */
3603 	trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
3604 	trans->r_log_tid = tid;
3605 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
3606 	INIT_LIST_HEAD(&trans->r_itemq);
3607 	INIT_HLIST_NODE(&trans->r_list);
3608 	hlist_add_head(&trans->r_list, rhp);
3609 
3610 	/*
3611 	 * Nothing more to do for this ophdr. Items to be added to this new
3612 	 * transaction will be in subsequent ophdr containers.
3613 	 */
3614 	return NULL;
3615 }
3616 
3617 STATIC int
3618 xlog_recover_process_ophdr(
3619 	struct xlog		*log,
3620 	struct hlist_head	rhash[],
3621 	struct xlog_rec_header	*rhead,
3622 	struct xlog_op_header	*ohead,
3623 	char			*dp,
3624 	char			*end,
3625 	int			pass)
3626 {
3627 	struct xlog_recover	*trans;
3628 	unsigned int		len;
3629 
3630 	/* Do we understand who wrote this op? */
3631 	if (ohead->oh_clientid != XFS_TRANSACTION &&
3632 	    ohead->oh_clientid != XFS_LOG) {
3633 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3634 			__func__, ohead->oh_clientid);
3635 		ASSERT(0);
3636 		return -EIO;
3637 	}
3638 
3639 	/*
3640 	 * Check the ophdr contains all the data it is supposed to contain.
3641 	 */
3642 	len = be32_to_cpu(ohead->oh_len);
3643 	if (dp + len > end) {
3644 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
3645 		WARN_ON(1);
3646 		return -EIO;
3647 	}
3648 
3649 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
3650 	if (!trans) {
3651 		/* nothing to do, so skip over this ophdr */
3652 		return 0;
3653 	}
3654 
3655 	return xlog_recovery_process_trans(log, trans, dp, len,
3656 					   ohead->oh_flags, pass);
3657 }
3658 
3659 /*
3660  * There are two valid states of the r_state field.  0 indicates that the
3661  * transaction structure is in a normal state.  We have either seen the
3662  * start of the transaction or the last operation we added was not a partial
3663  * operation.  If the last operation we added to the transaction was a
3664  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3665  *
3666  * NOTE: skip LRs with 0 data length.
3667  */
3668 STATIC int
3669 xlog_recover_process_data(
3670 	struct xlog		*log,
3671 	struct hlist_head	rhash[],
3672 	struct xlog_rec_header	*rhead,
3673 	char			*dp,
3674 	int			pass)
3675 {
3676 	struct xlog_op_header	*ohead;
3677 	char			*end;
3678 	int			num_logops;
3679 	int			error;
3680 
3681 	end = dp + be32_to_cpu(rhead->h_len);
3682 	num_logops = be32_to_cpu(rhead->h_num_logops);
3683 
3684 	/* check the log format matches our own - else we can't recover */
3685 	if (xlog_header_check_recover(log->l_mp, rhead))
3686 		return -EIO;
3687 
3688 	while ((dp < end) && num_logops) {
3689 
3690 		ohead = (struct xlog_op_header *)dp;
3691 		dp += sizeof(*ohead);
3692 		ASSERT(dp <= end);
3693 
3694 		/* errors will abort recovery */
3695 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
3696 						    dp, end, pass);
3697 		if (error)
3698 			return error;
3699 
3700 		dp += be32_to_cpu(ohead->oh_len);
3701 		num_logops--;
3702 	}
3703 	return 0;
3704 }
3705 
3706 /*
3707  * Process an extent free intent item that was recovered from
3708  * the log.  We need to free the extents that it describes.
3709  */
3710 STATIC int
3711 xlog_recover_process_efi(
3712 	xfs_mount_t		*mp,
3713 	xfs_efi_log_item_t	*efip)
3714 {
3715 	xfs_efd_log_item_t	*efdp;
3716 	xfs_trans_t		*tp;
3717 	int			i;
3718 	int			error = 0;
3719 	xfs_extent_t		*extp;
3720 	xfs_fsblock_t		startblock_fsb;
3721 
3722 	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3723 
3724 	/*
3725 	 * First check the validity of the extents described by the
3726 	 * EFI.  If any are bad, then assume that all are bad and
3727 	 * just toss the EFI.
3728 	 */
3729 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3730 		extp = &(efip->efi_format.efi_extents[i]);
3731 		startblock_fsb = XFS_BB_TO_FSB(mp,
3732 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3733 		if ((startblock_fsb == 0) ||
3734 		    (extp->ext_len == 0) ||
3735 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3736 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3737 			/*
3738 			 * This will pull the EFI from the AIL and
3739 			 * free the memory associated with it.
3740 			 */
3741 			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3742 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3743 			return -EIO;
3744 		}
3745 	}
3746 
3747 	tp = xfs_trans_alloc(mp, 0);
3748 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
3749 	if (error)
3750 		goto abort_error;
3751 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3752 
3753 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3754 		extp = &(efip->efi_format.efi_extents[i]);
3755 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3756 		if (error)
3757 			goto abort_error;
3758 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3759 					 extp->ext_len);
3760 	}
3761 
3762 	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3763 	error = xfs_trans_commit(tp);
3764 	return error;
3765 
3766 abort_error:
3767 	xfs_trans_cancel(tp);
3768 	return error;
3769 }
3770 
3771 /*
3772  * When this is called, all of the EFIs which did not have
3773  * corresponding EFDs should be in the AIL.  What we do now
3774  * is free the extents associated with each one.
3775  *
3776  * Since we process the EFIs in normal transactions, they
3777  * will be removed at some point after the commit.  This prevents
3778  * us from just walking down the list processing each one.
3779  * We'll use a flag in the EFI to skip those that we've already
3780  * processed and use the AIL iteration mechanism's generation
3781  * count to try to speed this up at least a bit.
3782  *
3783  * When we start, we know that the EFIs are the only things in
3784  * the AIL.  As we process them, however, other items are added
3785  * to the AIL.  Since everything added to the AIL must come after
3786  * everything already in the AIL, we stop processing as soon as
3787  * we see something other than an EFI in the AIL.
3788  */
3789 STATIC int
3790 xlog_recover_process_efis(
3791 	struct xlog	*log)
3792 {
3793 	xfs_log_item_t		*lip;
3794 	xfs_efi_log_item_t	*efip;
3795 	int			error = 0;
3796 	struct xfs_ail_cursor	cur;
3797 	struct xfs_ail		*ailp;
3798 
3799 	ailp = log->l_ailp;
3800 	spin_lock(&ailp->xa_lock);
3801 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3802 	while (lip != NULL) {
3803 		/*
3804 		 * We're done when we see something other than an EFI.
3805 		 * There should be no EFIs left in the AIL now.
3806 		 */
3807 		if (lip->li_type != XFS_LI_EFI) {
3808 #ifdef DEBUG
3809 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3810 				ASSERT(lip->li_type != XFS_LI_EFI);
3811 #endif
3812 			break;
3813 		}
3814 
3815 		/*
3816 		 * Skip EFIs that we've already processed.
3817 		 */
3818 		efip = (xfs_efi_log_item_t *)lip;
3819 		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3820 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3821 			continue;
3822 		}
3823 
3824 		spin_unlock(&ailp->xa_lock);
3825 		error = xlog_recover_process_efi(log->l_mp, efip);
3826 		spin_lock(&ailp->xa_lock);
3827 		if (error)
3828 			goto out;
3829 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3830 	}
3831 out:
3832 	xfs_trans_ail_cursor_done(&cur);
3833 	spin_unlock(&ailp->xa_lock);
3834 	return error;
3835 }
3836 
3837 /*
3838  * This routine performs a transaction to null out a bad inode pointer
3839  * in an agi unlinked inode hash bucket.
3840  */
3841 STATIC void
3842 xlog_recover_clear_agi_bucket(
3843 	xfs_mount_t	*mp,
3844 	xfs_agnumber_t	agno,
3845 	int		bucket)
3846 {
3847 	xfs_trans_t	*tp;
3848 	xfs_agi_t	*agi;
3849 	xfs_buf_t	*agibp;
3850 	int		offset;
3851 	int		error;
3852 
3853 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3854 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
3855 	if (error)
3856 		goto out_abort;
3857 
3858 	error = xfs_read_agi(mp, tp, agno, &agibp);
3859 	if (error)
3860 		goto out_abort;
3861 
3862 	agi = XFS_BUF_TO_AGI(agibp);
3863 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3864 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3865 		 (sizeof(xfs_agino_t) * bucket);
3866 	xfs_trans_log_buf(tp, agibp, offset,
3867 			  (offset + sizeof(xfs_agino_t) - 1));
3868 
3869 	error = xfs_trans_commit(tp);
3870 	if (error)
3871 		goto out_error;
3872 	return;
3873 
3874 out_abort:
3875 	xfs_trans_cancel(tp);
3876 out_error:
3877 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3878 	return;
3879 }
3880 
3881 STATIC xfs_agino_t
3882 xlog_recover_process_one_iunlink(
3883 	struct xfs_mount		*mp,
3884 	xfs_agnumber_t			agno,
3885 	xfs_agino_t			agino,
3886 	int				bucket)
3887 {
3888 	struct xfs_buf			*ibp;
3889 	struct xfs_dinode		*dip;
3890 	struct xfs_inode		*ip;
3891 	xfs_ino_t			ino;
3892 	int				error;
3893 
3894 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3895 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3896 	if (error)
3897 		goto fail;
3898 
3899 	/*
3900 	 * Get the on disk inode to find the next inode in the bucket.
3901 	 */
3902 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3903 	if (error)
3904 		goto fail_iput;
3905 
3906 	ASSERT(ip->i_d.di_nlink == 0);
3907 	ASSERT(ip->i_d.di_mode != 0);
3908 
3909 	/* setup for the next pass */
3910 	agino = be32_to_cpu(dip->di_next_unlinked);
3911 	xfs_buf_relse(ibp);
3912 
3913 	/*
3914 	 * Prevent any DMAPI event from being sent when the reference on
3915 	 * the inode is dropped.
3916 	 */
3917 	ip->i_d.di_dmevmask = 0;
3918 
3919 	IRELE(ip);
3920 	return agino;
3921 
3922  fail_iput:
3923 	IRELE(ip);
3924  fail:
3925 	/*
3926 	 * We can't read in the inode this bucket points to, or this inode
3927 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3928 	 * some inodes and space, but at least we won't hang.
3929 	 *
3930 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3931 	 * clear the inode pointer in the bucket.
3932 	 */
3933 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3934 	return NULLAGINO;
3935 }
3936 
3937 /*
3938  * xlog_iunlink_recover
3939  *
3940  * This is called during recovery to process any inodes which
3941  * we unlinked but not freed when the system crashed.  These
3942  * inodes will be on the lists in the AGI blocks.  What we do
3943  * here is scan all the AGIs and fully truncate and free any
3944  * inodes found on the lists.  Each inode is removed from the
3945  * lists when it has been fully truncated and is freed.  The
3946  * freeing of the inode and its removal from the list must be
3947  * atomic.
3948  */
3949 STATIC void
3950 xlog_recover_process_iunlinks(
3951 	struct xlog	*log)
3952 {
3953 	xfs_mount_t	*mp;
3954 	xfs_agnumber_t	agno;
3955 	xfs_agi_t	*agi;
3956 	xfs_buf_t	*agibp;
3957 	xfs_agino_t	agino;
3958 	int		bucket;
3959 	int		error;
3960 	uint		mp_dmevmask;
3961 
3962 	mp = log->l_mp;
3963 
3964 	/*
3965 	 * Prevent any DMAPI event from being sent while in this function.
3966 	 */
3967 	mp_dmevmask = mp->m_dmevmask;
3968 	mp->m_dmevmask = 0;
3969 
3970 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3971 		/*
3972 		 * Find the agi for this ag.
3973 		 */
3974 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3975 		if (error) {
3976 			/*
3977 			 * AGI is b0rked. Don't process it.
3978 			 *
3979 			 * We should probably mark the filesystem as corrupt
3980 			 * after we've recovered all the ag's we can....
3981 			 */
3982 			continue;
3983 		}
3984 		/*
3985 		 * Unlock the buffer so that it can be acquired in the normal
3986 		 * course of the transaction to truncate and free each inode.
3987 		 * Because we are not racing with anyone else here for the AGI
3988 		 * buffer, we don't even need to hold it locked to read the
3989 		 * initial unlinked bucket entries out of the buffer. We keep
3990 		 * buffer reference though, so that it stays pinned in memory
3991 		 * while we need the buffer.
3992 		 */
3993 		agi = XFS_BUF_TO_AGI(agibp);
3994 		xfs_buf_unlock(agibp);
3995 
3996 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3997 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3998 			while (agino != NULLAGINO) {
3999 				agino = xlog_recover_process_one_iunlink(mp,
4000 							agno, agino, bucket);
4001 			}
4002 		}
4003 		xfs_buf_rele(agibp);
4004 	}
4005 
4006 	mp->m_dmevmask = mp_dmevmask;
4007 }
4008 
4009 /*
4010  * Upack the log buffer data and crc check it. If the check fails, issue a
4011  * warning if and only if the CRC in the header is non-zero. This makes the
4012  * check an advisory warning, and the zero CRC check will prevent failure
4013  * warnings from being emitted when upgrading the kernel from one that does not
4014  * add CRCs by default.
4015  *
4016  * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
4017  * corruption failure
4018  */
4019 STATIC int
4020 xlog_unpack_data_crc(
4021 	struct xlog_rec_header	*rhead,
4022 	char			*dp,
4023 	struct xlog		*log)
4024 {
4025 	__le32			crc;
4026 
4027 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4028 	if (crc != rhead->h_crc) {
4029 		if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4030 			xfs_alert(log->l_mp,
4031 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
4032 					le32_to_cpu(rhead->h_crc),
4033 					le32_to_cpu(crc));
4034 			xfs_hex_dump(dp, 32);
4035 		}
4036 
4037 		/*
4038 		 * If we've detected a log record corruption, then we can't
4039 		 * recover past this point. Abort recovery if we are enforcing
4040 		 * CRC protection by punting an error back up the stack.
4041 		 */
4042 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4043 			return -EFSCORRUPTED;
4044 	}
4045 
4046 	return 0;
4047 }
4048 
4049 STATIC int
4050 xlog_unpack_data(
4051 	struct xlog_rec_header	*rhead,
4052 	char			*dp,
4053 	struct xlog		*log)
4054 {
4055 	int			i, j, k;
4056 	int			error;
4057 
4058 	error = xlog_unpack_data_crc(rhead, dp, log);
4059 	if (error)
4060 		return error;
4061 
4062 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4063 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4064 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4065 		dp += BBSIZE;
4066 	}
4067 
4068 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4069 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4070 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4071 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4072 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4073 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4074 			dp += BBSIZE;
4075 		}
4076 	}
4077 
4078 	return 0;
4079 }
4080 
4081 STATIC int
4082 xlog_valid_rec_header(
4083 	struct xlog		*log,
4084 	struct xlog_rec_header	*rhead,
4085 	xfs_daddr_t		blkno)
4086 {
4087 	int			hlen;
4088 
4089 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4090 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4091 				XFS_ERRLEVEL_LOW, log->l_mp);
4092 		return -EFSCORRUPTED;
4093 	}
4094 	if (unlikely(
4095 	    (!rhead->h_version ||
4096 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4097 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4098 			__func__, be32_to_cpu(rhead->h_version));
4099 		return -EIO;
4100 	}
4101 
4102 	/* LR body must have data or it wouldn't have been written */
4103 	hlen = be32_to_cpu(rhead->h_len);
4104 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4105 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4106 				XFS_ERRLEVEL_LOW, log->l_mp);
4107 		return -EFSCORRUPTED;
4108 	}
4109 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4110 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4111 				XFS_ERRLEVEL_LOW, log->l_mp);
4112 		return -EFSCORRUPTED;
4113 	}
4114 	return 0;
4115 }
4116 
4117 /*
4118  * Read the log from tail to head and process the log records found.
4119  * Handle the two cases where the tail and head are in the same cycle
4120  * and where the active portion of the log wraps around the end of
4121  * the physical log separately.  The pass parameter is passed through
4122  * to the routines called to process the data and is not looked at
4123  * here.
4124  */
4125 STATIC int
4126 xlog_do_recovery_pass(
4127 	struct xlog		*log,
4128 	xfs_daddr_t		head_blk,
4129 	xfs_daddr_t		tail_blk,
4130 	int			pass)
4131 {
4132 	xlog_rec_header_t	*rhead;
4133 	xfs_daddr_t		blk_no;
4134 	char			*offset;
4135 	xfs_buf_t		*hbp, *dbp;
4136 	int			error = 0, h_size;
4137 	int			bblks, split_bblks;
4138 	int			hblks, split_hblks, wrapped_hblks;
4139 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
4140 
4141 	ASSERT(head_blk != tail_blk);
4142 
4143 	/*
4144 	 * Read the header of the tail block and get the iclog buffer size from
4145 	 * h_size.  Use this to tell how many sectors make up the log header.
4146 	 */
4147 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4148 		/*
4149 		 * When using variable length iclogs, read first sector of
4150 		 * iclog header and extract the header size from it.  Get a
4151 		 * new hbp that is the correct size.
4152 		 */
4153 		hbp = xlog_get_bp(log, 1);
4154 		if (!hbp)
4155 			return -ENOMEM;
4156 
4157 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4158 		if (error)
4159 			goto bread_err1;
4160 
4161 		rhead = (xlog_rec_header_t *)offset;
4162 		error = xlog_valid_rec_header(log, rhead, tail_blk);
4163 		if (error)
4164 			goto bread_err1;
4165 		h_size = be32_to_cpu(rhead->h_size);
4166 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4167 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4168 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4169 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
4170 				hblks++;
4171 			xlog_put_bp(hbp);
4172 			hbp = xlog_get_bp(log, hblks);
4173 		} else {
4174 			hblks = 1;
4175 		}
4176 	} else {
4177 		ASSERT(log->l_sectBBsize == 1);
4178 		hblks = 1;
4179 		hbp = xlog_get_bp(log, 1);
4180 		h_size = XLOG_BIG_RECORD_BSIZE;
4181 	}
4182 
4183 	if (!hbp)
4184 		return -ENOMEM;
4185 	dbp = xlog_get_bp(log, BTOBB(h_size));
4186 	if (!dbp) {
4187 		xlog_put_bp(hbp);
4188 		return -ENOMEM;
4189 	}
4190 
4191 	memset(rhash, 0, sizeof(rhash));
4192 	blk_no = tail_blk;
4193 	if (tail_blk > head_blk) {
4194 		/*
4195 		 * Perform recovery around the end of the physical log.
4196 		 * When the head is not on the same cycle number as the tail,
4197 		 * we can't do a sequential recovery.
4198 		 */
4199 		while (blk_no < log->l_logBBsize) {
4200 			/*
4201 			 * Check for header wrapping around physical end-of-log
4202 			 */
4203 			offset = hbp->b_addr;
4204 			split_hblks = 0;
4205 			wrapped_hblks = 0;
4206 			if (blk_no + hblks <= log->l_logBBsize) {
4207 				/* Read header in one read */
4208 				error = xlog_bread(log, blk_no, hblks, hbp,
4209 						   &offset);
4210 				if (error)
4211 					goto bread_err2;
4212 			} else {
4213 				/* This LR is split across physical log end */
4214 				if (blk_no != log->l_logBBsize) {
4215 					/* some data before physical log end */
4216 					ASSERT(blk_no <= INT_MAX);
4217 					split_hblks = log->l_logBBsize - (int)blk_no;
4218 					ASSERT(split_hblks > 0);
4219 					error = xlog_bread(log, blk_no,
4220 							   split_hblks, hbp,
4221 							   &offset);
4222 					if (error)
4223 						goto bread_err2;
4224 				}
4225 
4226 				/*
4227 				 * Note: this black magic still works with
4228 				 * large sector sizes (non-512) only because:
4229 				 * - we increased the buffer size originally
4230 				 *   by 1 sector giving us enough extra space
4231 				 *   for the second read;
4232 				 * - the log start is guaranteed to be sector
4233 				 *   aligned;
4234 				 * - we read the log end (LR header start)
4235 				 *   _first_, then the log start (LR header end)
4236 				 *   - order is important.
4237 				 */
4238 				wrapped_hblks = hblks - split_hblks;
4239 				error = xlog_bread_offset(log, 0,
4240 						wrapped_hblks, hbp,
4241 						offset + BBTOB(split_hblks));
4242 				if (error)
4243 					goto bread_err2;
4244 			}
4245 			rhead = (xlog_rec_header_t *)offset;
4246 			error = xlog_valid_rec_header(log, rhead,
4247 						split_hblks ? blk_no : 0);
4248 			if (error)
4249 				goto bread_err2;
4250 
4251 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4252 			blk_no += hblks;
4253 
4254 			/* Read in data for log record */
4255 			if (blk_no + bblks <= log->l_logBBsize) {
4256 				error = xlog_bread(log, blk_no, bblks, dbp,
4257 						   &offset);
4258 				if (error)
4259 					goto bread_err2;
4260 			} else {
4261 				/* This log record is split across the
4262 				 * physical end of log */
4263 				offset = dbp->b_addr;
4264 				split_bblks = 0;
4265 				if (blk_no != log->l_logBBsize) {
4266 					/* some data is before the physical
4267 					 * end of log */
4268 					ASSERT(!wrapped_hblks);
4269 					ASSERT(blk_no <= INT_MAX);
4270 					split_bblks =
4271 						log->l_logBBsize - (int)blk_no;
4272 					ASSERT(split_bblks > 0);
4273 					error = xlog_bread(log, blk_no,
4274 							split_bblks, dbp,
4275 							&offset);
4276 					if (error)
4277 						goto bread_err2;
4278 				}
4279 
4280 				/*
4281 				 * Note: this black magic still works with
4282 				 * large sector sizes (non-512) only because:
4283 				 * - we increased the buffer size originally
4284 				 *   by 1 sector giving us enough extra space
4285 				 *   for the second read;
4286 				 * - the log start is guaranteed to be sector
4287 				 *   aligned;
4288 				 * - we read the log end (LR header start)
4289 				 *   _first_, then the log start (LR header end)
4290 				 *   - order is important.
4291 				 */
4292 				error = xlog_bread_offset(log, 0,
4293 						bblks - split_bblks, dbp,
4294 						offset + BBTOB(split_bblks));
4295 				if (error)
4296 					goto bread_err2;
4297 			}
4298 
4299 			error = xlog_unpack_data(rhead, offset, log);
4300 			if (error)
4301 				goto bread_err2;
4302 
4303 			error = xlog_recover_process_data(log, rhash,
4304 							rhead, offset, pass);
4305 			if (error)
4306 				goto bread_err2;
4307 			blk_no += bblks;
4308 		}
4309 
4310 		ASSERT(blk_no >= log->l_logBBsize);
4311 		blk_no -= log->l_logBBsize;
4312 	}
4313 
4314 	/* read first part of physical log */
4315 	while (blk_no < head_blk) {
4316 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4317 		if (error)
4318 			goto bread_err2;
4319 
4320 		rhead = (xlog_rec_header_t *)offset;
4321 		error = xlog_valid_rec_header(log, rhead, blk_no);
4322 		if (error)
4323 			goto bread_err2;
4324 
4325 		/* blocks in data section */
4326 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4327 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4328 				   &offset);
4329 		if (error)
4330 			goto bread_err2;
4331 
4332 		error = xlog_unpack_data(rhead, offset, log);
4333 		if (error)
4334 			goto bread_err2;
4335 
4336 		error = xlog_recover_process_data(log, rhash,
4337 						rhead, offset, pass);
4338 		if (error)
4339 			goto bread_err2;
4340 		blk_no += bblks + hblks;
4341 	}
4342 
4343  bread_err2:
4344 	xlog_put_bp(dbp);
4345  bread_err1:
4346 	xlog_put_bp(hbp);
4347 	return error;
4348 }
4349 
4350 /*
4351  * Do the recovery of the log.  We actually do this in two phases.
4352  * The two passes are necessary in order to implement the function
4353  * of cancelling a record written into the log.  The first pass
4354  * determines those things which have been cancelled, and the
4355  * second pass replays log items normally except for those which
4356  * have been cancelled.  The handling of the replay and cancellations
4357  * takes place in the log item type specific routines.
4358  *
4359  * The table of items which have cancel records in the log is allocated
4360  * and freed at this level, since only here do we know when all of
4361  * the log recovery has been completed.
4362  */
4363 STATIC int
4364 xlog_do_log_recovery(
4365 	struct xlog	*log,
4366 	xfs_daddr_t	head_blk,
4367 	xfs_daddr_t	tail_blk)
4368 {
4369 	int		error, i;
4370 
4371 	ASSERT(head_blk != tail_blk);
4372 
4373 	/*
4374 	 * First do a pass to find all of the cancelled buf log items.
4375 	 * Store them in the buf_cancel_table for use in the second pass.
4376 	 */
4377 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4378 						 sizeof(struct list_head),
4379 						 KM_SLEEP);
4380 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4381 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4382 
4383 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4384 				      XLOG_RECOVER_PASS1);
4385 	if (error != 0) {
4386 		kmem_free(log->l_buf_cancel_table);
4387 		log->l_buf_cancel_table = NULL;
4388 		return error;
4389 	}
4390 	/*
4391 	 * Then do a second pass to actually recover the items in the log.
4392 	 * When it is complete free the table of buf cancel items.
4393 	 */
4394 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4395 				      XLOG_RECOVER_PASS2);
4396 #ifdef DEBUG
4397 	if (!error) {
4398 		int	i;
4399 
4400 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4401 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4402 	}
4403 #endif	/* DEBUG */
4404 
4405 	kmem_free(log->l_buf_cancel_table);
4406 	log->l_buf_cancel_table = NULL;
4407 
4408 	return error;
4409 }
4410 
4411 /*
4412  * Do the actual recovery
4413  */
4414 STATIC int
4415 xlog_do_recover(
4416 	struct xlog	*log,
4417 	xfs_daddr_t	head_blk,
4418 	xfs_daddr_t	tail_blk)
4419 {
4420 	int		error;
4421 	xfs_buf_t	*bp;
4422 	xfs_sb_t	*sbp;
4423 
4424 	/*
4425 	 * First replay the images in the log.
4426 	 */
4427 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
4428 	if (error)
4429 		return error;
4430 
4431 	/*
4432 	 * If IO errors happened during recovery, bail out.
4433 	 */
4434 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4435 		return -EIO;
4436 	}
4437 
4438 	/*
4439 	 * We now update the tail_lsn since much of the recovery has completed
4440 	 * and there may be space available to use.  If there were no extent
4441 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
4442 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
4443 	 * lsn of the last known good LR on disk.  If there are extent frees
4444 	 * or iunlinks they will have some entries in the AIL; so we look at
4445 	 * the AIL to determine how to set the tail_lsn.
4446 	 */
4447 	xlog_assign_tail_lsn(log->l_mp);
4448 
4449 	/*
4450 	 * Now that we've finished replaying all buffer and inode
4451 	 * updates, re-read in the superblock and reverify it.
4452 	 */
4453 	bp = xfs_getsb(log->l_mp, 0);
4454 	XFS_BUF_UNDONE(bp);
4455 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
4456 	XFS_BUF_READ(bp);
4457 	XFS_BUF_UNASYNC(bp);
4458 	bp->b_ops = &xfs_sb_buf_ops;
4459 
4460 	error = xfs_buf_submit_wait(bp);
4461 	if (error) {
4462 		if (!XFS_FORCED_SHUTDOWN(log->l_mp)) {
4463 			xfs_buf_ioerror_alert(bp, __func__);
4464 			ASSERT(0);
4465 		}
4466 		xfs_buf_relse(bp);
4467 		return error;
4468 	}
4469 
4470 	/* Convert superblock from on-disk format */
4471 	sbp = &log->l_mp->m_sb;
4472 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4473 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4474 	ASSERT(xfs_sb_good_version(sbp));
4475 	xfs_reinit_percpu_counters(log->l_mp);
4476 
4477 	xfs_buf_relse(bp);
4478 
4479 
4480 	xlog_recover_check_summary(log);
4481 
4482 	/* Normal transactions can now occur */
4483 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4484 	return 0;
4485 }
4486 
4487 /*
4488  * Perform recovery and re-initialize some log variables in xlog_find_tail.
4489  *
4490  * Return error or zero.
4491  */
4492 int
4493 xlog_recover(
4494 	struct xlog	*log)
4495 {
4496 	xfs_daddr_t	head_blk, tail_blk;
4497 	int		error;
4498 
4499 	/* find the tail of the log */
4500 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4501 		return error;
4502 
4503 	if (tail_blk != head_blk) {
4504 		/* There used to be a comment here:
4505 		 *
4506 		 * disallow recovery on read-only mounts.  note -- mount
4507 		 * checks for ENOSPC and turns it into an intelligent
4508 		 * error message.
4509 		 * ...but this is no longer true.  Now, unless you specify
4510 		 * NORECOVERY (in which case this function would never be
4511 		 * called), we just go ahead and recover.  We do this all
4512 		 * under the vfs layer, so we can get away with it unless
4513 		 * the device itself is read-only, in which case we fail.
4514 		 */
4515 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4516 			return error;
4517 		}
4518 
4519 		/*
4520 		 * Version 5 superblock log feature mask validation. We know the
4521 		 * log is dirty so check if there are any unknown log features
4522 		 * in what we need to recover. If there are unknown features
4523 		 * (e.g. unsupported transactions, then simply reject the
4524 		 * attempt at recovery before touching anything.
4525 		 */
4526 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4527 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4528 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4529 			xfs_warn(log->l_mp,
4530 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4531 "The log can not be fully and/or safely recovered by this kernel.\n"
4532 "Please recover the log on a kernel that supports the unknown features.",
4533 				(log->l_mp->m_sb.sb_features_log_incompat &
4534 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4535 			return -EINVAL;
4536 		}
4537 
4538 		/*
4539 		 * Delay log recovery if the debug hook is set. This is debug
4540 		 * instrumention to coordinate simulation of I/O failures with
4541 		 * log recovery.
4542 		 */
4543 		if (xfs_globals.log_recovery_delay) {
4544 			xfs_notice(log->l_mp,
4545 				"Delaying log recovery for %d seconds.",
4546 				xfs_globals.log_recovery_delay);
4547 			msleep(xfs_globals.log_recovery_delay * 1000);
4548 		}
4549 
4550 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4551 				log->l_mp->m_logname ? log->l_mp->m_logname
4552 						     : "internal");
4553 
4554 		error = xlog_do_recover(log, head_blk, tail_blk);
4555 		log->l_flags |= XLOG_RECOVERY_NEEDED;
4556 	}
4557 	return error;
4558 }
4559 
4560 /*
4561  * In the first part of recovery we replay inodes and buffers and build
4562  * up the list of extent free items which need to be processed.  Here
4563  * we process the extent free items and clean up the on disk unlinked
4564  * inode lists.  This is separated from the first part of recovery so
4565  * that the root and real-time bitmap inodes can be read in from disk in
4566  * between the two stages.  This is necessary so that we can free space
4567  * in the real-time portion of the file system.
4568  */
4569 int
4570 xlog_recover_finish(
4571 	struct xlog	*log)
4572 {
4573 	/*
4574 	 * Now we're ready to do the transactions needed for the
4575 	 * rest of recovery.  Start with completing all the extent
4576 	 * free intent records and then process the unlinked inode
4577 	 * lists.  At this point, we essentially run in normal mode
4578 	 * except that we're still performing recovery actions
4579 	 * rather than accepting new requests.
4580 	 */
4581 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4582 		int	error;
4583 		error = xlog_recover_process_efis(log);
4584 		if (error) {
4585 			xfs_alert(log->l_mp, "Failed to recover EFIs");
4586 			return error;
4587 		}
4588 		/*
4589 		 * Sync the log to get all the EFIs out of the AIL.
4590 		 * This isn't absolutely necessary, but it helps in
4591 		 * case the unlink transactions would have problems
4592 		 * pushing the EFIs out of the way.
4593 		 */
4594 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4595 
4596 		xlog_recover_process_iunlinks(log);
4597 
4598 		xlog_recover_check_summary(log);
4599 
4600 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4601 				log->l_mp->m_logname ? log->l_mp->m_logname
4602 						     : "internal");
4603 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4604 	} else {
4605 		xfs_info(log->l_mp, "Ending clean mount");
4606 	}
4607 	return 0;
4608 }
4609 
4610 
4611 #if defined(DEBUG)
4612 /*
4613  * Read all of the agf and agi counters and check that they
4614  * are consistent with the superblock counters.
4615  */
4616 void
4617 xlog_recover_check_summary(
4618 	struct xlog	*log)
4619 {
4620 	xfs_mount_t	*mp;
4621 	xfs_agf_t	*agfp;
4622 	xfs_buf_t	*agfbp;
4623 	xfs_buf_t	*agibp;
4624 	xfs_agnumber_t	agno;
4625 	__uint64_t	freeblks;
4626 	__uint64_t	itotal;
4627 	__uint64_t	ifree;
4628 	int		error;
4629 
4630 	mp = log->l_mp;
4631 
4632 	freeblks = 0LL;
4633 	itotal = 0LL;
4634 	ifree = 0LL;
4635 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4636 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4637 		if (error) {
4638 			xfs_alert(mp, "%s agf read failed agno %d error %d",
4639 						__func__, agno, error);
4640 		} else {
4641 			agfp = XFS_BUF_TO_AGF(agfbp);
4642 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
4643 				    be32_to_cpu(agfp->agf_flcount);
4644 			xfs_buf_relse(agfbp);
4645 		}
4646 
4647 		error = xfs_read_agi(mp, NULL, agno, &agibp);
4648 		if (error) {
4649 			xfs_alert(mp, "%s agi read failed agno %d error %d",
4650 						__func__, agno, error);
4651 		} else {
4652 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
4653 
4654 			itotal += be32_to_cpu(agi->agi_count);
4655 			ifree += be32_to_cpu(agi->agi_freecount);
4656 			xfs_buf_relse(agibp);
4657 		}
4658 	}
4659 }
4660 #endif /* DEBUG */
4661