1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_trans.h" 18 #include "xfs_log.h" 19 #include "xfs_log_priv.h" 20 #include "xfs_log_recover.h" 21 #include "xfs_trans_priv.h" 22 #include "xfs_alloc.h" 23 #include "xfs_ialloc.h" 24 #include "xfs_trace.h" 25 #include "xfs_icache.h" 26 #include "xfs_error.h" 27 #include "xfs_buf_item.h" 28 29 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 30 31 STATIC int 32 xlog_find_zeroed( 33 struct xlog *, 34 xfs_daddr_t *); 35 STATIC int 36 xlog_clear_stale_blocks( 37 struct xlog *, 38 xfs_lsn_t); 39 #if defined(DEBUG) 40 STATIC void 41 xlog_recover_check_summary( 42 struct xlog *); 43 #else 44 #define xlog_recover_check_summary(log) 45 #endif 46 STATIC int 47 xlog_do_recovery_pass( 48 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 49 50 /* 51 * Sector aligned buffer routines for buffer create/read/write/access 52 */ 53 54 /* 55 * Verify the log-relative block number and length in basic blocks are valid for 56 * an operation involving the given XFS log buffer. Returns true if the fields 57 * are valid, false otherwise. 58 */ 59 static inline bool 60 xlog_verify_bno( 61 struct xlog *log, 62 xfs_daddr_t blk_no, 63 int bbcount) 64 { 65 if (blk_no < 0 || blk_no >= log->l_logBBsize) 66 return false; 67 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) 68 return false; 69 return true; 70 } 71 72 /* 73 * Allocate a buffer to hold log data. The buffer needs to be able to map to 74 * a range of nbblks basic blocks at any valid offset within the log. 75 */ 76 static char * 77 xlog_alloc_buffer( 78 struct xlog *log, 79 int nbblks) 80 { 81 int align_mask = xfs_buftarg_dma_alignment(log->l_targ); 82 83 /* 84 * Pass log block 0 since we don't have an addr yet, buffer will be 85 * verified on read. 86 */ 87 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) { 88 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 89 nbblks); 90 return NULL; 91 } 92 93 /* 94 * We do log I/O in units of log sectors (a power-of-2 multiple of the 95 * basic block size), so we round up the requested size to accommodate 96 * the basic blocks required for complete log sectors. 97 * 98 * In addition, the buffer may be used for a non-sector-aligned block 99 * offset, in which case an I/O of the requested size could extend 100 * beyond the end of the buffer. If the requested size is only 1 basic 101 * block it will never straddle a sector boundary, so this won't be an 102 * issue. Nor will this be a problem if the log I/O is done in basic 103 * blocks (sector size 1). But otherwise we extend the buffer by one 104 * extra log sector to ensure there's space to accommodate this 105 * possibility. 106 */ 107 if (nbblks > 1 && log->l_sectBBsize > 1) 108 nbblks += log->l_sectBBsize; 109 nbblks = round_up(nbblks, log->l_sectBBsize); 110 return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO); 111 } 112 113 /* 114 * Return the address of the start of the given block number's data 115 * in a log buffer. The buffer covers a log sector-aligned region. 116 */ 117 static inline unsigned int 118 xlog_align( 119 struct xlog *log, 120 xfs_daddr_t blk_no) 121 { 122 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1)); 123 } 124 125 static int 126 xlog_do_io( 127 struct xlog *log, 128 xfs_daddr_t blk_no, 129 unsigned int nbblks, 130 char *data, 131 unsigned int op) 132 { 133 int error; 134 135 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) { 136 xfs_warn(log->l_mp, 137 "Invalid log block/length (0x%llx, 0x%x) for buffer", 138 blk_no, nbblks); 139 return -EFSCORRUPTED; 140 } 141 142 blk_no = round_down(blk_no, log->l_sectBBsize); 143 nbblks = round_up(nbblks, log->l_sectBBsize); 144 ASSERT(nbblks > 0); 145 146 error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no, 147 BBTOB(nbblks), data, op); 148 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) { 149 xfs_alert(log->l_mp, 150 "log recovery %s I/O error at daddr 0x%llx len %d error %d", 151 op == REQ_OP_WRITE ? "write" : "read", 152 blk_no, nbblks, error); 153 } 154 return error; 155 } 156 157 STATIC int 158 xlog_bread_noalign( 159 struct xlog *log, 160 xfs_daddr_t blk_no, 161 int nbblks, 162 char *data) 163 { 164 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 165 } 166 167 STATIC int 168 xlog_bread( 169 struct xlog *log, 170 xfs_daddr_t blk_no, 171 int nbblks, 172 char *data, 173 char **offset) 174 { 175 int error; 176 177 error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 178 if (!error) 179 *offset = data + xlog_align(log, blk_no); 180 return error; 181 } 182 183 STATIC int 184 xlog_bwrite( 185 struct xlog *log, 186 xfs_daddr_t blk_no, 187 int nbblks, 188 char *data) 189 { 190 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE); 191 } 192 193 #ifdef DEBUG 194 /* 195 * dump debug superblock and log record information 196 */ 197 STATIC void 198 xlog_header_check_dump( 199 xfs_mount_t *mp, 200 xlog_rec_header_t *head) 201 { 202 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 203 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 204 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 205 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 206 } 207 #else 208 #define xlog_header_check_dump(mp, head) 209 #endif 210 211 /* 212 * check log record header for recovery 213 */ 214 STATIC int 215 xlog_header_check_recover( 216 xfs_mount_t *mp, 217 xlog_rec_header_t *head) 218 { 219 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 220 221 /* 222 * IRIX doesn't write the h_fmt field and leaves it zeroed 223 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 224 * a dirty log created in IRIX. 225 */ 226 if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) { 227 xfs_warn(mp, 228 "dirty log written in incompatible format - can't recover"); 229 xlog_header_check_dump(mp, head); 230 return -EFSCORRUPTED; 231 } 232 if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, 233 &head->h_fs_uuid))) { 234 xfs_warn(mp, 235 "dirty log entry has mismatched uuid - can't recover"); 236 xlog_header_check_dump(mp, head); 237 return -EFSCORRUPTED; 238 } 239 return 0; 240 } 241 242 /* 243 * read the head block of the log and check the header 244 */ 245 STATIC int 246 xlog_header_check_mount( 247 xfs_mount_t *mp, 248 xlog_rec_header_t *head) 249 { 250 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 251 252 if (uuid_is_null(&head->h_fs_uuid)) { 253 /* 254 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 255 * h_fs_uuid is null, we assume this log was last mounted 256 * by IRIX and continue. 257 */ 258 xfs_warn(mp, "null uuid in log - IRIX style log"); 259 } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, 260 &head->h_fs_uuid))) { 261 xfs_warn(mp, "log has mismatched uuid - can't recover"); 262 xlog_header_check_dump(mp, head); 263 return -EFSCORRUPTED; 264 } 265 return 0; 266 } 267 268 /* 269 * This routine finds (to an approximation) the first block in the physical 270 * log which contains the given cycle. It uses a binary search algorithm. 271 * Note that the algorithm can not be perfect because the disk will not 272 * necessarily be perfect. 273 */ 274 STATIC int 275 xlog_find_cycle_start( 276 struct xlog *log, 277 char *buffer, 278 xfs_daddr_t first_blk, 279 xfs_daddr_t *last_blk, 280 uint cycle) 281 { 282 char *offset; 283 xfs_daddr_t mid_blk; 284 xfs_daddr_t end_blk; 285 uint mid_cycle; 286 int error; 287 288 end_blk = *last_blk; 289 mid_blk = BLK_AVG(first_blk, end_blk); 290 while (mid_blk != first_blk && mid_blk != end_blk) { 291 error = xlog_bread(log, mid_blk, 1, buffer, &offset); 292 if (error) 293 return error; 294 mid_cycle = xlog_get_cycle(offset); 295 if (mid_cycle == cycle) 296 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 297 else 298 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 299 mid_blk = BLK_AVG(first_blk, end_blk); 300 } 301 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 302 (mid_blk == end_blk && mid_blk-1 == first_blk)); 303 304 *last_blk = end_blk; 305 306 return 0; 307 } 308 309 /* 310 * Check that a range of blocks does not contain stop_on_cycle_no. 311 * Fill in *new_blk with the block offset where such a block is 312 * found, or with -1 (an invalid block number) if there is no such 313 * block in the range. The scan needs to occur from front to back 314 * and the pointer into the region must be updated since a later 315 * routine will need to perform another test. 316 */ 317 STATIC int 318 xlog_find_verify_cycle( 319 struct xlog *log, 320 xfs_daddr_t start_blk, 321 int nbblks, 322 uint stop_on_cycle_no, 323 xfs_daddr_t *new_blk) 324 { 325 xfs_daddr_t i, j; 326 uint cycle; 327 char *buffer; 328 xfs_daddr_t bufblks; 329 char *buf = NULL; 330 int error = 0; 331 332 /* 333 * Greedily allocate a buffer big enough to handle the full 334 * range of basic blocks we'll be examining. If that fails, 335 * try a smaller size. We need to be able to read at least 336 * a log sector, or we're out of luck. 337 */ 338 bufblks = 1 << ffs(nbblks); 339 while (bufblks > log->l_logBBsize) 340 bufblks >>= 1; 341 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 342 bufblks >>= 1; 343 if (bufblks < log->l_sectBBsize) 344 return -ENOMEM; 345 } 346 347 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 348 int bcount; 349 350 bcount = min(bufblks, (start_blk + nbblks - i)); 351 352 error = xlog_bread(log, i, bcount, buffer, &buf); 353 if (error) 354 goto out; 355 356 for (j = 0; j < bcount; j++) { 357 cycle = xlog_get_cycle(buf); 358 if (cycle == stop_on_cycle_no) { 359 *new_blk = i+j; 360 goto out; 361 } 362 363 buf += BBSIZE; 364 } 365 } 366 367 *new_blk = -1; 368 369 out: 370 kmem_free(buffer); 371 return error; 372 } 373 374 static inline int 375 xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh) 376 { 377 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 378 int h_size = be32_to_cpu(rh->h_size); 379 380 if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) && 381 h_size > XLOG_HEADER_CYCLE_SIZE) 382 return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE); 383 } 384 return 1; 385 } 386 387 /* 388 * Potentially backup over partial log record write. 389 * 390 * In the typical case, last_blk is the number of the block directly after 391 * a good log record. Therefore, we subtract one to get the block number 392 * of the last block in the given buffer. extra_bblks contains the number 393 * of blocks we would have read on a previous read. This happens when the 394 * last log record is split over the end of the physical log. 395 * 396 * extra_bblks is the number of blocks potentially verified on a previous 397 * call to this routine. 398 */ 399 STATIC int 400 xlog_find_verify_log_record( 401 struct xlog *log, 402 xfs_daddr_t start_blk, 403 xfs_daddr_t *last_blk, 404 int extra_bblks) 405 { 406 xfs_daddr_t i; 407 char *buffer; 408 char *offset = NULL; 409 xlog_rec_header_t *head = NULL; 410 int error = 0; 411 int smallmem = 0; 412 int num_blks = *last_blk - start_blk; 413 int xhdrs; 414 415 ASSERT(start_blk != 0 || *last_blk != start_blk); 416 417 buffer = xlog_alloc_buffer(log, num_blks); 418 if (!buffer) { 419 buffer = xlog_alloc_buffer(log, 1); 420 if (!buffer) 421 return -ENOMEM; 422 smallmem = 1; 423 } else { 424 error = xlog_bread(log, start_blk, num_blks, buffer, &offset); 425 if (error) 426 goto out; 427 offset += ((num_blks - 1) << BBSHIFT); 428 } 429 430 for (i = (*last_blk) - 1; i >= 0; i--) { 431 if (i < start_blk) { 432 /* valid log record not found */ 433 xfs_warn(log->l_mp, 434 "Log inconsistent (didn't find previous header)"); 435 ASSERT(0); 436 error = -EFSCORRUPTED; 437 goto out; 438 } 439 440 if (smallmem) { 441 error = xlog_bread(log, i, 1, buffer, &offset); 442 if (error) 443 goto out; 444 } 445 446 head = (xlog_rec_header_t *)offset; 447 448 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 449 break; 450 451 if (!smallmem) 452 offset -= BBSIZE; 453 } 454 455 /* 456 * We hit the beginning of the physical log & still no header. Return 457 * to caller. If caller can handle a return of -1, then this routine 458 * will be called again for the end of the physical log. 459 */ 460 if (i == -1) { 461 error = 1; 462 goto out; 463 } 464 465 /* 466 * We have the final block of the good log (the first block 467 * of the log record _before_ the head. So we check the uuid. 468 */ 469 if ((error = xlog_header_check_mount(log->l_mp, head))) 470 goto out; 471 472 /* 473 * We may have found a log record header before we expected one. 474 * last_blk will be the 1st block # with a given cycle #. We may end 475 * up reading an entire log record. In this case, we don't want to 476 * reset last_blk. Only when last_blk points in the middle of a log 477 * record do we update last_blk. 478 */ 479 xhdrs = xlog_logrec_hblks(log, head); 480 481 if (*last_blk - i + extra_bblks != 482 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 483 *last_blk = i; 484 485 out: 486 kmem_free(buffer); 487 return error; 488 } 489 490 /* 491 * Head is defined to be the point of the log where the next log write 492 * could go. This means that incomplete LR writes at the end are 493 * eliminated when calculating the head. We aren't guaranteed that previous 494 * LR have complete transactions. We only know that a cycle number of 495 * current cycle number -1 won't be present in the log if we start writing 496 * from our current block number. 497 * 498 * last_blk contains the block number of the first block with a given 499 * cycle number. 500 * 501 * Return: zero if normal, non-zero if error. 502 */ 503 STATIC int 504 xlog_find_head( 505 struct xlog *log, 506 xfs_daddr_t *return_head_blk) 507 { 508 char *buffer; 509 char *offset; 510 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 511 int num_scan_bblks; 512 uint first_half_cycle, last_half_cycle; 513 uint stop_on_cycle; 514 int error, log_bbnum = log->l_logBBsize; 515 516 /* Is the end of the log device zeroed? */ 517 error = xlog_find_zeroed(log, &first_blk); 518 if (error < 0) { 519 xfs_warn(log->l_mp, "empty log check failed"); 520 return error; 521 } 522 if (error == 1) { 523 *return_head_blk = first_blk; 524 525 /* Is the whole lot zeroed? */ 526 if (!first_blk) { 527 /* Linux XFS shouldn't generate totally zeroed logs - 528 * mkfs etc write a dummy unmount record to a fresh 529 * log so we can store the uuid in there 530 */ 531 xfs_warn(log->l_mp, "totally zeroed log"); 532 } 533 534 return 0; 535 } 536 537 first_blk = 0; /* get cycle # of 1st block */ 538 buffer = xlog_alloc_buffer(log, 1); 539 if (!buffer) 540 return -ENOMEM; 541 542 error = xlog_bread(log, 0, 1, buffer, &offset); 543 if (error) 544 goto out_free_buffer; 545 546 first_half_cycle = xlog_get_cycle(offset); 547 548 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 549 error = xlog_bread(log, last_blk, 1, buffer, &offset); 550 if (error) 551 goto out_free_buffer; 552 553 last_half_cycle = xlog_get_cycle(offset); 554 ASSERT(last_half_cycle != 0); 555 556 /* 557 * If the 1st half cycle number is equal to the last half cycle number, 558 * then the entire log is stamped with the same cycle number. In this 559 * case, head_blk can't be set to zero (which makes sense). The below 560 * math doesn't work out properly with head_blk equal to zero. Instead, 561 * we set it to log_bbnum which is an invalid block number, but this 562 * value makes the math correct. If head_blk doesn't changed through 563 * all the tests below, *head_blk is set to zero at the very end rather 564 * than log_bbnum. In a sense, log_bbnum and zero are the same block 565 * in a circular file. 566 */ 567 if (first_half_cycle == last_half_cycle) { 568 /* 569 * In this case we believe that the entire log should have 570 * cycle number last_half_cycle. We need to scan backwards 571 * from the end verifying that there are no holes still 572 * containing last_half_cycle - 1. If we find such a hole, 573 * then the start of that hole will be the new head. The 574 * simple case looks like 575 * x | x ... | x - 1 | x 576 * Another case that fits this picture would be 577 * x | x + 1 | x ... | x 578 * In this case the head really is somewhere at the end of the 579 * log, as one of the latest writes at the beginning was 580 * incomplete. 581 * One more case is 582 * x | x + 1 | x ... | x - 1 | x 583 * This is really the combination of the above two cases, and 584 * the head has to end up at the start of the x-1 hole at the 585 * end of the log. 586 * 587 * In the 256k log case, we will read from the beginning to the 588 * end of the log and search for cycle numbers equal to x-1. 589 * We don't worry about the x+1 blocks that we encounter, 590 * because we know that they cannot be the head since the log 591 * started with x. 592 */ 593 head_blk = log_bbnum; 594 stop_on_cycle = last_half_cycle - 1; 595 } else { 596 /* 597 * In this case we want to find the first block with cycle 598 * number matching last_half_cycle. We expect the log to be 599 * some variation on 600 * x + 1 ... | x ... | x 601 * The first block with cycle number x (last_half_cycle) will 602 * be where the new head belongs. First we do a binary search 603 * for the first occurrence of last_half_cycle. The binary 604 * search may not be totally accurate, so then we scan back 605 * from there looking for occurrences of last_half_cycle before 606 * us. If that backwards scan wraps around the beginning of 607 * the log, then we look for occurrences of last_half_cycle - 1 608 * at the end of the log. The cases we're looking for look 609 * like 610 * v binary search stopped here 611 * x + 1 ... | x | x + 1 | x ... | x 612 * ^ but we want to locate this spot 613 * or 614 * <---------> less than scan distance 615 * x + 1 ... | x ... | x - 1 | x 616 * ^ we want to locate this spot 617 */ 618 stop_on_cycle = last_half_cycle; 619 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk, 620 last_half_cycle); 621 if (error) 622 goto out_free_buffer; 623 } 624 625 /* 626 * Now validate the answer. Scan back some number of maximum possible 627 * blocks and make sure each one has the expected cycle number. The 628 * maximum is determined by the total possible amount of buffering 629 * in the in-core log. The following number can be made tighter if 630 * we actually look at the block size of the filesystem. 631 */ 632 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); 633 if (head_blk >= num_scan_bblks) { 634 /* 635 * We are guaranteed that the entire check can be performed 636 * in one buffer. 637 */ 638 start_blk = head_blk - num_scan_bblks; 639 if ((error = xlog_find_verify_cycle(log, 640 start_blk, num_scan_bblks, 641 stop_on_cycle, &new_blk))) 642 goto out_free_buffer; 643 if (new_blk != -1) 644 head_blk = new_blk; 645 } else { /* need to read 2 parts of log */ 646 /* 647 * We are going to scan backwards in the log in two parts. 648 * First we scan the physical end of the log. In this part 649 * of the log, we are looking for blocks with cycle number 650 * last_half_cycle - 1. 651 * If we find one, then we know that the log starts there, as 652 * we've found a hole that didn't get written in going around 653 * the end of the physical log. The simple case for this is 654 * x + 1 ... | x ... | x - 1 | x 655 * <---------> less than scan distance 656 * If all of the blocks at the end of the log have cycle number 657 * last_half_cycle, then we check the blocks at the start of 658 * the log looking for occurrences of last_half_cycle. If we 659 * find one, then our current estimate for the location of the 660 * first occurrence of last_half_cycle is wrong and we move 661 * back to the hole we've found. This case looks like 662 * x + 1 ... | x | x + 1 | x ... 663 * ^ binary search stopped here 664 * Another case we need to handle that only occurs in 256k 665 * logs is 666 * x + 1 ... | x ... | x+1 | x ... 667 * ^ binary search stops here 668 * In a 256k log, the scan at the end of the log will see the 669 * x + 1 blocks. We need to skip past those since that is 670 * certainly not the head of the log. By searching for 671 * last_half_cycle-1 we accomplish that. 672 */ 673 ASSERT(head_blk <= INT_MAX && 674 (xfs_daddr_t) num_scan_bblks >= head_blk); 675 start_blk = log_bbnum - (num_scan_bblks - head_blk); 676 if ((error = xlog_find_verify_cycle(log, start_blk, 677 num_scan_bblks - (int)head_blk, 678 (stop_on_cycle - 1), &new_blk))) 679 goto out_free_buffer; 680 if (new_blk != -1) { 681 head_blk = new_blk; 682 goto validate_head; 683 } 684 685 /* 686 * Scan beginning of log now. The last part of the physical 687 * log is good. This scan needs to verify that it doesn't find 688 * the last_half_cycle. 689 */ 690 start_blk = 0; 691 ASSERT(head_blk <= INT_MAX); 692 if ((error = xlog_find_verify_cycle(log, 693 start_blk, (int)head_blk, 694 stop_on_cycle, &new_blk))) 695 goto out_free_buffer; 696 if (new_blk != -1) 697 head_blk = new_blk; 698 } 699 700 validate_head: 701 /* 702 * Now we need to make sure head_blk is not pointing to a block in 703 * the middle of a log record. 704 */ 705 num_scan_bblks = XLOG_REC_SHIFT(log); 706 if (head_blk >= num_scan_bblks) { 707 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 708 709 /* start ptr at last block ptr before head_blk */ 710 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 711 if (error == 1) 712 error = -EIO; 713 if (error) 714 goto out_free_buffer; 715 } else { 716 start_blk = 0; 717 ASSERT(head_blk <= INT_MAX); 718 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 719 if (error < 0) 720 goto out_free_buffer; 721 if (error == 1) { 722 /* We hit the beginning of the log during our search */ 723 start_blk = log_bbnum - (num_scan_bblks - head_blk); 724 new_blk = log_bbnum; 725 ASSERT(start_blk <= INT_MAX && 726 (xfs_daddr_t) log_bbnum-start_blk >= 0); 727 ASSERT(head_blk <= INT_MAX); 728 error = xlog_find_verify_log_record(log, start_blk, 729 &new_blk, (int)head_blk); 730 if (error == 1) 731 error = -EIO; 732 if (error) 733 goto out_free_buffer; 734 if (new_blk != log_bbnum) 735 head_blk = new_blk; 736 } else if (error) 737 goto out_free_buffer; 738 } 739 740 kmem_free(buffer); 741 if (head_blk == log_bbnum) 742 *return_head_blk = 0; 743 else 744 *return_head_blk = head_blk; 745 /* 746 * When returning here, we have a good block number. Bad block 747 * means that during a previous crash, we didn't have a clean break 748 * from cycle number N to cycle number N-1. In this case, we need 749 * to find the first block with cycle number N-1. 750 */ 751 return 0; 752 753 out_free_buffer: 754 kmem_free(buffer); 755 if (error) 756 xfs_warn(log->l_mp, "failed to find log head"); 757 return error; 758 } 759 760 /* 761 * Seek backwards in the log for log record headers. 762 * 763 * Given a starting log block, walk backwards until we find the provided number 764 * of records or hit the provided tail block. The return value is the number of 765 * records encountered or a negative error code. The log block and buffer 766 * pointer of the last record seen are returned in rblk and rhead respectively. 767 */ 768 STATIC int 769 xlog_rseek_logrec_hdr( 770 struct xlog *log, 771 xfs_daddr_t head_blk, 772 xfs_daddr_t tail_blk, 773 int count, 774 char *buffer, 775 xfs_daddr_t *rblk, 776 struct xlog_rec_header **rhead, 777 bool *wrapped) 778 { 779 int i; 780 int error; 781 int found = 0; 782 char *offset = NULL; 783 xfs_daddr_t end_blk; 784 785 *wrapped = false; 786 787 /* 788 * Walk backwards from the head block until we hit the tail or the first 789 * block in the log. 790 */ 791 end_blk = head_blk > tail_blk ? tail_blk : 0; 792 for (i = (int) head_blk - 1; i >= end_blk; i--) { 793 error = xlog_bread(log, i, 1, buffer, &offset); 794 if (error) 795 goto out_error; 796 797 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 798 *rblk = i; 799 *rhead = (struct xlog_rec_header *) offset; 800 if (++found == count) 801 break; 802 } 803 } 804 805 /* 806 * If we haven't hit the tail block or the log record header count, 807 * start looking again from the end of the physical log. Note that 808 * callers can pass head == tail if the tail is not yet known. 809 */ 810 if (tail_blk >= head_blk && found != count) { 811 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 812 error = xlog_bread(log, i, 1, buffer, &offset); 813 if (error) 814 goto out_error; 815 816 if (*(__be32 *)offset == 817 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 818 *wrapped = true; 819 *rblk = i; 820 *rhead = (struct xlog_rec_header *) offset; 821 if (++found == count) 822 break; 823 } 824 } 825 } 826 827 return found; 828 829 out_error: 830 return error; 831 } 832 833 /* 834 * Seek forward in the log for log record headers. 835 * 836 * Given head and tail blocks, walk forward from the tail block until we find 837 * the provided number of records or hit the head block. The return value is the 838 * number of records encountered or a negative error code. The log block and 839 * buffer pointer of the last record seen are returned in rblk and rhead 840 * respectively. 841 */ 842 STATIC int 843 xlog_seek_logrec_hdr( 844 struct xlog *log, 845 xfs_daddr_t head_blk, 846 xfs_daddr_t tail_blk, 847 int count, 848 char *buffer, 849 xfs_daddr_t *rblk, 850 struct xlog_rec_header **rhead, 851 bool *wrapped) 852 { 853 int i; 854 int error; 855 int found = 0; 856 char *offset = NULL; 857 xfs_daddr_t end_blk; 858 859 *wrapped = false; 860 861 /* 862 * Walk forward from the tail block until we hit the head or the last 863 * block in the log. 864 */ 865 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 866 for (i = (int) tail_blk; i <= end_blk; i++) { 867 error = xlog_bread(log, i, 1, buffer, &offset); 868 if (error) 869 goto out_error; 870 871 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 872 *rblk = i; 873 *rhead = (struct xlog_rec_header *) offset; 874 if (++found == count) 875 break; 876 } 877 } 878 879 /* 880 * If we haven't hit the head block or the log record header count, 881 * start looking again from the start of the physical log. 882 */ 883 if (tail_blk > head_blk && found != count) { 884 for (i = 0; i < (int) head_blk; i++) { 885 error = xlog_bread(log, i, 1, buffer, &offset); 886 if (error) 887 goto out_error; 888 889 if (*(__be32 *)offset == 890 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 891 *wrapped = true; 892 *rblk = i; 893 *rhead = (struct xlog_rec_header *) offset; 894 if (++found == count) 895 break; 896 } 897 } 898 } 899 900 return found; 901 902 out_error: 903 return error; 904 } 905 906 /* 907 * Calculate distance from head to tail (i.e., unused space in the log). 908 */ 909 static inline int 910 xlog_tail_distance( 911 struct xlog *log, 912 xfs_daddr_t head_blk, 913 xfs_daddr_t tail_blk) 914 { 915 if (head_blk < tail_blk) 916 return tail_blk - head_blk; 917 918 return tail_blk + (log->l_logBBsize - head_blk); 919 } 920 921 /* 922 * Verify the log tail. This is particularly important when torn or incomplete 923 * writes have been detected near the front of the log and the head has been 924 * walked back accordingly. 925 * 926 * We also have to handle the case where the tail was pinned and the head 927 * blocked behind the tail right before a crash. If the tail had been pushed 928 * immediately prior to the crash and the subsequent checkpoint was only 929 * partially written, it's possible it overwrote the last referenced tail in the 930 * log with garbage. This is not a coherency problem because the tail must have 931 * been pushed before it can be overwritten, but appears as log corruption to 932 * recovery because we have no way to know the tail was updated if the 933 * subsequent checkpoint didn't write successfully. 934 * 935 * Therefore, CRC check the log from tail to head. If a failure occurs and the 936 * offending record is within max iclog bufs from the head, walk the tail 937 * forward and retry until a valid tail is found or corruption is detected out 938 * of the range of a possible overwrite. 939 */ 940 STATIC int 941 xlog_verify_tail( 942 struct xlog *log, 943 xfs_daddr_t head_blk, 944 xfs_daddr_t *tail_blk, 945 int hsize) 946 { 947 struct xlog_rec_header *thead; 948 char *buffer; 949 xfs_daddr_t first_bad; 950 int error = 0; 951 bool wrapped; 952 xfs_daddr_t tmp_tail; 953 xfs_daddr_t orig_tail = *tail_blk; 954 955 buffer = xlog_alloc_buffer(log, 1); 956 if (!buffer) 957 return -ENOMEM; 958 959 /* 960 * Make sure the tail points to a record (returns positive count on 961 * success). 962 */ 963 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer, 964 &tmp_tail, &thead, &wrapped); 965 if (error < 0) 966 goto out; 967 if (*tail_blk != tmp_tail) 968 *tail_blk = tmp_tail; 969 970 /* 971 * Run a CRC check from the tail to the head. We can't just check 972 * MAX_ICLOGS records past the tail because the tail may point to stale 973 * blocks cleared during the search for the head/tail. These blocks are 974 * overwritten with zero-length records and thus record count is not a 975 * reliable indicator of the iclog state before a crash. 976 */ 977 first_bad = 0; 978 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 979 XLOG_RECOVER_CRCPASS, &first_bad); 980 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 981 int tail_distance; 982 983 /* 984 * Is corruption within range of the head? If so, retry from 985 * the next record. Otherwise return an error. 986 */ 987 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 988 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 989 break; 990 991 /* skip to the next record; returns positive count on success */ 992 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, 993 buffer, &tmp_tail, &thead, &wrapped); 994 if (error < 0) 995 goto out; 996 997 *tail_blk = tmp_tail; 998 first_bad = 0; 999 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1000 XLOG_RECOVER_CRCPASS, &first_bad); 1001 } 1002 1003 if (!error && *tail_blk != orig_tail) 1004 xfs_warn(log->l_mp, 1005 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1006 orig_tail, *tail_blk); 1007 out: 1008 kmem_free(buffer); 1009 return error; 1010 } 1011 1012 /* 1013 * Detect and trim torn writes from the head of the log. 1014 * 1015 * Storage without sector atomicity guarantees can result in torn writes in the 1016 * log in the event of a crash. Our only means to detect this scenario is via 1017 * CRC verification. While we can't always be certain that CRC verification 1018 * failure is due to a torn write vs. an unrelated corruption, we do know that 1019 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1020 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1021 * the log and treat failures in this range as torn writes as a matter of 1022 * policy. In the event of CRC failure, the head is walked back to the last good 1023 * record in the log and the tail is updated from that record and verified. 1024 */ 1025 STATIC int 1026 xlog_verify_head( 1027 struct xlog *log, 1028 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1029 xfs_daddr_t *tail_blk, /* out: tail block */ 1030 char *buffer, 1031 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1032 struct xlog_rec_header **rhead, /* ptr to last record */ 1033 bool *wrapped) /* last rec. wraps phys. log */ 1034 { 1035 struct xlog_rec_header *tmp_rhead; 1036 char *tmp_buffer; 1037 xfs_daddr_t first_bad; 1038 xfs_daddr_t tmp_rhead_blk; 1039 int found; 1040 int error; 1041 bool tmp_wrapped; 1042 1043 /* 1044 * Check the head of the log for torn writes. Search backwards from the 1045 * head until we hit the tail or the maximum number of log record I/Os 1046 * that could have been in flight at one time. Use a temporary buffer so 1047 * we don't trash the rhead/buffer pointers from the caller. 1048 */ 1049 tmp_buffer = xlog_alloc_buffer(log, 1); 1050 if (!tmp_buffer) 1051 return -ENOMEM; 1052 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1053 XLOG_MAX_ICLOGS, tmp_buffer, 1054 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped); 1055 kmem_free(tmp_buffer); 1056 if (error < 0) 1057 return error; 1058 1059 /* 1060 * Now run a CRC verification pass over the records starting at the 1061 * block found above to the current head. If a CRC failure occurs, the 1062 * log block of the first bad record is saved in first_bad. 1063 */ 1064 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1065 XLOG_RECOVER_CRCPASS, &first_bad); 1066 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1067 /* 1068 * We've hit a potential torn write. Reset the error and warn 1069 * about it. 1070 */ 1071 error = 0; 1072 xfs_warn(log->l_mp, 1073 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1074 first_bad, *head_blk); 1075 1076 /* 1077 * Get the header block and buffer pointer for the last good 1078 * record before the bad record. 1079 * 1080 * Note that xlog_find_tail() clears the blocks at the new head 1081 * (i.e., the records with invalid CRC) if the cycle number 1082 * matches the current cycle. 1083 */ 1084 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, 1085 buffer, rhead_blk, rhead, wrapped); 1086 if (found < 0) 1087 return found; 1088 if (found == 0) /* XXX: right thing to do here? */ 1089 return -EIO; 1090 1091 /* 1092 * Reset the head block to the starting block of the first bad 1093 * log record and set the tail block based on the last good 1094 * record. 1095 * 1096 * Bail out if the updated head/tail match as this indicates 1097 * possible corruption outside of the acceptable 1098 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1099 */ 1100 *head_blk = first_bad; 1101 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1102 if (*head_blk == *tail_blk) { 1103 ASSERT(0); 1104 return 0; 1105 } 1106 } 1107 if (error) 1108 return error; 1109 1110 return xlog_verify_tail(log, *head_blk, tail_blk, 1111 be32_to_cpu((*rhead)->h_size)); 1112 } 1113 1114 /* 1115 * We need to make sure we handle log wrapping properly, so we can't use the 1116 * calculated logbno directly. Make sure it wraps to the correct bno inside the 1117 * log. 1118 * 1119 * The log is limited to 32 bit sizes, so we use the appropriate modulus 1120 * operation here and cast it back to a 64 bit daddr on return. 1121 */ 1122 static inline xfs_daddr_t 1123 xlog_wrap_logbno( 1124 struct xlog *log, 1125 xfs_daddr_t bno) 1126 { 1127 int mod; 1128 1129 div_s64_rem(bno, log->l_logBBsize, &mod); 1130 return mod; 1131 } 1132 1133 /* 1134 * Check whether the head of the log points to an unmount record. In other 1135 * words, determine whether the log is clean. If so, update the in-core state 1136 * appropriately. 1137 */ 1138 static int 1139 xlog_check_unmount_rec( 1140 struct xlog *log, 1141 xfs_daddr_t *head_blk, 1142 xfs_daddr_t *tail_blk, 1143 struct xlog_rec_header *rhead, 1144 xfs_daddr_t rhead_blk, 1145 char *buffer, 1146 bool *clean) 1147 { 1148 struct xlog_op_header *op_head; 1149 xfs_daddr_t umount_data_blk; 1150 xfs_daddr_t after_umount_blk; 1151 int hblks; 1152 int error; 1153 char *offset; 1154 1155 *clean = false; 1156 1157 /* 1158 * Look for unmount record. If we find it, then we know there was a 1159 * clean unmount. Since 'i' could be the last block in the physical 1160 * log, we convert to a log block before comparing to the head_blk. 1161 * 1162 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1163 * below. We won't want to clear the unmount record if there is one, so 1164 * we pass the lsn of the unmount record rather than the block after it. 1165 */ 1166 hblks = xlog_logrec_hblks(log, rhead); 1167 after_umount_blk = xlog_wrap_logbno(log, 1168 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); 1169 1170 if (*head_blk == after_umount_blk && 1171 be32_to_cpu(rhead->h_num_logops) == 1) { 1172 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); 1173 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset); 1174 if (error) 1175 return error; 1176 1177 op_head = (struct xlog_op_header *)offset; 1178 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1179 /* 1180 * Set tail and last sync so that newly written log 1181 * records will point recovery to after the current 1182 * unmount record. 1183 */ 1184 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1185 log->l_curr_cycle, after_umount_blk); 1186 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1187 log->l_curr_cycle, after_umount_blk); 1188 *tail_blk = after_umount_blk; 1189 1190 *clean = true; 1191 } 1192 } 1193 1194 return 0; 1195 } 1196 1197 static void 1198 xlog_set_state( 1199 struct xlog *log, 1200 xfs_daddr_t head_blk, 1201 struct xlog_rec_header *rhead, 1202 xfs_daddr_t rhead_blk, 1203 bool bump_cycle) 1204 { 1205 /* 1206 * Reset log values according to the state of the log when we 1207 * crashed. In the case where head_blk == 0, we bump curr_cycle 1208 * one because the next write starts a new cycle rather than 1209 * continuing the cycle of the last good log record. At this 1210 * point we have guaranteed that all partial log records have been 1211 * accounted for. Therefore, we know that the last good log record 1212 * written was complete and ended exactly on the end boundary 1213 * of the physical log. 1214 */ 1215 log->l_prev_block = rhead_blk; 1216 log->l_curr_block = (int)head_blk; 1217 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1218 if (bump_cycle) 1219 log->l_curr_cycle++; 1220 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1221 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1222 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1223 BBTOB(log->l_curr_block)); 1224 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1225 BBTOB(log->l_curr_block)); 1226 } 1227 1228 /* 1229 * Find the sync block number or the tail of the log. 1230 * 1231 * This will be the block number of the last record to have its 1232 * associated buffers synced to disk. Every log record header has 1233 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1234 * to get a sync block number. The only concern is to figure out which 1235 * log record header to believe. 1236 * 1237 * The following algorithm uses the log record header with the largest 1238 * lsn. The entire log record does not need to be valid. We only care 1239 * that the header is valid. 1240 * 1241 * We could speed up search by using current head_blk buffer, but it is not 1242 * available. 1243 */ 1244 STATIC int 1245 xlog_find_tail( 1246 struct xlog *log, 1247 xfs_daddr_t *head_blk, 1248 xfs_daddr_t *tail_blk) 1249 { 1250 xlog_rec_header_t *rhead; 1251 char *offset = NULL; 1252 char *buffer; 1253 int error; 1254 xfs_daddr_t rhead_blk; 1255 xfs_lsn_t tail_lsn; 1256 bool wrapped = false; 1257 bool clean = false; 1258 1259 /* 1260 * Find previous log record 1261 */ 1262 if ((error = xlog_find_head(log, head_blk))) 1263 return error; 1264 ASSERT(*head_blk < INT_MAX); 1265 1266 buffer = xlog_alloc_buffer(log, 1); 1267 if (!buffer) 1268 return -ENOMEM; 1269 if (*head_blk == 0) { /* special case */ 1270 error = xlog_bread(log, 0, 1, buffer, &offset); 1271 if (error) 1272 goto done; 1273 1274 if (xlog_get_cycle(offset) == 0) { 1275 *tail_blk = 0; 1276 /* leave all other log inited values alone */ 1277 goto done; 1278 } 1279 } 1280 1281 /* 1282 * Search backwards through the log looking for the log record header 1283 * block. This wraps all the way back around to the head so something is 1284 * seriously wrong if we can't find it. 1285 */ 1286 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer, 1287 &rhead_blk, &rhead, &wrapped); 1288 if (error < 0) 1289 goto done; 1290 if (!error) { 1291 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1292 error = -EFSCORRUPTED; 1293 goto done; 1294 } 1295 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1296 1297 /* 1298 * Set the log state based on the current head record. 1299 */ 1300 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1301 tail_lsn = atomic64_read(&log->l_tail_lsn); 1302 1303 /* 1304 * Look for an unmount record at the head of the log. This sets the log 1305 * state to determine whether recovery is necessary. 1306 */ 1307 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1308 rhead_blk, buffer, &clean); 1309 if (error) 1310 goto done; 1311 1312 /* 1313 * Verify the log head if the log is not clean (e.g., we have anything 1314 * but an unmount record at the head). This uses CRC verification to 1315 * detect and trim torn writes. If discovered, CRC failures are 1316 * considered torn writes and the log head is trimmed accordingly. 1317 * 1318 * Note that we can only run CRC verification when the log is dirty 1319 * because there's no guarantee that the log data behind an unmount 1320 * record is compatible with the current architecture. 1321 */ 1322 if (!clean) { 1323 xfs_daddr_t orig_head = *head_blk; 1324 1325 error = xlog_verify_head(log, head_blk, tail_blk, buffer, 1326 &rhead_blk, &rhead, &wrapped); 1327 if (error) 1328 goto done; 1329 1330 /* update in-core state again if the head changed */ 1331 if (*head_blk != orig_head) { 1332 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1333 wrapped); 1334 tail_lsn = atomic64_read(&log->l_tail_lsn); 1335 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1336 rhead, rhead_blk, buffer, 1337 &clean); 1338 if (error) 1339 goto done; 1340 } 1341 } 1342 1343 /* 1344 * Note that the unmount was clean. If the unmount was not clean, we 1345 * need to know this to rebuild the superblock counters from the perag 1346 * headers if we have a filesystem using non-persistent counters. 1347 */ 1348 if (clean) 1349 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1350 1351 /* 1352 * Make sure that there are no blocks in front of the head 1353 * with the same cycle number as the head. This can happen 1354 * because we allow multiple outstanding log writes concurrently, 1355 * and the later writes might make it out before earlier ones. 1356 * 1357 * We use the lsn from before modifying it so that we'll never 1358 * overwrite the unmount record after a clean unmount. 1359 * 1360 * Do this only if we are going to recover the filesystem 1361 * 1362 * NOTE: This used to say "if (!readonly)" 1363 * However on Linux, we can & do recover a read-only filesystem. 1364 * We only skip recovery if NORECOVERY is specified on mount, 1365 * in which case we would not be here. 1366 * 1367 * But... if the -device- itself is readonly, just skip this. 1368 * We can't recover this device anyway, so it won't matter. 1369 */ 1370 if (!xfs_readonly_buftarg(log->l_targ)) 1371 error = xlog_clear_stale_blocks(log, tail_lsn); 1372 1373 done: 1374 kmem_free(buffer); 1375 1376 if (error) 1377 xfs_warn(log->l_mp, "failed to locate log tail"); 1378 return error; 1379 } 1380 1381 /* 1382 * Is the log zeroed at all? 1383 * 1384 * The last binary search should be changed to perform an X block read 1385 * once X becomes small enough. You can then search linearly through 1386 * the X blocks. This will cut down on the number of reads we need to do. 1387 * 1388 * If the log is partially zeroed, this routine will pass back the blkno 1389 * of the first block with cycle number 0. It won't have a complete LR 1390 * preceding it. 1391 * 1392 * Return: 1393 * 0 => the log is completely written to 1394 * 1 => use *blk_no as the first block of the log 1395 * <0 => error has occurred 1396 */ 1397 STATIC int 1398 xlog_find_zeroed( 1399 struct xlog *log, 1400 xfs_daddr_t *blk_no) 1401 { 1402 char *buffer; 1403 char *offset; 1404 uint first_cycle, last_cycle; 1405 xfs_daddr_t new_blk, last_blk, start_blk; 1406 xfs_daddr_t num_scan_bblks; 1407 int error, log_bbnum = log->l_logBBsize; 1408 1409 *blk_no = 0; 1410 1411 /* check totally zeroed log */ 1412 buffer = xlog_alloc_buffer(log, 1); 1413 if (!buffer) 1414 return -ENOMEM; 1415 error = xlog_bread(log, 0, 1, buffer, &offset); 1416 if (error) 1417 goto out_free_buffer; 1418 1419 first_cycle = xlog_get_cycle(offset); 1420 if (first_cycle == 0) { /* completely zeroed log */ 1421 *blk_no = 0; 1422 kmem_free(buffer); 1423 return 1; 1424 } 1425 1426 /* check partially zeroed log */ 1427 error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset); 1428 if (error) 1429 goto out_free_buffer; 1430 1431 last_cycle = xlog_get_cycle(offset); 1432 if (last_cycle != 0) { /* log completely written to */ 1433 kmem_free(buffer); 1434 return 0; 1435 } 1436 1437 /* we have a partially zeroed log */ 1438 last_blk = log_bbnum-1; 1439 error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0); 1440 if (error) 1441 goto out_free_buffer; 1442 1443 /* 1444 * Validate the answer. Because there is no way to guarantee that 1445 * the entire log is made up of log records which are the same size, 1446 * we scan over the defined maximum blocks. At this point, the maximum 1447 * is not chosen to mean anything special. XXXmiken 1448 */ 1449 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1450 ASSERT(num_scan_bblks <= INT_MAX); 1451 1452 if (last_blk < num_scan_bblks) 1453 num_scan_bblks = last_blk; 1454 start_blk = last_blk - num_scan_bblks; 1455 1456 /* 1457 * We search for any instances of cycle number 0 that occur before 1458 * our current estimate of the head. What we're trying to detect is 1459 * 1 ... | 0 | 1 | 0... 1460 * ^ binary search ends here 1461 */ 1462 if ((error = xlog_find_verify_cycle(log, start_blk, 1463 (int)num_scan_bblks, 0, &new_blk))) 1464 goto out_free_buffer; 1465 if (new_blk != -1) 1466 last_blk = new_blk; 1467 1468 /* 1469 * Potentially backup over partial log record write. We don't need 1470 * to search the end of the log because we know it is zero. 1471 */ 1472 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1473 if (error == 1) 1474 error = -EIO; 1475 if (error) 1476 goto out_free_buffer; 1477 1478 *blk_no = last_blk; 1479 out_free_buffer: 1480 kmem_free(buffer); 1481 if (error) 1482 return error; 1483 return 1; 1484 } 1485 1486 /* 1487 * These are simple subroutines used by xlog_clear_stale_blocks() below 1488 * to initialize a buffer full of empty log record headers and write 1489 * them into the log. 1490 */ 1491 STATIC void 1492 xlog_add_record( 1493 struct xlog *log, 1494 char *buf, 1495 int cycle, 1496 int block, 1497 int tail_cycle, 1498 int tail_block) 1499 { 1500 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1501 1502 memset(buf, 0, BBSIZE); 1503 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1504 recp->h_cycle = cpu_to_be32(cycle); 1505 recp->h_version = cpu_to_be32( 1506 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1507 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1508 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1509 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1510 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1511 } 1512 1513 STATIC int 1514 xlog_write_log_records( 1515 struct xlog *log, 1516 int cycle, 1517 int start_block, 1518 int blocks, 1519 int tail_cycle, 1520 int tail_block) 1521 { 1522 char *offset; 1523 char *buffer; 1524 int balign, ealign; 1525 int sectbb = log->l_sectBBsize; 1526 int end_block = start_block + blocks; 1527 int bufblks; 1528 int error = 0; 1529 int i, j = 0; 1530 1531 /* 1532 * Greedily allocate a buffer big enough to handle the full 1533 * range of basic blocks to be written. If that fails, try 1534 * a smaller size. We need to be able to write at least a 1535 * log sector, or we're out of luck. 1536 */ 1537 bufblks = 1 << ffs(blocks); 1538 while (bufblks > log->l_logBBsize) 1539 bufblks >>= 1; 1540 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 1541 bufblks >>= 1; 1542 if (bufblks < sectbb) 1543 return -ENOMEM; 1544 } 1545 1546 /* We may need to do a read at the start to fill in part of 1547 * the buffer in the starting sector not covered by the first 1548 * write below. 1549 */ 1550 balign = round_down(start_block, sectbb); 1551 if (balign != start_block) { 1552 error = xlog_bread_noalign(log, start_block, 1, buffer); 1553 if (error) 1554 goto out_free_buffer; 1555 1556 j = start_block - balign; 1557 } 1558 1559 for (i = start_block; i < end_block; i += bufblks) { 1560 int bcount, endcount; 1561 1562 bcount = min(bufblks, end_block - start_block); 1563 endcount = bcount - j; 1564 1565 /* We may need to do a read at the end to fill in part of 1566 * the buffer in the final sector not covered by the write. 1567 * If this is the same sector as the above read, skip it. 1568 */ 1569 ealign = round_down(end_block, sectbb); 1570 if (j == 0 && (start_block + endcount > ealign)) { 1571 error = xlog_bread_noalign(log, ealign, sectbb, 1572 buffer + BBTOB(ealign - start_block)); 1573 if (error) 1574 break; 1575 1576 } 1577 1578 offset = buffer + xlog_align(log, start_block); 1579 for (; j < endcount; j++) { 1580 xlog_add_record(log, offset, cycle, i+j, 1581 tail_cycle, tail_block); 1582 offset += BBSIZE; 1583 } 1584 error = xlog_bwrite(log, start_block, endcount, buffer); 1585 if (error) 1586 break; 1587 start_block += endcount; 1588 j = 0; 1589 } 1590 1591 out_free_buffer: 1592 kmem_free(buffer); 1593 return error; 1594 } 1595 1596 /* 1597 * This routine is called to blow away any incomplete log writes out 1598 * in front of the log head. We do this so that we won't become confused 1599 * if we come up, write only a little bit more, and then crash again. 1600 * If we leave the partial log records out there, this situation could 1601 * cause us to think those partial writes are valid blocks since they 1602 * have the current cycle number. We get rid of them by overwriting them 1603 * with empty log records with the old cycle number rather than the 1604 * current one. 1605 * 1606 * The tail lsn is passed in rather than taken from 1607 * the log so that we will not write over the unmount record after a 1608 * clean unmount in a 512 block log. Doing so would leave the log without 1609 * any valid log records in it until a new one was written. If we crashed 1610 * during that time we would not be able to recover. 1611 */ 1612 STATIC int 1613 xlog_clear_stale_blocks( 1614 struct xlog *log, 1615 xfs_lsn_t tail_lsn) 1616 { 1617 int tail_cycle, head_cycle; 1618 int tail_block, head_block; 1619 int tail_distance, max_distance; 1620 int distance; 1621 int error; 1622 1623 tail_cycle = CYCLE_LSN(tail_lsn); 1624 tail_block = BLOCK_LSN(tail_lsn); 1625 head_cycle = log->l_curr_cycle; 1626 head_block = log->l_curr_block; 1627 1628 /* 1629 * Figure out the distance between the new head of the log 1630 * and the tail. We want to write over any blocks beyond the 1631 * head that we may have written just before the crash, but 1632 * we don't want to overwrite the tail of the log. 1633 */ 1634 if (head_cycle == tail_cycle) { 1635 /* 1636 * The tail is behind the head in the physical log, 1637 * so the distance from the head to the tail is the 1638 * distance from the head to the end of the log plus 1639 * the distance from the beginning of the log to the 1640 * tail. 1641 */ 1642 if (XFS_IS_CORRUPT(log->l_mp, 1643 head_block < tail_block || 1644 head_block >= log->l_logBBsize)) 1645 return -EFSCORRUPTED; 1646 tail_distance = tail_block + (log->l_logBBsize - head_block); 1647 } else { 1648 /* 1649 * The head is behind the tail in the physical log, 1650 * so the distance from the head to the tail is just 1651 * the tail block minus the head block. 1652 */ 1653 if (XFS_IS_CORRUPT(log->l_mp, 1654 head_block >= tail_block || 1655 head_cycle != tail_cycle + 1)) 1656 return -EFSCORRUPTED; 1657 tail_distance = tail_block - head_block; 1658 } 1659 1660 /* 1661 * If the head is right up against the tail, we can't clear 1662 * anything. 1663 */ 1664 if (tail_distance <= 0) { 1665 ASSERT(tail_distance == 0); 1666 return 0; 1667 } 1668 1669 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1670 /* 1671 * Take the smaller of the maximum amount of outstanding I/O 1672 * we could have and the distance to the tail to clear out. 1673 * We take the smaller so that we don't overwrite the tail and 1674 * we don't waste all day writing from the head to the tail 1675 * for no reason. 1676 */ 1677 max_distance = min(max_distance, tail_distance); 1678 1679 if ((head_block + max_distance) <= log->l_logBBsize) { 1680 /* 1681 * We can stomp all the blocks we need to without 1682 * wrapping around the end of the log. Just do it 1683 * in a single write. Use the cycle number of the 1684 * current cycle minus one so that the log will look like: 1685 * n ... | n - 1 ... 1686 */ 1687 error = xlog_write_log_records(log, (head_cycle - 1), 1688 head_block, max_distance, tail_cycle, 1689 tail_block); 1690 if (error) 1691 return error; 1692 } else { 1693 /* 1694 * We need to wrap around the end of the physical log in 1695 * order to clear all the blocks. Do it in two separate 1696 * I/Os. The first write should be from the head to the 1697 * end of the physical log, and it should use the current 1698 * cycle number minus one just like above. 1699 */ 1700 distance = log->l_logBBsize - head_block; 1701 error = xlog_write_log_records(log, (head_cycle - 1), 1702 head_block, distance, tail_cycle, 1703 tail_block); 1704 1705 if (error) 1706 return error; 1707 1708 /* 1709 * Now write the blocks at the start of the physical log. 1710 * This writes the remainder of the blocks we want to clear. 1711 * It uses the current cycle number since we're now on the 1712 * same cycle as the head so that we get: 1713 * n ... n ... | n - 1 ... 1714 * ^^^^^ blocks we're writing 1715 */ 1716 distance = max_distance - (log->l_logBBsize - head_block); 1717 error = xlog_write_log_records(log, head_cycle, 0, distance, 1718 tail_cycle, tail_block); 1719 if (error) 1720 return error; 1721 } 1722 1723 return 0; 1724 } 1725 1726 /* 1727 * Release the recovered intent item in the AIL that matches the given intent 1728 * type and intent id. 1729 */ 1730 void 1731 xlog_recover_release_intent( 1732 struct xlog *log, 1733 unsigned short intent_type, 1734 uint64_t intent_id) 1735 { 1736 struct xfs_ail_cursor cur; 1737 struct xfs_log_item *lip; 1738 struct xfs_ail *ailp = log->l_ailp; 1739 1740 spin_lock(&ailp->ail_lock); 1741 for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); lip != NULL; 1742 lip = xfs_trans_ail_cursor_next(ailp, &cur)) { 1743 if (lip->li_type != intent_type) 1744 continue; 1745 if (!lip->li_ops->iop_match(lip, intent_id)) 1746 continue; 1747 1748 spin_unlock(&ailp->ail_lock); 1749 lip->li_ops->iop_release(lip); 1750 spin_lock(&ailp->ail_lock); 1751 break; 1752 } 1753 1754 xfs_trans_ail_cursor_done(&cur); 1755 spin_unlock(&ailp->ail_lock); 1756 } 1757 1758 /****************************************************************************** 1759 * 1760 * Log recover routines 1761 * 1762 ****************************************************************************** 1763 */ 1764 static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = { 1765 &xlog_buf_item_ops, 1766 &xlog_inode_item_ops, 1767 &xlog_dquot_item_ops, 1768 &xlog_quotaoff_item_ops, 1769 &xlog_icreate_item_ops, 1770 &xlog_efi_item_ops, 1771 &xlog_efd_item_ops, 1772 &xlog_rui_item_ops, 1773 &xlog_rud_item_ops, 1774 &xlog_cui_item_ops, 1775 &xlog_cud_item_ops, 1776 &xlog_bui_item_ops, 1777 &xlog_bud_item_ops, 1778 }; 1779 1780 static const struct xlog_recover_item_ops * 1781 xlog_find_item_ops( 1782 struct xlog_recover_item *item) 1783 { 1784 unsigned int i; 1785 1786 for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++) 1787 if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type) 1788 return xlog_recover_item_ops[i]; 1789 1790 return NULL; 1791 } 1792 1793 /* 1794 * Sort the log items in the transaction. 1795 * 1796 * The ordering constraints are defined by the inode allocation and unlink 1797 * behaviour. The rules are: 1798 * 1799 * 1. Every item is only logged once in a given transaction. Hence it 1800 * represents the last logged state of the item. Hence ordering is 1801 * dependent on the order in which operations need to be performed so 1802 * required initial conditions are always met. 1803 * 1804 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1805 * there's nothing to replay from them so we can simply cull them 1806 * from the transaction. However, we can't do that until after we've 1807 * replayed all the other items because they may be dependent on the 1808 * cancelled buffer and replaying the cancelled buffer can remove it 1809 * form the cancelled buffer table. Hence they have tobe done last. 1810 * 1811 * 3. Inode allocation buffers must be replayed before inode items that 1812 * read the buffer and replay changes into it. For filesystems using the 1813 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1814 * treated the same as inode allocation buffers as they create and 1815 * initialise the buffers directly. 1816 * 1817 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1818 * This ensures that inodes are completely flushed to the inode buffer 1819 * in a "free" state before we remove the unlinked inode list pointer. 1820 * 1821 * Hence the ordering needs to be inode allocation buffers first, inode items 1822 * second, inode unlink buffers third and cancelled buffers last. 1823 * 1824 * But there's a problem with that - we can't tell an inode allocation buffer 1825 * apart from a regular buffer, so we can't separate them. We can, however, 1826 * tell an inode unlink buffer from the others, and so we can separate them out 1827 * from all the other buffers and move them to last. 1828 * 1829 * Hence, 4 lists, in order from head to tail: 1830 * - buffer_list for all buffers except cancelled/inode unlink buffers 1831 * - item_list for all non-buffer items 1832 * - inode_buffer_list for inode unlink buffers 1833 * - cancel_list for the cancelled buffers 1834 * 1835 * Note that we add objects to the tail of the lists so that first-to-last 1836 * ordering is preserved within the lists. Adding objects to the head of the 1837 * list means when we traverse from the head we walk them in last-to-first 1838 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1839 * but for all other items there may be specific ordering that we need to 1840 * preserve. 1841 */ 1842 STATIC int 1843 xlog_recover_reorder_trans( 1844 struct xlog *log, 1845 struct xlog_recover *trans, 1846 int pass) 1847 { 1848 struct xlog_recover_item *item, *n; 1849 int error = 0; 1850 LIST_HEAD(sort_list); 1851 LIST_HEAD(cancel_list); 1852 LIST_HEAD(buffer_list); 1853 LIST_HEAD(inode_buffer_list); 1854 LIST_HEAD(item_list); 1855 1856 list_splice_init(&trans->r_itemq, &sort_list); 1857 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1858 enum xlog_recover_reorder fate = XLOG_REORDER_ITEM_LIST; 1859 1860 item->ri_ops = xlog_find_item_ops(item); 1861 if (!item->ri_ops) { 1862 xfs_warn(log->l_mp, 1863 "%s: unrecognized type of log operation (%d)", 1864 __func__, ITEM_TYPE(item)); 1865 ASSERT(0); 1866 /* 1867 * return the remaining items back to the transaction 1868 * item list so they can be freed in caller. 1869 */ 1870 if (!list_empty(&sort_list)) 1871 list_splice_init(&sort_list, &trans->r_itemq); 1872 error = -EFSCORRUPTED; 1873 break; 1874 } 1875 1876 if (item->ri_ops->reorder) 1877 fate = item->ri_ops->reorder(item); 1878 1879 switch (fate) { 1880 case XLOG_REORDER_BUFFER_LIST: 1881 list_move_tail(&item->ri_list, &buffer_list); 1882 break; 1883 case XLOG_REORDER_CANCEL_LIST: 1884 trace_xfs_log_recover_item_reorder_head(log, 1885 trans, item, pass); 1886 list_move(&item->ri_list, &cancel_list); 1887 break; 1888 case XLOG_REORDER_INODE_BUFFER_LIST: 1889 list_move(&item->ri_list, &inode_buffer_list); 1890 break; 1891 case XLOG_REORDER_ITEM_LIST: 1892 trace_xfs_log_recover_item_reorder_tail(log, 1893 trans, item, pass); 1894 list_move_tail(&item->ri_list, &item_list); 1895 break; 1896 } 1897 } 1898 1899 ASSERT(list_empty(&sort_list)); 1900 if (!list_empty(&buffer_list)) 1901 list_splice(&buffer_list, &trans->r_itemq); 1902 if (!list_empty(&item_list)) 1903 list_splice_tail(&item_list, &trans->r_itemq); 1904 if (!list_empty(&inode_buffer_list)) 1905 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1906 if (!list_empty(&cancel_list)) 1907 list_splice_tail(&cancel_list, &trans->r_itemq); 1908 return error; 1909 } 1910 1911 void 1912 xlog_buf_readahead( 1913 struct xlog *log, 1914 xfs_daddr_t blkno, 1915 uint len, 1916 const struct xfs_buf_ops *ops) 1917 { 1918 if (!xlog_is_buffer_cancelled(log, blkno, len)) 1919 xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops); 1920 } 1921 1922 STATIC int 1923 xlog_recover_items_pass2( 1924 struct xlog *log, 1925 struct xlog_recover *trans, 1926 struct list_head *buffer_list, 1927 struct list_head *item_list) 1928 { 1929 struct xlog_recover_item *item; 1930 int error = 0; 1931 1932 list_for_each_entry(item, item_list, ri_list) { 1933 trace_xfs_log_recover_item_recover(log, trans, item, 1934 XLOG_RECOVER_PASS2); 1935 1936 if (item->ri_ops->commit_pass2) 1937 error = item->ri_ops->commit_pass2(log, buffer_list, 1938 item, trans->r_lsn); 1939 if (error) 1940 return error; 1941 } 1942 1943 return error; 1944 } 1945 1946 /* 1947 * Perform the transaction. 1948 * 1949 * If the transaction modifies a buffer or inode, do it now. Otherwise, 1950 * EFIs and EFDs get queued up by adding entries into the AIL for them. 1951 */ 1952 STATIC int 1953 xlog_recover_commit_trans( 1954 struct xlog *log, 1955 struct xlog_recover *trans, 1956 int pass, 1957 struct list_head *buffer_list) 1958 { 1959 int error = 0; 1960 int items_queued = 0; 1961 struct xlog_recover_item *item; 1962 struct xlog_recover_item *next; 1963 LIST_HEAD (ra_list); 1964 LIST_HEAD (done_list); 1965 1966 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 1967 1968 hlist_del_init(&trans->r_list); 1969 1970 error = xlog_recover_reorder_trans(log, trans, pass); 1971 if (error) 1972 return error; 1973 1974 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 1975 trace_xfs_log_recover_item_recover(log, trans, item, pass); 1976 1977 switch (pass) { 1978 case XLOG_RECOVER_PASS1: 1979 if (item->ri_ops->commit_pass1) 1980 error = item->ri_ops->commit_pass1(log, item); 1981 break; 1982 case XLOG_RECOVER_PASS2: 1983 if (item->ri_ops->ra_pass2) 1984 item->ri_ops->ra_pass2(log, item); 1985 list_move_tail(&item->ri_list, &ra_list); 1986 items_queued++; 1987 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 1988 error = xlog_recover_items_pass2(log, trans, 1989 buffer_list, &ra_list); 1990 list_splice_tail_init(&ra_list, &done_list); 1991 items_queued = 0; 1992 } 1993 1994 break; 1995 default: 1996 ASSERT(0); 1997 } 1998 1999 if (error) 2000 goto out; 2001 } 2002 2003 out: 2004 if (!list_empty(&ra_list)) { 2005 if (!error) 2006 error = xlog_recover_items_pass2(log, trans, 2007 buffer_list, &ra_list); 2008 list_splice_tail_init(&ra_list, &done_list); 2009 } 2010 2011 if (!list_empty(&done_list)) 2012 list_splice_init(&done_list, &trans->r_itemq); 2013 2014 return error; 2015 } 2016 2017 STATIC void 2018 xlog_recover_add_item( 2019 struct list_head *head) 2020 { 2021 struct xlog_recover_item *item; 2022 2023 item = kmem_zalloc(sizeof(struct xlog_recover_item), 0); 2024 INIT_LIST_HEAD(&item->ri_list); 2025 list_add_tail(&item->ri_list, head); 2026 } 2027 2028 STATIC int 2029 xlog_recover_add_to_cont_trans( 2030 struct xlog *log, 2031 struct xlog_recover *trans, 2032 char *dp, 2033 int len) 2034 { 2035 struct xlog_recover_item *item; 2036 char *ptr, *old_ptr; 2037 int old_len; 2038 2039 /* 2040 * If the transaction is empty, the header was split across this and the 2041 * previous record. Copy the rest of the header. 2042 */ 2043 if (list_empty(&trans->r_itemq)) { 2044 ASSERT(len <= sizeof(struct xfs_trans_header)); 2045 if (len > sizeof(struct xfs_trans_header)) { 2046 xfs_warn(log->l_mp, "%s: bad header length", __func__); 2047 return -EFSCORRUPTED; 2048 } 2049 2050 xlog_recover_add_item(&trans->r_itemq); 2051 ptr = (char *)&trans->r_theader + 2052 sizeof(struct xfs_trans_header) - len; 2053 memcpy(ptr, dp, len); 2054 return 0; 2055 } 2056 2057 /* take the tail entry */ 2058 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, 2059 ri_list); 2060 2061 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 2062 old_len = item->ri_buf[item->ri_cnt-1].i_len; 2063 2064 ptr = krealloc(old_ptr, len + old_len, GFP_KERNEL | __GFP_NOFAIL); 2065 memcpy(&ptr[old_len], dp, len); 2066 item->ri_buf[item->ri_cnt-1].i_len += len; 2067 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 2068 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 2069 return 0; 2070 } 2071 2072 /* 2073 * The next region to add is the start of a new region. It could be 2074 * a whole region or it could be the first part of a new region. Because 2075 * of this, the assumption here is that the type and size fields of all 2076 * format structures fit into the first 32 bits of the structure. 2077 * 2078 * This works because all regions must be 32 bit aligned. Therefore, we 2079 * either have both fields or we have neither field. In the case we have 2080 * neither field, the data part of the region is zero length. We only have 2081 * a log_op_header and can throw away the header since a new one will appear 2082 * later. If we have at least 4 bytes, then we can determine how many regions 2083 * will appear in the current log item. 2084 */ 2085 STATIC int 2086 xlog_recover_add_to_trans( 2087 struct xlog *log, 2088 struct xlog_recover *trans, 2089 char *dp, 2090 int len) 2091 { 2092 struct xfs_inode_log_format *in_f; /* any will do */ 2093 struct xlog_recover_item *item; 2094 char *ptr; 2095 2096 if (!len) 2097 return 0; 2098 if (list_empty(&trans->r_itemq)) { 2099 /* we need to catch log corruptions here */ 2100 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 2101 xfs_warn(log->l_mp, "%s: bad header magic number", 2102 __func__); 2103 ASSERT(0); 2104 return -EFSCORRUPTED; 2105 } 2106 2107 if (len > sizeof(struct xfs_trans_header)) { 2108 xfs_warn(log->l_mp, "%s: bad header length", __func__); 2109 ASSERT(0); 2110 return -EFSCORRUPTED; 2111 } 2112 2113 /* 2114 * The transaction header can be arbitrarily split across op 2115 * records. If we don't have the whole thing here, copy what we 2116 * do have and handle the rest in the next record. 2117 */ 2118 if (len == sizeof(struct xfs_trans_header)) 2119 xlog_recover_add_item(&trans->r_itemq); 2120 memcpy(&trans->r_theader, dp, len); 2121 return 0; 2122 } 2123 2124 ptr = kmem_alloc(len, 0); 2125 memcpy(ptr, dp, len); 2126 in_f = (struct xfs_inode_log_format *)ptr; 2127 2128 /* take the tail entry */ 2129 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, 2130 ri_list); 2131 if (item->ri_total != 0 && 2132 item->ri_total == item->ri_cnt) { 2133 /* tail item is in use, get a new one */ 2134 xlog_recover_add_item(&trans->r_itemq); 2135 item = list_entry(trans->r_itemq.prev, 2136 struct xlog_recover_item, ri_list); 2137 } 2138 2139 if (item->ri_total == 0) { /* first region to be added */ 2140 if (in_f->ilf_size == 0 || 2141 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 2142 xfs_warn(log->l_mp, 2143 "bad number of regions (%d) in inode log format", 2144 in_f->ilf_size); 2145 ASSERT(0); 2146 kmem_free(ptr); 2147 return -EFSCORRUPTED; 2148 } 2149 2150 item->ri_total = in_f->ilf_size; 2151 item->ri_buf = 2152 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 2153 0); 2154 } 2155 2156 if (item->ri_total <= item->ri_cnt) { 2157 xfs_warn(log->l_mp, 2158 "log item region count (%d) overflowed size (%d)", 2159 item->ri_cnt, item->ri_total); 2160 ASSERT(0); 2161 kmem_free(ptr); 2162 return -EFSCORRUPTED; 2163 } 2164 2165 /* Description region is ri_buf[0] */ 2166 item->ri_buf[item->ri_cnt].i_addr = ptr; 2167 item->ri_buf[item->ri_cnt].i_len = len; 2168 item->ri_cnt++; 2169 trace_xfs_log_recover_item_add(log, trans, item, 0); 2170 return 0; 2171 } 2172 2173 /* 2174 * Free up any resources allocated by the transaction 2175 * 2176 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2177 */ 2178 STATIC void 2179 xlog_recover_free_trans( 2180 struct xlog_recover *trans) 2181 { 2182 struct xlog_recover_item *item, *n; 2183 int i; 2184 2185 hlist_del_init(&trans->r_list); 2186 2187 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2188 /* Free the regions in the item. */ 2189 list_del(&item->ri_list); 2190 for (i = 0; i < item->ri_cnt; i++) 2191 kmem_free(item->ri_buf[i].i_addr); 2192 /* Free the item itself */ 2193 kmem_free(item->ri_buf); 2194 kmem_free(item); 2195 } 2196 /* Free the transaction recover structure */ 2197 kmem_free(trans); 2198 } 2199 2200 /* 2201 * On error or completion, trans is freed. 2202 */ 2203 STATIC int 2204 xlog_recovery_process_trans( 2205 struct xlog *log, 2206 struct xlog_recover *trans, 2207 char *dp, 2208 unsigned int len, 2209 unsigned int flags, 2210 int pass, 2211 struct list_head *buffer_list) 2212 { 2213 int error = 0; 2214 bool freeit = false; 2215 2216 /* mask off ophdr transaction container flags */ 2217 flags &= ~XLOG_END_TRANS; 2218 if (flags & XLOG_WAS_CONT_TRANS) 2219 flags &= ~XLOG_CONTINUE_TRANS; 2220 2221 /* 2222 * Callees must not free the trans structure. We'll decide if we need to 2223 * free it or not based on the operation being done and it's result. 2224 */ 2225 switch (flags) { 2226 /* expected flag values */ 2227 case 0: 2228 case XLOG_CONTINUE_TRANS: 2229 error = xlog_recover_add_to_trans(log, trans, dp, len); 2230 break; 2231 case XLOG_WAS_CONT_TRANS: 2232 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 2233 break; 2234 case XLOG_COMMIT_TRANS: 2235 error = xlog_recover_commit_trans(log, trans, pass, 2236 buffer_list); 2237 /* success or fail, we are now done with this transaction. */ 2238 freeit = true; 2239 break; 2240 2241 /* unexpected flag values */ 2242 case XLOG_UNMOUNT_TRANS: 2243 /* just skip trans */ 2244 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 2245 freeit = true; 2246 break; 2247 case XLOG_START_TRANS: 2248 default: 2249 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 2250 ASSERT(0); 2251 error = -EFSCORRUPTED; 2252 break; 2253 } 2254 if (error || freeit) 2255 xlog_recover_free_trans(trans); 2256 return error; 2257 } 2258 2259 /* 2260 * Lookup the transaction recovery structure associated with the ID in the 2261 * current ophdr. If the transaction doesn't exist and the start flag is set in 2262 * the ophdr, then allocate a new transaction for future ID matches to find. 2263 * Either way, return what we found during the lookup - an existing transaction 2264 * or nothing. 2265 */ 2266 STATIC struct xlog_recover * 2267 xlog_recover_ophdr_to_trans( 2268 struct hlist_head rhash[], 2269 struct xlog_rec_header *rhead, 2270 struct xlog_op_header *ohead) 2271 { 2272 struct xlog_recover *trans; 2273 xlog_tid_t tid; 2274 struct hlist_head *rhp; 2275 2276 tid = be32_to_cpu(ohead->oh_tid); 2277 rhp = &rhash[XLOG_RHASH(tid)]; 2278 hlist_for_each_entry(trans, rhp, r_list) { 2279 if (trans->r_log_tid == tid) 2280 return trans; 2281 } 2282 2283 /* 2284 * skip over non-start transaction headers - we could be 2285 * processing slack space before the next transaction starts 2286 */ 2287 if (!(ohead->oh_flags & XLOG_START_TRANS)) 2288 return NULL; 2289 2290 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 2291 2292 /* 2293 * This is a new transaction so allocate a new recovery container to 2294 * hold the recovery ops that will follow. 2295 */ 2296 trans = kmem_zalloc(sizeof(struct xlog_recover), 0); 2297 trans->r_log_tid = tid; 2298 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 2299 INIT_LIST_HEAD(&trans->r_itemq); 2300 INIT_HLIST_NODE(&trans->r_list); 2301 hlist_add_head(&trans->r_list, rhp); 2302 2303 /* 2304 * Nothing more to do for this ophdr. Items to be added to this new 2305 * transaction will be in subsequent ophdr containers. 2306 */ 2307 return NULL; 2308 } 2309 2310 STATIC int 2311 xlog_recover_process_ophdr( 2312 struct xlog *log, 2313 struct hlist_head rhash[], 2314 struct xlog_rec_header *rhead, 2315 struct xlog_op_header *ohead, 2316 char *dp, 2317 char *end, 2318 int pass, 2319 struct list_head *buffer_list) 2320 { 2321 struct xlog_recover *trans; 2322 unsigned int len; 2323 int error; 2324 2325 /* Do we understand who wrote this op? */ 2326 if (ohead->oh_clientid != XFS_TRANSACTION && 2327 ohead->oh_clientid != XFS_LOG) { 2328 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 2329 __func__, ohead->oh_clientid); 2330 ASSERT(0); 2331 return -EFSCORRUPTED; 2332 } 2333 2334 /* 2335 * Check the ophdr contains all the data it is supposed to contain. 2336 */ 2337 len = be32_to_cpu(ohead->oh_len); 2338 if (dp + len > end) { 2339 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 2340 WARN_ON(1); 2341 return -EFSCORRUPTED; 2342 } 2343 2344 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 2345 if (!trans) { 2346 /* nothing to do, so skip over this ophdr */ 2347 return 0; 2348 } 2349 2350 /* 2351 * The recovered buffer queue is drained only once we know that all 2352 * recovery items for the current LSN have been processed. This is 2353 * required because: 2354 * 2355 * - Buffer write submission updates the metadata LSN of the buffer. 2356 * - Log recovery skips items with a metadata LSN >= the current LSN of 2357 * the recovery item. 2358 * - Separate recovery items against the same metadata buffer can share 2359 * a current LSN. I.e., consider that the LSN of a recovery item is 2360 * defined as the starting LSN of the first record in which its 2361 * transaction appears, that a record can hold multiple transactions, 2362 * and/or that a transaction can span multiple records. 2363 * 2364 * In other words, we are allowed to submit a buffer from log recovery 2365 * once per current LSN. Otherwise, we may incorrectly skip recovery 2366 * items and cause corruption. 2367 * 2368 * We don't know up front whether buffers are updated multiple times per 2369 * LSN. Therefore, track the current LSN of each commit log record as it 2370 * is processed and drain the queue when it changes. Use commit records 2371 * because they are ordered correctly by the logging code. 2372 */ 2373 if (log->l_recovery_lsn != trans->r_lsn && 2374 ohead->oh_flags & XLOG_COMMIT_TRANS) { 2375 error = xfs_buf_delwri_submit(buffer_list); 2376 if (error) 2377 return error; 2378 log->l_recovery_lsn = trans->r_lsn; 2379 } 2380 2381 return xlog_recovery_process_trans(log, trans, dp, len, 2382 ohead->oh_flags, pass, buffer_list); 2383 } 2384 2385 /* 2386 * There are two valid states of the r_state field. 0 indicates that the 2387 * transaction structure is in a normal state. We have either seen the 2388 * start of the transaction or the last operation we added was not a partial 2389 * operation. If the last operation we added to the transaction was a 2390 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2391 * 2392 * NOTE: skip LRs with 0 data length. 2393 */ 2394 STATIC int 2395 xlog_recover_process_data( 2396 struct xlog *log, 2397 struct hlist_head rhash[], 2398 struct xlog_rec_header *rhead, 2399 char *dp, 2400 int pass, 2401 struct list_head *buffer_list) 2402 { 2403 struct xlog_op_header *ohead; 2404 char *end; 2405 int num_logops; 2406 int error; 2407 2408 end = dp + be32_to_cpu(rhead->h_len); 2409 num_logops = be32_to_cpu(rhead->h_num_logops); 2410 2411 /* check the log format matches our own - else we can't recover */ 2412 if (xlog_header_check_recover(log->l_mp, rhead)) 2413 return -EIO; 2414 2415 trace_xfs_log_recover_record(log, rhead, pass); 2416 while ((dp < end) && num_logops) { 2417 2418 ohead = (struct xlog_op_header *)dp; 2419 dp += sizeof(*ohead); 2420 ASSERT(dp <= end); 2421 2422 /* errors will abort recovery */ 2423 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 2424 dp, end, pass, buffer_list); 2425 if (error) 2426 return error; 2427 2428 dp += be32_to_cpu(ohead->oh_len); 2429 num_logops--; 2430 } 2431 return 0; 2432 } 2433 2434 /* Take all the collected deferred ops and finish them in order. */ 2435 static int 2436 xlog_finish_defer_ops( 2437 struct xfs_mount *mp, 2438 struct list_head *capture_list) 2439 { 2440 struct xfs_defer_capture *dfc, *next; 2441 struct xfs_trans *tp; 2442 struct xfs_inode *ip; 2443 int error = 0; 2444 2445 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) { 2446 struct xfs_trans_res resv; 2447 2448 /* 2449 * Create a new transaction reservation from the captured 2450 * information. Set logcount to 1 to force the new transaction 2451 * to regrant every roll so that we can make forward progress 2452 * in recovery no matter how full the log might be. 2453 */ 2454 resv.tr_logres = dfc->dfc_logres; 2455 resv.tr_logcount = 1; 2456 resv.tr_logflags = XFS_TRANS_PERM_LOG_RES; 2457 2458 error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres, 2459 dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp); 2460 if (error) 2461 return error; 2462 2463 /* 2464 * Transfer to this new transaction all the dfops we captured 2465 * from recovering a single intent item. 2466 */ 2467 list_del_init(&dfc->dfc_list); 2468 xfs_defer_ops_continue(dfc, tp, &ip); 2469 2470 error = xfs_trans_commit(tp); 2471 if (ip) { 2472 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2473 xfs_irele(ip); 2474 } 2475 if (error) 2476 return error; 2477 } 2478 2479 ASSERT(list_empty(capture_list)); 2480 return 0; 2481 } 2482 2483 /* Release all the captured defer ops and capture structures in this list. */ 2484 static void 2485 xlog_abort_defer_ops( 2486 struct xfs_mount *mp, 2487 struct list_head *capture_list) 2488 { 2489 struct xfs_defer_capture *dfc; 2490 struct xfs_defer_capture *next; 2491 2492 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) { 2493 list_del_init(&dfc->dfc_list); 2494 xfs_defer_ops_release(mp, dfc); 2495 } 2496 } 2497 /* 2498 * When this is called, all of the log intent items which did not have 2499 * corresponding log done items should be in the AIL. What we do now 2500 * is update the data structures associated with each one. 2501 * 2502 * Since we process the log intent items in normal transactions, they 2503 * will be removed at some point after the commit. This prevents us 2504 * from just walking down the list processing each one. We'll use a 2505 * flag in the intent item to skip those that we've already processed 2506 * and use the AIL iteration mechanism's generation count to try to 2507 * speed this up at least a bit. 2508 * 2509 * When we start, we know that the intents are the only things in the 2510 * AIL. As we process them, however, other items are added to the 2511 * AIL. 2512 */ 2513 STATIC int 2514 xlog_recover_process_intents( 2515 struct xlog *log) 2516 { 2517 LIST_HEAD(capture_list); 2518 struct xfs_ail_cursor cur; 2519 struct xfs_log_item *lip; 2520 struct xfs_ail *ailp; 2521 int error = 0; 2522 #if defined(DEBUG) || defined(XFS_WARN) 2523 xfs_lsn_t last_lsn; 2524 #endif 2525 2526 ailp = log->l_ailp; 2527 spin_lock(&ailp->ail_lock); 2528 #if defined(DEBUG) || defined(XFS_WARN) 2529 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 2530 #endif 2531 for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2532 lip != NULL; 2533 lip = xfs_trans_ail_cursor_next(ailp, &cur)) { 2534 /* 2535 * We're done when we see something other than an intent. 2536 * There should be no intents left in the AIL now. 2537 */ 2538 if (!xlog_item_is_intent(lip)) { 2539 #ifdef DEBUG 2540 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 2541 ASSERT(!xlog_item_is_intent(lip)); 2542 #endif 2543 break; 2544 } 2545 2546 /* 2547 * We should never see a redo item with a LSN higher than 2548 * the last transaction we found in the log at the start 2549 * of recovery. 2550 */ 2551 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); 2552 2553 /* 2554 * NOTE: If your intent processing routine can create more 2555 * deferred ops, you /must/ attach them to the capture list in 2556 * the recover routine or else those subsequent intents will be 2557 * replayed in the wrong order! 2558 */ 2559 spin_unlock(&ailp->ail_lock); 2560 error = lip->li_ops->iop_recover(lip, &capture_list); 2561 spin_lock(&ailp->ail_lock); 2562 if (error) { 2563 trace_xlog_intent_recovery_failed(log->l_mp, error, 2564 lip->li_ops->iop_recover); 2565 break; 2566 } 2567 } 2568 2569 xfs_trans_ail_cursor_done(&cur); 2570 spin_unlock(&ailp->ail_lock); 2571 if (error) 2572 goto err; 2573 2574 error = xlog_finish_defer_ops(log->l_mp, &capture_list); 2575 if (error) 2576 goto err; 2577 2578 return 0; 2579 err: 2580 xlog_abort_defer_ops(log->l_mp, &capture_list); 2581 return error; 2582 } 2583 2584 /* 2585 * A cancel occurs when the mount has failed and we're bailing out. 2586 * Release all pending log intent items so they don't pin the AIL. 2587 */ 2588 STATIC void 2589 xlog_recover_cancel_intents( 2590 struct xlog *log) 2591 { 2592 struct xfs_log_item *lip; 2593 struct xfs_ail_cursor cur; 2594 struct xfs_ail *ailp; 2595 2596 ailp = log->l_ailp; 2597 spin_lock(&ailp->ail_lock); 2598 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2599 while (lip != NULL) { 2600 /* 2601 * We're done when we see something other than an intent. 2602 * There should be no intents left in the AIL now. 2603 */ 2604 if (!xlog_item_is_intent(lip)) { 2605 #ifdef DEBUG 2606 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 2607 ASSERT(!xlog_item_is_intent(lip)); 2608 #endif 2609 break; 2610 } 2611 2612 spin_unlock(&ailp->ail_lock); 2613 lip->li_ops->iop_release(lip); 2614 spin_lock(&ailp->ail_lock); 2615 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2616 } 2617 2618 xfs_trans_ail_cursor_done(&cur); 2619 spin_unlock(&ailp->ail_lock); 2620 } 2621 2622 /* 2623 * This routine performs a transaction to null out a bad inode pointer 2624 * in an agi unlinked inode hash bucket. 2625 */ 2626 STATIC void 2627 xlog_recover_clear_agi_bucket( 2628 xfs_mount_t *mp, 2629 xfs_agnumber_t agno, 2630 int bucket) 2631 { 2632 xfs_trans_t *tp; 2633 xfs_agi_t *agi; 2634 struct xfs_buf *agibp; 2635 int offset; 2636 int error; 2637 2638 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 2639 if (error) 2640 goto out_error; 2641 2642 error = xfs_read_agi(mp, tp, agno, &agibp); 2643 if (error) 2644 goto out_abort; 2645 2646 agi = agibp->b_addr; 2647 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 2648 offset = offsetof(xfs_agi_t, agi_unlinked) + 2649 (sizeof(xfs_agino_t) * bucket); 2650 xfs_trans_log_buf(tp, agibp, offset, 2651 (offset + sizeof(xfs_agino_t) - 1)); 2652 2653 error = xfs_trans_commit(tp); 2654 if (error) 2655 goto out_error; 2656 return; 2657 2658 out_abort: 2659 xfs_trans_cancel(tp); 2660 out_error: 2661 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 2662 return; 2663 } 2664 2665 STATIC xfs_agino_t 2666 xlog_recover_process_one_iunlink( 2667 struct xfs_mount *mp, 2668 xfs_agnumber_t agno, 2669 xfs_agino_t agino, 2670 int bucket) 2671 { 2672 struct xfs_buf *ibp; 2673 struct xfs_dinode *dip; 2674 struct xfs_inode *ip; 2675 xfs_ino_t ino; 2676 int error; 2677 2678 ino = XFS_AGINO_TO_INO(mp, agno, agino); 2679 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 2680 if (error) 2681 goto fail; 2682 2683 /* 2684 * Get the on disk inode to find the next inode in the bucket. 2685 */ 2686 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0); 2687 if (error) 2688 goto fail_iput; 2689 2690 xfs_iflags_clear(ip, XFS_IRECOVERY); 2691 ASSERT(VFS_I(ip)->i_nlink == 0); 2692 ASSERT(VFS_I(ip)->i_mode != 0); 2693 2694 /* setup for the next pass */ 2695 agino = be32_to_cpu(dip->di_next_unlinked); 2696 xfs_buf_relse(ibp); 2697 2698 /* 2699 * Prevent any DMAPI event from being sent when the reference on 2700 * the inode is dropped. 2701 */ 2702 ip->i_d.di_dmevmask = 0; 2703 2704 xfs_irele(ip); 2705 return agino; 2706 2707 fail_iput: 2708 xfs_irele(ip); 2709 fail: 2710 /* 2711 * We can't read in the inode this bucket points to, or this inode 2712 * is messed up. Just ditch this bucket of inodes. We will lose 2713 * some inodes and space, but at least we won't hang. 2714 * 2715 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 2716 * clear the inode pointer in the bucket. 2717 */ 2718 xlog_recover_clear_agi_bucket(mp, agno, bucket); 2719 return NULLAGINO; 2720 } 2721 2722 /* 2723 * Recover AGI unlinked lists 2724 * 2725 * This is called during recovery to process any inodes which we unlinked but 2726 * not freed when the system crashed. These inodes will be on the lists in the 2727 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free 2728 * any inodes found on the lists. Each inode is removed from the lists when it 2729 * has been fully truncated and is freed. The freeing of the inode and its 2730 * removal from the list must be atomic. 2731 * 2732 * If everything we touch in the agi processing loop is already in memory, this 2733 * loop can hold the cpu for a long time. It runs without lock contention, 2734 * memory allocation contention, the need wait for IO, etc, and so will run 2735 * until we either run out of inodes to process, run low on memory or we run out 2736 * of log space. 2737 * 2738 * This behaviour is bad for latency on single CPU and non-preemptible kernels, 2739 * and can prevent other filesytem work (such as CIL pushes) from running. This 2740 * can lead to deadlocks if the recovery process runs out of log reservation 2741 * space. Hence we need to yield the CPU when there is other kernel work 2742 * scheduled on this CPU to ensure other scheduled work can run without undue 2743 * latency. 2744 */ 2745 STATIC void 2746 xlog_recover_process_iunlinks( 2747 struct xlog *log) 2748 { 2749 xfs_mount_t *mp; 2750 xfs_agnumber_t agno; 2751 xfs_agi_t *agi; 2752 struct xfs_buf *agibp; 2753 xfs_agino_t agino; 2754 int bucket; 2755 int error; 2756 2757 mp = log->l_mp; 2758 2759 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 2760 /* 2761 * Find the agi for this ag. 2762 */ 2763 error = xfs_read_agi(mp, NULL, agno, &agibp); 2764 if (error) { 2765 /* 2766 * AGI is b0rked. Don't process it. 2767 * 2768 * We should probably mark the filesystem as corrupt 2769 * after we've recovered all the ag's we can.... 2770 */ 2771 continue; 2772 } 2773 /* 2774 * Unlock the buffer so that it can be acquired in the normal 2775 * course of the transaction to truncate and free each inode. 2776 * Because we are not racing with anyone else here for the AGI 2777 * buffer, we don't even need to hold it locked to read the 2778 * initial unlinked bucket entries out of the buffer. We keep 2779 * buffer reference though, so that it stays pinned in memory 2780 * while we need the buffer. 2781 */ 2782 agi = agibp->b_addr; 2783 xfs_buf_unlock(agibp); 2784 2785 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 2786 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 2787 while (agino != NULLAGINO) { 2788 agino = xlog_recover_process_one_iunlink(mp, 2789 agno, agino, bucket); 2790 cond_resched(); 2791 } 2792 } 2793 xfs_buf_rele(agibp); 2794 } 2795 } 2796 2797 STATIC void 2798 xlog_unpack_data( 2799 struct xlog_rec_header *rhead, 2800 char *dp, 2801 struct xlog *log) 2802 { 2803 int i, j, k; 2804 2805 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 2806 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 2807 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 2808 dp += BBSIZE; 2809 } 2810 2811 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 2812 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 2813 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 2814 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 2815 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 2816 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 2817 dp += BBSIZE; 2818 } 2819 } 2820 } 2821 2822 /* 2823 * CRC check, unpack and process a log record. 2824 */ 2825 STATIC int 2826 xlog_recover_process( 2827 struct xlog *log, 2828 struct hlist_head rhash[], 2829 struct xlog_rec_header *rhead, 2830 char *dp, 2831 int pass, 2832 struct list_head *buffer_list) 2833 { 2834 __le32 old_crc = rhead->h_crc; 2835 __le32 crc; 2836 2837 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 2838 2839 /* 2840 * Nothing else to do if this is a CRC verification pass. Just return 2841 * if this a record with a non-zero crc. Unfortunately, mkfs always 2842 * sets old_crc to 0 so we must consider this valid even on v5 supers. 2843 * Otherwise, return EFSBADCRC on failure so the callers up the stack 2844 * know precisely what failed. 2845 */ 2846 if (pass == XLOG_RECOVER_CRCPASS) { 2847 if (old_crc && crc != old_crc) 2848 return -EFSBADCRC; 2849 return 0; 2850 } 2851 2852 /* 2853 * We're in the normal recovery path. Issue a warning if and only if the 2854 * CRC in the header is non-zero. This is an advisory warning and the 2855 * zero CRC check prevents warnings from being emitted when upgrading 2856 * the kernel from one that does not add CRCs by default. 2857 */ 2858 if (crc != old_crc) { 2859 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 2860 xfs_alert(log->l_mp, 2861 "log record CRC mismatch: found 0x%x, expected 0x%x.", 2862 le32_to_cpu(old_crc), 2863 le32_to_cpu(crc)); 2864 xfs_hex_dump(dp, 32); 2865 } 2866 2867 /* 2868 * If the filesystem is CRC enabled, this mismatch becomes a 2869 * fatal log corruption failure. 2870 */ 2871 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 2872 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); 2873 return -EFSCORRUPTED; 2874 } 2875 } 2876 2877 xlog_unpack_data(rhead, dp, log); 2878 2879 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 2880 buffer_list); 2881 } 2882 2883 STATIC int 2884 xlog_valid_rec_header( 2885 struct xlog *log, 2886 struct xlog_rec_header *rhead, 2887 xfs_daddr_t blkno, 2888 int bufsize) 2889 { 2890 int hlen; 2891 2892 if (XFS_IS_CORRUPT(log->l_mp, 2893 rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) 2894 return -EFSCORRUPTED; 2895 if (XFS_IS_CORRUPT(log->l_mp, 2896 (!rhead->h_version || 2897 (be32_to_cpu(rhead->h_version) & 2898 (~XLOG_VERSION_OKBITS))))) { 2899 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 2900 __func__, be32_to_cpu(rhead->h_version)); 2901 return -EFSCORRUPTED; 2902 } 2903 2904 /* 2905 * LR body must have data (or it wouldn't have been written) 2906 * and h_len must not be greater than LR buffer size. 2907 */ 2908 hlen = be32_to_cpu(rhead->h_len); 2909 if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize)) 2910 return -EFSCORRUPTED; 2911 2912 if (XFS_IS_CORRUPT(log->l_mp, 2913 blkno > log->l_logBBsize || blkno > INT_MAX)) 2914 return -EFSCORRUPTED; 2915 return 0; 2916 } 2917 2918 /* 2919 * Read the log from tail to head and process the log records found. 2920 * Handle the two cases where the tail and head are in the same cycle 2921 * and where the active portion of the log wraps around the end of 2922 * the physical log separately. The pass parameter is passed through 2923 * to the routines called to process the data and is not looked at 2924 * here. 2925 */ 2926 STATIC int 2927 xlog_do_recovery_pass( 2928 struct xlog *log, 2929 xfs_daddr_t head_blk, 2930 xfs_daddr_t tail_blk, 2931 int pass, 2932 xfs_daddr_t *first_bad) /* out: first bad log rec */ 2933 { 2934 xlog_rec_header_t *rhead; 2935 xfs_daddr_t blk_no, rblk_no; 2936 xfs_daddr_t rhead_blk; 2937 char *offset; 2938 char *hbp, *dbp; 2939 int error = 0, h_size, h_len; 2940 int error2 = 0; 2941 int bblks, split_bblks; 2942 int hblks, split_hblks, wrapped_hblks; 2943 int i; 2944 struct hlist_head rhash[XLOG_RHASH_SIZE]; 2945 LIST_HEAD (buffer_list); 2946 2947 ASSERT(head_blk != tail_blk); 2948 blk_no = rhead_blk = tail_blk; 2949 2950 for (i = 0; i < XLOG_RHASH_SIZE; i++) 2951 INIT_HLIST_HEAD(&rhash[i]); 2952 2953 /* 2954 * Read the header of the tail block and get the iclog buffer size from 2955 * h_size. Use this to tell how many sectors make up the log header. 2956 */ 2957 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 2958 /* 2959 * When using variable length iclogs, read first sector of 2960 * iclog header and extract the header size from it. Get a 2961 * new hbp that is the correct size. 2962 */ 2963 hbp = xlog_alloc_buffer(log, 1); 2964 if (!hbp) 2965 return -ENOMEM; 2966 2967 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 2968 if (error) 2969 goto bread_err1; 2970 2971 rhead = (xlog_rec_header_t *)offset; 2972 2973 /* 2974 * xfsprogs has a bug where record length is based on lsunit but 2975 * h_size (iclog size) is hardcoded to 32k. Now that we 2976 * unconditionally CRC verify the unmount record, this means the 2977 * log buffer can be too small for the record and cause an 2978 * overrun. 2979 * 2980 * Detect this condition here. Use lsunit for the buffer size as 2981 * long as this looks like the mkfs case. Otherwise, return an 2982 * error to avoid a buffer overrun. 2983 */ 2984 h_size = be32_to_cpu(rhead->h_size); 2985 h_len = be32_to_cpu(rhead->h_len); 2986 if (h_len > h_size && h_len <= log->l_mp->m_logbsize && 2987 rhead->h_num_logops == cpu_to_be32(1)) { 2988 xfs_warn(log->l_mp, 2989 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 2990 h_size, log->l_mp->m_logbsize); 2991 h_size = log->l_mp->m_logbsize; 2992 } 2993 2994 error = xlog_valid_rec_header(log, rhead, tail_blk, h_size); 2995 if (error) 2996 goto bread_err1; 2997 2998 hblks = xlog_logrec_hblks(log, rhead); 2999 if (hblks != 1) { 3000 kmem_free(hbp); 3001 hbp = xlog_alloc_buffer(log, hblks); 3002 } 3003 } else { 3004 ASSERT(log->l_sectBBsize == 1); 3005 hblks = 1; 3006 hbp = xlog_alloc_buffer(log, 1); 3007 h_size = XLOG_BIG_RECORD_BSIZE; 3008 } 3009 3010 if (!hbp) 3011 return -ENOMEM; 3012 dbp = xlog_alloc_buffer(log, BTOBB(h_size)); 3013 if (!dbp) { 3014 kmem_free(hbp); 3015 return -ENOMEM; 3016 } 3017 3018 memset(rhash, 0, sizeof(rhash)); 3019 if (tail_blk > head_blk) { 3020 /* 3021 * Perform recovery around the end of the physical log. 3022 * When the head is not on the same cycle number as the tail, 3023 * we can't do a sequential recovery. 3024 */ 3025 while (blk_no < log->l_logBBsize) { 3026 /* 3027 * Check for header wrapping around physical end-of-log 3028 */ 3029 offset = hbp; 3030 split_hblks = 0; 3031 wrapped_hblks = 0; 3032 if (blk_no + hblks <= log->l_logBBsize) { 3033 /* Read header in one read */ 3034 error = xlog_bread(log, blk_no, hblks, hbp, 3035 &offset); 3036 if (error) 3037 goto bread_err2; 3038 } else { 3039 /* This LR is split across physical log end */ 3040 if (blk_no != log->l_logBBsize) { 3041 /* some data before physical log end */ 3042 ASSERT(blk_no <= INT_MAX); 3043 split_hblks = log->l_logBBsize - (int)blk_no; 3044 ASSERT(split_hblks > 0); 3045 error = xlog_bread(log, blk_no, 3046 split_hblks, hbp, 3047 &offset); 3048 if (error) 3049 goto bread_err2; 3050 } 3051 3052 /* 3053 * Note: this black magic still works with 3054 * large sector sizes (non-512) only because: 3055 * - we increased the buffer size originally 3056 * by 1 sector giving us enough extra space 3057 * for the second read; 3058 * - the log start is guaranteed to be sector 3059 * aligned; 3060 * - we read the log end (LR header start) 3061 * _first_, then the log start (LR header end) 3062 * - order is important. 3063 */ 3064 wrapped_hblks = hblks - split_hblks; 3065 error = xlog_bread_noalign(log, 0, 3066 wrapped_hblks, 3067 offset + BBTOB(split_hblks)); 3068 if (error) 3069 goto bread_err2; 3070 } 3071 rhead = (xlog_rec_header_t *)offset; 3072 error = xlog_valid_rec_header(log, rhead, 3073 split_hblks ? blk_no : 0, h_size); 3074 if (error) 3075 goto bread_err2; 3076 3077 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3078 blk_no += hblks; 3079 3080 /* 3081 * Read the log record data in multiple reads if it 3082 * wraps around the end of the log. Note that if the 3083 * header already wrapped, blk_no could point past the 3084 * end of the log. The record data is contiguous in 3085 * that case. 3086 */ 3087 if (blk_no + bblks <= log->l_logBBsize || 3088 blk_no >= log->l_logBBsize) { 3089 rblk_no = xlog_wrap_logbno(log, blk_no); 3090 error = xlog_bread(log, rblk_no, bblks, dbp, 3091 &offset); 3092 if (error) 3093 goto bread_err2; 3094 } else { 3095 /* This log record is split across the 3096 * physical end of log */ 3097 offset = dbp; 3098 split_bblks = 0; 3099 if (blk_no != log->l_logBBsize) { 3100 /* some data is before the physical 3101 * end of log */ 3102 ASSERT(!wrapped_hblks); 3103 ASSERT(blk_no <= INT_MAX); 3104 split_bblks = 3105 log->l_logBBsize - (int)blk_no; 3106 ASSERT(split_bblks > 0); 3107 error = xlog_bread(log, blk_no, 3108 split_bblks, dbp, 3109 &offset); 3110 if (error) 3111 goto bread_err2; 3112 } 3113 3114 /* 3115 * Note: this black magic still works with 3116 * large sector sizes (non-512) only because: 3117 * - we increased the buffer size originally 3118 * by 1 sector giving us enough extra space 3119 * for the second read; 3120 * - the log start is guaranteed to be sector 3121 * aligned; 3122 * - we read the log end (LR header start) 3123 * _first_, then the log start (LR header end) 3124 * - order is important. 3125 */ 3126 error = xlog_bread_noalign(log, 0, 3127 bblks - split_bblks, 3128 offset + BBTOB(split_bblks)); 3129 if (error) 3130 goto bread_err2; 3131 } 3132 3133 error = xlog_recover_process(log, rhash, rhead, offset, 3134 pass, &buffer_list); 3135 if (error) 3136 goto bread_err2; 3137 3138 blk_no += bblks; 3139 rhead_blk = blk_no; 3140 } 3141 3142 ASSERT(blk_no >= log->l_logBBsize); 3143 blk_no -= log->l_logBBsize; 3144 rhead_blk = blk_no; 3145 } 3146 3147 /* read first part of physical log */ 3148 while (blk_no < head_blk) { 3149 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3150 if (error) 3151 goto bread_err2; 3152 3153 rhead = (xlog_rec_header_t *)offset; 3154 error = xlog_valid_rec_header(log, rhead, blk_no, h_size); 3155 if (error) 3156 goto bread_err2; 3157 3158 /* blocks in data section */ 3159 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3160 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3161 &offset); 3162 if (error) 3163 goto bread_err2; 3164 3165 error = xlog_recover_process(log, rhash, rhead, offset, pass, 3166 &buffer_list); 3167 if (error) 3168 goto bread_err2; 3169 3170 blk_no += bblks + hblks; 3171 rhead_blk = blk_no; 3172 } 3173 3174 bread_err2: 3175 kmem_free(dbp); 3176 bread_err1: 3177 kmem_free(hbp); 3178 3179 /* 3180 * Submit buffers that have been added from the last record processed, 3181 * regardless of error status. 3182 */ 3183 if (!list_empty(&buffer_list)) 3184 error2 = xfs_buf_delwri_submit(&buffer_list); 3185 3186 if (error && first_bad) 3187 *first_bad = rhead_blk; 3188 3189 /* 3190 * Transactions are freed at commit time but transactions without commit 3191 * records on disk are never committed. Free any that may be left in the 3192 * hash table. 3193 */ 3194 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 3195 struct hlist_node *tmp; 3196 struct xlog_recover *trans; 3197 3198 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 3199 xlog_recover_free_trans(trans); 3200 } 3201 3202 return error ? error : error2; 3203 } 3204 3205 /* 3206 * Do the recovery of the log. We actually do this in two phases. 3207 * The two passes are necessary in order to implement the function 3208 * of cancelling a record written into the log. The first pass 3209 * determines those things which have been cancelled, and the 3210 * second pass replays log items normally except for those which 3211 * have been cancelled. The handling of the replay and cancellations 3212 * takes place in the log item type specific routines. 3213 * 3214 * The table of items which have cancel records in the log is allocated 3215 * and freed at this level, since only here do we know when all of 3216 * the log recovery has been completed. 3217 */ 3218 STATIC int 3219 xlog_do_log_recovery( 3220 struct xlog *log, 3221 xfs_daddr_t head_blk, 3222 xfs_daddr_t tail_blk) 3223 { 3224 int error, i; 3225 3226 ASSERT(head_blk != tail_blk); 3227 3228 /* 3229 * First do a pass to find all of the cancelled buf log items. 3230 * Store them in the buf_cancel_table for use in the second pass. 3231 */ 3232 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 3233 sizeof(struct list_head), 3234 0); 3235 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3236 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 3237 3238 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3239 XLOG_RECOVER_PASS1, NULL); 3240 if (error != 0) { 3241 kmem_free(log->l_buf_cancel_table); 3242 log->l_buf_cancel_table = NULL; 3243 return error; 3244 } 3245 /* 3246 * Then do a second pass to actually recover the items in the log. 3247 * When it is complete free the table of buf cancel items. 3248 */ 3249 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3250 XLOG_RECOVER_PASS2, NULL); 3251 #ifdef DEBUG 3252 if (!error) { 3253 int i; 3254 3255 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3256 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 3257 } 3258 #endif /* DEBUG */ 3259 3260 kmem_free(log->l_buf_cancel_table); 3261 log->l_buf_cancel_table = NULL; 3262 3263 return error; 3264 } 3265 3266 /* 3267 * Do the actual recovery 3268 */ 3269 STATIC int 3270 xlog_do_recover( 3271 struct xlog *log, 3272 xfs_daddr_t head_blk, 3273 xfs_daddr_t tail_blk) 3274 { 3275 struct xfs_mount *mp = log->l_mp; 3276 struct xfs_buf *bp = mp->m_sb_bp; 3277 struct xfs_sb *sbp = &mp->m_sb; 3278 int error; 3279 3280 trace_xfs_log_recover(log, head_blk, tail_blk); 3281 3282 /* 3283 * First replay the images in the log. 3284 */ 3285 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3286 if (error) 3287 return error; 3288 3289 /* 3290 * If IO errors happened during recovery, bail out. 3291 */ 3292 if (XFS_FORCED_SHUTDOWN(mp)) 3293 return -EIO; 3294 3295 /* 3296 * We now update the tail_lsn since much of the recovery has completed 3297 * and there may be space available to use. If there were no extent 3298 * or iunlinks, we can free up the entire log and set the tail_lsn to 3299 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3300 * lsn of the last known good LR on disk. If there are extent frees 3301 * or iunlinks they will have some entries in the AIL; so we look at 3302 * the AIL to determine how to set the tail_lsn. 3303 */ 3304 xlog_assign_tail_lsn(mp); 3305 3306 /* 3307 * Now that we've finished replaying all buffer and inode updates, 3308 * re-read the superblock and reverify it. 3309 */ 3310 xfs_buf_lock(bp); 3311 xfs_buf_hold(bp); 3312 error = _xfs_buf_read(bp, XBF_READ); 3313 if (error) { 3314 if (!XFS_FORCED_SHUTDOWN(mp)) { 3315 xfs_buf_ioerror_alert(bp, __this_address); 3316 ASSERT(0); 3317 } 3318 xfs_buf_relse(bp); 3319 return error; 3320 } 3321 3322 /* Convert superblock from on-disk format */ 3323 xfs_sb_from_disk(sbp, bp->b_addr); 3324 xfs_buf_relse(bp); 3325 3326 /* re-initialise in-core superblock and geometry structures */ 3327 xfs_reinit_percpu_counters(mp); 3328 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 3329 if (error) { 3330 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); 3331 return error; 3332 } 3333 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 3334 3335 xlog_recover_check_summary(log); 3336 3337 /* Normal transactions can now occur */ 3338 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3339 return 0; 3340 } 3341 3342 /* 3343 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3344 * 3345 * Return error or zero. 3346 */ 3347 int 3348 xlog_recover( 3349 struct xlog *log) 3350 { 3351 xfs_daddr_t head_blk, tail_blk; 3352 int error; 3353 3354 /* find the tail of the log */ 3355 error = xlog_find_tail(log, &head_blk, &tail_blk); 3356 if (error) 3357 return error; 3358 3359 /* 3360 * The superblock was read before the log was available and thus the LSN 3361 * could not be verified. Check the superblock LSN against the current 3362 * LSN now that it's known. 3363 */ 3364 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 3365 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 3366 return -EINVAL; 3367 3368 if (tail_blk != head_blk) { 3369 /* There used to be a comment here: 3370 * 3371 * disallow recovery on read-only mounts. note -- mount 3372 * checks for ENOSPC and turns it into an intelligent 3373 * error message. 3374 * ...but this is no longer true. Now, unless you specify 3375 * NORECOVERY (in which case this function would never be 3376 * called), we just go ahead and recover. We do this all 3377 * under the vfs layer, so we can get away with it unless 3378 * the device itself is read-only, in which case we fail. 3379 */ 3380 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3381 return error; 3382 } 3383 3384 /* 3385 * Version 5 superblock log feature mask validation. We know the 3386 * log is dirty so check if there are any unknown log features 3387 * in what we need to recover. If there are unknown features 3388 * (e.g. unsupported transactions, then simply reject the 3389 * attempt at recovery before touching anything. 3390 */ 3391 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 3392 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 3393 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 3394 xfs_warn(log->l_mp, 3395 "Superblock has unknown incompatible log features (0x%x) enabled.", 3396 (log->l_mp->m_sb.sb_features_log_incompat & 3397 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 3398 xfs_warn(log->l_mp, 3399 "The log can not be fully and/or safely recovered by this kernel."); 3400 xfs_warn(log->l_mp, 3401 "Please recover the log on a kernel that supports the unknown features."); 3402 return -EINVAL; 3403 } 3404 3405 /* 3406 * Delay log recovery if the debug hook is set. This is debug 3407 * instrumention to coordinate simulation of I/O failures with 3408 * log recovery. 3409 */ 3410 if (xfs_globals.log_recovery_delay) { 3411 xfs_notice(log->l_mp, 3412 "Delaying log recovery for %d seconds.", 3413 xfs_globals.log_recovery_delay); 3414 msleep(xfs_globals.log_recovery_delay * 1000); 3415 } 3416 3417 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 3418 log->l_mp->m_logname ? log->l_mp->m_logname 3419 : "internal"); 3420 3421 error = xlog_do_recover(log, head_blk, tail_blk); 3422 log->l_flags |= XLOG_RECOVERY_NEEDED; 3423 } 3424 return error; 3425 } 3426 3427 /* 3428 * In the first part of recovery we replay inodes and buffers and build 3429 * up the list of extent free items which need to be processed. Here 3430 * we process the extent free items and clean up the on disk unlinked 3431 * inode lists. This is separated from the first part of recovery so 3432 * that the root and real-time bitmap inodes can be read in from disk in 3433 * between the two stages. This is necessary so that we can free space 3434 * in the real-time portion of the file system. 3435 */ 3436 int 3437 xlog_recover_finish( 3438 struct xlog *log) 3439 { 3440 /* 3441 * Now we're ready to do the transactions needed for the 3442 * rest of recovery. Start with completing all the extent 3443 * free intent records and then process the unlinked inode 3444 * lists. At this point, we essentially run in normal mode 3445 * except that we're still performing recovery actions 3446 * rather than accepting new requests. 3447 */ 3448 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3449 int error; 3450 error = xlog_recover_process_intents(log); 3451 if (error) { 3452 /* 3453 * Cancel all the unprocessed intent items now so that 3454 * we don't leave them pinned in the AIL. This can 3455 * cause the AIL to livelock on the pinned item if 3456 * anyone tries to push the AIL (inode reclaim does 3457 * this) before we get around to xfs_log_mount_cancel. 3458 */ 3459 xlog_recover_cancel_intents(log); 3460 xfs_alert(log->l_mp, "Failed to recover intents"); 3461 return error; 3462 } 3463 3464 /* 3465 * Sync the log to get all the intents out of the AIL. 3466 * This isn't absolutely necessary, but it helps in 3467 * case the unlink transactions would have problems 3468 * pushing the intents out of the way. 3469 */ 3470 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3471 3472 xlog_recover_process_iunlinks(log); 3473 3474 xlog_recover_check_summary(log); 3475 3476 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 3477 log->l_mp->m_logname ? log->l_mp->m_logname 3478 : "internal"); 3479 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3480 } else { 3481 xfs_info(log->l_mp, "Ending clean mount"); 3482 } 3483 return 0; 3484 } 3485 3486 void 3487 xlog_recover_cancel( 3488 struct xlog *log) 3489 { 3490 if (log->l_flags & XLOG_RECOVERY_NEEDED) 3491 xlog_recover_cancel_intents(log); 3492 } 3493 3494 #if defined(DEBUG) 3495 /* 3496 * Read all of the agf and agi counters and check that they 3497 * are consistent with the superblock counters. 3498 */ 3499 STATIC void 3500 xlog_recover_check_summary( 3501 struct xlog *log) 3502 { 3503 xfs_mount_t *mp; 3504 struct xfs_buf *agfbp; 3505 struct xfs_buf *agibp; 3506 xfs_agnumber_t agno; 3507 uint64_t freeblks; 3508 uint64_t itotal; 3509 uint64_t ifree; 3510 int error; 3511 3512 mp = log->l_mp; 3513 3514 freeblks = 0LL; 3515 itotal = 0LL; 3516 ifree = 0LL; 3517 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3518 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 3519 if (error) { 3520 xfs_alert(mp, "%s agf read failed agno %d error %d", 3521 __func__, agno, error); 3522 } else { 3523 struct xfs_agf *agfp = agfbp->b_addr; 3524 3525 freeblks += be32_to_cpu(agfp->agf_freeblks) + 3526 be32_to_cpu(agfp->agf_flcount); 3527 xfs_buf_relse(agfbp); 3528 } 3529 3530 error = xfs_read_agi(mp, NULL, agno, &agibp); 3531 if (error) { 3532 xfs_alert(mp, "%s agi read failed agno %d error %d", 3533 __func__, agno, error); 3534 } else { 3535 struct xfs_agi *agi = agibp->b_addr; 3536 3537 itotal += be32_to_cpu(agi->agi_count); 3538 ifree += be32_to_cpu(agi->agi_freecount); 3539 xfs_buf_relse(agibp); 3540 } 3541 } 3542 } 3543 #endif /* DEBUG */ 3544