1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_error.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_dir2_sf.h" 35 #include "xfs_attr_sf.h" 36 #include "xfs_dinode.h" 37 #include "xfs_inode.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_imap.h" 40 #include "xfs_alloc.h" 41 #include "xfs_ialloc.h" 42 #include "xfs_log_priv.h" 43 #include "xfs_buf_item.h" 44 #include "xfs_log_recover.h" 45 #include "xfs_extfree_item.h" 46 #include "xfs_trans_priv.h" 47 #include "xfs_quota.h" 48 #include "xfs_rw.h" 49 50 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 51 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 52 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q, 53 xlog_recover_item_t *item); 54 #if defined(DEBUG) 55 STATIC void xlog_recover_check_summary(xlog_t *); 56 STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int); 57 #else 58 #define xlog_recover_check_summary(log) 59 #define xlog_recover_check_ail(mp, lip, gen) 60 #endif 61 62 63 /* 64 * Sector aligned buffer routines for buffer create/read/write/access 65 */ 66 67 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \ 68 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \ 69 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) ) 70 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask) 71 72 xfs_buf_t * 73 xlog_get_bp( 74 xlog_t *log, 75 int num_bblks) 76 { 77 ASSERT(num_bblks > 0); 78 79 if (log->l_sectbb_log) { 80 if (num_bblks > 1) 81 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 82 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks); 83 } 84 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp); 85 } 86 87 void 88 xlog_put_bp( 89 xfs_buf_t *bp) 90 { 91 xfs_buf_free(bp); 92 } 93 94 95 /* 96 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 97 */ 98 int 99 xlog_bread( 100 xlog_t *log, 101 xfs_daddr_t blk_no, 102 int nbblks, 103 xfs_buf_t *bp) 104 { 105 int error; 106 107 if (log->l_sectbb_log) { 108 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 109 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 110 } 111 112 ASSERT(nbblks > 0); 113 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 114 ASSERT(bp); 115 116 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 117 XFS_BUF_READ(bp); 118 XFS_BUF_BUSY(bp); 119 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 120 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 121 122 xfsbdstrat(log->l_mp, bp); 123 if ((error = xfs_iowait(bp))) 124 xfs_ioerror_alert("xlog_bread", log->l_mp, 125 bp, XFS_BUF_ADDR(bp)); 126 return error; 127 } 128 129 /* 130 * Write out the buffer at the given block for the given number of blocks. 131 * The buffer is kept locked across the write and is returned locked. 132 * This can only be used for synchronous log writes. 133 */ 134 STATIC int 135 xlog_bwrite( 136 xlog_t *log, 137 xfs_daddr_t blk_no, 138 int nbblks, 139 xfs_buf_t *bp) 140 { 141 int error; 142 143 if (log->l_sectbb_log) { 144 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 145 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 146 } 147 148 ASSERT(nbblks > 0); 149 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 150 151 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 152 XFS_BUF_ZEROFLAGS(bp); 153 XFS_BUF_BUSY(bp); 154 XFS_BUF_HOLD(bp); 155 XFS_BUF_PSEMA(bp, PRIBIO); 156 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 157 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 158 159 if ((error = xfs_bwrite(log->l_mp, bp))) 160 xfs_ioerror_alert("xlog_bwrite", log->l_mp, 161 bp, XFS_BUF_ADDR(bp)); 162 return error; 163 } 164 165 STATIC xfs_caddr_t 166 xlog_align( 167 xlog_t *log, 168 xfs_daddr_t blk_no, 169 int nbblks, 170 xfs_buf_t *bp) 171 { 172 xfs_caddr_t ptr; 173 174 if (!log->l_sectbb_log) 175 return XFS_BUF_PTR(bp); 176 177 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask); 178 ASSERT(XFS_BUF_SIZE(bp) >= 179 BBTOB(nbblks + (blk_no & log->l_sectbb_mask))); 180 return ptr; 181 } 182 183 #ifdef DEBUG 184 /* 185 * dump debug superblock and log record information 186 */ 187 STATIC void 188 xlog_header_check_dump( 189 xfs_mount_t *mp, 190 xlog_rec_header_t *head) 191 { 192 int b; 193 194 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __FUNCTION__); 195 for (b = 0; b < 16; b++) 196 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]); 197 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT); 198 cmn_err(CE_DEBUG, " log : uuid = "); 199 for (b = 0; b < 16; b++) 200 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]); 201 cmn_err(CE_DEBUG, ", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT)); 202 } 203 #else 204 #define xlog_header_check_dump(mp, head) 205 #endif 206 207 /* 208 * check log record header for recovery 209 */ 210 STATIC int 211 xlog_header_check_recover( 212 xfs_mount_t *mp, 213 xlog_rec_header_t *head) 214 { 215 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); 216 217 /* 218 * IRIX doesn't write the h_fmt field and leaves it zeroed 219 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 220 * a dirty log created in IRIX. 221 */ 222 if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) { 223 xlog_warn( 224 "XFS: dirty log written in incompatible format - can't recover"); 225 xlog_header_check_dump(mp, head); 226 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 227 XFS_ERRLEVEL_HIGH, mp); 228 return XFS_ERROR(EFSCORRUPTED); 229 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 230 xlog_warn( 231 "XFS: dirty log entry has mismatched uuid - can't recover"); 232 xlog_header_check_dump(mp, head); 233 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 234 XFS_ERRLEVEL_HIGH, mp); 235 return XFS_ERROR(EFSCORRUPTED); 236 } 237 return 0; 238 } 239 240 /* 241 * read the head block of the log and check the header 242 */ 243 STATIC int 244 xlog_header_check_mount( 245 xfs_mount_t *mp, 246 xlog_rec_header_t *head) 247 { 248 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); 249 250 if (uuid_is_nil(&head->h_fs_uuid)) { 251 /* 252 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 253 * h_fs_uuid is nil, we assume this log was last mounted 254 * by IRIX and continue. 255 */ 256 xlog_warn("XFS: nil uuid in log - IRIX style log"); 257 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 258 xlog_warn("XFS: log has mismatched uuid - can't recover"); 259 xlog_header_check_dump(mp, head); 260 XFS_ERROR_REPORT("xlog_header_check_mount", 261 XFS_ERRLEVEL_HIGH, mp); 262 return XFS_ERROR(EFSCORRUPTED); 263 } 264 return 0; 265 } 266 267 STATIC void 268 xlog_recover_iodone( 269 struct xfs_buf *bp) 270 { 271 xfs_mount_t *mp; 272 273 ASSERT(XFS_BUF_FSPRIVATE(bp, void *)); 274 275 if (XFS_BUF_GETERROR(bp)) { 276 /* 277 * We're not going to bother about retrying 278 * this during recovery. One strike! 279 */ 280 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *); 281 xfs_ioerror_alert("xlog_recover_iodone", 282 mp, bp, XFS_BUF_ADDR(bp)); 283 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 284 } 285 XFS_BUF_SET_FSPRIVATE(bp, NULL); 286 XFS_BUF_CLR_IODONE_FUNC(bp); 287 xfs_biodone(bp); 288 } 289 290 /* 291 * This routine finds (to an approximation) the first block in the physical 292 * log which contains the given cycle. It uses a binary search algorithm. 293 * Note that the algorithm can not be perfect because the disk will not 294 * necessarily be perfect. 295 */ 296 int 297 xlog_find_cycle_start( 298 xlog_t *log, 299 xfs_buf_t *bp, 300 xfs_daddr_t first_blk, 301 xfs_daddr_t *last_blk, 302 uint cycle) 303 { 304 xfs_caddr_t offset; 305 xfs_daddr_t mid_blk; 306 uint mid_cycle; 307 int error; 308 309 mid_blk = BLK_AVG(first_blk, *last_blk); 310 while (mid_blk != first_blk && mid_blk != *last_blk) { 311 if ((error = xlog_bread(log, mid_blk, 1, bp))) 312 return error; 313 offset = xlog_align(log, mid_blk, 1, bp); 314 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT); 315 if (mid_cycle == cycle) { 316 *last_blk = mid_blk; 317 /* last_half_cycle == mid_cycle */ 318 } else { 319 first_blk = mid_blk; 320 /* first_half_cycle == mid_cycle */ 321 } 322 mid_blk = BLK_AVG(first_blk, *last_blk); 323 } 324 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) || 325 (mid_blk == *last_blk && mid_blk-1 == first_blk)); 326 327 return 0; 328 } 329 330 /* 331 * Check that the range of blocks does not contain the cycle number 332 * given. The scan needs to occur from front to back and the ptr into the 333 * region must be updated since a later routine will need to perform another 334 * test. If the region is completely good, we end up returning the same 335 * last block number. 336 * 337 * Set blkno to -1 if we encounter no errors. This is an invalid block number 338 * since we don't ever expect logs to get this large. 339 */ 340 STATIC int 341 xlog_find_verify_cycle( 342 xlog_t *log, 343 xfs_daddr_t start_blk, 344 int nbblks, 345 uint stop_on_cycle_no, 346 xfs_daddr_t *new_blk) 347 { 348 xfs_daddr_t i, j; 349 uint cycle; 350 xfs_buf_t *bp; 351 xfs_daddr_t bufblks; 352 xfs_caddr_t buf = NULL; 353 int error = 0; 354 355 bufblks = 1 << ffs(nbblks); 356 357 while (!(bp = xlog_get_bp(log, bufblks))) { 358 /* can't get enough memory to do everything in one big buffer */ 359 bufblks >>= 1; 360 if (bufblks <= log->l_sectbb_log) 361 return ENOMEM; 362 } 363 364 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 365 int bcount; 366 367 bcount = min(bufblks, (start_blk + nbblks - i)); 368 369 if ((error = xlog_bread(log, i, bcount, bp))) 370 goto out; 371 372 buf = xlog_align(log, i, bcount, bp); 373 for (j = 0; j < bcount; j++) { 374 cycle = GET_CYCLE(buf, ARCH_CONVERT); 375 if (cycle == stop_on_cycle_no) { 376 *new_blk = i+j; 377 goto out; 378 } 379 380 buf += BBSIZE; 381 } 382 } 383 384 *new_blk = -1; 385 386 out: 387 xlog_put_bp(bp); 388 return error; 389 } 390 391 /* 392 * Potentially backup over partial log record write. 393 * 394 * In the typical case, last_blk is the number of the block directly after 395 * a good log record. Therefore, we subtract one to get the block number 396 * of the last block in the given buffer. extra_bblks contains the number 397 * of blocks we would have read on a previous read. This happens when the 398 * last log record is split over the end of the physical log. 399 * 400 * extra_bblks is the number of blocks potentially verified on a previous 401 * call to this routine. 402 */ 403 STATIC int 404 xlog_find_verify_log_record( 405 xlog_t *log, 406 xfs_daddr_t start_blk, 407 xfs_daddr_t *last_blk, 408 int extra_bblks) 409 { 410 xfs_daddr_t i; 411 xfs_buf_t *bp; 412 xfs_caddr_t offset = NULL; 413 xlog_rec_header_t *head = NULL; 414 int error = 0; 415 int smallmem = 0; 416 int num_blks = *last_blk - start_blk; 417 int xhdrs; 418 419 ASSERT(start_blk != 0 || *last_blk != start_blk); 420 421 if (!(bp = xlog_get_bp(log, num_blks))) { 422 if (!(bp = xlog_get_bp(log, 1))) 423 return ENOMEM; 424 smallmem = 1; 425 } else { 426 if ((error = xlog_bread(log, start_blk, num_blks, bp))) 427 goto out; 428 offset = xlog_align(log, start_blk, num_blks, bp); 429 offset += ((num_blks - 1) << BBSHIFT); 430 } 431 432 for (i = (*last_blk) - 1; i >= 0; i--) { 433 if (i < start_blk) { 434 /* valid log record not found */ 435 xlog_warn( 436 "XFS: Log inconsistent (didn't find previous header)"); 437 ASSERT(0); 438 error = XFS_ERROR(EIO); 439 goto out; 440 } 441 442 if (smallmem) { 443 if ((error = xlog_bread(log, i, 1, bp))) 444 goto out; 445 offset = xlog_align(log, i, 1, bp); 446 } 447 448 head = (xlog_rec_header_t *)offset; 449 450 if (XLOG_HEADER_MAGIC_NUM == 451 INT_GET(head->h_magicno, ARCH_CONVERT)) 452 break; 453 454 if (!smallmem) 455 offset -= BBSIZE; 456 } 457 458 /* 459 * We hit the beginning of the physical log & still no header. Return 460 * to caller. If caller can handle a return of -1, then this routine 461 * will be called again for the end of the physical log. 462 */ 463 if (i == -1) { 464 error = -1; 465 goto out; 466 } 467 468 /* 469 * We have the final block of the good log (the first block 470 * of the log record _before_ the head. So we check the uuid. 471 */ 472 if ((error = xlog_header_check_mount(log->l_mp, head))) 473 goto out; 474 475 /* 476 * We may have found a log record header before we expected one. 477 * last_blk will be the 1st block # with a given cycle #. We may end 478 * up reading an entire log record. In this case, we don't want to 479 * reset last_blk. Only when last_blk points in the middle of a log 480 * record do we update last_blk. 481 */ 482 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 483 uint h_size = INT_GET(head->h_size, ARCH_CONVERT); 484 485 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 486 if (h_size % XLOG_HEADER_CYCLE_SIZE) 487 xhdrs++; 488 } else { 489 xhdrs = 1; 490 } 491 492 if (*last_blk - i + extra_bblks 493 != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs) 494 *last_blk = i; 495 496 out: 497 xlog_put_bp(bp); 498 return error; 499 } 500 501 /* 502 * Head is defined to be the point of the log where the next log write 503 * write could go. This means that incomplete LR writes at the end are 504 * eliminated when calculating the head. We aren't guaranteed that previous 505 * LR have complete transactions. We only know that a cycle number of 506 * current cycle number -1 won't be present in the log if we start writing 507 * from our current block number. 508 * 509 * last_blk contains the block number of the first block with a given 510 * cycle number. 511 * 512 * Return: zero if normal, non-zero if error. 513 */ 514 STATIC int 515 xlog_find_head( 516 xlog_t *log, 517 xfs_daddr_t *return_head_blk) 518 { 519 xfs_buf_t *bp; 520 xfs_caddr_t offset; 521 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 522 int num_scan_bblks; 523 uint first_half_cycle, last_half_cycle; 524 uint stop_on_cycle; 525 int error, log_bbnum = log->l_logBBsize; 526 527 /* Is the end of the log device zeroed? */ 528 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 529 *return_head_blk = first_blk; 530 531 /* Is the whole lot zeroed? */ 532 if (!first_blk) { 533 /* Linux XFS shouldn't generate totally zeroed logs - 534 * mkfs etc write a dummy unmount record to a fresh 535 * log so we can store the uuid in there 536 */ 537 xlog_warn("XFS: totally zeroed log"); 538 } 539 540 return 0; 541 } else if (error) { 542 xlog_warn("XFS: empty log check failed"); 543 return error; 544 } 545 546 first_blk = 0; /* get cycle # of 1st block */ 547 bp = xlog_get_bp(log, 1); 548 if (!bp) 549 return ENOMEM; 550 if ((error = xlog_bread(log, 0, 1, bp))) 551 goto bp_err; 552 offset = xlog_align(log, 0, 1, bp); 553 first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); 554 555 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 556 if ((error = xlog_bread(log, last_blk, 1, bp))) 557 goto bp_err; 558 offset = xlog_align(log, last_blk, 1, bp); 559 last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); 560 ASSERT(last_half_cycle != 0); 561 562 /* 563 * If the 1st half cycle number is equal to the last half cycle number, 564 * then the entire log is stamped with the same cycle number. In this 565 * case, head_blk can't be set to zero (which makes sense). The below 566 * math doesn't work out properly with head_blk equal to zero. Instead, 567 * we set it to log_bbnum which is an invalid block number, but this 568 * value makes the math correct. If head_blk doesn't changed through 569 * all the tests below, *head_blk is set to zero at the very end rather 570 * than log_bbnum. In a sense, log_bbnum and zero are the same block 571 * in a circular file. 572 */ 573 if (first_half_cycle == last_half_cycle) { 574 /* 575 * In this case we believe that the entire log should have 576 * cycle number last_half_cycle. We need to scan backwards 577 * from the end verifying that there are no holes still 578 * containing last_half_cycle - 1. If we find such a hole, 579 * then the start of that hole will be the new head. The 580 * simple case looks like 581 * x | x ... | x - 1 | x 582 * Another case that fits this picture would be 583 * x | x + 1 | x ... | x 584 * In this case the head really is somewhere at the end of the 585 * log, as one of the latest writes at the beginning was 586 * incomplete. 587 * One more case is 588 * x | x + 1 | x ... | x - 1 | x 589 * This is really the combination of the above two cases, and 590 * the head has to end up at the start of the x-1 hole at the 591 * end of the log. 592 * 593 * In the 256k log case, we will read from the beginning to the 594 * end of the log and search for cycle numbers equal to x-1. 595 * We don't worry about the x+1 blocks that we encounter, 596 * because we know that they cannot be the head since the log 597 * started with x. 598 */ 599 head_blk = log_bbnum; 600 stop_on_cycle = last_half_cycle - 1; 601 } else { 602 /* 603 * In this case we want to find the first block with cycle 604 * number matching last_half_cycle. We expect the log to be 605 * some variation on 606 * x + 1 ... | x ... 607 * The first block with cycle number x (last_half_cycle) will 608 * be where the new head belongs. First we do a binary search 609 * for the first occurrence of last_half_cycle. The binary 610 * search may not be totally accurate, so then we scan back 611 * from there looking for occurrences of last_half_cycle before 612 * us. If that backwards scan wraps around the beginning of 613 * the log, then we look for occurrences of last_half_cycle - 1 614 * at the end of the log. The cases we're looking for look 615 * like 616 * x + 1 ... | x | x + 1 | x ... 617 * ^ binary search stopped here 618 * or 619 * x + 1 ... | x ... | x - 1 | x 620 * <---------> less than scan distance 621 */ 622 stop_on_cycle = last_half_cycle; 623 if ((error = xlog_find_cycle_start(log, bp, first_blk, 624 &head_blk, last_half_cycle))) 625 goto bp_err; 626 } 627 628 /* 629 * Now validate the answer. Scan back some number of maximum possible 630 * blocks and make sure each one has the expected cycle number. The 631 * maximum is determined by the total possible amount of buffering 632 * in the in-core log. The following number can be made tighter if 633 * we actually look at the block size of the filesystem. 634 */ 635 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 636 if (head_blk >= num_scan_bblks) { 637 /* 638 * We are guaranteed that the entire check can be performed 639 * in one buffer. 640 */ 641 start_blk = head_blk - num_scan_bblks; 642 if ((error = xlog_find_verify_cycle(log, 643 start_blk, num_scan_bblks, 644 stop_on_cycle, &new_blk))) 645 goto bp_err; 646 if (new_blk != -1) 647 head_blk = new_blk; 648 } else { /* need to read 2 parts of log */ 649 /* 650 * We are going to scan backwards in the log in two parts. 651 * First we scan the physical end of the log. In this part 652 * of the log, we are looking for blocks with cycle number 653 * last_half_cycle - 1. 654 * If we find one, then we know that the log starts there, as 655 * we've found a hole that didn't get written in going around 656 * the end of the physical log. The simple case for this is 657 * x + 1 ... | x ... | x - 1 | x 658 * <---------> less than scan distance 659 * If all of the blocks at the end of the log have cycle number 660 * last_half_cycle, then we check the blocks at the start of 661 * the log looking for occurrences of last_half_cycle. If we 662 * find one, then our current estimate for the location of the 663 * first occurrence of last_half_cycle is wrong and we move 664 * back to the hole we've found. This case looks like 665 * x + 1 ... | x | x + 1 | x ... 666 * ^ binary search stopped here 667 * Another case we need to handle that only occurs in 256k 668 * logs is 669 * x + 1 ... | x ... | x+1 | x ... 670 * ^ binary search stops here 671 * In a 256k log, the scan at the end of the log will see the 672 * x + 1 blocks. We need to skip past those since that is 673 * certainly not the head of the log. By searching for 674 * last_half_cycle-1 we accomplish that. 675 */ 676 start_blk = log_bbnum - num_scan_bblks + head_blk; 677 ASSERT(head_blk <= INT_MAX && 678 (xfs_daddr_t) num_scan_bblks - head_blk >= 0); 679 if ((error = xlog_find_verify_cycle(log, start_blk, 680 num_scan_bblks - (int)head_blk, 681 (stop_on_cycle - 1), &new_blk))) 682 goto bp_err; 683 if (new_blk != -1) { 684 head_blk = new_blk; 685 goto bad_blk; 686 } 687 688 /* 689 * Scan beginning of log now. The last part of the physical 690 * log is good. This scan needs to verify that it doesn't find 691 * the last_half_cycle. 692 */ 693 start_blk = 0; 694 ASSERT(head_blk <= INT_MAX); 695 if ((error = xlog_find_verify_cycle(log, 696 start_blk, (int)head_blk, 697 stop_on_cycle, &new_blk))) 698 goto bp_err; 699 if (new_blk != -1) 700 head_blk = new_blk; 701 } 702 703 bad_blk: 704 /* 705 * Now we need to make sure head_blk is not pointing to a block in 706 * the middle of a log record. 707 */ 708 num_scan_bblks = XLOG_REC_SHIFT(log); 709 if (head_blk >= num_scan_bblks) { 710 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 711 712 /* start ptr at last block ptr before head_blk */ 713 if ((error = xlog_find_verify_log_record(log, start_blk, 714 &head_blk, 0)) == -1) { 715 error = XFS_ERROR(EIO); 716 goto bp_err; 717 } else if (error) 718 goto bp_err; 719 } else { 720 start_blk = 0; 721 ASSERT(head_blk <= INT_MAX); 722 if ((error = xlog_find_verify_log_record(log, start_blk, 723 &head_blk, 0)) == -1) { 724 /* We hit the beginning of the log during our search */ 725 start_blk = log_bbnum - num_scan_bblks + head_blk; 726 new_blk = log_bbnum; 727 ASSERT(start_blk <= INT_MAX && 728 (xfs_daddr_t) log_bbnum-start_blk >= 0); 729 ASSERT(head_blk <= INT_MAX); 730 if ((error = xlog_find_verify_log_record(log, 731 start_blk, &new_blk, 732 (int)head_blk)) == -1) { 733 error = XFS_ERROR(EIO); 734 goto bp_err; 735 } else if (error) 736 goto bp_err; 737 if (new_blk != log_bbnum) 738 head_blk = new_blk; 739 } else if (error) 740 goto bp_err; 741 } 742 743 xlog_put_bp(bp); 744 if (head_blk == log_bbnum) 745 *return_head_blk = 0; 746 else 747 *return_head_blk = head_blk; 748 /* 749 * When returning here, we have a good block number. Bad block 750 * means that during a previous crash, we didn't have a clean break 751 * from cycle number N to cycle number N-1. In this case, we need 752 * to find the first block with cycle number N-1. 753 */ 754 return 0; 755 756 bp_err: 757 xlog_put_bp(bp); 758 759 if (error) 760 xlog_warn("XFS: failed to find log head"); 761 return error; 762 } 763 764 /* 765 * Find the sync block number or the tail of the log. 766 * 767 * This will be the block number of the last record to have its 768 * associated buffers synced to disk. Every log record header has 769 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 770 * to get a sync block number. The only concern is to figure out which 771 * log record header to believe. 772 * 773 * The following algorithm uses the log record header with the largest 774 * lsn. The entire log record does not need to be valid. We only care 775 * that the header is valid. 776 * 777 * We could speed up search by using current head_blk buffer, but it is not 778 * available. 779 */ 780 int 781 xlog_find_tail( 782 xlog_t *log, 783 xfs_daddr_t *head_blk, 784 xfs_daddr_t *tail_blk) 785 { 786 xlog_rec_header_t *rhead; 787 xlog_op_header_t *op_head; 788 xfs_caddr_t offset = NULL; 789 xfs_buf_t *bp; 790 int error, i, found; 791 xfs_daddr_t umount_data_blk; 792 xfs_daddr_t after_umount_blk; 793 xfs_lsn_t tail_lsn; 794 int hblks; 795 796 found = 0; 797 798 /* 799 * Find previous log record 800 */ 801 if ((error = xlog_find_head(log, head_blk))) 802 return error; 803 804 bp = xlog_get_bp(log, 1); 805 if (!bp) 806 return ENOMEM; 807 if (*head_blk == 0) { /* special case */ 808 if ((error = xlog_bread(log, 0, 1, bp))) 809 goto bread_err; 810 offset = xlog_align(log, 0, 1, bp); 811 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) { 812 *tail_blk = 0; 813 /* leave all other log inited values alone */ 814 goto exit; 815 } 816 } 817 818 /* 819 * Search backwards looking for log record header block 820 */ 821 ASSERT(*head_blk < INT_MAX); 822 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 823 if ((error = xlog_bread(log, i, 1, bp))) 824 goto bread_err; 825 offset = xlog_align(log, i, 1, bp); 826 if (XLOG_HEADER_MAGIC_NUM == 827 INT_GET(*(uint *)offset, ARCH_CONVERT)) { 828 found = 1; 829 break; 830 } 831 } 832 /* 833 * If we haven't found the log record header block, start looking 834 * again from the end of the physical log. XXXmiken: There should be 835 * a check here to make sure we didn't search more than N blocks in 836 * the previous code. 837 */ 838 if (!found) { 839 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 840 if ((error = xlog_bread(log, i, 1, bp))) 841 goto bread_err; 842 offset = xlog_align(log, i, 1, bp); 843 if (XLOG_HEADER_MAGIC_NUM == 844 INT_GET(*(uint*)offset, ARCH_CONVERT)) { 845 found = 2; 846 break; 847 } 848 } 849 } 850 if (!found) { 851 xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); 852 ASSERT(0); 853 return XFS_ERROR(EIO); 854 } 855 856 /* find blk_no of tail of log */ 857 rhead = (xlog_rec_header_t *)offset; 858 *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT)); 859 860 /* 861 * Reset log values according to the state of the log when we 862 * crashed. In the case where head_blk == 0, we bump curr_cycle 863 * one because the next write starts a new cycle rather than 864 * continuing the cycle of the last good log record. At this 865 * point we have guaranteed that all partial log records have been 866 * accounted for. Therefore, we know that the last good log record 867 * written was complete and ended exactly on the end boundary 868 * of the physical log. 869 */ 870 log->l_prev_block = i; 871 log->l_curr_block = (int)*head_blk; 872 log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT); 873 if (found == 2) 874 log->l_curr_cycle++; 875 log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT); 876 log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT); 877 log->l_grant_reserve_cycle = log->l_curr_cycle; 878 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); 879 log->l_grant_write_cycle = log->l_curr_cycle; 880 log->l_grant_write_bytes = BBTOB(log->l_curr_block); 881 882 /* 883 * Look for unmount record. If we find it, then we know there 884 * was a clean unmount. Since 'i' could be the last block in 885 * the physical log, we convert to a log block before comparing 886 * to the head_blk. 887 * 888 * Save the current tail lsn to use to pass to 889 * xlog_clear_stale_blocks() below. We won't want to clear the 890 * unmount record if there is one, so we pass the lsn of the 891 * unmount record rather than the block after it. 892 */ 893 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 894 int h_size = INT_GET(rhead->h_size, ARCH_CONVERT); 895 int h_version = INT_GET(rhead->h_version, ARCH_CONVERT); 896 897 if ((h_version & XLOG_VERSION_2) && 898 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 899 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 900 if (h_size % XLOG_HEADER_CYCLE_SIZE) 901 hblks++; 902 } else { 903 hblks = 1; 904 } 905 } else { 906 hblks = 1; 907 } 908 after_umount_blk = (i + hblks + (int) 909 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize; 910 tail_lsn = log->l_tail_lsn; 911 if (*head_blk == after_umount_blk && 912 INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) { 913 umount_data_blk = (i + hblks) % log->l_logBBsize; 914 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) { 915 goto bread_err; 916 } 917 offset = xlog_align(log, umount_data_blk, 1, bp); 918 op_head = (xlog_op_header_t *)offset; 919 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 920 /* 921 * Set tail and last sync so that newly written 922 * log records will point recovery to after the 923 * current unmount record. 924 */ 925 ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle, 926 after_umount_blk); 927 ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle, 928 after_umount_blk); 929 *tail_blk = after_umount_blk; 930 } 931 } 932 933 /* 934 * Make sure that there are no blocks in front of the head 935 * with the same cycle number as the head. This can happen 936 * because we allow multiple outstanding log writes concurrently, 937 * and the later writes might make it out before earlier ones. 938 * 939 * We use the lsn from before modifying it so that we'll never 940 * overwrite the unmount record after a clean unmount. 941 * 942 * Do this only if we are going to recover the filesystem 943 * 944 * NOTE: This used to say "if (!readonly)" 945 * However on Linux, we can & do recover a read-only filesystem. 946 * We only skip recovery if NORECOVERY is specified on mount, 947 * in which case we would not be here. 948 * 949 * But... if the -device- itself is readonly, just skip this. 950 * We can't recover this device anyway, so it won't matter. 951 */ 952 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 953 error = xlog_clear_stale_blocks(log, tail_lsn); 954 } 955 956 bread_err: 957 exit: 958 xlog_put_bp(bp); 959 960 if (error) 961 xlog_warn("XFS: failed to locate log tail"); 962 return error; 963 } 964 965 /* 966 * Is the log zeroed at all? 967 * 968 * The last binary search should be changed to perform an X block read 969 * once X becomes small enough. You can then search linearly through 970 * the X blocks. This will cut down on the number of reads we need to do. 971 * 972 * If the log is partially zeroed, this routine will pass back the blkno 973 * of the first block with cycle number 0. It won't have a complete LR 974 * preceding it. 975 * 976 * Return: 977 * 0 => the log is completely written to 978 * -1 => use *blk_no as the first block of the log 979 * >0 => error has occurred 980 */ 981 int 982 xlog_find_zeroed( 983 xlog_t *log, 984 xfs_daddr_t *blk_no) 985 { 986 xfs_buf_t *bp; 987 xfs_caddr_t offset; 988 uint first_cycle, last_cycle; 989 xfs_daddr_t new_blk, last_blk, start_blk; 990 xfs_daddr_t num_scan_bblks; 991 int error, log_bbnum = log->l_logBBsize; 992 993 *blk_no = 0; 994 995 /* check totally zeroed log */ 996 bp = xlog_get_bp(log, 1); 997 if (!bp) 998 return ENOMEM; 999 if ((error = xlog_bread(log, 0, 1, bp))) 1000 goto bp_err; 1001 offset = xlog_align(log, 0, 1, bp); 1002 first_cycle = GET_CYCLE(offset, ARCH_CONVERT); 1003 if (first_cycle == 0) { /* completely zeroed log */ 1004 *blk_no = 0; 1005 xlog_put_bp(bp); 1006 return -1; 1007 } 1008 1009 /* check partially zeroed log */ 1010 if ((error = xlog_bread(log, log_bbnum-1, 1, bp))) 1011 goto bp_err; 1012 offset = xlog_align(log, log_bbnum-1, 1, bp); 1013 last_cycle = GET_CYCLE(offset, ARCH_CONVERT); 1014 if (last_cycle != 0) { /* log completely written to */ 1015 xlog_put_bp(bp); 1016 return 0; 1017 } else if (first_cycle != 1) { 1018 /* 1019 * If the cycle of the last block is zero, the cycle of 1020 * the first block must be 1. If it's not, maybe we're 1021 * not looking at a log... Bail out. 1022 */ 1023 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); 1024 return XFS_ERROR(EINVAL); 1025 } 1026 1027 /* we have a partially zeroed log */ 1028 last_blk = log_bbnum-1; 1029 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1030 goto bp_err; 1031 1032 /* 1033 * Validate the answer. Because there is no way to guarantee that 1034 * the entire log is made up of log records which are the same size, 1035 * we scan over the defined maximum blocks. At this point, the maximum 1036 * is not chosen to mean anything special. XXXmiken 1037 */ 1038 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1039 ASSERT(num_scan_bblks <= INT_MAX); 1040 1041 if (last_blk < num_scan_bblks) 1042 num_scan_bblks = last_blk; 1043 start_blk = last_blk - num_scan_bblks; 1044 1045 /* 1046 * We search for any instances of cycle number 0 that occur before 1047 * our current estimate of the head. What we're trying to detect is 1048 * 1 ... | 0 | 1 | 0... 1049 * ^ binary search ends here 1050 */ 1051 if ((error = xlog_find_verify_cycle(log, start_blk, 1052 (int)num_scan_bblks, 0, &new_blk))) 1053 goto bp_err; 1054 if (new_blk != -1) 1055 last_blk = new_blk; 1056 1057 /* 1058 * Potentially backup over partial log record write. We don't need 1059 * to search the end of the log because we know it is zero. 1060 */ 1061 if ((error = xlog_find_verify_log_record(log, start_blk, 1062 &last_blk, 0)) == -1) { 1063 error = XFS_ERROR(EIO); 1064 goto bp_err; 1065 } else if (error) 1066 goto bp_err; 1067 1068 *blk_no = last_blk; 1069 bp_err: 1070 xlog_put_bp(bp); 1071 if (error) 1072 return error; 1073 return -1; 1074 } 1075 1076 /* 1077 * These are simple subroutines used by xlog_clear_stale_blocks() below 1078 * to initialize a buffer full of empty log record headers and write 1079 * them into the log. 1080 */ 1081 STATIC void 1082 xlog_add_record( 1083 xlog_t *log, 1084 xfs_caddr_t buf, 1085 int cycle, 1086 int block, 1087 int tail_cycle, 1088 int tail_block) 1089 { 1090 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1091 1092 memset(buf, 0, BBSIZE); 1093 INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM); 1094 INT_SET(recp->h_cycle, ARCH_CONVERT, cycle); 1095 INT_SET(recp->h_version, ARCH_CONVERT, 1096 XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1); 1097 ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block); 1098 ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block); 1099 INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT); 1100 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1101 } 1102 1103 STATIC int 1104 xlog_write_log_records( 1105 xlog_t *log, 1106 int cycle, 1107 int start_block, 1108 int blocks, 1109 int tail_cycle, 1110 int tail_block) 1111 { 1112 xfs_caddr_t offset; 1113 xfs_buf_t *bp; 1114 int balign, ealign; 1115 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 1116 int end_block = start_block + blocks; 1117 int bufblks; 1118 int error = 0; 1119 int i, j = 0; 1120 1121 bufblks = 1 << ffs(blocks); 1122 while (!(bp = xlog_get_bp(log, bufblks))) { 1123 bufblks >>= 1; 1124 if (bufblks <= log->l_sectbb_log) 1125 return ENOMEM; 1126 } 1127 1128 /* We may need to do a read at the start to fill in part of 1129 * the buffer in the starting sector not covered by the first 1130 * write below. 1131 */ 1132 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block); 1133 if (balign != start_block) { 1134 if ((error = xlog_bread(log, start_block, 1, bp))) { 1135 xlog_put_bp(bp); 1136 return error; 1137 } 1138 j = start_block - balign; 1139 } 1140 1141 for (i = start_block; i < end_block; i += bufblks) { 1142 int bcount, endcount; 1143 1144 bcount = min(bufblks, end_block - start_block); 1145 endcount = bcount - j; 1146 1147 /* We may need to do a read at the end to fill in part of 1148 * the buffer in the final sector not covered by the write. 1149 * If this is the same sector as the above read, skip it. 1150 */ 1151 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block); 1152 if (j == 0 && (start_block + endcount > ealign)) { 1153 offset = XFS_BUF_PTR(bp); 1154 balign = BBTOB(ealign - start_block); 1155 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb)); 1156 if ((error = xlog_bread(log, ealign, sectbb, bp))) 1157 break; 1158 XFS_BUF_SET_PTR(bp, offset, bufblks); 1159 } 1160 1161 offset = xlog_align(log, start_block, endcount, bp); 1162 for (; j < endcount; j++) { 1163 xlog_add_record(log, offset, cycle, i+j, 1164 tail_cycle, tail_block); 1165 offset += BBSIZE; 1166 } 1167 error = xlog_bwrite(log, start_block, endcount, bp); 1168 if (error) 1169 break; 1170 start_block += endcount; 1171 j = 0; 1172 } 1173 xlog_put_bp(bp); 1174 return error; 1175 } 1176 1177 /* 1178 * This routine is called to blow away any incomplete log writes out 1179 * in front of the log head. We do this so that we won't become confused 1180 * if we come up, write only a little bit more, and then crash again. 1181 * If we leave the partial log records out there, this situation could 1182 * cause us to think those partial writes are valid blocks since they 1183 * have the current cycle number. We get rid of them by overwriting them 1184 * with empty log records with the old cycle number rather than the 1185 * current one. 1186 * 1187 * The tail lsn is passed in rather than taken from 1188 * the log so that we will not write over the unmount record after a 1189 * clean unmount in a 512 block log. Doing so would leave the log without 1190 * any valid log records in it until a new one was written. If we crashed 1191 * during that time we would not be able to recover. 1192 */ 1193 STATIC int 1194 xlog_clear_stale_blocks( 1195 xlog_t *log, 1196 xfs_lsn_t tail_lsn) 1197 { 1198 int tail_cycle, head_cycle; 1199 int tail_block, head_block; 1200 int tail_distance, max_distance; 1201 int distance; 1202 int error; 1203 1204 tail_cycle = CYCLE_LSN(tail_lsn); 1205 tail_block = BLOCK_LSN(tail_lsn); 1206 head_cycle = log->l_curr_cycle; 1207 head_block = log->l_curr_block; 1208 1209 /* 1210 * Figure out the distance between the new head of the log 1211 * and the tail. We want to write over any blocks beyond the 1212 * head that we may have written just before the crash, but 1213 * we don't want to overwrite the tail of the log. 1214 */ 1215 if (head_cycle == tail_cycle) { 1216 /* 1217 * The tail is behind the head in the physical log, 1218 * so the distance from the head to the tail is the 1219 * distance from the head to the end of the log plus 1220 * the distance from the beginning of the log to the 1221 * tail. 1222 */ 1223 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1224 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1225 XFS_ERRLEVEL_LOW, log->l_mp); 1226 return XFS_ERROR(EFSCORRUPTED); 1227 } 1228 tail_distance = tail_block + (log->l_logBBsize - head_block); 1229 } else { 1230 /* 1231 * The head is behind the tail in the physical log, 1232 * so the distance from the head to the tail is just 1233 * the tail block minus the head block. 1234 */ 1235 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1236 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1237 XFS_ERRLEVEL_LOW, log->l_mp); 1238 return XFS_ERROR(EFSCORRUPTED); 1239 } 1240 tail_distance = tail_block - head_block; 1241 } 1242 1243 /* 1244 * If the head is right up against the tail, we can't clear 1245 * anything. 1246 */ 1247 if (tail_distance <= 0) { 1248 ASSERT(tail_distance == 0); 1249 return 0; 1250 } 1251 1252 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1253 /* 1254 * Take the smaller of the maximum amount of outstanding I/O 1255 * we could have and the distance to the tail to clear out. 1256 * We take the smaller so that we don't overwrite the tail and 1257 * we don't waste all day writing from the head to the tail 1258 * for no reason. 1259 */ 1260 max_distance = MIN(max_distance, tail_distance); 1261 1262 if ((head_block + max_distance) <= log->l_logBBsize) { 1263 /* 1264 * We can stomp all the blocks we need to without 1265 * wrapping around the end of the log. Just do it 1266 * in a single write. Use the cycle number of the 1267 * current cycle minus one so that the log will look like: 1268 * n ... | n - 1 ... 1269 */ 1270 error = xlog_write_log_records(log, (head_cycle - 1), 1271 head_block, max_distance, tail_cycle, 1272 tail_block); 1273 if (error) 1274 return error; 1275 } else { 1276 /* 1277 * We need to wrap around the end of the physical log in 1278 * order to clear all the blocks. Do it in two separate 1279 * I/Os. The first write should be from the head to the 1280 * end of the physical log, and it should use the current 1281 * cycle number minus one just like above. 1282 */ 1283 distance = log->l_logBBsize - head_block; 1284 error = xlog_write_log_records(log, (head_cycle - 1), 1285 head_block, distance, tail_cycle, 1286 tail_block); 1287 1288 if (error) 1289 return error; 1290 1291 /* 1292 * Now write the blocks at the start of the physical log. 1293 * This writes the remainder of the blocks we want to clear. 1294 * It uses the current cycle number since we're now on the 1295 * same cycle as the head so that we get: 1296 * n ... n ... | n - 1 ... 1297 * ^^^^^ blocks we're writing 1298 */ 1299 distance = max_distance - (log->l_logBBsize - head_block); 1300 error = xlog_write_log_records(log, head_cycle, 0, distance, 1301 tail_cycle, tail_block); 1302 if (error) 1303 return error; 1304 } 1305 1306 return 0; 1307 } 1308 1309 /****************************************************************************** 1310 * 1311 * Log recover routines 1312 * 1313 ****************************************************************************** 1314 */ 1315 1316 STATIC xlog_recover_t * 1317 xlog_recover_find_tid( 1318 xlog_recover_t *q, 1319 xlog_tid_t tid) 1320 { 1321 xlog_recover_t *p = q; 1322 1323 while (p != NULL) { 1324 if (p->r_log_tid == tid) 1325 break; 1326 p = p->r_next; 1327 } 1328 return p; 1329 } 1330 1331 STATIC void 1332 xlog_recover_put_hashq( 1333 xlog_recover_t **q, 1334 xlog_recover_t *trans) 1335 { 1336 trans->r_next = *q; 1337 *q = trans; 1338 } 1339 1340 STATIC void 1341 xlog_recover_add_item( 1342 xlog_recover_item_t **itemq) 1343 { 1344 xlog_recover_item_t *item; 1345 1346 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1347 xlog_recover_insert_item_backq(itemq, item); 1348 } 1349 1350 STATIC int 1351 xlog_recover_add_to_cont_trans( 1352 xlog_recover_t *trans, 1353 xfs_caddr_t dp, 1354 int len) 1355 { 1356 xlog_recover_item_t *item; 1357 xfs_caddr_t ptr, old_ptr; 1358 int old_len; 1359 1360 item = trans->r_itemq; 1361 if (item == 0) { 1362 /* finish copying rest of trans header */ 1363 xlog_recover_add_item(&trans->r_itemq); 1364 ptr = (xfs_caddr_t) &trans->r_theader + 1365 sizeof(xfs_trans_header_t) - len; 1366 memcpy(ptr, dp, len); /* d, s, l */ 1367 return 0; 1368 } 1369 item = item->ri_prev; 1370 1371 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1372 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1373 1374 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u); 1375 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1376 item->ri_buf[item->ri_cnt-1].i_len += len; 1377 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1378 return 0; 1379 } 1380 1381 /* 1382 * The next region to add is the start of a new region. It could be 1383 * a whole region or it could be the first part of a new region. Because 1384 * of this, the assumption here is that the type and size fields of all 1385 * format structures fit into the first 32 bits of the structure. 1386 * 1387 * This works because all regions must be 32 bit aligned. Therefore, we 1388 * either have both fields or we have neither field. In the case we have 1389 * neither field, the data part of the region is zero length. We only have 1390 * a log_op_header and can throw away the header since a new one will appear 1391 * later. If we have at least 4 bytes, then we can determine how many regions 1392 * will appear in the current log item. 1393 */ 1394 STATIC int 1395 xlog_recover_add_to_trans( 1396 xlog_recover_t *trans, 1397 xfs_caddr_t dp, 1398 int len) 1399 { 1400 xfs_inode_log_format_t *in_f; /* any will do */ 1401 xlog_recover_item_t *item; 1402 xfs_caddr_t ptr; 1403 1404 if (!len) 1405 return 0; 1406 item = trans->r_itemq; 1407 if (item == 0) { 1408 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC); 1409 if (len == sizeof(xfs_trans_header_t)) 1410 xlog_recover_add_item(&trans->r_itemq); 1411 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1412 return 0; 1413 } 1414 1415 ptr = kmem_alloc(len, KM_SLEEP); 1416 memcpy(ptr, dp, len); 1417 in_f = (xfs_inode_log_format_t *)ptr; 1418 1419 if (item->ri_prev->ri_total != 0 && 1420 item->ri_prev->ri_total == item->ri_prev->ri_cnt) { 1421 xlog_recover_add_item(&trans->r_itemq); 1422 } 1423 item = trans->r_itemq; 1424 item = item->ri_prev; 1425 1426 if (item->ri_total == 0) { /* first region to be added */ 1427 item->ri_total = in_f->ilf_size; 1428 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM); 1429 item->ri_buf = kmem_zalloc((item->ri_total * 1430 sizeof(xfs_log_iovec_t)), KM_SLEEP); 1431 } 1432 ASSERT(item->ri_total > item->ri_cnt); 1433 /* Description region is ri_buf[0] */ 1434 item->ri_buf[item->ri_cnt].i_addr = ptr; 1435 item->ri_buf[item->ri_cnt].i_len = len; 1436 item->ri_cnt++; 1437 return 0; 1438 } 1439 1440 STATIC void 1441 xlog_recover_new_tid( 1442 xlog_recover_t **q, 1443 xlog_tid_t tid, 1444 xfs_lsn_t lsn) 1445 { 1446 xlog_recover_t *trans; 1447 1448 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1449 trans->r_log_tid = tid; 1450 trans->r_lsn = lsn; 1451 xlog_recover_put_hashq(q, trans); 1452 } 1453 1454 STATIC int 1455 xlog_recover_unlink_tid( 1456 xlog_recover_t **q, 1457 xlog_recover_t *trans) 1458 { 1459 xlog_recover_t *tp; 1460 int found = 0; 1461 1462 ASSERT(trans != 0); 1463 if (trans == *q) { 1464 *q = (*q)->r_next; 1465 } else { 1466 tp = *q; 1467 while (tp != 0) { 1468 if (tp->r_next == trans) { 1469 found = 1; 1470 break; 1471 } 1472 tp = tp->r_next; 1473 } 1474 if (!found) { 1475 xlog_warn( 1476 "XFS: xlog_recover_unlink_tid: trans not found"); 1477 ASSERT(0); 1478 return XFS_ERROR(EIO); 1479 } 1480 tp->r_next = tp->r_next->r_next; 1481 } 1482 return 0; 1483 } 1484 1485 STATIC void 1486 xlog_recover_insert_item_backq( 1487 xlog_recover_item_t **q, 1488 xlog_recover_item_t *item) 1489 { 1490 if (*q == 0) { 1491 item->ri_prev = item->ri_next = item; 1492 *q = item; 1493 } else { 1494 item->ri_next = *q; 1495 item->ri_prev = (*q)->ri_prev; 1496 (*q)->ri_prev = item; 1497 item->ri_prev->ri_next = item; 1498 } 1499 } 1500 1501 STATIC void 1502 xlog_recover_insert_item_frontq( 1503 xlog_recover_item_t **q, 1504 xlog_recover_item_t *item) 1505 { 1506 xlog_recover_insert_item_backq(q, item); 1507 *q = item; 1508 } 1509 1510 STATIC int 1511 xlog_recover_reorder_trans( 1512 xlog_t *log, 1513 xlog_recover_t *trans) 1514 { 1515 xlog_recover_item_t *first_item, *itemq, *itemq_next; 1516 xfs_buf_log_format_t *buf_f; 1517 xfs_buf_log_format_v1_t *obuf_f; 1518 ushort flags = 0; 1519 1520 first_item = itemq = trans->r_itemq; 1521 trans->r_itemq = NULL; 1522 do { 1523 itemq_next = itemq->ri_next; 1524 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr; 1525 switch (ITEM_TYPE(itemq)) { 1526 case XFS_LI_BUF: 1527 flags = buf_f->blf_flags; 1528 break; 1529 case XFS_LI_6_1_BUF: 1530 case XFS_LI_5_3_BUF: 1531 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1532 flags = obuf_f->blf_flags; 1533 break; 1534 } 1535 1536 switch (ITEM_TYPE(itemq)) { 1537 case XFS_LI_BUF: 1538 case XFS_LI_6_1_BUF: 1539 case XFS_LI_5_3_BUF: 1540 if (!(flags & XFS_BLI_CANCEL)) { 1541 xlog_recover_insert_item_frontq(&trans->r_itemq, 1542 itemq); 1543 break; 1544 } 1545 case XFS_LI_INODE: 1546 case XFS_LI_6_1_INODE: 1547 case XFS_LI_5_3_INODE: 1548 case XFS_LI_DQUOT: 1549 case XFS_LI_QUOTAOFF: 1550 case XFS_LI_EFD: 1551 case XFS_LI_EFI: 1552 xlog_recover_insert_item_backq(&trans->r_itemq, itemq); 1553 break; 1554 default: 1555 xlog_warn( 1556 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); 1557 ASSERT(0); 1558 return XFS_ERROR(EIO); 1559 } 1560 itemq = itemq_next; 1561 } while (first_item != itemq); 1562 return 0; 1563 } 1564 1565 /* 1566 * Build up the table of buf cancel records so that we don't replay 1567 * cancelled data in the second pass. For buffer records that are 1568 * not cancel records, there is nothing to do here so we just return. 1569 * 1570 * If we get a cancel record which is already in the table, this indicates 1571 * that the buffer was cancelled multiple times. In order to ensure 1572 * that during pass 2 we keep the record in the table until we reach its 1573 * last occurrence in the log, we keep a reference count in the cancel 1574 * record in the table to tell us how many times we expect to see this 1575 * record during the second pass. 1576 */ 1577 STATIC void 1578 xlog_recover_do_buffer_pass1( 1579 xlog_t *log, 1580 xfs_buf_log_format_t *buf_f) 1581 { 1582 xfs_buf_cancel_t *bcp; 1583 xfs_buf_cancel_t *nextp; 1584 xfs_buf_cancel_t *prevp; 1585 xfs_buf_cancel_t **bucket; 1586 xfs_buf_log_format_v1_t *obuf_f; 1587 xfs_daddr_t blkno = 0; 1588 uint len = 0; 1589 ushort flags = 0; 1590 1591 switch (buf_f->blf_type) { 1592 case XFS_LI_BUF: 1593 blkno = buf_f->blf_blkno; 1594 len = buf_f->blf_len; 1595 flags = buf_f->blf_flags; 1596 break; 1597 case XFS_LI_6_1_BUF: 1598 case XFS_LI_5_3_BUF: 1599 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1600 blkno = (xfs_daddr_t) obuf_f->blf_blkno; 1601 len = obuf_f->blf_len; 1602 flags = obuf_f->blf_flags; 1603 break; 1604 } 1605 1606 /* 1607 * If this isn't a cancel buffer item, then just return. 1608 */ 1609 if (!(flags & XFS_BLI_CANCEL)) 1610 return; 1611 1612 /* 1613 * Insert an xfs_buf_cancel record into the hash table of 1614 * them. If there is already an identical record, bump 1615 * its reference count. 1616 */ 1617 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1618 XLOG_BC_TABLE_SIZE]; 1619 /* 1620 * If the hash bucket is empty then just insert a new record into 1621 * the bucket. 1622 */ 1623 if (*bucket == NULL) { 1624 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1625 KM_SLEEP); 1626 bcp->bc_blkno = blkno; 1627 bcp->bc_len = len; 1628 bcp->bc_refcount = 1; 1629 bcp->bc_next = NULL; 1630 *bucket = bcp; 1631 return; 1632 } 1633 1634 /* 1635 * The hash bucket is not empty, so search for duplicates of our 1636 * record. If we find one them just bump its refcount. If not 1637 * then add us at the end of the list. 1638 */ 1639 prevp = NULL; 1640 nextp = *bucket; 1641 while (nextp != NULL) { 1642 if (nextp->bc_blkno == blkno && nextp->bc_len == len) { 1643 nextp->bc_refcount++; 1644 return; 1645 } 1646 prevp = nextp; 1647 nextp = nextp->bc_next; 1648 } 1649 ASSERT(prevp != NULL); 1650 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1651 KM_SLEEP); 1652 bcp->bc_blkno = blkno; 1653 bcp->bc_len = len; 1654 bcp->bc_refcount = 1; 1655 bcp->bc_next = NULL; 1656 prevp->bc_next = bcp; 1657 } 1658 1659 /* 1660 * Check to see whether the buffer being recovered has a corresponding 1661 * entry in the buffer cancel record table. If it does then return 1 1662 * so that it will be cancelled, otherwise return 0. If the buffer is 1663 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement 1664 * the refcount on the entry in the table and remove it from the table 1665 * if this is the last reference. 1666 * 1667 * We remove the cancel record from the table when we encounter its 1668 * last occurrence in the log so that if the same buffer is re-used 1669 * again after its last cancellation we actually replay the changes 1670 * made at that point. 1671 */ 1672 STATIC int 1673 xlog_check_buffer_cancelled( 1674 xlog_t *log, 1675 xfs_daddr_t blkno, 1676 uint len, 1677 ushort flags) 1678 { 1679 xfs_buf_cancel_t *bcp; 1680 xfs_buf_cancel_t *prevp; 1681 xfs_buf_cancel_t **bucket; 1682 1683 if (log->l_buf_cancel_table == NULL) { 1684 /* 1685 * There is nothing in the table built in pass one, 1686 * so this buffer must not be cancelled. 1687 */ 1688 ASSERT(!(flags & XFS_BLI_CANCEL)); 1689 return 0; 1690 } 1691 1692 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1693 XLOG_BC_TABLE_SIZE]; 1694 bcp = *bucket; 1695 if (bcp == NULL) { 1696 /* 1697 * There is no corresponding entry in the table built 1698 * in pass one, so this buffer has not been cancelled. 1699 */ 1700 ASSERT(!(flags & XFS_BLI_CANCEL)); 1701 return 0; 1702 } 1703 1704 /* 1705 * Search for an entry in the buffer cancel table that 1706 * matches our buffer. 1707 */ 1708 prevp = NULL; 1709 while (bcp != NULL) { 1710 if (bcp->bc_blkno == blkno && bcp->bc_len == len) { 1711 /* 1712 * We've go a match, so return 1 so that the 1713 * recovery of this buffer is cancelled. 1714 * If this buffer is actually a buffer cancel 1715 * log item, then decrement the refcount on the 1716 * one in the table and remove it if this is the 1717 * last reference. 1718 */ 1719 if (flags & XFS_BLI_CANCEL) { 1720 bcp->bc_refcount--; 1721 if (bcp->bc_refcount == 0) { 1722 if (prevp == NULL) { 1723 *bucket = bcp->bc_next; 1724 } else { 1725 prevp->bc_next = bcp->bc_next; 1726 } 1727 kmem_free(bcp, 1728 sizeof(xfs_buf_cancel_t)); 1729 } 1730 } 1731 return 1; 1732 } 1733 prevp = bcp; 1734 bcp = bcp->bc_next; 1735 } 1736 /* 1737 * We didn't find a corresponding entry in the table, so 1738 * return 0 so that the buffer is NOT cancelled. 1739 */ 1740 ASSERT(!(flags & XFS_BLI_CANCEL)); 1741 return 0; 1742 } 1743 1744 STATIC int 1745 xlog_recover_do_buffer_pass2( 1746 xlog_t *log, 1747 xfs_buf_log_format_t *buf_f) 1748 { 1749 xfs_buf_log_format_v1_t *obuf_f; 1750 xfs_daddr_t blkno = 0; 1751 ushort flags = 0; 1752 uint len = 0; 1753 1754 switch (buf_f->blf_type) { 1755 case XFS_LI_BUF: 1756 blkno = buf_f->blf_blkno; 1757 flags = buf_f->blf_flags; 1758 len = buf_f->blf_len; 1759 break; 1760 case XFS_LI_6_1_BUF: 1761 case XFS_LI_5_3_BUF: 1762 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1763 blkno = (xfs_daddr_t) obuf_f->blf_blkno; 1764 flags = obuf_f->blf_flags; 1765 len = (xfs_daddr_t) obuf_f->blf_len; 1766 break; 1767 } 1768 1769 return xlog_check_buffer_cancelled(log, blkno, len, flags); 1770 } 1771 1772 /* 1773 * Perform recovery for a buffer full of inodes. In these buffers, 1774 * the only data which should be recovered is that which corresponds 1775 * to the di_next_unlinked pointers in the on disk inode structures. 1776 * The rest of the data for the inodes is always logged through the 1777 * inodes themselves rather than the inode buffer and is recovered 1778 * in xlog_recover_do_inode_trans(). 1779 * 1780 * The only time when buffers full of inodes are fully recovered is 1781 * when the buffer is full of newly allocated inodes. In this case 1782 * the buffer will not be marked as an inode buffer and so will be 1783 * sent to xlog_recover_do_reg_buffer() below during recovery. 1784 */ 1785 STATIC int 1786 xlog_recover_do_inode_buffer( 1787 xfs_mount_t *mp, 1788 xlog_recover_item_t *item, 1789 xfs_buf_t *bp, 1790 xfs_buf_log_format_t *buf_f) 1791 { 1792 int i; 1793 int item_index; 1794 int bit; 1795 int nbits; 1796 int reg_buf_offset; 1797 int reg_buf_bytes; 1798 int next_unlinked_offset; 1799 int inodes_per_buf; 1800 xfs_agino_t *logged_nextp; 1801 xfs_agino_t *buffer_nextp; 1802 xfs_buf_log_format_v1_t *obuf_f; 1803 unsigned int *data_map = NULL; 1804 unsigned int map_size = 0; 1805 1806 switch (buf_f->blf_type) { 1807 case XFS_LI_BUF: 1808 data_map = buf_f->blf_data_map; 1809 map_size = buf_f->blf_map_size; 1810 break; 1811 case XFS_LI_6_1_BUF: 1812 case XFS_LI_5_3_BUF: 1813 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1814 data_map = obuf_f->blf_data_map; 1815 map_size = obuf_f->blf_map_size; 1816 break; 1817 } 1818 /* 1819 * Set the variables corresponding to the current region to 1820 * 0 so that we'll initialize them on the first pass through 1821 * the loop. 1822 */ 1823 reg_buf_offset = 0; 1824 reg_buf_bytes = 0; 1825 bit = 0; 1826 nbits = 0; 1827 item_index = 0; 1828 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; 1829 for (i = 0; i < inodes_per_buf; i++) { 1830 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1831 offsetof(xfs_dinode_t, di_next_unlinked); 1832 1833 while (next_unlinked_offset >= 1834 (reg_buf_offset + reg_buf_bytes)) { 1835 /* 1836 * The next di_next_unlinked field is beyond 1837 * the current logged region. Find the next 1838 * logged region that contains or is beyond 1839 * the current di_next_unlinked field. 1840 */ 1841 bit += nbits; 1842 bit = xfs_next_bit(data_map, map_size, bit); 1843 1844 /* 1845 * If there are no more logged regions in the 1846 * buffer, then we're done. 1847 */ 1848 if (bit == -1) { 1849 return 0; 1850 } 1851 1852 nbits = xfs_contig_bits(data_map, map_size, 1853 bit); 1854 ASSERT(nbits > 0); 1855 reg_buf_offset = bit << XFS_BLI_SHIFT; 1856 reg_buf_bytes = nbits << XFS_BLI_SHIFT; 1857 item_index++; 1858 } 1859 1860 /* 1861 * If the current logged region starts after the current 1862 * di_next_unlinked field, then move on to the next 1863 * di_next_unlinked field. 1864 */ 1865 if (next_unlinked_offset < reg_buf_offset) { 1866 continue; 1867 } 1868 1869 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1870 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0); 1871 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); 1872 1873 /* 1874 * The current logged region contains a copy of the 1875 * current di_next_unlinked field. Extract its value 1876 * and copy it to the buffer copy. 1877 */ 1878 logged_nextp = (xfs_agino_t *) 1879 ((char *)(item->ri_buf[item_index].i_addr) + 1880 (next_unlinked_offset - reg_buf_offset)); 1881 if (unlikely(*logged_nextp == 0)) { 1882 xfs_fs_cmn_err(CE_ALERT, mp, 1883 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", 1884 item, bp); 1885 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1886 XFS_ERRLEVEL_LOW, mp); 1887 return XFS_ERROR(EFSCORRUPTED); 1888 } 1889 1890 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1891 next_unlinked_offset); 1892 *buffer_nextp = *logged_nextp; 1893 } 1894 1895 return 0; 1896 } 1897 1898 /* 1899 * Perform a 'normal' buffer recovery. Each logged region of the 1900 * buffer should be copied over the corresponding region in the 1901 * given buffer. The bitmap in the buf log format structure indicates 1902 * where to place the logged data. 1903 */ 1904 /*ARGSUSED*/ 1905 STATIC void 1906 xlog_recover_do_reg_buffer( 1907 xfs_mount_t *mp, 1908 xlog_recover_item_t *item, 1909 xfs_buf_t *bp, 1910 xfs_buf_log_format_t *buf_f) 1911 { 1912 int i; 1913 int bit; 1914 int nbits; 1915 xfs_buf_log_format_v1_t *obuf_f; 1916 unsigned int *data_map = NULL; 1917 unsigned int map_size = 0; 1918 int error; 1919 1920 switch (buf_f->blf_type) { 1921 case XFS_LI_BUF: 1922 data_map = buf_f->blf_data_map; 1923 map_size = buf_f->blf_map_size; 1924 break; 1925 case XFS_LI_6_1_BUF: 1926 case XFS_LI_5_3_BUF: 1927 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1928 data_map = obuf_f->blf_data_map; 1929 map_size = obuf_f->blf_map_size; 1930 break; 1931 } 1932 bit = 0; 1933 i = 1; /* 0 is the buf format structure */ 1934 while (1) { 1935 bit = xfs_next_bit(data_map, map_size, bit); 1936 if (bit == -1) 1937 break; 1938 nbits = xfs_contig_bits(data_map, map_size, bit); 1939 ASSERT(nbits > 0); 1940 ASSERT(item->ri_buf[i].i_addr != 0); 1941 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0); 1942 ASSERT(XFS_BUF_COUNT(bp) >= 1943 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT)); 1944 1945 /* 1946 * Do a sanity check if this is a dquot buffer. Just checking 1947 * the first dquot in the buffer should do. XXXThis is 1948 * probably a good thing to do for other buf types also. 1949 */ 1950 error = 0; 1951 if (buf_f->blf_flags & 1952 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 1953 error = xfs_qm_dqcheck((xfs_disk_dquot_t *) 1954 item->ri_buf[i].i_addr, 1955 -1, 0, XFS_QMOPT_DOWARN, 1956 "dquot_buf_recover"); 1957 } 1958 if (!error) 1959 memcpy(xfs_buf_offset(bp, 1960 (uint)bit << XFS_BLI_SHIFT), /* dest */ 1961 item->ri_buf[i].i_addr, /* source */ 1962 nbits<<XFS_BLI_SHIFT); /* length */ 1963 i++; 1964 bit += nbits; 1965 } 1966 1967 /* Shouldn't be any more regions */ 1968 ASSERT(i == item->ri_total); 1969 } 1970 1971 /* 1972 * Do some primitive error checking on ondisk dquot data structures. 1973 */ 1974 int 1975 xfs_qm_dqcheck( 1976 xfs_disk_dquot_t *ddq, 1977 xfs_dqid_t id, 1978 uint type, /* used only when IO_dorepair is true */ 1979 uint flags, 1980 char *str) 1981 { 1982 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 1983 int errs = 0; 1984 1985 /* 1986 * We can encounter an uninitialized dquot buffer for 2 reasons: 1987 * 1. If we crash while deleting the quotainode(s), and those blks got 1988 * used for user data. This is because we take the path of regular 1989 * file deletion; however, the size field of quotainodes is never 1990 * updated, so all the tricks that we play in itruncate_finish 1991 * don't quite matter. 1992 * 1993 * 2. We don't play the quota buffers when there's a quotaoff logitem. 1994 * But the allocation will be replayed so we'll end up with an 1995 * uninitialized quota block. 1996 * 1997 * This is all fine; things are still consistent, and we haven't lost 1998 * any quota information. Just don't complain about bad dquot blks. 1999 */ 2000 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) { 2001 if (flags & XFS_QMOPT_DOWARN) 2002 cmn_err(CE_ALERT, 2003 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 2004 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 2005 errs++; 2006 } 2007 if (ddq->d_version != XFS_DQUOT_VERSION) { 2008 if (flags & XFS_QMOPT_DOWARN) 2009 cmn_err(CE_ALERT, 2010 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 2011 str, id, ddq->d_version, XFS_DQUOT_VERSION); 2012 errs++; 2013 } 2014 2015 if (ddq->d_flags != XFS_DQ_USER && 2016 ddq->d_flags != XFS_DQ_PROJ && 2017 ddq->d_flags != XFS_DQ_GROUP) { 2018 if (flags & XFS_QMOPT_DOWARN) 2019 cmn_err(CE_ALERT, 2020 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 2021 str, id, ddq->d_flags); 2022 errs++; 2023 } 2024 2025 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 2026 if (flags & XFS_QMOPT_DOWARN) 2027 cmn_err(CE_ALERT, 2028 "%s : ondisk-dquot 0x%p, ID mismatch: " 2029 "0x%x expected, found id 0x%x", 2030 str, ddq, id, be32_to_cpu(ddq->d_id)); 2031 errs++; 2032 } 2033 2034 if (!errs && ddq->d_id) { 2035 if (ddq->d_blk_softlimit && 2036 be64_to_cpu(ddq->d_bcount) >= 2037 be64_to_cpu(ddq->d_blk_softlimit)) { 2038 if (!ddq->d_btimer) { 2039 if (flags & XFS_QMOPT_DOWARN) 2040 cmn_err(CE_ALERT, 2041 "%s : Dquot ID 0x%x (0x%p) " 2042 "BLK TIMER NOT STARTED", 2043 str, (int)be32_to_cpu(ddq->d_id), ddq); 2044 errs++; 2045 } 2046 } 2047 if (ddq->d_ino_softlimit && 2048 be64_to_cpu(ddq->d_icount) >= 2049 be64_to_cpu(ddq->d_ino_softlimit)) { 2050 if (!ddq->d_itimer) { 2051 if (flags & XFS_QMOPT_DOWARN) 2052 cmn_err(CE_ALERT, 2053 "%s : Dquot ID 0x%x (0x%p) " 2054 "INODE TIMER NOT STARTED", 2055 str, (int)be32_to_cpu(ddq->d_id), ddq); 2056 errs++; 2057 } 2058 } 2059 if (ddq->d_rtb_softlimit && 2060 be64_to_cpu(ddq->d_rtbcount) >= 2061 be64_to_cpu(ddq->d_rtb_softlimit)) { 2062 if (!ddq->d_rtbtimer) { 2063 if (flags & XFS_QMOPT_DOWARN) 2064 cmn_err(CE_ALERT, 2065 "%s : Dquot ID 0x%x (0x%p) " 2066 "RTBLK TIMER NOT STARTED", 2067 str, (int)be32_to_cpu(ddq->d_id), ddq); 2068 errs++; 2069 } 2070 } 2071 } 2072 2073 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2074 return errs; 2075 2076 if (flags & XFS_QMOPT_DOWARN) 2077 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); 2078 2079 /* 2080 * Typically, a repair is only requested by quotacheck. 2081 */ 2082 ASSERT(id != -1); 2083 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2084 memset(d, 0, sizeof(xfs_dqblk_t)); 2085 2086 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2087 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2088 d->dd_diskdq.d_flags = type; 2089 d->dd_diskdq.d_id = cpu_to_be32(id); 2090 2091 return errs; 2092 } 2093 2094 /* 2095 * Perform a dquot buffer recovery. 2096 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2097 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2098 * Else, treat it as a regular buffer and do recovery. 2099 */ 2100 STATIC void 2101 xlog_recover_do_dquot_buffer( 2102 xfs_mount_t *mp, 2103 xlog_t *log, 2104 xlog_recover_item_t *item, 2105 xfs_buf_t *bp, 2106 xfs_buf_log_format_t *buf_f) 2107 { 2108 uint type; 2109 2110 /* 2111 * Filesystems are required to send in quota flags at mount time. 2112 */ 2113 if (mp->m_qflags == 0) { 2114 return; 2115 } 2116 2117 type = 0; 2118 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF) 2119 type |= XFS_DQ_USER; 2120 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF) 2121 type |= XFS_DQ_PROJ; 2122 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF) 2123 type |= XFS_DQ_GROUP; 2124 /* 2125 * This type of quotas was turned off, so ignore this buffer 2126 */ 2127 if (log->l_quotaoffs_flag & type) 2128 return; 2129 2130 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2131 } 2132 2133 /* 2134 * This routine replays a modification made to a buffer at runtime. 2135 * There are actually two types of buffer, regular and inode, which 2136 * are handled differently. Inode buffers are handled differently 2137 * in that we only recover a specific set of data from them, namely 2138 * the inode di_next_unlinked fields. This is because all other inode 2139 * data is actually logged via inode records and any data we replay 2140 * here which overlaps that may be stale. 2141 * 2142 * When meta-data buffers are freed at run time we log a buffer item 2143 * with the XFS_BLI_CANCEL bit set to indicate that previous copies 2144 * of the buffer in the log should not be replayed at recovery time. 2145 * This is so that if the blocks covered by the buffer are reused for 2146 * file data before we crash we don't end up replaying old, freed 2147 * meta-data into a user's file. 2148 * 2149 * To handle the cancellation of buffer log items, we make two passes 2150 * over the log during recovery. During the first we build a table of 2151 * those buffers which have been cancelled, and during the second we 2152 * only replay those buffers which do not have corresponding cancel 2153 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2154 * for more details on the implementation of the table of cancel records. 2155 */ 2156 STATIC int 2157 xlog_recover_do_buffer_trans( 2158 xlog_t *log, 2159 xlog_recover_item_t *item, 2160 int pass) 2161 { 2162 xfs_buf_log_format_t *buf_f; 2163 xfs_buf_log_format_v1_t *obuf_f; 2164 xfs_mount_t *mp; 2165 xfs_buf_t *bp; 2166 int error; 2167 int cancel; 2168 xfs_daddr_t blkno; 2169 int len; 2170 ushort flags; 2171 2172 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr; 2173 2174 if (pass == XLOG_RECOVER_PASS1) { 2175 /* 2176 * In this pass we're only looking for buf items 2177 * with the XFS_BLI_CANCEL bit set. 2178 */ 2179 xlog_recover_do_buffer_pass1(log, buf_f); 2180 return 0; 2181 } else { 2182 /* 2183 * In this pass we want to recover all the buffers 2184 * which have not been cancelled and are not 2185 * cancellation buffers themselves. The routine 2186 * we call here will tell us whether or not to 2187 * continue with the replay of this buffer. 2188 */ 2189 cancel = xlog_recover_do_buffer_pass2(log, buf_f); 2190 if (cancel) { 2191 return 0; 2192 } 2193 } 2194 switch (buf_f->blf_type) { 2195 case XFS_LI_BUF: 2196 blkno = buf_f->blf_blkno; 2197 len = buf_f->blf_len; 2198 flags = buf_f->blf_flags; 2199 break; 2200 case XFS_LI_6_1_BUF: 2201 case XFS_LI_5_3_BUF: 2202 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 2203 blkno = obuf_f->blf_blkno; 2204 len = obuf_f->blf_len; 2205 flags = obuf_f->blf_flags; 2206 break; 2207 default: 2208 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 2209 "xfs_log_recover: unknown buffer type 0x%x, logdev %s", 2210 buf_f->blf_type, log->l_mp->m_logname ? 2211 log->l_mp->m_logname : "internal"); 2212 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", 2213 XFS_ERRLEVEL_LOW, log->l_mp); 2214 return XFS_ERROR(EFSCORRUPTED); 2215 } 2216 2217 mp = log->l_mp; 2218 if (flags & XFS_BLI_INODE_BUF) { 2219 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len, 2220 XFS_BUF_LOCK); 2221 } else { 2222 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0); 2223 } 2224 if (XFS_BUF_ISERROR(bp)) { 2225 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, 2226 bp, blkno); 2227 error = XFS_BUF_GETERROR(bp); 2228 xfs_buf_relse(bp); 2229 return error; 2230 } 2231 2232 error = 0; 2233 if (flags & XFS_BLI_INODE_BUF) { 2234 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2235 } else if (flags & 2236 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 2237 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2238 } else { 2239 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2240 } 2241 if (error) 2242 return XFS_ERROR(error); 2243 2244 /* 2245 * Perform delayed write on the buffer. Asynchronous writes will be 2246 * slower when taking into account all the buffers to be flushed. 2247 * 2248 * Also make sure that only inode buffers with good sizes stay in 2249 * the buffer cache. The kernel moves inodes in buffers of 1 block 2250 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2251 * buffers in the log can be a different size if the log was generated 2252 * by an older kernel using unclustered inode buffers or a newer kernel 2253 * running with a different inode cluster size. Regardless, if the 2254 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2255 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2256 * the buffer out of the buffer cache so that the buffer won't 2257 * overlap with future reads of those inodes. 2258 */ 2259 if (XFS_DINODE_MAGIC == 2260 INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) && 2261 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, 2262 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2263 XFS_BUF_STALE(bp); 2264 error = xfs_bwrite(mp, bp); 2265 } else { 2266 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2267 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2268 XFS_BUF_SET_FSPRIVATE(bp, mp); 2269 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2270 xfs_bdwrite(mp, bp); 2271 } 2272 2273 return (error); 2274 } 2275 2276 STATIC int 2277 xlog_recover_do_inode_trans( 2278 xlog_t *log, 2279 xlog_recover_item_t *item, 2280 int pass) 2281 { 2282 xfs_inode_log_format_t *in_f; 2283 xfs_mount_t *mp; 2284 xfs_buf_t *bp; 2285 xfs_imap_t imap; 2286 xfs_dinode_t *dip; 2287 xfs_ino_t ino; 2288 int len; 2289 xfs_caddr_t src; 2290 xfs_caddr_t dest; 2291 int error; 2292 int attr_index; 2293 uint fields; 2294 xfs_dinode_core_t *dicp; 2295 int need_free = 0; 2296 2297 if (pass == XLOG_RECOVER_PASS1) { 2298 return 0; 2299 } 2300 2301 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2302 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr; 2303 } else { 2304 in_f = (xfs_inode_log_format_t *)kmem_alloc( 2305 sizeof(xfs_inode_log_format_t), KM_SLEEP); 2306 need_free = 1; 2307 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2308 if (error) 2309 goto error; 2310 } 2311 ino = in_f->ilf_ino; 2312 mp = log->l_mp; 2313 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2314 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno; 2315 imap.im_len = in_f->ilf_len; 2316 imap.im_boffset = in_f->ilf_boffset; 2317 } else { 2318 /* 2319 * It's an old inode format record. We don't know where 2320 * its cluster is located on disk, and we can't allow 2321 * xfs_imap() to figure it out because the inode btrees 2322 * are not ready to be used. Therefore do not pass the 2323 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give 2324 * us only the single block in which the inode lives 2325 * rather than its cluster, so we must make sure to 2326 * invalidate the buffer when we write it out below. 2327 */ 2328 imap.im_blkno = 0; 2329 xfs_imap(log->l_mp, NULL, ino, &imap, 0); 2330 } 2331 2332 /* 2333 * Inode buffers can be freed, look out for it, 2334 * and do not replay the inode. 2335 */ 2336 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) { 2337 error = 0; 2338 goto error; 2339 } 2340 2341 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len, 2342 XFS_BUF_LOCK); 2343 if (XFS_BUF_ISERROR(bp)) { 2344 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, 2345 bp, imap.im_blkno); 2346 error = XFS_BUF_GETERROR(bp); 2347 xfs_buf_relse(bp); 2348 goto error; 2349 } 2350 error = 0; 2351 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2352 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 2353 2354 /* 2355 * Make sure the place we're flushing out to really looks 2356 * like an inode! 2357 */ 2358 if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) { 2359 xfs_buf_relse(bp); 2360 xfs_fs_cmn_err(CE_ALERT, mp, 2361 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", 2362 dip, bp, ino); 2363 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", 2364 XFS_ERRLEVEL_LOW, mp); 2365 error = EFSCORRUPTED; 2366 goto error; 2367 } 2368 dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr); 2369 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2370 xfs_buf_relse(bp); 2371 xfs_fs_cmn_err(CE_ALERT, mp, 2372 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", 2373 item, ino); 2374 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", 2375 XFS_ERRLEVEL_LOW, mp); 2376 error = EFSCORRUPTED; 2377 goto error; 2378 } 2379 2380 /* Skip replay when the on disk inode is newer than the log one */ 2381 if (dicp->di_flushiter < 2382 INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) { 2383 /* 2384 * Deal with the wrap case, DI_MAX_FLUSH is less 2385 * than smaller numbers 2386 */ 2387 if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT) 2388 == DI_MAX_FLUSH) && 2389 (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) { 2390 /* do nothing */ 2391 } else { 2392 xfs_buf_relse(bp); 2393 error = 0; 2394 goto error; 2395 } 2396 } 2397 /* Take the opportunity to reset the flush iteration count */ 2398 dicp->di_flushiter = 0; 2399 2400 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { 2401 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2402 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2403 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", 2404 XFS_ERRLEVEL_LOW, mp, dicp); 2405 xfs_buf_relse(bp); 2406 xfs_fs_cmn_err(CE_ALERT, mp, 2407 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2408 item, dip, bp, ino); 2409 error = EFSCORRUPTED; 2410 goto error; 2411 } 2412 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { 2413 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2414 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2415 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2416 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", 2417 XFS_ERRLEVEL_LOW, mp, dicp); 2418 xfs_buf_relse(bp); 2419 xfs_fs_cmn_err(CE_ALERT, mp, 2420 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2421 item, dip, bp, ino); 2422 error = EFSCORRUPTED; 2423 goto error; 2424 } 2425 } 2426 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2427 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", 2428 XFS_ERRLEVEL_LOW, mp, dicp); 2429 xfs_buf_relse(bp); 2430 xfs_fs_cmn_err(CE_ALERT, mp, 2431 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2432 item, dip, bp, ino, 2433 dicp->di_nextents + dicp->di_anextents, 2434 dicp->di_nblocks); 2435 error = EFSCORRUPTED; 2436 goto error; 2437 } 2438 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2439 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", 2440 XFS_ERRLEVEL_LOW, mp, dicp); 2441 xfs_buf_relse(bp); 2442 xfs_fs_cmn_err(CE_ALERT, mp, 2443 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", 2444 item, dip, bp, ino, dicp->di_forkoff); 2445 error = EFSCORRUPTED; 2446 goto error; 2447 } 2448 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) { 2449 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", 2450 XFS_ERRLEVEL_LOW, mp, dicp); 2451 xfs_buf_relse(bp); 2452 xfs_fs_cmn_err(CE_ALERT, mp, 2453 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", 2454 item->ri_buf[1].i_len, item); 2455 error = EFSCORRUPTED; 2456 goto error; 2457 } 2458 2459 /* The core is in in-core format */ 2460 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, 2461 (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1); 2462 2463 /* the rest is in on-disk format */ 2464 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) { 2465 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t), 2466 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t), 2467 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t)); 2468 } 2469 2470 fields = in_f->ilf_fields; 2471 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2472 case XFS_ILOG_DEV: 2473 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev); 2474 2475 break; 2476 case XFS_ILOG_UUID: 2477 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid; 2478 break; 2479 } 2480 2481 if (in_f->ilf_size == 2) 2482 goto write_inode_buffer; 2483 len = item->ri_buf[2].i_len; 2484 src = item->ri_buf[2].i_addr; 2485 ASSERT(in_f->ilf_size <= 4); 2486 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2487 ASSERT(!(fields & XFS_ILOG_DFORK) || 2488 (len == in_f->ilf_dsize)); 2489 2490 switch (fields & XFS_ILOG_DFORK) { 2491 case XFS_ILOG_DDATA: 2492 case XFS_ILOG_DEXT: 2493 memcpy(&dip->di_u, src, len); 2494 break; 2495 2496 case XFS_ILOG_DBROOT: 2497 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2498 &(dip->di_u.di_bmbt), 2499 XFS_DFORK_DSIZE(dip, mp)); 2500 break; 2501 2502 default: 2503 /* 2504 * There are no data fork flags set. 2505 */ 2506 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2507 break; 2508 } 2509 2510 /* 2511 * If we logged any attribute data, recover it. There may or 2512 * may not have been any other non-core data logged in this 2513 * transaction. 2514 */ 2515 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2516 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2517 attr_index = 3; 2518 } else { 2519 attr_index = 2; 2520 } 2521 len = item->ri_buf[attr_index].i_len; 2522 src = item->ri_buf[attr_index].i_addr; 2523 ASSERT(len == in_f->ilf_asize); 2524 2525 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2526 case XFS_ILOG_ADATA: 2527 case XFS_ILOG_AEXT: 2528 dest = XFS_DFORK_APTR(dip); 2529 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2530 memcpy(dest, src, len); 2531 break; 2532 2533 case XFS_ILOG_ABROOT: 2534 dest = XFS_DFORK_APTR(dip); 2535 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2536 (xfs_bmdr_block_t*)dest, 2537 XFS_DFORK_ASIZE(dip, mp)); 2538 break; 2539 2540 default: 2541 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); 2542 ASSERT(0); 2543 xfs_buf_relse(bp); 2544 error = EIO; 2545 goto error; 2546 } 2547 } 2548 2549 write_inode_buffer: 2550 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2551 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2552 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2553 XFS_BUF_SET_FSPRIVATE(bp, mp); 2554 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2555 xfs_bdwrite(mp, bp); 2556 } else { 2557 XFS_BUF_STALE(bp); 2558 error = xfs_bwrite(mp, bp); 2559 } 2560 2561 error: 2562 if (need_free) 2563 kmem_free(in_f, sizeof(*in_f)); 2564 return XFS_ERROR(error); 2565 } 2566 2567 /* 2568 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2569 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2570 * of that type. 2571 */ 2572 STATIC int 2573 xlog_recover_do_quotaoff_trans( 2574 xlog_t *log, 2575 xlog_recover_item_t *item, 2576 int pass) 2577 { 2578 xfs_qoff_logformat_t *qoff_f; 2579 2580 if (pass == XLOG_RECOVER_PASS2) { 2581 return (0); 2582 } 2583 2584 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr; 2585 ASSERT(qoff_f); 2586 2587 /* 2588 * The logitem format's flag tells us if this was user quotaoff, 2589 * group/project quotaoff or both. 2590 */ 2591 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2592 log->l_quotaoffs_flag |= XFS_DQ_USER; 2593 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2594 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2595 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2596 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2597 2598 return (0); 2599 } 2600 2601 /* 2602 * Recover a dquot record 2603 */ 2604 STATIC int 2605 xlog_recover_do_dquot_trans( 2606 xlog_t *log, 2607 xlog_recover_item_t *item, 2608 int pass) 2609 { 2610 xfs_mount_t *mp; 2611 xfs_buf_t *bp; 2612 struct xfs_disk_dquot *ddq, *recddq; 2613 int error; 2614 xfs_dq_logformat_t *dq_f; 2615 uint type; 2616 2617 if (pass == XLOG_RECOVER_PASS1) { 2618 return 0; 2619 } 2620 mp = log->l_mp; 2621 2622 /* 2623 * Filesystems are required to send in quota flags at mount time. 2624 */ 2625 if (mp->m_qflags == 0) 2626 return (0); 2627 2628 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr; 2629 ASSERT(recddq); 2630 /* 2631 * This type of quotas was turned off, so ignore this record. 2632 */ 2633 type = INT_GET(recddq->d_flags, ARCH_CONVERT) & 2634 (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2635 ASSERT(type); 2636 if (log->l_quotaoffs_flag & type) 2637 return (0); 2638 2639 /* 2640 * At this point we know that quota was _not_ turned off. 2641 * Since the mount flags are not indicating to us otherwise, this 2642 * must mean that quota is on, and the dquot needs to be replayed. 2643 * Remember that we may not have fully recovered the superblock yet, 2644 * so we can't do the usual trick of looking at the SB quota bits. 2645 * 2646 * The other possibility, of course, is that the quota subsystem was 2647 * removed since the last mount - ENOSYS. 2648 */ 2649 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr; 2650 ASSERT(dq_f); 2651 if ((error = xfs_qm_dqcheck(recddq, 2652 dq_f->qlf_id, 2653 0, XFS_QMOPT_DOWARN, 2654 "xlog_recover_do_dquot_trans (log copy)"))) { 2655 return XFS_ERROR(EIO); 2656 } 2657 ASSERT(dq_f->qlf_len == 1); 2658 2659 error = xfs_read_buf(mp, mp->m_ddev_targp, 2660 dq_f->qlf_blkno, 2661 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 2662 0, &bp); 2663 if (error) { 2664 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, 2665 bp, dq_f->qlf_blkno); 2666 return error; 2667 } 2668 ASSERT(bp); 2669 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2670 2671 /* 2672 * At least the magic num portion should be on disk because this 2673 * was among a chunk of dquots created earlier, and we did some 2674 * minimal initialization then. 2675 */ 2676 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2677 "xlog_recover_do_dquot_trans")) { 2678 xfs_buf_relse(bp); 2679 return XFS_ERROR(EIO); 2680 } 2681 2682 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2683 2684 ASSERT(dq_f->qlf_size == 2); 2685 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2686 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2687 XFS_BUF_SET_FSPRIVATE(bp, mp); 2688 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2689 xfs_bdwrite(mp, bp); 2690 2691 return (0); 2692 } 2693 2694 /* 2695 * This routine is called to create an in-core extent free intent 2696 * item from the efi format structure which was logged on disk. 2697 * It allocates an in-core efi, copies the extents from the format 2698 * structure into it, and adds the efi to the AIL with the given 2699 * LSN. 2700 */ 2701 STATIC int 2702 xlog_recover_do_efi_trans( 2703 xlog_t *log, 2704 xlog_recover_item_t *item, 2705 xfs_lsn_t lsn, 2706 int pass) 2707 { 2708 int error; 2709 xfs_mount_t *mp; 2710 xfs_efi_log_item_t *efip; 2711 xfs_efi_log_format_t *efi_formatp; 2712 SPLDECL(s); 2713 2714 if (pass == XLOG_RECOVER_PASS1) { 2715 return 0; 2716 } 2717 2718 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr; 2719 2720 mp = log->l_mp; 2721 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2722 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2723 &(efip->efi_format)))) { 2724 xfs_efi_item_free(efip); 2725 return error; 2726 } 2727 efip->efi_next_extent = efi_formatp->efi_nextents; 2728 efip->efi_flags |= XFS_EFI_COMMITTED; 2729 2730 AIL_LOCK(mp,s); 2731 /* 2732 * xfs_trans_update_ail() drops the AIL lock. 2733 */ 2734 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s); 2735 return 0; 2736 } 2737 2738 2739 /* 2740 * This routine is called when an efd format structure is found in 2741 * a committed transaction in the log. It's purpose is to cancel 2742 * the corresponding efi if it was still in the log. To do this 2743 * it searches the AIL for the efi with an id equal to that in the 2744 * efd format structure. If we find it, we remove the efi from the 2745 * AIL and free it. 2746 */ 2747 STATIC void 2748 xlog_recover_do_efd_trans( 2749 xlog_t *log, 2750 xlog_recover_item_t *item, 2751 int pass) 2752 { 2753 xfs_mount_t *mp; 2754 xfs_efd_log_format_t *efd_formatp; 2755 xfs_efi_log_item_t *efip = NULL; 2756 xfs_log_item_t *lip; 2757 int gen; 2758 __uint64_t efi_id; 2759 SPLDECL(s); 2760 2761 if (pass == XLOG_RECOVER_PASS1) { 2762 return; 2763 } 2764 2765 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr; 2766 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2767 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2768 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2769 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2770 efi_id = efd_formatp->efd_efi_id; 2771 2772 /* 2773 * Search for the efi with the id in the efd format structure 2774 * in the AIL. 2775 */ 2776 mp = log->l_mp; 2777 AIL_LOCK(mp,s); 2778 lip = xfs_trans_first_ail(mp, &gen); 2779 while (lip != NULL) { 2780 if (lip->li_type == XFS_LI_EFI) { 2781 efip = (xfs_efi_log_item_t *)lip; 2782 if (efip->efi_format.efi_id == efi_id) { 2783 /* 2784 * xfs_trans_delete_ail() drops the 2785 * AIL lock. 2786 */ 2787 xfs_trans_delete_ail(mp, lip, s); 2788 break; 2789 } 2790 } 2791 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 2792 } 2793 2794 /* 2795 * If we found it, then free it up. If it wasn't there, it 2796 * must have been overwritten in the log. Oh well. 2797 */ 2798 if (lip != NULL) { 2799 xfs_efi_item_free(efip); 2800 } else { 2801 AIL_UNLOCK(mp, s); 2802 } 2803 } 2804 2805 /* 2806 * Perform the transaction 2807 * 2808 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2809 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2810 */ 2811 STATIC int 2812 xlog_recover_do_trans( 2813 xlog_t *log, 2814 xlog_recover_t *trans, 2815 int pass) 2816 { 2817 int error = 0; 2818 xlog_recover_item_t *item, *first_item; 2819 2820 if ((error = xlog_recover_reorder_trans(log, trans))) 2821 return error; 2822 first_item = item = trans->r_itemq; 2823 do { 2824 /* 2825 * we don't need to worry about the block number being 2826 * truncated in > 1 TB buffers because in user-land, 2827 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so 2828 * the blknos will get through the user-mode buffer 2829 * cache properly. The only bad case is o32 kernels 2830 * where xfs_daddr_t is 32-bits but mount will warn us 2831 * off a > 1 TB filesystem before we get here. 2832 */ 2833 if ((ITEM_TYPE(item) == XFS_LI_BUF) || 2834 (ITEM_TYPE(item) == XFS_LI_6_1_BUF) || 2835 (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) { 2836 if ((error = xlog_recover_do_buffer_trans(log, item, 2837 pass))) 2838 break; 2839 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) { 2840 if ((error = xlog_recover_do_inode_trans(log, item, 2841 pass))) 2842 break; 2843 } else if (ITEM_TYPE(item) == XFS_LI_EFI) { 2844 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn, 2845 pass))) 2846 break; 2847 } else if (ITEM_TYPE(item) == XFS_LI_EFD) { 2848 xlog_recover_do_efd_trans(log, item, pass); 2849 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) { 2850 if ((error = xlog_recover_do_dquot_trans(log, item, 2851 pass))) 2852 break; 2853 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) { 2854 if ((error = xlog_recover_do_quotaoff_trans(log, item, 2855 pass))) 2856 break; 2857 } else { 2858 xlog_warn("XFS: xlog_recover_do_trans"); 2859 ASSERT(0); 2860 error = XFS_ERROR(EIO); 2861 break; 2862 } 2863 item = item->ri_next; 2864 } while (first_item != item); 2865 2866 return error; 2867 } 2868 2869 /* 2870 * Free up any resources allocated by the transaction 2871 * 2872 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2873 */ 2874 STATIC void 2875 xlog_recover_free_trans( 2876 xlog_recover_t *trans) 2877 { 2878 xlog_recover_item_t *first_item, *item, *free_item; 2879 int i; 2880 2881 item = first_item = trans->r_itemq; 2882 do { 2883 free_item = item; 2884 item = item->ri_next; 2885 /* Free the regions in the item. */ 2886 for (i = 0; i < free_item->ri_cnt; i++) { 2887 kmem_free(free_item->ri_buf[i].i_addr, 2888 free_item->ri_buf[i].i_len); 2889 } 2890 /* Free the item itself */ 2891 kmem_free(free_item->ri_buf, 2892 (free_item->ri_total * sizeof(xfs_log_iovec_t))); 2893 kmem_free(free_item, sizeof(xlog_recover_item_t)); 2894 } while (first_item != item); 2895 /* Free the transaction recover structure */ 2896 kmem_free(trans, sizeof(xlog_recover_t)); 2897 } 2898 2899 STATIC int 2900 xlog_recover_commit_trans( 2901 xlog_t *log, 2902 xlog_recover_t **q, 2903 xlog_recover_t *trans, 2904 int pass) 2905 { 2906 int error; 2907 2908 if ((error = xlog_recover_unlink_tid(q, trans))) 2909 return error; 2910 if ((error = xlog_recover_do_trans(log, trans, pass))) 2911 return error; 2912 xlog_recover_free_trans(trans); /* no error */ 2913 return 0; 2914 } 2915 2916 STATIC int 2917 xlog_recover_unmount_trans( 2918 xlog_recover_t *trans) 2919 { 2920 /* Do nothing now */ 2921 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); 2922 return 0; 2923 } 2924 2925 /* 2926 * There are two valid states of the r_state field. 0 indicates that the 2927 * transaction structure is in a normal state. We have either seen the 2928 * start of the transaction or the last operation we added was not a partial 2929 * operation. If the last operation we added to the transaction was a 2930 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2931 * 2932 * NOTE: skip LRs with 0 data length. 2933 */ 2934 STATIC int 2935 xlog_recover_process_data( 2936 xlog_t *log, 2937 xlog_recover_t *rhash[], 2938 xlog_rec_header_t *rhead, 2939 xfs_caddr_t dp, 2940 int pass) 2941 { 2942 xfs_caddr_t lp; 2943 int num_logops; 2944 xlog_op_header_t *ohead; 2945 xlog_recover_t *trans; 2946 xlog_tid_t tid; 2947 int error; 2948 unsigned long hash; 2949 uint flags; 2950 2951 lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT); 2952 num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT); 2953 2954 /* check the log format matches our own - else we can't recover */ 2955 if (xlog_header_check_recover(log->l_mp, rhead)) 2956 return (XFS_ERROR(EIO)); 2957 2958 while ((dp < lp) && num_logops) { 2959 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2960 ohead = (xlog_op_header_t *)dp; 2961 dp += sizeof(xlog_op_header_t); 2962 if (ohead->oh_clientid != XFS_TRANSACTION && 2963 ohead->oh_clientid != XFS_LOG) { 2964 xlog_warn( 2965 "XFS: xlog_recover_process_data: bad clientid"); 2966 ASSERT(0); 2967 return (XFS_ERROR(EIO)); 2968 } 2969 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT); 2970 hash = XLOG_RHASH(tid); 2971 trans = xlog_recover_find_tid(rhash[hash], tid); 2972 if (trans == NULL) { /* not found; add new tid */ 2973 if (ohead->oh_flags & XLOG_START_TRANS) 2974 xlog_recover_new_tid(&rhash[hash], tid, 2975 INT_GET(rhead->h_lsn, ARCH_CONVERT)); 2976 } else { 2977 ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp); 2978 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2979 if (flags & XLOG_WAS_CONT_TRANS) 2980 flags &= ~XLOG_CONTINUE_TRANS; 2981 switch (flags) { 2982 case XLOG_COMMIT_TRANS: 2983 error = xlog_recover_commit_trans(log, 2984 &rhash[hash], trans, pass); 2985 break; 2986 case XLOG_UNMOUNT_TRANS: 2987 error = xlog_recover_unmount_trans(trans); 2988 break; 2989 case XLOG_WAS_CONT_TRANS: 2990 error = xlog_recover_add_to_cont_trans(trans, 2991 dp, INT_GET(ohead->oh_len, 2992 ARCH_CONVERT)); 2993 break; 2994 case XLOG_START_TRANS: 2995 xlog_warn( 2996 "XFS: xlog_recover_process_data: bad transaction"); 2997 ASSERT(0); 2998 error = XFS_ERROR(EIO); 2999 break; 3000 case 0: 3001 case XLOG_CONTINUE_TRANS: 3002 error = xlog_recover_add_to_trans(trans, 3003 dp, INT_GET(ohead->oh_len, 3004 ARCH_CONVERT)); 3005 break; 3006 default: 3007 xlog_warn( 3008 "XFS: xlog_recover_process_data: bad flag"); 3009 ASSERT(0); 3010 error = XFS_ERROR(EIO); 3011 break; 3012 } 3013 if (error) 3014 return error; 3015 } 3016 dp += INT_GET(ohead->oh_len, ARCH_CONVERT); 3017 num_logops--; 3018 } 3019 return 0; 3020 } 3021 3022 /* 3023 * Process an extent free intent item that was recovered from 3024 * the log. We need to free the extents that it describes. 3025 */ 3026 STATIC void 3027 xlog_recover_process_efi( 3028 xfs_mount_t *mp, 3029 xfs_efi_log_item_t *efip) 3030 { 3031 xfs_efd_log_item_t *efdp; 3032 xfs_trans_t *tp; 3033 int i; 3034 xfs_extent_t *extp; 3035 xfs_fsblock_t startblock_fsb; 3036 3037 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); 3038 3039 /* 3040 * First check the validity of the extents described by the 3041 * EFI. If any are bad, then assume that all are bad and 3042 * just toss the EFI. 3043 */ 3044 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3045 extp = &(efip->efi_format.efi_extents[i]); 3046 startblock_fsb = XFS_BB_TO_FSB(mp, 3047 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3048 if ((startblock_fsb == 0) || 3049 (extp->ext_len == 0) || 3050 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3051 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3052 /* 3053 * This will pull the EFI from the AIL and 3054 * free the memory associated with it. 3055 */ 3056 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3057 return; 3058 } 3059 } 3060 3061 tp = xfs_trans_alloc(mp, 0); 3062 xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3063 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3064 3065 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3066 extp = &(efip->efi_format.efi_extents[i]); 3067 xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3068 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3069 extp->ext_len); 3070 } 3071 3072 efip->efi_flags |= XFS_EFI_RECOVERED; 3073 xfs_trans_commit(tp, 0, NULL); 3074 } 3075 3076 /* 3077 * Verify that once we've encountered something other than an EFI 3078 * in the AIL that there are no more EFIs in the AIL. 3079 */ 3080 #if defined(DEBUG) 3081 STATIC void 3082 xlog_recover_check_ail( 3083 xfs_mount_t *mp, 3084 xfs_log_item_t *lip, 3085 int gen) 3086 { 3087 int orig_gen = gen; 3088 3089 do { 3090 ASSERT(lip->li_type != XFS_LI_EFI); 3091 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3092 /* 3093 * The check will be bogus if we restart from the 3094 * beginning of the AIL, so ASSERT that we don't. 3095 * We never should since we're holding the AIL lock 3096 * the entire time. 3097 */ 3098 ASSERT(gen == orig_gen); 3099 } while (lip != NULL); 3100 } 3101 #endif /* DEBUG */ 3102 3103 /* 3104 * When this is called, all of the EFIs which did not have 3105 * corresponding EFDs should be in the AIL. What we do now 3106 * is free the extents associated with each one. 3107 * 3108 * Since we process the EFIs in normal transactions, they 3109 * will be removed at some point after the commit. This prevents 3110 * us from just walking down the list processing each one. 3111 * We'll use a flag in the EFI to skip those that we've already 3112 * processed and use the AIL iteration mechanism's generation 3113 * count to try to speed this up at least a bit. 3114 * 3115 * When we start, we know that the EFIs are the only things in 3116 * the AIL. As we process them, however, other items are added 3117 * to the AIL. Since everything added to the AIL must come after 3118 * everything already in the AIL, we stop processing as soon as 3119 * we see something other than an EFI in the AIL. 3120 */ 3121 STATIC void 3122 xlog_recover_process_efis( 3123 xlog_t *log) 3124 { 3125 xfs_log_item_t *lip; 3126 xfs_efi_log_item_t *efip; 3127 int gen; 3128 xfs_mount_t *mp; 3129 SPLDECL(s); 3130 3131 mp = log->l_mp; 3132 AIL_LOCK(mp,s); 3133 3134 lip = xfs_trans_first_ail(mp, &gen); 3135 while (lip != NULL) { 3136 /* 3137 * We're done when we see something other than an EFI. 3138 */ 3139 if (lip->li_type != XFS_LI_EFI) { 3140 xlog_recover_check_ail(mp, lip, gen); 3141 break; 3142 } 3143 3144 /* 3145 * Skip EFIs that we've already processed. 3146 */ 3147 efip = (xfs_efi_log_item_t *)lip; 3148 if (efip->efi_flags & XFS_EFI_RECOVERED) { 3149 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3150 continue; 3151 } 3152 3153 AIL_UNLOCK(mp, s); 3154 xlog_recover_process_efi(mp, efip); 3155 AIL_LOCK(mp,s); 3156 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3157 } 3158 AIL_UNLOCK(mp, s); 3159 } 3160 3161 /* 3162 * This routine performs a transaction to null out a bad inode pointer 3163 * in an agi unlinked inode hash bucket. 3164 */ 3165 STATIC void 3166 xlog_recover_clear_agi_bucket( 3167 xfs_mount_t *mp, 3168 xfs_agnumber_t agno, 3169 int bucket) 3170 { 3171 xfs_trans_t *tp; 3172 xfs_agi_t *agi; 3173 xfs_buf_t *agibp; 3174 int offset; 3175 int error; 3176 3177 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3178 xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0); 3179 3180 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 3181 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3182 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 3183 if (error) { 3184 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3185 return; 3186 } 3187 3188 agi = XFS_BUF_TO_AGI(agibp); 3189 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) { 3190 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3191 return; 3192 } 3193 3194 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3195 offset = offsetof(xfs_agi_t, agi_unlinked) + 3196 (sizeof(xfs_agino_t) * bucket); 3197 xfs_trans_log_buf(tp, agibp, offset, 3198 (offset + sizeof(xfs_agino_t) - 1)); 3199 3200 (void) xfs_trans_commit(tp, 0, NULL); 3201 } 3202 3203 /* 3204 * xlog_iunlink_recover 3205 * 3206 * This is called during recovery to process any inodes which 3207 * we unlinked but not freed when the system crashed. These 3208 * inodes will be on the lists in the AGI blocks. What we do 3209 * here is scan all the AGIs and fully truncate and free any 3210 * inodes found on the lists. Each inode is removed from the 3211 * lists when it has been fully truncated and is freed. The 3212 * freeing of the inode and its removal from the list must be 3213 * atomic. 3214 */ 3215 void 3216 xlog_recover_process_iunlinks( 3217 xlog_t *log) 3218 { 3219 xfs_mount_t *mp; 3220 xfs_agnumber_t agno; 3221 xfs_agi_t *agi; 3222 xfs_buf_t *agibp; 3223 xfs_buf_t *ibp; 3224 xfs_dinode_t *dip; 3225 xfs_inode_t *ip; 3226 xfs_agino_t agino; 3227 xfs_ino_t ino; 3228 int bucket; 3229 int error; 3230 uint mp_dmevmask; 3231 3232 mp = log->l_mp; 3233 3234 /* 3235 * Prevent any DMAPI event from being sent while in this function. 3236 */ 3237 mp_dmevmask = mp->m_dmevmask; 3238 mp->m_dmevmask = 0; 3239 3240 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3241 /* 3242 * Find the agi for this ag. 3243 */ 3244 agibp = xfs_buf_read(mp->m_ddev_targp, 3245 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3246 XFS_FSS_TO_BB(mp, 1), 0); 3247 if (XFS_BUF_ISERROR(agibp)) { 3248 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)", 3249 log->l_mp, agibp, 3250 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp))); 3251 } 3252 agi = XFS_BUF_TO_AGI(agibp); 3253 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum)); 3254 3255 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3256 3257 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3258 while (agino != NULLAGINO) { 3259 3260 /* 3261 * Release the agi buffer so that it can 3262 * be acquired in the normal course of the 3263 * transaction to truncate and free the inode. 3264 */ 3265 xfs_buf_relse(agibp); 3266 3267 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3268 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0); 3269 ASSERT(error || (ip != NULL)); 3270 3271 if (!error) { 3272 /* 3273 * Get the on disk inode to find the 3274 * next inode in the bucket. 3275 */ 3276 error = xfs_itobp(mp, NULL, ip, &dip, 3277 &ibp, 0, 0); 3278 ASSERT(error || (dip != NULL)); 3279 } 3280 3281 if (!error) { 3282 ASSERT(ip->i_d.di_nlink == 0); 3283 3284 /* setup for the next pass */ 3285 agino = INT_GET(dip->di_next_unlinked, 3286 ARCH_CONVERT); 3287 xfs_buf_relse(ibp); 3288 /* 3289 * Prevent any DMAPI event from 3290 * being sent when the 3291 * reference on the inode is 3292 * dropped. 3293 */ 3294 ip->i_d.di_dmevmask = 0; 3295 3296 /* 3297 * If this is a new inode, handle 3298 * it specially. Otherwise, 3299 * just drop our reference to the 3300 * inode. If there are no 3301 * other references, this will 3302 * send the inode to 3303 * xfs_inactive() which will 3304 * truncate the file and free 3305 * the inode. 3306 */ 3307 if (ip->i_d.di_mode == 0) 3308 xfs_iput_new(ip, 0); 3309 else 3310 VN_RELE(XFS_ITOV(ip)); 3311 } else { 3312 /* 3313 * We can't read in the inode 3314 * this bucket points to, or 3315 * this inode is messed up. Just 3316 * ditch this bucket of inodes. We 3317 * will lose some inodes and space, 3318 * but at least we won't hang. Call 3319 * xlog_recover_clear_agi_bucket() 3320 * to perform a transaction to clear 3321 * the inode pointer in the bucket. 3322 */ 3323 xlog_recover_clear_agi_bucket(mp, agno, 3324 bucket); 3325 3326 agino = NULLAGINO; 3327 } 3328 3329 /* 3330 * Reacquire the agibuffer and continue around 3331 * the loop. 3332 */ 3333 agibp = xfs_buf_read(mp->m_ddev_targp, 3334 XFS_AG_DADDR(mp, agno, 3335 XFS_AGI_DADDR(mp)), 3336 XFS_FSS_TO_BB(mp, 1), 0); 3337 if (XFS_BUF_ISERROR(agibp)) { 3338 xfs_ioerror_alert( 3339 "xlog_recover_process_iunlinks(#2)", 3340 log->l_mp, agibp, 3341 XFS_AG_DADDR(mp, agno, 3342 XFS_AGI_DADDR(mp))); 3343 } 3344 agi = XFS_BUF_TO_AGI(agibp); 3345 ASSERT(XFS_AGI_MAGIC == be32_to_cpu( 3346 agi->agi_magicnum)); 3347 } 3348 } 3349 3350 /* 3351 * Release the buffer for the current agi so we can 3352 * go on to the next one. 3353 */ 3354 xfs_buf_relse(agibp); 3355 } 3356 3357 mp->m_dmevmask = mp_dmevmask; 3358 } 3359 3360 3361 #ifdef DEBUG 3362 STATIC void 3363 xlog_pack_data_checksum( 3364 xlog_t *log, 3365 xlog_in_core_t *iclog, 3366 int size) 3367 { 3368 int i; 3369 uint *up; 3370 uint chksum = 0; 3371 3372 up = (uint *)iclog->ic_datap; 3373 /* divide length by 4 to get # words */ 3374 for (i = 0; i < (size >> 2); i++) { 3375 chksum ^= INT_GET(*up, ARCH_CONVERT); 3376 up++; 3377 } 3378 INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum); 3379 } 3380 #else 3381 #define xlog_pack_data_checksum(log, iclog, size) 3382 #endif 3383 3384 /* 3385 * Stamp cycle number in every block 3386 */ 3387 void 3388 xlog_pack_data( 3389 xlog_t *log, 3390 xlog_in_core_t *iclog, 3391 int roundoff) 3392 { 3393 int i, j, k; 3394 int size = iclog->ic_offset + roundoff; 3395 uint cycle_lsn; 3396 xfs_caddr_t dp; 3397 xlog_in_core_2_t *xhdr; 3398 3399 xlog_pack_data_checksum(log, iclog, size); 3400 3401 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3402 3403 dp = iclog->ic_datap; 3404 for (i = 0; i < BTOBB(size) && 3405 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3406 iclog->ic_header.h_cycle_data[i] = *(uint *)dp; 3407 *(uint *)dp = cycle_lsn; 3408 dp += BBSIZE; 3409 } 3410 3411 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3412 xhdr = (xlog_in_core_2_t *)&iclog->ic_header; 3413 for ( ; i < BTOBB(size); i++) { 3414 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3415 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3416 xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp; 3417 *(uint *)dp = cycle_lsn; 3418 dp += BBSIZE; 3419 } 3420 3421 for (i = 1; i < log->l_iclog_heads; i++) { 3422 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3423 } 3424 } 3425 } 3426 3427 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) 3428 STATIC void 3429 xlog_unpack_data_checksum( 3430 xlog_rec_header_t *rhead, 3431 xfs_caddr_t dp, 3432 xlog_t *log) 3433 { 3434 uint *up = (uint *)dp; 3435 uint chksum = 0; 3436 int i; 3437 3438 /* divide length by 4 to get # words */ 3439 for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) { 3440 chksum ^= INT_GET(*up, ARCH_CONVERT); 3441 up++; 3442 } 3443 if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) { 3444 if (rhead->h_chksum || 3445 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) { 3446 cmn_err(CE_DEBUG, 3447 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n", 3448 INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum); 3449 cmn_err(CE_DEBUG, 3450 "XFS: Disregard message if filesystem was created with non-DEBUG kernel"); 3451 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3452 cmn_err(CE_DEBUG, 3453 "XFS: LogR this is a LogV2 filesystem\n"); 3454 } 3455 log->l_flags |= XLOG_CHKSUM_MISMATCH; 3456 } 3457 } 3458 } 3459 #else 3460 #define xlog_unpack_data_checksum(rhead, dp, log) 3461 #endif 3462 3463 STATIC void 3464 xlog_unpack_data( 3465 xlog_rec_header_t *rhead, 3466 xfs_caddr_t dp, 3467 xlog_t *log) 3468 { 3469 int i, j, k; 3470 xlog_in_core_2_t *xhdr; 3471 3472 for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) && 3473 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3474 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i]; 3475 dp += BBSIZE; 3476 } 3477 3478 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3479 xhdr = (xlog_in_core_2_t *)rhead; 3480 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) { 3481 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3482 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3483 *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3484 dp += BBSIZE; 3485 } 3486 } 3487 3488 xlog_unpack_data_checksum(rhead, dp, log); 3489 } 3490 3491 STATIC int 3492 xlog_valid_rec_header( 3493 xlog_t *log, 3494 xlog_rec_header_t *rhead, 3495 xfs_daddr_t blkno) 3496 { 3497 int hlen; 3498 3499 if (unlikely( 3500 (INT_GET(rhead->h_magicno, ARCH_CONVERT) != 3501 XLOG_HEADER_MAGIC_NUM))) { 3502 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3503 XFS_ERRLEVEL_LOW, log->l_mp); 3504 return XFS_ERROR(EFSCORRUPTED); 3505 } 3506 if (unlikely( 3507 (!rhead->h_version || 3508 (INT_GET(rhead->h_version, ARCH_CONVERT) & 3509 (~XLOG_VERSION_OKBITS)) != 0))) { 3510 xlog_warn("XFS: %s: unrecognised log version (%d).", 3511 __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT)); 3512 return XFS_ERROR(EIO); 3513 } 3514 3515 /* LR body must have data or it wouldn't have been written */ 3516 hlen = INT_GET(rhead->h_len, ARCH_CONVERT); 3517 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3518 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3519 XFS_ERRLEVEL_LOW, log->l_mp); 3520 return XFS_ERROR(EFSCORRUPTED); 3521 } 3522 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3523 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3524 XFS_ERRLEVEL_LOW, log->l_mp); 3525 return XFS_ERROR(EFSCORRUPTED); 3526 } 3527 return 0; 3528 } 3529 3530 /* 3531 * Read the log from tail to head and process the log records found. 3532 * Handle the two cases where the tail and head are in the same cycle 3533 * and where the active portion of the log wraps around the end of 3534 * the physical log separately. The pass parameter is passed through 3535 * to the routines called to process the data and is not looked at 3536 * here. 3537 */ 3538 STATIC int 3539 xlog_do_recovery_pass( 3540 xlog_t *log, 3541 xfs_daddr_t head_blk, 3542 xfs_daddr_t tail_blk, 3543 int pass) 3544 { 3545 xlog_rec_header_t *rhead; 3546 xfs_daddr_t blk_no; 3547 xfs_caddr_t bufaddr, offset; 3548 xfs_buf_t *hbp, *dbp; 3549 int error = 0, h_size; 3550 int bblks, split_bblks; 3551 int hblks, split_hblks, wrapped_hblks; 3552 xlog_recover_t *rhash[XLOG_RHASH_SIZE]; 3553 3554 ASSERT(head_blk != tail_blk); 3555 3556 /* 3557 * Read the header of the tail block and get the iclog buffer size from 3558 * h_size. Use this to tell how many sectors make up the log header. 3559 */ 3560 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3561 /* 3562 * When using variable length iclogs, read first sector of 3563 * iclog header and extract the header size from it. Get a 3564 * new hbp that is the correct size. 3565 */ 3566 hbp = xlog_get_bp(log, 1); 3567 if (!hbp) 3568 return ENOMEM; 3569 if ((error = xlog_bread(log, tail_blk, 1, hbp))) 3570 goto bread_err1; 3571 offset = xlog_align(log, tail_blk, 1, hbp); 3572 rhead = (xlog_rec_header_t *)offset; 3573 error = xlog_valid_rec_header(log, rhead, tail_blk); 3574 if (error) 3575 goto bread_err1; 3576 h_size = INT_GET(rhead->h_size, ARCH_CONVERT); 3577 if ((INT_GET(rhead->h_version, ARCH_CONVERT) 3578 & XLOG_VERSION_2) && 3579 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3580 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3581 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3582 hblks++; 3583 xlog_put_bp(hbp); 3584 hbp = xlog_get_bp(log, hblks); 3585 } else { 3586 hblks = 1; 3587 } 3588 } else { 3589 ASSERT(log->l_sectbb_log == 0); 3590 hblks = 1; 3591 hbp = xlog_get_bp(log, 1); 3592 h_size = XLOG_BIG_RECORD_BSIZE; 3593 } 3594 3595 if (!hbp) 3596 return ENOMEM; 3597 dbp = xlog_get_bp(log, BTOBB(h_size)); 3598 if (!dbp) { 3599 xlog_put_bp(hbp); 3600 return ENOMEM; 3601 } 3602 3603 memset(rhash, 0, sizeof(rhash)); 3604 if (tail_blk <= head_blk) { 3605 for (blk_no = tail_blk; blk_no < head_blk; ) { 3606 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3607 goto bread_err2; 3608 offset = xlog_align(log, blk_no, hblks, hbp); 3609 rhead = (xlog_rec_header_t *)offset; 3610 error = xlog_valid_rec_header(log, rhead, blk_no); 3611 if (error) 3612 goto bread_err2; 3613 3614 /* blocks in data section */ 3615 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3616 error = xlog_bread(log, blk_no + hblks, bblks, dbp); 3617 if (error) 3618 goto bread_err2; 3619 offset = xlog_align(log, blk_no + hblks, bblks, dbp); 3620 xlog_unpack_data(rhead, offset, log); 3621 if ((error = xlog_recover_process_data(log, 3622 rhash, rhead, offset, pass))) 3623 goto bread_err2; 3624 blk_no += bblks + hblks; 3625 } 3626 } else { 3627 /* 3628 * Perform recovery around the end of the physical log. 3629 * When the head is not on the same cycle number as the tail, 3630 * we can't do a sequential recovery as above. 3631 */ 3632 blk_no = tail_blk; 3633 while (blk_no < log->l_logBBsize) { 3634 /* 3635 * Check for header wrapping around physical end-of-log 3636 */ 3637 offset = NULL; 3638 split_hblks = 0; 3639 wrapped_hblks = 0; 3640 if (blk_no + hblks <= log->l_logBBsize) { 3641 /* Read header in one read */ 3642 error = xlog_bread(log, blk_no, hblks, hbp); 3643 if (error) 3644 goto bread_err2; 3645 offset = xlog_align(log, blk_no, hblks, hbp); 3646 } else { 3647 /* This LR is split across physical log end */ 3648 if (blk_no != log->l_logBBsize) { 3649 /* some data before physical log end */ 3650 ASSERT(blk_no <= INT_MAX); 3651 split_hblks = log->l_logBBsize - (int)blk_no; 3652 ASSERT(split_hblks > 0); 3653 if ((error = xlog_bread(log, blk_no, 3654 split_hblks, hbp))) 3655 goto bread_err2; 3656 offset = xlog_align(log, blk_no, 3657 split_hblks, hbp); 3658 } 3659 /* 3660 * Note: this black magic still works with 3661 * large sector sizes (non-512) only because: 3662 * - we increased the buffer size originally 3663 * by 1 sector giving us enough extra space 3664 * for the second read; 3665 * - the log start is guaranteed to be sector 3666 * aligned; 3667 * - we read the log end (LR header start) 3668 * _first_, then the log start (LR header end) 3669 * - order is important. 3670 */ 3671 bufaddr = XFS_BUF_PTR(hbp); 3672 XFS_BUF_SET_PTR(hbp, 3673 bufaddr + BBTOB(split_hblks), 3674 BBTOB(hblks - split_hblks)); 3675 wrapped_hblks = hblks - split_hblks; 3676 error = xlog_bread(log, 0, wrapped_hblks, hbp); 3677 if (error) 3678 goto bread_err2; 3679 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks)); 3680 if (!offset) 3681 offset = xlog_align(log, 0, 3682 wrapped_hblks, hbp); 3683 } 3684 rhead = (xlog_rec_header_t *)offset; 3685 error = xlog_valid_rec_header(log, rhead, 3686 split_hblks ? blk_no : 0); 3687 if (error) 3688 goto bread_err2; 3689 3690 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3691 blk_no += hblks; 3692 3693 /* Read in data for log record */ 3694 if (blk_no + bblks <= log->l_logBBsize) { 3695 error = xlog_bread(log, blk_no, bblks, dbp); 3696 if (error) 3697 goto bread_err2; 3698 offset = xlog_align(log, blk_no, bblks, dbp); 3699 } else { 3700 /* This log record is split across the 3701 * physical end of log */ 3702 offset = NULL; 3703 split_bblks = 0; 3704 if (blk_no != log->l_logBBsize) { 3705 /* some data is before the physical 3706 * end of log */ 3707 ASSERT(!wrapped_hblks); 3708 ASSERT(blk_no <= INT_MAX); 3709 split_bblks = 3710 log->l_logBBsize - (int)blk_no; 3711 ASSERT(split_bblks > 0); 3712 if ((error = xlog_bread(log, blk_no, 3713 split_bblks, dbp))) 3714 goto bread_err2; 3715 offset = xlog_align(log, blk_no, 3716 split_bblks, dbp); 3717 } 3718 /* 3719 * Note: this black magic still works with 3720 * large sector sizes (non-512) only because: 3721 * - we increased the buffer size originally 3722 * by 1 sector giving us enough extra space 3723 * for the second read; 3724 * - the log start is guaranteed to be sector 3725 * aligned; 3726 * - we read the log end (LR header start) 3727 * _first_, then the log start (LR header end) 3728 * - order is important. 3729 */ 3730 bufaddr = XFS_BUF_PTR(dbp); 3731 XFS_BUF_SET_PTR(dbp, 3732 bufaddr + BBTOB(split_bblks), 3733 BBTOB(bblks - split_bblks)); 3734 if ((error = xlog_bread(log, wrapped_hblks, 3735 bblks - split_bblks, dbp))) 3736 goto bread_err2; 3737 XFS_BUF_SET_PTR(dbp, bufaddr, h_size); 3738 if (!offset) 3739 offset = xlog_align(log, wrapped_hblks, 3740 bblks - split_bblks, dbp); 3741 } 3742 xlog_unpack_data(rhead, offset, log); 3743 if ((error = xlog_recover_process_data(log, rhash, 3744 rhead, offset, pass))) 3745 goto bread_err2; 3746 blk_no += bblks; 3747 } 3748 3749 ASSERT(blk_no >= log->l_logBBsize); 3750 blk_no -= log->l_logBBsize; 3751 3752 /* read first part of physical log */ 3753 while (blk_no < head_blk) { 3754 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3755 goto bread_err2; 3756 offset = xlog_align(log, blk_no, hblks, hbp); 3757 rhead = (xlog_rec_header_t *)offset; 3758 error = xlog_valid_rec_header(log, rhead, blk_no); 3759 if (error) 3760 goto bread_err2; 3761 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3762 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp))) 3763 goto bread_err2; 3764 offset = xlog_align(log, blk_no+hblks, bblks, dbp); 3765 xlog_unpack_data(rhead, offset, log); 3766 if ((error = xlog_recover_process_data(log, rhash, 3767 rhead, offset, pass))) 3768 goto bread_err2; 3769 blk_no += bblks + hblks; 3770 } 3771 } 3772 3773 bread_err2: 3774 xlog_put_bp(dbp); 3775 bread_err1: 3776 xlog_put_bp(hbp); 3777 return error; 3778 } 3779 3780 /* 3781 * Do the recovery of the log. We actually do this in two phases. 3782 * The two passes are necessary in order to implement the function 3783 * of cancelling a record written into the log. The first pass 3784 * determines those things which have been cancelled, and the 3785 * second pass replays log items normally except for those which 3786 * have been cancelled. The handling of the replay and cancellations 3787 * takes place in the log item type specific routines. 3788 * 3789 * The table of items which have cancel records in the log is allocated 3790 * and freed at this level, since only here do we know when all of 3791 * the log recovery has been completed. 3792 */ 3793 STATIC int 3794 xlog_do_log_recovery( 3795 xlog_t *log, 3796 xfs_daddr_t head_blk, 3797 xfs_daddr_t tail_blk) 3798 { 3799 int error; 3800 3801 ASSERT(head_blk != tail_blk); 3802 3803 /* 3804 * First do a pass to find all of the cancelled buf log items. 3805 * Store them in the buf_cancel_table for use in the second pass. 3806 */ 3807 log->l_buf_cancel_table = 3808 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * 3809 sizeof(xfs_buf_cancel_t*), 3810 KM_SLEEP); 3811 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3812 XLOG_RECOVER_PASS1); 3813 if (error != 0) { 3814 kmem_free(log->l_buf_cancel_table, 3815 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); 3816 log->l_buf_cancel_table = NULL; 3817 return error; 3818 } 3819 /* 3820 * Then do a second pass to actually recover the items in the log. 3821 * When it is complete free the table of buf cancel items. 3822 */ 3823 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3824 XLOG_RECOVER_PASS2); 3825 #ifdef DEBUG 3826 if (!error) { 3827 int i; 3828 3829 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3830 ASSERT(log->l_buf_cancel_table[i] == NULL); 3831 } 3832 #endif /* DEBUG */ 3833 3834 kmem_free(log->l_buf_cancel_table, 3835 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); 3836 log->l_buf_cancel_table = NULL; 3837 3838 return error; 3839 } 3840 3841 /* 3842 * Do the actual recovery 3843 */ 3844 STATIC int 3845 xlog_do_recover( 3846 xlog_t *log, 3847 xfs_daddr_t head_blk, 3848 xfs_daddr_t tail_blk) 3849 { 3850 int error; 3851 xfs_buf_t *bp; 3852 xfs_sb_t *sbp; 3853 3854 /* 3855 * First replay the images in the log. 3856 */ 3857 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3858 if (error) { 3859 return error; 3860 } 3861 3862 XFS_bflush(log->l_mp->m_ddev_targp); 3863 3864 /* 3865 * If IO errors happened during recovery, bail out. 3866 */ 3867 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3868 return (EIO); 3869 } 3870 3871 /* 3872 * We now update the tail_lsn since much of the recovery has completed 3873 * and there may be space available to use. If there were no extent 3874 * or iunlinks, we can free up the entire log and set the tail_lsn to 3875 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3876 * lsn of the last known good LR on disk. If there are extent frees 3877 * or iunlinks they will have some entries in the AIL; so we look at 3878 * the AIL to determine how to set the tail_lsn. 3879 */ 3880 xlog_assign_tail_lsn(log->l_mp); 3881 3882 /* 3883 * Now that we've finished replaying all buffer and inode 3884 * updates, re-read in the superblock. 3885 */ 3886 bp = xfs_getsb(log->l_mp, 0); 3887 XFS_BUF_UNDONE(bp); 3888 XFS_BUF_READ(bp); 3889 xfsbdstrat(log->l_mp, bp); 3890 if ((error = xfs_iowait(bp))) { 3891 xfs_ioerror_alert("xlog_do_recover", 3892 log->l_mp, bp, XFS_BUF_ADDR(bp)); 3893 ASSERT(0); 3894 xfs_buf_relse(bp); 3895 return error; 3896 } 3897 3898 /* Convert superblock from on-disk format */ 3899 sbp = &log->l_mp->m_sb; 3900 xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS); 3901 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3902 ASSERT(XFS_SB_GOOD_VERSION(sbp)); 3903 xfs_buf_relse(bp); 3904 3905 xlog_recover_check_summary(log); 3906 3907 /* Normal transactions can now occur */ 3908 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3909 return 0; 3910 } 3911 3912 /* 3913 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3914 * 3915 * Return error or zero. 3916 */ 3917 int 3918 xlog_recover( 3919 xlog_t *log) 3920 { 3921 xfs_daddr_t head_blk, tail_blk; 3922 int error; 3923 3924 /* find the tail of the log */ 3925 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3926 return error; 3927 3928 if (tail_blk != head_blk) { 3929 /* There used to be a comment here: 3930 * 3931 * disallow recovery on read-only mounts. note -- mount 3932 * checks for ENOSPC and turns it into an intelligent 3933 * error message. 3934 * ...but this is no longer true. Now, unless you specify 3935 * NORECOVERY (in which case this function would never be 3936 * called), we just go ahead and recover. We do this all 3937 * under the vfs layer, so we can get away with it unless 3938 * the device itself is read-only, in which case we fail. 3939 */ 3940 if ((error = xfs_dev_is_read_only(log->l_mp, 3941 "recovery required"))) { 3942 return error; 3943 } 3944 3945 cmn_err(CE_NOTE, 3946 "Starting XFS recovery on filesystem: %s (logdev: %s)", 3947 log->l_mp->m_fsname, log->l_mp->m_logname ? 3948 log->l_mp->m_logname : "internal"); 3949 3950 error = xlog_do_recover(log, head_blk, tail_blk); 3951 log->l_flags |= XLOG_RECOVERY_NEEDED; 3952 } 3953 return error; 3954 } 3955 3956 /* 3957 * In the first part of recovery we replay inodes and buffers and build 3958 * up the list of extent free items which need to be processed. Here 3959 * we process the extent free items and clean up the on disk unlinked 3960 * inode lists. This is separated from the first part of recovery so 3961 * that the root and real-time bitmap inodes can be read in from disk in 3962 * between the two stages. This is necessary so that we can free space 3963 * in the real-time portion of the file system. 3964 */ 3965 int 3966 xlog_recover_finish( 3967 xlog_t *log, 3968 int mfsi_flags) 3969 { 3970 /* 3971 * Now we're ready to do the transactions needed for the 3972 * rest of recovery. Start with completing all the extent 3973 * free intent records and then process the unlinked inode 3974 * lists. At this point, we essentially run in normal mode 3975 * except that we're still performing recovery actions 3976 * rather than accepting new requests. 3977 */ 3978 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3979 xlog_recover_process_efis(log); 3980 /* 3981 * Sync the log to get all the EFIs out of the AIL. 3982 * This isn't absolutely necessary, but it helps in 3983 * case the unlink transactions would have problems 3984 * pushing the EFIs out of the way. 3985 */ 3986 xfs_log_force(log->l_mp, (xfs_lsn_t)0, 3987 (XFS_LOG_FORCE | XFS_LOG_SYNC)); 3988 3989 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) { 3990 xlog_recover_process_iunlinks(log); 3991 } 3992 3993 xlog_recover_check_summary(log); 3994 3995 cmn_err(CE_NOTE, 3996 "Ending XFS recovery on filesystem: %s (logdev: %s)", 3997 log->l_mp->m_fsname, log->l_mp->m_logname ? 3998 log->l_mp->m_logname : "internal"); 3999 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 4000 } else { 4001 cmn_err(CE_DEBUG, 4002 "!Ending clean XFS mount for filesystem: %s\n", 4003 log->l_mp->m_fsname); 4004 } 4005 return 0; 4006 } 4007 4008 4009 #if defined(DEBUG) 4010 /* 4011 * Read all of the agf and agi counters and check that they 4012 * are consistent with the superblock counters. 4013 */ 4014 void 4015 xlog_recover_check_summary( 4016 xlog_t *log) 4017 { 4018 xfs_mount_t *mp; 4019 xfs_agf_t *agfp; 4020 xfs_agi_t *agip; 4021 xfs_buf_t *agfbp; 4022 xfs_buf_t *agibp; 4023 xfs_daddr_t agfdaddr; 4024 xfs_daddr_t agidaddr; 4025 xfs_buf_t *sbbp; 4026 #ifdef XFS_LOUD_RECOVERY 4027 xfs_sb_t *sbp; 4028 #endif 4029 xfs_agnumber_t agno; 4030 __uint64_t freeblks; 4031 __uint64_t itotal; 4032 __uint64_t ifree; 4033 4034 mp = log->l_mp; 4035 4036 freeblks = 0LL; 4037 itotal = 0LL; 4038 ifree = 0LL; 4039 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4040 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)); 4041 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr, 4042 XFS_FSS_TO_BB(mp, 1), 0); 4043 if (XFS_BUF_ISERROR(agfbp)) { 4044 xfs_ioerror_alert("xlog_recover_check_summary(agf)", 4045 mp, agfbp, agfdaddr); 4046 } 4047 agfp = XFS_BUF_TO_AGF(agfbp); 4048 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum)); 4049 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum))); 4050 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno); 4051 4052 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4053 be32_to_cpu(agfp->agf_flcount); 4054 xfs_buf_relse(agfbp); 4055 4056 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 4057 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr, 4058 XFS_FSS_TO_BB(mp, 1), 0); 4059 if (XFS_BUF_ISERROR(agibp)) { 4060 xfs_ioerror_alert("xlog_recover_check_summary(agi)", 4061 mp, agibp, agidaddr); 4062 } 4063 agip = XFS_BUF_TO_AGI(agibp); 4064 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum)); 4065 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum))); 4066 ASSERT(be32_to_cpu(agip->agi_seqno) == agno); 4067 4068 itotal += be32_to_cpu(agip->agi_count); 4069 ifree += be32_to_cpu(agip->agi_freecount); 4070 xfs_buf_relse(agibp); 4071 } 4072 4073 sbbp = xfs_getsb(mp, 0); 4074 #ifdef XFS_LOUD_RECOVERY 4075 sbp = &mp->m_sb; 4076 xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS); 4077 cmn_err(CE_NOTE, 4078 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu", 4079 sbp->sb_icount, itotal); 4080 cmn_err(CE_NOTE, 4081 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu", 4082 sbp->sb_ifree, ifree); 4083 cmn_err(CE_NOTE, 4084 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu", 4085 sbp->sb_fdblocks, freeblks); 4086 #if 0 4087 /* 4088 * This is turned off until I account for the allocation 4089 * btree blocks which live in free space. 4090 */ 4091 ASSERT(sbp->sb_icount == itotal); 4092 ASSERT(sbp->sb_ifree == ifree); 4093 ASSERT(sbp->sb_fdblocks == freeblks); 4094 #endif 4095 #endif 4096 xfs_buf_relse(sbbp); 4097 } 4098 #endif /* DEBUG */ 4099