xref: /linux/fs/xfs/xfs_log_recover.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_imap.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
48 #include "xfs_rw.h"
49 
50 STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51 STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52 STATIC void	xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53 					       xlog_recover_item_t *item);
54 #if defined(DEBUG)
55 STATIC void	xlog_recover_check_summary(xlog_t *);
56 STATIC void	xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
57 #else
58 #define	xlog_recover_check_summary(log)
59 #define	xlog_recover_check_ail(mp, lip, gen)
60 #endif
61 
62 
63 /*
64  * Sector aligned buffer routines for buffer create/read/write/access
65  */
66 
67 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)	\
68 	( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
69 	((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
70 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)	((bno) & ~(log)->l_sectbb_mask)
71 
72 xfs_buf_t *
73 xlog_get_bp(
74 	xlog_t		*log,
75 	int		num_bblks)
76 {
77 	ASSERT(num_bblks > 0);
78 
79 	if (log->l_sectbb_log) {
80 		if (num_bblks > 1)
81 			num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
82 		num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
83 	}
84 	return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
85 }
86 
87 void
88 xlog_put_bp(
89 	xfs_buf_t	*bp)
90 {
91 	xfs_buf_free(bp);
92 }
93 
94 
95 /*
96  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
97  */
98 int
99 xlog_bread(
100 	xlog_t		*log,
101 	xfs_daddr_t	blk_no,
102 	int		nbblks,
103 	xfs_buf_t	*bp)
104 {
105 	int		error;
106 
107 	if (log->l_sectbb_log) {
108 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
109 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
110 	}
111 
112 	ASSERT(nbblks > 0);
113 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
114 	ASSERT(bp);
115 
116 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
117 	XFS_BUF_READ(bp);
118 	XFS_BUF_BUSY(bp);
119 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
120 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
121 
122 	xfsbdstrat(log->l_mp, bp);
123 	if ((error = xfs_iowait(bp)))
124 		xfs_ioerror_alert("xlog_bread", log->l_mp,
125 				  bp, XFS_BUF_ADDR(bp));
126 	return error;
127 }
128 
129 /*
130  * Write out the buffer at the given block for the given number of blocks.
131  * The buffer is kept locked across the write and is returned locked.
132  * This can only be used for synchronous log writes.
133  */
134 STATIC int
135 xlog_bwrite(
136 	xlog_t		*log,
137 	xfs_daddr_t	blk_no,
138 	int		nbblks,
139 	xfs_buf_t	*bp)
140 {
141 	int		error;
142 
143 	if (log->l_sectbb_log) {
144 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
145 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
146 	}
147 
148 	ASSERT(nbblks > 0);
149 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
150 
151 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
152 	XFS_BUF_ZEROFLAGS(bp);
153 	XFS_BUF_BUSY(bp);
154 	XFS_BUF_HOLD(bp);
155 	XFS_BUF_PSEMA(bp, PRIBIO);
156 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
157 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
158 
159 	if ((error = xfs_bwrite(log->l_mp, bp)))
160 		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
161 				  bp, XFS_BUF_ADDR(bp));
162 	return error;
163 }
164 
165 STATIC xfs_caddr_t
166 xlog_align(
167 	xlog_t		*log,
168 	xfs_daddr_t	blk_no,
169 	int		nbblks,
170 	xfs_buf_t	*bp)
171 {
172 	xfs_caddr_t	ptr;
173 
174 	if (!log->l_sectbb_log)
175 		return XFS_BUF_PTR(bp);
176 
177 	ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
178 	ASSERT(XFS_BUF_SIZE(bp) >=
179 		BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
180 	return ptr;
181 }
182 
183 #ifdef DEBUG
184 /*
185  * dump debug superblock and log record information
186  */
187 STATIC void
188 xlog_header_check_dump(
189 	xfs_mount_t		*mp,
190 	xlog_rec_header_t	*head)
191 {
192 	int			b;
193 
194 	cmn_err(CE_DEBUG, "%s:  SB : uuid = ", __FUNCTION__);
195 	for (b = 0; b < 16; b++)
196 		cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
197 	cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
198 	cmn_err(CE_DEBUG, "    log : uuid = ");
199 	for (b = 0; b < 16; b++)
200 		cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
201 	cmn_err(CE_DEBUG, ", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
202 }
203 #else
204 #define xlog_header_check_dump(mp, head)
205 #endif
206 
207 /*
208  * check log record header for recovery
209  */
210 STATIC int
211 xlog_header_check_recover(
212 	xfs_mount_t		*mp,
213 	xlog_rec_header_t	*head)
214 {
215 	ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
216 
217 	/*
218 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
219 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
220 	 * a dirty log created in IRIX.
221 	 */
222 	if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
223 		xlog_warn(
224 	"XFS: dirty log written in incompatible format - can't recover");
225 		xlog_header_check_dump(mp, head);
226 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
227 				 XFS_ERRLEVEL_HIGH, mp);
228 		return XFS_ERROR(EFSCORRUPTED);
229 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
230 		xlog_warn(
231 	"XFS: dirty log entry has mismatched uuid - can't recover");
232 		xlog_header_check_dump(mp, head);
233 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
234 				 XFS_ERRLEVEL_HIGH, mp);
235 		return XFS_ERROR(EFSCORRUPTED);
236 	}
237 	return 0;
238 }
239 
240 /*
241  * read the head block of the log and check the header
242  */
243 STATIC int
244 xlog_header_check_mount(
245 	xfs_mount_t		*mp,
246 	xlog_rec_header_t	*head)
247 {
248 	ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
249 
250 	if (uuid_is_nil(&head->h_fs_uuid)) {
251 		/*
252 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
253 		 * h_fs_uuid is nil, we assume this log was last mounted
254 		 * by IRIX and continue.
255 		 */
256 		xlog_warn("XFS: nil uuid in log - IRIX style log");
257 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
258 		xlog_warn("XFS: log has mismatched uuid - can't recover");
259 		xlog_header_check_dump(mp, head);
260 		XFS_ERROR_REPORT("xlog_header_check_mount",
261 				 XFS_ERRLEVEL_HIGH, mp);
262 		return XFS_ERROR(EFSCORRUPTED);
263 	}
264 	return 0;
265 }
266 
267 STATIC void
268 xlog_recover_iodone(
269 	struct xfs_buf	*bp)
270 {
271 	xfs_mount_t	*mp;
272 
273 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
274 
275 	if (XFS_BUF_GETERROR(bp)) {
276 		/*
277 		 * We're not going to bother about retrying
278 		 * this during recovery. One strike!
279 		 */
280 		mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
281 		xfs_ioerror_alert("xlog_recover_iodone",
282 				  mp, bp, XFS_BUF_ADDR(bp));
283 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
284 	}
285 	XFS_BUF_SET_FSPRIVATE(bp, NULL);
286 	XFS_BUF_CLR_IODONE_FUNC(bp);
287 	xfs_biodone(bp);
288 }
289 
290 /*
291  * This routine finds (to an approximation) the first block in the physical
292  * log which contains the given cycle.  It uses a binary search algorithm.
293  * Note that the algorithm can not be perfect because the disk will not
294  * necessarily be perfect.
295  */
296 int
297 xlog_find_cycle_start(
298 	xlog_t		*log,
299 	xfs_buf_t	*bp,
300 	xfs_daddr_t	first_blk,
301 	xfs_daddr_t	*last_blk,
302 	uint		cycle)
303 {
304 	xfs_caddr_t	offset;
305 	xfs_daddr_t	mid_blk;
306 	uint		mid_cycle;
307 	int		error;
308 
309 	mid_blk = BLK_AVG(first_blk, *last_blk);
310 	while (mid_blk != first_blk && mid_blk != *last_blk) {
311 		if ((error = xlog_bread(log, mid_blk, 1, bp)))
312 			return error;
313 		offset = xlog_align(log, mid_blk, 1, bp);
314 		mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
315 		if (mid_cycle == cycle) {
316 			*last_blk = mid_blk;
317 			/* last_half_cycle == mid_cycle */
318 		} else {
319 			first_blk = mid_blk;
320 			/* first_half_cycle == mid_cycle */
321 		}
322 		mid_blk = BLK_AVG(first_blk, *last_blk);
323 	}
324 	ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
325 	       (mid_blk == *last_blk && mid_blk-1 == first_blk));
326 
327 	return 0;
328 }
329 
330 /*
331  * Check that the range of blocks does not contain the cycle number
332  * given.  The scan needs to occur from front to back and the ptr into the
333  * region must be updated since a later routine will need to perform another
334  * test.  If the region is completely good, we end up returning the same
335  * last block number.
336  *
337  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
338  * since we don't ever expect logs to get this large.
339  */
340 STATIC int
341 xlog_find_verify_cycle(
342 	xlog_t		*log,
343 	xfs_daddr_t	start_blk,
344 	int		nbblks,
345 	uint		stop_on_cycle_no,
346 	xfs_daddr_t	*new_blk)
347 {
348 	xfs_daddr_t	i, j;
349 	uint		cycle;
350 	xfs_buf_t	*bp;
351 	xfs_daddr_t	bufblks;
352 	xfs_caddr_t	buf = NULL;
353 	int		error = 0;
354 
355 	bufblks = 1 << ffs(nbblks);
356 
357 	while (!(bp = xlog_get_bp(log, bufblks))) {
358 		/* can't get enough memory to do everything in one big buffer */
359 		bufblks >>= 1;
360 		if (bufblks <= log->l_sectbb_log)
361 			return ENOMEM;
362 	}
363 
364 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
365 		int	bcount;
366 
367 		bcount = min(bufblks, (start_blk + nbblks - i));
368 
369 		if ((error = xlog_bread(log, i, bcount, bp)))
370 			goto out;
371 
372 		buf = xlog_align(log, i, bcount, bp);
373 		for (j = 0; j < bcount; j++) {
374 			cycle = GET_CYCLE(buf, ARCH_CONVERT);
375 			if (cycle == stop_on_cycle_no) {
376 				*new_blk = i+j;
377 				goto out;
378 			}
379 
380 			buf += BBSIZE;
381 		}
382 	}
383 
384 	*new_blk = -1;
385 
386 out:
387 	xlog_put_bp(bp);
388 	return error;
389 }
390 
391 /*
392  * Potentially backup over partial log record write.
393  *
394  * In the typical case, last_blk is the number of the block directly after
395  * a good log record.  Therefore, we subtract one to get the block number
396  * of the last block in the given buffer.  extra_bblks contains the number
397  * of blocks we would have read on a previous read.  This happens when the
398  * last log record is split over the end of the physical log.
399  *
400  * extra_bblks is the number of blocks potentially verified on a previous
401  * call to this routine.
402  */
403 STATIC int
404 xlog_find_verify_log_record(
405 	xlog_t			*log,
406 	xfs_daddr_t		start_blk,
407 	xfs_daddr_t		*last_blk,
408 	int			extra_bblks)
409 {
410 	xfs_daddr_t		i;
411 	xfs_buf_t		*bp;
412 	xfs_caddr_t		offset = NULL;
413 	xlog_rec_header_t	*head = NULL;
414 	int			error = 0;
415 	int			smallmem = 0;
416 	int			num_blks = *last_blk - start_blk;
417 	int			xhdrs;
418 
419 	ASSERT(start_blk != 0 || *last_blk != start_blk);
420 
421 	if (!(bp = xlog_get_bp(log, num_blks))) {
422 		if (!(bp = xlog_get_bp(log, 1)))
423 			return ENOMEM;
424 		smallmem = 1;
425 	} else {
426 		if ((error = xlog_bread(log, start_blk, num_blks, bp)))
427 			goto out;
428 		offset = xlog_align(log, start_blk, num_blks, bp);
429 		offset += ((num_blks - 1) << BBSHIFT);
430 	}
431 
432 	for (i = (*last_blk) - 1; i >= 0; i--) {
433 		if (i < start_blk) {
434 			/* valid log record not found */
435 			xlog_warn(
436 		"XFS: Log inconsistent (didn't find previous header)");
437 			ASSERT(0);
438 			error = XFS_ERROR(EIO);
439 			goto out;
440 		}
441 
442 		if (smallmem) {
443 			if ((error = xlog_bread(log, i, 1, bp)))
444 				goto out;
445 			offset = xlog_align(log, i, 1, bp);
446 		}
447 
448 		head = (xlog_rec_header_t *)offset;
449 
450 		if (XLOG_HEADER_MAGIC_NUM ==
451 		    INT_GET(head->h_magicno, ARCH_CONVERT))
452 			break;
453 
454 		if (!smallmem)
455 			offset -= BBSIZE;
456 	}
457 
458 	/*
459 	 * We hit the beginning of the physical log & still no header.  Return
460 	 * to caller.  If caller can handle a return of -1, then this routine
461 	 * will be called again for the end of the physical log.
462 	 */
463 	if (i == -1) {
464 		error = -1;
465 		goto out;
466 	}
467 
468 	/*
469 	 * We have the final block of the good log (the first block
470 	 * of the log record _before_ the head. So we check the uuid.
471 	 */
472 	if ((error = xlog_header_check_mount(log->l_mp, head)))
473 		goto out;
474 
475 	/*
476 	 * We may have found a log record header before we expected one.
477 	 * last_blk will be the 1st block # with a given cycle #.  We may end
478 	 * up reading an entire log record.  In this case, we don't want to
479 	 * reset last_blk.  Only when last_blk points in the middle of a log
480 	 * record do we update last_blk.
481 	 */
482 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
483 		uint	h_size = INT_GET(head->h_size, ARCH_CONVERT);
484 
485 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
486 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
487 			xhdrs++;
488 	} else {
489 		xhdrs = 1;
490 	}
491 
492 	if (*last_blk - i + extra_bblks
493 			!= BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
494 		*last_blk = i;
495 
496 out:
497 	xlog_put_bp(bp);
498 	return error;
499 }
500 
501 /*
502  * Head is defined to be the point of the log where the next log write
503  * write could go.  This means that incomplete LR writes at the end are
504  * eliminated when calculating the head.  We aren't guaranteed that previous
505  * LR have complete transactions.  We only know that a cycle number of
506  * current cycle number -1 won't be present in the log if we start writing
507  * from our current block number.
508  *
509  * last_blk contains the block number of the first block with a given
510  * cycle number.
511  *
512  * Return: zero if normal, non-zero if error.
513  */
514 STATIC int
515 xlog_find_head(
516 	xlog_t 		*log,
517 	xfs_daddr_t	*return_head_blk)
518 {
519 	xfs_buf_t	*bp;
520 	xfs_caddr_t	offset;
521 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
522 	int		num_scan_bblks;
523 	uint		first_half_cycle, last_half_cycle;
524 	uint		stop_on_cycle;
525 	int		error, log_bbnum = log->l_logBBsize;
526 
527 	/* Is the end of the log device zeroed? */
528 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
529 		*return_head_blk = first_blk;
530 
531 		/* Is the whole lot zeroed? */
532 		if (!first_blk) {
533 			/* Linux XFS shouldn't generate totally zeroed logs -
534 			 * mkfs etc write a dummy unmount record to a fresh
535 			 * log so we can store the uuid in there
536 			 */
537 			xlog_warn("XFS: totally zeroed log");
538 		}
539 
540 		return 0;
541 	} else if (error) {
542 		xlog_warn("XFS: empty log check failed");
543 		return error;
544 	}
545 
546 	first_blk = 0;			/* get cycle # of 1st block */
547 	bp = xlog_get_bp(log, 1);
548 	if (!bp)
549 		return ENOMEM;
550 	if ((error = xlog_bread(log, 0, 1, bp)))
551 		goto bp_err;
552 	offset = xlog_align(log, 0, 1, bp);
553 	first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
554 
555 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
556 	if ((error = xlog_bread(log, last_blk, 1, bp)))
557 		goto bp_err;
558 	offset = xlog_align(log, last_blk, 1, bp);
559 	last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
560 	ASSERT(last_half_cycle != 0);
561 
562 	/*
563 	 * If the 1st half cycle number is equal to the last half cycle number,
564 	 * then the entire log is stamped with the same cycle number.  In this
565 	 * case, head_blk can't be set to zero (which makes sense).  The below
566 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
567 	 * we set it to log_bbnum which is an invalid block number, but this
568 	 * value makes the math correct.  If head_blk doesn't changed through
569 	 * all the tests below, *head_blk is set to zero at the very end rather
570 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
571 	 * in a circular file.
572 	 */
573 	if (first_half_cycle == last_half_cycle) {
574 		/*
575 		 * In this case we believe that the entire log should have
576 		 * cycle number last_half_cycle.  We need to scan backwards
577 		 * from the end verifying that there are no holes still
578 		 * containing last_half_cycle - 1.  If we find such a hole,
579 		 * then the start of that hole will be the new head.  The
580 		 * simple case looks like
581 		 *        x | x ... | x - 1 | x
582 		 * Another case that fits this picture would be
583 		 *        x | x + 1 | x ... | x
584 		 * In this case the head really is somewhere at the end of the
585 		 * log, as one of the latest writes at the beginning was
586 		 * incomplete.
587 		 * One more case is
588 		 *        x | x + 1 | x ... | x - 1 | x
589 		 * This is really the combination of the above two cases, and
590 		 * the head has to end up at the start of the x-1 hole at the
591 		 * end of the log.
592 		 *
593 		 * In the 256k log case, we will read from the beginning to the
594 		 * end of the log and search for cycle numbers equal to x-1.
595 		 * We don't worry about the x+1 blocks that we encounter,
596 		 * because we know that they cannot be the head since the log
597 		 * started with x.
598 		 */
599 		head_blk = log_bbnum;
600 		stop_on_cycle = last_half_cycle - 1;
601 	} else {
602 		/*
603 		 * In this case we want to find the first block with cycle
604 		 * number matching last_half_cycle.  We expect the log to be
605 		 * some variation on
606 		 *        x + 1 ... | x ...
607 		 * The first block with cycle number x (last_half_cycle) will
608 		 * be where the new head belongs.  First we do a binary search
609 		 * for the first occurrence of last_half_cycle.  The binary
610 		 * search may not be totally accurate, so then we scan back
611 		 * from there looking for occurrences of last_half_cycle before
612 		 * us.  If that backwards scan wraps around the beginning of
613 		 * the log, then we look for occurrences of last_half_cycle - 1
614 		 * at the end of the log.  The cases we're looking for look
615 		 * like
616 		 *        x + 1 ... | x | x + 1 | x ...
617 		 *                               ^ binary search stopped here
618 		 * or
619 		 *        x + 1 ... | x ... | x - 1 | x
620 		 *        <---------> less than scan distance
621 		 */
622 		stop_on_cycle = last_half_cycle;
623 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
624 						&head_blk, last_half_cycle)))
625 			goto bp_err;
626 	}
627 
628 	/*
629 	 * Now validate the answer.  Scan back some number of maximum possible
630 	 * blocks and make sure each one has the expected cycle number.  The
631 	 * maximum is determined by the total possible amount of buffering
632 	 * in the in-core log.  The following number can be made tighter if
633 	 * we actually look at the block size of the filesystem.
634 	 */
635 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
636 	if (head_blk >= num_scan_bblks) {
637 		/*
638 		 * We are guaranteed that the entire check can be performed
639 		 * in one buffer.
640 		 */
641 		start_blk = head_blk - num_scan_bblks;
642 		if ((error = xlog_find_verify_cycle(log,
643 						start_blk, num_scan_bblks,
644 						stop_on_cycle, &new_blk)))
645 			goto bp_err;
646 		if (new_blk != -1)
647 			head_blk = new_blk;
648 	} else {		/* need to read 2 parts of log */
649 		/*
650 		 * We are going to scan backwards in the log in two parts.
651 		 * First we scan the physical end of the log.  In this part
652 		 * of the log, we are looking for blocks with cycle number
653 		 * last_half_cycle - 1.
654 		 * If we find one, then we know that the log starts there, as
655 		 * we've found a hole that didn't get written in going around
656 		 * the end of the physical log.  The simple case for this is
657 		 *        x + 1 ... | x ... | x - 1 | x
658 		 *        <---------> less than scan distance
659 		 * If all of the blocks at the end of the log have cycle number
660 		 * last_half_cycle, then we check the blocks at the start of
661 		 * the log looking for occurrences of last_half_cycle.  If we
662 		 * find one, then our current estimate for the location of the
663 		 * first occurrence of last_half_cycle is wrong and we move
664 		 * back to the hole we've found.  This case looks like
665 		 *        x + 1 ... | x | x + 1 | x ...
666 		 *                               ^ binary search stopped here
667 		 * Another case we need to handle that only occurs in 256k
668 		 * logs is
669 		 *        x + 1 ... | x ... | x+1 | x ...
670 		 *                   ^ binary search stops here
671 		 * In a 256k log, the scan at the end of the log will see the
672 		 * x + 1 blocks.  We need to skip past those since that is
673 		 * certainly not the head of the log.  By searching for
674 		 * last_half_cycle-1 we accomplish that.
675 		 */
676 		start_blk = log_bbnum - num_scan_bblks + head_blk;
677 		ASSERT(head_blk <= INT_MAX &&
678 			(xfs_daddr_t) num_scan_bblks - head_blk >= 0);
679 		if ((error = xlog_find_verify_cycle(log, start_blk,
680 					num_scan_bblks - (int)head_blk,
681 					(stop_on_cycle - 1), &new_blk)))
682 			goto bp_err;
683 		if (new_blk != -1) {
684 			head_blk = new_blk;
685 			goto bad_blk;
686 		}
687 
688 		/*
689 		 * Scan beginning of log now.  The last part of the physical
690 		 * log is good.  This scan needs to verify that it doesn't find
691 		 * the last_half_cycle.
692 		 */
693 		start_blk = 0;
694 		ASSERT(head_blk <= INT_MAX);
695 		if ((error = xlog_find_verify_cycle(log,
696 					start_blk, (int)head_blk,
697 					stop_on_cycle, &new_blk)))
698 			goto bp_err;
699 		if (new_blk != -1)
700 			head_blk = new_blk;
701 	}
702 
703  bad_blk:
704 	/*
705 	 * Now we need to make sure head_blk is not pointing to a block in
706 	 * the middle of a log record.
707 	 */
708 	num_scan_bblks = XLOG_REC_SHIFT(log);
709 	if (head_blk >= num_scan_bblks) {
710 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
711 
712 		/* start ptr at last block ptr before head_blk */
713 		if ((error = xlog_find_verify_log_record(log, start_blk,
714 							&head_blk, 0)) == -1) {
715 			error = XFS_ERROR(EIO);
716 			goto bp_err;
717 		} else if (error)
718 			goto bp_err;
719 	} else {
720 		start_blk = 0;
721 		ASSERT(head_blk <= INT_MAX);
722 		if ((error = xlog_find_verify_log_record(log, start_blk,
723 							&head_blk, 0)) == -1) {
724 			/* We hit the beginning of the log during our search */
725 			start_blk = log_bbnum - num_scan_bblks + head_blk;
726 			new_blk = log_bbnum;
727 			ASSERT(start_blk <= INT_MAX &&
728 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
729 			ASSERT(head_blk <= INT_MAX);
730 			if ((error = xlog_find_verify_log_record(log,
731 							start_blk, &new_blk,
732 							(int)head_blk)) == -1) {
733 				error = XFS_ERROR(EIO);
734 				goto bp_err;
735 			} else if (error)
736 				goto bp_err;
737 			if (new_blk != log_bbnum)
738 				head_blk = new_blk;
739 		} else if (error)
740 			goto bp_err;
741 	}
742 
743 	xlog_put_bp(bp);
744 	if (head_blk == log_bbnum)
745 		*return_head_blk = 0;
746 	else
747 		*return_head_blk = head_blk;
748 	/*
749 	 * When returning here, we have a good block number.  Bad block
750 	 * means that during a previous crash, we didn't have a clean break
751 	 * from cycle number N to cycle number N-1.  In this case, we need
752 	 * to find the first block with cycle number N-1.
753 	 */
754 	return 0;
755 
756  bp_err:
757 	xlog_put_bp(bp);
758 
759 	if (error)
760 	    xlog_warn("XFS: failed to find log head");
761 	return error;
762 }
763 
764 /*
765  * Find the sync block number or the tail of the log.
766  *
767  * This will be the block number of the last record to have its
768  * associated buffers synced to disk.  Every log record header has
769  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
770  * to get a sync block number.  The only concern is to figure out which
771  * log record header to believe.
772  *
773  * The following algorithm uses the log record header with the largest
774  * lsn.  The entire log record does not need to be valid.  We only care
775  * that the header is valid.
776  *
777  * We could speed up search by using current head_blk buffer, but it is not
778  * available.
779  */
780 int
781 xlog_find_tail(
782 	xlog_t			*log,
783 	xfs_daddr_t		*head_blk,
784 	xfs_daddr_t		*tail_blk)
785 {
786 	xlog_rec_header_t	*rhead;
787 	xlog_op_header_t	*op_head;
788 	xfs_caddr_t		offset = NULL;
789 	xfs_buf_t		*bp;
790 	int			error, i, found;
791 	xfs_daddr_t		umount_data_blk;
792 	xfs_daddr_t		after_umount_blk;
793 	xfs_lsn_t		tail_lsn;
794 	int			hblks;
795 
796 	found = 0;
797 
798 	/*
799 	 * Find previous log record
800 	 */
801 	if ((error = xlog_find_head(log, head_blk)))
802 		return error;
803 
804 	bp = xlog_get_bp(log, 1);
805 	if (!bp)
806 		return ENOMEM;
807 	if (*head_blk == 0) {				/* special case */
808 		if ((error = xlog_bread(log, 0, 1, bp)))
809 			goto bread_err;
810 		offset = xlog_align(log, 0, 1, bp);
811 		if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
812 			*tail_blk = 0;
813 			/* leave all other log inited values alone */
814 			goto exit;
815 		}
816 	}
817 
818 	/*
819 	 * Search backwards looking for log record header block
820 	 */
821 	ASSERT(*head_blk < INT_MAX);
822 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
823 		if ((error = xlog_bread(log, i, 1, bp)))
824 			goto bread_err;
825 		offset = xlog_align(log, i, 1, bp);
826 		if (XLOG_HEADER_MAGIC_NUM ==
827 		    INT_GET(*(uint *)offset, ARCH_CONVERT)) {
828 			found = 1;
829 			break;
830 		}
831 	}
832 	/*
833 	 * If we haven't found the log record header block, start looking
834 	 * again from the end of the physical log.  XXXmiken: There should be
835 	 * a check here to make sure we didn't search more than N blocks in
836 	 * the previous code.
837 	 */
838 	if (!found) {
839 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
840 			if ((error = xlog_bread(log, i, 1, bp)))
841 				goto bread_err;
842 			offset = xlog_align(log, i, 1, bp);
843 			if (XLOG_HEADER_MAGIC_NUM ==
844 			    INT_GET(*(uint*)offset, ARCH_CONVERT)) {
845 				found = 2;
846 				break;
847 			}
848 		}
849 	}
850 	if (!found) {
851 		xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
852 		ASSERT(0);
853 		return XFS_ERROR(EIO);
854 	}
855 
856 	/* find blk_no of tail of log */
857 	rhead = (xlog_rec_header_t *)offset;
858 	*tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
859 
860 	/*
861 	 * Reset log values according to the state of the log when we
862 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
863 	 * one because the next write starts a new cycle rather than
864 	 * continuing the cycle of the last good log record.  At this
865 	 * point we have guaranteed that all partial log records have been
866 	 * accounted for.  Therefore, we know that the last good log record
867 	 * written was complete and ended exactly on the end boundary
868 	 * of the physical log.
869 	 */
870 	log->l_prev_block = i;
871 	log->l_curr_block = (int)*head_blk;
872 	log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
873 	if (found == 2)
874 		log->l_curr_cycle++;
875 	log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
876 	log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
877 	log->l_grant_reserve_cycle = log->l_curr_cycle;
878 	log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
879 	log->l_grant_write_cycle = log->l_curr_cycle;
880 	log->l_grant_write_bytes = BBTOB(log->l_curr_block);
881 
882 	/*
883 	 * Look for unmount record.  If we find it, then we know there
884 	 * was a clean unmount.  Since 'i' could be the last block in
885 	 * the physical log, we convert to a log block before comparing
886 	 * to the head_blk.
887 	 *
888 	 * Save the current tail lsn to use to pass to
889 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
890 	 * unmount record if there is one, so we pass the lsn of the
891 	 * unmount record rather than the block after it.
892 	 */
893 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
894 		int	h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
895 		int	h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
896 
897 		if ((h_version & XLOG_VERSION_2) &&
898 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
899 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
900 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
901 				hblks++;
902 		} else {
903 			hblks = 1;
904 		}
905 	} else {
906 		hblks = 1;
907 	}
908 	after_umount_blk = (i + hblks + (int)
909 		BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
910 	tail_lsn = log->l_tail_lsn;
911 	if (*head_blk == after_umount_blk &&
912 	    INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
913 		umount_data_blk = (i + hblks) % log->l_logBBsize;
914 		if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
915 			goto bread_err;
916 		}
917 		offset = xlog_align(log, umount_data_blk, 1, bp);
918 		op_head = (xlog_op_header_t *)offset;
919 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
920 			/*
921 			 * Set tail and last sync so that newly written
922 			 * log records will point recovery to after the
923 			 * current unmount record.
924 			 */
925 			ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
926 					after_umount_blk);
927 			ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
928 					after_umount_blk);
929 			*tail_blk = after_umount_blk;
930 		}
931 	}
932 
933 	/*
934 	 * Make sure that there are no blocks in front of the head
935 	 * with the same cycle number as the head.  This can happen
936 	 * because we allow multiple outstanding log writes concurrently,
937 	 * and the later writes might make it out before earlier ones.
938 	 *
939 	 * We use the lsn from before modifying it so that we'll never
940 	 * overwrite the unmount record after a clean unmount.
941 	 *
942 	 * Do this only if we are going to recover the filesystem
943 	 *
944 	 * NOTE: This used to say "if (!readonly)"
945 	 * However on Linux, we can & do recover a read-only filesystem.
946 	 * We only skip recovery if NORECOVERY is specified on mount,
947 	 * in which case we would not be here.
948 	 *
949 	 * But... if the -device- itself is readonly, just skip this.
950 	 * We can't recover this device anyway, so it won't matter.
951 	 */
952 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
953 		error = xlog_clear_stale_blocks(log, tail_lsn);
954 	}
955 
956 bread_err:
957 exit:
958 	xlog_put_bp(bp);
959 
960 	if (error)
961 		xlog_warn("XFS: failed to locate log tail");
962 	return error;
963 }
964 
965 /*
966  * Is the log zeroed at all?
967  *
968  * The last binary search should be changed to perform an X block read
969  * once X becomes small enough.  You can then search linearly through
970  * the X blocks.  This will cut down on the number of reads we need to do.
971  *
972  * If the log is partially zeroed, this routine will pass back the blkno
973  * of the first block with cycle number 0.  It won't have a complete LR
974  * preceding it.
975  *
976  * Return:
977  *	0  => the log is completely written to
978  *	-1 => use *blk_no as the first block of the log
979  *	>0 => error has occurred
980  */
981 int
982 xlog_find_zeroed(
983 	xlog_t		*log,
984 	xfs_daddr_t	*blk_no)
985 {
986 	xfs_buf_t	*bp;
987 	xfs_caddr_t	offset;
988 	uint	        first_cycle, last_cycle;
989 	xfs_daddr_t	new_blk, last_blk, start_blk;
990 	xfs_daddr_t     num_scan_bblks;
991 	int	        error, log_bbnum = log->l_logBBsize;
992 
993 	*blk_no = 0;
994 
995 	/* check totally zeroed log */
996 	bp = xlog_get_bp(log, 1);
997 	if (!bp)
998 		return ENOMEM;
999 	if ((error = xlog_bread(log, 0, 1, bp)))
1000 		goto bp_err;
1001 	offset = xlog_align(log, 0, 1, bp);
1002 	first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1003 	if (first_cycle == 0) {		/* completely zeroed log */
1004 		*blk_no = 0;
1005 		xlog_put_bp(bp);
1006 		return -1;
1007 	}
1008 
1009 	/* check partially zeroed log */
1010 	if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1011 		goto bp_err;
1012 	offset = xlog_align(log, log_bbnum-1, 1, bp);
1013 	last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1014 	if (last_cycle != 0) {		/* log completely written to */
1015 		xlog_put_bp(bp);
1016 		return 0;
1017 	} else if (first_cycle != 1) {
1018 		/*
1019 		 * If the cycle of the last block is zero, the cycle of
1020 		 * the first block must be 1. If it's not, maybe we're
1021 		 * not looking at a log... Bail out.
1022 		 */
1023 		xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1024 		return XFS_ERROR(EINVAL);
1025 	}
1026 
1027 	/* we have a partially zeroed log */
1028 	last_blk = log_bbnum-1;
1029 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1030 		goto bp_err;
1031 
1032 	/*
1033 	 * Validate the answer.  Because there is no way to guarantee that
1034 	 * the entire log is made up of log records which are the same size,
1035 	 * we scan over the defined maximum blocks.  At this point, the maximum
1036 	 * is not chosen to mean anything special.   XXXmiken
1037 	 */
1038 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1039 	ASSERT(num_scan_bblks <= INT_MAX);
1040 
1041 	if (last_blk < num_scan_bblks)
1042 		num_scan_bblks = last_blk;
1043 	start_blk = last_blk - num_scan_bblks;
1044 
1045 	/*
1046 	 * We search for any instances of cycle number 0 that occur before
1047 	 * our current estimate of the head.  What we're trying to detect is
1048 	 *        1 ... | 0 | 1 | 0...
1049 	 *                       ^ binary search ends here
1050 	 */
1051 	if ((error = xlog_find_verify_cycle(log, start_blk,
1052 					 (int)num_scan_bblks, 0, &new_blk)))
1053 		goto bp_err;
1054 	if (new_blk != -1)
1055 		last_blk = new_blk;
1056 
1057 	/*
1058 	 * Potentially backup over partial log record write.  We don't need
1059 	 * to search the end of the log because we know it is zero.
1060 	 */
1061 	if ((error = xlog_find_verify_log_record(log, start_blk,
1062 				&last_blk, 0)) == -1) {
1063 	    error = XFS_ERROR(EIO);
1064 	    goto bp_err;
1065 	} else if (error)
1066 	    goto bp_err;
1067 
1068 	*blk_no = last_blk;
1069 bp_err:
1070 	xlog_put_bp(bp);
1071 	if (error)
1072 		return error;
1073 	return -1;
1074 }
1075 
1076 /*
1077  * These are simple subroutines used by xlog_clear_stale_blocks() below
1078  * to initialize a buffer full of empty log record headers and write
1079  * them into the log.
1080  */
1081 STATIC void
1082 xlog_add_record(
1083 	xlog_t			*log,
1084 	xfs_caddr_t		buf,
1085 	int			cycle,
1086 	int			block,
1087 	int			tail_cycle,
1088 	int			tail_block)
1089 {
1090 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1091 
1092 	memset(buf, 0, BBSIZE);
1093 	INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1094 	INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1095 	INT_SET(recp->h_version, ARCH_CONVERT,
1096 			XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1097 	ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
1098 	ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
1099 	INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1100 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1101 }
1102 
1103 STATIC int
1104 xlog_write_log_records(
1105 	xlog_t		*log,
1106 	int		cycle,
1107 	int		start_block,
1108 	int		blocks,
1109 	int		tail_cycle,
1110 	int		tail_block)
1111 {
1112 	xfs_caddr_t	offset;
1113 	xfs_buf_t	*bp;
1114 	int		balign, ealign;
1115 	int		sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1116 	int		end_block = start_block + blocks;
1117 	int		bufblks;
1118 	int		error = 0;
1119 	int		i, j = 0;
1120 
1121 	bufblks = 1 << ffs(blocks);
1122 	while (!(bp = xlog_get_bp(log, bufblks))) {
1123 		bufblks >>= 1;
1124 		if (bufblks <= log->l_sectbb_log)
1125 			return ENOMEM;
1126 	}
1127 
1128 	/* We may need to do a read at the start to fill in part of
1129 	 * the buffer in the starting sector not covered by the first
1130 	 * write below.
1131 	 */
1132 	balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1133 	if (balign != start_block) {
1134 		if ((error = xlog_bread(log, start_block, 1, bp))) {
1135 			xlog_put_bp(bp);
1136 			return error;
1137 		}
1138 		j = start_block - balign;
1139 	}
1140 
1141 	for (i = start_block; i < end_block; i += bufblks) {
1142 		int		bcount, endcount;
1143 
1144 		bcount = min(bufblks, end_block - start_block);
1145 		endcount = bcount - j;
1146 
1147 		/* We may need to do a read at the end to fill in part of
1148 		 * the buffer in the final sector not covered by the write.
1149 		 * If this is the same sector as the above read, skip it.
1150 		 */
1151 		ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1152 		if (j == 0 && (start_block + endcount > ealign)) {
1153 			offset = XFS_BUF_PTR(bp);
1154 			balign = BBTOB(ealign - start_block);
1155 			XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1156 			if ((error = xlog_bread(log, ealign, sectbb, bp)))
1157 				break;
1158 			XFS_BUF_SET_PTR(bp, offset, bufblks);
1159 		}
1160 
1161 		offset = xlog_align(log, start_block, endcount, bp);
1162 		for (; j < endcount; j++) {
1163 			xlog_add_record(log, offset, cycle, i+j,
1164 					tail_cycle, tail_block);
1165 			offset += BBSIZE;
1166 		}
1167 		error = xlog_bwrite(log, start_block, endcount, bp);
1168 		if (error)
1169 			break;
1170 		start_block += endcount;
1171 		j = 0;
1172 	}
1173 	xlog_put_bp(bp);
1174 	return error;
1175 }
1176 
1177 /*
1178  * This routine is called to blow away any incomplete log writes out
1179  * in front of the log head.  We do this so that we won't become confused
1180  * if we come up, write only a little bit more, and then crash again.
1181  * If we leave the partial log records out there, this situation could
1182  * cause us to think those partial writes are valid blocks since they
1183  * have the current cycle number.  We get rid of them by overwriting them
1184  * with empty log records with the old cycle number rather than the
1185  * current one.
1186  *
1187  * The tail lsn is passed in rather than taken from
1188  * the log so that we will not write over the unmount record after a
1189  * clean unmount in a 512 block log.  Doing so would leave the log without
1190  * any valid log records in it until a new one was written.  If we crashed
1191  * during that time we would not be able to recover.
1192  */
1193 STATIC int
1194 xlog_clear_stale_blocks(
1195 	xlog_t		*log,
1196 	xfs_lsn_t	tail_lsn)
1197 {
1198 	int		tail_cycle, head_cycle;
1199 	int		tail_block, head_block;
1200 	int		tail_distance, max_distance;
1201 	int		distance;
1202 	int		error;
1203 
1204 	tail_cycle = CYCLE_LSN(tail_lsn);
1205 	tail_block = BLOCK_LSN(tail_lsn);
1206 	head_cycle = log->l_curr_cycle;
1207 	head_block = log->l_curr_block;
1208 
1209 	/*
1210 	 * Figure out the distance between the new head of the log
1211 	 * and the tail.  We want to write over any blocks beyond the
1212 	 * head that we may have written just before the crash, but
1213 	 * we don't want to overwrite the tail of the log.
1214 	 */
1215 	if (head_cycle == tail_cycle) {
1216 		/*
1217 		 * The tail is behind the head in the physical log,
1218 		 * so the distance from the head to the tail is the
1219 		 * distance from the head to the end of the log plus
1220 		 * the distance from the beginning of the log to the
1221 		 * tail.
1222 		 */
1223 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1224 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1225 					 XFS_ERRLEVEL_LOW, log->l_mp);
1226 			return XFS_ERROR(EFSCORRUPTED);
1227 		}
1228 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1229 	} else {
1230 		/*
1231 		 * The head is behind the tail in the physical log,
1232 		 * so the distance from the head to the tail is just
1233 		 * the tail block minus the head block.
1234 		 */
1235 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1236 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1237 					 XFS_ERRLEVEL_LOW, log->l_mp);
1238 			return XFS_ERROR(EFSCORRUPTED);
1239 		}
1240 		tail_distance = tail_block - head_block;
1241 	}
1242 
1243 	/*
1244 	 * If the head is right up against the tail, we can't clear
1245 	 * anything.
1246 	 */
1247 	if (tail_distance <= 0) {
1248 		ASSERT(tail_distance == 0);
1249 		return 0;
1250 	}
1251 
1252 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1253 	/*
1254 	 * Take the smaller of the maximum amount of outstanding I/O
1255 	 * we could have and the distance to the tail to clear out.
1256 	 * We take the smaller so that we don't overwrite the tail and
1257 	 * we don't waste all day writing from the head to the tail
1258 	 * for no reason.
1259 	 */
1260 	max_distance = MIN(max_distance, tail_distance);
1261 
1262 	if ((head_block + max_distance) <= log->l_logBBsize) {
1263 		/*
1264 		 * We can stomp all the blocks we need to without
1265 		 * wrapping around the end of the log.  Just do it
1266 		 * in a single write.  Use the cycle number of the
1267 		 * current cycle minus one so that the log will look like:
1268 		 *     n ... | n - 1 ...
1269 		 */
1270 		error = xlog_write_log_records(log, (head_cycle - 1),
1271 				head_block, max_distance, tail_cycle,
1272 				tail_block);
1273 		if (error)
1274 			return error;
1275 	} else {
1276 		/*
1277 		 * We need to wrap around the end of the physical log in
1278 		 * order to clear all the blocks.  Do it in two separate
1279 		 * I/Os.  The first write should be from the head to the
1280 		 * end of the physical log, and it should use the current
1281 		 * cycle number minus one just like above.
1282 		 */
1283 		distance = log->l_logBBsize - head_block;
1284 		error = xlog_write_log_records(log, (head_cycle - 1),
1285 				head_block, distance, tail_cycle,
1286 				tail_block);
1287 
1288 		if (error)
1289 			return error;
1290 
1291 		/*
1292 		 * Now write the blocks at the start of the physical log.
1293 		 * This writes the remainder of the blocks we want to clear.
1294 		 * It uses the current cycle number since we're now on the
1295 		 * same cycle as the head so that we get:
1296 		 *    n ... n ... | n - 1 ...
1297 		 *    ^^^^^ blocks we're writing
1298 		 */
1299 		distance = max_distance - (log->l_logBBsize - head_block);
1300 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1301 				tail_cycle, tail_block);
1302 		if (error)
1303 			return error;
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 /******************************************************************************
1310  *
1311  *		Log recover routines
1312  *
1313  ******************************************************************************
1314  */
1315 
1316 STATIC xlog_recover_t *
1317 xlog_recover_find_tid(
1318 	xlog_recover_t		*q,
1319 	xlog_tid_t		tid)
1320 {
1321 	xlog_recover_t		*p = q;
1322 
1323 	while (p != NULL) {
1324 		if (p->r_log_tid == tid)
1325 		    break;
1326 		p = p->r_next;
1327 	}
1328 	return p;
1329 }
1330 
1331 STATIC void
1332 xlog_recover_put_hashq(
1333 	xlog_recover_t		**q,
1334 	xlog_recover_t		*trans)
1335 {
1336 	trans->r_next = *q;
1337 	*q = trans;
1338 }
1339 
1340 STATIC void
1341 xlog_recover_add_item(
1342 	xlog_recover_item_t	**itemq)
1343 {
1344 	xlog_recover_item_t	*item;
1345 
1346 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1347 	xlog_recover_insert_item_backq(itemq, item);
1348 }
1349 
1350 STATIC int
1351 xlog_recover_add_to_cont_trans(
1352 	xlog_recover_t		*trans,
1353 	xfs_caddr_t		dp,
1354 	int			len)
1355 {
1356 	xlog_recover_item_t	*item;
1357 	xfs_caddr_t		ptr, old_ptr;
1358 	int			old_len;
1359 
1360 	item = trans->r_itemq;
1361 	if (item == 0) {
1362 		/* finish copying rest of trans header */
1363 		xlog_recover_add_item(&trans->r_itemq);
1364 		ptr = (xfs_caddr_t) &trans->r_theader +
1365 				sizeof(xfs_trans_header_t) - len;
1366 		memcpy(ptr, dp, len); /* d, s, l */
1367 		return 0;
1368 	}
1369 	item = item->ri_prev;
1370 
1371 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1372 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1373 
1374 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1375 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1376 	item->ri_buf[item->ri_cnt-1].i_len += len;
1377 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1378 	return 0;
1379 }
1380 
1381 /*
1382  * The next region to add is the start of a new region.  It could be
1383  * a whole region or it could be the first part of a new region.  Because
1384  * of this, the assumption here is that the type and size fields of all
1385  * format structures fit into the first 32 bits of the structure.
1386  *
1387  * This works because all regions must be 32 bit aligned.  Therefore, we
1388  * either have both fields or we have neither field.  In the case we have
1389  * neither field, the data part of the region is zero length.  We only have
1390  * a log_op_header and can throw away the header since a new one will appear
1391  * later.  If we have at least 4 bytes, then we can determine how many regions
1392  * will appear in the current log item.
1393  */
1394 STATIC int
1395 xlog_recover_add_to_trans(
1396 	xlog_recover_t		*trans,
1397 	xfs_caddr_t		dp,
1398 	int			len)
1399 {
1400 	xfs_inode_log_format_t	*in_f;			/* any will do */
1401 	xlog_recover_item_t	*item;
1402 	xfs_caddr_t		ptr;
1403 
1404 	if (!len)
1405 		return 0;
1406 	item = trans->r_itemq;
1407 	if (item == 0) {
1408 		ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1409 		if (len == sizeof(xfs_trans_header_t))
1410 			xlog_recover_add_item(&trans->r_itemq);
1411 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1412 		return 0;
1413 	}
1414 
1415 	ptr = kmem_alloc(len, KM_SLEEP);
1416 	memcpy(ptr, dp, len);
1417 	in_f = (xfs_inode_log_format_t *)ptr;
1418 
1419 	if (item->ri_prev->ri_total != 0 &&
1420 	     item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1421 		xlog_recover_add_item(&trans->r_itemq);
1422 	}
1423 	item = trans->r_itemq;
1424 	item = item->ri_prev;
1425 
1426 	if (item->ri_total == 0) {		/* first region to be added */
1427 		item->ri_total	= in_f->ilf_size;
1428 		ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1429 		item->ri_buf = kmem_zalloc((item->ri_total *
1430 					    sizeof(xfs_log_iovec_t)), KM_SLEEP);
1431 	}
1432 	ASSERT(item->ri_total > item->ri_cnt);
1433 	/* Description region is ri_buf[0] */
1434 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1435 	item->ri_buf[item->ri_cnt].i_len  = len;
1436 	item->ri_cnt++;
1437 	return 0;
1438 }
1439 
1440 STATIC void
1441 xlog_recover_new_tid(
1442 	xlog_recover_t		**q,
1443 	xlog_tid_t		tid,
1444 	xfs_lsn_t		lsn)
1445 {
1446 	xlog_recover_t		*trans;
1447 
1448 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1449 	trans->r_log_tid   = tid;
1450 	trans->r_lsn	   = lsn;
1451 	xlog_recover_put_hashq(q, trans);
1452 }
1453 
1454 STATIC int
1455 xlog_recover_unlink_tid(
1456 	xlog_recover_t		**q,
1457 	xlog_recover_t		*trans)
1458 {
1459 	xlog_recover_t		*tp;
1460 	int			found = 0;
1461 
1462 	ASSERT(trans != 0);
1463 	if (trans == *q) {
1464 		*q = (*q)->r_next;
1465 	} else {
1466 		tp = *q;
1467 		while (tp != 0) {
1468 			if (tp->r_next == trans) {
1469 				found = 1;
1470 				break;
1471 			}
1472 			tp = tp->r_next;
1473 		}
1474 		if (!found) {
1475 			xlog_warn(
1476 			     "XFS: xlog_recover_unlink_tid: trans not found");
1477 			ASSERT(0);
1478 			return XFS_ERROR(EIO);
1479 		}
1480 		tp->r_next = tp->r_next->r_next;
1481 	}
1482 	return 0;
1483 }
1484 
1485 STATIC void
1486 xlog_recover_insert_item_backq(
1487 	xlog_recover_item_t	**q,
1488 	xlog_recover_item_t	*item)
1489 {
1490 	if (*q == 0) {
1491 		item->ri_prev = item->ri_next = item;
1492 		*q = item;
1493 	} else {
1494 		item->ri_next		= *q;
1495 		item->ri_prev		= (*q)->ri_prev;
1496 		(*q)->ri_prev		= item;
1497 		item->ri_prev->ri_next	= item;
1498 	}
1499 }
1500 
1501 STATIC void
1502 xlog_recover_insert_item_frontq(
1503 	xlog_recover_item_t	**q,
1504 	xlog_recover_item_t	*item)
1505 {
1506 	xlog_recover_insert_item_backq(q, item);
1507 	*q = item;
1508 }
1509 
1510 STATIC int
1511 xlog_recover_reorder_trans(
1512 	xlog_t			*log,
1513 	xlog_recover_t		*trans)
1514 {
1515 	xlog_recover_item_t	*first_item, *itemq, *itemq_next;
1516 	xfs_buf_log_format_t	*buf_f;
1517 	xfs_buf_log_format_v1_t	*obuf_f;
1518 	ushort			flags = 0;
1519 
1520 	first_item = itemq = trans->r_itemq;
1521 	trans->r_itemq = NULL;
1522 	do {
1523 		itemq_next = itemq->ri_next;
1524 		buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1525 		switch (ITEM_TYPE(itemq)) {
1526 		case XFS_LI_BUF:
1527 			flags = buf_f->blf_flags;
1528 			break;
1529 		case XFS_LI_6_1_BUF:
1530 		case XFS_LI_5_3_BUF:
1531 			obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1532 			flags = obuf_f->blf_flags;
1533 			break;
1534 		}
1535 
1536 		switch (ITEM_TYPE(itemq)) {
1537 		case XFS_LI_BUF:
1538 		case XFS_LI_6_1_BUF:
1539 		case XFS_LI_5_3_BUF:
1540 			if (!(flags & XFS_BLI_CANCEL)) {
1541 				xlog_recover_insert_item_frontq(&trans->r_itemq,
1542 								itemq);
1543 				break;
1544 			}
1545 		case XFS_LI_INODE:
1546 		case XFS_LI_6_1_INODE:
1547 		case XFS_LI_5_3_INODE:
1548 		case XFS_LI_DQUOT:
1549 		case XFS_LI_QUOTAOFF:
1550 		case XFS_LI_EFD:
1551 		case XFS_LI_EFI:
1552 			xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1553 			break;
1554 		default:
1555 			xlog_warn(
1556 	"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1557 			ASSERT(0);
1558 			return XFS_ERROR(EIO);
1559 		}
1560 		itemq = itemq_next;
1561 	} while (first_item != itemq);
1562 	return 0;
1563 }
1564 
1565 /*
1566  * Build up the table of buf cancel records so that we don't replay
1567  * cancelled data in the second pass.  For buffer records that are
1568  * not cancel records, there is nothing to do here so we just return.
1569  *
1570  * If we get a cancel record which is already in the table, this indicates
1571  * that the buffer was cancelled multiple times.  In order to ensure
1572  * that during pass 2 we keep the record in the table until we reach its
1573  * last occurrence in the log, we keep a reference count in the cancel
1574  * record in the table to tell us how many times we expect to see this
1575  * record during the second pass.
1576  */
1577 STATIC void
1578 xlog_recover_do_buffer_pass1(
1579 	xlog_t			*log,
1580 	xfs_buf_log_format_t	*buf_f)
1581 {
1582 	xfs_buf_cancel_t	*bcp;
1583 	xfs_buf_cancel_t	*nextp;
1584 	xfs_buf_cancel_t	*prevp;
1585 	xfs_buf_cancel_t	**bucket;
1586 	xfs_buf_log_format_v1_t	*obuf_f;
1587 	xfs_daddr_t		blkno = 0;
1588 	uint			len = 0;
1589 	ushort			flags = 0;
1590 
1591 	switch (buf_f->blf_type) {
1592 	case XFS_LI_BUF:
1593 		blkno = buf_f->blf_blkno;
1594 		len = buf_f->blf_len;
1595 		flags = buf_f->blf_flags;
1596 		break;
1597 	case XFS_LI_6_1_BUF:
1598 	case XFS_LI_5_3_BUF:
1599 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1600 		blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1601 		len = obuf_f->blf_len;
1602 		flags = obuf_f->blf_flags;
1603 		break;
1604 	}
1605 
1606 	/*
1607 	 * If this isn't a cancel buffer item, then just return.
1608 	 */
1609 	if (!(flags & XFS_BLI_CANCEL))
1610 		return;
1611 
1612 	/*
1613 	 * Insert an xfs_buf_cancel record into the hash table of
1614 	 * them.  If there is already an identical record, bump
1615 	 * its reference count.
1616 	 */
1617 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1618 					  XLOG_BC_TABLE_SIZE];
1619 	/*
1620 	 * If the hash bucket is empty then just insert a new record into
1621 	 * the bucket.
1622 	 */
1623 	if (*bucket == NULL) {
1624 		bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1625 						     KM_SLEEP);
1626 		bcp->bc_blkno = blkno;
1627 		bcp->bc_len = len;
1628 		bcp->bc_refcount = 1;
1629 		bcp->bc_next = NULL;
1630 		*bucket = bcp;
1631 		return;
1632 	}
1633 
1634 	/*
1635 	 * The hash bucket is not empty, so search for duplicates of our
1636 	 * record.  If we find one them just bump its refcount.  If not
1637 	 * then add us at the end of the list.
1638 	 */
1639 	prevp = NULL;
1640 	nextp = *bucket;
1641 	while (nextp != NULL) {
1642 		if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1643 			nextp->bc_refcount++;
1644 			return;
1645 		}
1646 		prevp = nextp;
1647 		nextp = nextp->bc_next;
1648 	}
1649 	ASSERT(prevp != NULL);
1650 	bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1651 					     KM_SLEEP);
1652 	bcp->bc_blkno = blkno;
1653 	bcp->bc_len = len;
1654 	bcp->bc_refcount = 1;
1655 	bcp->bc_next = NULL;
1656 	prevp->bc_next = bcp;
1657 }
1658 
1659 /*
1660  * Check to see whether the buffer being recovered has a corresponding
1661  * entry in the buffer cancel record table.  If it does then return 1
1662  * so that it will be cancelled, otherwise return 0.  If the buffer is
1663  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1664  * the refcount on the entry in the table and remove it from the table
1665  * if this is the last reference.
1666  *
1667  * We remove the cancel record from the table when we encounter its
1668  * last occurrence in the log so that if the same buffer is re-used
1669  * again after its last cancellation we actually replay the changes
1670  * made at that point.
1671  */
1672 STATIC int
1673 xlog_check_buffer_cancelled(
1674 	xlog_t			*log,
1675 	xfs_daddr_t		blkno,
1676 	uint			len,
1677 	ushort			flags)
1678 {
1679 	xfs_buf_cancel_t	*bcp;
1680 	xfs_buf_cancel_t	*prevp;
1681 	xfs_buf_cancel_t	**bucket;
1682 
1683 	if (log->l_buf_cancel_table == NULL) {
1684 		/*
1685 		 * There is nothing in the table built in pass one,
1686 		 * so this buffer must not be cancelled.
1687 		 */
1688 		ASSERT(!(flags & XFS_BLI_CANCEL));
1689 		return 0;
1690 	}
1691 
1692 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1693 					  XLOG_BC_TABLE_SIZE];
1694 	bcp = *bucket;
1695 	if (bcp == NULL) {
1696 		/*
1697 		 * There is no corresponding entry in the table built
1698 		 * in pass one, so this buffer has not been cancelled.
1699 		 */
1700 		ASSERT(!(flags & XFS_BLI_CANCEL));
1701 		return 0;
1702 	}
1703 
1704 	/*
1705 	 * Search for an entry in the buffer cancel table that
1706 	 * matches our buffer.
1707 	 */
1708 	prevp = NULL;
1709 	while (bcp != NULL) {
1710 		if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1711 			/*
1712 			 * We've go a match, so return 1 so that the
1713 			 * recovery of this buffer is cancelled.
1714 			 * If this buffer is actually a buffer cancel
1715 			 * log item, then decrement the refcount on the
1716 			 * one in the table and remove it if this is the
1717 			 * last reference.
1718 			 */
1719 			if (flags & XFS_BLI_CANCEL) {
1720 				bcp->bc_refcount--;
1721 				if (bcp->bc_refcount == 0) {
1722 					if (prevp == NULL) {
1723 						*bucket = bcp->bc_next;
1724 					} else {
1725 						prevp->bc_next = bcp->bc_next;
1726 					}
1727 					kmem_free(bcp,
1728 						  sizeof(xfs_buf_cancel_t));
1729 				}
1730 			}
1731 			return 1;
1732 		}
1733 		prevp = bcp;
1734 		bcp = bcp->bc_next;
1735 	}
1736 	/*
1737 	 * We didn't find a corresponding entry in the table, so
1738 	 * return 0 so that the buffer is NOT cancelled.
1739 	 */
1740 	ASSERT(!(flags & XFS_BLI_CANCEL));
1741 	return 0;
1742 }
1743 
1744 STATIC int
1745 xlog_recover_do_buffer_pass2(
1746 	xlog_t			*log,
1747 	xfs_buf_log_format_t	*buf_f)
1748 {
1749 	xfs_buf_log_format_v1_t	*obuf_f;
1750 	xfs_daddr_t		blkno = 0;
1751 	ushort			flags = 0;
1752 	uint			len = 0;
1753 
1754 	switch (buf_f->blf_type) {
1755 	case XFS_LI_BUF:
1756 		blkno = buf_f->blf_blkno;
1757 		flags = buf_f->blf_flags;
1758 		len = buf_f->blf_len;
1759 		break;
1760 	case XFS_LI_6_1_BUF:
1761 	case XFS_LI_5_3_BUF:
1762 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1763 		blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1764 		flags = obuf_f->blf_flags;
1765 		len = (xfs_daddr_t) obuf_f->blf_len;
1766 		break;
1767 	}
1768 
1769 	return xlog_check_buffer_cancelled(log, blkno, len, flags);
1770 }
1771 
1772 /*
1773  * Perform recovery for a buffer full of inodes.  In these buffers,
1774  * the only data which should be recovered is that which corresponds
1775  * to the di_next_unlinked pointers in the on disk inode structures.
1776  * The rest of the data for the inodes is always logged through the
1777  * inodes themselves rather than the inode buffer and is recovered
1778  * in xlog_recover_do_inode_trans().
1779  *
1780  * The only time when buffers full of inodes are fully recovered is
1781  * when the buffer is full of newly allocated inodes.  In this case
1782  * the buffer will not be marked as an inode buffer and so will be
1783  * sent to xlog_recover_do_reg_buffer() below during recovery.
1784  */
1785 STATIC int
1786 xlog_recover_do_inode_buffer(
1787 	xfs_mount_t		*mp,
1788 	xlog_recover_item_t	*item,
1789 	xfs_buf_t		*bp,
1790 	xfs_buf_log_format_t	*buf_f)
1791 {
1792 	int			i;
1793 	int			item_index;
1794 	int			bit;
1795 	int			nbits;
1796 	int			reg_buf_offset;
1797 	int			reg_buf_bytes;
1798 	int			next_unlinked_offset;
1799 	int			inodes_per_buf;
1800 	xfs_agino_t		*logged_nextp;
1801 	xfs_agino_t		*buffer_nextp;
1802 	xfs_buf_log_format_v1_t	*obuf_f;
1803 	unsigned int		*data_map = NULL;
1804 	unsigned int		map_size = 0;
1805 
1806 	switch (buf_f->blf_type) {
1807 	case XFS_LI_BUF:
1808 		data_map = buf_f->blf_data_map;
1809 		map_size = buf_f->blf_map_size;
1810 		break;
1811 	case XFS_LI_6_1_BUF:
1812 	case XFS_LI_5_3_BUF:
1813 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1814 		data_map = obuf_f->blf_data_map;
1815 		map_size = obuf_f->blf_map_size;
1816 		break;
1817 	}
1818 	/*
1819 	 * Set the variables corresponding to the current region to
1820 	 * 0 so that we'll initialize them on the first pass through
1821 	 * the loop.
1822 	 */
1823 	reg_buf_offset = 0;
1824 	reg_buf_bytes = 0;
1825 	bit = 0;
1826 	nbits = 0;
1827 	item_index = 0;
1828 	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1829 	for (i = 0; i < inodes_per_buf; i++) {
1830 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1831 			offsetof(xfs_dinode_t, di_next_unlinked);
1832 
1833 		while (next_unlinked_offset >=
1834 		       (reg_buf_offset + reg_buf_bytes)) {
1835 			/*
1836 			 * The next di_next_unlinked field is beyond
1837 			 * the current logged region.  Find the next
1838 			 * logged region that contains or is beyond
1839 			 * the current di_next_unlinked field.
1840 			 */
1841 			bit += nbits;
1842 			bit = xfs_next_bit(data_map, map_size, bit);
1843 
1844 			/*
1845 			 * If there are no more logged regions in the
1846 			 * buffer, then we're done.
1847 			 */
1848 			if (bit == -1) {
1849 				return 0;
1850 			}
1851 
1852 			nbits = xfs_contig_bits(data_map, map_size,
1853 							 bit);
1854 			ASSERT(nbits > 0);
1855 			reg_buf_offset = bit << XFS_BLI_SHIFT;
1856 			reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1857 			item_index++;
1858 		}
1859 
1860 		/*
1861 		 * If the current logged region starts after the current
1862 		 * di_next_unlinked field, then move on to the next
1863 		 * di_next_unlinked field.
1864 		 */
1865 		if (next_unlinked_offset < reg_buf_offset) {
1866 			continue;
1867 		}
1868 
1869 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1870 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1871 		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1872 
1873 		/*
1874 		 * The current logged region contains a copy of the
1875 		 * current di_next_unlinked field.  Extract its value
1876 		 * and copy it to the buffer copy.
1877 		 */
1878 		logged_nextp = (xfs_agino_t *)
1879 			       ((char *)(item->ri_buf[item_index].i_addr) +
1880 				(next_unlinked_offset - reg_buf_offset));
1881 		if (unlikely(*logged_nextp == 0)) {
1882 			xfs_fs_cmn_err(CE_ALERT, mp,
1883 				"bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1884 				item, bp);
1885 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1886 					 XFS_ERRLEVEL_LOW, mp);
1887 			return XFS_ERROR(EFSCORRUPTED);
1888 		}
1889 
1890 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1891 					      next_unlinked_offset);
1892 		*buffer_nextp = *logged_nextp;
1893 	}
1894 
1895 	return 0;
1896 }
1897 
1898 /*
1899  * Perform a 'normal' buffer recovery.  Each logged region of the
1900  * buffer should be copied over the corresponding region in the
1901  * given buffer.  The bitmap in the buf log format structure indicates
1902  * where to place the logged data.
1903  */
1904 /*ARGSUSED*/
1905 STATIC void
1906 xlog_recover_do_reg_buffer(
1907 	xfs_mount_t		*mp,
1908 	xlog_recover_item_t	*item,
1909 	xfs_buf_t		*bp,
1910 	xfs_buf_log_format_t	*buf_f)
1911 {
1912 	int			i;
1913 	int			bit;
1914 	int			nbits;
1915 	xfs_buf_log_format_v1_t	*obuf_f;
1916 	unsigned int		*data_map = NULL;
1917 	unsigned int		map_size = 0;
1918 	int                     error;
1919 
1920 	switch (buf_f->blf_type) {
1921 	case XFS_LI_BUF:
1922 		data_map = buf_f->blf_data_map;
1923 		map_size = buf_f->blf_map_size;
1924 		break;
1925 	case XFS_LI_6_1_BUF:
1926 	case XFS_LI_5_3_BUF:
1927 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1928 		data_map = obuf_f->blf_data_map;
1929 		map_size = obuf_f->blf_map_size;
1930 		break;
1931 	}
1932 	bit = 0;
1933 	i = 1;  /* 0 is the buf format structure */
1934 	while (1) {
1935 		bit = xfs_next_bit(data_map, map_size, bit);
1936 		if (bit == -1)
1937 			break;
1938 		nbits = xfs_contig_bits(data_map, map_size, bit);
1939 		ASSERT(nbits > 0);
1940 		ASSERT(item->ri_buf[i].i_addr != 0);
1941 		ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1942 		ASSERT(XFS_BUF_COUNT(bp) >=
1943 		       ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1944 
1945 		/*
1946 		 * Do a sanity check if this is a dquot buffer. Just checking
1947 		 * the first dquot in the buffer should do. XXXThis is
1948 		 * probably a good thing to do for other buf types also.
1949 		 */
1950 		error = 0;
1951 		if (buf_f->blf_flags &
1952 		   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1953 			error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1954 					       item->ri_buf[i].i_addr,
1955 					       -1, 0, XFS_QMOPT_DOWARN,
1956 					       "dquot_buf_recover");
1957 		}
1958 		if (!error)
1959 			memcpy(xfs_buf_offset(bp,
1960 				(uint)bit << XFS_BLI_SHIFT),	/* dest */
1961 				item->ri_buf[i].i_addr,		/* source */
1962 				nbits<<XFS_BLI_SHIFT);		/* length */
1963 		i++;
1964 		bit += nbits;
1965 	}
1966 
1967 	/* Shouldn't be any more regions */
1968 	ASSERT(i == item->ri_total);
1969 }
1970 
1971 /*
1972  * Do some primitive error checking on ondisk dquot data structures.
1973  */
1974 int
1975 xfs_qm_dqcheck(
1976 	xfs_disk_dquot_t *ddq,
1977 	xfs_dqid_t	 id,
1978 	uint		 type,	  /* used only when IO_dorepair is true */
1979 	uint		 flags,
1980 	char		 *str)
1981 {
1982 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
1983 	int		errs = 0;
1984 
1985 	/*
1986 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
1987 	 * 1. If we crash while deleting the quotainode(s), and those blks got
1988 	 *    used for user data. This is because we take the path of regular
1989 	 *    file deletion; however, the size field of quotainodes is never
1990 	 *    updated, so all the tricks that we play in itruncate_finish
1991 	 *    don't quite matter.
1992 	 *
1993 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1994 	 *    But the allocation will be replayed so we'll end up with an
1995 	 *    uninitialized quota block.
1996 	 *
1997 	 * This is all fine; things are still consistent, and we haven't lost
1998 	 * any quota information. Just don't complain about bad dquot blks.
1999 	 */
2000 	if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2001 		if (flags & XFS_QMOPT_DOWARN)
2002 			cmn_err(CE_ALERT,
2003 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2004 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2005 		errs++;
2006 	}
2007 	if (ddq->d_version != XFS_DQUOT_VERSION) {
2008 		if (flags & XFS_QMOPT_DOWARN)
2009 			cmn_err(CE_ALERT,
2010 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2011 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
2012 		errs++;
2013 	}
2014 
2015 	if (ddq->d_flags != XFS_DQ_USER &&
2016 	    ddq->d_flags != XFS_DQ_PROJ &&
2017 	    ddq->d_flags != XFS_DQ_GROUP) {
2018 		if (flags & XFS_QMOPT_DOWARN)
2019 			cmn_err(CE_ALERT,
2020 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2021 			str, id, ddq->d_flags);
2022 		errs++;
2023 	}
2024 
2025 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2026 		if (flags & XFS_QMOPT_DOWARN)
2027 			cmn_err(CE_ALERT,
2028 			"%s : ondisk-dquot 0x%p, ID mismatch: "
2029 			"0x%x expected, found id 0x%x",
2030 			str, ddq, id, be32_to_cpu(ddq->d_id));
2031 		errs++;
2032 	}
2033 
2034 	if (!errs && ddq->d_id) {
2035 		if (ddq->d_blk_softlimit &&
2036 		    be64_to_cpu(ddq->d_bcount) >=
2037 				be64_to_cpu(ddq->d_blk_softlimit)) {
2038 			if (!ddq->d_btimer) {
2039 				if (flags & XFS_QMOPT_DOWARN)
2040 					cmn_err(CE_ALERT,
2041 					"%s : Dquot ID 0x%x (0x%p) "
2042 					"BLK TIMER NOT STARTED",
2043 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2044 				errs++;
2045 			}
2046 		}
2047 		if (ddq->d_ino_softlimit &&
2048 		    be64_to_cpu(ddq->d_icount) >=
2049 				be64_to_cpu(ddq->d_ino_softlimit)) {
2050 			if (!ddq->d_itimer) {
2051 				if (flags & XFS_QMOPT_DOWARN)
2052 					cmn_err(CE_ALERT,
2053 					"%s : Dquot ID 0x%x (0x%p) "
2054 					"INODE TIMER NOT STARTED",
2055 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2056 				errs++;
2057 			}
2058 		}
2059 		if (ddq->d_rtb_softlimit &&
2060 		    be64_to_cpu(ddq->d_rtbcount) >=
2061 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2062 			if (!ddq->d_rtbtimer) {
2063 				if (flags & XFS_QMOPT_DOWARN)
2064 					cmn_err(CE_ALERT,
2065 					"%s : Dquot ID 0x%x (0x%p) "
2066 					"RTBLK TIMER NOT STARTED",
2067 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2068 				errs++;
2069 			}
2070 		}
2071 	}
2072 
2073 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2074 		return errs;
2075 
2076 	if (flags & XFS_QMOPT_DOWARN)
2077 		cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2078 
2079 	/*
2080 	 * Typically, a repair is only requested by quotacheck.
2081 	 */
2082 	ASSERT(id != -1);
2083 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2084 	memset(d, 0, sizeof(xfs_dqblk_t));
2085 
2086 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2087 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2088 	d->dd_diskdq.d_flags = type;
2089 	d->dd_diskdq.d_id = cpu_to_be32(id);
2090 
2091 	return errs;
2092 }
2093 
2094 /*
2095  * Perform a dquot buffer recovery.
2096  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2097  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2098  * Else, treat it as a regular buffer and do recovery.
2099  */
2100 STATIC void
2101 xlog_recover_do_dquot_buffer(
2102 	xfs_mount_t		*mp,
2103 	xlog_t			*log,
2104 	xlog_recover_item_t	*item,
2105 	xfs_buf_t		*bp,
2106 	xfs_buf_log_format_t	*buf_f)
2107 {
2108 	uint			type;
2109 
2110 	/*
2111 	 * Filesystems are required to send in quota flags at mount time.
2112 	 */
2113 	if (mp->m_qflags == 0) {
2114 		return;
2115 	}
2116 
2117 	type = 0;
2118 	if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2119 		type |= XFS_DQ_USER;
2120 	if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2121 		type |= XFS_DQ_PROJ;
2122 	if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2123 		type |= XFS_DQ_GROUP;
2124 	/*
2125 	 * This type of quotas was turned off, so ignore this buffer
2126 	 */
2127 	if (log->l_quotaoffs_flag & type)
2128 		return;
2129 
2130 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2131 }
2132 
2133 /*
2134  * This routine replays a modification made to a buffer at runtime.
2135  * There are actually two types of buffer, regular and inode, which
2136  * are handled differently.  Inode buffers are handled differently
2137  * in that we only recover a specific set of data from them, namely
2138  * the inode di_next_unlinked fields.  This is because all other inode
2139  * data is actually logged via inode records and any data we replay
2140  * here which overlaps that may be stale.
2141  *
2142  * When meta-data buffers are freed at run time we log a buffer item
2143  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2144  * of the buffer in the log should not be replayed at recovery time.
2145  * This is so that if the blocks covered by the buffer are reused for
2146  * file data before we crash we don't end up replaying old, freed
2147  * meta-data into a user's file.
2148  *
2149  * To handle the cancellation of buffer log items, we make two passes
2150  * over the log during recovery.  During the first we build a table of
2151  * those buffers which have been cancelled, and during the second we
2152  * only replay those buffers which do not have corresponding cancel
2153  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2154  * for more details on the implementation of the table of cancel records.
2155  */
2156 STATIC int
2157 xlog_recover_do_buffer_trans(
2158 	xlog_t			*log,
2159 	xlog_recover_item_t	*item,
2160 	int			pass)
2161 {
2162 	xfs_buf_log_format_t	*buf_f;
2163 	xfs_buf_log_format_v1_t	*obuf_f;
2164 	xfs_mount_t		*mp;
2165 	xfs_buf_t		*bp;
2166 	int			error;
2167 	int			cancel;
2168 	xfs_daddr_t		blkno;
2169 	int			len;
2170 	ushort			flags;
2171 
2172 	buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2173 
2174 	if (pass == XLOG_RECOVER_PASS1) {
2175 		/*
2176 		 * In this pass we're only looking for buf items
2177 		 * with the XFS_BLI_CANCEL bit set.
2178 		 */
2179 		xlog_recover_do_buffer_pass1(log, buf_f);
2180 		return 0;
2181 	} else {
2182 		/*
2183 		 * In this pass we want to recover all the buffers
2184 		 * which have not been cancelled and are not
2185 		 * cancellation buffers themselves.  The routine
2186 		 * we call here will tell us whether or not to
2187 		 * continue with the replay of this buffer.
2188 		 */
2189 		cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2190 		if (cancel) {
2191 			return 0;
2192 		}
2193 	}
2194 	switch (buf_f->blf_type) {
2195 	case XFS_LI_BUF:
2196 		blkno = buf_f->blf_blkno;
2197 		len = buf_f->blf_len;
2198 		flags = buf_f->blf_flags;
2199 		break;
2200 	case XFS_LI_6_1_BUF:
2201 	case XFS_LI_5_3_BUF:
2202 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
2203 		blkno = obuf_f->blf_blkno;
2204 		len = obuf_f->blf_len;
2205 		flags = obuf_f->blf_flags;
2206 		break;
2207 	default:
2208 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2209 			"xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2210 			buf_f->blf_type, log->l_mp->m_logname ?
2211 			log->l_mp->m_logname : "internal");
2212 		XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2213 				 XFS_ERRLEVEL_LOW, log->l_mp);
2214 		return XFS_ERROR(EFSCORRUPTED);
2215 	}
2216 
2217 	mp = log->l_mp;
2218 	if (flags & XFS_BLI_INODE_BUF) {
2219 		bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2220 								XFS_BUF_LOCK);
2221 	} else {
2222 		bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2223 	}
2224 	if (XFS_BUF_ISERROR(bp)) {
2225 		xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2226 				  bp, blkno);
2227 		error = XFS_BUF_GETERROR(bp);
2228 		xfs_buf_relse(bp);
2229 		return error;
2230 	}
2231 
2232 	error = 0;
2233 	if (flags & XFS_BLI_INODE_BUF) {
2234 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2235 	} else if (flags &
2236 		  (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2237 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2238 	} else {
2239 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2240 	}
2241 	if (error)
2242 		return XFS_ERROR(error);
2243 
2244 	/*
2245 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2246 	 * slower when taking into account all the buffers to be flushed.
2247 	 *
2248 	 * Also make sure that only inode buffers with good sizes stay in
2249 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2250 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2251 	 * buffers in the log can be a different size if the log was generated
2252 	 * by an older kernel using unclustered inode buffers or a newer kernel
2253 	 * running with a different inode cluster size.  Regardless, if the
2254 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2255 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2256 	 * the buffer out of the buffer cache so that the buffer won't
2257 	 * overlap with future reads of those inodes.
2258 	 */
2259 	if (XFS_DINODE_MAGIC ==
2260 	    INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2261 	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2262 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2263 		XFS_BUF_STALE(bp);
2264 		error = xfs_bwrite(mp, bp);
2265 	} else {
2266 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2267 		       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2268 		XFS_BUF_SET_FSPRIVATE(bp, mp);
2269 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2270 		xfs_bdwrite(mp, bp);
2271 	}
2272 
2273 	return (error);
2274 }
2275 
2276 STATIC int
2277 xlog_recover_do_inode_trans(
2278 	xlog_t			*log,
2279 	xlog_recover_item_t	*item,
2280 	int			pass)
2281 {
2282 	xfs_inode_log_format_t	*in_f;
2283 	xfs_mount_t		*mp;
2284 	xfs_buf_t		*bp;
2285 	xfs_imap_t		imap;
2286 	xfs_dinode_t		*dip;
2287 	xfs_ino_t		ino;
2288 	int			len;
2289 	xfs_caddr_t		src;
2290 	xfs_caddr_t		dest;
2291 	int			error;
2292 	int			attr_index;
2293 	uint			fields;
2294 	xfs_dinode_core_t	*dicp;
2295 	int			need_free = 0;
2296 
2297 	if (pass == XLOG_RECOVER_PASS1) {
2298 		return 0;
2299 	}
2300 
2301 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2302 		in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2303 	} else {
2304 		in_f = (xfs_inode_log_format_t *)kmem_alloc(
2305 			sizeof(xfs_inode_log_format_t), KM_SLEEP);
2306 		need_free = 1;
2307 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2308 		if (error)
2309 			goto error;
2310 	}
2311 	ino = in_f->ilf_ino;
2312 	mp = log->l_mp;
2313 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2314 		imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2315 		imap.im_len = in_f->ilf_len;
2316 		imap.im_boffset = in_f->ilf_boffset;
2317 	} else {
2318 		/*
2319 		 * It's an old inode format record.  We don't know where
2320 		 * its cluster is located on disk, and we can't allow
2321 		 * xfs_imap() to figure it out because the inode btrees
2322 		 * are not ready to be used.  Therefore do not pass the
2323 		 * XFS_IMAP_LOOKUP flag to xfs_imap().  This will give
2324 		 * us only the single block in which the inode lives
2325 		 * rather than its cluster, so we must make sure to
2326 		 * invalidate the buffer when we write it out below.
2327 		 */
2328 		imap.im_blkno = 0;
2329 		xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2330 	}
2331 
2332 	/*
2333 	 * Inode buffers can be freed, look out for it,
2334 	 * and do not replay the inode.
2335 	 */
2336 	if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2337 		error = 0;
2338 		goto error;
2339 	}
2340 
2341 	bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2342 								XFS_BUF_LOCK);
2343 	if (XFS_BUF_ISERROR(bp)) {
2344 		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2345 				  bp, imap.im_blkno);
2346 		error = XFS_BUF_GETERROR(bp);
2347 		xfs_buf_relse(bp);
2348 		goto error;
2349 	}
2350 	error = 0;
2351 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2352 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2353 
2354 	/*
2355 	 * Make sure the place we're flushing out to really looks
2356 	 * like an inode!
2357 	 */
2358 	if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
2359 		xfs_buf_relse(bp);
2360 		xfs_fs_cmn_err(CE_ALERT, mp,
2361 			"xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2362 			dip, bp, ino);
2363 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2364 				 XFS_ERRLEVEL_LOW, mp);
2365 		error = EFSCORRUPTED;
2366 		goto error;
2367 	}
2368 	dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
2369 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2370 		xfs_buf_relse(bp);
2371 		xfs_fs_cmn_err(CE_ALERT, mp,
2372 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2373 			item, ino);
2374 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2375 				 XFS_ERRLEVEL_LOW, mp);
2376 		error = EFSCORRUPTED;
2377 		goto error;
2378 	}
2379 
2380 	/* Skip replay when the on disk inode is newer than the log one */
2381 	if (dicp->di_flushiter <
2382 	    INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
2383 		/*
2384 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2385 		 * than smaller numbers
2386 		 */
2387 		if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
2388 							== DI_MAX_FLUSH) &&
2389 		    (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
2390 			/* do nothing */
2391 		} else {
2392 			xfs_buf_relse(bp);
2393 			error = 0;
2394 			goto error;
2395 		}
2396 	}
2397 	/* Take the opportunity to reset the flush iteration count */
2398 	dicp->di_flushiter = 0;
2399 
2400 	if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2401 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2402 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2403 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2404 					 XFS_ERRLEVEL_LOW, mp, dicp);
2405 			xfs_buf_relse(bp);
2406 			xfs_fs_cmn_err(CE_ALERT, mp,
2407 				"xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2408 				item, dip, bp, ino);
2409 			error = EFSCORRUPTED;
2410 			goto error;
2411 		}
2412 	} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2413 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2414 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2415 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2416 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2417 					     XFS_ERRLEVEL_LOW, mp, dicp);
2418 			xfs_buf_relse(bp);
2419 			xfs_fs_cmn_err(CE_ALERT, mp,
2420 				"xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2421 				item, dip, bp, ino);
2422 			error = EFSCORRUPTED;
2423 			goto error;
2424 		}
2425 	}
2426 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2427 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2428 				     XFS_ERRLEVEL_LOW, mp, dicp);
2429 		xfs_buf_relse(bp);
2430 		xfs_fs_cmn_err(CE_ALERT, mp,
2431 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2432 			item, dip, bp, ino,
2433 			dicp->di_nextents + dicp->di_anextents,
2434 			dicp->di_nblocks);
2435 		error = EFSCORRUPTED;
2436 		goto error;
2437 	}
2438 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2439 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2440 				     XFS_ERRLEVEL_LOW, mp, dicp);
2441 		xfs_buf_relse(bp);
2442 		xfs_fs_cmn_err(CE_ALERT, mp,
2443 			"xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2444 			item, dip, bp, ino, dicp->di_forkoff);
2445 		error = EFSCORRUPTED;
2446 		goto error;
2447 	}
2448 	if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2449 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2450 				     XFS_ERRLEVEL_LOW, mp, dicp);
2451 		xfs_buf_relse(bp);
2452 		xfs_fs_cmn_err(CE_ALERT, mp,
2453 			"xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2454 			item->ri_buf[1].i_len, item);
2455 		error = EFSCORRUPTED;
2456 		goto error;
2457 	}
2458 
2459 	/* The core is in in-core format */
2460 	xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
2461 			      (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
2462 
2463 	/* the rest is in on-disk format */
2464 	if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2465 		memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2466 			item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2467 			item->ri_buf[1].i_len  - sizeof(xfs_dinode_core_t));
2468 	}
2469 
2470 	fields = in_f->ilf_fields;
2471 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2472 	case XFS_ILOG_DEV:
2473 		INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
2474 
2475 		break;
2476 	case XFS_ILOG_UUID:
2477 		dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2478 		break;
2479 	}
2480 
2481 	if (in_f->ilf_size == 2)
2482 		goto write_inode_buffer;
2483 	len = item->ri_buf[2].i_len;
2484 	src = item->ri_buf[2].i_addr;
2485 	ASSERT(in_f->ilf_size <= 4);
2486 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2487 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2488 	       (len == in_f->ilf_dsize));
2489 
2490 	switch (fields & XFS_ILOG_DFORK) {
2491 	case XFS_ILOG_DDATA:
2492 	case XFS_ILOG_DEXT:
2493 		memcpy(&dip->di_u, src, len);
2494 		break;
2495 
2496 	case XFS_ILOG_DBROOT:
2497 		xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2498 				 &(dip->di_u.di_bmbt),
2499 				 XFS_DFORK_DSIZE(dip, mp));
2500 		break;
2501 
2502 	default:
2503 		/*
2504 		 * There are no data fork flags set.
2505 		 */
2506 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2507 		break;
2508 	}
2509 
2510 	/*
2511 	 * If we logged any attribute data, recover it.  There may or
2512 	 * may not have been any other non-core data logged in this
2513 	 * transaction.
2514 	 */
2515 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2516 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2517 			attr_index = 3;
2518 		} else {
2519 			attr_index = 2;
2520 		}
2521 		len = item->ri_buf[attr_index].i_len;
2522 		src = item->ri_buf[attr_index].i_addr;
2523 		ASSERT(len == in_f->ilf_asize);
2524 
2525 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2526 		case XFS_ILOG_ADATA:
2527 		case XFS_ILOG_AEXT:
2528 			dest = XFS_DFORK_APTR(dip);
2529 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2530 			memcpy(dest, src, len);
2531 			break;
2532 
2533 		case XFS_ILOG_ABROOT:
2534 			dest = XFS_DFORK_APTR(dip);
2535 			xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2536 					 (xfs_bmdr_block_t*)dest,
2537 					 XFS_DFORK_ASIZE(dip, mp));
2538 			break;
2539 
2540 		default:
2541 			xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2542 			ASSERT(0);
2543 			xfs_buf_relse(bp);
2544 			error = EIO;
2545 			goto error;
2546 		}
2547 	}
2548 
2549 write_inode_buffer:
2550 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2551 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2552 		       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2553 		XFS_BUF_SET_FSPRIVATE(bp, mp);
2554 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2555 		xfs_bdwrite(mp, bp);
2556 	} else {
2557 		XFS_BUF_STALE(bp);
2558 		error = xfs_bwrite(mp, bp);
2559 	}
2560 
2561 error:
2562 	if (need_free)
2563 		kmem_free(in_f, sizeof(*in_f));
2564 	return XFS_ERROR(error);
2565 }
2566 
2567 /*
2568  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2569  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2570  * of that type.
2571  */
2572 STATIC int
2573 xlog_recover_do_quotaoff_trans(
2574 	xlog_t			*log,
2575 	xlog_recover_item_t	*item,
2576 	int			pass)
2577 {
2578 	xfs_qoff_logformat_t	*qoff_f;
2579 
2580 	if (pass == XLOG_RECOVER_PASS2) {
2581 		return (0);
2582 	}
2583 
2584 	qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2585 	ASSERT(qoff_f);
2586 
2587 	/*
2588 	 * The logitem format's flag tells us if this was user quotaoff,
2589 	 * group/project quotaoff or both.
2590 	 */
2591 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2592 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2593 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2594 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2595 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2596 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2597 
2598 	return (0);
2599 }
2600 
2601 /*
2602  * Recover a dquot record
2603  */
2604 STATIC int
2605 xlog_recover_do_dquot_trans(
2606 	xlog_t			*log,
2607 	xlog_recover_item_t	*item,
2608 	int			pass)
2609 {
2610 	xfs_mount_t		*mp;
2611 	xfs_buf_t		*bp;
2612 	struct xfs_disk_dquot	*ddq, *recddq;
2613 	int			error;
2614 	xfs_dq_logformat_t	*dq_f;
2615 	uint			type;
2616 
2617 	if (pass == XLOG_RECOVER_PASS1) {
2618 		return 0;
2619 	}
2620 	mp = log->l_mp;
2621 
2622 	/*
2623 	 * Filesystems are required to send in quota flags at mount time.
2624 	 */
2625 	if (mp->m_qflags == 0)
2626 		return (0);
2627 
2628 	recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2629 	ASSERT(recddq);
2630 	/*
2631 	 * This type of quotas was turned off, so ignore this record.
2632 	 */
2633 	type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
2634 			(XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2635 	ASSERT(type);
2636 	if (log->l_quotaoffs_flag & type)
2637 		return (0);
2638 
2639 	/*
2640 	 * At this point we know that quota was _not_ turned off.
2641 	 * Since the mount flags are not indicating to us otherwise, this
2642 	 * must mean that quota is on, and the dquot needs to be replayed.
2643 	 * Remember that we may not have fully recovered the superblock yet,
2644 	 * so we can't do the usual trick of looking at the SB quota bits.
2645 	 *
2646 	 * The other possibility, of course, is that the quota subsystem was
2647 	 * removed since the last mount - ENOSYS.
2648 	 */
2649 	dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2650 	ASSERT(dq_f);
2651 	if ((error = xfs_qm_dqcheck(recddq,
2652 			   dq_f->qlf_id,
2653 			   0, XFS_QMOPT_DOWARN,
2654 			   "xlog_recover_do_dquot_trans (log copy)"))) {
2655 		return XFS_ERROR(EIO);
2656 	}
2657 	ASSERT(dq_f->qlf_len == 1);
2658 
2659 	error = xfs_read_buf(mp, mp->m_ddev_targp,
2660 			     dq_f->qlf_blkno,
2661 			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2662 			     0, &bp);
2663 	if (error) {
2664 		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2665 				  bp, dq_f->qlf_blkno);
2666 		return error;
2667 	}
2668 	ASSERT(bp);
2669 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2670 
2671 	/*
2672 	 * At least the magic num portion should be on disk because this
2673 	 * was among a chunk of dquots created earlier, and we did some
2674 	 * minimal initialization then.
2675 	 */
2676 	if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2677 			   "xlog_recover_do_dquot_trans")) {
2678 		xfs_buf_relse(bp);
2679 		return XFS_ERROR(EIO);
2680 	}
2681 
2682 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2683 
2684 	ASSERT(dq_f->qlf_size == 2);
2685 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2686 	       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2687 	XFS_BUF_SET_FSPRIVATE(bp, mp);
2688 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2689 	xfs_bdwrite(mp, bp);
2690 
2691 	return (0);
2692 }
2693 
2694 /*
2695  * This routine is called to create an in-core extent free intent
2696  * item from the efi format structure which was logged on disk.
2697  * It allocates an in-core efi, copies the extents from the format
2698  * structure into it, and adds the efi to the AIL with the given
2699  * LSN.
2700  */
2701 STATIC int
2702 xlog_recover_do_efi_trans(
2703 	xlog_t			*log,
2704 	xlog_recover_item_t	*item,
2705 	xfs_lsn_t		lsn,
2706 	int			pass)
2707 {
2708 	int			error;
2709 	xfs_mount_t		*mp;
2710 	xfs_efi_log_item_t	*efip;
2711 	xfs_efi_log_format_t	*efi_formatp;
2712 	SPLDECL(s);
2713 
2714 	if (pass == XLOG_RECOVER_PASS1) {
2715 		return 0;
2716 	}
2717 
2718 	efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2719 
2720 	mp = log->l_mp;
2721 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2722 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2723 					 &(efip->efi_format)))) {
2724 		xfs_efi_item_free(efip);
2725 		return error;
2726 	}
2727 	efip->efi_next_extent = efi_formatp->efi_nextents;
2728 	efip->efi_flags |= XFS_EFI_COMMITTED;
2729 
2730 	AIL_LOCK(mp,s);
2731 	/*
2732 	 * xfs_trans_update_ail() drops the AIL lock.
2733 	 */
2734 	xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
2735 	return 0;
2736 }
2737 
2738 
2739 /*
2740  * This routine is called when an efd format structure is found in
2741  * a committed transaction in the log.  It's purpose is to cancel
2742  * the corresponding efi if it was still in the log.  To do this
2743  * it searches the AIL for the efi with an id equal to that in the
2744  * efd format structure.  If we find it, we remove the efi from the
2745  * AIL and free it.
2746  */
2747 STATIC void
2748 xlog_recover_do_efd_trans(
2749 	xlog_t			*log,
2750 	xlog_recover_item_t	*item,
2751 	int			pass)
2752 {
2753 	xfs_mount_t		*mp;
2754 	xfs_efd_log_format_t	*efd_formatp;
2755 	xfs_efi_log_item_t	*efip = NULL;
2756 	xfs_log_item_t		*lip;
2757 	int			gen;
2758 	__uint64_t		efi_id;
2759 	SPLDECL(s);
2760 
2761 	if (pass == XLOG_RECOVER_PASS1) {
2762 		return;
2763 	}
2764 
2765 	efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2766 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2767 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2768 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2769 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2770 	efi_id = efd_formatp->efd_efi_id;
2771 
2772 	/*
2773 	 * Search for the efi with the id in the efd format structure
2774 	 * in the AIL.
2775 	 */
2776 	mp = log->l_mp;
2777 	AIL_LOCK(mp,s);
2778 	lip = xfs_trans_first_ail(mp, &gen);
2779 	while (lip != NULL) {
2780 		if (lip->li_type == XFS_LI_EFI) {
2781 			efip = (xfs_efi_log_item_t *)lip;
2782 			if (efip->efi_format.efi_id == efi_id) {
2783 				/*
2784 				 * xfs_trans_delete_ail() drops the
2785 				 * AIL lock.
2786 				 */
2787 				xfs_trans_delete_ail(mp, lip, s);
2788 				break;
2789 			}
2790 		}
2791 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2792 	}
2793 
2794 	/*
2795 	 * If we found it, then free it up.  If it wasn't there, it
2796 	 * must have been overwritten in the log.  Oh well.
2797 	 */
2798 	if (lip != NULL) {
2799 		xfs_efi_item_free(efip);
2800 	} else {
2801 		AIL_UNLOCK(mp, s);
2802 	}
2803 }
2804 
2805 /*
2806  * Perform the transaction
2807  *
2808  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2809  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2810  */
2811 STATIC int
2812 xlog_recover_do_trans(
2813 	xlog_t			*log,
2814 	xlog_recover_t		*trans,
2815 	int			pass)
2816 {
2817 	int			error = 0;
2818 	xlog_recover_item_t	*item, *first_item;
2819 
2820 	if ((error = xlog_recover_reorder_trans(log, trans)))
2821 		return error;
2822 	first_item = item = trans->r_itemq;
2823 	do {
2824 		/*
2825 		 * we don't need to worry about the block number being
2826 		 * truncated in > 1 TB buffers because in user-land,
2827 		 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2828 		 * the blknos will get through the user-mode buffer
2829 		 * cache properly.  The only bad case is o32 kernels
2830 		 * where xfs_daddr_t is 32-bits but mount will warn us
2831 		 * off a > 1 TB filesystem before we get here.
2832 		 */
2833 		if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
2834 		    (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
2835 		    (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
2836 			if  ((error = xlog_recover_do_buffer_trans(log, item,
2837 								 pass)))
2838 				break;
2839 		} else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2840 			if ((error = xlog_recover_do_inode_trans(log, item,
2841 								pass)))
2842 				break;
2843 		} else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2844 			if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2845 						  pass)))
2846 				break;
2847 		} else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2848 			xlog_recover_do_efd_trans(log, item, pass);
2849 		} else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2850 			if ((error = xlog_recover_do_dquot_trans(log, item,
2851 								   pass)))
2852 					break;
2853 		} else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2854 			if ((error = xlog_recover_do_quotaoff_trans(log, item,
2855 								   pass)))
2856 					break;
2857 		} else {
2858 			xlog_warn("XFS: xlog_recover_do_trans");
2859 			ASSERT(0);
2860 			error = XFS_ERROR(EIO);
2861 			break;
2862 		}
2863 		item = item->ri_next;
2864 	} while (first_item != item);
2865 
2866 	return error;
2867 }
2868 
2869 /*
2870  * Free up any resources allocated by the transaction
2871  *
2872  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2873  */
2874 STATIC void
2875 xlog_recover_free_trans(
2876 	xlog_recover_t		*trans)
2877 {
2878 	xlog_recover_item_t	*first_item, *item, *free_item;
2879 	int			i;
2880 
2881 	item = first_item = trans->r_itemq;
2882 	do {
2883 		free_item = item;
2884 		item = item->ri_next;
2885 		 /* Free the regions in the item. */
2886 		for (i = 0; i < free_item->ri_cnt; i++) {
2887 			kmem_free(free_item->ri_buf[i].i_addr,
2888 				  free_item->ri_buf[i].i_len);
2889 		}
2890 		/* Free the item itself */
2891 		kmem_free(free_item->ri_buf,
2892 			  (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2893 		kmem_free(free_item, sizeof(xlog_recover_item_t));
2894 	} while (first_item != item);
2895 	/* Free the transaction recover structure */
2896 	kmem_free(trans, sizeof(xlog_recover_t));
2897 }
2898 
2899 STATIC int
2900 xlog_recover_commit_trans(
2901 	xlog_t			*log,
2902 	xlog_recover_t		**q,
2903 	xlog_recover_t		*trans,
2904 	int			pass)
2905 {
2906 	int			error;
2907 
2908 	if ((error = xlog_recover_unlink_tid(q, trans)))
2909 		return error;
2910 	if ((error = xlog_recover_do_trans(log, trans, pass)))
2911 		return error;
2912 	xlog_recover_free_trans(trans);			/* no error */
2913 	return 0;
2914 }
2915 
2916 STATIC int
2917 xlog_recover_unmount_trans(
2918 	xlog_recover_t		*trans)
2919 {
2920 	/* Do nothing now */
2921 	xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2922 	return 0;
2923 }
2924 
2925 /*
2926  * There are two valid states of the r_state field.  0 indicates that the
2927  * transaction structure is in a normal state.  We have either seen the
2928  * start of the transaction or the last operation we added was not a partial
2929  * operation.  If the last operation we added to the transaction was a
2930  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2931  *
2932  * NOTE: skip LRs with 0 data length.
2933  */
2934 STATIC int
2935 xlog_recover_process_data(
2936 	xlog_t			*log,
2937 	xlog_recover_t		*rhash[],
2938 	xlog_rec_header_t	*rhead,
2939 	xfs_caddr_t		dp,
2940 	int			pass)
2941 {
2942 	xfs_caddr_t		lp;
2943 	int			num_logops;
2944 	xlog_op_header_t	*ohead;
2945 	xlog_recover_t		*trans;
2946 	xlog_tid_t		tid;
2947 	int			error;
2948 	unsigned long		hash;
2949 	uint			flags;
2950 
2951 	lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2952 	num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2953 
2954 	/* check the log format matches our own - else we can't recover */
2955 	if (xlog_header_check_recover(log->l_mp, rhead))
2956 		return (XFS_ERROR(EIO));
2957 
2958 	while ((dp < lp) && num_logops) {
2959 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2960 		ohead = (xlog_op_header_t *)dp;
2961 		dp += sizeof(xlog_op_header_t);
2962 		if (ohead->oh_clientid != XFS_TRANSACTION &&
2963 		    ohead->oh_clientid != XFS_LOG) {
2964 			xlog_warn(
2965 		"XFS: xlog_recover_process_data: bad clientid");
2966 			ASSERT(0);
2967 			return (XFS_ERROR(EIO));
2968 		}
2969 		tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2970 		hash = XLOG_RHASH(tid);
2971 		trans = xlog_recover_find_tid(rhash[hash], tid);
2972 		if (trans == NULL) {		   /* not found; add new tid */
2973 			if (ohead->oh_flags & XLOG_START_TRANS)
2974 				xlog_recover_new_tid(&rhash[hash], tid,
2975 					INT_GET(rhead->h_lsn, ARCH_CONVERT));
2976 		} else {
2977 			ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2978 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2979 			if (flags & XLOG_WAS_CONT_TRANS)
2980 				flags &= ~XLOG_CONTINUE_TRANS;
2981 			switch (flags) {
2982 			case XLOG_COMMIT_TRANS:
2983 				error = xlog_recover_commit_trans(log,
2984 						&rhash[hash], trans, pass);
2985 				break;
2986 			case XLOG_UNMOUNT_TRANS:
2987 				error = xlog_recover_unmount_trans(trans);
2988 				break;
2989 			case XLOG_WAS_CONT_TRANS:
2990 				error = xlog_recover_add_to_cont_trans(trans,
2991 						dp, INT_GET(ohead->oh_len,
2992 							ARCH_CONVERT));
2993 				break;
2994 			case XLOG_START_TRANS:
2995 				xlog_warn(
2996 			"XFS: xlog_recover_process_data: bad transaction");
2997 				ASSERT(0);
2998 				error = XFS_ERROR(EIO);
2999 				break;
3000 			case 0:
3001 			case XLOG_CONTINUE_TRANS:
3002 				error = xlog_recover_add_to_trans(trans,
3003 						dp, INT_GET(ohead->oh_len,
3004 							ARCH_CONVERT));
3005 				break;
3006 			default:
3007 				xlog_warn(
3008 			"XFS: xlog_recover_process_data: bad flag");
3009 				ASSERT(0);
3010 				error = XFS_ERROR(EIO);
3011 				break;
3012 			}
3013 			if (error)
3014 				return error;
3015 		}
3016 		dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
3017 		num_logops--;
3018 	}
3019 	return 0;
3020 }
3021 
3022 /*
3023  * Process an extent free intent item that was recovered from
3024  * the log.  We need to free the extents that it describes.
3025  */
3026 STATIC void
3027 xlog_recover_process_efi(
3028 	xfs_mount_t		*mp,
3029 	xfs_efi_log_item_t	*efip)
3030 {
3031 	xfs_efd_log_item_t	*efdp;
3032 	xfs_trans_t		*tp;
3033 	int			i;
3034 	xfs_extent_t		*extp;
3035 	xfs_fsblock_t		startblock_fsb;
3036 
3037 	ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3038 
3039 	/*
3040 	 * First check the validity of the extents described by the
3041 	 * EFI.  If any are bad, then assume that all are bad and
3042 	 * just toss the EFI.
3043 	 */
3044 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3045 		extp = &(efip->efi_format.efi_extents[i]);
3046 		startblock_fsb = XFS_BB_TO_FSB(mp,
3047 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3048 		if ((startblock_fsb == 0) ||
3049 		    (extp->ext_len == 0) ||
3050 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3051 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3052 			/*
3053 			 * This will pull the EFI from the AIL and
3054 			 * free the memory associated with it.
3055 			 */
3056 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3057 			return;
3058 		}
3059 	}
3060 
3061 	tp = xfs_trans_alloc(mp, 0);
3062 	xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3063 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3064 
3065 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3066 		extp = &(efip->efi_format.efi_extents[i]);
3067 		xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3068 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3069 					 extp->ext_len);
3070 	}
3071 
3072 	efip->efi_flags |= XFS_EFI_RECOVERED;
3073 	xfs_trans_commit(tp, 0, NULL);
3074 }
3075 
3076 /*
3077  * Verify that once we've encountered something other than an EFI
3078  * in the AIL that there are no more EFIs in the AIL.
3079  */
3080 #if defined(DEBUG)
3081 STATIC void
3082 xlog_recover_check_ail(
3083 	xfs_mount_t		*mp,
3084 	xfs_log_item_t		*lip,
3085 	int			gen)
3086 {
3087 	int			orig_gen = gen;
3088 
3089 	do {
3090 		ASSERT(lip->li_type != XFS_LI_EFI);
3091 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3092 		/*
3093 		 * The check will be bogus if we restart from the
3094 		 * beginning of the AIL, so ASSERT that we don't.
3095 		 * We never should since we're holding the AIL lock
3096 		 * the entire time.
3097 		 */
3098 		ASSERT(gen == orig_gen);
3099 	} while (lip != NULL);
3100 }
3101 #endif	/* DEBUG */
3102 
3103 /*
3104  * When this is called, all of the EFIs which did not have
3105  * corresponding EFDs should be in the AIL.  What we do now
3106  * is free the extents associated with each one.
3107  *
3108  * Since we process the EFIs in normal transactions, they
3109  * will be removed at some point after the commit.  This prevents
3110  * us from just walking down the list processing each one.
3111  * We'll use a flag in the EFI to skip those that we've already
3112  * processed and use the AIL iteration mechanism's generation
3113  * count to try to speed this up at least a bit.
3114  *
3115  * When we start, we know that the EFIs are the only things in
3116  * the AIL.  As we process them, however, other items are added
3117  * to the AIL.  Since everything added to the AIL must come after
3118  * everything already in the AIL, we stop processing as soon as
3119  * we see something other than an EFI in the AIL.
3120  */
3121 STATIC void
3122 xlog_recover_process_efis(
3123 	xlog_t			*log)
3124 {
3125 	xfs_log_item_t		*lip;
3126 	xfs_efi_log_item_t	*efip;
3127 	int			gen;
3128 	xfs_mount_t		*mp;
3129 	SPLDECL(s);
3130 
3131 	mp = log->l_mp;
3132 	AIL_LOCK(mp,s);
3133 
3134 	lip = xfs_trans_first_ail(mp, &gen);
3135 	while (lip != NULL) {
3136 		/*
3137 		 * We're done when we see something other than an EFI.
3138 		 */
3139 		if (lip->li_type != XFS_LI_EFI) {
3140 			xlog_recover_check_ail(mp, lip, gen);
3141 			break;
3142 		}
3143 
3144 		/*
3145 		 * Skip EFIs that we've already processed.
3146 		 */
3147 		efip = (xfs_efi_log_item_t *)lip;
3148 		if (efip->efi_flags & XFS_EFI_RECOVERED) {
3149 			lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3150 			continue;
3151 		}
3152 
3153 		AIL_UNLOCK(mp, s);
3154 		xlog_recover_process_efi(mp, efip);
3155 		AIL_LOCK(mp,s);
3156 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3157 	}
3158 	AIL_UNLOCK(mp, s);
3159 }
3160 
3161 /*
3162  * This routine performs a transaction to null out a bad inode pointer
3163  * in an agi unlinked inode hash bucket.
3164  */
3165 STATIC void
3166 xlog_recover_clear_agi_bucket(
3167 	xfs_mount_t	*mp,
3168 	xfs_agnumber_t	agno,
3169 	int		bucket)
3170 {
3171 	xfs_trans_t	*tp;
3172 	xfs_agi_t	*agi;
3173 	xfs_buf_t	*agibp;
3174 	int		offset;
3175 	int		error;
3176 
3177 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3178 	xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3179 
3180 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3181 				   XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3182 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3183 	if (error) {
3184 		xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3185 		return;
3186 	}
3187 
3188 	agi = XFS_BUF_TO_AGI(agibp);
3189 	if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
3190 		xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3191 		return;
3192 	}
3193 
3194 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3195 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3196 		 (sizeof(xfs_agino_t) * bucket);
3197 	xfs_trans_log_buf(tp, agibp, offset,
3198 			  (offset + sizeof(xfs_agino_t) - 1));
3199 
3200 	(void) xfs_trans_commit(tp, 0, NULL);
3201 }
3202 
3203 /*
3204  * xlog_iunlink_recover
3205  *
3206  * This is called during recovery to process any inodes which
3207  * we unlinked but not freed when the system crashed.  These
3208  * inodes will be on the lists in the AGI blocks.  What we do
3209  * here is scan all the AGIs and fully truncate and free any
3210  * inodes found on the lists.  Each inode is removed from the
3211  * lists when it has been fully truncated and is freed.  The
3212  * freeing of the inode and its removal from the list must be
3213  * atomic.
3214  */
3215 void
3216 xlog_recover_process_iunlinks(
3217 	xlog_t		*log)
3218 {
3219 	xfs_mount_t	*mp;
3220 	xfs_agnumber_t	agno;
3221 	xfs_agi_t	*agi;
3222 	xfs_buf_t	*agibp;
3223 	xfs_buf_t	*ibp;
3224 	xfs_dinode_t	*dip;
3225 	xfs_inode_t	*ip;
3226 	xfs_agino_t	agino;
3227 	xfs_ino_t	ino;
3228 	int		bucket;
3229 	int		error;
3230 	uint		mp_dmevmask;
3231 
3232 	mp = log->l_mp;
3233 
3234 	/*
3235 	 * Prevent any DMAPI event from being sent while in this function.
3236 	 */
3237 	mp_dmevmask = mp->m_dmevmask;
3238 	mp->m_dmevmask = 0;
3239 
3240 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3241 		/*
3242 		 * Find the agi for this ag.
3243 		 */
3244 		agibp = xfs_buf_read(mp->m_ddev_targp,
3245 				XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3246 				XFS_FSS_TO_BB(mp, 1), 0);
3247 		if (XFS_BUF_ISERROR(agibp)) {
3248 			xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3249 				log->l_mp, agibp,
3250 				XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3251 		}
3252 		agi = XFS_BUF_TO_AGI(agibp);
3253 		ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3254 
3255 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3256 
3257 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3258 			while (agino != NULLAGINO) {
3259 
3260 				/*
3261 				 * Release the agi buffer so that it can
3262 				 * be acquired in the normal course of the
3263 				 * transaction to truncate and free the inode.
3264 				 */
3265 				xfs_buf_relse(agibp);
3266 
3267 				ino = XFS_AGINO_TO_INO(mp, agno, agino);
3268 				error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3269 				ASSERT(error || (ip != NULL));
3270 
3271 				if (!error) {
3272 					/*
3273 					 * Get the on disk inode to find the
3274 					 * next inode in the bucket.
3275 					 */
3276 					error = xfs_itobp(mp, NULL, ip, &dip,
3277 							&ibp, 0, 0);
3278 					ASSERT(error || (dip != NULL));
3279 				}
3280 
3281 				if (!error) {
3282 					ASSERT(ip->i_d.di_nlink == 0);
3283 
3284 					/* setup for the next pass */
3285 					agino = INT_GET(dip->di_next_unlinked,
3286 							ARCH_CONVERT);
3287 					xfs_buf_relse(ibp);
3288 					/*
3289 					 * Prevent any DMAPI event from
3290 					 * being sent when the
3291 					 * reference on the inode is
3292 					 * dropped.
3293 					 */
3294 					ip->i_d.di_dmevmask = 0;
3295 
3296 					/*
3297 					 * If this is a new inode, handle
3298 					 * it specially.  Otherwise,
3299 					 * just drop our reference to the
3300 					 * inode.  If there are no
3301 					 * other references, this will
3302 					 * send the inode to
3303 					 * xfs_inactive() which will
3304 					 * truncate the file and free
3305 					 * the inode.
3306 					 */
3307 					if (ip->i_d.di_mode == 0)
3308 						xfs_iput_new(ip, 0);
3309 					else
3310 						VN_RELE(XFS_ITOV(ip));
3311 				} else {
3312 					/*
3313 					 * We can't read in the inode
3314 					 * this bucket points to, or
3315 					 * this inode is messed up.  Just
3316 					 * ditch this bucket of inodes.  We
3317 					 * will lose some inodes and space,
3318 					 * but at least we won't hang.  Call
3319 					 * xlog_recover_clear_agi_bucket()
3320 					 * to perform a transaction to clear
3321 					 * the inode pointer in the bucket.
3322 					 */
3323 					xlog_recover_clear_agi_bucket(mp, agno,
3324 							bucket);
3325 
3326 					agino = NULLAGINO;
3327 				}
3328 
3329 				/*
3330 				 * Reacquire the agibuffer and continue around
3331 				 * the loop.
3332 				 */
3333 				agibp = xfs_buf_read(mp->m_ddev_targp,
3334 						XFS_AG_DADDR(mp, agno,
3335 							XFS_AGI_DADDR(mp)),
3336 						XFS_FSS_TO_BB(mp, 1), 0);
3337 				if (XFS_BUF_ISERROR(agibp)) {
3338 					xfs_ioerror_alert(
3339 				"xlog_recover_process_iunlinks(#2)",
3340 						log->l_mp, agibp,
3341 						XFS_AG_DADDR(mp, agno,
3342 							XFS_AGI_DADDR(mp)));
3343 				}
3344 				agi = XFS_BUF_TO_AGI(agibp);
3345 				ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3346 					agi->agi_magicnum));
3347 			}
3348 		}
3349 
3350 		/*
3351 		 * Release the buffer for the current agi so we can
3352 		 * go on to the next one.
3353 		 */
3354 		xfs_buf_relse(agibp);
3355 	}
3356 
3357 	mp->m_dmevmask = mp_dmevmask;
3358 }
3359 
3360 
3361 #ifdef DEBUG
3362 STATIC void
3363 xlog_pack_data_checksum(
3364 	xlog_t		*log,
3365 	xlog_in_core_t	*iclog,
3366 	int		size)
3367 {
3368 	int		i;
3369 	uint		*up;
3370 	uint		chksum = 0;
3371 
3372 	up = (uint *)iclog->ic_datap;
3373 	/* divide length by 4 to get # words */
3374 	for (i = 0; i < (size >> 2); i++) {
3375 		chksum ^= INT_GET(*up, ARCH_CONVERT);
3376 		up++;
3377 	}
3378 	INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3379 }
3380 #else
3381 #define xlog_pack_data_checksum(log, iclog, size)
3382 #endif
3383 
3384 /*
3385  * Stamp cycle number in every block
3386  */
3387 void
3388 xlog_pack_data(
3389 	xlog_t			*log,
3390 	xlog_in_core_t		*iclog,
3391 	int			roundoff)
3392 {
3393 	int			i, j, k;
3394 	int			size = iclog->ic_offset + roundoff;
3395 	uint			cycle_lsn;
3396 	xfs_caddr_t		dp;
3397 	xlog_in_core_2_t	*xhdr;
3398 
3399 	xlog_pack_data_checksum(log, iclog, size);
3400 
3401 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3402 
3403 	dp = iclog->ic_datap;
3404 	for (i = 0; i < BTOBB(size) &&
3405 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3406 		iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3407 		*(uint *)dp = cycle_lsn;
3408 		dp += BBSIZE;
3409 	}
3410 
3411 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3412 		xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3413 		for ( ; i < BTOBB(size); i++) {
3414 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3415 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3416 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3417 			*(uint *)dp = cycle_lsn;
3418 			dp += BBSIZE;
3419 		}
3420 
3421 		for (i = 1; i < log->l_iclog_heads; i++) {
3422 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3423 		}
3424 	}
3425 }
3426 
3427 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3428 STATIC void
3429 xlog_unpack_data_checksum(
3430 	xlog_rec_header_t	*rhead,
3431 	xfs_caddr_t		dp,
3432 	xlog_t			*log)
3433 {
3434 	uint			*up = (uint *)dp;
3435 	uint			chksum = 0;
3436 	int			i;
3437 
3438 	/* divide length by 4 to get # words */
3439 	for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3440 		chksum ^= INT_GET(*up, ARCH_CONVERT);
3441 		up++;
3442 	}
3443 	if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3444 	    if (rhead->h_chksum ||
3445 		((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3446 		    cmn_err(CE_DEBUG,
3447 			"XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3448 			    INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3449 		    cmn_err(CE_DEBUG,
3450 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3451 		    if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3452 			    cmn_err(CE_DEBUG,
3453 				"XFS: LogR this is a LogV2 filesystem\n");
3454 		    }
3455 		    log->l_flags |= XLOG_CHKSUM_MISMATCH;
3456 	    }
3457 	}
3458 }
3459 #else
3460 #define xlog_unpack_data_checksum(rhead, dp, log)
3461 #endif
3462 
3463 STATIC void
3464 xlog_unpack_data(
3465 	xlog_rec_header_t	*rhead,
3466 	xfs_caddr_t		dp,
3467 	xlog_t			*log)
3468 {
3469 	int			i, j, k;
3470 	xlog_in_core_2_t	*xhdr;
3471 
3472 	for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3473 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3474 		*(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3475 		dp += BBSIZE;
3476 	}
3477 
3478 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3479 		xhdr = (xlog_in_core_2_t *)rhead;
3480 		for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3481 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3482 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3483 			*(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3484 			dp += BBSIZE;
3485 		}
3486 	}
3487 
3488 	xlog_unpack_data_checksum(rhead, dp, log);
3489 }
3490 
3491 STATIC int
3492 xlog_valid_rec_header(
3493 	xlog_t			*log,
3494 	xlog_rec_header_t	*rhead,
3495 	xfs_daddr_t		blkno)
3496 {
3497 	int			hlen;
3498 
3499 	if (unlikely(
3500 	    (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3501 			XLOG_HEADER_MAGIC_NUM))) {
3502 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3503 				XFS_ERRLEVEL_LOW, log->l_mp);
3504 		return XFS_ERROR(EFSCORRUPTED);
3505 	}
3506 	if (unlikely(
3507 	    (!rhead->h_version ||
3508 	    (INT_GET(rhead->h_version, ARCH_CONVERT) &
3509 			(~XLOG_VERSION_OKBITS)) != 0))) {
3510 		xlog_warn("XFS: %s: unrecognised log version (%d).",
3511 			__FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3512 		return XFS_ERROR(EIO);
3513 	}
3514 
3515 	/* LR body must have data or it wouldn't have been written */
3516 	hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
3517 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3518 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3519 				XFS_ERRLEVEL_LOW, log->l_mp);
3520 		return XFS_ERROR(EFSCORRUPTED);
3521 	}
3522 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3523 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3524 				XFS_ERRLEVEL_LOW, log->l_mp);
3525 		return XFS_ERROR(EFSCORRUPTED);
3526 	}
3527 	return 0;
3528 }
3529 
3530 /*
3531  * Read the log from tail to head and process the log records found.
3532  * Handle the two cases where the tail and head are in the same cycle
3533  * and where the active portion of the log wraps around the end of
3534  * the physical log separately.  The pass parameter is passed through
3535  * to the routines called to process the data and is not looked at
3536  * here.
3537  */
3538 STATIC int
3539 xlog_do_recovery_pass(
3540 	xlog_t			*log,
3541 	xfs_daddr_t		head_blk,
3542 	xfs_daddr_t		tail_blk,
3543 	int			pass)
3544 {
3545 	xlog_rec_header_t	*rhead;
3546 	xfs_daddr_t		blk_no;
3547 	xfs_caddr_t		bufaddr, offset;
3548 	xfs_buf_t		*hbp, *dbp;
3549 	int			error = 0, h_size;
3550 	int			bblks, split_bblks;
3551 	int			hblks, split_hblks, wrapped_hblks;
3552 	xlog_recover_t		*rhash[XLOG_RHASH_SIZE];
3553 
3554 	ASSERT(head_blk != tail_blk);
3555 
3556 	/*
3557 	 * Read the header of the tail block and get the iclog buffer size from
3558 	 * h_size.  Use this to tell how many sectors make up the log header.
3559 	 */
3560 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3561 		/*
3562 		 * When using variable length iclogs, read first sector of
3563 		 * iclog header and extract the header size from it.  Get a
3564 		 * new hbp that is the correct size.
3565 		 */
3566 		hbp = xlog_get_bp(log, 1);
3567 		if (!hbp)
3568 			return ENOMEM;
3569 		if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3570 			goto bread_err1;
3571 		offset = xlog_align(log, tail_blk, 1, hbp);
3572 		rhead = (xlog_rec_header_t *)offset;
3573 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3574 		if (error)
3575 			goto bread_err1;
3576 		h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3577 		if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3578 				& XLOG_VERSION_2) &&
3579 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3580 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3581 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3582 				hblks++;
3583 			xlog_put_bp(hbp);
3584 			hbp = xlog_get_bp(log, hblks);
3585 		} else {
3586 			hblks = 1;
3587 		}
3588 	} else {
3589 		ASSERT(log->l_sectbb_log == 0);
3590 		hblks = 1;
3591 		hbp = xlog_get_bp(log, 1);
3592 		h_size = XLOG_BIG_RECORD_BSIZE;
3593 	}
3594 
3595 	if (!hbp)
3596 		return ENOMEM;
3597 	dbp = xlog_get_bp(log, BTOBB(h_size));
3598 	if (!dbp) {
3599 		xlog_put_bp(hbp);
3600 		return ENOMEM;
3601 	}
3602 
3603 	memset(rhash, 0, sizeof(rhash));
3604 	if (tail_blk <= head_blk) {
3605 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3606 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3607 				goto bread_err2;
3608 			offset = xlog_align(log, blk_no, hblks, hbp);
3609 			rhead = (xlog_rec_header_t *)offset;
3610 			error = xlog_valid_rec_header(log, rhead, blk_no);
3611 			if (error)
3612 				goto bread_err2;
3613 
3614 			/* blocks in data section */
3615 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3616 			error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3617 			if (error)
3618 				goto bread_err2;
3619 			offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3620 			xlog_unpack_data(rhead, offset, log);
3621 			if ((error = xlog_recover_process_data(log,
3622 						rhash, rhead, offset, pass)))
3623 				goto bread_err2;
3624 			blk_no += bblks + hblks;
3625 		}
3626 	} else {
3627 		/*
3628 		 * Perform recovery around the end of the physical log.
3629 		 * When the head is not on the same cycle number as the tail,
3630 		 * we can't do a sequential recovery as above.
3631 		 */
3632 		blk_no = tail_blk;
3633 		while (blk_no < log->l_logBBsize) {
3634 			/*
3635 			 * Check for header wrapping around physical end-of-log
3636 			 */
3637 			offset = NULL;
3638 			split_hblks = 0;
3639 			wrapped_hblks = 0;
3640 			if (blk_no + hblks <= log->l_logBBsize) {
3641 				/* Read header in one read */
3642 				error = xlog_bread(log, blk_no, hblks, hbp);
3643 				if (error)
3644 					goto bread_err2;
3645 				offset = xlog_align(log, blk_no, hblks, hbp);
3646 			} else {
3647 				/* This LR is split across physical log end */
3648 				if (blk_no != log->l_logBBsize) {
3649 					/* some data before physical log end */
3650 					ASSERT(blk_no <= INT_MAX);
3651 					split_hblks = log->l_logBBsize - (int)blk_no;
3652 					ASSERT(split_hblks > 0);
3653 					if ((error = xlog_bread(log, blk_no,
3654 							split_hblks, hbp)))
3655 						goto bread_err2;
3656 					offset = xlog_align(log, blk_no,
3657 							split_hblks, hbp);
3658 				}
3659 				/*
3660 				 * Note: this black magic still works with
3661 				 * large sector sizes (non-512) only because:
3662 				 * - we increased the buffer size originally
3663 				 *   by 1 sector giving us enough extra space
3664 				 *   for the second read;
3665 				 * - the log start is guaranteed to be sector
3666 				 *   aligned;
3667 				 * - we read the log end (LR header start)
3668 				 *   _first_, then the log start (LR header end)
3669 				 *   - order is important.
3670 				 */
3671 				bufaddr = XFS_BUF_PTR(hbp);
3672 				XFS_BUF_SET_PTR(hbp,
3673 						bufaddr + BBTOB(split_hblks),
3674 						BBTOB(hblks - split_hblks));
3675 				wrapped_hblks = hblks - split_hblks;
3676 				error = xlog_bread(log, 0, wrapped_hblks, hbp);
3677 				if (error)
3678 					goto bread_err2;
3679 				XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3680 				if (!offset)
3681 					offset = xlog_align(log, 0,
3682 							wrapped_hblks, hbp);
3683 			}
3684 			rhead = (xlog_rec_header_t *)offset;
3685 			error = xlog_valid_rec_header(log, rhead,
3686 						split_hblks ? blk_no : 0);
3687 			if (error)
3688 				goto bread_err2;
3689 
3690 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3691 			blk_no += hblks;
3692 
3693 			/* Read in data for log record */
3694 			if (blk_no + bblks <= log->l_logBBsize) {
3695 				error = xlog_bread(log, blk_no, bblks, dbp);
3696 				if (error)
3697 					goto bread_err2;
3698 				offset = xlog_align(log, blk_no, bblks, dbp);
3699 			} else {
3700 				/* This log record is split across the
3701 				 * physical end of log */
3702 				offset = NULL;
3703 				split_bblks = 0;
3704 				if (blk_no != log->l_logBBsize) {
3705 					/* some data is before the physical
3706 					 * end of log */
3707 					ASSERT(!wrapped_hblks);
3708 					ASSERT(blk_no <= INT_MAX);
3709 					split_bblks =
3710 						log->l_logBBsize - (int)blk_no;
3711 					ASSERT(split_bblks > 0);
3712 					if ((error = xlog_bread(log, blk_no,
3713 							split_bblks, dbp)))
3714 						goto bread_err2;
3715 					offset = xlog_align(log, blk_no,
3716 							split_bblks, dbp);
3717 				}
3718 				/*
3719 				 * Note: this black magic still works with
3720 				 * large sector sizes (non-512) only because:
3721 				 * - we increased the buffer size originally
3722 				 *   by 1 sector giving us enough extra space
3723 				 *   for the second read;
3724 				 * - the log start is guaranteed to be sector
3725 				 *   aligned;
3726 				 * - we read the log end (LR header start)
3727 				 *   _first_, then the log start (LR header end)
3728 				 *   - order is important.
3729 				 */
3730 				bufaddr = XFS_BUF_PTR(dbp);
3731 				XFS_BUF_SET_PTR(dbp,
3732 						bufaddr + BBTOB(split_bblks),
3733 						BBTOB(bblks - split_bblks));
3734 				if ((error = xlog_bread(log, wrapped_hblks,
3735 						bblks - split_bblks, dbp)))
3736 					goto bread_err2;
3737 				XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3738 				if (!offset)
3739 					offset = xlog_align(log, wrapped_hblks,
3740 						bblks - split_bblks, dbp);
3741 			}
3742 			xlog_unpack_data(rhead, offset, log);
3743 			if ((error = xlog_recover_process_data(log, rhash,
3744 							rhead, offset, pass)))
3745 				goto bread_err2;
3746 			blk_no += bblks;
3747 		}
3748 
3749 		ASSERT(blk_no >= log->l_logBBsize);
3750 		blk_no -= log->l_logBBsize;
3751 
3752 		/* read first part of physical log */
3753 		while (blk_no < head_blk) {
3754 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3755 				goto bread_err2;
3756 			offset = xlog_align(log, blk_no, hblks, hbp);
3757 			rhead = (xlog_rec_header_t *)offset;
3758 			error = xlog_valid_rec_header(log, rhead, blk_no);
3759 			if (error)
3760 				goto bread_err2;
3761 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3762 			if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3763 				goto bread_err2;
3764 			offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3765 			xlog_unpack_data(rhead, offset, log);
3766 			if ((error = xlog_recover_process_data(log, rhash,
3767 							rhead, offset, pass)))
3768 				goto bread_err2;
3769 			blk_no += bblks + hblks;
3770 		}
3771 	}
3772 
3773  bread_err2:
3774 	xlog_put_bp(dbp);
3775  bread_err1:
3776 	xlog_put_bp(hbp);
3777 	return error;
3778 }
3779 
3780 /*
3781  * Do the recovery of the log.  We actually do this in two phases.
3782  * The two passes are necessary in order to implement the function
3783  * of cancelling a record written into the log.  The first pass
3784  * determines those things which have been cancelled, and the
3785  * second pass replays log items normally except for those which
3786  * have been cancelled.  The handling of the replay and cancellations
3787  * takes place in the log item type specific routines.
3788  *
3789  * The table of items which have cancel records in the log is allocated
3790  * and freed at this level, since only here do we know when all of
3791  * the log recovery has been completed.
3792  */
3793 STATIC int
3794 xlog_do_log_recovery(
3795 	xlog_t		*log,
3796 	xfs_daddr_t	head_blk,
3797 	xfs_daddr_t	tail_blk)
3798 {
3799 	int		error;
3800 
3801 	ASSERT(head_blk != tail_blk);
3802 
3803 	/*
3804 	 * First do a pass to find all of the cancelled buf log items.
3805 	 * Store them in the buf_cancel_table for use in the second pass.
3806 	 */
3807 	log->l_buf_cancel_table =
3808 		(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3809 						 sizeof(xfs_buf_cancel_t*),
3810 						 KM_SLEEP);
3811 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3812 				      XLOG_RECOVER_PASS1);
3813 	if (error != 0) {
3814 		kmem_free(log->l_buf_cancel_table,
3815 			  XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3816 		log->l_buf_cancel_table = NULL;
3817 		return error;
3818 	}
3819 	/*
3820 	 * Then do a second pass to actually recover the items in the log.
3821 	 * When it is complete free the table of buf cancel items.
3822 	 */
3823 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3824 				      XLOG_RECOVER_PASS2);
3825 #ifdef DEBUG
3826 	if (!error) {
3827 		int	i;
3828 
3829 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3830 			ASSERT(log->l_buf_cancel_table[i] == NULL);
3831 	}
3832 #endif	/* DEBUG */
3833 
3834 	kmem_free(log->l_buf_cancel_table,
3835 		  XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3836 	log->l_buf_cancel_table = NULL;
3837 
3838 	return error;
3839 }
3840 
3841 /*
3842  * Do the actual recovery
3843  */
3844 STATIC int
3845 xlog_do_recover(
3846 	xlog_t		*log,
3847 	xfs_daddr_t	head_blk,
3848 	xfs_daddr_t	tail_blk)
3849 {
3850 	int		error;
3851 	xfs_buf_t	*bp;
3852 	xfs_sb_t	*sbp;
3853 
3854 	/*
3855 	 * First replay the images in the log.
3856 	 */
3857 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3858 	if (error) {
3859 		return error;
3860 	}
3861 
3862 	XFS_bflush(log->l_mp->m_ddev_targp);
3863 
3864 	/*
3865 	 * If IO errors happened during recovery, bail out.
3866 	 */
3867 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3868 		return (EIO);
3869 	}
3870 
3871 	/*
3872 	 * We now update the tail_lsn since much of the recovery has completed
3873 	 * and there may be space available to use.  If there were no extent
3874 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3875 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3876 	 * lsn of the last known good LR on disk.  If there are extent frees
3877 	 * or iunlinks they will have some entries in the AIL; so we look at
3878 	 * the AIL to determine how to set the tail_lsn.
3879 	 */
3880 	xlog_assign_tail_lsn(log->l_mp);
3881 
3882 	/*
3883 	 * Now that we've finished replaying all buffer and inode
3884 	 * updates, re-read in the superblock.
3885 	 */
3886 	bp = xfs_getsb(log->l_mp, 0);
3887 	XFS_BUF_UNDONE(bp);
3888 	XFS_BUF_READ(bp);
3889 	xfsbdstrat(log->l_mp, bp);
3890 	if ((error = xfs_iowait(bp))) {
3891 		xfs_ioerror_alert("xlog_do_recover",
3892 				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3893 		ASSERT(0);
3894 		xfs_buf_relse(bp);
3895 		return error;
3896 	}
3897 
3898 	/* Convert superblock from on-disk format */
3899 	sbp = &log->l_mp->m_sb;
3900 	xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
3901 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3902 	ASSERT(XFS_SB_GOOD_VERSION(sbp));
3903 	xfs_buf_relse(bp);
3904 
3905 	xlog_recover_check_summary(log);
3906 
3907 	/* Normal transactions can now occur */
3908 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3909 	return 0;
3910 }
3911 
3912 /*
3913  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3914  *
3915  * Return error or zero.
3916  */
3917 int
3918 xlog_recover(
3919 	xlog_t		*log)
3920 {
3921 	xfs_daddr_t	head_blk, tail_blk;
3922 	int		error;
3923 
3924 	/* find the tail of the log */
3925 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3926 		return error;
3927 
3928 	if (tail_blk != head_blk) {
3929 		/* There used to be a comment here:
3930 		 *
3931 		 * disallow recovery on read-only mounts.  note -- mount
3932 		 * checks for ENOSPC and turns it into an intelligent
3933 		 * error message.
3934 		 * ...but this is no longer true.  Now, unless you specify
3935 		 * NORECOVERY (in which case this function would never be
3936 		 * called), we just go ahead and recover.  We do this all
3937 		 * under the vfs layer, so we can get away with it unless
3938 		 * the device itself is read-only, in which case we fail.
3939 		 */
3940 		if ((error = xfs_dev_is_read_only(log->l_mp,
3941 						"recovery required"))) {
3942 			return error;
3943 		}
3944 
3945 		cmn_err(CE_NOTE,
3946 			"Starting XFS recovery on filesystem: %s (logdev: %s)",
3947 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3948 			log->l_mp->m_logname : "internal");
3949 
3950 		error = xlog_do_recover(log, head_blk, tail_blk);
3951 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3952 	}
3953 	return error;
3954 }
3955 
3956 /*
3957  * In the first part of recovery we replay inodes and buffers and build
3958  * up the list of extent free items which need to be processed.  Here
3959  * we process the extent free items and clean up the on disk unlinked
3960  * inode lists.  This is separated from the first part of recovery so
3961  * that the root and real-time bitmap inodes can be read in from disk in
3962  * between the two stages.  This is necessary so that we can free space
3963  * in the real-time portion of the file system.
3964  */
3965 int
3966 xlog_recover_finish(
3967 	xlog_t		*log,
3968 	int		mfsi_flags)
3969 {
3970 	/*
3971 	 * Now we're ready to do the transactions needed for the
3972 	 * rest of recovery.  Start with completing all the extent
3973 	 * free intent records and then process the unlinked inode
3974 	 * lists.  At this point, we essentially run in normal mode
3975 	 * except that we're still performing recovery actions
3976 	 * rather than accepting new requests.
3977 	 */
3978 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3979 		xlog_recover_process_efis(log);
3980 		/*
3981 		 * Sync the log to get all the EFIs out of the AIL.
3982 		 * This isn't absolutely necessary, but it helps in
3983 		 * case the unlink transactions would have problems
3984 		 * pushing the EFIs out of the way.
3985 		 */
3986 		xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3987 			      (XFS_LOG_FORCE | XFS_LOG_SYNC));
3988 
3989 		if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3990 			xlog_recover_process_iunlinks(log);
3991 		}
3992 
3993 		xlog_recover_check_summary(log);
3994 
3995 		cmn_err(CE_NOTE,
3996 			"Ending XFS recovery on filesystem: %s (logdev: %s)",
3997 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3998 			log->l_mp->m_logname : "internal");
3999 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4000 	} else {
4001 		cmn_err(CE_DEBUG,
4002 			"!Ending clean XFS mount for filesystem: %s\n",
4003 			log->l_mp->m_fsname);
4004 	}
4005 	return 0;
4006 }
4007 
4008 
4009 #if defined(DEBUG)
4010 /*
4011  * Read all of the agf and agi counters and check that they
4012  * are consistent with the superblock counters.
4013  */
4014 void
4015 xlog_recover_check_summary(
4016 	xlog_t		*log)
4017 {
4018 	xfs_mount_t	*mp;
4019 	xfs_agf_t	*agfp;
4020 	xfs_agi_t	*agip;
4021 	xfs_buf_t	*agfbp;
4022 	xfs_buf_t	*agibp;
4023 	xfs_daddr_t	agfdaddr;
4024 	xfs_daddr_t	agidaddr;
4025 	xfs_buf_t	*sbbp;
4026 #ifdef XFS_LOUD_RECOVERY
4027 	xfs_sb_t	*sbp;
4028 #endif
4029 	xfs_agnumber_t	agno;
4030 	__uint64_t	freeblks;
4031 	__uint64_t	itotal;
4032 	__uint64_t	ifree;
4033 
4034 	mp = log->l_mp;
4035 
4036 	freeblks = 0LL;
4037 	itotal = 0LL;
4038 	ifree = 0LL;
4039 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4040 		agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4041 		agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4042 				XFS_FSS_TO_BB(mp, 1), 0);
4043 		if (XFS_BUF_ISERROR(agfbp)) {
4044 			xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4045 						mp, agfbp, agfdaddr);
4046 		}
4047 		agfp = XFS_BUF_TO_AGF(agfbp);
4048 		ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4049 		ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4050 		ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4051 
4052 		freeblks += be32_to_cpu(agfp->agf_freeblks) +
4053 			    be32_to_cpu(agfp->agf_flcount);
4054 		xfs_buf_relse(agfbp);
4055 
4056 		agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4057 		agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4058 				XFS_FSS_TO_BB(mp, 1), 0);
4059 		if (XFS_BUF_ISERROR(agibp)) {
4060 			xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4061 					  mp, agibp, agidaddr);
4062 		}
4063 		agip = XFS_BUF_TO_AGI(agibp);
4064 		ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4065 		ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4066 		ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4067 
4068 		itotal += be32_to_cpu(agip->agi_count);
4069 		ifree += be32_to_cpu(agip->agi_freecount);
4070 		xfs_buf_relse(agibp);
4071 	}
4072 
4073 	sbbp = xfs_getsb(mp, 0);
4074 #ifdef XFS_LOUD_RECOVERY
4075 	sbp = &mp->m_sb;
4076 	xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
4077 	cmn_err(CE_NOTE,
4078 		"xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4079 		sbp->sb_icount, itotal);
4080 	cmn_err(CE_NOTE,
4081 		"xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4082 		sbp->sb_ifree, ifree);
4083 	cmn_err(CE_NOTE,
4084 		"xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4085 		sbp->sb_fdblocks, freeblks);
4086 #if 0
4087 	/*
4088 	 * This is turned off until I account for the allocation
4089 	 * btree blocks which live in free space.
4090 	 */
4091 	ASSERT(sbp->sb_icount == itotal);
4092 	ASSERT(sbp->sb_ifree == ifree);
4093 	ASSERT(sbp->sb_fdblocks == freeblks);
4094 #endif
4095 #endif
4096 	xfs_buf_relse(sbbp);
4097 }
4098 #endif /* DEBUG */
4099