1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_btree.h" 33 #include "xfs_dinode.h" 34 #include "xfs_inode.h" 35 #include "xfs_inode_item.h" 36 #include "xfs_alloc.h" 37 #include "xfs_ialloc.h" 38 #include "xfs_log_priv.h" 39 #include "xfs_buf_item.h" 40 #include "xfs_log_recover.h" 41 #include "xfs_extfree_item.h" 42 #include "xfs_trans_priv.h" 43 #include "xfs_quota.h" 44 #include "xfs_utils.h" 45 #include "xfs_cksum.h" 46 #include "xfs_trace.h" 47 #include "xfs_icache.h" 48 49 /* Need all the magic numbers and buffer ops structures from these headers */ 50 #include "xfs_symlink.h" 51 #include "xfs_da_btree.h" 52 #include "xfs_dir2_format.h" 53 #include "xfs_dir2_priv.h" 54 #include "xfs_attr_leaf.h" 55 #include "xfs_attr_remote.h" 56 57 STATIC int 58 xlog_find_zeroed( 59 struct xlog *, 60 xfs_daddr_t *); 61 STATIC int 62 xlog_clear_stale_blocks( 63 struct xlog *, 64 xfs_lsn_t); 65 #if defined(DEBUG) 66 STATIC void 67 xlog_recover_check_summary( 68 struct xlog *); 69 #else 70 #define xlog_recover_check_summary(log) 71 #endif 72 73 /* 74 * This structure is used during recovery to record the buf log items which 75 * have been canceled and should not be replayed. 76 */ 77 struct xfs_buf_cancel { 78 xfs_daddr_t bc_blkno; 79 uint bc_len; 80 int bc_refcount; 81 struct list_head bc_list; 82 }; 83 84 /* 85 * Sector aligned buffer routines for buffer create/read/write/access 86 */ 87 88 /* 89 * Verify the given count of basic blocks is valid number of blocks 90 * to specify for an operation involving the given XFS log buffer. 91 * Returns nonzero if the count is valid, 0 otherwise. 92 */ 93 94 static inline int 95 xlog_buf_bbcount_valid( 96 struct xlog *log, 97 int bbcount) 98 { 99 return bbcount > 0 && bbcount <= log->l_logBBsize; 100 } 101 102 /* 103 * Allocate a buffer to hold log data. The buffer needs to be able 104 * to map to a range of nbblks basic blocks at any valid (basic 105 * block) offset within the log. 106 */ 107 STATIC xfs_buf_t * 108 xlog_get_bp( 109 struct xlog *log, 110 int nbblks) 111 { 112 struct xfs_buf *bp; 113 114 if (!xlog_buf_bbcount_valid(log, nbblks)) { 115 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 116 nbblks); 117 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 118 return NULL; 119 } 120 121 /* 122 * We do log I/O in units of log sectors (a power-of-2 123 * multiple of the basic block size), so we round up the 124 * requested size to accommodate the basic blocks required 125 * for complete log sectors. 126 * 127 * In addition, the buffer may be used for a non-sector- 128 * aligned block offset, in which case an I/O of the 129 * requested size could extend beyond the end of the 130 * buffer. If the requested size is only 1 basic block it 131 * will never straddle a sector boundary, so this won't be 132 * an issue. Nor will this be a problem if the log I/O is 133 * done in basic blocks (sector size 1). But otherwise we 134 * extend the buffer by one extra log sector to ensure 135 * there's space to accommodate this possibility. 136 */ 137 if (nbblks > 1 && log->l_sectBBsize > 1) 138 nbblks += log->l_sectBBsize; 139 nbblks = round_up(nbblks, log->l_sectBBsize); 140 141 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 142 if (bp) 143 xfs_buf_unlock(bp); 144 return bp; 145 } 146 147 STATIC void 148 xlog_put_bp( 149 xfs_buf_t *bp) 150 { 151 xfs_buf_free(bp); 152 } 153 154 /* 155 * Return the address of the start of the given block number's data 156 * in a log buffer. The buffer covers a log sector-aligned region. 157 */ 158 STATIC xfs_caddr_t 159 xlog_align( 160 struct xlog *log, 161 xfs_daddr_t blk_no, 162 int nbblks, 163 struct xfs_buf *bp) 164 { 165 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 166 167 ASSERT(offset + nbblks <= bp->b_length); 168 return bp->b_addr + BBTOB(offset); 169 } 170 171 172 /* 173 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 174 */ 175 STATIC int 176 xlog_bread_noalign( 177 struct xlog *log, 178 xfs_daddr_t blk_no, 179 int nbblks, 180 struct xfs_buf *bp) 181 { 182 int error; 183 184 if (!xlog_buf_bbcount_valid(log, nbblks)) { 185 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 186 nbblks); 187 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 188 return EFSCORRUPTED; 189 } 190 191 blk_no = round_down(blk_no, log->l_sectBBsize); 192 nbblks = round_up(nbblks, log->l_sectBBsize); 193 194 ASSERT(nbblks > 0); 195 ASSERT(nbblks <= bp->b_length); 196 197 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 198 XFS_BUF_READ(bp); 199 bp->b_io_length = nbblks; 200 bp->b_error = 0; 201 202 xfsbdstrat(log->l_mp, bp); 203 error = xfs_buf_iowait(bp); 204 if (error) 205 xfs_buf_ioerror_alert(bp, __func__); 206 return error; 207 } 208 209 STATIC int 210 xlog_bread( 211 struct xlog *log, 212 xfs_daddr_t blk_no, 213 int nbblks, 214 struct xfs_buf *bp, 215 xfs_caddr_t *offset) 216 { 217 int error; 218 219 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 220 if (error) 221 return error; 222 223 *offset = xlog_align(log, blk_no, nbblks, bp); 224 return 0; 225 } 226 227 /* 228 * Read at an offset into the buffer. Returns with the buffer in it's original 229 * state regardless of the result of the read. 230 */ 231 STATIC int 232 xlog_bread_offset( 233 struct xlog *log, 234 xfs_daddr_t blk_no, /* block to read from */ 235 int nbblks, /* blocks to read */ 236 struct xfs_buf *bp, 237 xfs_caddr_t offset) 238 { 239 xfs_caddr_t orig_offset = bp->b_addr; 240 int orig_len = BBTOB(bp->b_length); 241 int error, error2; 242 243 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 244 if (error) 245 return error; 246 247 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 248 249 /* must reset buffer pointer even on error */ 250 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 251 if (error) 252 return error; 253 return error2; 254 } 255 256 /* 257 * Write out the buffer at the given block for the given number of blocks. 258 * The buffer is kept locked across the write and is returned locked. 259 * This can only be used for synchronous log writes. 260 */ 261 STATIC int 262 xlog_bwrite( 263 struct xlog *log, 264 xfs_daddr_t blk_no, 265 int nbblks, 266 struct xfs_buf *bp) 267 { 268 int error; 269 270 if (!xlog_buf_bbcount_valid(log, nbblks)) { 271 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 272 nbblks); 273 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 274 return EFSCORRUPTED; 275 } 276 277 blk_no = round_down(blk_no, log->l_sectBBsize); 278 nbblks = round_up(nbblks, log->l_sectBBsize); 279 280 ASSERT(nbblks > 0); 281 ASSERT(nbblks <= bp->b_length); 282 283 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 284 XFS_BUF_ZEROFLAGS(bp); 285 xfs_buf_hold(bp); 286 xfs_buf_lock(bp); 287 bp->b_io_length = nbblks; 288 bp->b_error = 0; 289 290 error = xfs_bwrite(bp); 291 if (error) 292 xfs_buf_ioerror_alert(bp, __func__); 293 xfs_buf_relse(bp); 294 return error; 295 } 296 297 #ifdef DEBUG 298 /* 299 * dump debug superblock and log record information 300 */ 301 STATIC void 302 xlog_header_check_dump( 303 xfs_mount_t *mp, 304 xlog_rec_header_t *head) 305 { 306 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n", 307 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 308 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n", 309 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 310 } 311 #else 312 #define xlog_header_check_dump(mp, head) 313 #endif 314 315 /* 316 * check log record header for recovery 317 */ 318 STATIC int 319 xlog_header_check_recover( 320 xfs_mount_t *mp, 321 xlog_rec_header_t *head) 322 { 323 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 324 325 /* 326 * IRIX doesn't write the h_fmt field and leaves it zeroed 327 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 328 * a dirty log created in IRIX. 329 */ 330 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 331 xfs_warn(mp, 332 "dirty log written in incompatible format - can't recover"); 333 xlog_header_check_dump(mp, head); 334 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 335 XFS_ERRLEVEL_HIGH, mp); 336 return XFS_ERROR(EFSCORRUPTED); 337 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 338 xfs_warn(mp, 339 "dirty log entry has mismatched uuid - can't recover"); 340 xlog_header_check_dump(mp, head); 341 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 342 XFS_ERRLEVEL_HIGH, mp); 343 return XFS_ERROR(EFSCORRUPTED); 344 } 345 return 0; 346 } 347 348 /* 349 * read the head block of the log and check the header 350 */ 351 STATIC int 352 xlog_header_check_mount( 353 xfs_mount_t *mp, 354 xlog_rec_header_t *head) 355 { 356 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 357 358 if (uuid_is_nil(&head->h_fs_uuid)) { 359 /* 360 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 361 * h_fs_uuid is nil, we assume this log was last mounted 362 * by IRIX and continue. 363 */ 364 xfs_warn(mp, "nil uuid in log - IRIX style log"); 365 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 366 xfs_warn(mp, "log has mismatched uuid - can't recover"); 367 xlog_header_check_dump(mp, head); 368 XFS_ERROR_REPORT("xlog_header_check_mount", 369 XFS_ERRLEVEL_HIGH, mp); 370 return XFS_ERROR(EFSCORRUPTED); 371 } 372 return 0; 373 } 374 375 STATIC void 376 xlog_recover_iodone( 377 struct xfs_buf *bp) 378 { 379 if (bp->b_error) { 380 /* 381 * We're not going to bother about retrying 382 * this during recovery. One strike! 383 */ 384 xfs_buf_ioerror_alert(bp, __func__); 385 xfs_force_shutdown(bp->b_target->bt_mount, 386 SHUTDOWN_META_IO_ERROR); 387 } 388 bp->b_iodone = NULL; 389 xfs_buf_ioend(bp, 0); 390 } 391 392 /* 393 * This routine finds (to an approximation) the first block in the physical 394 * log which contains the given cycle. It uses a binary search algorithm. 395 * Note that the algorithm can not be perfect because the disk will not 396 * necessarily be perfect. 397 */ 398 STATIC int 399 xlog_find_cycle_start( 400 struct xlog *log, 401 struct xfs_buf *bp, 402 xfs_daddr_t first_blk, 403 xfs_daddr_t *last_blk, 404 uint cycle) 405 { 406 xfs_caddr_t offset; 407 xfs_daddr_t mid_blk; 408 xfs_daddr_t end_blk; 409 uint mid_cycle; 410 int error; 411 412 end_blk = *last_blk; 413 mid_blk = BLK_AVG(first_blk, end_blk); 414 while (mid_blk != first_blk && mid_blk != end_blk) { 415 error = xlog_bread(log, mid_blk, 1, bp, &offset); 416 if (error) 417 return error; 418 mid_cycle = xlog_get_cycle(offset); 419 if (mid_cycle == cycle) 420 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 421 else 422 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 423 mid_blk = BLK_AVG(first_blk, end_blk); 424 } 425 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 426 (mid_blk == end_blk && mid_blk-1 == first_blk)); 427 428 *last_blk = end_blk; 429 430 return 0; 431 } 432 433 /* 434 * Check that a range of blocks does not contain stop_on_cycle_no. 435 * Fill in *new_blk with the block offset where such a block is 436 * found, or with -1 (an invalid block number) if there is no such 437 * block in the range. The scan needs to occur from front to back 438 * and the pointer into the region must be updated since a later 439 * routine will need to perform another test. 440 */ 441 STATIC int 442 xlog_find_verify_cycle( 443 struct xlog *log, 444 xfs_daddr_t start_blk, 445 int nbblks, 446 uint stop_on_cycle_no, 447 xfs_daddr_t *new_blk) 448 { 449 xfs_daddr_t i, j; 450 uint cycle; 451 xfs_buf_t *bp; 452 xfs_daddr_t bufblks; 453 xfs_caddr_t buf = NULL; 454 int error = 0; 455 456 /* 457 * Greedily allocate a buffer big enough to handle the full 458 * range of basic blocks we'll be examining. If that fails, 459 * try a smaller size. We need to be able to read at least 460 * a log sector, or we're out of luck. 461 */ 462 bufblks = 1 << ffs(nbblks); 463 while (bufblks > log->l_logBBsize) 464 bufblks >>= 1; 465 while (!(bp = xlog_get_bp(log, bufblks))) { 466 bufblks >>= 1; 467 if (bufblks < log->l_sectBBsize) 468 return ENOMEM; 469 } 470 471 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 472 int bcount; 473 474 bcount = min(bufblks, (start_blk + nbblks - i)); 475 476 error = xlog_bread(log, i, bcount, bp, &buf); 477 if (error) 478 goto out; 479 480 for (j = 0; j < bcount; j++) { 481 cycle = xlog_get_cycle(buf); 482 if (cycle == stop_on_cycle_no) { 483 *new_blk = i+j; 484 goto out; 485 } 486 487 buf += BBSIZE; 488 } 489 } 490 491 *new_blk = -1; 492 493 out: 494 xlog_put_bp(bp); 495 return error; 496 } 497 498 /* 499 * Potentially backup over partial log record write. 500 * 501 * In the typical case, last_blk is the number of the block directly after 502 * a good log record. Therefore, we subtract one to get the block number 503 * of the last block in the given buffer. extra_bblks contains the number 504 * of blocks we would have read on a previous read. This happens when the 505 * last log record is split over the end of the physical log. 506 * 507 * extra_bblks is the number of blocks potentially verified on a previous 508 * call to this routine. 509 */ 510 STATIC int 511 xlog_find_verify_log_record( 512 struct xlog *log, 513 xfs_daddr_t start_blk, 514 xfs_daddr_t *last_blk, 515 int extra_bblks) 516 { 517 xfs_daddr_t i; 518 xfs_buf_t *bp; 519 xfs_caddr_t offset = NULL; 520 xlog_rec_header_t *head = NULL; 521 int error = 0; 522 int smallmem = 0; 523 int num_blks = *last_blk - start_blk; 524 int xhdrs; 525 526 ASSERT(start_blk != 0 || *last_blk != start_blk); 527 528 if (!(bp = xlog_get_bp(log, num_blks))) { 529 if (!(bp = xlog_get_bp(log, 1))) 530 return ENOMEM; 531 smallmem = 1; 532 } else { 533 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 534 if (error) 535 goto out; 536 offset += ((num_blks - 1) << BBSHIFT); 537 } 538 539 for (i = (*last_blk) - 1; i >= 0; i--) { 540 if (i < start_blk) { 541 /* valid log record not found */ 542 xfs_warn(log->l_mp, 543 "Log inconsistent (didn't find previous header)"); 544 ASSERT(0); 545 error = XFS_ERROR(EIO); 546 goto out; 547 } 548 549 if (smallmem) { 550 error = xlog_bread(log, i, 1, bp, &offset); 551 if (error) 552 goto out; 553 } 554 555 head = (xlog_rec_header_t *)offset; 556 557 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 558 break; 559 560 if (!smallmem) 561 offset -= BBSIZE; 562 } 563 564 /* 565 * We hit the beginning of the physical log & still no header. Return 566 * to caller. If caller can handle a return of -1, then this routine 567 * will be called again for the end of the physical log. 568 */ 569 if (i == -1) { 570 error = -1; 571 goto out; 572 } 573 574 /* 575 * We have the final block of the good log (the first block 576 * of the log record _before_ the head. So we check the uuid. 577 */ 578 if ((error = xlog_header_check_mount(log->l_mp, head))) 579 goto out; 580 581 /* 582 * We may have found a log record header before we expected one. 583 * last_blk will be the 1st block # with a given cycle #. We may end 584 * up reading an entire log record. In this case, we don't want to 585 * reset last_blk. Only when last_blk points in the middle of a log 586 * record do we update last_blk. 587 */ 588 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 589 uint h_size = be32_to_cpu(head->h_size); 590 591 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 592 if (h_size % XLOG_HEADER_CYCLE_SIZE) 593 xhdrs++; 594 } else { 595 xhdrs = 1; 596 } 597 598 if (*last_blk - i + extra_bblks != 599 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 600 *last_blk = i; 601 602 out: 603 xlog_put_bp(bp); 604 return error; 605 } 606 607 /* 608 * Head is defined to be the point of the log where the next log write 609 * write could go. This means that incomplete LR writes at the end are 610 * eliminated when calculating the head. We aren't guaranteed that previous 611 * LR have complete transactions. We only know that a cycle number of 612 * current cycle number -1 won't be present in the log if we start writing 613 * from our current block number. 614 * 615 * last_blk contains the block number of the first block with a given 616 * cycle number. 617 * 618 * Return: zero if normal, non-zero if error. 619 */ 620 STATIC int 621 xlog_find_head( 622 struct xlog *log, 623 xfs_daddr_t *return_head_blk) 624 { 625 xfs_buf_t *bp; 626 xfs_caddr_t offset; 627 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 628 int num_scan_bblks; 629 uint first_half_cycle, last_half_cycle; 630 uint stop_on_cycle; 631 int error, log_bbnum = log->l_logBBsize; 632 633 /* Is the end of the log device zeroed? */ 634 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 635 *return_head_blk = first_blk; 636 637 /* Is the whole lot zeroed? */ 638 if (!first_blk) { 639 /* Linux XFS shouldn't generate totally zeroed logs - 640 * mkfs etc write a dummy unmount record to a fresh 641 * log so we can store the uuid in there 642 */ 643 xfs_warn(log->l_mp, "totally zeroed log"); 644 } 645 646 return 0; 647 } else if (error) { 648 xfs_warn(log->l_mp, "empty log check failed"); 649 return error; 650 } 651 652 first_blk = 0; /* get cycle # of 1st block */ 653 bp = xlog_get_bp(log, 1); 654 if (!bp) 655 return ENOMEM; 656 657 error = xlog_bread(log, 0, 1, bp, &offset); 658 if (error) 659 goto bp_err; 660 661 first_half_cycle = xlog_get_cycle(offset); 662 663 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 664 error = xlog_bread(log, last_blk, 1, bp, &offset); 665 if (error) 666 goto bp_err; 667 668 last_half_cycle = xlog_get_cycle(offset); 669 ASSERT(last_half_cycle != 0); 670 671 /* 672 * If the 1st half cycle number is equal to the last half cycle number, 673 * then the entire log is stamped with the same cycle number. In this 674 * case, head_blk can't be set to zero (which makes sense). The below 675 * math doesn't work out properly with head_blk equal to zero. Instead, 676 * we set it to log_bbnum which is an invalid block number, but this 677 * value makes the math correct. If head_blk doesn't changed through 678 * all the tests below, *head_blk is set to zero at the very end rather 679 * than log_bbnum. In a sense, log_bbnum and zero are the same block 680 * in a circular file. 681 */ 682 if (first_half_cycle == last_half_cycle) { 683 /* 684 * In this case we believe that the entire log should have 685 * cycle number last_half_cycle. We need to scan backwards 686 * from the end verifying that there are no holes still 687 * containing last_half_cycle - 1. If we find such a hole, 688 * then the start of that hole will be the new head. The 689 * simple case looks like 690 * x | x ... | x - 1 | x 691 * Another case that fits this picture would be 692 * x | x + 1 | x ... | x 693 * In this case the head really is somewhere at the end of the 694 * log, as one of the latest writes at the beginning was 695 * incomplete. 696 * One more case is 697 * x | x + 1 | x ... | x - 1 | x 698 * This is really the combination of the above two cases, and 699 * the head has to end up at the start of the x-1 hole at the 700 * end of the log. 701 * 702 * In the 256k log case, we will read from the beginning to the 703 * end of the log and search for cycle numbers equal to x-1. 704 * We don't worry about the x+1 blocks that we encounter, 705 * because we know that they cannot be the head since the log 706 * started with x. 707 */ 708 head_blk = log_bbnum; 709 stop_on_cycle = last_half_cycle - 1; 710 } else { 711 /* 712 * In this case we want to find the first block with cycle 713 * number matching last_half_cycle. We expect the log to be 714 * some variation on 715 * x + 1 ... | x ... | x 716 * The first block with cycle number x (last_half_cycle) will 717 * be where the new head belongs. First we do a binary search 718 * for the first occurrence of last_half_cycle. The binary 719 * search may not be totally accurate, so then we scan back 720 * from there looking for occurrences of last_half_cycle before 721 * us. If that backwards scan wraps around the beginning of 722 * the log, then we look for occurrences of last_half_cycle - 1 723 * at the end of the log. The cases we're looking for look 724 * like 725 * v binary search stopped here 726 * x + 1 ... | x | x + 1 | x ... | x 727 * ^ but we want to locate this spot 728 * or 729 * <---------> less than scan distance 730 * x + 1 ... | x ... | x - 1 | x 731 * ^ we want to locate this spot 732 */ 733 stop_on_cycle = last_half_cycle; 734 if ((error = xlog_find_cycle_start(log, bp, first_blk, 735 &head_blk, last_half_cycle))) 736 goto bp_err; 737 } 738 739 /* 740 * Now validate the answer. Scan back some number of maximum possible 741 * blocks and make sure each one has the expected cycle number. The 742 * maximum is determined by the total possible amount of buffering 743 * in the in-core log. The following number can be made tighter if 744 * we actually look at the block size of the filesystem. 745 */ 746 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 747 if (head_blk >= num_scan_bblks) { 748 /* 749 * We are guaranteed that the entire check can be performed 750 * in one buffer. 751 */ 752 start_blk = head_blk - num_scan_bblks; 753 if ((error = xlog_find_verify_cycle(log, 754 start_blk, num_scan_bblks, 755 stop_on_cycle, &new_blk))) 756 goto bp_err; 757 if (new_blk != -1) 758 head_blk = new_blk; 759 } else { /* need to read 2 parts of log */ 760 /* 761 * We are going to scan backwards in the log in two parts. 762 * First we scan the physical end of the log. In this part 763 * of the log, we are looking for blocks with cycle number 764 * last_half_cycle - 1. 765 * If we find one, then we know that the log starts there, as 766 * we've found a hole that didn't get written in going around 767 * the end of the physical log. The simple case for this is 768 * x + 1 ... | x ... | x - 1 | x 769 * <---------> less than scan distance 770 * If all of the blocks at the end of the log have cycle number 771 * last_half_cycle, then we check the blocks at the start of 772 * the log looking for occurrences of last_half_cycle. If we 773 * find one, then our current estimate for the location of the 774 * first occurrence of last_half_cycle is wrong and we move 775 * back to the hole we've found. This case looks like 776 * x + 1 ... | x | x + 1 | x ... 777 * ^ binary search stopped here 778 * Another case we need to handle that only occurs in 256k 779 * logs is 780 * x + 1 ... | x ... | x+1 | x ... 781 * ^ binary search stops here 782 * In a 256k log, the scan at the end of the log will see the 783 * x + 1 blocks. We need to skip past those since that is 784 * certainly not the head of the log. By searching for 785 * last_half_cycle-1 we accomplish that. 786 */ 787 ASSERT(head_blk <= INT_MAX && 788 (xfs_daddr_t) num_scan_bblks >= head_blk); 789 start_blk = log_bbnum - (num_scan_bblks - head_blk); 790 if ((error = xlog_find_verify_cycle(log, start_blk, 791 num_scan_bblks - (int)head_blk, 792 (stop_on_cycle - 1), &new_blk))) 793 goto bp_err; 794 if (new_blk != -1) { 795 head_blk = new_blk; 796 goto validate_head; 797 } 798 799 /* 800 * Scan beginning of log now. The last part of the physical 801 * log is good. This scan needs to verify that it doesn't find 802 * the last_half_cycle. 803 */ 804 start_blk = 0; 805 ASSERT(head_blk <= INT_MAX); 806 if ((error = xlog_find_verify_cycle(log, 807 start_blk, (int)head_blk, 808 stop_on_cycle, &new_blk))) 809 goto bp_err; 810 if (new_blk != -1) 811 head_blk = new_blk; 812 } 813 814 validate_head: 815 /* 816 * Now we need to make sure head_blk is not pointing to a block in 817 * the middle of a log record. 818 */ 819 num_scan_bblks = XLOG_REC_SHIFT(log); 820 if (head_blk >= num_scan_bblks) { 821 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 822 823 /* start ptr at last block ptr before head_blk */ 824 if ((error = xlog_find_verify_log_record(log, start_blk, 825 &head_blk, 0)) == -1) { 826 error = XFS_ERROR(EIO); 827 goto bp_err; 828 } else if (error) 829 goto bp_err; 830 } else { 831 start_blk = 0; 832 ASSERT(head_blk <= INT_MAX); 833 if ((error = xlog_find_verify_log_record(log, start_blk, 834 &head_blk, 0)) == -1) { 835 /* We hit the beginning of the log during our search */ 836 start_blk = log_bbnum - (num_scan_bblks - head_blk); 837 new_blk = log_bbnum; 838 ASSERT(start_blk <= INT_MAX && 839 (xfs_daddr_t) log_bbnum-start_blk >= 0); 840 ASSERT(head_blk <= INT_MAX); 841 if ((error = xlog_find_verify_log_record(log, 842 start_blk, &new_blk, 843 (int)head_blk)) == -1) { 844 error = XFS_ERROR(EIO); 845 goto bp_err; 846 } else if (error) 847 goto bp_err; 848 if (new_blk != log_bbnum) 849 head_blk = new_blk; 850 } else if (error) 851 goto bp_err; 852 } 853 854 xlog_put_bp(bp); 855 if (head_blk == log_bbnum) 856 *return_head_blk = 0; 857 else 858 *return_head_blk = head_blk; 859 /* 860 * When returning here, we have a good block number. Bad block 861 * means that during a previous crash, we didn't have a clean break 862 * from cycle number N to cycle number N-1. In this case, we need 863 * to find the first block with cycle number N-1. 864 */ 865 return 0; 866 867 bp_err: 868 xlog_put_bp(bp); 869 870 if (error) 871 xfs_warn(log->l_mp, "failed to find log head"); 872 return error; 873 } 874 875 /* 876 * Find the sync block number or the tail of the log. 877 * 878 * This will be the block number of the last record to have its 879 * associated buffers synced to disk. Every log record header has 880 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 881 * to get a sync block number. The only concern is to figure out which 882 * log record header to believe. 883 * 884 * The following algorithm uses the log record header with the largest 885 * lsn. The entire log record does not need to be valid. We only care 886 * that the header is valid. 887 * 888 * We could speed up search by using current head_blk buffer, but it is not 889 * available. 890 */ 891 STATIC int 892 xlog_find_tail( 893 struct xlog *log, 894 xfs_daddr_t *head_blk, 895 xfs_daddr_t *tail_blk) 896 { 897 xlog_rec_header_t *rhead; 898 xlog_op_header_t *op_head; 899 xfs_caddr_t offset = NULL; 900 xfs_buf_t *bp; 901 int error, i, found; 902 xfs_daddr_t umount_data_blk; 903 xfs_daddr_t after_umount_blk; 904 xfs_lsn_t tail_lsn; 905 int hblks; 906 907 found = 0; 908 909 /* 910 * Find previous log record 911 */ 912 if ((error = xlog_find_head(log, head_blk))) 913 return error; 914 915 bp = xlog_get_bp(log, 1); 916 if (!bp) 917 return ENOMEM; 918 if (*head_blk == 0) { /* special case */ 919 error = xlog_bread(log, 0, 1, bp, &offset); 920 if (error) 921 goto done; 922 923 if (xlog_get_cycle(offset) == 0) { 924 *tail_blk = 0; 925 /* leave all other log inited values alone */ 926 goto done; 927 } 928 } 929 930 /* 931 * Search backwards looking for log record header block 932 */ 933 ASSERT(*head_blk < INT_MAX); 934 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 935 error = xlog_bread(log, i, 1, bp, &offset); 936 if (error) 937 goto done; 938 939 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 940 found = 1; 941 break; 942 } 943 } 944 /* 945 * If we haven't found the log record header block, start looking 946 * again from the end of the physical log. XXXmiken: There should be 947 * a check here to make sure we didn't search more than N blocks in 948 * the previous code. 949 */ 950 if (!found) { 951 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 952 error = xlog_bread(log, i, 1, bp, &offset); 953 if (error) 954 goto done; 955 956 if (*(__be32 *)offset == 957 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 958 found = 2; 959 break; 960 } 961 } 962 } 963 if (!found) { 964 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 965 ASSERT(0); 966 return XFS_ERROR(EIO); 967 } 968 969 /* find blk_no of tail of log */ 970 rhead = (xlog_rec_header_t *)offset; 971 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 972 973 /* 974 * Reset log values according to the state of the log when we 975 * crashed. In the case where head_blk == 0, we bump curr_cycle 976 * one because the next write starts a new cycle rather than 977 * continuing the cycle of the last good log record. At this 978 * point we have guaranteed that all partial log records have been 979 * accounted for. Therefore, we know that the last good log record 980 * written was complete and ended exactly on the end boundary 981 * of the physical log. 982 */ 983 log->l_prev_block = i; 984 log->l_curr_block = (int)*head_blk; 985 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 986 if (found == 2) 987 log->l_curr_cycle++; 988 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 989 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 990 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 991 BBTOB(log->l_curr_block)); 992 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 993 BBTOB(log->l_curr_block)); 994 995 /* 996 * Look for unmount record. If we find it, then we know there 997 * was a clean unmount. Since 'i' could be the last block in 998 * the physical log, we convert to a log block before comparing 999 * to the head_blk. 1000 * 1001 * Save the current tail lsn to use to pass to 1002 * xlog_clear_stale_blocks() below. We won't want to clear the 1003 * unmount record if there is one, so we pass the lsn of the 1004 * unmount record rather than the block after it. 1005 */ 1006 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1007 int h_size = be32_to_cpu(rhead->h_size); 1008 int h_version = be32_to_cpu(rhead->h_version); 1009 1010 if ((h_version & XLOG_VERSION_2) && 1011 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1012 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1013 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1014 hblks++; 1015 } else { 1016 hblks = 1; 1017 } 1018 } else { 1019 hblks = 1; 1020 } 1021 after_umount_blk = (i + hblks + (int) 1022 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 1023 tail_lsn = atomic64_read(&log->l_tail_lsn); 1024 if (*head_blk == after_umount_blk && 1025 be32_to_cpu(rhead->h_num_logops) == 1) { 1026 umount_data_blk = (i + hblks) % log->l_logBBsize; 1027 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1028 if (error) 1029 goto done; 1030 1031 op_head = (xlog_op_header_t *)offset; 1032 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1033 /* 1034 * Set tail and last sync so that newly written 1035 * log records will point recovery to after the 1036 * current unmount record. 1037 */ 1038 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1039 log->l_curr_cycle, after_umount_blk); 1040 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1041 log->l_curr_cycle, after_umount_blk); 1042 *tail_blk = after_umount_blk; 1043 1044 /* 1045 * Note that the unmount was clean. If the unmount 1046 * was not clean, we need to know this to rebuild the 1047 * superblock counters from the perag headers if we 1048 * have a filesystem using non-persistent counters. 1049 */ 1050 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1051 } 1052 } 1053 1054 /* 1055 * Make sure that there are no blocks in front of the head 1056 * with the same cycle number as the head. This can happen 1057 * because we allow multiple outstanding log writes concurrently, 1058 * and the later writes might make it out before earlier ones. 1059 * 1060 * We use the lsn from before modifying it so that we'll never 1061 * overwrite the unmount record after a clean unmount. 1062 * 1063 * Do this only if we are going to recover the filesystem 1064 * 1065 * NOTE: This used to say "if (!readonly)" 1066 * However on Linux, we can & do recover a read-only filesystem. 1067 * We only skip recovery if NORECOVERY is specified on mount, 1068 * in which case we would not be here. 1069 * 1070 * But... if the -device- itself is readonly, just skip this. 1071 * We can't recover this device anyway, so it won't matter. 1072 */ 1073 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1074 error = xlog_clear_stale_blocks(log, tail_lsn); 1075 1076 done: 1077 xlog_put_bp(bp); 1078 1079 if (error) 1080 xfs_warn(log->l_mp, "failed to locate log tail"); 1081 return error; 1082 } 1083 1084 /* 1085 * Is the log zeroed at all? 1086 * 1087 * The last binary search should be changed to perform an X block read 1088 * once X becomes small enough. You can then search linearly through 1089 * the X blocks. This will cut down on the number of reads we need to do. 1090 * 1091 * If the log is partially zeroed, this routine will pass back the blkno 1092 * of the first block with cycle number 0. It won't have a complete LR 1093 * preceding it. 1094 * 1095 * Return: 1096 * 0 => the log is completely written to 1097 * -1 => use *blk_no as the first block of the log 1098 * >0 => error has occurred 1099 */ 1100 STATIC int 1101 xlog_find_zeroed( 1102 struct xlog *log, 1103 xfs_daddr_t *blk_no) 1104 { 1105 xfs_buf_t *bp; 1106 xfs_caddr_t offset; 1107 uint first_cycle, last_cycle; 1108 xfs_daddr_t new_blk, last_blk, start_blk; 1109 xfs_daddr_t num_scan_bblks; 1110 int error, log_bbnum = log->l_logBBsize; 1111 1112 *blk_no = 0; 1113 1114 /* check totally zeroed log */ 1115 bp = xlog_get_bp(log, 1); 1116 if (!bp) 1117 return ENOMEM; 1118 error = xlog_bread(log, 0, 1, bp, &offset); 1119 if (error) 1120 goto bp_err; 1121 1122 first_cycle = xlog_get_cycle(offset); 1123 if (first_cycle == 0) { /* completely zeroed log */ 1124 *blk_no = 0; 1125 xlog_put_bp(bp); 1126 return -1; 1127 } 1128 1129 /* check partially zeroed log */ 1130 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1131 if (error) 1132 goto bp_err; 1133 1134 last_cycle = xlog_get_cycle(offset); 1135 if (last_cycle != 0) { /* log completely written to */ 1136 xlog_put_bp(bp); 1137 return 0; 1138 } else if (first_cycle != 1) { 1139 /* 1140 * If the cycle of the last block is zero, the cycle of 1141 * the first block must be 1. If it's not, maybe we're 1142 * not looking at a log... Bail out. 1143 */ 1144 xfs_warn(log->l_mp, 1145 "Log inconsistent or not a log (last==0, first!=1)"); 1146 return XFS_ERROR(EINVAL); 1147 } 1148 1149 /* we have a partially zeroed log */ 1150 last_blk = log_bbnum-1; 1151 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1152 goto bp_err; 1153 1154 /* 1155 * Validate the answer. Because there is no way to guarantee that 1156 * the entire log is made up of log records which are the same size, 1157 * we scan over the defined maximum blocks. At this point, the maximum 1158 * is not chosen to mean anything special. XXXmiken 1159 */ 1160 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1161 ASSERT(num_scan_bblks <= INT_MAX); 1162 1163 if (last_blk < num_scan_bblks) 1164 num_scan_bblks = last_blk; 1165 start_blk = last_blk - num_scan_bblks; 1166 1167 /* 1168 * We search for any instances of cycle number 0 that occur before 1169 * our current estimate of the head. What we're trying to detect is 1170 * 1 ... | 0 | 1 | 0... 1171 * ^ binary search ends here 1172 */ 1173 if ((error = xlog_find_verify_cycle(log, start_blk, 1174 (int)num_scan_bblks, 0, &new_blk))) 1175 goto bp_err; 1176 if (new_blk != -1) 1177 last_blk = new_blk; 1178 1179 /* 1180 * Potentially backup over partial log record write. We don't need 1181 * to search the end of the log because we know it is zero. 1182 */ 1183 if ((error = xlog_find_verify_log_record(log, start_blk, 1184 &last_blk, 0)) == -1) { 1185 error = XFS_ERROR(EIO); 1186 goto bp_err; 1187 } else if (error) 1188 goto bp_err; 1189 1190 *blk_no = last_blk; 1191 bp_err: 1192 xlog_put_bp(bp); 1193 if (error) 1194 return error; 1195 return -1; 1196 } 1197 1198 /* 1199 * These are simple subroutines used by xlog_clear_stale_blocks() below 1200 * to initialize a buffer full of empty log record headers and write 1201 * them into the log. 1202 */ 1203 STATIC void 1204 xlog_add_record( 1205 struct xlog *log, 1206 xfs_caddr_t buf, 1207 int cycle, 1208 int block, 1209 int tail_cycle, 1210 int tail_block) 1211 { 1212 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1213 1214 memset(buf, 0, BBSIZE); 1215 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1216 recp->h_cycle = cpu_to_be32(cycle); 1217 recp->h_version = cpu_to_be32( 1218 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1219 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1220 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1221 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1222 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1223 } 1224 1225 STATIC int 1226 xlog_write_log_records( 1227 struct xlog *log, 1228 int cycle, 1229 int start_block, 1230 int blocks, 1231 int tail_cycle, 1232 int tail_block) 1233 { 1234 xfs_caddr_t offset; 1235 xfs_buf_t *bp; 1236 int balign, ealign; 1237 int sectbb = log->l_sectBBsize; 1238 int end_block = start_block + blocks; 1239 int bufblks; 1240 int error = 0; 1241 int i, j = 0; 1242 1243 /* 1244 * Greedily allocate a buffer big enough to handle the full 1245 * range of basic blocks to be written. If that fails, try 1246 * a smaller size. We need to be able to write at least a 1247 * log sector, or we're out of luck. 1248 */ 1249 bufblks = 1 << ffs(blocks); 1250 while (bufblks > log->l_logBBsize) 1251 bufblks >>= 1; 1252 while (!(bp = xlog_get_bp(log, bufblks))) { 1253 bufblks >>= 1; 1254 if (bufblks < sectbb) 1255 return ENOMEM; 1256 } 1257 1258 /* We may need to do a read at the start to fill in part of 1259 * the buffer in the starting sector not covered by the first 1260 * write below. 1261 */ 1262 balign = round_down(start_block, sectbb); 1263 if (balign != start_block) { 1264 error = xlog_bread_noalign(log, start_block, 1, bp); 1265 if (error) 1266 goto out_put_bp; 1267 1268 j = start_block - balign; 1269 } 1270 1271 for (i = start_block; i < end_block; i += bufblks) { 1272 int bcount, endcount; 1273 1274 bcount = min(bufblks, end_block - start_block); 1275 endcount = bcount - j; 1276 1277 /* We may need to do a read at the end to fill in part of 1278 * the buffer in the final sector not covered by the write. 1279 * If this is the same sector as the above read, skip it. 1280 */ 1281 ealign = round_down(end_block, sectbb); 1282 if (j == 0 && (start_block + endcount > ealign)) { 1283 offset = bp->b_addr + BBTOB(ealign - start_block); 1284 error = xlog_bread_offset(log, ealign, sectbb, 1285 bp, offset); 1286 if (error) 1287 break; 1288 1289 } 1290 1291 offset = xlog_align(log, start_block, endcount, bp); 1292 for (; j < endcount; j++) { 1293 xlog_add_record(log, offset, cycle, i+j, 1294 tail_cycle, tail_block); 1295 offset += BBSIZE; 1296 } 1297 error = xlog_bwrite(log, start_block, endcount, bp); 1298 if (error) 1299 break; 1300 start_block += endcount; 1301 j = 0; 1302 } 1303 1304 out_put_bp: 1305 xlog_put_bp(bp); 1306 return error; 1307 } 1308 1309 /* 1310 * This routine is called to blow away any incomplete log writes out 1311 * in front of the log head. We do this so that we won't become confused 1312 * if we come up, write only a little bit more, and then crash again. 1313 * If we leave the partial log records out there, this situation could 1314 * cause us to think those partial writes are valid blocks since they 1315 * have the current cycle number. We get rid of them by overwriting them 1316 * with empty log records with the old cycle number rather than the 1317 * current one. 1318 * 1319 * The tail lsn is passed in rather than taken from 1320 * the log so that we will not write over the unmount record after a 1321 * clean unmount in a 512 block log. Doing so would leave the log without 1322 * any valid log records in it until a new one was written. If we crashed 1323 * during that time we would not be able to recover. 1324 */ 1325 STATIC int 1326 xlog_clear_stale_blocks( 1327 struct xlog *log, 1328 xfs_lsn_t tail_lsn) 1329 { 1330 int tail_cycle, head_cycle; 1331 int tail_block, head_block; 1332 int tail_distance, max_distance; 1333 int distance; 1334 int error; 1335 1336 tail_cycle = CYCLE_LSN(tail_lsn); 1337 tail_block = BLOCK_LSN(tail_lsn); 1338 head_cycle = log->l_curr_cycle; 1339 head_block = log->l_curr_block; 1340 1341 /* 1342 * Figure out the distance between the new head of the log 1343 * and the tail. We want to write over any blocks beyond the 1344 * head that we may have written just before the crash, but 1345 * we don't want to overwrite the tail of the log. 1346 */ 1347 if (head_cycle == tail_cycle) { 1348 /* 1349 * The tail is behind the head in the physical log, 1350 * so the distance from the head to the tail is the 1351 * distance from the head to the end of the log plus 1352 * the distance from the beginning of the log to the 1353 * tail. 1354 */ 1355 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1356 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1357 XFS_ERRLEVEL_LOW, log->l_mp); 1358 return XFS_ERROR(EFSCORRUPTED); 1359 } 1360 tail_distance = tail_block + (log->l_logBBsize - head_block); 1361 } else { 1362 /* 1363 * The head is behind the tail in the physical log, 1364 * so the distance from the head to the tail is just 1365 * the tail block minus the head block. 1366 */ 1367 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1368 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1369 XFS_ERRLEVEL_LOW, log->l_mp); 1370 return XFS_ERROR(EFSCORRUPTED); 1371 } 1372 tail_distance = tail_block - head_block; 1373 } 1374 1375 /* 1376 * If the head is right up against the tail, we can't clear 1377 * anything. 1378 */ 1379 if (tail_distance <= 0) { 1380 ASSERT(tail_distance == 0); 1381 return 0; 1382 } 1383 1384 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1385 /* 1386 * Take the smaller of the maximum amount of outstanding I/O 1387 * we could have and the distance to the tail to clear out. 1388 * We take the smaller so that we don't overwrite the tail and 1389 * we don't waste all day writing from the head to the tail 1390 * for no reason. 1391 */ 1392 max_distance = MIN(max_distance, tail_distance); 1393 1394 if ((head_block + max_distance) <= log->l_logBBsize) { 1395 /* 1396 * We can stomp all the blocks we need to without 1397 * wrapping around the end of the log. Just do it 1398 * in a single write. Use the cycle number of the 1399 * current cycle minus one so that the log will look like: 1400 * n ... | n - 1 ... 1401 */ 1402 error = xlog_write_log_records(log, (head_cycle - 1), 1403 head_block, max_distance, tail_cycle, 1404 tail_block); 1405 if (error) 1406 return error; 1407 } else { 1408 /* 1409 * We need to wrap around the end of the physical log in 1410 * order to clear all the blocks. Do it in two separate 1411 * I/Os. The first write should be from the head to the 1412 * end of the physical log, and it should use the current 1413 * cycle number minus one just like above. 1414 */ 1415 distance = log->l_logBBsize - head_block; 1416 error = xlog_write_log_records(log, (head_cycle - 1), 1417 head_block, distance, tail_cycle, 1418 tail_block); 1419 1420 if (error) 1421 return error; 1422 1423 /* 1424 * Now write the blocks at the start of the physical log. 1425 * This writes the remainder of the blocks we want to clear. 1426 * It uses the current cycle number since we're now on the 1427 * same cycle as the head so that we get: 1428 * n ... n ... | n - 1 ... 1429 * ^^^^^ blocks we're writing 1430 */ 1431 distance = max_distance - (log->l_logBBsize - head_block); 1432 error = xlog_write_log_records(log, head_cycle, 0, distance, 1433 tail_cycle, tail_block); 1434 if (error) 1435 return error; 1436 } 1437 1438 return 0; 1439 } 1440 1441 /****************************************************************************** 1442 * 1443 * Log recover routines 1444 * 1445 ****************************************************************************** 1446 */ 1447 1448 STATIC xlog_recover_t * 1449 xlog_recover_find_tid( 1450 struct hlist_head *head, 1451 xlog_tid_t tid) 1452 { 1453 xlog_recover_t *trans; 1454 1455 hlist_for_each_entry(trans, head, r_list) { 1456 if (trans->r_log_tid == tid) 1457 return trans; 1458 } 1459 return NULL; 1460 } 1461 1462 STATIC void 1463 xlog_recover_new_tid( 1464 struct hlist_head *head, 1465 xlog_tid_t tid, 1466 xfs_lsn_t lsn) 1467 { 1468 xlog_recover_t *trans; 1469 1470 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1471 trans->r_log_tid = tid; 1472 trans->r_lsn = lsn; 1473 INIT_LIST_HEAD(&trans->r_itemq); 1474 1475 INIT_HLIST_NODE(&trans->r_list); 1476 hlist_add_head(&trans->r_list, head); 1477 } 1478 1479 STATIC void 1480 xlog_recover_add_item( 1481 struct list_head *head) 1482 { 1483 xlog_recover_item_t *item; 1484 1485 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1486 INIT_LIST_HEAD(&item->ri_list); 1487 list_add_tail(&item->ri_list, head); 1488 } 1489 1490 STATIC int 1491 xlog_recover_add_to_cont_trans( 1492 struct xlog *log, 1493 struct xlog_recover *trans, 1494 xfs_caddr_t dp, 1495 int len) 1496 { 1497 xlog_recover_item_t *item; 1498 xfs_caddr_t ptr, old_ptr; 1499 int old_len; 1500 1501 if (list_empty(&trans->r_itemq)) { 1502 /* finish copying rest of trans header */ 1503 xlog_recover_add_item(&trans->r_itemq); 1504 ptr = (xfs_caddr_t) &trans->r_theader + 1505 sizeof(xfs_trans_header_t) - len; 1506 memcpy(ptr, dp, len); /* d, s, l */ 1507 return 0; 1508 } 1509 /* take the tail entry */ 1510 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1511 1512 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1513 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1514 1515 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP); 1516 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1517 item->ri_buf[item->ri_cnt-1].i_len += len; 1518 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1519 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 1520 return 0; 1521 } 1522 1523 /* 1524 * The next region to add is the start of a new region. It could be 1525 * a whole region or it could be the first part of a new region. Because 1526 * of this, the assumption here is that the type and size fields of all 1527 * format structures fit into the first 32 bits of the structure. 1528 * 1529 * This works because all regions must be 32 bit aligned. Therefore, we 1530 * either have both fields or we have neither field. In the case we have 1531 * neither field, the data part of the region is zero length. We only have 1532 * a log_op_header and can throw away the header since a new one will appear 1533 * later. If we have at least 4 bytes, then we can determine how many regions 1534 * will appear in the current log item. 1535 */ 1536 STATIC int 1537 xlog_recover_add_to_trans( 1538 struct xlog *log, 1539 struct xlog_recover *trans, 1540 xfs_caddr_t dp, 1541 int len) 1542 { 1543 xfs_inode_log_format_t *in_f; /* any will do */ 1544 xlog_recover_item_t *item; 1545 xfs_caddr_t ptr; 1546 1547 if (!len) 1548 return 0; 1549 if (list_empty(&trans->r_itemq)) { 1550 /* we need to catch log corruptions here */ 1551 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 1552 xfs_warn(log->l_mp, "%s: bad header magic number", 1553 __func__); 1554 ASSERT(0); 1555 return XFS_ERROR(EIO); 1556 } 1557 if (len == sizeof(xfs_trans_header_t)) 1558 xlog_recover_add_item(&trans->r_itemq); 1559 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1560 return 0; 1561 } 1562 1563 ptr = kmem_alloc(len, KM_SLEEP); 1564 memcpy(ptr, dp, len); 1565 in_f = (xfs_inode_log_format_t *)ptr; 1566 1567 /* take the tail entry */ 1568 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1569 if (item->ri_total != 0 && 1570 item->ri_total == item->ri_cnt) { 1571 /* tail item is in use, get a new one */ 1572 xlog_recover_add_item(&trans->r_itemq); 1573 item = list_entry(trans->r_itemq.prev, 1574 xlog_recover_item_t, ri_list); 1575 } 1576 1577 if (item->ri_total == 0) { /* first region to be added */ 1578 if (in_f->ilf_size == 0 || 1579 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 1580 xfs_warn(log->l_mp, 1581 "bad number of regions (%d) in inode log format", 1582 in_f->ilf_size); 1583 ASSERT(0); 1584 return XFS_ERROR(EIO); 1585 } 1586 1587 item->ri_total = in_f->ilf_size; 1588 item->ri_buf = 1589 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 1590 KM_SLEEP); 1591 } 1592 ASSERT(item->ri_total > item->ri_cnt); 1593 /* Description region is ri_buf[0] */ 1594 item->ri_buf[item->ri_cnt].i_addr = ptr; 1595 item->ri_buf[item->ri_cnt].i_len = len; 1596 item->ri_cnt++; 1597 trace_xfs_log_recover_item_add(log, trans, item, 0); 1598 return 0; 1599 } 1600 1601 /* 1602 * Sort the log items in the transaction. 1603 * 1604 * The ordering constraints are defined by the inode allocation and unlink 1605 * behaviour. The rules are: 1606 * 1607 * 1. Every item is only logged once in a given transaction. Hence it 1608 * represents the last logged state of the item. Hence ordering is 1609 * dependent on the order in which operations need to be performed so 1610 * required initial conditions are always met. 1611 * 1612 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1613 * there's nothing to replay from them so we can simply cull them 1614 * from the transaction. However, we can't do that until after we've 1615 * replayed all the other items because they may be dependent on the 1616 * cancelled buffer and replaying the cancelled buffer can remove it 1617 * form the cancelled buffer table. Hence they have tobe done last. 1618 * 1619 * 3. Inode allocation buffers must be replayed before inode items that 1620 * read the buffer and replay changes into it. 1621 * 1622 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1623 * This ensures that inodes are completely flushed to the inode buffer 1624 * in a "free" state before we remove the unlinked inode list pointer. 1625 * 1626 * Hence the ordering needs to be inode allocation buffers first, inode items 1627 * second, inode unlink buffers third and cancelled buffers last. 1628 * 1629 * But there's a problem with that - we can't tell an inode allocation buffer 1630 * apart from a regular buffer, so we can't separate them. We can, however, 1631 * tell an inode unlink buffer from the others, and so we can separate them out 1632 * from all the other buffers and move them to last. 1633 * 1634 * Hence, 4 lists, in order from head to tail: 1635 * - buffer_list for all buffers except cancelled/inode unlink buffers 1636 * - item_list for all non-buffer items 1637 * - inode_buffer_list for inode unlink buffers 1638 * - cancel_list for the cancelled buffers 1639 */ 1640 STATIC int 1641 xlog_recover_reorder_trans( 1642 struct xlog *log, 1643 struct xlog_recover *trans, 1644 int pass) 1645 { 1646 xlog_recover_item_t *item, *n; 1647 LIST_HEAD(sort_list); 1648 LIST_HEAD(cancel_list); 1649 LIST_HEAD(buffer_list); 1650 LIST_HEAD(inode_buffer_list); 1651 LIST_HEAD(inode_list); 1652 1653 list_splice_init(&trans->r_itemq, &sort_list); 1654 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1655 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1656 1657 switch (ITEM_TYPE(item)) { 1658 case XFS_LI_BUF: 1659 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1660 trace_xfs_log_recover_item_reorder_head(log, 1661 trans, item, pass); 1662 list_move(&item->ri_list, &cancel_list); 1663 break; 1664 } 1665 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1666 list_move(&item->ri_list, &inode_buffer_list); 1667 break; 1668 } 1669 list_move_tail(&item->ri_list, &buffer_list); 1670 break; 1671 case XFS_LI_INODE: 1672 case XFS_LI_DQUOT: 1673 case XFS_LI_QUOTAOFF: 1674 case XFS_LI_EFD: 1675 case XFS_LI_EFI: 1676 trace_xfs_log_recover_item_reorder_tail(log, 1677 trans, item, pass); 1678 list_move_tail(&item->ri_list, &inode_list); 1679 break; 1680 default: 1681 xfs_warn(log->l_mp, 1682 "%s: unrecognized type of log operation", 1683 __func__); 1684 ASSERT(0); 1685 return XFS_ERROR(EIO); 1686 } 1687 } 1688 ASSERT(list_empty(&sort_list)); 1689 if (!list_empty(&buffer_list)) 1690 list_splice(&buffer_list, &trans->r_itemq); 1691 if (!list_empty(&inode_list)) 1692 list_splice_tail(&inode_list, &trans->r_itemq); 1693 if (!list_empty(&inode_buffer_list)) 1694 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1695 if (!list_empty(&cancel_list)) 1696 list_splice_tail(&cancel_list, &trans->r_itemq); 1697 return 0; 1698 } 1699 1700 /* 1701 * Build up the table of buf cancel records so that we don't replay 1702 * cancelled data in the second pass. For buffer records that are 1703 * not cancel records, there is nothing to do here so we just return. 1704 * 1705 * If we get a cancel record which is already in the table, this indicates 1706 * that the buffer was cancelled multiple times. In order to ensure 1707 * that during pass 2 we keep the record in the table until we reach its 1708 * last occurrence in the log, we keep a reference count in the cancel 1709 * record in the table to tell us how many times we expect to see this 1710 * record during the second pass. 1711 */ 1712 STATIC int 1713 xlog_recover_buffer_pass1( 1714 struct xlog *log, 1715 struct xlog_recover_item *item) 1716 { 1717 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1718 struct list_head *bucket; 1719 struct xfs_buf_cancel *bcp; 1720 1721 /* 1722 * If this isn't a cancel buffer item, then just return. 1723 */ 1724 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1725 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1726 return 0; 1727 } 1728 1729 /* 1730 * Insert an xfs_buf_cancel record into the hash table of them. 1731 * If there is already an identical record, bump its reference count. 1732 */ 1733 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1734 list_for_each_entry(bcp, bucket, bc_list) { 1735 if (bcp->bc_blkno == buf_f->blf_blkno && 1736 bcp->bc_len == buf_f->blf_len) { 1737 bcp->bc_refcount++; 1738 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1739 return 0; 1740 } 1741 } 1742 1743 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 1744 bcp->bc_blkno = buf_f->blf_blkno; 1745 bcp->bc_len = buf_f->blf_len; 1746 bcp->bc_refcount = 1; 1747 list_add_tail(&bcp->bc_list, bucket); 1748 1749 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1750 return 0; 1751 } 1752 1753 /* 1754 * Check to see whether the buffer being recovered has a corresponding 1755 * entry in the buffer cancel record table. If it does then return 1 1756 * so that it will be cancelled, otherwise return 0. If the buffer is 1757 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement 1758 * the refcount on the entry in the table and remove it from the table 1759 * if this is the last reference. 1760 * 1761 * We remove the cancel record from the table when we encounter its 1762 * last occurrence in the log so that if the same buffer is re-used 1763 * again after its last cancellation we actually replay the changes 1764 * made at that point. 1765 */ 1766 STATIC int 1767 xlog_check_buffer_cancelled( 1768 struct xlog *log, 1769 xfs_daddr_t blkno, 1770 uint len, 1771 ushort flags) 1772 { 1773 struct list_head *bucket; 1774 struct xfs_buf_cancel *bcp; 1775 1776 if (log->l_buf_cancel_table == NULL) { 1777 /* 1778 * There is nothing in the table built in pass one, 1779 * so this buffer must not be cancelled. 1780 */ 1781 ASSERT(!(flags & XFS_BLF_CANCEL)); 1782 return 0; 1783 } 1784 1785 /* 1786 * Search for an entry in the cancel table that matches our buffer. 1787 */ 1788 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1789 list_for_each_entry(bcp, bucket, bc_list) { 1790 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1791 goto found; 1792 } 1793 1794 /* 1795 * We didn't find a corresponding entry in the table, so return 0 so 1796 * that the buffer is NOT cancelled. 1797 */ 1798 ASSERT(!(flags & XFS_BLF_CANCEL)); 1799 return 0; 1800 1801 found: 1802 /* 1803 * We've go a match, so return 1 so that the recovery of this buffer 1804 * is cancelled. If this buffer is actually a buffer cancel log 1805 * item, then decrement the refcount on the one in the table and 1806 * remove it if this is the last reference. 1807 */ 1808 if (flags & XFS_BLF_CANCEL) { 1809 if (--bcp->bc_refcount == 0) { 1810 list_del(&bcp->bc_list); 1811 kmem_free(bcp); 1812 } 1813 } 1814 return 1; 1815 } 1816 1817 /* 1818 * Perform recovery for a buffer full of inodes. In these buffers, the only 1819 * data which should be recovered is that which corresponds to the 1820 * di_next_unlinked pointers in the on disk inode structures. The rest of the 1821 * data for the inodes is always logged through the inodes themselves rather 1822 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 1823 * 1824 * The only time when buffers full of inodes are fully recovered is when the 1825 * buffer is full of newly allocated inodes. In this case the buffer will 1826 * not be marked as an inode buffer and so will be sent to 1827 * xlog_recover_do_reg_buffer() below during recovery. 1828 */ 1829 STATIC int 1830 xlog_recover_do_inode_buffer( 1831 struct xfs_mount *mp, 1832 xlog_recover_item_t *item, 1833 struct xfs_buf *bp, 1834 xfs_buf_log_format_t *buf_f) 1835 { 1836 int i; 1837 int item_index = 0; 1838 int bit = 0; 1839 int nbits = 0; 1840 int reg_buf_offset = 0; 1841 int reg_buf_bytes = 0; 1842 int next_unlinked_offset; 1843 int inodes_per_buf; 1844 xfs_agino_t *logged_nextp; 1845 xfs_agino_t *buffer_nextp; 1846 1847 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 1848 1849 /* 1850 * Post recovery validation only works properly on CRC enabled 1851 * filesystems. 1852 */ 1853 if (xfs_sb_version_hascrc(&mp->m_sb)) 1854 bp->b_ops = &xfs_inode_buf_ops; 1855 1856 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 1857 for (i = 0; i < inodes_per_buf; i++) { 1858 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1859 offsetof(xfs_dinode_t, di_next_unlinked); 1860 1861 while (next_unlinked_offset >= 1862 (reg_buf_offset + reg_buf_bytes)) { 1863 /* 1864 * The next di_next_unlinked field is beyond 1865 * the current logged region. Find the next 1866 * logged region that contains or is beyond 1867 * the current di_next_unlinked field. 1868 */ 1869 bit += nbits; 1870 bit = xfs_next_bit(buf_f->blf_data_map, 1871 buf_f->blf_map_size, bit); 1872 1873 /* 1874 * If there are no more logged regions in the 1875 * buffer, then we're done. 1876 */ 1877 if (bit == -1) 1878 return 0; 1879 1880 nbits = xfs_contig_bits(buf_f->blf_data_map, 1881 buf_f->blf_map_size, bit); 1882 ASSERT(nbits > 0); 1883 reg_buf_offset = bit << XFS_BLF_SHIFT; 1884 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 1885 item_index++; 1886 } 1887 1888 /* 1889 * If the current logged region starts after the current 1890 * di_next_unlinked field, then move on to the next 1891 * di_next_unlinked field. 1892 */ 1893 if (next_unlinked_offset < reg_buf_offset) 1894 continue; 1895 1896 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1897 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 1898 ASSERT((reg_buf_offset + reg_buf_bytes) <= 1899 BBTOB(bp->b_io_length)); 1900 1901 /* 1902 * The current logged region contains a copy of the 1903 * current di_next_unlinked field. Extract its value 1904 * and copy it to the buffer copy. 1905 */ 1906 logged_nextp = item->ri_buf[item_index].i_addr + 1907 next_unlinked_offset - reg_buf_offset; 1908 if (unlikely(*logged_nextp == 0)) { 1909 xfs_alert(mp, 1910 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 1911 "Trying to replay bad (0) inode di_next_unlinked field.", 1912 item, bp); 1913 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1914 XFS_ERRLEVEL_LOW, mp); 1915 return XFS_ERROR(EFSCORRUPTED); 1916 } 1917 1918 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1919 next_unlinked_offset); 1920 *buffer_nextp = *logged_nextp; 1921 1922 /* 1923 * If necessary, recalculate the CRC in the on-disk inode. We 1924 * have to leave the inode in a consistent state for whoever 1925 * reads it next.... 1926 */ 1927 xfs_dinode_calc_crc(mp, (struct xfs_dinode *) 1928 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 1929 1930 } 1931 1932 return 0; 1933 } 1934 1935 /* 1936 * Validate the recovered buffer is of the correct type and attach the 1937 * appropriate buffer operations to them for writeback. Magic numbers are in a 1938 * few places: 1939 * the first 16 bits of the buffer (inode buffer, dquot buffer), 1940 * the first 32 bits of the buffer (most blocks), 1941 * inside a struct xfs_da_blkinfo at the start of the buffer. 1942 */ 1943 static void 1944 xlog_recovery_validate_buf_type( 1945 struct xfs_mount *mp, 1946 struct xfs_buf *bp, 1947 xfs_buf_log_format_t *buf_f) 1948 { 1949 struct xfs_da_blkinfo *info = bp->b_addr; 1950 __uint32_t magic32; 1951 __uint16_t magic16; 1952 __uint16_t magicda; 1953 1954 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 1955 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 1956 magicda = be16_to_cpu(info->magic); 1957 switch (xfs_blft_from_flags(buf_f)) { 1958 case XFS_BLFT_BTREE_BUF: 1959 switch (magic32) { 1960 case XFS_ABTB_CRC_MAGIC: 1961 case XFS_ABTC_CRC_MAGIC: 1962 case XFS_ABTB_MAGIC: 1963 case XFS_ABTC_MAGIC: 1964 bp->b_ops = &xfs_allocbt_buf_ops; 1965 break; 1966 case XFS_IBT_CRC_MAGIC: 1967 case XFS_IBT_MAGIC: 1968 bp->b_ops = &xfs_inobt_buf_ops; 1969 break; 1970 case XFS_BMAP_CRC_MAGIC: 1971 case XFS_BMAP_MAGIC: 1972 bp->b_ops = &xfs_bmbt_buf_ops; 1973 break; 1974 default: 1975 xfs_warn(mp, "Bad btree block magic!"); 1976 ASSERT(0); 1977 break; 1978 } 1979 break; 1980 case XFS_BLFT_AGF_BUF: 1981 if (magic32 != XFS_AGF_MAGIC) { 1982 xfs_warn(mp, "Bad AGF block magic!"); 1983 ASSERT(0); 1984 break; 1985 } 1986 bp->b_ops = &xfs_agf_buf_ops; 1987 break; 1988 case XFS_BLFT_AGFL_BUF: 1989 if (!xfs_sb_version_hascrc(&mp->m_sb)) 1990 break; 1991 if (magic32 != XFS_AGFL_MAGIC) { 1992 xfs_warn(mp, "Bad AGFL block magic!"); 1993 ASSERT(0); 1994 break; 1995 } 1996 bp->b_ops = &xfs_agfl_buf_ops; 1997 break; 1998 case XFS_BLFT_AGI_BUF: 1999 if (magic32 != XFS_AGI_MAGIC) { 2000 xfs_warn(mp, "Bad AGI block magic!"); 2001 ASSERT(0); 2002 break; 2003 } 2004 bp->b_ops = &xfs_agi_buf_ops; 2005 break; 2006 case XFS_BLFT_UDQUOT_BUF: 2007 case XFS_BLFT_PDQUOT_BUF: 2008 case XFS_BLFT_GDQUOT_BUF: 2009 #ifdef CONFIG_XFS_QUOTA 2010 if (magic16 != XFS_DQUOT_MAGIC) { 2011 xfs_warn(mp, "Bad DQUOT block magic!"); 2012 ASSERT(0); 2013 break; 2014 } 2015 bp->b_ops = &xfs_dquot_buf_ops; 2016 #else 2017 xfs_alert(mp, 2018 "Trying to recover dquots without QUOTA support built in!"); 2019 ASSERT(0); 2020 #endif 2021 break; 2022 case XFS_BLFT_DINO_BUF: 2023 /* 2024 * we get here with inode allocation buffers, not buffers that 2025 * track unlinked list changes. 2026 */ 2027 if (magic16 != XFS_DINODE_MAGIC) { 2028 xfs_warn(mp, "Bad INODE block magic!"); 2029 ASSERT(0); 2030 break; 2031 } 2032 bp->b_ops = &xfs_inode_buf_ops; 2033 break; 2034 case XFS_BLFT_SYMLINK_BUF: 2035 if (magic32 != XFS_SYMLINK_MAGIC) { 2036 xfs_warn(mp, "Bad symlink block magic!"); 2037 ASSERT(0); 2038 break; 2039 } 2040 bp->b_ops = &xfs_symlink_buf_ops; 2041 break; 2042 case XFS_BLFT_DIR_BLOCK_BUF: 2043 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2044 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2045 xfs_warn(mp, "Bad dir block magic!"); 2046 ASSERT(0); 2047 break; 2048 } 2049 bp->b_ops = &xfs_dir3_block_buf_ops; 2050 break; 2051 case XFS_BLFT_DIR_DATA_BUF: 2052 if (magic32 != XFS_DIR2_DATA_MAGIC && 2053 magic32 != XFS_DIR3_DATA_MAGIC) { 2054 xfs_warn(mp, "Bad dir data magic!"); 2055 ASSERT(0); 2056 break; 2057 } 2058 bp->b_ops = &xfs_dir3_data_buf_ops; 2059 break; 2060 case XFS_BLFT_DIR_FREE_BUF: 2061 if (magic32 != XFS_DIR2_FREE_MAGIC && 2062 magic32 != XFS_DIR3_FREE_MAGIC) { 2063 xfs_warn(mp, "Bad dir3 free magic!"); 2064 ASSERT(0); 2065 break; 2066 } 2067 bp->b_ops = &xfs_dir3_free_buf_ops; 2068 break; 2069 case XFS_BLFT_DIR_LEAF1_BUF: 2070 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2071 magicda != XFS_DIR3_LEAF1_MAGIC) { 2072 xfs_warn(mp, "Bad dir leaf1 magic!"); 2073 ASSERT(0); 2074 break; 2075 } 2076 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2077 break; 2078 case XFS_BLFT_DIR_LEAFN_BUF: 2079 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2080 magicda != XFS_DIR3_LEAFN_MAGIC) { 2081 xfs_warn(mp, "Bad dir leafn magic!"); 2082 ASSERT(0); 2083 break; 2084 } 2085 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2086 break; 2087 case XFS_BLFT_DA_NODE_BUF: 2088 if (magicda != XFS_DA_NODE_MAGIC && 2089 magicda != XFS_DA3_NODE_MAGIC) { 2090 xfs_warn(mp, "Bad da node magic!"); 2091 ASSERT(0); 2092 break; 2093 } 2094 bp->b_ops = &xfs_da3_node_buf_ops; 2095 break; 2096 case XFS_BLFT_ATTR_LEAF_BUF: 2097 if (magicda != XFS_ATTR_LEAF_MAGIC && 2098 magicda != XFS_ATTR3_LEAF_MAGIC) { 2099 xfs_warn(mp, "Bad attr leaf magic!"); 2100 ASSERT(0); 2101 break; 2102 } 2103 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2104 break; 2105 case XFS_BLFT_ATTR_RMT_BUF: 2106 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2107 break; 2108 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2109 xfs_warn(mp, "Bad attr remote magic!"); 2110 ASSERT(0); 2111 break; 2112 } 2113 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2114 break; 2115 case XFS_BLFT_SB_BUF: 2116 if (magic32 != XFS_SB_MAGIC) { 2117 xfs_warn(mp, "Bad SB block magic!"); 2118 ASSERT(0); 2119 break; 2120 } 2121 bp->b_ops = &xfs_sb_buf_ops; 2122 break; 2123 default: 2124 xfs_warn(mp, "Unknown buffer type %d!", 2125 xfs_blft_from_flags(buf_f)); 2126 break; 2127 } 2128 } 2129 2130 /* 2131 * Perform a 'normal' buffer recovery. Each logged region of the 2132 * buffer should be copied over the corresponding region in the 2133 * given buffer. The bitmap in the buf log format structure indicates 2134 * where to place the logged data. 2135 */ 2136 STATIC void 2137 xlog_recover_do_reg_buffer( 2138 struct xfs_mount *mp, 2139 xlog_recover_item_t *item, 2140 struct xfs_buf *bp, 2141 xfs_buf_log_format_t *buf_f) 2142 { 2143 int i; 2144 int bit; 2145 int nbits; 2146 int error; 2147 2148 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2149 2150 bit = 0; 2151 i = 1; /* 0 is the buf format structure */ 2152 while (1) { 2153 bit = xfs_next_bit(buf_f->blf_data_map, 2154 buf_f->blf_map_size, bit); 2155 if (bit == -1) 2156 break; 2157 nbits = xfs_contig_bits(buf_f->blf_data_map, 2158 buf_f->blf_map_size, bit); 2159 ASSERT(nbits > 0); 2160 ASSERT(item->ri_buf[i].i_addr != NULL); 2161 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2162 ASSERT(BBTOB(bp->b_io_length) >= 2163 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2164 2165 /* 2166 * The dirty regions logged in the buffer, even though 2167 * contiguous, may span multiple chunks. This is because the 2168 * dirty region may span a physical page boundary in a buffer 2169 * and hence be split into two separate vectors for writing into 2170 * the log. Hence we need to trim nbits back to the length of 2171 * the current region being copied out of the log. 2172 */ 2173 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2174 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2175 2176 /* 2177 * Do a sanity check if this is a dquot buffer. Just checking 2178 * the first dquot in the buffer should do. XXXThis is 2179 * probably a good thing to do for other buf types also. 2180 */ 2181 error = 0; 2182 if (buf_f->blf_flags & 2183 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2184 if (item->ri_buf[i].i_addr == NULL) { 2185 xfs_alert(mp, 2186 "XFS: NULL dquot in %s.", __func__); 2187 goto next; 2188 } 2189 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2190 xfs_alert(mp, 2191 "XFS: dquot too small (%d) in %s.", 2192 item->ri_buf[i].i_len, __func__); 2193 goto next; 2194 } 2195 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr, 2196 -1, 0, XFS_QMOPT_DOWARN, 2197 "dquot_buf_recover"); 2198 if (error) 2199 goto next; 2200 } 2201 2202 memcpy(xfs_buf_offset(bp, 2203 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2204 item->ri_buf[i].i_addr, /* source */ 2205 nbits<<XFS_BLF_SHIFT); /* length */ 2206 next: 2207 i++; 2208 bit += nbits; 2209 } 2210 2211 /* Shouldn't be any more regions */ 2212 ASSERT(i == item->ri_total); 2213 2214 /* 2215 * We can only do post recovery validation on items on CRC enabled 2216 * fielsystems as we need to know when the buffer was written to be able 2217 * to determine if we should have replayed the item. If we replay old 2218 * metadata over a newer buffer, then it will enter a temporarily 2219 * inconsistent state resulting in verification failures. Hence for now 2220 * just avoid the verification stage for non-crc filesystems 2221 */ 2222 if (xfs_sb_version_hascrc(&mp->m_sb)) 2223 xlog_recovery_validate_buf_type(mp, bp, buf_f); 2224 } 2225 2226 /* 2227 * Do some primitive error checking on ondisk dquot data structures. 2228 */ 2229 int 2230 xfs_qm_dqcheck( 2231 struct xfs_mount *mp, 2232 xfs_disk_dquot_t *ddq, 2233 xfs_dqid_t id, 2234 uint type, /* used only when IO_dorepair is true */ 2235 uint flags, 2236 char *str) 2237 { 2238 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 2239 int errs = 0; 2240 2241 /* 2242 * We can encounter an uninitialized dquot buffer for 2 reasons: 2243 * 1. If we crash while deleting the quotainode(s), and those blks got 2244 * used for user data. This is because we take the path of regular 2245 * file deletion; however, the size field of quotainodes is never 2246 * updated, so all the tricks that we play in itruncate_finish 2247 * don't quite matter. 2248 * 2249 * 2. We don't play the quota buffers when there's a quotaoff logitem. 2250 * But the allocation will be replayed so we'll end up with an 2251 * uninitialized quota block. 2252 * 2253 * This is all fine; things are still consistent, and we haven't lost 2254 * any quota information. Just don't complain about bad dquot blks. 2255 */ 2256 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) { 2257 if (flags & XFS_QMOPT_DOWARN) 2258 xfs_alert(mp, 2259 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 2260 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 2261 errs++; 2262 } 2263 if (ddq->d_version != XFS_DQUOT_VERSION) { 2264 if (flags & XFS_QMOPT_DOWARN) 2265 xfs_alert(mp, 2266 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 2267 str, id, ddq->d_version, XFS_DQUOT_VERSION); 2268 errs++; 2269 } 2270 2271 if (ddq->d_flags != XFS_DQ_USER && 2272 ddq->d_flags != XFS_DQ_PROJ && 2273 ddq->d_flags != XFS_DQ_GROUP) { 2274 if (flags & XFS_QMOPT_DOWARN) 2275 xfs_alert(mp, 2276 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 2277 str, id, ddq->d_flags); 2278 errs++; 2279 } 2280 2281 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 2282 if (flags & XFS_QMOPT_DOWARN) 2283 xfs_alert(mp, 2284 "%s : ondisk-dquot 0x%p, ID mismatch: " 2285 "0x%x expected, found id 0x%x", 2286 str, ddq, id, be32_to_cpu(ddq->d_id)); 2287 errs++; 2288 } 2289 2290 if (!errs && ddq->d_id) { 2291 if (ddq->d_blk_softlimit && 2292 be64_to_cpu(ddq->d_bcount) > 2293 be64_to_cpu(ddq->d_blk_softlimit)) { 2294 if (!ddq->d_btimer) { 2295 if (flags & XFS_QMOPT_DOWARN) 2296 xfs_alert(mp, 2297 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED", 2298 str, (int)be32_to_cpu(ddq->d_id), ddq); 2299 errs++; 2300 } 2301 } 2302 if (ddq->d_ino_softlimit && 2303 be64_to_cpu(ddq->d_icount) > 2304 be64_to_cpu(ddq->d_ino_softlimit)) { 2305 if (!ddq->d_itimer) { 2306 if (flags & XFS_QMOPT_DOWARN) 2307 xfs_alert(mp, 2308 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED", 2309 str, (int)be32_to_cpu(ddq->d_id), ddq); 2310 errs++; 2311 } 2312 } 2313 if (ddq->d_rtb_softlimit && 2314 be64_to_cpu(ddq->d_rtbcount) > 2315 be64_to_cpu(ddq->d_rtb_softlimit)) { 2316 if (!ddq->d_rtbtimer) { 2317 if (flags & XFS_QMOPT_DOWARN) 2318 xfs_alert(mp, 2319 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED", 2320 str, (int)be32_to_cpu(ddq->d_id), ddq); 2321 errs++; 2322 } 2323 } 2324 } 2325 2326 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2327 return errs; 2328 2329 if (flags & XFS_QMOPT_DOWARN) 2330 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id); 2331 2332 /* 2333 * Typically, a repair is only requested by quotacheck. 2334 */ 2335 ASSERT(id != -1); 2336 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2337 memset(d, 0, sizeof(xfs_dqblk_t)); 2338 2339 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2340 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2341 d->dd_diskdq.d_flags = type; 2342 d->dd_diskdq.d_id = cpu_to_be32(id); 2343 2344 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2345 uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid); 2346 xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk), 2347 XFS_DQUOT_CRC_OFF); 2348 } 2349 2350 return errs; 2351 } 2352 2353 /* 2354 * Perform a dquot buffer recovery. 2355 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2356 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2357 * Else, treat it as a regular buffer and do recovery. 2358 */ 2359 STATIC void 2360 xlog_recover_do_dquot_buffer( 2361 struct xfs_mount *mp, 2362 struct xlog *log, 2363 struct xlog_recover_item *item, 2364 struct xfs_buf *bp, 2365 struct xfs_buf_log_format *buf_f) 2366 { 2367 uint type; 2368 2369 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2370 2371 /* 2372 * Filesystems are required to send in quota flags at mount time. 2373 */ 2374 if (mp->m_qflags == 0) { 2375 return; 2376 } 2377 2378 type = 0; 2379 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2380 type |= XFS_DQ_USER; 2381 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2382 type |= XFS_DQ_PROJ; 2383 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2384 type |= XFS_DQ_GROUP; 2385 /* 2386 * This type of quotas was turned off, so ignore this buffer 2387 */ 2388 if (log->l_quotaoffs_flag & type) 2389 return; 2390 2391 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2392 } 2393 2394 /* 2395 * This routine replays a modification made to a buffer at runtime. 2396 * There are actually two types of buffer, regular and inode, which 2397 * are handled differently. Inode buffers are handled differently 2398 * in that we only recover a specific set of data from them, namely 2399 * the inode di_next_unlinked fields. This is because all other inode 2400 * data is actually logged via inode records and any data we replay 2401 * here which overlaps that may be stale. 2402 * 2403 * When meta-data buffers are freed at run time we log a buffer item 2404 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2405 * of the buffer in the log should not be replayed at recovery time. 2406 * This is so that if the blocks covered by the buffer are reused for 2407 * file data before we crash we don't end up replaying old, freed 2408 * meta-data into a user's file. 2409 * 2410 * To handle the cancellation of buffer log items, we make two passes 2411 * over the log during recovery. During the first we build a table of 2412 * those buffers which have been cancelled, and during the second we 2413 * only replay those buffers which do not have corresponding cancel 2414 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2415 * for more details on the implementation of the table of cancel records. 2416 */ 2417 STATIC int 2418 xlog_recover_buffer_pass2( 2419 struct xlog *log, 2420 struct list_head *buffer_list, 2421 struct xlog_recover_item *item) 2422 { 2423 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2424 xfs_mount_t *mp = log->l_mp; 2425 xfs_buf_t *bp; 2426 int error; 2427 uint buf_flags; 2428 2429 /* 2430 * In this pass we only want to recover all the buffers which have 2431 * not been cancelled and are not cancellation buffers themselves. 2432 */ 2433 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2434 buf_f->blf_len, buf_f->blf_flags)) { 2435 trace_xfs_log_recover_buf_cancel(log, buf_f); 2436 return 0; 2437 } 2438 2439 trace_xfs_log_recover_buf_recover(log, buf_f); 2440 2441 buf_flags = 0; 2442 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2443 buf_flags |= XBF_UNMAPPED; 2444 2445 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2446 buf_flags, NULL); 2447 if (!bp) 2448 return XFS_ERROR(ENOMEM); 2449 error = bp->b_error; 2450 if (error) { 2451 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2452 xfs_buf_relse(bp); 2453 return error; 2454 } 2455 2456 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2457 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2458 } else if (buf_f->blf_flags & 2459 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2460 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2461 } else { 2462 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2463 } 2464 if (error) 2465 return XFS_ERROR(error); 2466 2467 /* 2468 * Perform delayed write on the buffer. Asynchronous writes will be 2469 * slower when taking into account all the buffers to be flushed. 2470 * 2471 * Also make sure that only inode buffers with good sizes stay in 2472 * the buffer cache. The kernel moves inodes in buffers of 1 block 2473 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2474 * buffers in the log can be a different size if the log was generated 2475 * by an older kernel using unclustered inode buffers or a newer kernel 2476 * running with a different inode cluster size. Regardless, if the 2477 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2478 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2479 * the buffer out of the buffer cache so that the buffer won't 2480 * overlap with future reads of those inodes. 2481 */ 2482 if (XFS_DINODE_MAGIC == 2483 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2484 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2485 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2486 xfs_buf_stale(bp); 2487 error = xfs_bwrite(bp); 2488 } else { 2489 ASSERT(bp->b_target->bt_mount == mp); 2490 bp->b_iodone = xlog_recover_iodone; 2491 xfs_buf_delwri_queue(bp, buffer_list); 2492 } 2493 2494 xfs_buf_relse(bp); 2495 return error; 2496 } 2497 2498 STATIC int 2499 xlog_recover_inode_pass2( 2500 struct xlog *log, 2501 struct list_head *buffer_list, 2502 struct xlog_recover_item *item) 2503 { 2504 xfs_inode_log_format_t *in_f; 2505 xfs_mount_t *mp = log->l_mp; 2506 xfs_buf_t *bp; 2507 xfs_dinode_t *dip; 2508 int len; 2509 xfs_caddr_t src; 2510 xfs_caddr_t dest; 2511 int error; 2512 int attr_index; 2513 uint fields; 2514 xfs_icdinode_t *dicp; 2515 uint isize; 2516 int need_free = 0; 2517 2518 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2519 in_f = item->ri_buf[0].i_addr; 2520 } else { 2521 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2522 need_free = 1; 2523 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2524 if (error) 2525 goto error; 2526 } 2527 2528 /* 2529 * Inode buffers can be freed, look out for it, 2530 * and do not replay the inode. 2531 */ 2532 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2533 in_f->ilf_len, 0)) { 2534 error = 0; 2535 trace_xfs_log_recover_inode_cancel(log, in_f); 2536 goto error; 2537 } 2538 trace_xfs_log_recover_inode_recover(log, in_f); 2539 2540 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 2541 &xfs_inode_buf_ops); 2542 if (!bp) { 2543 error = ENOMEM; 2544 goto error; 2545 } 2546 error = bp->b_error; 2547 if (error) { 2548 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2549 xfs_buf_relse(bp); 2550 goto error; 2551 } 2552 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2553 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2554 2555 /* 2556 * Make sure the place we're flushing out to really looks 2557 * like an inode! 2558 */ 2559 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 2560 xfs_buf_relse(bp); 2561 xfs_alert(mp, 2562 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 2563 __func__, dip, bp, in_f->ilf_ino); 2564 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2565 XFS_ERRLEVEL_LOW, mp); 2566 error = EFSCORRUPTED; 2567 goto error; 2568 } 2569 dicp = item->ri_buf[1].i_addr; 2570 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2571 xfs_buf_relse(bp); 2572 xfs_alert(mp, 2573 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 2574 __func__, item, in_f->ilf_ino); 2575 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2576 XFS_ERRLEVEL_LOW, mp); 2577 error = EFSCORRUPTED; 2578 goto error; 2579 } 2580 2581 /* Skip replay when the on disk inode is newer than the log one */ 2582 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2583 /* 2584 * Deal with the wrap case, DI_MAX_FLUSH is less 2585 * than smaller numbers 2586 */ 2587 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2588 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2589 /* do nothing */ 2590 } else { 2591 xfs_buf_relse(bp); 2592 trace_xfs_log_recover_inode_skip(log, in_f); 2593 error = 0; 2594 goto error; 2595 } 2596 } 2597 /* Take the opportunity to reset the flush iteration count */ 2598 dicp->di_flushiter = 0; 2599 2600 if (unlikely(S_ISREG(dicp->di_mode))) { 2601 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2602 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2603 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 2604 XFS_ERRLEVEL_LOW, mp, dicp); 2605 xfs_buf_relse(bp); 2606 xfs_alert(mp, 2607 "%s: Bad regular inode log record, rec ptr 0x%p, " 2608 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2609 __func__, item, dip, bp, in_f->ilf_ino); 2610 error = EFSCORRUPTED; 2611 goto error; 2612 } 2613 } else if (unlikely(S_ISDIR(dicp->di_mode))) { 2614 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2615 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2616 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2617 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 2618 XFS_ERRLEVEL_LOW, mp, dicp); 2619 xfs_buf_relse(bp); 2620 xfs_alert(mp, 2621 "%s: Bad dir inode log record, rec ptr 0x%p, " 2622 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2623 __func__, item, dip, bp, in_f->ilf_ino); 2624 error = EFSCORRUPTED; 2625 goto error; 2626 } 2627 } 2628 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2629 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 2630 XFS_ERRLEVEL_LOW, mp, dicp); 2631 xfs_buf_relse(bp); 2632 xfs_alert(mp, 2633 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2634 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2635 __func__, item, dip, bp, in_f->ilf_ino, 2636 dicp->di_nextents + dicp->di_anextents, 2637 dicp->di_nblocks); 2638 error = EFSCORRUPTED; 2639 goto error; 2640 } 2641 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2642 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 2643 XFS_ERRLEVEL_LOW, mp, dicp); 2644 xfs_buf_relse(bp); 2645 xfs_alert(mp, 2646 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2647 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 2648 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff); 2649 error = EFSCORRUPTED; 2650 goto error; 2651 } 2652 isize = xfs_icdinode_size(dicp->di_version); 2653 if (unlikely(item->ri_buf[1].i_len > isize)) { 2654 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 2655 XFS_ERRLEVEL_LOW, mp, dicp); 2656 xfs_buf_relse(bp); 2657 xfs_alert(mp, 2658 "%s: Bad inode log record length %d, rec ptr 0x%p", 2659 __func__, item->ri_buf[1].i_len, item); 2660 error = EFSCORRUPTED; 2661 goto error; 2662 } 2663 2664 /* The core is in in-core format */ 2665 xfs_dinode_to_disk(dip, dicp); 2666 2667 /* the rest is in on-disk format */ 2668 if (item->ri_buf[1].i_len > isize) { 2669 memcpy((char *)dip + isize, 2670 item->ri_buf[1].i_addr + isize, 2671 item->ri_buf[1].i_len - isize); 2672 } 2673 2674 fields = in_f->ilf_fields; 2675 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2676 case XFS_ILOG_DEV: 2677 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2678 break; 2679 case XFS_ILOG_UUID: 2680 memcpy(XFS_DFORK_DPTR(dip), 2681 &in_f->ilf_u.ilfu_uuid, 2682 sizeof(uuid_t)); 2683 break; 2684 } 2685 2686 if (in_f->ilf_size == 2) 2687 goto write_inode_buffer; 2688 len = item->ri_buf[2].i_len; 2689 src = item->ri_buf[2].i_addr; 2690 ASSERT(in_f->ilf_size <= 4); 2691 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2692 ASSERT(!(fields & XFS_ILOG_DFORK) || 2693 (len == in_f->ilf_dsize)); 2694 2695 switch (fields & XFS_ILOG_DFORK) { 2696 case XFS_ILOG_DDATA: 2697 case XFS_ILOG_DEXT: 2698 memcpy(XFS_DFORK_DPTR(dip), src, len); 2699 break; 2700 2701 case XFS_ILOG_DBROOT: 2702 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2703 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2704 XFS_DFORK_DSIZE(dip, mp)); 2705 break; 2706 2707 default: 2708 /* 2709 * There are no data fork flags set. 2710 */ 2711 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2712 break; 2713 } 2714 2715 /* 2716 * If we logged any attribute data, recover it. There may or 2717 * may not have been any other non-core data logged in this 2718 * transaction. 2719 */ 2720 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2721 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2722 attr_index = 3; 2723 } else { 2724 attr_index = 2; 2725 } 2726 len = item->ri_buf[attr_index].i_len; 2727 src = item->ri_buf[attr_index].i_addr; 2728 ASSERT(len == in_f->ilf_asize); 2729 2730 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2731 case XFS_ILOG_ADATA: 2732 case XFS_ILOG_AEXT: 2733 dest = XFS_DFORK_APTR(dip); 2734 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2735 memcpy(dest, src, len); 2736 break; 2737 2738 case XFS_ILOG_ABROOT: 2739 dest = XFS_DFORK_APTR(dip); 2740 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2741 len, (xfs_bmdr_block_t*)dest, 2742 XFS_DFORK_ASIZE(dip, mp)); 2743 break; 2744 2745 default: 2746 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 2747 ASSERT(0); 2748 xfs_buf_relse(bp); 2749 error = EIO; 2750 goto error; 2751 } 2752 } 2753 2754 write_inode_buffer: 2755 /* re-generate the checksum. */ 2756 xfs_dinode_calc_crc(log->l_mp, dip); 2757 2758 ASSERT(bp->b_target->bt_mount == mp); 2759 bp->b_iodone = xlog_recover_iodone; 2760 xfs_buf_delwri_queue(bp, buffer_list); 2761 xfs_buf_relse(bp); 2762 error: 2763 if (need_free) 2764 kmem_free(in_f); 2765 return XFS_ERROR(error); 2766 } 2767 2768 /* 2769 * Recover QUOTAOFF records. We simply make a note of it in the xlog 2770 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2771 * of that type. 2772 */ 2773 STATIC int 2774 xlog_recover_quotaoff_pass1( 2775 struct xlog *log, 2776 struct xlog_recover_item *item) 2777 { 2778 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 2779 ASSERT(qoff_f); 2780 2781 /* 2782 * The logitem format's flag tells us if this was user quotaoff, 2783 * group/project quotaoff or both. 2784 */ 2785 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2786 log->l_quotaoffs_flag |= XFS_DQ_USER; 2787 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2788 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2789 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2790 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2791 2792 return (0); 2793 } 2794 2795 /* 2796 * Recover a dquot record 2797 */ 2798 STATIC int 2799 xlog_recover_dquot_pass2( 2800 struct xlog *log, 2801 struct list_head *buffer_list, 2802 struct xlog_recover_item *item) 2803 { 2804 xfs_mount_t *mp = log->l_mp; 2805 xfs_buf_t *bp; 2806 struct xfs_disk_dquot *ddq, *recddq; 2807 int error; 2808 xfs_dq_logformat_t *dq_f; 2809 uint type; 2810 2811 2812 /* 2813 * Filesystems are required to send in quota flags at mount time. 2814 */ 2815 if (mp->m_qflags == 0) 2816 return (0); 2817 2818 recddq = item->ri_buf[1].i_addr; 2819 if (recddq == NULL) { 2820 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 2821 return XFS_ERROR(EIO); 2822 } 2823 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 2824 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 2825 item->ri_buf[1].i_len, __func__); 2826 return XFS_ERROR(EIO); 2827 } 2828 2829 /* 2830 * This type of quotas was turned off, so ignore this record. 2831 */ 2832 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2833 ASSERT(type); 2834 if (log->l_quotaoffs_flag & type) 2835 return (0); 2836 2837 /* 2838 * At this point we know that quota was _not_ turned off. 2839 * Since the mount flags are not indicating to us otherwise, this 2840 * must mean that quota is on, and the dquot needs to be replayed. 2841 * Remember that we may not have fully recovered the superblock yet, 2842 * so we can't do the usual trick of looking at the SB quota bits. 2843 * 2844 * The other possibility, of course, is that the quota subsystem was 2845 * removed since the last mount - ENOSYS. 2846 */ 2847 dq_f = item->ri_buf[0].i_addr; 2848 ASSERT(dq_f); 2849 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2850 "xlog_recover_dquot_pass2 (log copy)"); 2851 if (error) 2852 return XFS_ERROR(EIO); 2853 ASSERT(dq_f->qlf_len == 1); 2854 2855 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 2856 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 2857 NULL); 2858 if (error) 2859 return error; 2860 2861 ASSERT(bp); 2862 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2863 2864 /* 2865 * At least the magic num portion should be on disk because this 2866 * was among a chunk of dquots created earlier, and we did some 2867 * minimal initialization then. 2868 */ 2869 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2870 "xlog_recover_dquot_pass2"); 2871 if (error) { 2872 xfs_buf_relse(bp); 2873 return XFS_ERROR(EIO); 2874 } 2875 2876 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2877 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2878 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 2879 XFS_DQUOT_CRC_OFF); 2880 } 2881 2882 ASSERT(dq_f->qlf_size == 2); 2883 ASSERT(bp->b_target->bt_mount == mp); 2884 bp->b_iodone = xlog_recover_iodone; 2885 xfs_buf_delwri_queue(bp, buffer_list); 2886 xfs_buf_relse(bp); 2887 2888 return (0); 2889 } 2890 2891 /* 2892 * This routine is called to create an in-core extent free intent 2893 * item from the efi format structure which was logged on disk. 2894 * It allocates an in-core efi, copies the extents from the format 2895 * structure into it, and adds the efi to the AIL with the given 2896 * LSN. 2897 */ 2898 STATIC int 2899 xlog_recover_efi_pass2( 2900 struct xlog *log, 2901 struct xlog_recover_item *item, 2902 xfs_lsn_t lsn) 2903 { 2904 int error; 2905 xfs_mount_t *mp = log->l_mp; 2906 xfs_efi_log_item_t *efip; 2907 xfs_efi_log_format_t *efi_formatp; 2908 2909 efi_formatp = item->ri_buf[0].i_addr; 2910 2911 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2912 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2913 &(efip->efi_format)))) { 2914 xfs_efi_item_free(efip); 2915 return error; 2916 } 2917 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 2918 2919 spin_lock(&log->l_ailp->xa_lock); 2920 /* 2921 * xfs_trans_ail_update() drops the AIL lock. 2922 */ 2923 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 2924 return 0; 2925 } 2926 2927 2928 /* 2929 * This routine is called when an efd format structure is found in 2930 * a committed transaction in the log. It's purpose is to cancel 2931 * the corresponding efi if it was still in the log. To do this 2932 * it searches the AIL for the efi with an id equal to that in the 2933 * efd format structure. If we find it, we remove the efi from the 2934 * AIL and free it. 2935 */ 2936 STATIC int 2937 xlog_recover_efd_pass2( 2938 struct xlog *log, 2939 struct xlog_recover_item *item) 2940 { 2941 xfs_efd_log_format_t *efd_formatp; 2942 xfs_efi_log_item_t *efip = NULL; 2943 xfs_log_item_t *lip; 2944 __uint64_t efi_id; 2945 struct xfs_ail_cursor cur; 2946 struct xfs_ail *ailp = log->l_ailp; 2947 2948 efd_formatp = item->ri_buf[0].i_addr; 2949 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2950 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2951 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2952 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2953 efi_id = efd_formatp->efd_efi_id; 2954 2955 /* 2956 * Search for the efi with the id in the efd format structure 2957 * in the AIL. 2958 */ 2959 spin_lock(&ailp->xa_lock); 2960 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2961 while (lip != NULL) { 2962 if (lip->li_type == XFS_LI_EFI) { 2963 efip = (xfs_efi_log_item_t *)lip; 2964 if (efip->efi_format.efi_id == efi_id) { 2965 /* 2966 * xfs_trans_ail_delete() drops the 2967 * AIL lock. 2968 */ 2969 xfs_trans_ail_delete(ailp, lip, 2970 SHUTDOWN_CORRUPT_INCORE); 2971 xfs_efi_item_free(efip); 2972 spin_lock(&ailp->xa_lock); 2973 break; 2974 } 2975 } 2976 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2977 } 2978 xfs_trans_ail_cursor_done(ailp, &cur); 2979 spin_unlock(&ailp->xa_lock); 2980 2981 return 0; 2982 } 2983 2984 /* 2985 * Free up any resources allocated by the transaction 2986 * 2987 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2988 */ 2989 STATIC void 2990 xlog_recover_free_trans( 2991 struct xlog_recover *trans) 2992 { 2993 xlog_recover_item_t *item, *n; 2994 int i; 2995 2996 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2997 /* Free the regions in the item. */ 2998 list_del(&item->ri_list); 2999 for (i = 0; i < item->ri_cnt; i++) 3000 kmem_free(item->ri_buf[i].i_addr); 3001 /* Free the item itself */ 3002 kmem_free(item->ri_buf); 3003 kmem_free(item); 3004 } 3005 /* Free the transaction recover structure */ 3006 kmem_free(trans); 3007 } 3008 3009 STATIC int 3010 xlog_recover_commit_pass1( 3011 struct xlog *log, 3012 struct xlog_recover *trans, 3013 struct xlog_recover_item *item) 3014 { 3015 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 3016 3017 switch (ITEM_TYPE(item)) { 3018 case XFS_LI_BUF: 3019 return xlog_recover_buffer_pass1(log, item); 3020 case XFS_LI_QUOTAOFF: 3021 return xlog_recover_quotaoff_pass1(log, item); 3022 case XFS_LI_INODE: 3023 case XFS_LI_EFI: 3024 case XFS_LI_EFD: 3025 case XFS_LI_DQUOT: 3026 /* nothing to do in pass 1 */ 3027 return 0; 3028 default: 3029 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3030 __func__, ITEM_TYPE(item)); 3031 ASSERT(0); 3032 return XFS_ERROR(EIO); 3033 } 3034 } 3035 3036 STATIC int 3037 xlog_recover_commit_pass2( 3038 struct xlog *log, 3039 struct xlog_recover *trans, 3040 struct list_head *buffer_list, 3041 struct xlog_recover_item *item) 3042 { 3043 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 3044 3045 switch (ITEM_TYPE(item)) { 3046 case XFS_LI_BUF: 3047 return xlog_recover_buffer_pass2(log, buffer_list, item); 3048 case XFS_LI_INODE: 3049 return xlog_recover_inode_pass2(log, buffer_list, item); 3050 case XFS_LI_EFI: 3051 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 3052 case XFS_LI_EFD: 3053 return xlog_recover_efd_pass2(log, item); 3054 case XFS_LI_DQUOT: 3055 return xlog_recover_dquot_pass2(log, buffer_list, item); 3056 case XFS_LI_QUOTAOFF: 3057 /* nothing to do in pass2 */ 3058 return 0; 3059 default: 3060 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3061 __func__, ITEM_TYPE(item)); 3062 ASSERT(0); 3063 return XFS_ERROR(EIO); 3064 } 3065 } 3066 3067 /* 3068 * Perform the transaction. 3069 * 3070 * If the transaction modifies a buffer or inode, do it now. Otherwise, 3071 * EFIs and EFDs get queued up by adding entries into the AIL for them. 3072 */ 3073 STATIC int 3074 xlog_recover_commit_trans( 3075 struct xlog *log, 3076 struct xlog_recover *trans, 3077 int pass) 3078 { 3079 int error = 0, error2; 3080 xlog_recover_item_t *item; 3081 LIST_HEAD (buffer_list); 3082 3083 hlist_del(&trans->r_list); 3084 3085 error = xlog_recover_reorder_trans(log, trans, pass); 3086 if (error) 3087 return error; 3088 3089 list_for_each_entry(item, &trans->r_itemq, ri_list) { 3090 switch (pass) { 3091 case XLOG_RECOVER_PASS1: 3092 error = xlog_recover_commit_pass1(log, trans, item); 3093 break; 3094 case XLOG_RECOVER_PASS2: 3095 error = xlog_recover_commit_pass2(log, trans, 3096 &buffer_list, item); 3097 break; 3098 default: 3099 ASSERT(0); 3100 } 3101 3102 if (error) 3103 goto out; 3104 } 3105 3106 xlog_recover_free_trans(trans); 3107 3108 out: 3109 error2 = xfs_buf_delwri_submit(&buffer_list); 3110 return error ? error : error2; 3111 } 3112 3113 STATIC int 3114 xlog_recover_unmount_trans( 3115 struct xlog *log, 3116 struct xlog_recover *trans) 3117 { 3118 /* Do nothing now */ 3119 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 3120 return 0; 3121 } 3122 3123 /* 3124 * There are two valid states of the r_state field. 0 indicates that the 3125 * transaction structure is in a normal state. We have either seen the 3126 * start of the transaction or the last operation we added was not a partial 3127 * operation. If the last operation we added to the transaction was a 3128 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 3129 * 3130 * NOTE: skip LRs with 0 data length. 3131 */ 3132 STATIC int 3133 xlog_recover_process_data( 3134 struct xlog *log, 3135 struct hlist_head rhash[], 3136 struct xlog_rec_header *rhead, 3137 xfs_caddr_t dp, 3138 int pass) 3139 { 3140 xfs_caddr_t lp; 3141 int num_logops; 3142 xlog_op_header_t *ohead; 3143 xlog_recover_t *trans; 3144 xlog_tid_t tid; 3145 int error; 3146 unsigned long hash; 3147 uint flags; 3148 3149 lp = dp + be32_to_cpu(rhead->h_len); 3150 num_logops = be32_to_cpu(rhead->h_num_logops); 3151 3152 /* check the log format matches our own - else we can't recover */ 3153 if (xlog_header_check_recover(log->l_mp, rhead)) 3154 return (XFS_ERROR(EIO)); 3155 3156 while ((dp < lp) && num_logops) { 3157 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 3158 ohead = (xlog_op_header_t *)dp; 3159 dp += sizeof(xlog_op_header_t); 3160 if (ohead->oh_clientid != XFS_TRANSACTION && 3161 ohead->oh_clientid != XFS_LOG) { 3162 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 3163 __func__, ohead->oh_clientid); 3164 ASSERT(0); 3165 return (XFS_ERROR(EIO)); 3166 } 3167 tid = be32_to_cpu(ohead->oh_tid); 3168 hash = XLOG_RHASH(tid); 3169 trans = xlog_recover_find_tid(&rhash[hash], tid); 3170 if (trans == NULL) { /* not found; add new tid */ 3171 if (ohead->oh_flags & XLOG_START_TRANS) 3172 xlog_recover_new_tid(&rhash[hash], tid, 3173 be64_to_cpu(rhead->h_lsn)); 3174 } else { 3175 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 3176 xfs_warn(log->l_mp, "%s: bad length 0x%x", 3177 __func__, be32_to_cpu(ohead->oh_len)); 3178 WARN_ON(1); 3179 return (XFS_ERROR(EIO)); 3180 } 3181 flags = ohead->oh_flags & ~XLOG_END_TRANS; 3182 if (flags & XLOG_WAS_CONT_TRANS) 3183 flags &= ~XLOG_CONTINUE_TRANS; 3184 switch (flags) { 3185 case XLOG_COMMIT_TRANS: 3186 error = xlog_recover_commit_trans(log, 3187 trans, pass); 3188 break; 3189 case XLOG_UNMOUNT_TRANS: 3190 error = xlog_recover_unmount_trans(log, trans); 3191 break; 3192 case XLOG_WAS_CONT_TRANS: 3193 error = xlog_recover_add_to_cont_trans(log, 3194 trans, dp, 3195 be32_to_cpu(ohead->oh_len)); 3196 break; 3197 case XLOG_START_TRANS: 3198 xfs_warn(log->l_mp, "%s: bad transaction", 3199 __func__); 3200 ASSERT(0); 3201 error = XFS_ERROR(EIO); 3202 break; 3203 case 0: 3204 case XLOG_CONTINUE_TRANS: 3205 error = xlog_recover_add_to_trans(log, trans, 3206 dp, be32_to_cpu(ohead->oh_len)); 3207 break; 3208 default: 3209 xfs_warn(log->l_mp, "%s: bad flag 0x%x", 3210 __func__, flags); 3211 ASSERT(0); 3212 error = XFS_ERROR(EIO); 3213 break; 3214 } 3215 if (error) 3216 return error; 3217 } 3218 dp += be32_to_cpu(ohead->oh_len); 3219 num_logops--; 3220 } 3221 return 0; 3222 } 3223 3224 /* 3225 * Process an extent free intent item that was recovered from 3226 * the log. We need to free the extents that it describes. 3227 */ 3228 STATIC int 3229 xlog_recover_process_efi( 3230 xfs_mount_t *mp, 3231 xfs_efi_log_item_t *efip) 3232 { 3233 xfs_efd_log_item_t *efdp; 3234 xfs_trans_t *tp; 3235 int i; 3236 int error = 0; 3237 xfs_extent_t *extp; 3238 xfs_fsblock_t startblock_fsb; 3239 3240 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 3241 3242 /* 3243 * First check the validity of the extents described by the 3244 * EFI. If any are bad, then assume that all are bad and 3245 * just toss the EFI. 3246 */ 3247 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3248 extp = &(efip->efi_format.efi_extents[i]); 3249 startblock_fsb = XFS_BB_TO_FSB(mp, 3250 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3251 if ((startblock_fsb == 0) || 3252 (extp->ext_len == 0) || 3253 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3254 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3255 /* 3256 * This will pull the EFI from the AIL and 3257 * free the memory associated with it. 3258 */ 3259 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 3260 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3261 return XFS_ERROR(EIO); 3262 } 3263 } 3264 3265 tp = xfs_trans_alloc(mp, 0); 3266 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3267 if (error) 3268 goto abort_error; 3269 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3270 3271 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3272 extp = &(efip->efi_format.efi_extents[i]); 3273 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3274 if (error) 3275 goto abort_error; 3276 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3277 extp->ext_len); 3278 } 3279 3280 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 3281 error = xfs_trans_commit(tp, 0); 3282 return error; 3283 3284 abort_error: 3285 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3286 return error; 3287 } 3288 3289 /* 3290 * When this is called, all of the EFIs which did not have 3291 * corresponding EFDs should be in the AIL. What we do now 3292 * is free the extents associated with each one. 3293 * 3294 * Since we process the EFIs in normal transactions, they 3295 * will be removed at some point after the commit. This prevents 3296 * us from just walking down the list processing each one. 3297 * We'll use a flag in the EFI to skip those that we've already 3298 * processed and use the AIL iteration mechanism's generation 3299 * count to try to speed this up at least a bit. 3300 * 3301 * When we start, we know that the EFIs are the only things in 3302 * the AIL. As we process them, however, other items are added 3303 * to the AIL. Since everything added to the AIL must come after 3304 * everything already in the AIL, we stop processing as soon as 3305 * we see something other than an EFI in the AIL. 3306 */ 3307 STATIC int 3308 xlog_recover_process_efis( 3309 struct xlog *log) 3310 { 3311 xfs_log_item_t *lip; 3312 xfs_efi_log_item_t *efip; 3313 int error = 0; 3314 struct xfs_ail_cursor cur; 3315 struct xfs_ail *ailp; 3316 3317 ailp = log->l_ailp; 3318 spin_lock(&ailp->xa_lock); 3319 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3320 while (lip != NULL) { 3321 /* 3322 * We're done when we see something other than an EFI. 3323 * There should be no EFIs left in the AIL now. 3324 */ 3325 if (lip->li_type != XFS_LI_EFI) { 3326 #ifdef DEBUG 3327 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3328 ASSERT(lip->li_type != XFS_LI_EFI); 3329 #endif 3330 break; 3331 } 3332 3333 /* 3334 * Skip EFIs that we've already processed. 3335 */ 3336 efip = (xfs_efi_log_item_t *)lip; 3337 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) { 3338 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3339 continue; 3340 } 3341 3342 spin_unlock(&ailp->xa_lock); 3343 error = xlog_recover_process_efi(log->l_mp, efip); 3344 spin_lock(&ailp->xa_lock); 3345 if (error) 3346 goto out; 3347 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3348 } 3349 out: 3350 xfs_trans_ail_cursor_done(ailp, &cur); 3351 spin_unlock(&ailp->xa_lock); 3352 return error; 3353 } 3354 3355 /* 3356 * This routine performs a transaction to null out a bad inode pointer 3357 * in an agi unlinked inode hash bucket. 3358 */ 3359 STATIC void 3360 xlog_recover_clear_agi_bucket( 3361 xfs_mount_t *mp, 3362 xfs_agnumber_t agno, 3363 int bucket) 3364 { 3365 xfs_trans_t *tp; 3366 xfs_agi_t *agi; 3367 xfs_buf_t *agibp; 3368 int offset; 3369 int error; 3370 3371 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3372 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 3373 0, 0, 0); 3374 if (error) 3375 goto out_abort; 3376 3377 error = xfs_read_agi(mp, tp, agno, &agibp); 3378 if (error) 3379 goto out_abort; 3380 3381 agi = XFS_BUF_TO_AGI(agibp); 3382 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3383 offset = offsetof(xfs_agi_t, agi_unlinked) + 3384 (sizeof(xfs_agino_t) * bucket); 3385 xfs_trans_log_buf(tp, agibp, offset, 3386 (offset + sizeof(xfs_agino_t) - 1)); 3387 3388 error = xfs_trans_commit(tp, 0); 3389 if (error) 3390 goto out_error; 3391 return; 3392 3393 out_abort: 3394 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3395 out_error: 3396 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 3397 return; 3398 } 3399 3400 STATIC xfs_agino_t 3401 xlog_recover_process_one_iunlink( 3402 struct xfs_mount *mp, 3403 xfs_agnumber_t agno, 3404 xfs_agino_t agino, 3405 int bucket) 3406 { 3407 struct xfs_buf *ibp; 3408 struct xfs_dinode *dip; 3409 struct xfs_inode *ip; 3410 xfs_ino_t ino; 3411 int error; 3412 3413 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3414 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 3415 if (error) 3416 goto fail; 3417 3418 /* 3419 * Get the on disk inode to find the next inode in the bucket. 3420 */ 3421 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 3422 if (error) 3423 goto fail_iput; 3424 3425 ASSERT(ip->i_d.di_nlink == 0); 3426 ASSERT(ip->i_d.di_mode != 0); 3427 3428 /* setup for the next pass */ 3429 agino = be32_to_cpu(dip->di_next_unlinked); 3430 xfs_buf_relse(ibp); 3431 3432 /* 3433 * Prevent any DMAPI event from being sent when the reference on 3434 * the inode is dropped. 3435 */ 3436 ip->i_d.di_dmevmask = 0; 3437 3438 IRELE(ip); 3439 return agino; 3440 3441 fail_iput: 3442 IRELE(ip); 3443 fail: 3444 /* 3445 * We can't read in the inode this bucket points to, or this inode 3446 * is messed up. Just ditch this bucket of inodes. We will lose 3447 * some inodes and space, but at least we won't hang. 3448 * 3449 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3450 * clear the inode pointer in the bucket. 3451 */ 3452 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3453 return NULLAGINO; 3454 } 3455 3456 /* 3457 * xlog_iunlink_recover 3458 * 3459 * This is called during recovery to process any inodes which 3460 * we unlinked but not freed when the system crashed. These 3461 * inodes will be on the lists in the AGI blocks. What we do 3462 * here is scan all the AGIs and fully truncate and free any 3463 * inodes found on the lists. Each inode is removed from the 3464 * lists when it has been fully truncated and is freed. The 3465 * freeing of the inode and its removal from the list must be 3466 * atomic. 3467 */ 3468 STATIC void 3469 xlog_recover_process_iunlinks( 3470 struct xlog *log) 3471 { 3472 xfs_mount_t *mp; 3473 xfs_agnumber_t agno; 3474 xfs_agi_t *agi; 3475 xfs_buf_t *agibp; 3476 xfs_agino_t agino; 3477 int bucket; 3478 int error; 3479 uint mp_dmevmask; 3480 3481 mp = log->l_mp; 3482 3483 /* 3484 * Prevent any DMAPI event from being sent while in this function. 3485 */ 3486 mp_dmevmask = mp->m_dmevmask; 3487 mp->m_dmevmask = 0; 3488 3489 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3490 /* 3491 * Find the agi for this ag. 3492 */ 3493 error = xfs_read_agi(mp, NULL, agno, &agibp); 3494 if (error) { 3495 /* 3496 * AGI is b0rked. Don't process it. 3497 * 3498 * We should probably mark the filesystem as corrupt 3499 * after we've recovered all the ag's we can.... 3500 */ 3501 continue; 3502 } 3503 /* 3504 * Unlock the buffer so that it can be acquired in the normal 3505 * course of the transaction to truncate and free each inode. 3506 * Because we are not racing with anyone else here for the AGI 3507 * buffer, we don't even need to hold it locked to read the 3508 * initial unlinked bucket entries out of the buffer. We keep 3509 * buffer reference though, so that it stays pinned in memory 3510 * while we need the buffer. 3511 */ 3512 agi = XFS_BUF_TO_AGI(agibp); 3513 xfs_buf_unlock(agibp); 3514 3515 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3516 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3517 while (agino != NULLAGINO) { 3518 agino = xlog_recover_process_one_iunlink(mp, 3519 agno, agino, bucket); 3520 } 3521 } 3522 xfs_buf_rele(agibp); 3523 } 3524 3525 mp->m_dmevmask = mp_dmevmask; 3526 } 3527 3528 /* 3529 * Upack the log buffer data and crc check it. If the check fails, issue a 3530 * warning if and only if the CRC in the header is non-zero. This makes the 3531 * check an advisory warning, and the zero CRC check will prevent failure 3532 * warnings from being emitted when upgrading the kernel from one that does not 3533 * add CRCs by default. 3534 * 3535 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log 3536 * corruption failure 3537 */ 3538 STATIC int 3539 xlog_unpack_data_crc( 3540 struct xlog_rec_header *rhead, 3541 xfs_caddr_t dp, 3542 struct xlog *log) 3543 { 3544 __le32 crc; 3545 3546 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 3547 if (crc != rhead->h_crc) { 3548 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 3549 xfs_alert(log->l_mp, 3550 "log record CRC mismatch: found 0x%x, expected 0x%x.\n", 3551 le32_to_cpu(rhead->h_crc), 3552 le32_to_cpu(crc)); 3553 xfs_hex_dump(dp, 32); 3554 } 3555 3556 /* 3557 * If we've detected a log record corruption, then we can't 3558 * recover past this point. Abort recovery if we are enforcing 3559 * CRC protection by punting an error back up the stack. 3560 */ 3561 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 3562 return EFSCORRUPTED; 3563 } 3564 3565 return 0; 3566 } 3567 3568 STATIC int 3569 xlog_unpack_data( 3570 struct xlog_rec_header *rhead, 3571 xfs_caddr_t dp, 3572 struct xlog *log) 3573 { 3574 int i, j, k; 3575 int error; 3576 3577 error = xlog_unpack_data_crc(rhead, dp, log); 3578 if (error) 3579 return error; 3580 3581 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 3582 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3583 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 3584 dp += BBSIZE; 3585 } 3586 3587 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3588 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 3589 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 3590 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3591 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3592 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3593 dp += BBSIZE; 3594 } 3595 } 3596 3597 return 0; 3598 } 3599 3600 STATIC int 3601 xlog_valid_rec_header( 3602 struct xlog *log, 3603 struct xlog_rec_header *rhead, 3604 xfs_daddr_t blkno) 3605 { 3606 int hlen; 3607 3608 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 3609 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3610 XFS_ERRLEVEL_LOW, log->l_mp); 3611 return XFS_ERROR(EFSCORRUPTED); 3612 } 3613 if (unlikely( 3614 (!rhead->h_version || 3615 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 3616 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 3617 __func__, be32_to_cpu(rhead->h_version)); 3618 return XFS_ERROR(EIO); 3619 } 3620 3621 /* LR body must have data or it wouldn't have been written */ 3622 hlen = be32_to_cpu(rhead->h_len); 3623 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3624 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3625 XFS_ERRLEVEL_LOW, log->l_mp); 3626 return XFS_ERROR(EFSCORRUPTED); 3627 } 3628 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3629 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3630 XFS_ERRLEVEL_LOW, log->l_mp); 3631 return XFS_ERROR(EFSCORRUPTED); 3632 } 3633 return 0; 3634 } 3635 3636 /* 3637 * Read the log from tail to head and process the log records found. 3638 * Handle the two cases where the tail and head are in the same cycle 3639 * and where the active portion of the log wraps around the end of 3640 * the physical log separately. The pass parameter is passed through 3641 * to the routines called to process the data and is not looked at 3642 * here. 3643 */ 3644 STATIC int 3645 xlog_do_recovery_pass( 3646 struct xlog *log, 3647 xfs_daddr_t head_blk, 3648 xfs_daddr_t tail_blk, 3649 int pass) 3650 { 3651 xlog_rec_header_t *rhead; 3652 xfs_daddr_t blk_no; 3653 xfs_caddr_t offset; 3654 xfs_buf_t *hbp, *dbp; 3655 int error = 0, h_size; 3656 int bblks, split_bblks; 3657 int hblks, split_hblks, wrapped_hblks; 3658 struct hlist_head rhash[XLOG_RHASH_SIZE]; 3659 3660 ASSERT(head_blk != tail_blk); 3661 3662 /* 3663 * Read the header of the tail block and get the iclog buffer size from 3664 * h_size. Use this to tell how many sectors make up the log header. 3665 */ 3666 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3667 /* 3668 * When using variable length iclogs, read first sector of 3669 * iclog header and extract the header size from it. Get a 3670 * new hbp that is the correct size. 3671 */ 3672 hbp = xlog_get_bp(log, 1); 3673 if (!hbp) 3674 return ENOMEM; 3675 3676 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 3677 if (error) 3678 goto bread_err1; 3679 3680 rhead = (xlog_rec_header_t *)offset; 3681 error = xlog_valid_rec_header(log, rhead, tail_blk); 3682 if (error) 3683 goto bread_err1; 3684 h_size = be32_to_cpu(rhead->h_size); 3685 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3686 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3687 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3688 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3689 hblks++; 3690 xlog_put_bp(hbp); 3691 hbp = xlog_get_bp(log, hblks); 3692 } else { 3693 hblks = 1; 3694 } 3695 } else { 3696 ASSERT(log->l_sectBBsize == 1); 3697 hblks = 1; 3698 hbp = xlog_get_bp(log, 1); 3699 h_size = XLOG_BIG_RECORD_BSIZE; 3700 } 3701 3702 if (!hbp) 3703 return ENOMEM; 3704 dbp = xlog_get_bp(log, BTOBB(h_size)); 3705 if (!dbp) { 3706 xlog_put_bp(hbp); 3707 return ENOMEM; 3708 } 3709 3710 memset(rhash, 0, sizeof(rhash)); 3711 if (tail_blk <= head_blk) { 3712 for (blk_no = tail_blk; blk_no < head_blk; ) { 3713 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3714 if (error) 3715 goto bread_err2; 3716 3717 rhead = (xlog_rec_header_t *)offset; 3718 error = xlog_valid_rec_header(log, rhead, blk_no); 3719 if (error) 3720 goto bread_err2; 3721 3722 /* blocks in data section */ 3723 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3724 error = xlog_bread(log, blk_no + hblks, bblks, dbp, 3725 &offset); 3726 if (error) 3727 goto bread_err2; 3728 3729 error = xlog_unpack_data(rhead, offset, log); 3730 if (error) 3731 goto bread_err2; 3732 3733 error = xlog_recover_process_data(log, 3734 rhash, rhead, offset, pass); 3735 if (error) 3736 goto bread_err2; 3737 blk_no += bblks + hblks; 3738 } 3739 } else { 3740 /* 3741 * Perform recovery around the end of the physical log. 3742 * When the head is not on the same cycle number as the tail, 3743 * we can't do a sequential recovery as above. 3744 */ 3745 blk_no = tail_blk; 3746 while (blk_no < log->l_logBBsize) { 3747 /* 3748 * Check for header wrapping around physical end-of-log 3749 */ 3750 offset = hbp->b_addr; 3751 split_hblks = 0; 3752 wrapped_hblks = 0; 3753 if (blk_no + hblks <= log->l_logBBsize) { 3754 /* Read header in one read */ 3755 error = xlog_bread(log, blk_no, hblks, hbp, 3756 &offset); 3757 if (error) 3758 goto bread_err2; 3759 } else { 3760 /* This LR is split across physical log end */ 3761 if (blk_no != log->l_logBBsize) { 3762 /* some data before physical log end */ 3763 ASSERT(blk_no <= INT_MAX); 3764 split_hblks = log->l_logBBsize - (int)blk_no; 3765 ASSERT(split_hblks > 0); 3766 error = xlog_bread(log, blk_no, 3767 split_hblks, hbp, 3768 &offset); 3769 if (error) 3770 goto bread_err2; 3771 } 3772 3773 /* 3774 * Note: this black magic still works with 3775 * large sector sizes (non-512) only because: 3776 * - we increased the buffer size originally 3777 * by 1 sector giving us enough extra space 3778 * for the second read; 3779 * - the log start is guaranteed to be sector 3780 * aligned; 3781 * - we read the log end (LR header start) 3782 * _first_, then the log start (LR header end) 3783 * - order is important. 3784 */ 3785 wrapped_hblks = hblks - split_hblks; 3786 error = xlog_bread_offset(log, 0, 3787 wrapped_hblks, hbp, 3788 offset + BBTOB(split_hblks)); 3789 if (error) 3790 goto bread_err2; 3791 } 3792 rhead = (xlog_rec_header_t *)offset; 3793 error = xlog_valid_rec_header(log, rhead, 3794 split_hblks ? blk_no : 0); 3795 if (error) 3796 goto bread_err2; 3797 3798 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3799 blk_no += hblks; 3800 3801 /* Read in data for log record */ 3802 if (blk_no + bblks <= log->l_logBBsize) { 3803 error = xlog_bread(log, blk_no, bblks, dbp, 3804 &offset); 3805 if (error) 3806 goto bread_err2; 3807 } else { 3808 /* This log record is split across the 3809 * physical end of log */ 3810 offset = dbp->b_addr; 3811 split_bblks = 0; 3812 if (blk_no != log->l_logBBsize) { 3813 /* some data is before the physical 3814 * end of log */ 3815 ASSERT(!wrapped_hblks); 3816 ASSERT(blk_no <= INT_MAX); 3817 split_bblks = 3818 log->l_logBBsize - (int)blk_no; 3819 ASSERT(split_bblks > 0); 3820 error = xlog_bread(log, blk_no, 3821 split_bblks, dbp, 3822 &offset); 3823 if (error) 3824 goto bread_err2; 3825 } 3826 3827 /* 3828 * Note: this black magic still works with 3829 * large sector sizes (non-512) only because: 3830 * - we increased the buffer size originally 3831 * by 1 sector giving us enough extra space 3832 * for the second read; 3833 * - the log start is guaranteed to be sector 3834 * aligned; 3835 * - we read the log end (LR header start) 3836 * _first_, then the log start (LR header end) 3837 * - order is important. 3838 */ 3839 error = xlog_bread_offset(log, 0, 3840 bblks - split_bblks, dbp, 3841 offset + BBTOB(split_bblks)); 3842 if (error) 3843 goto bread_err2; 3844 } 3845 3846 error = xlog_unpack_data(rhead, offset, log); 3847 if (error) 3848 goto bread_err2; 3849 3850 error = xlog_recover_process_data(log, rhash, 3851 rhead, offset, pass); 3852 if (error) 3853 goto bread_err2; 3854 blk_no += bblks; 3855 } 3856 3857 ASSERT(blk_no >= log->l_logBBsize); 3858 blk_no -= log->l_logBBsize; 3859 3860 /* read first part of physical log */ 3861 while (blk_no < head_blk) { 3862 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3863 if (error) 3864 goto bread_err2; 3865 3866 rhead = (xlog_rec_header_t *)offset; 3867 error = xlog_valid_rec_header(log, rhead, blk_no); 3868 if (error) 3869 goto bread_err2; 3870 3871 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3872 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3873 &offset); 3874 if (error) 3875 goto bread_err2; 3876 3877 error = xlog_unpack_data(rhead, offset, log); 3878 if (error) 3879 goto bread_err2; 3880 3881 error = xlog_recover_process_data(log, rhash, 3882 rhead, offset, pass); 3883 if (error) 3884 goto bread_err2; 3885 blk_no += bblks + hblks; 3886 } 3887 } 3888 3889 bread_err2: 3890 xlog_put_bp(dbp); 3891 bread_err1: 3892 xlog_put_bp(hbp); 3893 return error; 3894 } 3895 3896 /* 3897 * Do the recovery of the log. We actually do this in two phases. 3898 * The two passes are necessary in order to implement the function 3899 * of cancelling a record written into the log. The first pass 3900 * determines those things which have been cancelled, and the 3901 * second pass replays log items normally except for those which 3902 * have been cancelled. The handling of the replay and cancellations 3903 * takes place in the log item type specific routines. 3904 * 3905 * The table of items which have cancel records in the log is allocated 3906 * and freed at this level, since only here do we know when all of 3907 * the log recovery has been completed. 3908 */ 3909 STATIC int 3910 xlog_do_log_recovery( 3911 struct xlog *log, 3912 xfs_daddr_t head_blk, 3913 xfs_daddr_t tail_blk) 3914 { 3915 int error, i; 3916 3917 ASSERT(head_blk != tail_blk); 3918 3919 /* 3920 * First do a pass to find all of the cancelled buf log items. 3921 * Store them in the buf_cancel_table for use in the second pass. 3922 */ 3923 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 3924 sizeof(struct list_head), 3925 KM_SLEEP); 3926 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3927 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 3928 3929 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3930 XLOG_RECOVER_PASS1); 3931 if (error != 0) { 3932 kmem_free(log->l_buf_cancel_table); 3933 log->l_buf_cancel_table = NULL; 3934 return error; 3935 } 3936 /* 3937 * Then do a second pass to actually recover the items in the log. 3938 * When it is complete free the table of buf cancel items. 3939 */ 3940 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3941 XLOG_RECOVER_PASS2); 3942 #ifdef DEBUG 3943 if (!error) { 3944 int i; 3945 3946 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3947 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 3948 } 3949 #endif /* DEBUG */ 3950 3951 kmem_free(log->l_buf_cancel_table); 3952 log->l_buf_cancel_table = NULL; 3953 3954 return error; 3955 } 3956 3957 /* 3958 * Do the actual recovery 3959 */ 3960 STATIC int 3961 xlog_do_recover( 3962 struct xlog *log, 3963 xfs_daddr_t head_blk, 3964 xfs_daddr_t tail_blk) 3965 { 3966 int error; 3967 xfs_buf_t *bp; 3968 xfs_sb_t *sbp; 3969 3970 /* 3971 * First replay the images in the log. 3972 */ 3973 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3974 if (error) 3975 return error; 3976 3977 /* 3978 * If IO errors happened during recovery, bail out. 3979 */ 3980 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3981 return (EIO); 3982 } 3983 3984 /* 3985 * We now update the tail_lsn since much of the recovery has completed 3986 * and there may be space available to use. If there were no extent 3987 * or iunlinks, we can free up the entire log and set the tail_lsn to 3988 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3989 * lsn of the last known good LR on disk. If there are extent frees 3990 * or iunlinks they will have some entries in the AIL; so we look at 3991 * the AIL to determine how to set the tail_lsn. 3992 */ 3993 xlog_assign_tail_lsn(log->l_mp); 3994 3995 /* 3996 * Now that we've finished replaying all buffer and inode 3997 * updates, re-read in the superblock and reverify it. 3998 */ 3999 bp = xfs_getsb(log->l_mp, 0); 4000 XFS_BUF_UNDONE(bp); 4001 ASSERT(!(XFS_BUF_ISWRITE(bp))); 4002 XFS_BUF_READ(bp); 4003 XFS_BUF_UNASYNC(bp); 4004 bp->b_ops = &xfs_sb_buf_ops; 4005 xfsbdstrat(log->l_mp, bp); 4006 error = xfs_buf_iowait(bp); 4007 if (error) { 4008 xfs_buf_ioerror_alert(bp, __func__); 4009 ASSERT(0); 4010 xfs_buf_relse(bp); 4011 return error; 4012 } 4013 4014 /* Convert superblock from on-disk format */ 4015 sbp = &log->l_mp->m_sb; 4016 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 4017 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 4018 ASSERT(xfs_sb_good_version(sbp)); 4019 xfs_buf_relse(bp); 4020 4021 /* We've re-read the superblock so re-initialize per-cpu counters */ 4022 xfs_icsb_reinit_counters(log->l_mp); 4023 4024 xlog_recover_check_summary(log); 4025 4026 /* Normal transactions can now occur */ 4027 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 4028 return 0; 4029 } 4030 4031 /* 4032 * Perform recovery and re-initialize some log variables in xlog_find_tail. 4033 * 4034 * Return error or zero. 4035 */ 4036 int 4037 xlog_recover( 4038 struct xlog *log) 4039 { 4040 xfs_daddr_t head_blk, tail_blk; 4041 int error; 4042 4043 /* find the tail of the log */ 4044 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 4045 return error; 4046 4047 if (tail_blk != head_blk) { 4048 /* There used to be a comment here: 4049 * 4050 * disallow recovery on read-only mounts. note -- mount 4051 * checks for ENOSPC and turns it into an intelligent 4052 * error message. 4053 * ...but this is no longer true. Now, unless you specify 4054 * NORECOVERY (in which case this function would never be 4055 * called), we just go ahead and recover. We do this all 4056 * under the vfs layer, so we can get away with it unless 4057 * the device itself is read-only, in which case we fail. 4058 */ 4059 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 4060 return error; 4061 } 4062 4063 /* 4064 * Version 5 superblock log feature mask validation. We know the 4065 * log is dirty so check if there are any unknown log features 4066 * in what we need to recover. If there are unknown features 4067 * (e.g. unsupported transactions, then simply reject the 4068 * attempt at recovery before touching anything. 4069 */ 4070 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 4071 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 4072 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 4073 xfs_warn(log->l_mp, 4074 "Superblock has unknown incompatible log features (0x%x) enabled.\n" 4075 "The log can not be fully and/or safely recovered by this kernel.\n" 4076 "Please recover the log on a kernel that supports the unknown features.", 4077 (log->l_mp->m_sb.sb_features_log_incompat & 4078 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 4079 return EINVAL; 4080 } 4081 4082 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 4083 log->l_mp->m_logname ? log->l_mp->m_logname 4084 : "internal"); 4085 4086 error = xlog_do_recover(log, head_blk, tail_blk); 4087 log->l_flags |= XLOG_RECOVERY_NEEDED; 4088 } 4089 return error; 4090 } 4091 4092 /* 4093 * In the first part of recovery we replay inodes and buffers and build 4094 * up the list of extent free items which need to be processed. Here 4095 * we process the extent free items and clean up the on disk unlinked 4096 * inode lists. This is separated from the first part of recovery so 4097 * that the root and real-time bitmap inodes can be read in from disk in 4098 * between the two stages. This is necessary so that we can free space 4099 * in the real-time portion of the file system. 4100 */ 4101 int 4102 xlog_recover_finish( 4103 struct xlog *log) 4104 { 4105 /* 4106 * Now we're ready to do the transactions needed for the 4107 * rest of recovery. Start with completing all the extent 4108 * free intent records and then process the unlinked inode 4109 * lists. At this point, we essentially run in normal mode 4110 * except that we're still performing recovery actions 4111 * rather than accepting new requests. 4112 */ 4113 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 4114 int error; 4115 error = xlog_recover_process_efis(log); 4116 if (error) { 4117 xfs_alert(log->l_mp, "Failed to recover EFIs"); 4118 return error; 4119 } 4120 /* 4121 * Sync the log to get all the EFIs out of the AIL. 4122 * This isn't absolutely necessary, but it helps in 4123 * case the unlink transactions would have problems 4124 * pushing the EFIs out of the way. 4125 */ 4126 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 4127 4128 xlog_recover_process_iunlinks(log); 4129 4130 xlog_recover_check_summary(log); 4131 4132 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 4133 log->l_mp->m_logname ? log->l_mp->m_logname 4134 : "internal"); 4135 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 4136 } else { 4137 xfs_info(log->l_mp, "Ending clean mount"); 4138 } 4139 return 0; 4140 } 4141 4142 4143 #if defined(DEBUG) 4144 /* 4145 * Read all of the agf and agi counters and check that they 4146 * are consistent with the superblock counters. 4147 */ 4148 void 4149 xlog_recover_check_summary( 4150 struct xlog *log) 4151 { 4152 xfs_mount_t *mp; 4153 xfs_agf_t *agfp; 4154 xfs_buf_t *agfbp; 4155 xfs_buf_t *agibp; 4156 xfs_agnumber_t agno; 4157 __uint64_t freeblks; 4158 __uint64_t itotal; 4159 __uint64_t ifree; 4160 int error; 4161 4162 mp = log->l_mp; 4163 4164 freeblks = 0LL; 4165 itotal = 0LL; 4166 ifree = 0LL; 4167 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4168 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 4169 if (error) { 4170 xfs_alert(mp, "%s agf read failed agno %d error %d", 4171 __func__, agno, error); 4172 } else { 4173 agfp = XFS_BUF_TO_AGF(agfbp); 4174 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4175 be32_to_cpu(agfp->agf_flcount); 4176 xfs_buf_relse(agfbp); 4177 } 4178 4179 error = xfs_read_agi(mp, NULL, agno, &agibp); 4180 if (error) { 4181 xfs_alert(mp, "%s agi read failed agno %d error %d", 4182 __func__, agno, error); 4183 } else { 4184 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 4185 4186 itotal += be32_to_cpu(agi->agi_count); 4187 ifree += be32_to_cpu(agi->agi_freecount); 4188 xfs_buf_relse(agibp); 4189 } 4190 } 4191 } 4192 #endif /* DEBUG */ 4193