1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_trans.h" 31 #include "xfs_log.h" 32 #include "xfs_log_priv.h" 33 #include "xfs_log_recover.h" 34 #include "xfs_inode_item.h" 35 #include "xfs_extfree_item.h" 36 #include "xfs_trans_priv.h" 37 #include "xfs_alloc.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_quota.h" 40 #include "xfs_cksum.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_bmap_btree.h" 44 #include "xfs_error.h" 45 #include "xfs_dir2.h" 46 47 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 48 49 STATIC int 50 xlog_find_zeroed( 51 struct xlog *, 52 xfs_daddr_t *); 53 STATIC int 54 xlog_clear_stale_blocks( 55 struct xlog *, 56 xfs_lsn_t); 57 #if defined(DEBUG) 58 STATIC void 59 xlog_recover_check_summary( 60 struct xlog *); 61 #else 62 #define xlog_recover_check_summary(log) 63 #endif 64 65 /* 66 * This structure is used during recovery to record the buf log items which 67 * have been canceled and should not be replayed. 68 */ 69 struct xfs_buf_cancel { 70 xfs_daddr_t bc_blkno; 71 uint bc_len; 72 int bc_refcount; 73 struct list_head bc_list; 74 }; 75 76 /* 77 * Sector aligned buffer routines for buffer create/read/write/access 78 */ 79 80 /* 81 * Verify the given count of basic blocks is valid number of blocks 82 * to specify for an operation involving the given XFS log buffer. 83 * Returns nonzero if the count is valid, 0 otherwise. 84 */ 85 86 static inline int 87 xlog_buf_bbcount_valid( 88 struct xlog *log, 89 int bbcount) 90 { 91 return bbcount > 0 && bbcount <= log->l_logBBsize; 92 } 93 94 /* 95 * Allocate a buffer to hold log data. The buffer needs to be able 96 * to map to a range of nbblks basic blocks at any valid (basic 97 * block) offset within the log. 98 */ 99 STATIC xfs_buf_t * 100 xlog_get_bp( 101 struct xlog *log, 102 int nbblks) 103 { 104 struct xfs_buf *bp; 105 106 if (!xlog_buf_bbcount_valid(log, nbblks)) { 107 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 108 nbblks); 109 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 110 return NULL; 111 } 112 113 /* 114 * We do log I/O in units of log sectors (a power-of-2 115 * multiple of the basic block size), so we round up the 116 * requested size to accommodate the basic blocks required 117 * for complete log sectors. 118 * 119 * In addition, the buffer may be used for a non-sector- 120 * aligned block offset, in which case an I/O of the 121 * requested size could extend beyond the end of the 122 * buffer. If the requested size is only 1 basic block it 123 * will never straddle a sector boundary, so this won't be 124 * an issue. Nor will this be a problem if the log I/O is 125 * done in basic blocks (sector size 1). But otherwise we 126 * extend the buffer by one extra log sector to ensure 127 * there's space to accommodate this possibility. 128 */ 129 if (nbblks > 1 && log->l_sectBBsize > 1) 130 nbblks += log->l_sectBBsize; 131 nbblks = round_up(nbblks, log->l_sectBBsize); 132 133 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 134 if (bp) 135 xfs_buf_unlock(bp); 136 return bp; 137 } 138 139 STATIC void 140 xlog_put_bp( 141 xfs_buf_t *bp) 142 { 143 xfs_buf_free(bp); 144 } 145 146 /* 147 * Return the address of the start of the given block number's data 148 * in a log buffer. The buffer covers a log sector-aligned region. 149 */ 150 STATIC xfs_caddr_t 151 xlog_align( 152 struct xlog *log, 153 xfs_daddr_t blk_no, 154 int nbblks, 155 struct xfs_buf *bp) 156 { 157 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 158 159 ASSERT(offset + nbblks <= bp->b_length); 160 return bp->b_addr + BBTOB(offset); 161 } 162 163 164 /* 165 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 166 */ 167 STATIC int 168 xlog_bread_noalign( 169 struct xlog *log, 170 xfs_daddr_t blk_no, 171 int nbblks, 172 struct xfs_buf *bp) 173 { 174 int error; 175 176 if (!xlog_buf_bbcount_valid(log, nbblks)) { 177 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 178 nbblks); 179 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 180 return -EFSCORRUPTED; 181 } 182 183 blk_no = round_down(blk_no, log->l_sectBBsize); 184 nbblks = round_up(nbblks, log->l_sectBBsize); 185 186 ASSERT(nbblks > 0); 187 ASSERT(nbblks <= bp->b_length); 188 189 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 190 XFS_BUF_READ(bp); 191 bp->b_io_length = nbblks; 192 bp->b_error = 0; 193 194 error = xfs_buf_submit_wait(bp); 195 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) 196 xfs_buf_ioerror_alert(bp, __func__); 197 return error; 198 } 199 200 STATIC int 201 xlog_bread( 202 struct xlog *log, 203 xfs_daddr_t blk_no, 204 int nbblks, 205 struct xfs_buf *bp, 206 xfs_caddr_t *offset) 207 { 208 int error; 209 210 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 211 if (error) 212 return error; 213 214 *offset = xlog_align(log, blk_no, nbblks, bp); 215 return 0; 216 } 217 218 /* 219 * Read at an offset into the buffer. Returns with the buffer in it's original 220 * state regardless of the result of the read. 221 */ 222 STATIC int 223 xlog_bread_offset( 224 struct xlog *log, 225 xfs_daddr_t blk_no, /* block to read from */ 226 int nbblks, /* blocks to read */ 227 struct xfs_buf *bp, 228 xfs_caddr_t offset) 229 { 230 xfs_caddr_t orig_offset = bp->b_addr; 231 int orig_len = BBTOB(bp->b_length); 232 int error, error2; 233 234 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 235 if (error) 236 return error; 237 238 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 239 240 /* must reset buffer pointer even on error */ 241 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 242 if (error) 243 return error; 244 return error2; 245 } 246 247 /* 248 * Write out the buffer at the given block for the given number of blocks. 249 * The buffer is kept locked across the write and is returned locked. 250 * This can only be used for synchronous log writes. 251 */ 252 STATIC int 253 xlog_bwrite( 254 struct xlog *log, 255 xfs_daddr_t blk_no, 256 int nbblks, 257 struct xfs_buf *bp) 258 { 259 int error; 260 261 if (!xlog_buf_bbcount_valid(log, nbblks)) { 262 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 263 nbblks); 264 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 265 return -EFSCORRUPTED; 266 } 267 268 blk_no = round_down(blk_no, log->l_sectBBsize); 269 nbblks = round_up(nbblks, log->l_sectBBsize); 270 271 ASSERT(nbblks > 0); 272 ASSERT(nbblks <= bp->b_length); 273 274 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 275 XFS_BUF_ZEROFLAGS(bp); 276 xfs_buf_hold(bp); 277 xfs_buf_lock(bp); 278 bp->b_io_length = nbblks; 279 bp->b_error = 0; 280 281 error = xfs_bwrite(bp); 282 if (error) 283 xfs_buf_ioerror_alert(bp, __func__); 284 xfs_buf_relse(bp); 285 return error; 286 } 287 288 #ifdef DEBUG 289 /* 290 * dump debug superblock and log record information 291 */ 292 STATIC void 293 xlog_header_check_dump( 294 xfs_mount_t *mp, 295 xlog_rec_header_t *head) 296 { 297 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 298 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 299 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 300 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 301 } 302 #else 303 #define xlog_header_check_dump(mp, head) 304 #endif 305 306 /* 307 * check log record header for recovery 308 */ 309 STATIC int 310 xlog_header_check_recover( 311 xfs_mount_t *mp, 312 xlog_rec_header_t *head) 313 { 314 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 315 316 /* 317 * IRIX doesn't write the h_fmt field and leaves it zeroed 318 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 319 * a dirty log created in IRIX. 320 */ 321 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 322 xfs_warn(mp, 323 "dirty log written in incompatible format - can't recover"); 324 xlog_header_check_dump(mp, head); 325 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 326 XFS_ERRLEVEL_HIGH, mp); 327 return -EFSCORRUPTED; 328 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 329 xfs_warn(mp, 330 "dirty log entry has mismatched uuid - can't recover"); 331 xlog_header_check_dump(mp, head); 332 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 333 XFS_ERRLEVEL_HIGH, mp); 334 return -EFSCORRUPTED; 335 } 336 return 0; 337 } 338 339 /* 340 * read the head block of the log and check the header 341 */ 342 STATIC int 343 xlog_header_check_mount( 344 xfs_mount_t *mp, 345 xlog_rec_header_t *head) 346 { 347 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 348 349 if (uuid_is_nil(&head->h_fs_uuid)) { 350 /* 351 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 352 * h_fs_uuid is nil, we assume this log was last mounted 353 * by IRIX and continue. 354 */ 355 xfs_warn(mp, "nil uuid in log - IRIX style log"); 356 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 357 xfs_warn(mp, "log has mismatched uuid - can't recover"); 358 xlog_header_check_dump(mp, head); 359 XFS_ERROR_REPORT("xlog_header_check_mount", 360 XFS_ERRLEVEL_HIGH, mp); 361 return -EFSCORRUPTED; 362 } 363 return 0; 364 } 365 366 STATIC void 367 xlog_recover_iodone( 368 struct xfs_buf *bp) 369 { 370 if (bp->b_error) { 371 /* 372 * We're not going to bother about retrying 373 * this during recovery. One strike! 374 */ 375 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 376 xfs_buf_ioerror_alert(bp, __func__); 377 xfs_force_shutdown(bp->b_target->bt_mount, 378 SHUTDOWN_META_IO_ERROR); 379 } 380 } 381 bp->b_iodone = NULL; 382 xfs_buf_ioend(bp); 383 } 384 385 /* 386 * This routine finds (to an approximation) the first block in the physical 387 * log which contains the given cycle. It uses a binary search algorithm. 388 * Note that the algorithm can not be perfect because the disk will not 389 * necessarily be perfect. 390 */ 391 STATIC int 392 xlog_find_cycle_start( 393 struct xlog *log, 394 struct xfs_buf *bp, 395 xfs_daddr_t first_blk, 396 xfs_daddr_t *last_blk, 397 uint cycle) 398 { 399 xfs_caddr_t offset; 400 xfs_daddr_t mid_blk; 401 xfs_daddr_t end_blk; 402 uint mid_cycle; 403 int error; 404 405 end_blk = *last_blk; 406 mid_blk = BLK_AVG(first_blk, end_blk); 407 while (mid_blk != first_blk && mid_blk != end_blk) { 408 error = xlog_bread(log, mid_blk, 1, bp, &offset); 409 if (error) 410 return error; 411 mid_cycle = xlog_get_cycle(offset); 412 if (mid_cycle == cycle) 413 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 414 else 415 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 416 mid_blk = BLK_AVG(first_blk, end_blk); 417 } 418 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 419 (mid_blk == end_blk && mid_blk-1 == first_blk)); 420 421 *last_blk = end_blk; 422 423 return 0; 424 } 425 426 /* 427 * Check that a range of blocks does not contain stop_on_cycle_no. 428 * Fill in *new_blk with the block offset where such a block is 429 * found, or with -1 (an invalid block number) if there is no such 430 * block in the range. The scan needs to occur from front to back 431 * and the pointer into the region must be updated since a later 432 * routine will need to perform another test. 433 */ 434 STATIC int 435 xlog_find_verify_cycle( 436 struct xlog *log, 437 xfs_daddr_t start_blk, 438 int nbblks, 439 uint stop_on_cycle_no, 440 xfs_daddr_t *new_blk) 441 { 442 xfs_daddr_t i, j; 443 uint cycle; 444 xfs_buf_t *bp; 445 xfs_daddr_t bufblks; 446 xfs_caddr_t buf = NULL; 447 int error = 0; 448 449 /* 450 * Greedily allocate a buffer big enough to handle the full 451 * range of basic blocks we'll be examining. If that fails, 452 * try a smaller size. We need to be able to read at least 453 * a log sector, or we're out of luck. 454 */ 455 bufblks = 1 << ffs(nbblks); 456 while (bufblks > log->l_logBBsize) 457 bufblks >>= 1; 458 while (!(bp = xlog_get_bp(log, bufblks))) { 459 bufblks >>= 1; 460 if (bufblks < log->l_sectBBsize) 461 return -ENOMEM; 462 } 463 464 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 465 int bcount; 466 467 bcount = min(bufblks, (start_blk + nbblks - i)); 468 469 error = xlog_bread(log, i, bcount, bp, &buf); 470 if (error) 471 goto out; 472 473 for (j = 0; j < bcount; j++) { 474 cycle = xlog_get_cycle(buf); 475 if (cycle == stop_on_cycle_no) { 476 *new_blk = i+j; 477 goto out; 478 } 479 480 buf += BBSIZE; 481 } 482 } 483 484 *new_blk = -1; 485 486 out: 487 xlog_put_bp(bp); 488 return error; 489 } 490 491 /* 492 * Potentially backup over partial log record write. 493 * 494 * In the typical case, last_blk is the number of the block directly after 495 * a good log record. Therefore, we subtract one to get the block number 496 * of the last block in the given buffer. extra_bblks contains the number 497 * of blocks we would have read on a previous read. This happens when the 498 * last log record is split over the end of the physical log. 499 * 500 * extra_bblks is the number of blocks potentially verified on a previous 501 * call to this routine. 502 */ 503 STATIC int 504 xlog_find_verify_log_record( 505 struct xlog *log, 506 xfs_daddr_t start_blk, 507 xfs_daddr_t *last_blk, 508 int extra_bblks) 509 { 510 xfs_daddr_t i; 511 xfs_buf_t *bp; 512 xfs_caddr_t offset = NULL; 513 xlog_rec_header_t *head = NULL; 514 int error = 0; 515 int smallmem = 0; 516 int num_blks = *last_blk - start_blk; 517 int xhdrs; 518 519 ASSERT(start_blk != 0 || *last_blk != start_blk); 520 521 if (!(bp = xlog_get_bp(log, num_blks))) { 522 if (!(bp = xlog_get_bp(log, 1))) 523 return -ENOMEM; 524 smallmem = 1; 525 } else { 526 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 527 if (error) 528 goto out; 529 offset += ((num_blks - 1) << BBSHIFT); 530 } 531 532 for (i = (*last_blk) - 1; i >= 0; i--) { 533 if (i < start_blk) { 534 /* valid log record not found */ 535 xfs_warn(log->l_mp, 536 "Log inconsistent (didn't find previous header)"); 537 ASSERT(0); 538 error = -EIO; 539 goto out; 540 } 541 542 if (smallmem) { 543 error = xlog_bread(log, i, 1, bp, &offset); 544 if (error) 545 goto out; 546 } 547 548 head = (xlog_rec_header_t *)offset; 549 550 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 551 break; 552 553 if (!smallmem) 554 offset -= BBSIZE; 555 } 556 557 /* 558 * We hit the beginning of the physical log & still no header. Return 559 * to caller. If caller can handle a return of -1, then this routine 560 * will be called again for the end of the physical log. 561 */ 562 if (i == -1) { 563 error = 1; 564 goto out; 565 } 566 567 /* 568 * We have the final block of the good log (the first block 569 * of the log record _before_ the head. So we check the uuid. 570 */ 571 if ((error = xlog_header_check_mount(log->l_mp, head))) 572 goto out; 573 574 /* 575 * We may have found a log record header before we expected one. 576 * last_blk will be the 1st block # with a given cycle #. We may end 577 * up reading an entire log record. In this case, we don't want to 578 * reset last_blk. Only when last_blk points in the middle of a log 579 * record do we update last_blk. 580 */ 581 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 582 uint h_size = be32_to_cpu(head->h_size); 583 584 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 585 if (h_size % XLOG_HEADER_CYCLE_SIZE) 586 xhdrs++; 587 } else { 588 xhdrs = 1; 589 } 590 591 if (*last_blk - i + extra_bblks != 592 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 593 *last_blk = i; 594 595 out: 596 xlog_put_bp(bp); 597 return error; 598 } 599 600 /* 601 * Head is defined to be the point of the log where the next log write 602 * could go. This means that incomplete LR writes at the end are 603 * eliminated when calculating the head. We aren't guaranteed that previous 604 * LR have complete transactions. We only know that a cycle number of 605 * current cycle number -1 won't be present in the log if we start writing 606 * from our current block number. 607 * 608 * last_blk contains the block number of the first block with a given 609 * cycle number. 610 * 611 * Return: zero if normal, non-zero if error. 612 */ 613 STATIC int 614 xlog_find_head( 615 struct xlog *log, 616 xfs_daddr_t *return_head_blk) 617 { 618 xfs_buf_t *bp; 619 xfs_caddr_t offset; 620 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 621 int num_scan_bblks; 622 uint first_half_cycle, last_half_cycle; 623 uint stop_on_cycle; 624 int error, log_bbnum = log->l_logBBsize; 625 626 /* Is the end of the log device zeroed? */ 627 error = xlog_find_zeroed(log, &first_blk); 628 if (error < 0) { 629 xfs_warn(log->l_mp, "empty log check failed"); 630 return error; 631 } 632 if (error == 1) { 633 *return_head_blk = first_blk; 634 635 /* Is the whole lot zeroed? */ 636 if (!first_blk) { 637 /* Linux XFS shouldn't generate totally zeroed logs - 638 * mkfs etc write a dummy unmount record to a fresh 639 * log so we can store the uuid in there 640 */ 641 xfs_warn(log->l_mp, "totally zeroed log"); 642 } 643 644 return 0; 645 } 646 647 first_blk = 0; /* get cycle # of 1st block */ 648 bp = xlog_get_bp(log, 1); 649 if (!bp) 650 return -ENOMEM; 651 652 error = xlog_bread(log, 0, 1, bp, &offset); 653 if (error) 654 goto bp_err; 655 656 first_half_cycle = xlog_get_cycle(offset); 657 658 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 659 error = xlog_bread(log, last_blk, 1, bp, &offset); 660 if (error) 661 goto bp_err; 662 663 last_half_cycle = xlog_get_cycle(offset); 664 ASSERT(last_half_cycle != 0); 665 666 /* 667 * If the 1st half cycle number is equal to the last half cycle number, 668 * then the entire log is stamped with the same cycle number. In this 669 * case, head_blk can't be set to zero (which makes sense). The below 670 * math doesn't work out properly with head_blk equal to zero. Instead, 671 * we set it to log_bbnum which is an invalid block number, but this 672 * value makes the math correct. If head_blk doesn't changed through 673 * all the tests below, *head_blk is set to zero at the very end rather 674 * than log_bbnum. In a sense, log_bbnum and zero are the same block 675 * in a circular file. 676 */ 677 if (first_half_cycle == last_half_cycle) { 678 /* 679 * In this case we believe that the entire log should have 680 * cycle number last_half_cycle. We need to scan backwards 681 * from the end verifying that there are no holes still 682 * containing last_half_cycle - 1. If we find such a hole, 683 * then the start of that hole will be the new head. The 684 * simple case looks like 685 * x | x ... | x - 1 | x 686 * Another case that fits this picture would be 687 * x | x + 1 | x ... | x 688 * In this case the head really is somewhere at the end of the 689 * log, as one of the latest writes at the beginning was 690 * incomplete. 691 * One more case is 692 * x | x + 1 | x ... | x - 1 | x 693 * This is really the combination of the above two cases, and 694 * the head has to end up at the start of the x-1 hole at the 695 * end of the log. 696 * 697 * In the 256k log case, we will read from the beginning to the 698 * end of the log and search for cycle numbers equal to x-1. 699 * We don't worry about the x+1 blocks that we encounter, 700 * because we know that they cannot be the head since the log 701 * started with x. 702 */ 703 head_blk = log_bbnum; 704 stop_on_cycle = last_half_cycle - 1; 705 } else { 706 /* 707 * In this case we want to find the first block with cycle 708 * number matching last_half_cycle. We expect the log to be 709 * some variation on 710 * x + 1 ... | x ... | x 711 * The first block with cycle number x (last_half_cycle) will 712 * be where the new head belongs. First we do a binary search 713 * for the first occurrence of last_half_cycle. The binary 714 * search may not be totally accurate, so then we scan back 715 * from there looking for occurrences of last_half_cycle before 716 * us. If that backwards scan wraps around the beginning of 717 * the log, then we look for occurrences of last_half_cycle - 1 718 * at the end of the log. The cases we're looking for look 719 * like 720 * v binary search stopped here 721 * x + 1 ... | x | x + 1 | x ... | x 722 * ^ but we want to locate this spot 723 * or 724 * <---------> less than scan distance 725 * x + 1 ... | x ... | x - 1 | x 726 * ^ we want to locate this spot 727 */ 728 stop_on_cycle = last_half_cycle; 729 if ((error = xlog_find_cycle_start(log, bp, first_blk, 730 &head_blk, last_half_cycle))) 731 goto bp_err; 732 } 733 734 /* 735 * Now validate the answer. Scan back some number of maximum possible 736 * blocks and make sure each one has the expected cycle number. The 737 * maximum is determined by the total possible amount of buffering 738 * in the in-core log. The following number can be made tighter if 739 * we actually look at the block size of the filesystem. 740 */ 741 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 742 if (head_blk >= num_scan_bblks) { 743 /* 744 * We are guaranteed that the entire check can be performed 745 * in one buffer. 746 */ 747 start_blk = head_blk - num_scan_bblks; 748 if ((error = xlog_find_verify_cycle(log, 749 start_blk, num_scan_bblks, 750 stop_on_cycle, &new_blk))) 751 goto bp_err; 752 if (new_blk != -1) 753 head_blk = new_blk; 754 } else { /* need to read 2 parts of log */ 755 /* 756 * We are going to scan backwards in the log in two parts. 757 * First we scan the physical end of the log. In this part 758 * of the log, we are looking for blocks with cycle number 759 * last_half_cycle - 1. 760 * If we find one, then we know that the log starts there, as 761 * we've found a hole that didn't get written in going around 762 * the end of the physical log. The simple case for this is 763 * x + 1 ... | x ... | x - 1 | x 764 * <---------> less than scan distance 765 * If all of the blocks at the end of the log have cycle number 766 * last_half_cycle, then we check the blocks at the start of 767 * the log looking for occurrences of last_half_cycle. If we 768 * find one, then our current estimate for the location of the 769 * first occurrence of last_half_cycle is wrong and we move 770 * back to the hole we've found. This case looks like 771 * x + 1 ... | x | x + 1 | x ... 772 * ^ binary search stopped here 773 * Another case we need to handle that only occurs in 256k 774 * logs is 775 * x + 1 ... | x ... | x+1 | x ... 776 * ^ binary search stops here 777 * In a 256k log, the scan at the end of the log will see the 778 * x + 1 blocks. We need to skip past those since that is 779 * certainly not the head of the log. By searching for 780 * last_half_cycle-1 we accomplish that. 781 */ 782 ASSERT(head_blk <= INT_MAX && 783 (xfs_daddr_t) num_scan_bblks >= head_blk); 784 start_blk = log_bbnum - (num_scan_bblks - head_blk); 785 if ((error = xlog_find_verify_cycle(log, start_blk, 786 num_scan_bblks - (int)head_blk, 787 (stop_on_cycle - 1), &new_blk))) 788 goto bp_err; 789 if (new_blk != -1) { 790 head_blk = new_blk; 791 goto validate_head; 792 } 793 794 /* 795 * Scan beginning of log now. The last part of the physical 796 * log is good. This scan needs to verify that it doesn't find 797 * the last_half_cycle. 798 */ 799 start_blk = 0; 800 ASSERT(head_blk <= INT_MAX); 801 if ((error = xlog_find_verify_cycle(log, 802 start_blk, (int)head_blk, 803 stop_on_cycle, &new_blk))) 804 goto bp_err; 805 if (new_blk != -1) 806 head_blk = new_blk; 807 } 808 809 validate_head: 810 /* 811 * Now we need to make sure head_blk is not pointing to a block in 812 * the middle of a log record. 813 */ 814 num_scan_bblks = XLOG_REC_SHIFT(log); 815 if (head_blk >= num_scan_bblks) { 816 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 817 818 /* start ptr at last block ptr before head_blk */ 819 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 820 if (error == 1) 821 error = -EIO; 822 if (error) 823 goto bp_err; 824 } else { 825 start_blk = 0; 826 ASSERT(head_blk <= INT_MAX); 827 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 828 if (error < 0) 829 goto bp_err; 830 if (error == 1) { 831 /* We hit the beginning of the log during our search */ 832 start_blk = log_bbnum - (num_scan_bblks - head_blk); 833 new_blk = log_bbnum; 834 ASSERT(start_blk <= INT_MAX && 835 (xfs_daddr_t) log_bbnum-start_blk >= 0); 836 ASSERT(head_blk <= INT_MAX); 837 error = xlog_find_verify_log_record(log, start_blk, 838 &new_blk, (int)head_blk); 839 if (error == 1) 840 error = -EIO; 841 if (error) 842 goto bp_err; 843 if (new_blk != log_bbnum) 844 head_blk = new_blk; 845 } else if (error) 846 goto bp_err; 847 } 848 849 xlog_put_bp(bp); 850 if (head_blk == log_bbnum) 851 *return_head_blk = 0; 852 else 853 *return_head_blk = head_blk; 854 /* 855 * When returning here, we have a good block number. Bad block 856 * means that during a previous crash, we didn't have a clean break 857 * from cycle number N to cycle number N-1. In this case, we need 858 * to find the first block with cycle number N-1. 859 */ 860 return 0; 861 862 bp_err: 863 xlog_put_bp(bp); 864 865 if (error) 866 xfs_warn(log->l_mp, "failed to find log head"); 867 return error; 868 } 869 870 /* 871 * Find the sync block number or the tail of the log. 872 * 873 * This will be the block number of the last record to have its 874 * associated buffers synced to disk. Every log record header has 875 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 876 * to get a sync block number. The only concern is to figure out which 877 * log record header to believe. 878 * 879 * The following algorithm uses the log record header with the largest 880 * lsn. The entire log record does not need to be valid. We only care 881 * that the header is valid. 882 * 883 * We could speed up search by using current head_blk buffer, but it is not 884 * available. 885 */ 886 STATIC int 887 xlog_find_tail( 888 struct xlog *log, 889 xfs_daddr_t *head_blk, 890 xfs_daddr_t *tail_blk) 891 { 892 xlog_rec_header_t *rhead; 893 xlog_op_header_t *op_head; 894 xfs_caddr_t offset = NULL; 895 xfs_buf_t *bp; 896 int error, i, found; 897 xfs_daddr_t umount_data_blk; 898 xfs_daddr_t after_umount_blk; 899 xfs_lsn_t tail_lsn; 900 int hblks; 901 902 found = 0; 903 904 /* 905 * Find previous log record 906 */ 907 if ((error = xlog_find_head(log, head_blk))) 908 return error; 909 910 bp = xlog_get_bp(log, 1); 911 if (!bp) 912 return -ENOMEM; 913 if (*head_blk == 0) { /* special case */ 914 error = xlog_bread(log, 0, 1, bp, &offset); 915 if (error) 916 goto done; 917 918 if (xlog_get_cycle(offset) == 0) { 919 *tail_blk = 0; 920 /* leave all other log inited values alone */ 921 goto done; 922 } 923 } 924 925 /* 926 * Search backwards looking for log record header block 927 */ 928 ASSERT(*head_blk < INT_MAX); 929 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 930 error = xlog_bread(log, i, 1, bp, &offset); 931 if (error) 932 goto done; 933 934 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 935 found = 1; 936 break; 937 } 938 } 939 /* 940 * If we haven't found the log record header block, start looking 941 * again from the end of the physical log. XXXmiken: There should be 942 * a check here to make sure we didn't search more than N blocks in 943 * the previous code. 944 */ 945 if (!found) { 946 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 947 error = xlog_bread(log, i, 1, bp, &offset); 948 if (error) 949 goto done; 950 951 if (*(__be32 *)offset == 952 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 953 found = 2; 954 break; 955 } 956 } 957 } 958 if (!found) { 959 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 960 xlog_put_bp(bp); 961 ASSERT(0); 962 return -EIO; 963 } 964 965 /* find blk_no of tail of log */ 966 rhead = (xlog_rec_header_t *)offset; 967 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 968 969 /* 970 * Reset log values according to the state of the log when we 971 * crashed. In the case where head_blk == 0, we bump curr_cycle 972 * one because the next write starts a new cycle rather than 973 * continuing the cycle of the last good log record. At this 974 * point we have guaranteed that all partial log records have been 975 * accounted for. Therefore, we know that the last good log record 976 * written was complete and ended exactly on the end boundary 977 * of the physical log. 978 */ 979 log->l_prev_block = i; 980 log->l_curr_block = (int)*head_blk; 981 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 982 if (found == 2) 983 log->l_curr_cycle++; 984 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 985 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 986 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 987 BBTOB(log->l_curr_block)); 988 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 989 BBTOB(log->l_curr_block)); 990 991 /* 992 * Look for unmount record. If we find it, then we know there 993 * was a clean unmount. Since 'i' could be the last block in 994 * the physical log, we convert to a log block before comparing 995 * to the head_blk. 996 * 997 * Save the current tail lsn to use to pass to 998 * xlog_clear_stale_blocks() below. We won't want to clear the 999 * unmount record if there is one, so we pass the lsn of the 1000 * unmount record rather than the block after it. 1001 */ 1002 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1003 int h_size = be32_to_cpu(rhead->h_size); 1004 int h_version = be32_to_cpu(rhead->h_version); 1005 1006 if ((h_version & XLOG_VERSION_2) && 1007 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1008 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1009 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1010 hblks++; 1011 } else { 1012 hblks = 1; 1013 } 1014 } else { 1015 hblks = 1; 1016 } 1017 after_umount_blk = (i + hblks + (int) 1018 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 1019 tail_lsn = atomic64_read(&log->l_tail_lsn); 1020 if (*head_blk == after_umount_blk && 1021 be32_to_cpu(rhead->h_num_logops) == 1) { 1022 umount_data_blk = (i + hblks) % log->l_logBBsize; 1023 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1024 if (error) 1025 goto done; 1026 1027 op_head = (xlog_op_header_t *)offset; 1028 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1029 /* 1030 * Set tail and last sync so that newly written 1031 * log records will point recovery to after the 1032 * current unmount record. 1033 */ 1034 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1035 log->l_curr_cycle, after_umount_blk); 1036 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1037 log->l_curr_cycle, after_umount_blk); 1038 *tail_blk = after_umount_blk; 1039 1040 /* 1041 * Note that the unmount was clean. If the unmount 1042 * was not clean, we need to know this to rebuild the 1043 * superblock counters from the perag headers if we 1044 * have a filesystem using non-persistent counters. 1045 */ 1046 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1047 } 1048 } 1049 1050 /* 1051 * Make sure that there are no blocks in front of the head 1052 * with the same cycle number as the head. This can happen 1053 * because we allow multiple outstanding log writes concurrently, 1054 * and the later writes might make it out before earlier ones. 1055 * 1056 * We use the lsn from before modifying it so that we'll never 1057 * overwrite the unmount record after a clean unmount. 1058 * 1059 * Do this only if we are going to recover the filesystem 1060 * 1061 * NOTE: This used to say "if (!readonly)" 1062 * However on Linux, we can & do recover a read-only filesystem. 1063 * We only skip recovery if NORECOVERY is specified on mount, 1064 * in which case we would not be here. 1065 * 1066 * But... if the -device- itself is readonly, just skip this. 1067 * We can't recover this device anyway, so it won't matter. 1068 */ 1069 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1070 error = xlog_clear_stale_blocks(log, tail_lsn); 1071 1072 done: 1073 xlog_put_bp(bp); 1074 1075 if (error) 1076 xfs_warn(log->l_mp, "failed to locate log tail"); 1077 return error; 1078 } 1079 1080 /* 1081 * Is the log zeroed at all? 1082 * 1083 * The last binary search should be changed to perform an X block read 1084 * once X becomes small enough. You can then search linearly through 1085 * the X blocks. This will cut down on the number of reads we need to do. 1086 * 1087 * If the log is partially zeroed, this routine will pass back the blkno 1088 * of the first block with cycle number 0. It won't have a complete LR 1089 * preceding it. 1090 * 1091 * Return: 1092 * 0 => the log is completely written to 1093 * 1 => use *blk_no as the first block of the log 1094 * <0 => error has occurred 1095 */ 1096 STATIC int 1097 xlog_find_zeroed( 1098 struct xlog *log, 1099 xfs_daddr_t *blk_no) 1100 { 1101 xfs_buf_t *bp; 1102 xfs_caddr_t offset; 1103 uint first_cycle, last_cycle; 1104 xfs_daddr_t new_blk, last_blk, start_blk; 1105 xfs_daddr_t num_scan_bblks; 1106 int error, log_bbnum = log->l_logBBsize; 1107 1108 *blk_no = 0; 1109 1110 /* check totally zeroed log */ 1111 bp = xlog_get_bp(log, 1); 1112 if (!bp) 1113 return -ENOMEM; 1114 error = xlog_bread(log, 0, 1, bp, &offset); 1115 if (error) 1116 goto bp_err; 1117 1118 first_cycle = xlog_get_cycle(offset); 1119 if (first_cycle == 0) { /* completely zeroed log */ 1120 *blk_no = 0; 1121 xlog_put_bp(bp); 1122 return 1; 1123 } 1124 1125 /* check partially zeroed log */ 1126 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1127 if (error) 1128 goto bp_err; 1129 1130 last_cycle = xlog_get_cycle(offset); 1131 if (last_cycle != 0) { /* log completely written to */ 1132 xlog_put_bp(bp); 1133 return 0; 1134 } else if (first_cycle != 1) { 1135 /* 1136 * If the cycle of the last block is zero, the cycle of 1137 * the first block must be 1. If it's not, maybe we're 1138 * not looking at a log... Bail out. 1139 */ 1140 xfs_warn(log->l_mp, 1141 "Log inconsistent or not a log (last==0, first!=1)"); 1142 error = -EINVAL; 1143 goto bp_err; 1144 } 1145 1146 /* we have a partially zeroed log */ 1147 last_blk = log_bbnum-1; 1148 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1149 goto bp_err; 1150 1151 /* 1152 * Validate the answer. Because there is no way to guarantee that 1153 * the entire log is made up of log records which are the same size, 1154 * we scan over the defined maximum blocks. At this point, the maximum 1155 * is not chosen to mean anything special. XXXmiken 1156 */ 1157 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1158 ASSERT(num_scan_bblks <= INT_MAX); 1159 1160 if (last_blk < num_scan_bblks) 1161 num_scan_bblks = last_blk; 1162 start_blk = last_blk - num_scan_bblks; 1163 1164 /* 1165 * We search for any instances of cycle number 0 that occur before 1166 * our current estimate of the head. What we're trying to detect is 1167 * 1 ... | 0 | 1 | 0... 1168 * ^ binary search ends here 1169 */ 1170 if ((error = xlog_find_verify_cycle(log, start_blk, 1171 (int)num_scan_bblks, 0, &new_blk))) 1172 goto bp_err; 1173 if (new_blk != -1) 1174 last_blk = new_blk; 1175 1176 /* 1177 * Potentially backup over partial log record write. We don't need 1178 * to search the end of the log because we know it is zero. 1179 */ 1180 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1181 if (error == 1) 1182 error = -EIO; 1183 if (error) 1184 goto bp_err; 1185 1186 *blk_no = last_blk; 1187 bp_err: 1188 xlog_put_bp(bp); 1189 if (error) 1190 return error; 1191 return 1; 1192 } 1193 1194 /* 1195 * These are simple subroutines used by xlog_clear_stale_blocks() below 1196 * to initialize a buffer full of empty log record headers and write 1197 * them into the log. 1198 */ 1199 STATIC void 1200 xlog_add_record( 1201 struct xlog *log, 1202 xfs_caddr_t buf, 1203 int cycle, 1204 int block, 1205 int tail_cycle, 1206 int tail_block) 1207 { 1208 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1209 1210 memset(buf, 0, BBSIZE); 1211 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1212 recp->h_cycle = cpu_to_be32(cycle); 1213 recp->h_version = cpu_to_be32( 1214 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1215 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1216 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1217 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1218 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1219 } 1220 1221 STATIC int 1222 xlog_write_log_records( 1223 struct xlog *log, 1224 int cycle, 1225 int start_block, 1226 int blocks, 1227 int tail_cycle, 1228 int tail_block) 1229 { 1230 xfs_caddr_t offset; 1231 xfs_buf_t *bp; 1232 int balign, ealign; 1233 int sectbb = log->l_sectBBsize; 1234 int end_block = start_block + blocks; 1235 int bufblks; 1236 int error = 0; 1237 int i, j = 0; 1238 1239 /* 1240 * Greedily allocate a buffer big enough to handle the full 1241 * range of basic blocks to be written. If that fails, try 1242 * a smaller size. We need to be able to write at least a 1243 * log sector, or we're out of luck. 1244 */ 1245 bufblks = 1 << ffs(blocks); 1246 while (bufblks > log->l_logBBsize) 1247 bufblks >>= 1; 1248 while (!(bp = xlog_get_bp(log, bufblks))) { 1249 bufblks >>= 1; 1250 if (bufblks < sectbb) 1251 return -ENOMEM; 1252 } 1253 1254 /* We may need to do a read at the start to fill in part of 1255 * the buffer in the starting sector not covered by the first 1256 * write below. 1257 */ 1258 balign = round_down(start_block, sectbb); 1259 if (balign != start_block) { 1260 error = xlog_bread_noalign(log, start_block, 1, bp); 1261 if (error) 1262 goto out_put_bp; 1263 1264 j = start_block - balign; 1265 } 1266 1267 for (i = start_block; i < end_block; i += bufblks) { 1268 int bcount, endcount; 1269 1270 bcount = min(bufblks, end_block - start_block); 1271 endcount = bcount - j; 1272 1273 /* We may need to do a read at the end to fill in part of 1274 * the buffer in the final sector not covered by the write. 1275 * If this is the same sector as the above read, skip it. 1276 */ 1277 ealign = round_down(end_block, sectbb); 1278 if (j == 0 && (start_block + endcount > ealign)) { 1279 offset = bp->b_addr + BBTOB(ealign - start_block); 1280 error = xlog_bread_offset(log, ealign, sectbb, 1281 bp, offset); 1282 if (error) 1283 break; 1284 1285 } 1286 1287 offset = xlog_align(log, start_block, endcount, bp); 1288 for (; j < endcount; j++) { 1289 xlog_add_record(log, offset, cycle, i+j, 1290 tail_cycle, tail_block); 1291 offset += BBSIZE; 1292 } 1293 error = xlog_bwrite(log, start_block, endcount, bp); 1294 if (error) 1295 break; 1296 start_block += endcount; 1297 j = 0; 1298 } 1299 1300 out_put_bp: 1301 xlog_put_bp(bp); 1302 return error; 1303 } 1304 1305 /* 1306 * This routine is called to blow away any incomplete log writes out 1307 * in front of the log head. We do this so that we won't become confused 1308 * if we come up, write only a little bit more, and then crash again. 1309 * If we leave the partial log records out there, this situation could 1310 * cause us to think those partial writes are valid blocks since they 1311 * have the current cycle number. We get rid of them by overwriting them 1312 * with empty log records with the old cycle number rather than the 1313 * current one. 1314 * 1315 * The tail lsn is passed in rather than taken from 1316 * the log so that we will not write over the unmount record after a 1317 * clean unmount in a 512 block log. Doing so would leave the log without 1318 * any valid log records in it until a new one was written. If we crashed 1319 * during that time we would not be able to recover. 1320 */ 1321 STATIC int 1322 xlog_clear_stale_blocks( 1323 struct xlog *log, 1324 xfs_lsn_t tail_lsn) 1325 { 1326 int tail_cycle, head_cycle; 1327 int tail_block, head_block; 1328 int tail_distance, max_distance; 1329 int distance; 1330 int error; 1331 1332 tail_cycle = CYCLE_LSN(tail_lsn); 1333 tail_block = BLOCK_LSN(tail_lsn); 1334 head_cycle = log->l_curr_cycle; 1335 head_block = log->l_curr_block; 1336 1337 /* 1338 * Figure out the distance between the new head of the log 1339 * and the tail. We want to write over any blocks beyond the 1340 * head that we may have written just before the crash, but 1341 * we don't want to overwrite the tail of the log. 1342 */ 1343 if (head_cycle == tail_cycle) { 1344 /* 1345 * The tail is behind the head in the physical log, 1346 * so the distance from the head to the tail is the 1347 * distance from the head to the end of the log plus 1348 * the distance from the beginning of the log to the 1349 * tail. 1350 */ 1351 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1352 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1353 XFS_ERRLEVEL_LOW, log->l_mp); 1354 return -EFSCORRUPTED; 1355 } 1356 tail_distance = tail_block + (log->l_logBBsize - head_block); 1357 } else { 1358 /* 1359 * The head is behind the tail in the physical log, 1360 * so the distance from the head to the tail is just 1361 * the tail block minus the head block. 1362 */ 1363 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1364 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1365 XFS_ERRLEVEL_LOW, log->l_mp); 1366 return -EFSCORRUPTED; 1367 } 1368 tail_distance = tail_block - head_block; 1369 } 1370 1371 /* 1372 * If the head is right up against the tail, we can't clear 1373 * anything. 1374 */ 1375 if (tail_distance <= 0) { 1376 ASSERT(tail_distance == 0); 1377 return 0; 1378 } 1379 1380 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1381 /* 1382 * Take the smaller of the maximum amount of outstanding I/O 1383 * we could have and the distance to the tail to clear out. 1384 * We take the smaller so that we don't overwrite the tail and 1385 * we don't waste all day writing from the head to the tail 1386 * for no reason. 1387 */ 1388 max_distance = MIN(max_distance, tail_distance); 1389 1390 if ((head_block + max_distance) <= log->l_logBBsize) { 1391 /* 1392 * We can stomp all the blocks we need to without 1393 * wrapping around the end of the log. Just do it 1394 * in a single write. Use the cycle number of the 1395 * current cycle minus one so that the log will look like: 1396 * n ... | n - 1 ... 1397 */ 1398 error = xlog_write_log_records(log, (head_cycle - 1), 1399 head_block, max_distance, tail_cycle, 1400 tail_block); 1401 if (error) 1402 return error; 1403 } else { 1404 /* 1405 * We need to wrap around the end of the physical log in 1406 * order to clear all the blocks. Do it in two separate 1407 * I/Os. The first write should be from the head to the 1408 * end of the physical log, and it should use the current 1409 * cycle number minus one just like above. 1410 */ 1411 distance = log->l_logBBsize - head_block; 1412 error = xlog_write_log_records(log, (head_cycle - 1), 1413 head_block, distance, tail_cycle, 1414 tail_block); 1415 1416 if (error) 1417 return error; 1418 1419 /* 1420 * Now write the blocks at the start of the physical log. 1421 * This writes the remainder of the blocks we want to clear. 1422 * It uses the current cycle number since we're now on the 1423 * same cycle as the head so that we get: 1424 * n ... n ... | n - 1 ... 1425 * ^^^^^ blocks we're writing 1426 */ 1427 distance = max_distance - (log->l_logBBsize - head_block); 1428 error = xlog_write_log_records(log, head_cycle, 0, distance, 1429 tail_cycle, tail_block); 1430 if (error) 1431 return error; 1432 } 1433 1434 return 0; 1435 } 1436 1437 /****************************************************************************** 1438 * 1439 * Log recover routines 1440 * 1441 ****************************************************************************** 1442 */ 1443 1444 /* 1445 * Sort the log items in the transaction. 1446 * 1447 * The ordering constraints are defined by the inode allocation and unlink 1448 * behaviour. The rules are: 1449 * 1450 * 1. Every item is only logged once in a given transaction. Hence it 1451 * represents the last logged state of the item. Hence ordering is 1452 * dependent on the order in which operations need to be performed so 1453 * required initial conditions are always met. 1454 * 1455 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1456 * there's nothing to replay from them so we can simply cull them 1457 * from the transaction. However, we can't do that until after we've 1458 * replayed all the other items because they may be dependent on the 1459 * cancelled buffer and replaying the cancelled buffer can remove it 1460 * form the cancelled buffer table. Hence they have tobe done last. 1461 * 1462 * 3. Inode allocation buffers must be replayed before inode items that 1463 * read the buffer and replay changes into it. For filesystems using the 1464 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1465 * treated the same as inode allocation buffers as they create and 1466 * initialise the buffers directly. 1467 * 1468 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1469 * This ensures that inodes are completely flushed to the inode buffer 1470 * in a "free" state before we remove the unlinked inode list pointer. 1471 * 1472 * Hence the ordering needs to be inode allocation buffers first, inode items 1473 * second, inode unlink buffers third and cancelled buffers last. 1474 * 1475 * But there's a problem with that - we can't tell an inode allocation buffer 1476 * apart from a regular buffer, so we can't separate them. We can, however, 1477 * tell an inode unlink buffer from the others, and so we can separate them out 1478 * from all the other buffers and move them to last. 1479 * 1480 * Hence, 4 lists, in order from head to tail: 1481 * - buffer_list for all buffers except cancelled/inode unlink buffers 1482 * - item_list for all non-buffer items 1483 * - inode_buffer_list for inode unlink buffers 1484 * - cancel_list for the cancelled buffers 1485 * 1486 * Note that we add objects to the tail of the lists so that first-to-last 1487 * ordering is preserved within the lists. Adding objects to the head of the 1488 * list means when we traverse from the head we walk them in last-to-first 1489 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1490 * but for all other items there may be specific ordering that we need to 1491 * preserve. 1492 */ 1493 STATIC int 1494 xlog_recover_reorder_trans( 1495 struct xlog *log, 1496 struct xlog_recover *trans, 1497 int pass) 1498 { 1499 xlog_recover_item_t *item, *n; 1500 int error = 0; 1501 LIST_HEAD(sort_list); 1502 LIST_HEAD(cancel_list); 1503 LIST_HEAD(buffer_list); 1504 LIST_HEAD(inode_buffer_list); 1505 LIST_HEAD(inode_list); 1506 1507 list_splice_init(&trans->r_itemq, &sort_list); 1508 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1509 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1510 1511 switch (ITEM_TYPE(item)) { 1512 case XFS_LI_ICREATE: 1513 list_move_tail(&item->ri_list, &buffer_list); 1514 break; 1515 case XFS_LI_BUF: 1516 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1517 trace_xfs_log_recover_item_reorder_head(log, 1518 trans, item, pass); 1519 list_move(&item->ri_list, &cancel_list); 1520 break; 1521 } 1522 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1523 list_move(&item->ri_list, &inode_buffer_list); 1524 break; 1525 } 1526 list_move_tail(&item->ri_list, &buffer_list); 1527 break; 1528 case XFS_LI_INODE: 1529 case XFS_LI_DQUOT: 1530 case XFS_LI_QUOTAOFF: 1531 case XFS_LI_EFD: 1532 case XFS_LI_EFI: 1533 trace_xfs_log_recover_item_reorder_tail(log, 1534 trans, item, pass); 1535 list_move_tail(&item->ri_list, &inode_list); 1536 break; 1537 default: 1538 xfs_warn(log->l_mp, 1539 "%s: unrecognized type of log operation", 1540 __func__); 1541 ASSERT(0); 1542 /* 1543 * return the remaining items back to the transaction 1544 * item list so they can be freed in caller. 1545 */ 1546 if (!list_empty(&sort_list)) 1547 list_splice_init(&sort_list, &trans->r_itemq); 1548 error = -EIO; 1549 goto out; 1550 } 1551 } 1552 out: 1553 ASSERT(list_empty(&sort_list)); 1554 if (!list_empty(&buffer_list)) 1555 list_splice(&buffer_list, &trans->r_itemq); 1556 if (!list_empty(&inode_list)) 1557 list_splice_tail(&inode_list, &trans->r_itemq); 1558 if (!list_empty(&inode_buffer_list)) 1559 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1560 if (!list_empty(&cancel_list)) 1561 list_splice_tail(&cancel_list, &trans->r_itemq); 1562 return error; 1563 } 1564 1565 /* 1566 * Build up the table of buf cancel records so that we don't replay 1567 * cancelled data in the second pass. For buffer records that are 1568 * not cancel records, there is nothing to do here so we just return. 1569 * 1570 * If we get a cancel record which is already in the table, this indicates 1571 * that the buffer was cancelled multiple times. In order to ensure 1572 * that during pass 2 we keep the record in the table until we reach its 1573 * last occurrence in the log, we keep a reference count in the cancel 1574 * record in the table to tell us how many times we expect to see this 1575 * record during the second pass. 1576 */ 1577 STATIC int 1578 xlog_recover_buffer_pass1( 1579 struct xlog *log, 1580 struct xlog_recover_item *item) 1581 { 1582 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1583 struct list_head *bucket; 1584 struct xfs_buf_cancel *bcp; 1585 1586 /* 1587 * If this isn't a cancel buffer item, then just return. 1588 */ 1589 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1590 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1591 return 0; 1592 } 1593 1594 /* 1595 * Insert an xfs_buf_cancel record into the hash table of them. 1596 * If there is already an identical record, bump its reference count. 1597 */ 1598 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1599 list_for_each_entry(bcp, bucket, bc_list) { 1600 if (bcp->bc_blkno == buf_f->blf_blkno && 1601 bcp->bc_len == buf_f->blf_len) { 1602 bcp->bc_refcount++; 1603 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1604 return 0; 1605 } 1606 } 1607 1608 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 1609 bcp->bc_blkno = buf_f->blf_blkno; 1610 bcp->bc_len = buf_f->blf_len; 1611 bcp->bc_refcount = 1; 1612 list_add_tail(&bcp->bc_list, bucket); 1613 1614 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1615 return 0; 1616 } 1617 1618 /* 1619 * Check to see whether the buffer being recovered has a corresponding 1620 * entry in the buffer cancel record table. If it is, return the cancel 1621 * buffer structure to the caller. 1622 */ 1623 STATIC struct xfs_buf_cancel * 1624 xlog_peek_buffer_cancelled( 1625 struct xlog *log, 1626 xfs_daddr_t blkno, 1627 uint len, 1628 ushort flags) 1629 { 1630 struct list_head *bucket; 1631 struct xfs_buf_cancel *bcp; 1632 1633 if (!log->l_buf_cancel_table) { 1634 /* empty table means no cancelled buffers in the log */ 1635 ASSERT(!(flags & XFS_BLF_CANCEL)); 1636 return NULL; 1637 } 1638 1639 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1640 list_for_each_entry(bcp, bucket, bc_list) { 1641 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1642 return bcp; 1643 } 1644 1645 /* 1646 * We didn't find a corresponding entry in the table, so return 0 so 1647 * that the buffer is NOT cancelled. 1648 */ 1649 ASSERT(!(flags & XFS_BLF_CANCEL)); 1650 return NULL; 1651 } 1652 1653 /* 1654 * If the buffer is being cancelled then return 1 so that it will be cancelled, 1655 * otherwise return 0. If the buffer is actually a buffer cancel item 1656 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 1657 * table and remove it from the table if this is the last reference. 1658 * 1659 * We remove the cancel record from the table when we encounter its last 1660 * occurrence in the log so that if the same buffer is re-used again after its 1661 * last cancellation we actually replay the changes made at that point. 1662 */ 1663 STATIC int 1664 xlog_check_buffer_cancelled( 1665 struct xlog *log, 1666 xfs_daddr_t blkno, 1667 uint len, 1668 ushort flags) 1669 { 1670 struct xfs_buf_cancel *bcp; 1671 1672 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 1673 if (!bcp) 1674 return 0; 1675 1676 /* 1677 * We've go a match, so return 1 so that the recovery of this buffer 1678 * is cancelled. If this buffer is actually a buffer cancel log 1679 * item, then decrement the refcount on the one in the table and 1680 * remove it if this is the last reference. 1681 */ 1682 if (flags & XFS_BLF_CANCEL) { 1683 if (--bcp->bc_refcount == 0) { 1684 list_del(&bcp->bc_list); 1685 kmem_free(bcp); 1686 } 1687 } 1688 return 1; 1689 } 1690 1691 /* 1692 * Perform recovery for a buffer full of inodes. In these buffers, the only 1693 * data which should be recovered is that which corresponds to the 1694 * di_next_unlinked pointers in the on disk inode structures. The rest of the 1695 * data for the inodes is always logged through the inodes themselves rather 1696 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 1697 * 1698 * The only time when buffers full of inodes are fully recovered is when the 1699 * buffer is full of newly allocated inodes. In this case the buffer will 1700 * not be marked as an inode buffer and so will be sent to 1701 * xlog_recover_do_reg_buffer() below during recovery. 1702 */ 1703 STATIC int 1704 xlog_recover_do_inode_buffer( 1705 struct xfs_mount *mp, 1706 xlog_recover_item_t *item, 1707 struct xfs_buf *bp, 1708 xfs_buf_log_format_t *buf_f) 1709 { 1710 int i; 1711 int item_index = 0; 1712 int bit = 0; 1713 int nbits = 0; 1714 int reg_buf_offset = 0; 1715 int reg_buf_bytes = 0; 1716 int next_unlinked_offset; 1717 int inodes_per_buf; 1718 xfs_agino_t *logged_nextp; 1719 xfs_agino_t *buffer_nextp; 1720 1721 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 1722 1723 /* 1724 * Post recovery validation only works properly on CRC enabled 1725 * filesystems. 1726 */ 1727 if (xfs_sb_version_hascrc(&mp->m_sb)) 1728 bp->b_ops = &xfs_inode_buf_ops; 1729 1730 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 1731 for (i = 0; i < inodes_per_buf; i++) { 1732 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1733 offsetof(xfs_dinode_t, di_next_unlinked); 1734 1735 while (next_unlinked_offset >= 1736 (reg_buf_offset + reg_buf_bytes)) { 1737 /* 1738 * The next di_next_unlinked field is beyond 1739 * the current logged region. Find the next 1740 * logged region that contains or is beyond 1741 * the current di_next_unlinked field. 1742 */ 1743 bit += nbits; 1744 bit = xfs_next_bit(buf_f->blf_data_map, 1745 buf_f->blf_map_size, bit); 1746 1747 /* 1748 * If there are no more logged regions in the 1749 * buffer, then we're done. 1750 */ 1751 if (bit == -1) 1752 return 0; 1753 1754 nbits = xfs_contig_bits(buf_f->blf_data_map, 1755 buf_f->blf_map_size, bit); 1756 ASSERT(nbits > 0); 1757 reg_buf_offset = bit << XFS_BLF_SHIFT; 1758 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 1759 item_index++; 1760 } 1761 1762 /* 1763 * If the current logged region starts after the current 1764 * di_next_unlinked field, then move on to the next 1765 * di_next_unlinked field. 1766 */ 1767 if (next_unlinked_offset < reg_buf_offset) 1768 continue; 1769 1770 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1771 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 1772 ASSERT((reg_buf_offset + reg_buf_bytes) <= 1773 BBTOB(bp->b_io_length)); 1774 1775 /* 1776 * The current logged region contains a copy of the 1777 * current di_next_unlinked field. Extract its value 1778 * and copy it to the buffer copy. 1779 */ 1780 logged_nextp = item->ri_buf[item_index].i_addr + 1781 next_unlinked_offset - reg_buf_offset; 1782 if (unlikely(*logged_nextp == 0)) { 1783 xfs_alert(mp, 1784 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 1785 "Trying to replay bad (0) inode di_next_unlinked field.", 1786 item, bp); 1787 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1788 XFS_ERRLEVEL_LOW, mp); 1789 return -EFSCORRUPTED; 1790 } 1791 1792 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1793 next_unlinked_offset); 1794 *buffer_nextp = *logged_nextp; 1795 1796 /* 1797 * If necessary, recalculate the CRC in the on-disk inode. We 1798 * have to leave the inode in a consistent state for whoever 1799 * reads it next.... 1800 */ 1801 xfs_dinode_calc_crc(mp, (struct xfs_dinode *) 1802 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 1803 1804 } 1805 1806 return 0; 1807 } 1808 1809 /* 1810 * V5 filesystems know the age of the buffer on disk being recovered. We can 1811 * have newer objects on disk than we are replaying, and so for these cases we 1812 * don't want to replay the current change as that will make the buffer contents 1813 * temporarily invalid on disk. 1814 * 1815 * The magic number might not match the buffer type we are going to recover 1816 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 1817 * extract the LSN of the existing object in the buffer based on it's current 1818 * magic number. If we don't recognise the magic number in the buffer, then 1819 * return a LSN of -1 so that the caller knows it was an unrecognised block and 1820 * so can recover the buffer. 1821 * 1822 * Note: we cannot rely solely on magic number matches to determine that the 1823 * buffer has a valid LSN - we also need to verify that it belongs to this 1824 * filesystem, so we need to extract the object's LSN and compare it to that 1825 * which we read from the superblock. If the UUIDs don't match, then we've got a 1826 * stale metadata block from an old filesystem instance that we need to recover 1827 * over the top of. 1828 */ 1829 static xfs_lsn_t 1830 xlog_recover_get_buf_lsn( 1831 struct xfs_mount *mp, 1832 struct xfs_buf *bp) 1833 { 1834 __uint32_t magic32; 1835 __uint16_t magic16; 1836 __uint16_t magicda; 1837 void *blk = bp->b_addr; 1838 uuid_t *uuid; 1839 xfs_lsn_t lsn = -1; 1840 1841 /* v4 filesystems always recover immediately */ 1842 if (!xfs_sb_version_hascrc(&mp->m_sb)) 1843 goto recover_immediately; 1844 1845 magic32 = be32_to_cpu(*(__be32 *)blk); 1846 switch (magic32) { 1847 case XFS_ABTB_CRC_MAGIC: 1848 case XFS_ABTC_CRC_MAGIC: 1849 case XFS_ABTB_MAGIC: 1850 case XFS_ABTC_MAGIC: 1851 case XFS_IBT_CRC_MAGIC: 1852 case XFS_IBT_MAGIC: { 1853 struct xfs_btree_block *btb = blk; 1854 1855 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 1856 uuid = &btb->bb_u.s.bb_uuid; 1857 break; 1858 } 1859 case XFS_BMAP_CRC_MAGIC: 1860 case XFS_BMAP_MAGIC: { 1861 struct xfs_btree_block *btb = blk; 1862 1863 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 1864 uuid = &btb->bb_u.l.bb_uuid; 1865 break; 1866 } 1867 case XFS_AGF_MAGIC: 1868 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 1869 uuid = &((struct xfs_agf *)blk)->agf_uuid; 1870 break; 1871 case XFS_AGFL_MAGIC: 1872 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 1873 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 1874 break; 1875 case XFS_AGI_MAGIC: 1876 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 1877 uuid = &((struct xfs_agi *)blk)->agi_uuid; 1878 break; 1879 case XFS_SYMLINK_MAGIC: 1880 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 1881 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 1882 break; 1883 case XFS_DIR3_BLOCK_MAGIC: 1884 case XFS_DIR3_DATA_MAGIC: 1885 case XFS_DIR3_FREE_MAGIC: 1886 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 1887 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 1888 break; 1889 case XFS_ATTR3_RMT_MAGIC: 1890 lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn); 1891 uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid; 1892 break; 1893 case XFS_SB_MAGIC: 1894 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 1895 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 1896 break; 1897 default: 1898 break; 1899 } 1900 1901 if (lsn != (xfs_lsn_t)-1) { 1902 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 1903 goto recover_immediately; 1904 return lsn; 1905 } 1906 1907 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 1908 switch (magicda) { 1909 case XFS_DIR3_LEAF1_MAGIC: 1910 case XFS_DIR3_LEAFN_MAGIC: 1911 case XFS_DA3_NODE_MAGIC: 1912 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 1913 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 1914 break; 1915 default: 1916 break; 1917 } 1918 1919 if (lsn != (xfs_lsn_t)-1) { 1920 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 1921 goto recover_immediately; 1922 return lsn; 1923 } 1924 1925 /* 1926 * We do individual object checks on dquot and inode buffers as they 1927 * have their own individual LSN records. Also, we could have a stale 1928 * buffer here, so we have to at least recognise these buffer types. 1929 * 1930 * A notd complexity here is inode unlinked list processing - it logs 1931 * the inode directly in the buffer, but we don't know which inodes have 1932 * been modified, and there is no global buffer LSN. Hence we need to 1933 * recover all inode buffer types immediately. This problem will be 1934 * fixed by logical logging of the unlinked list modifications. 1935 */ 1936 magic16 = be16_to_cpu(*(__be16 *)blk); 1937 switch (magic16) { 1938 case XFS_DQUOT_MAGIC: 1939 case XFS_DINODE_MAGIC: 1940 goto recover_immediately; 1941 default: 1942 break; 1943 } 1944 1945 /* unknown buffer contents, recover immediately */ 1946 1947 recover_immediately: 1948 return (xfs_lsn_t)-1; 1949 1950 } 1951 1952 /* 1953 * Validate the recovered buffer is of the correct type and attach the 1954 * appropriate buffer operations to them for writeback. Magic numbers are in a 1955 * few places: 1956 * the first 16 bits of the buffer (inode buffer, dquot buffer), 1957 * the first 32 bits of the buffer (most blocks), 1958 * inside a struct xfs_da_blkinfo at the start of the buffer. 1959 */ 1960 static void 1961 xlog_recover_validate_buf_type( 1962 struct xfs_mount *mp, 1963 struct xfs_buf *bp, 1964 xfs_buf_log_format_t *buf_f) 1965 { 1966 struct xfs_da_blkinfo *info = bp->b_addr; 1967 __uint32_t magic32; 1968 __uint16_t magic16; 1969 __uint16_t magicda; 1970 1971 /* 1972 * We can only do post recovery validation on items on CRC enabled 1973 * fielsystems as we need to know when the buffer was written to be able 1974 * to determine if we should have replayed the item. If we replay old 1975 * metadata over a newer buffer, then it will enter a temporarily 1976 * inconsistent state resulting in verification failures. Hence for now 1977 * just avoid the verification stage for non-crc filesystems 1978 */ 1979 if (!xfs_sb_version_hascrc(&mp->m_sb)) 1980 return; 1981 1982 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 1983 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 1984 magicda = be16_to_cpu(info->magic); 1985 switch (xfs_blft_from_flags(buf_f)) { 1986 case XFS_BLFT_BTREE_BUF: 1987 switch (magic32) { 1988 case XFS_ABTB_CRC_MAGIC: 1989 case XFS_ABTC_CRC_MAGIC: 1990 case XFS_ABTB_MAGIC: 1991 case XFS_ABTC_MAGIC: 1992 bp->b_ops = &xfs_allocbt_buf_ops; 1993 break; 1994 case XFS_IBT_CRC_MAGIC: 1995 case XFS_FIBT_CRC_MAGIC: 1996 case XFS_IBT_MAGIC: 1997 case XFS_FIBT_MAGIC: 1998 bp->b_ops = &xfs_inobt_buf_ops; 1999 break; 2000 case XFS_BMAP_CRC_MAGIC: 2001 case XFS_BMAP_MAGIC: 2002 bp->b_ops = &xfs_bmbt_buf_ops; 2003 break; 2004 default: 2005 xfs_warn(mp, "Bad btree block magic!"); 2006 ASSERT(0); 2007 break; 2008 } 2009 break; 2010 case XFS_BLFT_AGF_BUF: 2011 if (magic32 != XFS_AGF_MAGIC) { 2012 xfs_warn(mp, "Bad AGF block magic!"); 2013 ASSERT(0); 2014 break; 2015 } 2016 bp->b_ops = &xfs_agf_buf_ops; 2017 break; 2018 case XFS_BLFT_AGFL_BUF: 2019 if (magic32 != XFS_AGFL_MAGIC) { 2020 xfs_warn(mp, "Bad AGFL block magic!"); 2021 ASSERT(0); 2022 break; 2023 } 2024 bp->b_ops = &xfs_agfl_buf_ops; 2025 break; 2026 case XFS_BLFT_AGI_BUF: 2027 if (magic32 != XFS_AGI_MAGIC) { 2028 xfs_warn(mp, "Bad AGI block magic!"); 2029 ASSERT(0); 2030 break; 2031 } 2032 bp->b_ops = &xfs_agi_buf_ops; 2033 break; 2034 case XFS_BLFT_UDQUOT_BUF: 2035 case XFS_BLFT_PDQUOT_BUF: 2036 case XFS_BLFT_GDQUOT_BUF: 2037 #ifdef CONFIG_XFS_QUOTA 2038 if (magic16 != XFS_DQUOT_MAGIC) { 2039 xfs_warn(mp, "Bad DQUOT block magic!"); 2040 ASSERT(0); 2041 break; 2042 } 2043 bp->b_ops = &xfs_dquot_buf_ops; 2044 #else 2045 xfs_alert(mp, 2046 "Trying to recover dquots without QUOTA support built in!"); 2047 ASSERT(0); 2048 #endif 2049 break; 2050 case XFS_BLFT_DINO_BUF: 2051 if (magic16 != XFS_DINODE_MAGIC) { 2052 xfs_warn(mp, "Bad INODE block magic!"); 2053 ASSERT(0); 2054 break; 2055 } 2056 bp->b_ops = &xfs_inode_buf_ops; 2057 break; 2058 case XFS_BLFT_SYMLINK_BUF: 2059 if (magic32 != XFS_SYMLINK_MAGIC) { 2060 xfs_warn(mp, "Bad symlink block magic!"); 2061 ASSERT(0); 2062 break; 2063 } 2064 bp->b_ops = &xfs_symlink_buf_ops; 2065 break; 2066 case XFS_BLFT_DIR_BLOCK_BUF: 2067 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2068 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2069 xfs_warn(mp, "Bad dir block magic!"); 2070 ASSERT(0); 2071 break; 2072 } 2073 bp->b_ops = &xfs_dir3_block_buf_ops; 2074 break; 2075 case XFS_BLFT_DIR_DATA_BUF: 2076 if (magic32 != XFS_DIR2_DATA_MAGIC && 2077 magic32 != XFS_DIR3_DATA_MAGIC) { 2078 xfs_warn(mp, "Bad dir data magic!"); 2079 ASSERT(0); 2080 break; 2081 } 2082 bp->b_ops = &xfs_dir3_data_buf_ops; 2083 break; 2084 case XFS_BLFT_DIR_FREE_BUF: 2085 if (magic32 != XFS_DIR2_FREE_MAGIC && 2086 magic32 != XFS_DIR3_FREE_MAGIC) { 2087 xfs_warn(mp, "Bad dir3 free magic!"); 2088 ASSERT(0); 2089 break; 2090 } 2091 bp->b_ops = &xfs_dir3_free_buf_ops; 2092 break; 2093 case XFS_BLFT_DIR_LEAF1_BUF: 2094 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2095 magicda != XFS_DIR3_LEAF1_MAGIC) { 2096 xfs_warn(mp, "Bad dir leaf1 magic!"); 2097 ASSERT(0); 2098 break; 2099 } 2100 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2101 break; 2102 case XFS_BLFT_DIR_LEAFN_BUF: 2103 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2104 magicda != XFS_DIR3_LEAFN_MAGIC) { 2105 xfs_warn(mp, "Bad dir leafn magic!"); 2106 ASSERT(0); 2107 break; 2108 } 2109 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2110 break; 2111 case XFS_BLFT_DA_NODE_BUF: 2112 if (magicda != XFS_DA_NODE_MAGIC && 2113 magicda != XFS_DA3_NODE_MAGIC) { 2114 xfs_warn(mp, "Bad da node magic!"); 2115 ASSERT(0); 2116 break; 2117 } 2118 bp->b_ops = &xfs_da3_node_buf_ops; 2119 break; 2120 case XFS_BLFT_ATTR_LEAF_BUF: 2121 if (magicda != XFS_ATTR_LEAF_MAGIC && 2122 magicda != XFS_ATTR3_LEAF_MAGIC) { 2123 xfs_warn(mp, "Bad attr leaf magic!"); 2124 ASSERT(0); 2125 break; 2126 } 2127 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2128 break; 2129 case XFS_BLFT_ATTR_RMT_BUF: 2130 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2131 xfs_warn(mp, "Bad attr remote magic!"); 2132 ASSERT(0); 2133 break; 2134 } 2135 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2136 break; 2137 case XFS_BLFT_SB_BUF: 2138 if (magic32 != XFS_SB_MAGIC) { 2139 xfs_warn(mp, "Bad SB block magic!"); 2140 ASSERT(0); 2141 break; 2142 } 2143 bp->b_ops = &xfs_sb_buf_ops; 2144 break; 2145 default: 2146 xfs_warn(mp, "Unknown buffer type %d!", 2147 xfs_blft_from_flags(buf_f)); 2148 break; 2149 } 2150 } 2151 2152 /* 2153 * Perform a 'normal' buffer recovery. Each logged region of the 2154 * buffer should be copied over the corresponding region in the 2155 * given buffer. The bitmap in the buf log format structure indicates 2156 * where to place the logged data. 2157 */ 2158 STATIC void 2159 xlog_recover_do_reg_buffer( 2160 struct xfs_mount *mp, 2161 xlog_recover_item_t *item, 2162 struct xfs_buf *bp, 2163 xfs_buf_log_format_t *buf_f) 2164 { 2165 int i; 2166 int bit; 2167 int nbits; 2168 int error; 2169 2170 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2171 2172 bit = 0; 2173 i = 1; /* 0 is the buf format structure */ 2174 while (1) { 2175 bit = xfs_next_bit(buf_f->blf_data_map, 2176 buf_f->blf_map_size, bit); 2177 if (bit == -1) 2178 break; 2179 nbits = xfs_contig_bits(buf_f->blf_data_map, 2180 buf_f->blf_map_size, bit); 2181 ASSERT(nbits > 0); 2182 ASSERT(item->ri_buf[i].i_addr != NULL); 2183 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2184 ASSERT(BBTOB(bp->b_io_length) >= 2185 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2186 2187 /* 2188 * The dirty regions logged in the buffer, even though 2189 * contiguous, may span multiple chunks. This is because the 2190 * dirty region may span a physical page boundary in a buffer 2191 * and hence be split into two separate vectors for writing into 2192 * the log. Hence we need to trim nbits back to the length of 2193 * the current region being copied out of the log. 2194 */ 2195 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2196 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2197 2198 /* 2199 * Do a sanity check if this is a dquot buffer. Just checking 2200 * the first dquot in the buffer should do. XXXThis is 2201 * probably a good thing to do for other buf types also. 2202 */ 2203 error = 0; 2204 if (buf_f->blf_flags & 2205 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2206 if (item->ri_buf[i].i_addr == NULL) { 2207 xfs_alert(mp, 2208 "XFS: NULL dquot in %s.", __func__); 2209 goto next; 2210 } 2211 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2212 xfs_alert(mp, 2213 "XFS: dquot too small (%d) in %s.", 2214 item->ri_buf[i].i_len, __func__); 2215 goto next; 2216 } 2217 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr, 2218 -1, 0, XFS_QMOPT_DOWARN, 2219 "dquot_buf_recover"); 2220 if (error) 2221 goto next; 2222 } 2223 2224 memcpy(xfs_buf_offset(bp, 2225 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2226 item->ri_buf[i].i_addr, /* source */ 2227 nbits<<XFS_BLF_SHIFT); /* length */ 2228 next: 2229 i++; 2230 bit += nbits; 2231 } 2232 2233 /* Shouldn't be any more regions */ 2234 ASSERT(i == item->ri_total); 2235 2236 xlog_recover_validate_buf_type(mp, bp, buf_f); 2237 } 2238 2239 /* 2240 * Perform a dquot buffer recovery. 2241 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2242 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2243 * Else, treat it as a regular buffer and do recovery. 2244 * 2245 * Return false if the buffer was tossed and true if we recovered the buffer to 2246 * indicate to the caller if the buffer needs writing. 2247 */ 2248 STATIC bool 2249 xlog_recover_do_dquot_buffer( 2250 struct xfs_mount *mp, 2251 struct xlog *log, 2252 struct xlog_recover_item *item, 2253 struct xfs_buf *bp, 2254 struct xfs_buf_log_format *buf_f) 2255 { 2256 uint type; 2257 2258 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2259 2260 /* 2261 * Filesystems are required to send in quota flags at mount time. 2262 */ 2263 if (!mp->m_qflags) 2264 return false; 2265 2266 type = 0; 2267 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2268 type |= XFS_DQ_USER; 2269 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2270 type |= XFS_DQ_PROJ; 2271 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2272 type |= XFS_DQ_GROUP; 2273 /* 2274 * This type of quotas was turned off, so ignore this buffer 2275 */ 2276 if (log->l_quotaoffs_flag & type) 2277 return false; 2278 2279 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2280 return true; 2281 } 2282 2283 /* 2284 * This routine replays a modification made to a buffer at runtime. 2285 * There are actually two types of buffer, regular and inode, which 2286 * are handled differently. Inode buffers are handled differently 2287 * in that we only recover a specific set of data from them, namely 2288 * the inode di_next_unlinked fields. This is because all other inode 2289 * data is actually logged via inode records and any data we replay 2290 * here which overlaps that may be stale. 2291 * 2292 * When meta-data buffers are freed at run time we log a buffer item 2293 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2294 * of the buffer in the log should not be replayed at recovery time. 2295 * This is so that if the blocks covered by the buffer are reused for 2296 * file data before we crash we don't end up replaying old, freed 2297 * meta-data into a user's file. 2298 * 2299 * To handle the cancellation of buffer log items, we make two passes 2300 * over the log during recovery. During the first we build a table of 2301 * those buffers which have been cancelled, and during the second we 2302 * only replay those buffers which do not have corresponding cancel 2303 * records in the table. See xlog_recover_buffer_pass[1,2] above 2304 * for more details on the implementation of the table of cancel records. 2305 */ 2306 STATIC int 2307 xlog_recover_buffer_pass2( 2308 struct xlog *log, 2309 struct list_head *buffer_list, 2310 struct xlog_recover_item *item, 2311 xfs_lsn_t current_lsn) 2312 { 2313 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2314 xfs_mount_t *mp = log->l_mp; 2315 xfs_buf_t *bp; 2316 int error; 2317 uint buf_flags; 2318 xfs_lsn_t lsn; 2319 2320 /* 2321 * In this pass we only want to recover all the buffers which have 2322 * not been cancelled and are not cancellation buffers themselves. 2323 */ 2324 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2325 buf_f->blf_len, buf_f->blf_flags)) { 2326 trace_xfs_log_recover_buf_cancel(log, buf_f); 2327 return 0; 2328 } 2329 2330 trace_xfs_log_recover_buf_recover(log, buf_f); 2331 2332 buf_flags = 0; 2333 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2334 buf_flags |= XBF_UNMAPPED; 2335 2336 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2337 buf_flags, NULL); 2338 if (!bp) 2339 return -ENOMEM; 2340 error = bp->b_error; 2341 if (error) { 2342 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2343 goto out_release; 2344 } 2345 2346 /* 2347 * Recover the buffer only if we get an LSN from it and it's less than 2348 * the lsn of the transaction we are replaying. 2349 * 2350 * Note that we have to be extremely careful of readahead here. 2351 * Readahead does not attach verfiers to the buffers so if we don't 2352 * actually do any replay after readahead because of the LSN we found 2353 * in the buffer if more recent than that current transaction then we 2354 * need to attach the verifier directly. Failure to do so can lead to 2355 * future recovery actions (e.g. EFI and unlinked list recovery) can 2356 * operate on the buffers and they won't get the verifier attached. This 2357 * can lead to blocks on disk having the correct content but a stale 2358 * CRC. 2359 * 2360 * It is safe to assume these clean buffers are currently up to date. 2361 * If the buffer is dirtied by a later transaction being replayed, then 2362 * the verifier will be reset to match whatever recover turns that 2363 * buffer into. 2364 */ 2365 lsn = xlog_recover_get_buf_lsn(mp, bp); 2366 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2367 xlog_recover_validate_buf_type(mp, bp, buf_f); 2368 goto out_release; 2369 } 2370 2371 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2372 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2373 if (error) 2374 goto out_release; 2375 } else if (buf_f->blf_flags & 2376 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2377 bool dirty; 2378 2379 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2380 if (!dirty) 2381 goto out_release; 2382 } else { 2383 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2384 } 2385 2386 /* 2387 * Perform delayed write on the buffer. Asynchronous writes will be 2388 * slower when taking into account all the buffers to be flushed. 2389 * 2390 * Also make sure that only inode buffers with good sizes stay in 2391 * the buffer cache. The kernel moves inodes in buffers of 1 block 2392 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode 2393 * buffers in the log can be a different size if the log was generated 2394 * by an older kernel using unclustered inode buffers or a newer kernel 2395 * running with a different inode cluster size. Regardless, if the 2396 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size) 2397 * for *our* value of mp->m_inode_cluster_size, then we need to keep 2398 * the buffer out of the buffer cache so that the buffer won't 2399 * overlap with future reads of those inodes. 2400 */ 2401 if (XFS_DINODE_MAGIC == 2402 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2403 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2404 (__uint32_t)log->l_mp->m_inode_cluster_size))) { 2405 xfs_buf_stale(bp); 2406 error = xfs_bwrite(bp); 2407 } else { 2408 ASSERT(bp->b_target->bt_mount == mp); 2409 bp->b_iodone = xlog_recover_iodone; 2410 xfs_buf_delwri_queue(bp, buffer_list); 2411 } 2412 2413 out_release: 2414 xfs_buf_relse(bp); 2415 return error; 2416 } 2417 2418 /* 2419 * Inode fork owner changes 2420 * 2421 * If we have been told that we have to reparent the inode fork, it's because an 2422 * extent swap operation on a CRC enabled filesystem has been done and we are 2423 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2424 * owners of it. 2425 * 2426 * The complexity here is that we don't have an inode context to work with, so 2427 * after we've replayed the inode we need to instantiate one. This is where the 2428 * fun begins. 2429 * 2430 * We are in the middle of log recovery, so we can't run transactions. That 2431 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2432 * that will result in the corresponding iput() running the inode through 2433 * xfs_inactive(). If we've just replayed an inode core that changes the link 2434 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2435 * transactions (bad!). 2436 * 2437 * So, to avoid this, we instantiate an inode directly from the inode core we've 2438 * just recovered. We have the buffer still locked, and all we really need to 2439 * instantiate is the inode core and the forks being modified. We can do this 2440 * manually, then run the inode btree owner change, and then tear down the 2441 * xfs_inode without having to run any transactions at all. 2442 * 2443 * Also, because we don't have a transaction context available here but need to 2444 * gather all the buffers we modify for writeback so we pass the buffer_list 2445 * instead for the operation to use. 2446 */ 2447 2448 STATIC int 2449 xfs_recover_inode_owner_change( 2450 struct xfs_mount *mp, 2451 struct xfs_dinode *dip, 2452 struct xfs_inode_log_format *in_f, 2453 struct list_head *buffer_list) 2454 { 2455 struct xfs_inode *ip; 2456 int error; 2457 2458 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2459 2460 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2461 if (!ip) 2462 return -ENOMEM; 2463 2464 /* instantiate the inode */ 2465 xfs_dinode_from_disk(&ip->i_d, dip); 2466 ASSERT(ip->i_d.di_version >= 3); 2467 2468 error = xfs_iformat_fork(ip, dip); 2469 if (error) 2470 goto out_free_ip; 2471 2472 2473 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2474 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2475 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2476 ip->i_ino, buffer_list); 2477 if (error) 2478 goto out_free_ip; 2479 } 2480 2481 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2482 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2483 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2484 ip->i_ino, buffer_list); 2485 if (error) 2486 goto out_free_ip; 2487 } 2488 2489 out_free_ip: 2490 xfs_inode_free(ip); 2491 return error; 2492 } 2493 2494 STATIC int 2495 xlog_recover_inode_pass2( 2496 struct xlog *log, 2497 struct list_head *buffer_list, 2498 struct xlog_recover_item *item, 2499 xfs_lsn_t current_lsn) 2500 { 2501 xfs_inode_log_format_t *in_f; 2502 xfs_mount_t *mp = log->l_mp; 2503 xfs_buf_t *bp; 2504 xfs_dinode_t *dip; 2505 int len; 2506 xfs_caddr_t src; 2507 xfs_caddr_t dest; 2508 int error; 2509 int attr_index; 2510 uint fields; 2511 xfs_icdinode_t *dicp; 2512 uint isize; 2513 int need_free = 0; 2514 2515 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2516 in_f = item->ri_buf[0].i_addr; 2517 } else { 2518 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2519 need_free = 1; 2520 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2521 if (error) 2522 goto error; 2523 } 2524 2525 /* 2526 * Inode buffers can be freed, look out for it, 2527 * and do not replay the inode. 2528 */ 2529 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2530 in_f->ilf_len, 0)) { 2531 error = 0; 2532 trace_xfs_log_recover_inode_cancel(log, in_f); 2533 goto error; 2534 } 2535 trace_xfs_log_recover_inode_recover(log, in_f); 2536 2537 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 2538 &xfs_inode_buf_ops); 2539 if (!bp) { 2540 error = -ENOMEM; 2541 goto error; 2542 } 2543 error = bp->b_error; 2544 if (error) { 2545 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2546 goto out_release; 2547 } 2548 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2549 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2550 2551 /* 2552 * Make sure the place we're flushing out to really looks 2553 * like an inode! 2554 */ 2555 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 2556 xfs_alert(mp, 2557 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 2558 __func__, dip, bp, in_f->ilf_ino); 2559 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2560 XFS_ERRLEVEL_LOW, mp); 2561 error = -EFSCORRUPTED; 2562 goto out_release; 2563 } 2564 dicp = item->ri_buf[1].i_addr; 2565 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2566 xfs_alert(mp, 2567 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 2568 __func__, item, in_f->ilf_ino); 2569 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2570 XFS_ERRLEVEL_LOW, mp); 2571 error = -EFSCORRUPTED; 2572 goto out_release; 2573 } 2574 2575 /* 2576 * If the inode has an LSN in it, recover the inode only if it's less 2577 * than the lsn of the transaction we are replaying. Note: we still 2578 * need to replay an owner change even though the inode is more recent 2579 * than the transaction as there is no guarantee that all the btree 2580 * blocks are more recent than this transaction, too. 2581 */ 2582 if (dip->di_version >= 3) { 2583 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 2584 2585 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2586 trace_xfs_log_recover_inode_skip(log, in_f); 2587 error = 0; 2588 goto out_owner_change; 2589 } 2590 } 2591 2592 /* 2593 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 2594 * are transactional and if ordering is necessary we can determine that 2595 * more accurately by the LSN field in the V3 inode core. Don't trust 2596 * the inode versions we might be changing them here - use the 2597 * superblock flag to determine whether we need to look at di_flushiter 2598 * to skip replay when the on disk inode is newer than the log one 2599 */ 2600 if (!xfs_sb_version_hascrc(&mp->m_sb) && 2601 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2602 /* 2603 * Deal with the wrap case, DI_MAX_FLUSH is less 2604 * than smaller numbers 2605 */ 2606 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2607 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2608 /* do nothing */ 2609 } else { 2610 trace_xfs_log_recover_inode_skip(log, in_f); 2611 error = 0; 2612 goto out_release; 2613 } 2614 } 2615 2616 /* Take the opportunity to reset the flush iteration count */ 2617 dicp->di_flushiter = 0; 2618 2619 if (unlikely(S_ISREG(dicp->di_mode))) { 2620 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2621 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2622 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 2623 XFS_ERRLEVEL_LOW, mp, dicp); 2624 xfs_alert(mp, 2625 "%s: Bad regular inode log record, rec ptr 0x%p, " 2626 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2627 __func__, item, dip, bp, in_f->ilf_ino); 2628 error = -EFSCORRUPTED; 2629 goto out_release; 2630 } 2631 } else if (unlikely(S_ISDIR(dicp->di_mode))) { 2632 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2633 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2634 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2635 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 2636 XFS_ERRLEVEL_LOW, mp, dicp); 2637 xfs_alert(mp, 2638 "%s: Bad dir inode log record, rec ptr 0x%p, " 2639 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2640 __func__, item, dip, bp, in_f->ilf_ino); 2641 error = -EFSCORRUPTED; 2642 goto out_release; 2643 } 2644 } 2645 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2646 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 2647 XFS_ERRLEVEL_LOW, mp, dicp); 2648 xfs_alert(mp, 2649 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2650 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2651 __func__, item, dip, bp, in_f->ilf_ino, 2652 dicp->di_nextents + dicp->di_anextents, 2653 dicp->di_nblocks); 2654 error = -EFSCORRUPTED; 2655 goto out_release; 2656 } 2657 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2658 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 2659 XFS_ERRLEVEL_LOW, mp, dicp); 2660 xfs_alert(mp, 2661 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2662 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 2663 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff); 2664 error = -EFSCORRUPTED; 2665 goto out_release; 2666 } 2667 isize = xfs_icdinode_size(dicp->di_version); 2668 if (unlikely(item->ri_buf[1].i_len > isize)) { 2669 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 2670 XFS_ERRLEVEL_LOW, mp, dicp); 2671 xfs_alert(mp, 2672 "%s: Bad inode log record length %d, rec ptr 0x%p", 2673 __func__, item->ri_buf[1].i_len, item); 2674 error = -EFSCORRUPTED; 2675 goto out_release; 2676 } 2677 2678 /* The core is in in-core format */ 2679 xfs_dinode_to_disk(dip, dicp); 2680 2681 /* the rest is in on-disk format */ 2682 if (item->ri_buf[1].i_len > isize) { 2683 memcpy((char *)dip + isize, 2684 item->ri_buf[1].i_addr + isize, 2685 item->ri_buf[1].i_len - isize); 2686 } 2687 2688 fields = in_f->ilf_fields; 2689 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2690 case XFS_ILOG_DEV: 2691 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2692 break; 2693 case XFS_ILOG_UUID: 2694 memcpy(XFS_DFORK_DPTR(dip), 2695 &in_f->ilf_u.ilfu_uuid, 2696 sizeof(uuid_t)); 2697 break; 2698 } 2699 2700 if (in_f->ilf_size == 2) 2701 goto out_owner_change; 2702 len = item->ri_buf[2].i_len; 2703 src = item->ri_buf[2].i_addr; 2704 ASSERT(in_f->ilf_size <= 4); 2705 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2706 ASSERT(!(fields & XFS_ILOG_DFORK) || 2707 (len == in_f->ilf_dsize)); 2708 2709 switch (fields & XFS_ILOG_DFORK) { 2710 case XFS_ILOG_DDATA: 2711 case XFS_ILOG_DEXT: 2712 memcpy(XFS_DFORK_DPTR(dip), src, len); 2713 break; 2714 2715 case XFS_ILOG_DBROOT: 2716 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2717 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2718 XFS_DFORK_DSIZE(dip, mp)); 2719 break; 2720 2721 default: 2722 /* 2723 * There are no data fork flags set. 2724 */ 2725 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2726 break; 2727 } 2728 2729 /* 2730 * If we logged any attribute data, recover it. There may or 2731 * may not have been any other non-core data logged in this 2732 * transaction. 2733 */ 2734 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2735 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2736 attr_index = 3; 2737 } else { 2738 attr_index = 2; 2739 } 2740 len = item->ri_buf[attr_index].i_len; 2741 src = item->ri_buf[attr_index].i_addr; 2742 ASSERT(len == in_f->ilf_asize); 2743 2744 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2745 case XFS_ILOG_ADATA: 2746 case XFS_ILOG_AEXT: 2747 dest = XFS_DFORK_APTR(dip); 2748 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2749 memcpy(dest, src, len); 2750 break; 2751 2752 case XFS_ILOG_ABROOT: 2753 dest = XFS_DFORK_APTR(dip); 2754 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2755 len, (xfs_bmdr_block_t*)dest, 2756 XFS_DFORK_ASIZE(dip, mp)); 2757 break; 2758 2759 default: 2760 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 2761 ASSERT(0); 2762 error = -EIO; 2763 goto out_release; 2764 } 2765 } 2766 2767 out_owner_change: 2768 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) 2769 error = xfs_recover_inode_owner_change(mp, dip, in_f, 2770 buffer_list); 2771 /* re-generate the checksum. */ 2772 xfs_dinode_calc_crc(log->l_mp, dip); 2773 2774 ASSERT(bp->b_target->bt_mount == mp); 2775 bp->b_iodone = xlog_recover_iodone; 2776 xfs_buf_delwri_queue(bp, buffer_list); 2777 2778 out_release: 2779 xfs_buf_relse(bp); 2780 error: 2781 if (need_free) 2782 kmem_free(in_f); 2783 return error; 2784 } 2785 2786 /* 2787 * Recover QUOTAOFF records. We simply make a note of it in the xlog 2788 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2789 * of that type. 2790 */ 2791 STATIC int 2792 xlog_recover_quotaoff_pass1( 2793 struct xlog *log, 2794 struct xlog_recover_item *item) 2795 { 2796 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 2797 ASSERT(qoff_f); 2798 2799 /* 2800 * The logitem format's flag tells us if this was user quotaoff, 2801 * group/project quotaoff or both. 2802 */ 2803 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2804 log->l_quotaoffs_flag |= XFS_DQ_USER; 2805 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2806 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2807 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2808 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2809 2810 return 0; 2811 } 2812 2813 /* 2814 * Recover a dquot record 2815 */ 2816 STATIC int 2817 xlog_recover_dquot_pass2( 2818 struct xlog *log, 2819 struct list_head *buffer_list, 2820 struct xlog_recover_item *item, 2821 xfs_lsn_t current_lsn) 2822 { 2823 xfs_mount_t *mp = log->l_mp; 2824 xfs_buf_t *bp; 2825 struct xfs_disk_dquot *ddq, *recddq; 2826 int error; 2827 xfs_dq_logformat_t *dq_f; 2828 uint type; 2829 2830 2831 /* 2832 * Filesystems are required to send in quota flags at mount time. 2833 */ 2834 if (mp->m_qflags == 0) 2835 return 0; 2836 2837 recddq = item->ri_buf[1].i_addr; 2838 if (recddq == NULL) { 2839 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 2840 return -EIO; 2841 } 2842 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 2843 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 2844 item->ri_buf[1].i_len, __func__); 2845 return -EIO; 2846 } 2847 2848 /* 2849 * This type of quotas was turned off, so ignore this record. 2850 */ 2851 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2852 ASSERT(type); 2853 if (log->l_quotaoffs_flag & type) 2854 return 0; 2855 2856 /* 2857 * At this point we know that quota was _not_ turned off. 2858 * Since the mount flags are not indicating to us otherwise, this 2859 * must mean that quota is on, and the dquot needs to be replayed. 2860 * Remember that we may not have fully recovered the superblock yet, 2861 * so we can't do the usual trick of looking at the SB quota bits. 2862 * 2863 * The other possibility, of course, is that the quota subsystem was 2864 * removed since the last mount - ENOSYS. 2865 */ 2866 dq_f = item->ri_buf[0].i_addr; 2867 ASSERT(dq_f); 2868 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2869 "xlog_recover_dquot_pass2 (log copy)"); 2870 if (error) 2871 return -EIO; 2872 ASSERT(dq_f->qlf_len == 1); 2873 2874 /* 2875 * At this point we are assuming that the dquots have been allocated 2876 * and hence the buffer has valid dquots stamped in it. It should, 2877 * therefore, pass verifier validation. If the dquot is bad, then the 2878 * we'll return an error here, so we don't need to specifically check 2879 * the dquot in the buffer after the verifier has run. 2880 */ 2881 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 2882 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 2883 &xfs_dquot_buf_ops); 2884 if (error) 2885 return error; 2886 2887 ASSERT(bp); 2888 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2889 2890 /* 2891 * If the dquot has an LSN in it, recover the dquot only if it's less 2892 * than the lsn of the transaction we are replaying. 2893 */ 2894 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2895 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 2896 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 2897 2898 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2899 goto out_release; 2900 } 2901 } 2902 2903 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2904 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2905 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 2906 XFS_DQUOT_CRC_OFF); 2907 } 2908 2909 ASSERT(dq_f->qlf_size == 2); 2910 ASSERT(bp->b_target->bt_mount == mp); 2911 bp->b_iodone = xlog_recover_iodone; 2912 xfs_buf_delwri_queue(bp, buffer_list); 2913 2914 out_release: 2915 xfs_buf_relse(bp); 2916 return 0; 2917 } 2918 2919 /* 2920 * This routine is called to create an in-core extent free intent 2921 * item from the efi format structure which was logged on disk. 2922 * It allocates an in-core efi, copies the extents from the format 2923 * structure into it, and adds the efi to the AIL with the given 2924 * LSN. 2925 */ 2926 STATIC int 2927 xlog_recover_efi_pass2( 2928 struct xlog *log, 2929 struct xlog_recover_item *item, 2930 xfs_lsn_t lsn) 2931 { 2932 int error; 2933 xfs_mount_t *mp = log->l_mp; 2934 xfs_efi_log_item_t *efip; 2935 xfs_efi_log_format_t *efi_formatp; 2936 2937 efi_formatp = item->ri_buf[0].i_addr; 2938 2939 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2940 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2941 &(efip->efi_format)))) { 2942 xfs_efi_item_free(efip); 2943 return error; 2944 } 2945 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 2946 2947 spin_lock(&log->l_ailp->xa_lock); 2948 /* 2949 * xfs_trans_ail_update() drops the AIL lock. 2950 */ 2951 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 2952 return 0; 2953 } 2954 2955 2956 /* 2957 * This routine is called when an efd format structure is found in 2958 * a committed transaction in the log. It's purpose is to cancel 2959 * the corresponding efi if it was still in the log. To do this 2960 * it searches the AIL for the efi with an id equal to that in the 2961 * efd format structure. If we find it, we remove the efi from the 2962 * AIL and free it. 2963 */ 2964 STATIC int 2965 xlog_recover_efd_pass2( 2966 struct xlog *log, 2967 struct xlog_recover_item *item) 2968 { 2969 xfs_efd_log_format_t *efd_formatp; 2970 xfs_efi_log_item_t *efip = NULL; 2971 xfs_log_item_t *lip; 2972 __uint64_t efi_id; 2973 struct xfs_ail_cursor cur; 2974 struct xfs_ail *ailp = log->l_ailp; 2975 2976 efd_formatp = item->ri_buf[0].i_addr; 2977 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2978 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2979 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2980 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2981 efi_id = efd_formatp->efd_efi_id; 2982 2983 /* 2984 * Search for the efi with the id in the efd format structure 2985 * in the AIL. 2986 */ 2987 spin_lock(&ailp->xa_lock); 2988 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2989 while (lip != NULL) { 2990 if (lip->li_type == XFS_LI_EFI) { 2991 efip = (xfs_efi_log_item_t *)lip; 2992 if (efip->efi_format.efi_id == efi_id) { 2993 /* 2994 * xfs_trans_ail_delete() drops the 2995 * AIL lock. 2996 */ 2997 xfs_trans_ail_delete(ailp, lip, 2998 SHUTDOWN_CORRUPT_INCORE); 2999 xfs_efi_item_free(efip); 3000 spin_lock(&ailp->xa_lock); 3001 break; 3002 } 3003 } 3004 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3005 } 3006 xfs_trans_ail_cursor_done(&cur); 3007 spin_unlock(&ailp->xa_lock); 3008 3009 return 0; 3010 } 3011 3012 /* 3013 * This routine is called when an inode create format structure is found in a 3014 * committed transaction in the log. It's purpose is to initialise the inodes 3015 * being allocated on disk. This requires us to get inode cluster buffers that 3016 * match the range to be intialised, stamped with inode templates and written 3017 * by delayed write so that subsequent modifications will hit the cached buffer 3018 * and only need writing out at the end of recovery. 3019 */ 3020 STATIC int 3021 xlog_recover_do_icreate_pass2( 3022 struct xlog *log, 3023 struct list_head *buffer_list, 3024 xlog_recover_item_t *item) 3025 { 3026 struct xfs_mount *mp = log->l_mp; 3027 struct xfs_icreate_log *icl; 3028 xfs_agnumber_t agno; 3029 xfs_agblock_t agbno; 3030 unsigned int count; 3031 unsigned int isize; 3032 xfs_agblock_t length; 3033 3034 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3035 if (icl->icl_type != XFS_LI_ICREATE) { 3036 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3037 return -EINVAL; 3038 } 3039 3040 if (icl->icl_size != 1) { 3041 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3042 return -EINVAL; 3043 } 3044 3045 agno = be32_to_cpu(icl->icl_ag); 3046 if (agno >= mp->m_sb.sb_agcount) { 3047 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3048 return -EINVAL; 3049 } 3050 agbno = be32_to_cpu(icl->icl_agbno); 3051 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3052 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3053 return -EINVAL; 3054 } 3055 isize = be32_to_cpu(icl->icl_isize); 3056 if (isize != mp->m_sb.sb_inodesize) { 3057 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3058 return -EINVAL; 3059 } 3060 count = be32_to_cpu(icl->icl_count); 3061 if (!count) { 3062 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3063 return -EINVAL; 3064 } 3065 length = be32_to_cpu(icl->icl_length); 3066 if (!length || length >= mp->m_sb.sb_agblocks) { 3067 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3068 return -EINVAL; 3069 } 3070 3071 /* existing allocation is fixed value */ 3072 ASSERT(count == mp->m_ialloc_inos); 3073 ASSERT(length == mp->m_ialloc_blks); 3074 if (count != mp->m_ialloc_inos || 3075 length != mp->m_ialloc_blks) { 3076 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2"); 3077 return -EINVAL; 3078 } 3079 3080 /* 3081 * Inode buffers can be freed. Do not replay the inode initialisation as 3082 * we could be overwriting something written after this inode buffer was 3083 * cancelled. 3084 * 3085 * XXX: we need to iterate all buffers and only init those that are not 3086 * cancelled. I think that a more fine grained factoring of 3087 * xfs_ialloc_inode_init may be appropriate here to enable this to be 3088 * done easily. 3089 */ 3090 if (xlog_check_buffer_cancelled(log, 3091 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0)) 3092 return 0; 3093 3094 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length, 3095 be32_to_cpu(icl->icl_gen)); 3096 return 0; 3097 } 3098 3099 STATIC void 3100 xlog_recover_buffer_ra_pass2( 3101 struct xlog *log, 3102 struct xlog_recover_item *item) 3103 { 3104 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3105 struct xfs_mount *mp = log->l_mp; 3106 3107 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3108 buf_f->blf_len, buf_f->blf_flags)) { 3109 return; 3110 } 3111 3112 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3113 buf_f->blf_len, NULL); 3114 } 3115 3116 STATIC void 3117 xlog_recover_inode_ra_pass2( 3118 struct xlog *log, 3119 struct xlog_recover_item *item) 3120 { 3121 struct xfs_inode_log_format ilf_buf; 3122 struct xfs_inode_log_format *ilfp; 3123 struct xfs_mount *mp = log->l_mp; 3124 int error; 3125 3126 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3127 ilfp = item->ri_buf[0].i_addr; 3128 } else { 3129 ilfp = &ilf_buf; 3130 memset(ilfp, 0, sizeof(*ilfp)); 3131 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3132 if (error) 3133 return; 3134 } 3135 3136 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3137 return; 3138 3139 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 3140 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 3141 } 3142 3143 STATIC void 3144 xlog_recover_dquot_ra_pass2( 3145 struct xlog *log, 3146 struct xlog_recover_item *item) 3147 { 3148 struct xfs_mount *mp = log->l_mp; 3149 struct xfs_disk_dquot *recddq; 3150 struct xfs_dq_logformat *dq_f; 3151 uint type; 3152 3153 3154 if (mp->m_qflags == 0) 3155 return; 3156 3157 recddq = item->ri_buf[1].i_addr; 3158 if (recddq == NULL) 3159 return; 3160 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 3161 return; 3162 3163 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3164 ASSERT(type); 3165 if (log->l_quotaoffs_flag & type) 3166 return; 3167 3168 dq_f = item->ri_buf[0].i_addr; 3169 ASSERT(dq_f); 3170 ASSERT(dq_f->qlf_len == 1); 3171 3172 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, 3173 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL); 3174 } 3175 3176 STATIC void 3177 xlog_recover_ra_pass2( 3178 struct xlog *log, 3179 struct xlog_recover_item *item) 3180 { 3181 switch (ITEM_TYPE(item)) { 3182 case XFS_LI_BUF: 3183 xlog_recover_buffer_ra_pass2(log, item); 3184 break; 3185 case XFS_LI_INODE: 3186 xlog_recover_inode_ra_pass2(log, item); 3187 break; 3188 case XFS_LI_DQUOT: 3189 xlog_recover_dquot_ra_pass2(log, item); 3190 break; 3191 case XFS_LI_EFI: 3192 case XFS_LI_EFD: 3193 case XFS_LI_QUOTAOFF: 3194 default: 3195 break; 3196 } 3197 } 3198 3199 STATIC int 3200 xlog_recover_commit_pass1( 3201 struct xlog *log, 3202 struct xlog_recover *trans, 3203 struct xlog_recover_item *item) 3204 { 3205 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 3206 3207 switch (ITEM_TYPE(item)) { 3208 case XFS_LI_BUF: 3209 return xlog_recover_buffer_pass1(log, item); 3210 case XFS_LI_QUOTAOFF: 3211 return xlog_recover_quotaoff_pass1(log, item); 3212 case XFS_LI_INODE: 3213 case XFS_LI_EFI: 3214 case XFS_LI_EFD: 3215 case XFS_LI_DQUOT: 3216 case XFS_LI_ICREATE: 3217 /* nothing to do in pass 1 */ 3218 return 0; 3219 default: 3220 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3221 __func__, ITEM_TYPE(item)); 3222 ASSERT(0); 3223 return -EIO; 3224 } 3225 } 3226 3227 STATIC int 3228 xlog_recover_commit_pass2( 3229 struct xlog *log, 3230 struct xlog_recover *trans, 3231 struct list_head *buffer_list, 3232 struct xlog_recover_item *item) 3233 { 3234 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 3235 3236 switch (ITEM_TYPE(item)) { 3237 case XFS_LI_BUF: 3238 return xlog_recover_buffer_pass2(log, buffer_list, item, 3239 trans->r_lsn); 3240 case XFS_LI_INODE: 3241 return xlog_recover_inode_pass2(log, buffer_list, item, 3242 trans->r_lsn); 3243 case XFS_LI_EFI: 3244 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 3245 case XFS_LI_EFD: 3246 return xlog_recover_efd_pass2(log, item); 3247 case XFS_LI_DQUOT: 3248 return xlog_recover_dquot_pass2(log, buffer_list, item, 3249 trans->r_lsn); 3250 case XFS_LI_ICREATE: 3251 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 3252 case XFS_LI_QUOTAOFF: 3253 /* nothing to do in pass2 */ 3254 return 0; 3255 default: 3256 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3257 __func__, ITEM_TYPE(item)); 3258 ASSERT(0); 3259 return -EIO; 3260 } 3261 } 3262 3263 STATIC int 3264 xlog_recover_items_pass2( 3265 struct xlog *log, 3266 struct xlog_recover *trans, 3267 struct list_head *buffer_list, 3268 struct list_head *item_list) 3269 { 3270 struct xlog_recover_item *item; 3271 int error = 0; 3272 3273 list_for_each_entry(item, item_list, ri_list) { 3274 error = xlog_recover_commit_pass2(log, trans, 3275 buffer_list, item); 3276 if (error) 3277 return error; 3278 } 3279 3280 return error; 3281 } 3282 3283 /* 3284 * Perform the transaction. 3285 * 3286 * If the transaction modifies a buffer or inode, do it now. Otherwise, 3287 * EFIs and EFDs get queued up by adding entries into the AIL for them. 3288 */ 3289 STATIC int 3290 xlog_recover_commit_trans( 3291 struct xlog *log, 3292 struct xlog_recover *trans, 3293 int pass) 3294 { 3295 int error = 0; 3296 int error2; 3297 int items_queued = 0; 3298 struct xlog_recover_item *item; 3299 struct xlog_recover_item *next; 3300 LIST_HEAD (buffer_list); 3301 LIST_HEAD (ra_list); 3302 LIST_HEAD (done_list); 3303 3304 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 3305 3306 hlist_del(&trans->r_list); 3307 3308 error = xlog_recover_reorder_trans(log, trans, pass); 3309 if (error) 3310 return error; 3311 3312 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 3313 switch (pass) { 3314 case XLOG_RECOVER_PASS1: 3315 error = xlog_recover_commit_pass1(log, trans, item); 3316 break; 3317 case XLOG_RECOVER_PASS2: 3318 xlog_recover_ra_pass2(log, item); 3319 list_move_tail(&item->ri_list, &ra_list); 3320 items_queued++; 3321 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 3322 error = xlog_recover_items_pass2(log, trans, 3323 &buffer_list, &ra_list); 3324 list_splice_tail_init(&ra_list, &done_list); 3325 items_queued = 0; 3326 } 3327 3328 break; 3329 default: 3330 ASSERT(0); 3331 } 3332 3333 if (error) 3334 goto out; 3335 } 3336 3337 out: 3338 if (!list_empty(&ra_list)) { 3339 if (!error) 3340 error = xlog_recover_items_pass2(log, trans, 3341 &buffer_list, &ra_list); 3342 list_splice_tail_init(&ra_list, &done_list); 3343 } 3344 3345 if (!list_empty(&done_list)) 3346 list_splice_init(&done_list, &trans->r_itemq); 3347 3348 error2 = xfs_buf_delwri_submit(&buffer_list); 3349 return error ? error : error2; 3350 } 3351 3352 STATIC void 3353 xlog_recover_add_item( 3354 struct list_head *head) 3355 { 3356 xlog_recover_item_t *item; 3357 3358 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 3359 INIT_LIST_HEAD(&item->ri_list); 3360 list_add_tail(&item->ri_list, head); 3361 } 3362 3363 STATIC int 3364 xlog_recover_add_to_cont_trans( 3365 struct xlog *log, 3366 struct xlog_recover *trans, 3367 xfs_caddr_t dp, 3368 int len) 3369 { 3370 xlog_recover_item_t *item; 3371 xfs_caddr_t ptr, old_ptr; 3372 int old_len; 3373 3374 if (list_empty(&trans->r_itemq)) { 3375 /* finish copying rest of trans header */ 3376 xlog_recover_add_item(&trans->r_itemq); 3377 ptr = (xfs_caddr_t) &trans->r_theader + 3378 sizeof(xfs_trans_header_t) - len; 3379 memcpy(ptr, dp, len); 3380 return 0; 3381 } 3382 /* take the tail entry */ 3383 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 3384 3385 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 3386 old_len = item->ri_buf[item->ri_cnt-1].i_len; 3387 3388 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP); 3389 memcpy(&ptr[old_len], dp, len); 3390 item->ri_buf[item->ri_cnt-1].i_len += len; 3391 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 3392 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 3393 return 0; 3394 } 3395 3396 /* 3397 * The next region to add is the start of a new region. It could be 3398 * a whole region or it could be the first part of a new region. Because 3399 * of this, the assumption here is that the type and size fields of all 3400 * format structures fit into the first 32 bits of the structure. 3401 * 3402 * This works because all regions must be 32 bit aligned. Therefore, we 3403 * either have both fields or we have neither field. In the case we have 3404 * neither field, the data part of the region is zero length. We only have 3405 * a log_op_header and can throw away the header since a new one will appear 3406 * later. If we have at least 4 bytes, then we can determine how many regions 3407 * will appear in the current log item. 3408 */ 3409 STATIC int 3410 xlog_recover_add_to_trans( 3411 struct xlog *log, 3412 struct xlog_recover *trans, 3413 xfs_caddr_t dp, 3414 int len) 3415 { 3416 xfs_inode_log_format_t *in_f; /* any will do */ 3417 xlog_recover_item_t *item; 3418 xfs_caddr_t ptr; 3419 3420 if (!len) 3421 return 0; 3422 if (list_empty(&trans->r_itemq)) { 3423 /* we need to catch log corruptions here */ 3424 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 3425 xfs_warn(log->l_mp, "%s: bad header magic number", 3426 __func__); 3427 ASSERT(0); 3428 return -EIO; 3429 } 3430 if (len == sizeof(xfs_trans_header_t)) 3431 xlog_recover_add_item(&trans->r_itemq); 3432 memcpy(&trans->r_theader, dp, len); 3433 return 0; 3434 } 3435 3436 ptr = kmem_alloc(len, KM_SLEEP); 3437 memcpy(ptr, dp, len); 3438 in_f = (xfs_inode_log_format_t *)ptr; 3439 3440 /* take the tail entry */ 3441 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 3442 if (item->ri_total != 0 && 3443 item->ri_total == item->ri_cnt) { 3444 /* tail item is in use, get a new one */ 3445 xlog_recover_add_item(&trans->r_itemq); 3446 item = list_entry(trans->r_itemq.prev, 3447 xlog_recover_item_t, ri_list); 3448 } 3449 3450 if (item->ri_total == 0) { /* first region to be added */ 3451 if (in_f->ilf_size == 0 || 3452 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 3453 xfs_warn(log->l_mp, 3454 "bad number of regions (%d) in inode log format", 3455 in_f->ilf_size); 3456 ASSERT(0); 3457 kmem_free(ptr); 3458 return -EIO; 3459 } 3460 3461 item->ri_total = in_f->ilf_size; 3462 item->ri_buf = 3463 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 3464 KM_SLEEP); 3465 } 3466 ASSERT(item->ri_total > item->ri_cnt); 3467 /* Description region is ri_buf[0] */ 3468 item->ri_buf[item->ri_cnt].i_addr = ptr; 3469 item->ri_buf[item->ri_cnt].i_len = len; 3470 item->ri_cnt++; 3471 trace_xfs_log_recover_item_add(log, trans, item, 0); 3472 return 0; 3473 } 3474 3475 /* 3476 * Free up any resources allocated by the transaction 3477 * 3478 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 3479 */ 3480 STATIC void 3481 xlog_recover_free_trans( 3482 struct xlog_recover *trans) 3483 { 3484 xlog_recover_item_t *item, *n; 3485 int i; 3486 3487 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 3488 /* Free the regions in the item. */ 3489 list_del(&item->ri_list); 3490 for (i = 0; i < item->ri_cnt; i++) 3491 kmem_free(item->ri_buf[i].i_addr); 3492 /* Free the item itself */ 3493 kmem_free(item->ri_buf); 3494 kmem_free(item); 3495 } 3496 /* Free the transaction recover structure */ 3497 kmem_free(trans); 3498 } 3499 3500 /* 3501 * On error or completion, trans is freed. 3502 */ 3503 STATIC int 3504 xlog_recovery_process_trans( 3505 struct xlog *log, 3506 struct xlog_recover *trans, 3507 xfs_caddr_t dp, 3508 unsigned int len, 3509 unsigned int flags, 3510 int pass) 3511 { 3512 int error = 0; 3513 bool freeit = false; 3514 3515 /* mask off ophdr transaction container flags */ 3516 flags &= ~XLOG_END_TRANS; 3517 if (flags & XLOG_WAS_CONT_TRANS) 3518 flags &= ~XLOG_CONTINUE_TRANS; 3519 3520 /* 3521 * Callees must not free the trans structure. We'll decide if we need to 3522 * free it or not based on the operation being done and it's result. 3523 */ 3524 switch (flags) { 3525 /* expected flag values */ 3526 case 0: 3527 case XLOG_CONTINUE_TRANS: 3528 error = xlog_recover_add_to_trans(log, trans, dp, len); 3529 break; 3530 case XLOG_WAS_CONT_TRANS: 3531 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 3532 break; 3533 case XLOG_COMMIT_TRANS: 3534 error = xlog_recover_commit_trans(log, trans, pass); 3535 /* success or fail, we are now done with this transaction. */ 3536 freeit = true; 3537 break; 3538 3539 /* unexpected flag values */ 3540 case XLOG_UNMOUNT_TRANS: 3541 /* just skip trans */ 3542 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 3543 freeit = true; 3544 break; 3545 case XLOG_START_TRANS: 3546 default: 3547 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 3548 ASSERT(0); 3549 error = -EIO; 3550 break; 3551 } 3552 if (error || freeit) 3553 xlog_recover_free_trans(trans); 3554 return error; 3555 } 3556 3557 /* 3558 * Lookup the transaction recovery structure associated with the ID in the 3559 * current ophdr. If the transaction doesn't exist and the start flag is set in 3560 * the ophdr, then allocate a new transaction for future ID matches to find. 3561 * Either way, return what we found during the lookup - an existing transaction 3562 * or nothing. 3563 */ 3564 STATIC struct xlog_recover * 3565 xlog_recover_ophdr_to_trans( 3566 struct hlist_head rhash[], 3567 struct xlog_rec_header *rhead, 3568 struct xlog_op_header *ohead) 3569 { 3570 struct xlog_recover *trans; 3571 xlog_tid_t tid; 3572 struct hlist_head *rhp; 3573 3574 tid = be32_to_cpu(ohead->oh_tid); 3575 rhp = &rhash[XLOG_RHASH(tid)]; 3576 hlist_for_each_entry(trans, rhp, r_list) { 3577 if (trans->r_log_tid == tid) 3578 return trans; 3579 } 3580 3581 /* 3582 * skip over non-start transaction headers - we could be 3583 * processing slack space before the next transaction starts 3584 */ 3585 if (!(ohead->oh_flags & XLOG_START_TRANS)) 3586 return NULL; 3587 3588 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 3589 3590 /* 3591 * This is a new transaction so allocate a new recovery container to 3592 * hold the recovery ops that will follow. 3593 */ 3594 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP); 3595 trans->r_log_tid = tid; 3596 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 3597 INIT_LIST_HEAD(&trans->r_itemq); 3598 INIT_HLIST_NODE(&trans->r_list); 3599 hlist_add_head(&trans->r_list, rhp); 3600 3601 /* 3602 * Nothing more to do for this ophdr. Items to be added to this new 3603 * transaction will be in subsequent ophdr containers. 3604 */ 3605 return NULL; 3606 } 3607 3608 STATIC int 3609 xlog_recover_process_ophdr( 3610 struct xlog *log, 3611 struct hlist_head rhash[], 3612 struct xlog_rec_header *rhead, 3613 struct xlog_op_header *ohead, 3614 xfs_caddr_t dp, 3615 xfs_caddr_t end, 3616 int pass) 3617 { 3618 struct xlog_recover *trans; 3619 unsigned int len; 3620 3621 /* Do we understand who wrote this op? */ 3622 if (ohead->oh_clientid != XFS_TRANSACTION && 3623 ohead->oh_clientid != XFS_LOG) { 3624 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 3625 __func__, ohead->oh_clientid); 3626 ASSERT(0); 3627 return -EIO; 3628 } 3629 3630 /* 3631 * Check the ophdr contains all the data it is supposed to contain. 3632 */ 3633 len = be32_to_cpu(ohead->oh_len); 3634 if (dp + len > end) { 3635 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 3636 WARN_ON(1); 3637 return -EIO; 3638 } 3639 3640 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 3641 if (!trans) { 3642 /* nothing to do, so skip over this ophdr */ 3643 return 0; 3644 } 3645 3646 return xlog_recovery_process_trans(log, trans, dp, len, 3647 ohead->oh_flags, pass); 3648 } 3649 3650 /* 3651 * There are two valid states of the r_state field. 0 indicates that the 3652 * transaction structure is in a normal state. We have either seen the 3653 * start of the transaction or the last operation we added was not a partial 3654 * operation. If the last operation we added to the transaction was a 3655 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 3656 * 3657 * NOTE: skip LRs with 0 data length. 3658 */ 3659 STATIC int 3660 xlog_recover_process_data( 3661 struct xlog *log, 3662 struct hlist_head rhash[], 3663 struct xlog_rec_header *rhead, 3664 xfs_caddr_t dp, 3665 int pass) 3666 { 3667 struct xlog_op_header *ohead; 3668 xfs_caddr_t end; 3669 int num_logops; 3670 int error; 3671 3672 end = dp + be32_to_cpu(rhead->h_len); 3673 num_logops = be32_to_cpu(rhead->h_num_logops); 3674 3675 /* check the log format matches our own - else we can't recover */ 3676 if (xlog_header_check_recover(log->l_mp, rhead)) 3677 return -EIO; 3678 3679 while ((dp < end) && num_logops) { 3680 3681 ohead = (struct xlog_op_header *)dp; 3682 dp += sizeof(*ohead); 3683 ASSERT(dp <= end); 3684 3685 /* errors will abort recovery */ 3686 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 3687 dp, end, pass); 3688 if (error) 3689 return error; 3690 3691 dp += be32_to_cpu(ohead->oh_len); 3692 num_logops--; 3693 } 3694 return 0; 3695 } 3696 3697 /* 3698 * Process an extent free intent item that was recovered from 3699 * the log. We need to free the extents that it describes. 3700 */ 3701 STATIC int 3702 xlog_recover_process_efi( 3703 xfs_mount_t *mp, 3704 xfs_efi_log_item_t *efip) 3705 { 3706 xfs_efd_log_item_t *efdp; 3707 xfs_trans_t *tp; 3708 int i; 3709 int error = 0; 3710 xfs_extent_t *extp; 3711 xfs_fsblock_t startblock_fsb; 3712 3713 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 3714 3715 /* 3716 * First check the validity of the extents described by the 3717 * EFI. If any are bad, then assume that all are bad and 3718 * just toss the EFI. 3719 */ 3720 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3721 extp = &(efip->efi_format.efi_extents[i]); 3722 startblock_fsb = XFS_BB_TO_FSB(mp, 3723 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3724 if ((startblock_fsb == 0) || 3725 (extp->ext_len == 0) || 3726 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3727 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3728 /* 3729 * This will pull the EFI from the AIL and 3730 * free the memory associated with it. 3731 */ 3732 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 3733 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3734 return -EIO; 3735 } 3736 } 3737 3738 tp = xfs_trans_alloc(mp, 0); 3739 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 3740 if (error) 3741 goto abort_error; 3742 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3743 3744 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3745 extp = &(efip->efi_format.efi_extents[i]); 3746 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3747 if (error) 3748 goto abort_error; 3749 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3750 extp->ext_len); 3751 } 3752 3753 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 3754 error = xfs_trans_commit(tp, 0); 3755 return error; 3756 3757 abort_error: 3758 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3759 return error; 3760 } 3761 3762 /* 3763 * When this is called, all of the EFIs which did not have 3764 * corresponding EFDs should be in the AIL. What we do now 3765 * is free the extents associated with each one. 3766 * 3767 * Since we process the EFIs in normal transactions, they 3768 * will be removed at some point after the commit. This prevents 3769 * us from just walking down the list processing each one. 3770 * We'll use a flag in the EFI to skip those that we've already 3771 * processed and use the AIL iteration mechanism's generation 3772 * count to try to speed this up at least a bit. 3773 * 3774 * When we start, we know that the EFIs are the only things in 3775 * the AIL. As we process them, however, other items are added 3776 * to the AIL. Since everything added to the AIL must come after 3777 * everything already in the AIL, we stop processing as soon as 3778 * we see something other than an EFI in the AIL. 3779 */ 3780 STATIC int 3781 xlog_recover_process_efis( 3782 struct xlog *log) 3783 { 3784 xfs_log_item_t *lip; 3785 xfs_efi_log_item_t *efip; 3786 int error = 0; 3787 struct xfs_ail_cursor cur; 3788 struct xfs_ail *ailp; 3789 3790 ailp = log->l_ailp; 3791 spin_lock(&ailp->xa_lock); 3792 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3793 while (lip != NULL) { 3794 /* 3795 * We're done when we see something other than an EFI. 3796 * There should be no EFIs left in the AIL now. 3797 */ 3798 if (lip->li_type != XFS_LI_EFI) { 3799 #ifdef DEBUG 3800 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3801 ASSERT(lip->li_type != XFS_LI_EFI); 3802 #endif 3803 break; 3804 } 3805 3806 /* 3807 * Skip EFIs that we've already processed. 3808 */ 3809 efip = (xfs_efi_log_item_t *)lip; 3810 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) { 3811 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3812 continue; 3813 } 3814 3815 spin_unlock(&ailp->xa_lock); 3816 error = xlog_recover_process_efi(log->l_mp, efip); 3817 spin_lock(&ailp->xa_lock); 3818 if (error) 3819 goto out; 3820 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3821 } 3822 out: 3823 xfs_trans_ail_cursor_done(&cur); 3824 spin_unlock(&ailp->xa_lock); 3825 return error; 3826 } 3827 3828 /* 3829 * This routine performs a transaction to null out a bad inode pointer 3830 * in an agi unlinked inode hash bucket. 3831 */ 3832 STATIC void 3833 xlog_recover_clear_agi_bucket( 3834 xfs_mount_t *mp, 3835 xfs_agnumber_t agno, 3836 int bucket) 3837 { 3838 xfs_trans_t *tp; 3839 xfs_agi_t *agi; 3840 xfs_buf_t *agibp; 3841 int offset; 3842 int error; 3843 3844 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3845 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0); 3846 if (error) 3847 goto out_abort; 3848 3849 error = xfs_read_agi(mp, tp, agno, &agibp); 3850 if (error) 3851 goto out_abort; 3852 3853 agi = XFS_BUF_TO_AGI(agibp); 3854 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3855 offset = offsetof(xfs_agi_t, agi_unlinked) + 3856 (sizeof(xfs_agino_t) * bucket); 3857 xfs_trans_log_buf(tp, agibp, offset, 3858 (offset + sizeof(xfs_agino_t) - 1)); 3859 3860 error = xfs_trans_commit(tp, 0); 3861 if (error) 3862 goto out_error; 3863 return; 3864 3865 out_abort: 3866 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3867 out_error: 3868 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 3869 return; 3870 } 3871 3872 STATIC xfs_agino_t 3873 xlog_recover_process_one_iunlink( 3874 struct xfs_mount *mp, 3875 xfs_agnumber_t agno, 3876 xfs_agino_t agino, 3877 int bucket) 3878 { 3879 struct xfs_buf *ibp; 3880 struct xfs_dinode *dip; 3881 struct xfs_inode *ip; 3882 xfs_ino_t ino; 3883 int error; 3884 3885 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3886 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 3887 if (error) 3888 goto fail; 3889 3890 /* 3891 * Get the on disk inode to find the next inode in the bucket. 3892 */ 3893 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 3894 if (error) 3895 goto fail_iput; 3896 3897 ASSERT(ip->i_d.di_nlink == 0); 3898 ASSERT(ip->i_d.di_mode != 0); 3899 3900 /* setup for the next pass */ 3901 agino = be32_to_cpu(dip->di_next_unlinked); 3902 xfs_buf_relse(ibp); 3903 3904 /* 3905 * Prevent any DMAPI event from being sent when the reference on 3906 * the inode is dropped. 3907 */ 3908 ip->i_d.di_dmevmask = 0; 3909 3910 IRELE(ip); 3911 return agino; 3912 3913 fail_iput: 3914 IRELE(ip); 3915 fail: 3916 /* 3917 * We can't read in the inode this bucket points to, or this inode 3918 * is messed up. Just ditch this bucket of inodes. We will lose 3919 * some inodes and space, but at least we won't hang. 3920 * 3921 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3922 * clear the inode pointer in the bucket. 3923 */ 3924 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3925 return NULLAGINO; 3926 } 3927 3928 /* 3929 * xlog_iunlink_recover 3930 * 3931 * This is called during recovery to process any inodes which 3932 * we unlinked but not freed when the system crashed. These 3933 * inodes will be on the lists in the AGI blocks. What we do 3934 * here is scan all the AGIs and fully truncate and free any 3935 * inodes found on the lists. Each inode is removed from the 3936 * lists when it has been fully truncated and is freed. The 3937 * freeing of the inode and its removal from the list must be 3938 * atomic. 3939 */ 3940 STATIC void 3941 xlog_recover_process_iunlinks( 3942 struct xlog *log) 3943 { 3944 xfs_mount_t *mp; 3945 xfs_agnumber_t agno; 3946 xfs_agi_t *agi; 3947 xfs_buf_t *agibp; 3948 xfs_agino_t agino; 3949 int bucket; 3950 int error; 3951 uint mp_dmevmask; 3952 3953 mp = log->l_mp; 3954 3955 /* 3956 * Prevent any DMAPI event from being sent while in this function. 3957 */ 3958 mp_dmevmask = mp->m_dmevmask; 3959 mp->m_dmevmask = 0; 3960 3961 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3962 /* 3963 * Find the agi for this ag. 3964 */ 3965 error = xfs_read_agi(mp, NULL, agno, &agibp); 3966 if (error) { 3967 /* 3968 * AGI is b0rked. Don't process it. 3969 * 3970 * We should probably mark the filesystem as corrupt 3971 * after we've recovered all the ag's we can.... 3972 */ 3973 continue; 3974 } 3975 /* 3976 * Unlock the buffer so that it can be acquired in the normal 3977 * course of the transaction to truncate and free each inode. 3978 * Because we are not racing with anyone else here for the AGI 3979 * buffer, we don't even need to hold it locked to read the 3980 * initial unlinked bucket entries out of the buffer. We keep 3981 * buffer reference though, so that it stays pinned in memory 3982 * while we need the buffer. 3983 */ 3984 agi = XFS_BUF_TO_AGI(agibp); 3985 xfs_buf_unlock(agibp); 3986 3987 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3988 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3989 while (agino != NULLAGINO) { 3990 agino = xlog_recover_process_one_iunlink(mp, 3991 agno, agino, bucket); 3992 } 3993 } 3994 xfs_buf_rele(agibp); 3995 } 3996 3997 mp->m_dmevmask = mp_dmevmask; 3998 } 3999 4000 /* 4001 * Upack the log buffer data and crc check it. If the check fails, issue a 4002 * warning if and only if the CRC in the header is non-zero. This makes the 4003 * check an advisory warning, and the zero CRC check will prevent failure 4004 * warnings from being emitted when upgrading the kernel from one that does not 4005 * add CRCs by default. 4006 * 4007 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log 4008 * corruption failure 4009 */ 4010 STATIC int 4011 xlog_unpack_data_crc( 4012 struct xlog_rec_header *rhead, 4013 xfs_caddr_t dp, 4014 struct xlog *log) 4015 { 4016 __le32 crc; 4017 4018 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 4019 if (crc != rhead->h_crc) { 4020 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 4021 xfs_alert(log->l_mp, 4022 "log record CRC mismatch: found 0x%x, expected 0x%x.", 4023 le32_to_cpu(rhead->h_crc), 4024 le32_to_cpu(crc)); 4025 xfs_hex_dump(dp, 32); 4026 } 4027 4028 /* 4029 * If we've detected a log record corruption, then we can't 4030 * recover past this point. Abort recovery if we are enforcing 4031 * CRC protection by punting an error back up the stack. 4032 */ 4033 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 4034 return -EFSCORRUPTED; 4035 } 4036 4037 return 0; 4038 } 4039 4040 STATIC int 4041 xlog_unpack_data( 4042 struct xlog_rec_header *rhead, 4043 xfs_caddr_t dp, 4044 struct xlog *log) 4045 { 4046 int i, j, k; 4047 int error; 4048 4049 error = xlog_unpack_data_crc(rhead, dp, log); 4050 if (error) 4051 return error; 4052 4053 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 4054 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 4055 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 4056 dp += BBSIZE; 4057 } 4058 4059 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 4060 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 4061 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 4062 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 4063 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 4064 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 4065 dp += BBSIZE; 4066 } 4067 } 4068 4069 return 0; 4070 } 4071 4072 STATIC int 4073 xlog_valid_rec_header( 4074 struct xlog *log, 4075 struct xlog_rec_header *rhead, 4076 xfs_daddr_t blkno) 4077 { 4078 int hlen; 4079 4080 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 4081 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 4082 XFS_ERRLEVEL_LOW, log->l_mp); 4083 return -EFSCORRUPTED; 4084 } 4085 if (unlikely( 4086 (!rhead->h_version || 4087 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 4088 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 4089 __func__, be32_to_cpu(rhead->h_version)); 4090 return -EIO; 4091 } 4092 4093 /* LR body must have data or it wouldn't have been written */ 4094 hlen = be32_to_cpu(rhead->h_len); 4095 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 4096 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 4097 XFS_ERRLEVEL_LOW, log->l_mp); 4098 return -EFSCORRUPTED; 4099 } 4100 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 4101 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 4102 XFS_ERRLEVEL_LOW, log->l_mp); 4103 return -EFSCORRUPTED; 4104 } 4105 return 0; 4106 } 4107 4108 /* 4109 * Read the log from tail to head and process the log records found. 4110 * Handle the two cases where the tail and head are in the same cycle 4111 * and where the active portion of the log wraps around the end of 4112 * the physical log separately. The pass parameter is passed through 4113 * to the routines called to process the data and is not looked at 4114 * here. 4115 */ 4116 STATIC int 4117 xlog_do_recovery_pass( 4118 struct xlog *log, 4119 xfs_daddr_t head_blk, 4120 xfs_daddr_t tail_blk, 4121 int pass) 4122 { 4123 xlog_rec_header_t *rhead; 4124 xfs_daddr_t blk_no; 4125 xfs_caddr_t offset; 4126 xfs_buf_t *hbp, *dbp; 4127 int error = 0, h_size; 4128 int bblks, split_bblks; 4129 int hblks, split_hblks, wrapped_hblks; 4130 struct hlist_head rhash[XLOG_RHASH_SIZE]; 4131 4132 ASSERT(head_blk != tail_blk); 4133 4134 /* 4135 * Read the header of the tail block and get the iclog buffer size from 4136 * h_size. Use this to tell how many sectors make up the log header. 4137 */ 4138 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 4139 /* 4140 * When using variable length iclogs, read first sector of 4141 * iclog header and extract the header size from it. Get a 4142 * new hbp that is the correct size. 4143 */ 4144 hbp = xlog_get_bp(log, 1); 4145 if (!hbp) 4146 return -ENOMEM; 4147 4148 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 4149 if (error) 4150 goto bread_err1; 4151 4152 rhead = (xlog_rec_header_t *)offset; 4153 error = xlog_valid_rec_header(log, rhead, tail_blk); 4154 if (error) 4155 goto bread_err1; 4156 h_size = be32_to_cpu(rhead->h_size); 4157 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 4158 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 4159 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 4160 if (h_size % XLOG_HEADER_CYCLE_SIZE) 4161 hblks++; 4162 xlog_put_bp(hbp); 4163 hbp = xlog_get_bp(log, hblks); 4164 } else { 4165 hblks = 1; 4166 } 4167 } else { 4168 ASSERT(log->l_sectBBsize == 1); 4169 hblks = 1; 4170 hbp = xlog_get_bp(log, 1); 4171 h_size = XLOG_BIG_RECORD_BSIZE; 4172 } 4173 4174 if (!hbp) 4175 return -ENOMEM; 4176 dbp = xlog_get_bp(log, BTOBB(h_size)); 4177 if (!dbp) { 4178 xlog_put_bp(hbp); 4179 return -ENOMEM; 4180 } 4181 4182 memset(rhash, 0, sizeof(rhash)); 4183 blk_no = tail_blk; 4184 if (tail_blk > head_blk) { 4185 /* 4186 * Perform recovery around the end of the physical log. 4187 * When the head is not on the same cycle number as the tail, 4188 * we can't do a sequential recovery. 4189 */ 4190 while (blk_no < log->l_logBBsize) { 4191 /* 4192 * Check for header wrapping around physical end-of-log 4193 */ 4194 offset = hbp->b_addr; 4195 split_hblks = 0; 4196 wrapped_hblks = 0; 4197 if (blk_no + hblks <= log->l_logBBsize) { 4198 /* Read header in one read */ 4199 error = xlog_bread(log, blk_no, hblks, hbp, 4200 &offset); 4201 if (error) 4202 goto bread_err2; 4203 } else { 4204 /* This LR is split across physical log end */ 4205 if (blk_no != log->l_logBBsize) { 4206 /* some data before physical log end */ 4207 ASSERT(blk_no <= INT_MAX); 4208 split_hblks = log->l_logBBsize - (int)blk_no; 4209 ASSERT(split_hblks > 0); 4210 error = xlog_bread(log, blk_no, 4211 split_hblks, hbp, 4212 &offset); 4213 if (error) 4214 goto bread_err2; 4215 } 4216 4217 /* 4218 * Note: this black magic still works with 4219 * large sector sizes (non-512) only because: 4220 * - we increased the buffer size originally 4221 * by 1 sector giving us enough extra space 4222 * for the second read; 4223 * - the log start is guaranteed to be sector 4224 * aligned; 4225 * - we read the log end (LR header start) 4226 * _first_, then the log start (LR header end) 4227 * - order is important. 4228 */ 4229 wrapped_hblks = hblks - split_hblks; 4230 error = xlog_bread_offset(log, 0, 4231 wrapped_hblks, hbp, 4232 offset + BBTOB(split_hblks)); 4233 if (error) 4234 goto bread_err2; 4235 } 4236 rhead = (xlog_rec_header_t *)offset; 4237 error = xlog_valid_rec_header(log, rhead, 4238 split_hblks ? blk_no : 0); 4239 if (error) 4240 goto bread_err2; 4241 4242 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 4243 blk_no += hblks; 4244 4245 /* Read in data for log record */ 4246 if (blk_no + bblks <= log->l_logBBsize) { 4247 error = xlog_bread(log, blk_no, bblks, dbp, 4248 &offset); 4249 if (error) 4250 goto bread_err2; 4251 } else { 4252 /* This log record is split across the 4253 * physical end of log */ 4254 offset = dbp->b_addr; 4255 split_bblks = 0; 4256 if (blk_no != log->l_logBBsize) { 4257 /* some data is before the physical 4258 * end of log */ 4259 ASSERT(!wrapped_hblks); 4260 ASSERT(blk_no <= INT_MAX); 4261 split_bblks = 4262 log->l_logBBsize - (int)blk_no; 4263 ASSERT(split_bblks > 0); 4264 error = xlog_bread(log, blk_no, 4265 split_bblks, dbp, 4266 &offset); 4267 if (error) 4268 goto bread_err2; 4269 } 4270 4271 /* 4272 * Note: this black magic still works with 4273 * large sector sizes (non-512) only because: 4274 * - we increased the buffer size originally 4275 * by 1 sector giving us enough extra space 4276 * for the second read; 4277 * - the log start is guaranteed to be sector 4278 * aligned; 4279 * - we read the log end (LR header start) 4280 * _first_, then the log start (LR header end) 4281 * - order is important. 4282 */ 4283 error = xlog_bread_offset(log, 0, 4284 bblks - split_bblks, dbp, 4285 offset + BBTOB(split_bblks)); 4286 if (error) 4287 goto bread_err2; 4288 } 4289 4290 error = xlog_unpack_data(rhead, offset, log); 4291 if (error) 4292 goto bread_err2; 4293 4294 error = xlog_recover_process_data(log, rhash, 4295 rhead, offset, pass); 4296 if (error) 4297 goto bread_err2; 4298 blk_no += bblks; 4299 } 4300 4301 ASSERT(blk_no >= log->l_logBBsize); 4302 blk_no -= log->l_logBBsize; 4303 } 4304 4305 /* read first part of physical log */ 4306 while (blk_no < head_blk) { 4307 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 4308 if (error) 4309 goto bread_err2; 4310 4311 rhead = (xlog_rec_header_t *)offset; 4312 error = xlog_valid_rec_header(log, rhead, blk_no); 4313 if (error) 4314 goto bread_err2; 4315 4316 /* blocks in data section */ 4317 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 4318 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 4319 &offset); 4320 if (error) 4321 goto bread_err2; 4322 4323 error = xlog_unpack_data(rhead, offset, log); 4324 if (error) 4325 goto bread_err2; 4326 4327 error = xlog_recover_process_data(log, rhash, 4328 rhead, offset, pass); 4329 if (error) 4330 goto bread_err2; 4331 blk_no += bblks + hblks; 4332 } 4333 4334 bread_err2: 4335 xlog_put_bp(dbp); 4336 bread_err1: 4337 xlog_put_bp(hbp); 4338 return error; 4339 } 4340 4341 /* 4342 * Do the recovery of the log. We actually do this in two phases. 4343 * The two passes are necessary in order to implement the function 4344 * of cancelling a record written into the log. The first pass 4345 * determines those things which have been cancelled, and the 4346 * second pass replays log items normally except for those which 4347 * have been cancelled. The handling of the replay and cancellations 4348 * takes place in the log item type specific routines. 4349 * 4350 * The table of items which have cancel records in the log is allocated 4351 * and freed at this level, since only here do we know when all of 4352 * the log recovery has been completed. 4353 */ 4354 STATIC int 4355 xlog_do_log_recovery( 4356 struct xlog *log, 4357 xfs_daddr_t head_blk, 4358 xfs_daddr_t tail_blk) 4359 { 4360 int error, i; 4361 4362 ASSERT(head_blk != tail_blk); 4363 4364 /* 4365 * First do a pass to find all of the cancelled buf log items. 4366 * Store them in the buf_cancel_table for use in the second pass. 4367 */ 4368 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 4369 sizeof(struct list_head), 4370 KM_SLEEP); 4371 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 4372 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 4373 4374 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 4375 XLOG_RECOVER_PASS1); 4376 if (error != 0) { 4377 kmem_free(log->l_buf_cancel_table); 4378 log->l_buf_cancel_table = NULL; 4379 return error; 4380 } 4381 /* 4382 * Then do a second pass to actually recover the items in the log. 4383 * When it is complete free the table of buf cancel items. 4384 */ 4385 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 4386 XLOG_RECOVER_PASS2); 4387 #ifdef DEBUG 4388 if (!error) { 4389 int i; 4390 4391 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 4392 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 4393 } 4394 #endif /* DEBUG */ 4395 4396 kmem_free(log->l_buf_cancel_table); 4397 log->l_buf_cancel_table = NULL; 4398 4399 return error; 4400 } 4401 4402 /* 4403 * Do the actual recovery 4404 */ 4405 STATIC int 4406 xlog_do_recover( 4407 struct xlog *log, 4408 xfs_daddr_t head_blk, 4409 xfs_daddr_t tail_blk) 4410 { 4411 int error; 4412 xfs_buf_t *bp; 4413 xfs_sb_t *sbp; 4414 4415 /* 4416 * First replay the images in the log. 4417 */ 4418 error = xlog_do_log_recovery(log, head_blk, tail_blk); 4419 if (error) 4420 return error; 4421 4422 /* 4423 * If IO errors happened during recovery, bail out. 4424 */ 4425 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 4426 return -EIO; 4427 } 4428 4429 /* 4430 * We now update the tail_lsn since much of the recovery has completed 4431 * and there may be space available to use. If there were no extent 4432 * or iunlinks, we can free up the entire log and set the tail_lsn to 4433 * be the last_sync_lsn. This was set in xlog_find_tail to be the 4434 * lsn of the last known good LR on disk. If there are extent frees 4435 * or iunlinks they will have some entries in the AIL; so we look at 4436 * the AIL to determine how to set the tail_lsn. 4437 */ 4438 xlog_assign_tail_lsn(log->l_mp); 4439 4440 /* 4441 * Now that we've finished replaying all buffer and inode 4442 * updates, re-read in the superblock and reverify it. 4443 */ 4444 bp = xfs_getsb(log->l_mp, 0); 4445 XFS_BUF_UNDONE(bp); 4446 ASSERT(!(XFS_BUF_ISWRITE(bp))); 4447 XFS_BUF_READ(bp); 4448 XFS_BUF_UNASYNC(bp); 4449 bp->b_ops = &xfs_sb_buf_ops; 4450 4451 error = xfs_buf_submit_wait(bp); 4452 if (error) { 4453 if (!XFS_FORCED_SHUTDOWN(log->l_mp)) { 4454 xfs_buf_ioerror_alert(bp, __func__); 4455 ASSERT(0); 4456 } 4457 xfs_buf_relse(bp); 4458 return error; 4459 } 4460 4461 /* Convert superblock from on-disk format */ 4462 sbp = &log->l_mp->m_sb; 4463 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 4464 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 4465 ASSERT(xfs_sb_good_version(sbp)); 4466 xfs_buf_relse(bp); 4467 4468 /* We've re-read the superblock so re-initialize per-cpu counters */ 4469 xfs_icsb_reinit_counters(log->l_mp); 4470 4471 xlog_recover_check_summary(log); 4472 4473 /* Normal transactions can now occur */ 4474 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 4475 return 0; 4476 } 4477 4478 /* 4479 * Perform recovery and re-initialize some log variables in xlog_find_tail. 4480 * 4481 * Return error or zero. 4482 */ 4483 int 4484 xlog_recover( 4485 struct xlog *log) 4486 { 4487 xfs_daddr_t head_blk, tail_blk; 4488 int error; 4489 4490 /* find the tail of the log */ 4491 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 4492 return error; 4493 4494 if (tail_blk != head_blk) { 4495 /* There used to be a comment here: 4496 * 4497 * disallow recovery on read-only mounts. note -- mount 4498 * checks for ENOSPC and turns it into an intelligent 4499 * error message. 4500 * ...but this is no longer true. Now, unless you specify 4501 * NORECOVERY (in which case this function would never be 4502 * called), we just go ahead and recover. We do this all 4503 * under the vfs layer, so we can get away with it unless 4504 * the device itself is read-only, in which case we fail. 4505 */ 4506 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 4507 return error; 4508 } 4509 4510 /* 4511 * Version 5 superblock log feature mask validation. We know the 4512 * log is dirty so check if there are any unknown log features 4513 * in what we need to recover. If there are unknown features 4514 * (e.g. unsupported transactions, then simply reject the 4515 * attempt at recovery before touching anything. 4516 */ 4517 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 4518 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 4519 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 4520 xfs_warn(log->l_mp, 4521 "Superblock has unknown incompatible log features (0x%x) enabled.\n" 4522 "The log can not be fully and/or safely recovered by this kernel.\n" 4523 "Please recover the log on a kernel that supports the unknown features.", 4524 (log->l_mp->m_sb.sb_features_log_incompat & 4525 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 4526 return -EINVAL; 4527 } 4528 4529 /* 4530 * Delay log recovery if the debug hook is set. This is debug 4531 * instrumention to coordinate simulation of I/O failures with 4532 * log recovery. 4533 */ 4534 if (xfs_globals.log_recovery_delay) { 4535 xfs_notice(log->l_mp, 4536 "Delaying log recovery for %d seconds.", 4537 xfs_globals.log_recovery_delay); 4538 msleep(xfs_globals.log_recovery_delay * 1000); 4539 } 4540 4541 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 4542 log->l_mp->m_logname ? log->l_mp->m_logname 4543 : "internal"); 4544 4545 error = xlog_do_recover(log, head_blk, tail_blk); 4546 log->l_flags |= XLOG_RECOVERY_NEEDED; 4547 } 4548 return error; 4549 } 4550 4551 /* 4552 * In the first part of recovery we replay inodes and buffers and build 4553 * up the list of extent free items which need to be processed. Here 4554 * we process the extent free items and clean up the on disk unlinked 4555 * inode lists. This is separated from the first part of recovery so 4556 * that the root and real-time bitmap inodes can be read in from disk in 4557 * between the two stages. This is necessary so that we can free space 4558 * in the real-time portion of the file system. 4559 */ 4560 int 4561 xlog_recover_finish( 4562 struct xlog *log) 4563 { 4564 /* 4565 * Now we're ready to do the transactions needed for the 4566 * rest of recovery. Start with completing all the extent 4567 * free intent records and then process the unlinked inode 4568 * lists. At this point, we essentially run in normal mode 4569 * except that we're still performing recovery actions 4570 * rather than accepting new requests. 4571 */ 4572 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 4573 int error; 4574 error = xlog_recover_process_efis(log); 4575 if (error) { 4576 xfs_alert(log->l_mp, "Failed to recover EFIs"); 4577 return error; 4578 } 4579 /* 4580 * Sync the log to get all the EFIs out of the AIL. 4581 * This isn't absolutely necessary, but it helps in 4582 * case the unlink transactions would have problems 4583 * pushing the EFIs out of the way. 4584 */ 4585 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 4586 4587 xlog_recover_process_iunlinks(log); 4588 4589 xlog_recover_check_summary(log); 4590 4591 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 4592 log->l_mp->m_logname ? log->l_mp->m_logname 4593 : "internal"); 4594 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 4595 } else { 4596 xfs_info(log->l_mp, "Ending clean mount"); 4597 } 4598 return 0; 4599 } 4600 4601 4602 #if defined(DEBUG) 4603 /* 4604 * Read all of the agf and agi counters and check that they 4605 * are consistent with the superblock counters. 4606 */ 4607 void 4608 xlog_recover_check_summary( 4609 struct xlog *log) 4610 { 4611 xfs_mount_t *mp; 4612 xfs_agf_t *agfp; 4613 xfs_buf_t *agfbp; 4614 xfs_buf_t *agibp; 4615 xfs_agnumber_t agno; 4616 __uint64_t freeblks; 4617 __uint64_t itotal; 4618 __uint64_t ifree; 4619 int error; 4620 4621 mp = log->l_mp; 4622 4623 freeblks = 0LL; 4624 itotal = 0LL; 4625 ifree = 0LL; 4626 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4627 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 4628 if (error) { 4629 xfs_alert(mp, "%s agf read failed agno %d error %d", 4630 __func__, agno, error); 4631 } else { 4632 agfp = XFS_BUF_TO_AGF(agfbp); 4633 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4634 be32_to_cpu(agfp->agf_flcount); 4635 xfs_buf_relse(agfbp); 4636 } 4637 4638 error = xfs_read_agi(mp, NULL, agno, &agibp); 4639 if (error) { 4640 xfs_alert(mp, "%s agi read failed agno %d error %d", 4641 __func__, agno, error); 4642 } else { 4643 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 4644 4645 itotal += be32_to_cpu(agi->agi_count); 4646 ifree += be32_to_cpu(agi->agi_freecount); 4647 xfs_buf_relse(agibp); 4648 } 4649 } 4650 } 4651 #endif /* DEBUG */ 4652