10b61f8a4SDave Chinner // SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds /* 37b718769SNathan Scott * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 47b718769SNathan Scott * All Rights Reserved. 51da177e4SLinus Torvalds */ 61da177e4SLinus Torvalds #ifndef __XFS_LOG_PRIV_H__ 71da177e4SLinus Torvalds #define __XFS_LOG_PRIV_H__ 81da177e4SLinus Torvalds 91da177e4SLinus Torvalds struct xfs_buf; 10ad223e60SMark Tinguely struct xlog; 11a844f451SNathan Scott struct xlog_ticket; 121da177e4SLinus Torvalds struct xfs_mount; 131da177e4SLinus Torvalds 141da177e4SLinus Torvalds /* 151da177e4SLinus Torvalds * get client id from packed copy. 161da177e4SLinus Torvalds * 171da177e4SLinus Torvalds * this hack is here because the xlog_pack code copies four bytes 181da177e4SLinus Torvalds * of xlog_op_header containing the fields oh_clientid, oh_flags 191da177e4SLinus Torvalds * and oh_res2 into the packed copy. 201da177e4SLinus Torvalds * 211da177e4SLinus Torvalds * later on this four byte chunk is treated as an int and the 221da177e4SLinus Torvalds * client id is pulled out. 231da177e4SLinus Torvalds * 241da177e4SLinus Torvalds * this has endian issues, of course. 251da177e4SLinus Torvalds */ 26b53e675dSChristoph Hellwig static inline uint xlog_get_client_id(__be32 i) 2703bea6feSChristoph Hellwig { 28b53e675dSChristoph Hellwig return be32_to_cpu(i) >> 24; 2903bea6feSChristoph Hellwig } 301da177e4SLinus Torvalds 311da177e4SLinus Torvalds /* 321da177e4SLinus Torvalds * In core log state 331da177e4SLinus Torvalds */ 341858bb0bSChristoph Hellwig enum xlog_iclog_state { 351858bb0bSChristoph Hellwig XLOG_STATE_ACTIVE, /* Current IC log being written to */ 361858bb0bSChristoph Hellwig XLOG_STATE_WANT_SYNC, /* Want to sync this iclog; no more writes */ 371858bb0bSChristoph Hellwig XLOG_STATE_SYNCING, /* This IC log is syncing */ 381858bb0bSChristoph Hellwig XLOG_STATE_DONE_SYNC, /* Done syncing to disk */ 391858bb0bSChristoph Hellwig XLOG_STATE_CALLBACK, /* Callback functions now */ 401858bb0bSChristoph Hellwig XLOG_STATE_DIRTY, /* Dirty IC log, not ready for ACTIVE status */ 411858bb0bSChristoph Hellwig }; 421da177e4SLinus Torvalds 43956f6daaSDave Chinner #define XLOG_STATE_STRINGS \ 44956f6daaSDave Chinner { XLOG_STATE_ACTIVE, "XLOG_STATE_ACTIVE" }, \ 45956f6daaSDave Chinner { XLOG_STATE_WANT_SYNC, "XLOG_STATE_WANT_SYNC" }, \ 46956f6daaSDave Chinner { XLOG_STATE_SYNCING, "XLOG_STATE_SYNCING" }, \ 47956f6daaSDave Chinner { XLOG_STATE_DONE_SYNC, "XLOG_STATE_DONE_SYNC" }, \ 48956f6daaSDave Chinner { XLOG_STATE_CALLBACK, "XLOG_STATE_CALLBACK" }, \ 495112e206SDave Chinner { XLOG_STATE_DIRTY, "XLOG_STATE_DIRTY" } 50956f6daaSDave Chinner 51b2ae3a9eSDave Chinner /* 52b2ae3a9eSDave Chinner * In core log flags 53b2ae3a9eSDave Chinner */ 54b2ae3a9eSDave Chinner #define XLOG_ICL_NEED_FLUSH (1 << 0) /* iclog needs REQ_PREFLUSH */ 55b2ae3a9eSDave Chinner #define XLOG_ICL_NEED_FUA (1 << 1) /* iclog needs REQ_FUA */ 56b2ae3a9eSDave Chinner 57b2ae3a9eSDave Chinner #define XLOG_ICL_STRINGS \ 58b2ae3a9eSDave Chinner { XLOG_ICL_NEED_FLUSH, "XLOG_ICL_NEED_FLUSH" }, \ 59b2ae3a9eSDave Chinner { XLOG_ICL_NEED_FUA, "XLOG_ICL_NEED_FUA" } 60b2ae3a9eSDave Chinner 61956f6daaSDave Chinner 621da177e4SLinus Torvalds /* 6370e42f2dSDave Chinner * Log ticket flags 641da177e4SLinus Torvalds */ 6570e42f2dSDave Chinner #define XLOG_TIC_PERM_RESERV 0x1 /* permanent reservation */ 660b1b213fSChristoph Hellwig 670b1b213fSChristoph Hellwig #define XLOG_TIC_FLAGS \ 6810547941SDave Chinner { XLOG_TIC_PERM_RESERV, "XLOG_TIC_PERM_RESERV" } 690b1b213fSChristoph Hellwig 701da177e4SLinus Torvalds /* 711da177e4SLinus Torvalds * Below are states for covering allocation transactions. 721da177e4SLinus Torvalds * By covering, we mean changing the h_tail_lsn in the last on-disk 731da177e4SLinus Torvalds * log write such that no allocation transactions will be re-done during 741da177e4SLinus Torvalds * recovery after a system crash. Recovery starts at the last on-disk 751da177e4SLinus Torvalds * log write. 761da177e4SLinus Torvalds * 771da177e4SLinus Torvalds * These states are used to insert dummy log entries to cover 781da177e4SLinus Torvalds * space allocation transactions which can undo non-transactional changes 791da177e4SLinus Torvalds * after a crash. Writes to a file with space 801da177e4SLinus Torvalds * already allocated do not result in any transactions. Allocations 811da177e4SLinus Torvalds * might include space beyond the EOF. So if we just push the EOF a 821da177e4SLinus Torvalds * little, the last transaction for the file could contain the wrong 831da177e4SLinus Torvalds * size. If there is no file system activity, after an allocation 841da177e4SLinus Torvalds * transaction, and the system crashes, the allocation transaction 851da177e4SLinus Torvalds * will get replayed and the file will be truncated. This could 861da177e4SLinus Torvalds * be hours/days/... after the allocation occurred. 871da177e4SLinus Torvalds * 881da177e4SLinus Torvalds * The fix for this is to do two dummy transactions when the 891da177e4SLinus Torvalds * system is idle. We need two dummy transaction because the h_tail_lsn 901da177e4SLinus Torvalds * in the log record header needs to point beyond the last possible 911da177e4SLinus Torvalds * non-dummy transaction. The first dummy changes the h_tail_lsn to 921da177e4SLinus Torvalds * the first transaction before the dummy. The second dummy causes 931da177e4SLinus Torvalds * h_tail_lsn to point to the first dummy. Recovery starts at h_tail_lsn. 941da177e4SLinus Torvalds * 951da177e4SLinus Torvalds * These dummy transactions get committed when everything 961da177e4SLinus Torvalds * is idle (after there has been some activity). 971da177e4SLinus Torvalds * 981da177e4SLinus Torvalds * There are 5 states used to control this. 991da177e4SLinus Torvalds * 1001da177e4SLinus Torvalds * IDLE -- no logging has been done on the file system or 1011da177e4SLinus Torvalds * we are done covering previous transactions. 1021da177e4SLinus Torvalds * NEED -- logging has occurred and we need a dummy transaction 1031da177e4SLinus Torvalds * when the log becomes idle. 1041da177e4SLinus Torvalds * DONE -- we were in the NEED state and have committed a dummy 1051da177e4SLinus Torvalds * transaction. 1061da177e4SLinus Torvalds * NEED2 -- we detected that a dummy transaction has gone to the 1071da177e4SLinus Torvalds * on disk log with no other transactions. 1081da177e4SLinus Torvalds * DONE2 -- we committed a dummy transaction when in the NEED2 state. 1091da177e4SLinus Torvalds * 1101da177e4SLinus Torvalds * There are two places where we switch states: 1111da177e4SLinus Torvalds * 1121da177e4SLinus Torvalds * 1.) In xfs_sync, when we detect an idle log and are in NEED or NEED2. 1131da177e4SLinus Torvalds * We commit the dummy transaction and switch to DONE or DONE2, 1141da177e4SLinus Torvalds * respectively. In all other states, we don't do anything. 1151da177e4SLinus Torvalds * 1161da177e4SLinus Torvalds * 2.) When we finish writing the on-disk log (xlog_state_clean_log). 1171da177e4SLinus Torvalds * 1181da177e4SLinus Torvalds * No matter what state we are in, if this isn't the dummy 1191da177e4SLinus Torvalds * transaction going out, the next state is NEED. 1201da177e4SLinus Torvalds * So, if we aren't in the DONE or DONE2 states, the next state 1211da177e4SLinus Torvalds * is NEED. We can't be finishing a write of the dummy record 1221da177e4SLinus Torvalds * unless it was committed and the state switched to DONE or DONE2. 1231da177e4SLinus Torvalds * 1241da177e4SLinus Torvalds * If we are in the DONE state and this was a write of the 1251da177e4SLinus Torvalds * dummy transaction, we move to NEED2. 1261da177e4SLinus Torvalds * 1271da177e4SLinus Torvalds * If we are in the DONE2 state and this was a write of the 1281da177e4SLinus Torvalds * dummy transaction, we move to IDLE. 1291da177e4SLinus Torvalds * 1301da177e4SLinus Torvalds * 1311da177e4SLinus Torvalds * Writing only one dummy transaction can get appended to 1321da177e4SLinus Torvalds * one file space allocation. When this happens, the log recovery 1331da177e4SLinus Torvalds * code replays the space allocation and a file could be truncated. 1341da177e4SLinus Torvalds * This is why we have the NEED2 and DONE2 states before going idle. 1351da177e4SLinus Torvalds */ 1361da177e4SLinus Torvalds 1371da177e4SLinus Torvalds #define XLOG_STATE_COVER_IDLE 0 1381da177e4SLinus Torvalds #define XLOG_STATE_COVER_NEED 1 1391da177e4SLinus Torvalds #define XLOG_STATE_COVER_DONE 2 1401da177e4SLinus Torvalds #define XLOG_STATE_COVER_NEED2 3 1411da177e4SLinus Torvalds #define XLOG_STATE_COVER_DONE2 4 1421da177e4SLinus Torvalds 1431da177e4SLinus Torvalds #define XLOG_COVER_OPS 5 1441da177e4SLinus Torvalds 1457e9c6396STim Shimmin /* Ticket reservation region accounting */ 1467e9c6396STim Shimmin #define XLOG_TIC_LEN_MAX 15 1477e9c6396STim Shimmin 1487e9c6396STim Shimmin /* 1497e9c6396STim Shimmin * Reservation region 1507e9c6396STim Shimmin * As would be stored in xfs_log_iovec but without the i_addr which 1517e9c6396STim Shimmin * we don't care about. 1527e9c6396STim Shimmin */ 1537e9c6396STim Shimmin typedef struct xlog_res { 1541259845dSTim Shimmin uint r_len; /* region length :4 */ 1551259845dSTim Shimmin uint r_type; /* region's transaction type :4 */ 1567e9c6396STim Shimmin } xlog_res_t; 1577e9c6396STim Shimmin 1581da177e4SLinus Torvalds typedef struct xlog_ticket { 15910547941SDave Chinner struct list_head t_queue; /* reserve/write queue */ 16014a7235fSChristoph Hellwig struct task_struct *t_task; /* task that owns this ticket */ 1611da177e4SLinus Torvalds xlog_tid_t t_tid; /* transaction identifier : 4 */ 162cc09c0dcSDave Chinner atomic_t t_ref; /* ticket reference count : 4 */ 1631da177e4SLinus Torvalds int t_curr_res; /* current reservation in bytes : 4 */ 1641da177e4SLinus Torvalds int t_unit_res; /* unit reservation in bytes : 4 */ 1657e9c6396STim Shimmin char t_ocnt; /* original count : 1 */ 1667e9c6396STim Shimmin char t_cnt; /* current count : 1 */ 1677e9c6396STim Shimmin char t_clientid; /* who does this belong to; : 1 */ 1687e9c6396STim Shimmin char t_flags; /* properties of reservation : 1 */ 1697e9c6396STim Shimmin 1707e9c6396STim Shimmin /* reservation array fields */ 1717e9c6396STim Shimmin uint t_res_num; /* num in array : 4 */ 1727e9c6396STim Shimmin uint t_res_num_ophdrs; /* num op hdrs : 4 */ 1737e9c6396STim Shimmin uint t_res_arr_sum; /* array sum : 4 */ 1747e9c6396STim Shimmin uint t_res_o_flow; /* sum overflow : 4 */ 1751259845dSTim Shimmin xlog_res_t t_res_arr[XLOG_TIC_LEN_MAX]; /* array of res : 8 * 15 */ 1761da177e4SLinus Torvalds } xlog_ticket_t; 1777e9c6396STim Shimmin 1781da177e4SLinus Torvalds /* 1791da177e4SLinus Torvalds * - A log record header is 512 bytes. There is plenty of room to grow the 1801da177e4SLinus Torvalds * xlog_rec_header_t into the reserved space. 1811da177e4SLinus Torvalds * - ic_data follows, so a write to disk can start at the beginning of 1821da177e4SLinus Torvalds * the iclog. 18312017fafSDavid Chinner * - ic_forcewait is used to implement synchronous forcing of the iclog to disk. 1841da177e4SLinus Torvalds * - ic_next is the pointer to the next iclog in the ring. 1851da177e4SLinus Torvalds * - ic_log is a pointer back to the global log structure. 18679b54d9bSChristoph Hellwig * - ic_size is the full size of the log buffer, minus the cycle headers. 1871da177e4SLinus Torvalds * - ic_offset is the current number of bytes written to in this iclog. 1881da177e4SLinus Torvalds * - ic_refcnt is bumped when someone is writing to the log. 1891da177e4SLinus Torvalds * - ic_state is the state of the iclog. 190114d23aaSDavid Chinner * 191114d23aaSDavid Chinner * Because of cacheline contention on large machines, we need to separate 192114d23aaSDavid Chinner * various resources onto different cachelines. To start with, make the 193114d23aaSDavid Chinner * structure cacheline aligned. The following fields can be contended on 194114d23aaSDavid Chinner * by independent processes: 195114d23aaSDavid Chinner * 19689ae379dSChristoph Hellwig * - ic_callbacks 197114d23aaSDavid Chinner * - ic_refcnt 198114d23aaSDavid Chinner * - fields protected by the global l_icloglock 199114d23aaSDavid Chinner * 200114d23aaSDavid Chinner * so we need to ensure that these fields are located in separate cachelines. 201114d23aaSDavid Chinner * We'll put all the read-only and l_icloglock fields in the first cacheline, 202114d23aaSDavid Chinner * and move everything else out to subsequent cachelines. 2031da177e4SLinus Torvalds */ 204b28708d6SChristoph Hellwig typedef struct xlog_in_core { 205eb40a875SDave Chinner wait_queue_head_t ic_force_wait; 206eb40a875SDave Chinner wait_queue_head_t ic_write_wait; 2071da177e4SLinus Torvalds struct xlog_in_core *ic_next; 2081da177e4SLinus Torvalds struct xlog_in_core *ic_prev; 209ad223e60SMark Tinguely struct xlog *ic_log; 21079b54d9bSChristoph Hellwig u32 ic_size; 21179b54d9bSChristoph Hellwig u32 ic_offset; 2121858bb0bSChristoph Hellwig enum xlog_iclog_state ic_state; 213eef983ffSDave Chinner unsigned int ic_flags; 2141da177e4SLinus Torvalds char *ic_datap; /* pointer to iclog data */ 21589ae379dSChristoph Hellwig struct list_head ic_callbacks; 216114d23aaSDavid Chinner 217114d23aaSDavid Chinner /* reference counts need their own cacheline */ 218114d23aaSDavid Chinner atomic_t ic_refcnt ____cacheline_aligned_in_smp; 219b28708d6SChristoph Hellwig xlog_in_core_2_t *ic_data; 220b28708d6SChristoph Hellwig #define ic_header ic_data->hic_header 221366fc4b8SChristoph Hellwig #ifdef DEBUG 222366fc4b8SChristoph Hellwig bool ic_fail_crc : 1; 223366fc4b8SChristoph Hellwig #endif 22479b54d9bSChristoph Hellwig struct semaphore ic_sema; 22579b54d9bSChristoph Hellwig struct work_struct ic_end_io_work; 22679b54d9bSChristoph Hellwig struct bio ic_bio; 22779b54d9bSChristoph Hellwig struct bio_vec ic_bvec[]; 2281da177e4SLinus Torvalds } xlog_in_core_t; 2291da177e4SLinus Torvalds 2301da177e4SLinus Torvalds /* 23171e330b5SDave Chinner * The CIL context is used to aggregate per-transaction details as well be 23271e330b5SDave Chinner * passed to the iclog for checkpoint post-commit processing. After being 23371e330b5SDave Chinner * passed to the iclog, another context needs to be allocated for tracking the 23471e330b5SDave Chinner * next set of transactions to be aggregated into a checkpoint. 23571e330b5SDave Chinner */ 23671e330b5SDave Chinner struct xfs_cil; 23771e330b5SDave Chinner 23871e330b5SDave Chinner struct xfs_cil_ctx { 23971e330b5SDave Chinner struct xfs_cil *cil; 2405f9b4b0dSDave Chinner xfs_csn_t sequence; /* chkpt sequence # */ 24171e330b5SDave Chinner xfs_lsn_t start_lsn; /* first LSN of chkpt commit */ 24271e330b5SDave Chinner xfs_lsn_t commit_lsn; /* chkpt commit record lsn */ 243*caa80090SDave Chinner struct xlog_in_core *commit_iclog; 24471e330b5SDave Chinner struct xlog_ticket *ticket; /* chkpt ticket */ 24571e330b5SDave Chinner int nvecs; /* number of regions */ 24671e330b5SDave Chinner int space_used; /* aggregate size of regions */ 24771e330b5SDave Chinner struct list_head busy_extents; /* busy extents in chkpt */ 24871e330b5SDave Chinner struct xfs_log_vec *lv_chain; /* logvecs being pushed */ 24989ae379dSChristoph Hellwig struct list_head iclog_entry; 25071e330b5SDave Chinner struct list_head committing; /* ctx committing list */ 2514560e78fSChristoph Hellwig struct work_struct discard_endio_work; 25271e330b5SDave Chinner }; 25371e330b5SDave Chinner 25471e330b5SDave Chinner /* 25571e330b5SDave Chinner * Committed Item List structure 25671e330b5SDave Chinner * 25771e330b5SDave Chinner * This structure is used to track log items that have been committed but not 25871e330b5SDave Chinner * yet written into the log. It is used only when the delayed logging mount 25971e330b5SDave Chinner * option is enabled. 26071e330b5SDave Chinner * 26171e330b5SDave Chinner * This structure tracks the list of committing checkpoint contexts so 26271e330b5SDave Chinner * we can avoid the problem of having to hold out new transactions during a 26371e330b5SDave Chinner * flush until we have a the commit record LSN of the checkpoint. We can 26471e330b5SDave Chinner * traverse the list of committing contexts in xlog_cil_push_lsn() to find a 26571e330b5SDave Chinner * sequence match and extract the commit LSN directly from there. If the 26671e330b5SDave Chinner * checkpoint is still in the process of committing, we can block waiting for 26771e330b5SDave Chinner * the commit LSN to be determined as well. This should make synchronous 26871e330b5SDave Chinner * operations almost as efficient as the old logging methods. 26971e330b5SDave Chinner */ 27071e330b5SDave Chinner struct xfs_cil { 271ad223e60SMark Tinguely struct xlog *xc_log; 27271e330b5SDave Chinner struct list_head xc_cil; 27371e330b5SDave Chinner spinlock_t xc_cil_lock; 2744bb928cdSDave Chinner 2754bb928cdSDave Chinner struct rw_semaphore xc_ctx_lock ____cacheline_aligned_in_smp; 27671e330b5SDave Chinner struct xfs_cil_ctx *xc_ctx; 2774bb928cdSDave Chinner 2784bb928cdSDave Chinner spinlock_t xc_push_lock ____cacheline_aligned_in_smp; 2795f9b4b0dSDave Chinner xfs_csn_t xc_push_seq; 28071e330b5SDave Chinner struct list_head xc_committing; 281eb40a875SDave Chinner wait_queue_head_t xc_commit_wait; 2825f9b4b0dSDave Chinner xfs_csn_t xc_current_sequence; 2834c2d542fSDave Chinner struct work_struct xc_push_work; 284c7f87f39SDave Chinner wait_queue_head_t xc_push_wait; /* background push throttle */ 2854bb928cdSDave Chinner } ____cacheline_aligned_in_smp; 28671e330b5SDave Chinner 28771e330b5SDave Chinner /* 28880168676SDave Chinner * The amount of log space we allow the CIL to aggregate is difficult to size. 28980168676SDave Chinner * Whatever we choose, we have to make sure we can get a reservation for the 29080168676SDave Chinner * log space effectively, that it is large enough to capture sufficient 29180168676SDave Chinner * relogging to reduce log buffer IO significantly, but it is not too large for 29280168676SDave Chinner * the log or induces too much latency when writing out through the iclogs. We 29380168676SDave Chinner * track both space consumed and the number of vectors in the checkpoint 29480168676SDave Chinner * context, so we need to decide which to use for limiting. 295df806158SDave Chinner * 296df806158SDave Chinner * Every log buffer we write out during a push needs a header reserved, which 297df806158SDave Chinner * is at least one sector and more for v2 logs. Hence we need a reservation of 298df806158SDave Chinner * at least 512 bytes per 32k of log space just for the LR headers. That means 299df806158SDave Chinner * 16KB of reservation per megabyte of delayed logging space we will consume, 300df806158SDave Chinner * plus various headers. The number of headers will vary based on the num of 301df806158SDave Chinner * io vectors, so limiting on a specific number of vectors is going to result 302df806158SDave Chinner * in transactions of varying size. IOWs, it is more consistent to track and 303df806158SDave Chinner * limit space consumed in the log rather than by the number of objects being 304df806158SDave Chinner * logged in order to prevent checkpoint ticket overruns. 305df806158SDave Chinner * 306df806158SDave Chinner * Further, use of static reservations through the log grant mechanism is 307df806158SDave Chinner * problematic. It introduces a lot of complexity (e.g. reserve grant vs write 308df806158SDave Chinner * grant) and a significant deadlock potential because regranting write space 309df806158SDave Chinner * can block on log pushes. Hence if we have to regrant log space during a log 310df806158SDave Chinner * push, we can deadlock. 311df806158SDave Chinner * 312df806158SDave Chinner * However, we can avoid this by use of a dynamic "reservation stealing" 313df806158SDave Chinner * technique during transaction commit whereby unused reservation space in the 314df806158SDave Chinner * transaction ticket is transferred to the CIL ctx commit ticket to cover the 315df806158SDave Chinner * space needed by the checkpoint transaction. This means that we never need to 316df806158SDave Chinner * specifically reserve space for the CIL checkpoint transaction, nor do we 317df806158SDave Chinner * need to regrant space once the checkpoint completes. This also means the 318df806158SDave Chinner * checkpoint transaction ticket is specific to the checkpoint context, rather 319df806158SDave Chinner * than the CIL itself. 320df806158SDave Chinner * 32180168676SDave Chinner * With dynamic reservations, we can effectively make up arbitrary limits for 32280168676SDave Chinner * the checkpoint size so long as they don't violate any other size rules. 32380168676SDave Chinner * Recovery imposes a rule that no transaction exceed half the log, so we are 32480168676SDave Chinner * limited by that. Furthermore, the log transaction reservation subsystem 32580168676SDave Chinner * tries to keep 25% of the log free, so we need to keep below that limit or we 32680168676SDave Chinner * risk running out of free log space to start any new transactions. 32780168676SDave Chinner * 328108a4235SDave Chinner * In order to keep background CIL push efficient, we only need to ensure the 329108a4235SDave Chinner * CIL is large enough to maintain sufficient in-memory relogging to avoid 330108a4235SDave Chinner * repeated physical writes of frequently modified metadata. If we allow the CIL 331108a4235SDave Chinner * to grow to a substantial fraction of the log, then we may be pinning hundreds 332108a4235SDave Chinner * of megabytes of metadata in memory until the CIL flushes. This can cause 333108a4235SDave Chinner * issues when we are running low on memory - pinned memory cannot be reclaimed, 334108a4235SDave Chinner * and the CIL consumes a lot of memory. Hence we need to set an upper physical 335108a4235SDave Chinner * size limit for the CIL that limits the maximum amount of memory pinned by the 336108a4235SDave Chinner * CIL but does not limit performance by reducing relogging efficiency 337108a4235SDave Chinner * significantly. 338108a4235SDave Chinner * 339108a4235SDave Chinner * As such, the CIL push threshold ends up being the smaller of two thresholds: 340108a4235SDave Chinner * - a threshold large enough that it allows CIL to be pushed and progress to be 341108a4235SDave Chinner * made without excessive blocking of incoming transaction commits. This is 342108a4235SDave Chinner * defined to be 12.5% of the log space - half the 25% push threshold of the 343108a4235SDave Chinner * AIL. 344108a4235SDave Chinner * - small enough that it doesn't pin excessive amounts of memory but maintains 345108a4235SDave Chinner * close to peak relogging efficiency. This is defined to be 16x the iclog 346108a4235SDave Chinner * buffer window (32MB) as measurements have shown this to be roughly the 347108a4235SDave Chinner * point of diminishing performance increases under highly concurrent 348108a4235SDave Chinner * modification workloads. 3490e7ab7efSDave Chinner * 3500e7ab7efSDave Chinner * To prevent the CIL from overflowing upper commit size bounds, we introduce a 3510e7ab7efSDave Chinner * new threshold at which we block committing transactions until the background 3520e7ab7efSDave Chinner * CIL commit commences and switches to a new context. While this is not a hard 3530e7ab7efSDave Chinner * limit, it forces the process committing a transaction to the CIL to block and 3540e7ab7efSDave Chinner * yeild the CPU, giving the CIL push work a chance to be scheduled and start 3550e7ab7efSDave Chinner * work. This prevents a process running lots of transactions from overfilling 3560e7ab7efSDave Chinner * the CIL because it is not yielding the CPU. We set the blocking limit at 3570e7ab7efSDave Chinner * twice the background push space threshold so we keep in line with the AIL 3580e7ab7efSDave Chinner * push thresholds. 3590e7ab7efSDave Chinner * 3600e7ab7efSDave Chinner * Note: this is not a -hard- limit as blocking is applied after the transaction 3610e7ab7efSDave Chinner * is inserted into the CIL and the push has been triggered. It is largely a 3620e7ab7efSDave Chinner * throttling mechanism that allows the CIL push to be scheduled and run. A hard 3630e7ab7efSDave Chinner * limit will be difficult to implement without introducing global serialisation 3640e7ab7efSDave Chinner * in the CIL commit fast path, and it's not at all clear that we actually need 3650e7ab7efSDave Chinner * such hard limits given the ~7 years we've run without a hard limit before 3660e7ab7efSDave Chinner * finding the first situation where a checkpoint size overflow actually 3670e7ab7efSDave Chinner * occurred. Hence the simple throttle, and an ASSERT check to tell us that 3680e7ab7efSDave Chinner * we've overrun the max size. 369df806158SDave Chinner */ 370108a4235SDave Chinner #define XLOG_CIL_SPACE_LIMIT(log) \ 371108a4235SDave Chinner min_t(int, (log)->l_logsize >> 3, BBTOB(XLOG_TOTAL_REC_SHIFT(log)) << 4) 372df806158SDave Chinner 3730e7ab7efSDave Chinner #define XLOG_CIL_BLOCKING_SPACE_LIMIT(log) \ 3740e7ab7efSDave Chinner (XLOG_CIL_SPACE_LIMIT(log) * 2) 3750e7ab7efSDave Chinner 376df806158SDave Chinner /* 37728496968SChristoph Hellwig * ticket grant locks, queues and accounting have their own cachlines 37828496968SChristoph Hellwig * as these are quite hot and can be operated on concurrently. 37928496968SChristoph Hellwig */ 38028496968SChristoph Hellwig struct xlog_grant_head { 38128496968SChristoph Hellwig spinlock_t lock ____cacheline_aligned_in_smp; 38228496968SChristoph Hellwig struct list_head waiters; 38328496968SChristoph Hellwig atomic64_t grant; 38428496968SChristoph Hellwig }; 38528496968SChristoph Hellwig 38628496968SChristoph Hellwig /* 3871da177e4SLinus Torvalds * The reservation head lsn is not made up of a cycle number and block number. 3881da177e4SLinus Torvalds * Instead, it uses a cycle number and byte number. Logs don't expect to 3891da177e4SLinus Torvalds * overflow 31 bits worth of byte offset, so using a byte number will mean 3901da177e4SLinus Torvalds * that round off problems won't occur when releasing partial reservations. 3911da177e4SLinus Torvalds */ 3929a8d2fdbSMark Tinguely struct xlog { 3934679b2d3SDavid Chinner /* The following fields don't need locking */ 3944679b2d3SDavid Chinner struct xfs_mount *l_mp; /* mount point */ 395a9c21c1bSDavid Chinner struct xfs_ail *l_ailp; /* AIL log is working with */ 39671e330b5SDave Chinner struct xfs_cil *l_cilp; /* CIL log is working with */ 3974679b2d3SDavid Chinner struct xfs_buftarg *l_targ; /* buftarg of log */ 3981058d0f5SChristoph Hellwig struct workqueue_struct *l_ioend_workqueue; /* for I/O completions */ 399f661f1e0SDave Chinner struct delayed_work l_work; /* background flush work */ 400e1d06e5fSDave Chinner long l_opstate; /* operational state */ 4014679b2d3SDavid Chinner uint l_quotaoffs_flag; /* XFS_DQ_*, for QUOTAOFFs */ 402d5689eaaSChristoph Hellwig struct list_head *l_buf_cancel_table; 4034679b2d3SDavid Chinner int l_iclog_hsize; /* size of iclog header */ 4044679b2d3SDavid Chinner int l_iclog_heads; /* # of iclog header sectors */ 40548389ef1SAlex Elder uint l_sectBBsize; /* sector size in BBs (2^n) */ 4064679b2d3SDavid Chinner int l_iclog_size; /* size of log in bytes */ 4074679b2d3SDavid Chinner int l_iclog_bufs; /* number of iclog buffers */ 4084679b2d3SDavid Chinner xfs_daddr_t l_logBBstart; /* start block of log */ 4094679b2d3SDavid Chinner int l_logsize; /* size of log in bytes */ 4104679b2d3SDavid Chinner int l_logBBsize; /* size of log in BB chunks */ 4114679b2d3SDavid Chinner 4121da177e4SLinus Torvalds /* The following block of fields are changed while holding icloglock */ 413eb40a875SDave Chinner wait_queue_head_t l_flush_wait ____cacheline_aligned_in_smp; 414d748c623SMatthew Wilcox /* waiting for iclog flush */ 4151da177e4SLinus Torvalds int l_covered_state;/* state of "covering disk 4161da177e4SLinus Torvalds * log entries" */ 4171da177e4SLinus Torvalds xlog_in_core_t *l_iclog; /* head log queue */ 418b22cd72cSEric Sandeen spinlock_t l_icloglock; /* grab to change iclog state */ 4191da177e4SLinus Torvalds int l_curr_cycle; /* Cycle number of log writes */ 4201da177e4SLinus Torvalds int l_prev_cycle; /* Cycle number before last 4211da177e4SLinus Torvalds * block increment */ 4221da177e4SLinus Torvalds int l_curr_block; /* current logical log block */ 4231da177e4SLinus Torvalds int l_prev_block; /* previous logical log block */ 4241da177e4SLinus Torvalds 42584f3c683SDave Chinner /* 4261c3cb9ecSDave Chinner * l_last_sync_lsn and l_tail_lsn are atomics so they can be set and 4271c3cb9ecSDave Chinner * read without needing to hold specific locks. To avoid operations 4281c3cb9ecSDave Chinner * contending with other hot objects, place each of them on a separate 4291c3cb9ecSDave Chinner * cacheline. 43084f3c683SDave Chinner */ 43184f3c683SDave Chinner /* lsn of last LR on disk */ 43284f3c683SDave Chinner atomic64_t l_last_sync_lsn ____cacheline_aligned_in_smp; 4331c3cb9ecSDave Chinner /* lsn of 1st LR with unflushed * buffers */ 4341c3cb9ecSDave Chinner atomic64_t l_tail_lsn ____cacheline_aligned_in_smp; 43584f3c683SDave Chinner 43628496968SChristoph Hellwig struct xlog_grant_head l_reserve_head; 43728496968SChristoph Hellwig struct xlog_grant_head l_write_head; 4383f16b985SDave Chinner 439baff4e44SBrian Foster struct xfs_kobj l_kobj; 440baff4e44SBrian Foster 4414679b2d3SDavid Chinner /* The following field are used for debugging; need to hold icloglock */ 4424679b2d3SDavid Chinner #ifdef DEBUG 4435809d5e0SChristoph Hellwig void *l_iclog_bak[XLOG_MAX_ICLOGS]; 4444679b2d3SDavid Chinner #endif 44512818d24SBrian Foster /* log recovery lsn tracking (for buffer submission */ 44612818d24SBrian Foster xfs_lsn_t l_recovery_lsn; 447a6a65fefSDave Chinner 448a6a65fefSDave Chinner uint32_t l_iclog_roundoff;/* padding roundoff */ 4492b73a2c8SDarrick J. Wong 4502b73a2c8SDarrick J. Wong /* Users of log incompat features should take a read lock. */ 4512b73a2c8SDarrick J. Wong struct rw_semaphore l_incompat_users; 4529a8d2fdbSMark Tinguely }; 4531da177e4SLinus Torvalds 454d5689eaaSChristoph Hellwig #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \ 455c8ce540dSDarrick J. Wong ((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE)) 456d5689eaaSChristoph Hellwig 457e1d06e5fSDave Chinner /* 458e1d06e5fSDave Chinner * Bits for operational state 459e1d06e5fSDave Chinner */ 460e1d06e5fSDave Chinner #define XLOG_ACTIVE_RECOVERY 0 /* in the middle of recovery */ 461e1d06e5fSDave Chinner #define XLOG_RECOVERY_NEEDED 1 /* log was recovered */ 462e1d06e5fSDave Chinner #define XLOG_IO_ERROR 2 /* log hit an I/O error, and being 463e1d06e5fSDave Chinner shutdown */ 464e1d06e5fSDave Chinner #define XLOG_TAIL_WARN 3 /* log tail verify warning issued */ 465e1d06e5fSDave Chinner 466e1d06e5fSDave Chinner static inline bool 467e1d06e5fSDave Chinner xlog_recovery_needed(struct xlog *log) 468e1d06e5fSDave Chinner { 469e1d06e5fSDave Chinner return test_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 470e1d06e5fSDave Chinner } 471e1d06e5fSDave Chinner 472e1d06e5fSDave Chinner static inline bool 473e1d06e5fSDave Chinner xlog_in_recovery(struct xlog *log) 474e1d06e5fSDave Chinner { 475e1d06e5fSDave Chinner return test_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 476e1d06e5fSDave Chinner } 477e1d06e5fSDave Chinner 4782039a272SDave Chinner static inline bool 4792039a272SDave Chinner xlog_is_shutdown(struct xlog *log) 4802039a272SDave Chinner { 481e1d06e5fSDave Chinner return test_bit(XLOG_IO_ERROR, &log->l_opstate); 4822039a272SDave Chinner } 483cfcbbbd0SNathan Scott 4841da177e4SLinus Torvalds /* common routines */ 4859a8d2fdbSMark Tinguely extern int 4869a8d2fdbSMark Tinguely xlog_recover( 4879a8d2fdbSMark Tinguely struct xlog *log); 4889a8d2fdbSMark Tinguely extern int 4899a8d2fdbSMark Tinguely xlog_recover_finish( 4909a8d2fdbSMark Tinguely struct xlog *log); 491a7a9250eSHariprasad Kelam extern void 492f0b2efadSBrian Foster xlog_recover_cancel(struct xlog *); 4930e446be4SChristoph Hellwig 494f9668a09SDave Chinner extern __le32 xlog_cksum(struct xlog *log, struct xlog_rec_header *rhead, 4950e446be4SChristoph Hellwig char *dp, int size); 4961da177e4SLinus Torvalds 497eb01c9cdSDavid Chinner extern kmem_zone_t *xfs_log_ticket_zone; 498ad223e60SMark Tinguely struct xlog_ticket * 499ad223e60SMark Tinguely xlog_ticket_alloc( 500ad223e60SMark Tinguely struct xlog *log, 501ad223e60SMark Tinguely int unit_bytes, 502ad223e60SMark Tinguely int count, 503ad223e60SMark Tinguely char client, 504ca4f2589SCarlos Maiolino bool permanent); 505eb01c9cdSDavid Chinner 506e6b1f273SChristoph Hellwig static inline void 507e6b1f273SChristoph Hellwig xlog_write_adv_cnt(void **ptr, int *len, int *off, size_t bytes) 508e6b1f273SChristoph Hellwig { 509e6b1f273SChristoph Hellwig *ptr += bytes; 510e6b1f273SChristoph Hellwig *len -= bytes; 511e6b1f273SChristoph Hellwig *off += bytes; 512e6b1f273SChristoph Hellwig } 513e6b1f273SChristoph Hellwig 51471e330b5SDave Chinner void xlog_print_tic_res(struct xfs_mount *mp, struct xlog_ticket *ticket); 515d4ca1d55SBrian Foster void xlog_print_trans(struct xfs_trans *); 516c45aba40SDave Chinner int xlog_write(struct xlog *log, struct xfs_cil_ctx *ctx, 517c45aba40SDave Chinner struct xfs_log_vec *log_vector, struct xlog_ticket *tic, 518*caa80090SDave Chinner uint optype); 5198b41e3f9SChristoph Hellwig void xfs_log_ticket_ungrant(struct xlog *log, struct xlog_ticket *ticket); 5208b41e3f9SChristoph Hellwig void xfs_log_ticket_regrant(struct xlog *log, struct xlog_ticket *ticket); 52171e330b5SDave Chinner 5220dc8f7f1SDave Chinner int xlog_state_release_iclog(struct xlog *log, struct xlog_in_core *iclog, 5230dc8f7f1SDave Chinner xfs_lsn_t log_tail_lsn); 524eef983ffSDave Chinner 52571e330b5SDave Chinner /* 5261c3cb9ecSDave Chinner * When we crack an atomic LSN, we sample it first so that the value will not 5271c3cb9ecSDave Chinner * change while we are cracking it into the component values. This means we 5281c3cb9ecSDave Chinner * will always get consistent component values to work from. This should always 52925985edcSLucas De Marchi * be used to sample and crack LSNs that are stored and updated in atomic 5301c3cb9ecSDave Chinner * variables. 5311c3cb9ecSDave Chinner */ 5321c3cb9ecSDave Chinner static inline void 5331c3cb9ecSDave Chinner xlog_crack_atomic_lsn(atomic64_t *lsn, uint *cycle, uint *block) 5341c3cb9ecSDave Chinner { 5351c3cb9ecSDave Chinner xfs_lsn_t val = atomic64_read(lsn); 5361c3cb9ecSDave Chinner 5371c3cb9ecSDave Chinner *cycle = CYCLE_LSN(val); 5381c3cb9ecSDave Chinner *block = BLOCK_LSN(val); 5391c3cb9ecSDave Chinner } 5401c3cb9ecSDave Chinner 5411c3cb9ecSDave Chinner /* 5421c3cb9ecSDave Chinner * Calculate and assign a value to an atomic LSN variable from component pieces. 5431c3cb9ecSDave Chinner */ 5441c3cb9ecSDave Chinner static inline void 5451c3cb9ecSDave Chinner xlog_assign_atomic_lsn(atomic64_t *lsn, uint cycle, uint block) 5461c3cb9ecSDave Chinner { 5471c3cb9ecSDave Chinner atomic64_set(lsn, xlog_assign_lsn(cycle, block)); 5481c3cb9ecSDave Chinner } 5491c3cb9ecSDave Chinner 5501c3cb9ecSDave Chinner /* 551d0eb2f38SDave Chinner * When we crack the grant head, we sample it first so that the value will not 552a69ed03cSDave Chinner * change while we are cracking it into the component values. This means we 553a69ed03cSDave Chinner * will always get consistent component values to work from. 554a69ed03cSDave Chinner */ 555a69ed03cSDave Chinner static inline void 556d0eb2f38SDave Chinner xlog_crack_grant_head_val(int64_t val, int *cycle, int *space) 557a69ed03cSDave Chinner { 558a69ed03cSDave Chinner *cycle = val >> 32; 559a69ed03cSDave Chinner *space = val & 0xffffffff; 560a69ed03cSDave Chinner } 561a69ed03cSDave Chinner 562a69ed03cSDave Chinner static inline void 563d0eb2f38SDave Chinner xlog_crack_grant_head(atomic64_t *head, int *cycle, int *space) 564d0eb2f38SDave Chinner { 565d0eb2f38SDave Chinner xlog_crack_grant_head_val(atomic64_read(head), cycle, space); 566d0eb2f38SDave Chinner } 567d0eb2f38SDave Chinner 568d0eb2f38SDave Chinner static inline int64_t 569d0eb2f38SDave Chinner xlog_assign_grant_head_val(int cycle, int space) 570d0eb2f38SDave Chinner { 571d0eb2f38SDave Chinner return ((int64_t)cycle << 32) | space; 572d0eb2f38SDave Chinner } 573d0eb2f38SDave Chinner 574d0eb2f38SDave Chinner static inline void 575c8a09ff8SDave Chinner xlog_assign_grant_head(atomic64_t *head, int cycle, int space) 576a69ed03cSDave Chinner { 577d0eb2f38SDave Chinner atomic64_set(head, xlog_assign_grant_head_val(cycle, space)); 578a69ed03cSDave Chinner } 579a69ed03cSDave Chinner 580a69ed03cSDave Chinner /* 58171e330b5SDave Chinner * Committed Item List interfaces 58271e330b5SDave Chinner */ 5832c6e24ceSDave Chinner int xlog_cil_init(struct xlog *log); 5842c6e24ceSDave Chinner void xlog_cil_init_post_recovery(struct xlog *log); 5852c6e24ceSDave Chinner void xlog_cil_destroy(struct xlog *log); 5862c6e24ceSDave Chinner bool xlog_cil_empty(struct xlog *log); 5875f9b4b0dSDave Chinner void xlog_cil_commit(struct xlog *log, struct xfs_trans *tp, 5885f9b4b0dSDave Chinner xfs_csn_t *commit_seq, bool regrant); 589c45aba40SDave Chinner void xlog_cil_set_ctx_write_state(struct xfs_cil_ctx *ctx, 590c45aba40SDave Chinner struct xlog_in_core *iclog); 591c45aba40SDave Chinner 59271e330b5SDave Chinner 593a44f13edSDave Chinner /* 594a44f13edSDave Chinner * CIL force routines 595a44f13edSDave Chinner */ 5965f9b4b0dSDave Chinner xfs_lsn_t xlog_cil_force_seq(struct xlog *log, xfs_csn_t sequence); 597a44f13edSDave Chinner 598a44f13edSDave Chinner static inline void 599ad223e60SMark Tinguely xlog_cil_force(struct xlog *log) 600a44f13edSDave Chinner { 6015f9b4b0dSDave Chinner xlog_cil_force_seq(log, log->l_cilp->xc_current_sequence); 602a44f13edSDave Chinner } 60371e330b5SDave Chinner 604955e47adSTim Shimmin /* 605eb40a875SDave Chinner * Wrapper function for waiting on a wait queue serialised against wakeups 606eb40a875SDave Chinner * by a spinlock. This matches the semantics of all the wait queues used in the 607eb40a875SDave Chinner * log code. 608eb40a875SDave Chinner */ 609f7559793SDarrick J. Wong static inline void 610f7559793SDarrick J. Wong xlog_wait( 611f7559793SDarrick J. Wong struct wait_queue_head *wq, 612f7559793SDarrick J. Wong struct spinlock *lock) 613f7559793SDarrick J. Wong __releases(lock) 614eb40a875SDave Chinner { 615eb40a875SDave Chinner DECLARE_WAITQUEUE(wait, current); 616eb40a875SDave Chinner 617eb40a875SDave Chinner add_wait_queue_exclusive(wq, &wait); 618eb40a875SDave Chinner __set_current_state(TASK_UNINTERRUPTIBLE); 619eb40a875SDave Chinner spin_unlock(lock); 620eb40a875SDave Chinner schedule(); 621eb40a875SDave Chinner remove_wait_queue(wq, &wait); 622eb40a875SDave Chinner } 6231da177e4SLinus Torvalds 624a79b28c2SDave Chinner int xlog_wait_on_iclog(struct xlog_in_core *iclog); 625a79b28c2SDave Chinner 626a45086e2SBrian Foster /* 627a45086e2SBrian Foster * The LSN is valid so long as it is behind the current LSN. If it isn't, this 628a45086e2SBrian Foster * means that the next log record that includes this metadata could have a 629a45086e2SBrian Foster * smaller LSN. In turn, this means that the modification in the log would not 630a45086e2SBrian Foster * replay. 631a45086e2SBrian Foster */ 632a45086e2SBrian Foster static inline bool 633a45086e2SBrian Foster xlog_valid_lsn( 634a45086e2SBrian Foster struct xlog *log, 635a45086e2SBrian Foster xfs_lsn_t lsn) 636a45086e2SBrian Foster { 637a45086e2SBrian Foster int cur_cycle; 638a45086e2SBrian Foster int cur_block; 639a45086e2SBrian Foster bool valid = true; 640a45086e2SBrian Foster 641a45086e2SBrian Foster /* 642a45086e2SBrian Foster * First, sample the current lsn without locking to avoid added 643a45086e2SBrian Foster * contention from metadata I/O. The current cycle and block are updated 644a45086e2SBrian Foster * (in xlog_state_switch_iclogs()) and read here in a particular order 645a45086e2SBrian Foster * to avoid false negatives (e.g., thinking the metadata LSN is valid 646a45086e2SBrian Foster * when it is not). 647a45086e2SBrian Foster * 648a45086e2SBrian Foster * The current block is always rewound before the cycle is bumped in 649a45086e2SBrian Foster * xlog_state_switch_iclogs() to ensure the current LSN is never seen in 650a45086e2SBrian Foster * a transiently forward state. Instead, we can see the LSN in a 651a45086e2SBrian Foster * transiently behind state if we happen to race with a cycle wrap. 652a45086e2SBrian Foster */ 6536aa7de05SMark Rutland cur_cycle = READ_ONCE(log->l_curr_cycle); 654a45086e2SBrian Foster smp_rmb(); 6556aa7de05SMark Rutland cur_block = READ_ONCE(log->l_curr_block); 656a45086e2SBrian Foster 657a45086e2SBrian Foster if ((CYCLE_LSN(lsn) > cur_cycle) || 658a45086e2SBrian Foster (CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block)) { 659a45086e2SBrian Foster /* 660a45086e2SBrian Foster * If the metadata LSN appears invalid, it's possible the check 661a45086e2SBrian Foster * above raced with a wrap to the next log cycle. Grab the lock 662a45086e2SBrian Foster * to check for sure. 663a45086e2SBrian Foster */ 664a45086e2SBrian Foster spin_lock(&log->l_icloglock); 665a45086e2SBrian Foster cur_cycle = log->l_curr_cycle; 666a45086e2SBrian Foster cur_block = log->l_curr_block; 667a45086e2SBrian Foster spin_unlock(&log->l_icloglock); 668a45086e2SBrian Foster 669a45086e2SBrian Foster if ((CYCLE_LSN(lsn) > cur_cycle) || 670a45086e2SBrian Foster (CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block)) 671a45086e2SBrian Foster valid = false; 672a45086e2SBrian Foster } 673a45086e2SBrian Foster 674a45086e2SBrian Foster return valid; 675a45086e2SBrian Foster } 676a45086e2SBrian Foster 6771da177e4SLinus Torvalds #endif /* __XFS_LOG_PRIV_H__ */ 678