xref: /linux/fs/xfs/xfs_log_priv.h (revision 366fc4b898b3ca999b26d7c9fab92cb31ce4ad2b)
10b61f8a4SDave Chinner // SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds /*
37b718769SNathan Scott  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
47b718769SNathan Scott  * All Rights Reserved.
51da177e4SLinus Torvalds  */
61da177e4SLinus Torvalds #ifndef	__XFS_LOG_PRIV_H__
71da177e4SLinus Torvalds #define __XFS_LOG_PRIV_H__
81da177e4SLinus Torvalds 
91da177e4SLinus Torvalds struct xfs_buf;
10ad223e60SMark Tinguely struct xlog;
11a844f451SNathan Scott struct xlog_ticket;
121da177e4SLinus Torvalds struct xfs_mount;
13239880efSDave Chinner struct xfs_log_callback;
141da177e4SLinus Torvalds 
151da177e4SLinus Torvalds /*
16fc06c6d0SDave Chinner  * Flags for log structure
171da177e4SLinus Torvalds  */
18fc06c6d0SDave Chinner #define XLOG_ACTIVE_RECOVERY	0x2	/* in the middle of recovery */
19fc06c6d0SDave Chinner #define	XLOG_RECOVERY_NEEDED	0x4	/* log was recovered */
20fc06c6d0SDave Chinner #define XLOG_IO_ERROR		0x8	/* log hit an I/O error, and being
21fc06c6d0SDave Chinner 					   shutdown */
22fc06c6d0SDave Chinner #define XLOG_TAIL_WARN		0x10	/* log tail verify warning issued */
231da177e4SLinus Torvalds 
241da177e4SLinus Torvalds /*
251da177e4SLinus Torvalds  * get client id from packed copy.
261da177e4SLinus Torvalds  *
271da177e4SLinus Torvalds  * this hack is here because the xlog_pack code copies four bytes
281da177e4SLinus Torvalds  * of xlog_op_header containing the fields oh_clientid, oh_flags
291da177e4SLinus Torvalds  * and oh_res2 into the packed copy.
301da177e4SLinus Torvalds  *
311da177e4SLinus Torvalds  * later on this four byte chunk is treated as an int and the
321da177e4SLinus Torvalds  * client id is pulled out.
331da177e4SLinus Torvalds  *
341da177e4SLinus Torvalds  * this has endian issues, of course.
351da177e4SLinus Torvalds  */
36b53e675dSChristoph Hellwig static inline uint xlog_get_client_id(__be32 i)
3703bea6feSChristoph Hellwig {
38b53e675dSChristoph Hellwig 	return be32_to_cpu(i) >> 24;
3903bea6feSChristoph Hellwig }
401da177e4SLinus Torvalds 
411da177e4SLinus Torvalds /*
421da177e4SLinus Torvalds  * In core log state
431da177e4SLinus Torvalds  */
441da177e4SLinus Torvalds #define XLOG_STATE_ACTIVE    0x0001 /* Current IC log being written to */
451da177e4SLinus Torvalds #define XLOG_STATE_WANT_SYNC 0x0002 /* Want to sync this iclog; no more writes */
461da177e4SLinus Torvalds #define XLOG_STATE_SYNCING   0x0004 /* This IC log is syncing */
471da177e4SLinus Torvalds #define XLOG_STATE_DONE_SYNC 0x0008 /* Done syncing to disk */
481da177e4SLinus Torvalds #define XLOG_STATE_DO_CALLBACK \
491da177e4SLinus Torvalds 			     0x0010 /* Process callback functions */
501da177e4SLinus Torvalds #define XLOG_STATE_CALLBACK  0x0020 /* Callback functions now */
511da177e4SLinus Torvalds #define XLOG_STATE_DIRTY     0x0040 /* Dirty IC log, not ready for ACTIVE status*/
521da177e4SLinus Torvalds #define XLOG_STATE_IOERROR   0x0080 /* IO error happened in sync'ing log */
531da177e4SLinus Torvalds #define XLOG_STATE_ALL	     0x7FFF /* All possible valid flags */
541da177e4SLinus Torvalds #define XLOG_STATE_NOTUSED   0x8000 /* This IC log not being used */
551da177e4SLinus Torvalds 
561da177e4SLinus Torvalds /*
571da177e4SLinus Torvalds  * Flags to log ticket
581da177e4SLinus Torvalds  */
591da177e4SLinus Torvalds #define XLOG_TIC_INITED		0x1	/* has been initialized */
601da177e4SLinus Torvalds #define XLOG_TIC_PERM_RESERV	0x2	/* permanent reservation */
610b1b213fSChristoph Hellwig 
620b1b213fSChristoph Hellwig #define XLOG_TIC_FLAGS \
630b1b213fSChristoph Hellwig 	{ XLOG_TIC_INITED,	"XLOG_TIC_INITED" }, \
6410547941SDave Chinner 	{ XLOG_TIC_PERM_RESERV,	"XLOG_TIC_PERM_RESERV" }
650b1b213fSChristoph Hellwig 
661da177e4SLinus Torvalds /*
671da177e4SLinus Torvalds  * Below are states for covering allocation transactions.
681da177e4SLinus Torvalds  * By covering, we mean changing the h_tail_lsn in the last on-disk
691da177e4SLinus Torvalds  * log write such that no allocation transactions will be re-done during
701da177e4SLinus Torvalds  * recovery after a system crash. Recovery starts at the last on-disk
711da177e4SLinus Torvalds  * log write.
721da177e4SLinus Torvalds  *
731da177e4SLinus Torvalds  * These states are used to insert dummy log entries to cover
741da177e4SLinus Torvalds  * space allocation transactions which can undo non-transactional changes
751da177e4SLinus Torvalds  * after a crash. Writes to a file with space
761da177e4SLinus Torvalds  * already allocated do not result in any transactions. Allocations
771da177e4SLinus Torvalds  * might include space beyond the EOF. So if we just push the EOF a
781da177e4SLinus Torvalds  * little, the last transaction for the file could contain the wrong
791da177e4SLinus Torvalds  * size. If there is no file system activity, after an allocation
801da177e4SLinus Torvalds  * transaction, and the system crashes, the allocation transaction
811da177e4SLinus Torvalds  * will get replayed and the file will be truncated. This could
821da177e4SLinus Torvalds  * be hours/days/... after the allocation occurred.
831da177e4SLinus Torvalds  *
841da177e4SLinus Torvalds  * The fix for this is to do two dummy transactions when the
851da177e4SLinus Torvalds  * system is idle. We need two dummy transaction because the h_tail_lsn
861da177e4SLinus Torvalds  * in the log record header needs to point beyond the last possible
871da177e4SLinus Torvalds  * non-dummy transaction. The first dummy changes the h_tail_lsn to
881da177e4SLinus Torvalds  * the first transaction before the dummy. The second dummy causes
891da177e4SLinus Torvalds  * h_tail_lsn to point to the first dummy. Recovery starts at h_tail_lsn.
901da177e4SLinus Torvalds  *
911da177e4SLinus Torvalds  * These dummy transactions get committed when everything
921da177e4SLinus Torvalds  * is idle (after there has been some activity).
931da177e4SLinus Torvalds  *
941da177e4SLinus Torvalds  * There are 5 states used to control this.
951da177e4SLinus Torvalds  *
961da177e4SLinus Torvalds  *  IDLE -- no logging has been done on the file system or
971da177e4SLinus Torvalds  *		we are done covering previous transactions.
981da177e4SLinus Torvalds  *  NEED -- logging has occurred and we need a dummy transaction
991da177e4SLinus Torvalds  *		when the log becomes idle.
1001da177e4SLinus Torvalds  *  DONE -- we were in the NEED state and have committed a dummy
1011da177e4SLinus Torvalds  *		transaction.
1021da177e4SLinus Torvalds  *  NEED2 -- we detected that a dummy transaction has gone to the
1031da177e4SLinus Torvalds  *		on disk log with no other transactions.
1041da177e4SLinus Torvalds  *  DONE2 -- we committed a dummy transaction when in the NEED2 state.
1051da177e4SLinus Torvalds  *
1061da177e4SLinus Torvalds  * There are two places where we switch states:
1071da177e4SLinus Torvalds  *
1081da177e4SLinus Torvalds  * 1.) In xfs_sync, when we detect an idle log and are in NEED or NEED2.
1091da177e4SLinus Torvalds  *	We commit the dummy transaction and switch to DONE or DONE2,
1101da177e4SLinus Torvalds  *	respectively. In all other states, we don't do anything.
1111da177e4SLinus Torvalds  *
1121da177e4SLinus Torvalds  * 2.) When we finish writing the on-disk log (xlog_state_clean_log).
1131da177e4SLinus Torvalds  *
1141da177e4SLinus Torvalds  *	No matter what state we are in, if this isn't the dummy
1151da177e4SLinus Torvalds  *	transaction going out, the next state is NEED.
1161da177e4SLinus Torvalds  *	So, if we aren't in the DONE or DONE2 states, the next state
1171da177e4SLinus Torvalds  *	is NEED. We can't be finishing a write of the dummy record
1181da177e4SLinus Torvalds  *	unless it was committed and the state switched to DONE or DONE2.
1191da177e4SLinus Torvalds  *
1201da177e4SLinus Torvalds  *	If we are in the DONE state and this was a write of the
1211da177e4SLinus Torvalds  *		dummy transaction, we move to NEED2.
1221da177e4SLinus Torvalds  *
1231da177e4SLinus Torvalds  *	If we are in the DONE2 state and this was a write of the
1241da177e4SLinus Torvalds  *		dummy transaction, we move to IDLE.
1251da177e4SLinus Torvalds  *
1261da177e4SLinus Torvalds  *
1271da177e4SLinus Torvalds  * Writing only one dummy transaction can get appended to
1281da177e4SLinus Torvalds  * one file space allocation. When this happens, the log recovery
1291da177e4SLinus Torvalds  * code replays the space allocation and a file could be truncated.
1301da177e4SLinus Torvalds  * This is why we have the NEED2 and DONE2 states before going idle.
1311da177e4SLinus Torvalds  */
1321da177e4SLinus Torvalds 
1331da177e4SLinus Torvalds #define XLOG_STATE_COVER_IDLE	0
1341da177e4SLinus Torvalds #define XLOG_STATE_COVER_NEED	1
1351da177e4SLinus Torvalds #define XLOG_STATE_COVER_DONE	2
1361da177e4SLinus Torvalds #define XLOG_STATE_COVER_NEED2	3
1371da177e4SLinus Torvalds #define XLOG_STATE_COVER_DONE2	4
1381da177e4SLinus Torvalds 
1391da177e4SLinus Torvalds #define XLOG_COVER_OPS		5
1401da177e4SLinus Torvalds 
1417e9c6396STim Shimmin /* Ticket reservation region accounting */
1427e9c6396STim Shimmin #define XLOG_TIC_LEN_MAX	15
1437e9c6396STim Shimmin 
1447e9c6396STim Shimmin /*
1457e9c6396STim Shimmin  * Reservation region
1467e9c6396STim Shimmin  * As would be stored in xfs_log_iovec but without the i_addr which
1477e9c6396STim Shimmin  * we don't care about.
1487e9c6396STim Shimmin  */
1497e9c6396STim Shimmin typedef struct xlog_res {
1501259845dSTim Shimmin 	uint	r_len;	/* region length		:4 */
1511259845dSTim Shimmin 	uint	r_type;	/* region's transaction type	:4 */
1527e9c6396STim Shimmin } xlog_res_t;
1537e9c6396STim Shimmin 
1541da177e4SLinus Torvalds typedef struct xlog_ticket {
15510547941SDave Chinner 	struct list_head   t_queue;	 /* reserve/write queue */
15614a7235fSChristoph Hellwig 	struct task_struct *t_task;	 /* task that owns this ticket */
1571da177e4SLinus Torvalds 	xlog_tid_t	   t_tid;	 /* transaction identifier	 : 4  */
158cc09c0dcSDave Chinner 	atomic_t	   t_ref;	 /* ticket reference count       : 4  */
1591da177e4SLinus Torvalds 	int		   t_curr_res;	 /* current reservation in bytes : 4  */
1601da177e4SLinus Torvalds 	int		   t_unit_res;	 /* unit reservation in bytes    : 4  */
1617e9c6396STim Shimmin 	char		   t_ocnt;	 /* original count		 : 1  */
1627e9c6396STim Shimmin 	char		   t_cnt;	 /* current count		 : 1  */
1637e9c6396STim Shimmin 	char		   t_clientid;	 /* who does this belong to;	 : 1  */
1647e9c6396STim Shimmin 	char		   t_flags;	 /* properties of reservation	 : 1  */
1657e9c6396STim Shimmin 
1667e9c6396STim Shimmin         /* reservation array fields */
1677e9c6396STim Shimmin 	uint		   t_res_num;                    /* num in array : 4 */
1687e9c6396STim Shimmin 	uint		   t_res_num_ophdrs;		 /* num op hdrs  : 4 */
1697e9c6396STim Shimmin 	uint		   t_res_arr_sum;		 /* array sum    : 4 */
1707e9c6396STim Shimmin 	uint		   t_res_o_flow;		 /* sum overflow : 4 */
1711259845dSTim Shimmin 	xlog_res_t	   t_res_arr[XLOG_TIC_LEN_MAX];  /* array of res : 8 * 15 */
1721da177e4SLinus Torvalds } xlog_ticket_t;
1737e9c6396STim Shimmin 
1741da177e4SLinus Torvalds /*
1751da177e4SLinus Torvalds  * - A log record header is 512 bytes.  There is plenty of room to grow the
1761da177e4SLinus Torvalds  *	xlog_rec_header_t into the reserved space.
1771da177e4SLinus Torvalds  * - ic_data follows, so a write to disk can start at the beginning of
1781da177e4SLinus Torvalds  *	the iclog.
17912017fafSDavid Chinner  * - ic_forcewait is used to implement synchronous forcing of the iclog to disk.
1801da177e4SLinus Torvalds  * - ic_next is the pointer to the next iclog in the ring.
1811da177e4SLinus Torvalds  * - ic_bp is a pointer to the buffer used to write this incore log to disk.
1821da177e4SLinus Torvalds  * - ic_log is a pointer back to the global log structure.
1831da177e4SLinus Torvalds  * - ic_callback is a linked list of callback function/argument pairs to be
1841da177e4SLinus Torvalds  *	called after an iclog finishes writing.
1851da177e4SLinus Torvalds  * - ic_size is the full size of the header plus data.
1861da177e4SLinus Torvalds  * - ic_offset is the current number of bytes written to in this iclog.
1871da177e4SLinus Torvalds  * - ic_refcnt is bumped when someone is writing to the log.
1881da177e4SLinus Torvalds  * - ic_state is the state of the iclog.
189114d23aaSDavid Chinner  *
190114d23aaSDavid Chinner  * Because of cacheline contention on large machines, we need to separate
191114d23aaSDavid Chinner  * various resources onto different cachelines. To start with, make the
192114d23aaSDavid Chinner  * structure cacheline aligned. The following fields can be contended on
193114d23aaSDavid Chinner  * by independent processes:
194114d23aaSDavid Chinner  *
195114d23aaSDavid Chinner  *	- ic_callback_*
196114d23aaSDavid Chinner  *	- ic_refcnt
197114d23aaSDavid Chinner  *	- fields protected by the global l_icloglock
198114d23aaSDavid Chinner  *
199114d23aaSDavid Chinner  * so we need to ensure that these fields are located in separate cachelines.
200114d23aaSDavid Chinner  * We'll put all the read-only and l_icloglock fields in the first cacheline,
201114d23aaSDavid Chinner  * and move everything else out to subsequent cachelines.
2021da177e4SLinus Torvalds  */
203b28708d6SChristoph Hellwig typedef struct xlog_in_core {
204eb40a875SDave Chinner 	wait_queue_head_t	ic_force_wait;
205eb40a875SDave Chinner 	wait_queue_head_t	ic_write_wait;
2061da177e4SLinus Torvalds 	struct xlog_in_core	*ic_next;
2071da177e4SLinus Torvalds 	struct xlog_in_core	*ic_prev;
2081da177e4SLinus Torvalds 	struct xfs_buf		*ic_bp;
209ad223e60SMark Tinguely 	struct xlog		*ic_log;
2101da177e4SLinus Torvalds 	int			ic_size;
2111da177e4SLinus Torvalds 	int			ic_offset;
2121da177e4SLinus Torvalds 	int			ic_bwritecnt;
213a5687787SChristoph Hellwig 	unsigned short		ic_state;
2141da177e4SLinus Torvalds 	char			*ic_datap;	/* pointer to iclog data */
215114d23aaSDavid Chinner 
216114d23aaSDavid Chinner 	/* Callback structures need their own cacheline */
217114d23aaSDavid Chinner 	spinlock_t		ic_callback_lock ____cacheline_aligned_in_smp;
218239880efSDave Chinner 	struct xfs_log_callback	*ic_callback;
219239880efSDave Chinner 	struct xfs_log_callback	**ic_callback_tail;
220114d23aaSDavid Chinner 
221114d23aaSDavid Chinner 	/* reference counts need their own cacheline */
222114d23aaSDavid Chinner 	atomic_t		ic_refcnt ____cacheline_aligned_in_smp;
223b28708d6SChristoph Hellwig 	xlog_in_core_2_t	*ic_data;
224b28708d6SChristoph Hellwig #define ic_header	ic_data->hic_header
225*366fc4b8SChristoph Hellwig #ifdef DEBUG
226*366fc4b8SChristoph Hellwig 	bool			ic_fail_crc : 1;
227*366fc4b8SChristoph Hellwig #endif
2281da177e4SLinus Torvalds } xlog_in_core_t;
2291da177e4SLinus Torvalds 
2301da177e4SLinus Torvalds /*
23171e330b5SDave Chinner  * The CIL context is used to aggregate per-transaction details as well be
23271e330b5SDave Chinner  * passed to the iclog for checkpoint post-commit processing.  After being
23371e330b5SDave Chinner  * passed to the iclog, another context needs to be allocated for tracking the
23471e330b5SDave Chinner  * next set of transactions to be aggregated into a checkpoint.
23571e330b5SDave Chinner  */
23671e330b5SDave Chinner struct xfs_cil;
23771e330b5SDave Chinner 
23871e330b5SDave Chinner struct xfs_cil_ctx {
23971e330b5SDave Chinner 	struct xfs_cil		*cil;
24071e330b5SDave Chinner 	xfs_lsn_t		sequence;	/* chkpt sequence # */
24171e330b5SDave Chinner 	xfs_lsn_t		start_lsn;	/* first LSN of chkpt commit */
24271e330b5SDave Chinner 	xfs_lsn_t		commit_lsn;	/* chkpt commit record lsn */
24371e330b5SDave Chinner 	struct xlog_ticket	*ticket;	/* chkpt ticket */
24471e330b5SDave Chinner 	int			nvecs;		/* number of regions */
24571e330b5SDave Chinner 	int			space_used;	/* aggregate size of regions */
24671e330b5SDave Chinner 	struct list_head	busy_extents;	/* busy extents in chkpt */
24771e330b5SDave Chinner 	struct xfs_log_vec	*lv_chain;	/* logvecs being pushed */
248239880efSDave Chinner 	struct xfs_log_callback	log_cb;		/* completion callback hook. */
24971e330b5SDave Chinner 	struct list_head	committing;	/* ctx committing list */
2504560e78fSChristoph Hellwig 	struct work_struct	discard_endio_work;
25171e330b5SDave Chinner };
25271e330b5SDave Chinner 
25371e330b5SDave Chinner /*
25471e330b5SDave Chinner  * Committed Item List structure
25571e330b5SDave Chinner  *
25671e330b5SDave Chinner  * This structure is used to track log items that have been committed but not
25771e330b5SDave Chinner  * yet written into the log. It is used only when the delayed logging mount
25871e330b5SDave Chinner  * option is enabled.
25971e330b5SDave Chinner  *
26071e330b5SDave Chinner  * This structure tracks the list of committing checkpoint contexts so
26171e330b5SDave Chinner  * we can avoid the problem of having to hold out new transactions during a
26271e330b5SDave Chinner  * flush until we have a the commit record LSN of the checkpoint. We can
26371e330b5SDave Chinner  * traverse the list of committing contexts in xlog_cil_push_lsn() to find a
26471e330b5SDave Chinner  * sequence match and extract the commit LSN directly from there. If the
26571e330b5SDave Chinner  * checkpoint is still in the process of committing, we can block waiting for
26671e330b5SDave Chinner  * the commit LSN to be determined as well. This should make synchronous
26771e330b5SDave Chinner  * operations almost as efficient as the old logging methods.
26871e330b5SDave Chinner  */
26971e330b5SDave Chinner struct xfs_cil {
270ad223e60SMark Tinguely 	struct xlog		*xc_log;
27171e330b5SDave Chinner 	struct list_head	xc_cil;
27271e330b5SDave Chinner 	spinlock_t		xc_cil_lock;
2734bb928cdSDave Chinner 
2744bb928cdSDave Chinner 	struct rw_semaphore	xc_ctx_lock ____cacheline_aligned_in_smp;
27571e330b5SDave Chinner 	struct xfs_cil_ctx	*xc_ctx;
2764bb928cdSDave Chinner 
2774bb928cdSDave Chinner 	spinlock_t		xc_push_lock ____cacheline_aligned_in_smp;
2784bb928cdSDave Chinner 	xfs_lsn_t		xc_push_seq;
27971e330b5SDave Chinner 	struct list_head	xc_committing;
280eb40a875SDave Chinner 	wait_queue_head_t	xc_commit_wait;
281a44f13edSDave Chinner 	xfs_lsn_t		xc_current_sequence;
2824c2d542fSDave Chinner 	struct work_struct	xc_push_work;
2834bb928cdSDave Chinner } ____cacheline_aligned_in_smp;
28471e330b5SDave Chinner 
28571e330b5SDave Chinner /*
28680168676SDave Chinner  * The amount of log space we allow the CIL to aggregate is difficult to size.
28780168676SDave Chinner  * Whatever we choose, we have to make sure we can get a reservation for the
28880168676SDave Chinner  * log space effectively, that it is large enough to capture sufficient
28980168676SDave Chinner  * relogging to reduce log buffer IO significantly, but it is not too large for
29080168676SDave Chinner  * the log or induces too much latency when writing out through the iclogs. We
29180168676SDave Chinner  * track both space consumed and the number of vectors in the checkpoint
29280168676SDave Chinner  * context, so we need to decide which to use for limiting.
293df806158SDave Chinner  *
294df806158SDave Chinner  * Every log buffer we write out during a push needs a header reserved, which
295df806158SDave Chinner  * is at least one sector and more for v2 logs. Hence we need a reservation of
296df806158SDave Chinner  * at least 512 bytes per 32k of log space just for the LR headers. That means
297df806158SDave Chinner  * 16KB of reservation per megabyte of delayed logging space we will consume,
298df806158SDave Chinner  * plus various headers.  The number of headers will vary based on the num of
299df806158SDave Chinner  * io vectors, so limiting on a specific number of vectors is going to result
300df806158SDave Chinner  * in transactions of varying size. IOWs, it is more consistent to track and
301df806158SDave Chinner  * limit space consumed in the log rather than by the number of objects being
302df806158SDave Chinner  * logged in order to prevent checkpoint ticket overruns.
303df806158SDave Chinner  *
304df806158SDave Chinner  * Further, use of static reservations through the log grant mechanism is
305df806158SDave Chinner  * problematic. It introduces a lot of complexity (e.g. reserve grant vs write
306df806158SDave Chinner  * grant) and a significant deadlock potential because regranting write space
307df806158SDave Chinner  * can block on log pushes. Hence if we have to regrant log space during a log
308df806158SDave Chinner  * push, we can deadlock.
309df806158SDave Chinner  *
310df806158SDave Chinner  * However, we can avoid this by use of a dynamic "reservation stealing"
311df806158SDave Chinner  * technique during transaction commit whereby unused reservation space in the
312df806158SDave Chinner  * transaction ticket is transferred to the CIL ctx commit ticket to cover the
313df806158SDave Chinner  * space needed by the checkpoint transaction. This means that we never need to
314df806158SDave Chinner  * specifically reserve space for the CIL checkpoint transaction, nor do we
315df806158SDave Chinner  * need to regrant space once the checkpoint completes. This also means the
316df806158SDave Chinner  * checkpoint transaction ticket is specific to the checkpoint context, rather
317df806158SDave Chinner  * than the CIL itself.
318df806158SDave Chinner  *
31980168676SDave Chinner  * With dynamic reservations, we can effectively make up arbitrary limits for
32080168676SDave Chinner  * the checkpoint size so long as they don't violate any other size rules.
32180168676SDave Chinner  * Recovery imposes a rule that no transaction exceed half the log, so we are
32280168676SDave Chinner  * limited by that.  Furthermore, the log transaction reservation subsystem
32380168676SDave Chinner  * tries to keep 25% of the log free, so we need to keep below that limit or we
32480168676SDave Chinner  * risk running out of free log space to start any new transactions.
32580168676SDave Chinner  *
32680168676SDave Chinner  * In order to keep background CIL push efficient, we will set a lower
32780168676SDave Chinner  * threshold at which background pushing is attempted without blocking current
32880168676SDave Chinner  * transaction commits.  A separate, higher bound defines when CIL pushes are
32980168676SDave Chinner  * enforced to ensure we stay within our maximum checkpoint size bounds.
33080168676SDave Chinner  * threshold, yet give us plenty of space for aggregation on large logs.
331df806158SDave Chinner  */
33280168676SDave Chinner #define XLOG_CIL_SPACE_LIMIT(log)	(log->l_logsize >> 3)
333df806158SDave Chinner 
334df806158SDave Chinner /*
33528496968SChristoph Hellwig  * ticket grant locks, queues and accounting have their own cachlines
33628496968SChristoph Hellwig  * as these are quite hot and can be operated on concurrently.
33728496968SChristoph Hellwig  */
33828496968SChristoph Hellwig struct xlog_grant_head {
33928496968SChristoph Hellwig 	spinlock_t		lock ____cacheline_aligned_in_smp;
34028496968SChristoph Hellwig 	struct list_head	waiters;
34128496968SChristoph Hellwig 	atomic64_t		grant;
34228496968SChristoph Hellwig };
34328496968SChristoph Hellwig 
34428496968SChristoph Hellwig /*
3451da177e4SLinus Torvalds  * The reservation head lsn is not made up of a cycle number and block number.
3461da177e4SLinus Torvalds  * Instead, it uses a cycle number and byte number.  Logs don't expect to
3471da177e4SLinus Torvalds  * overflow 31 bits worth of byte offset, so using a byte number will mean
3481da177e4SLinus Torvalds  * that round off problems won't occur when releasing partial reservations.
3491da177e4SLinus Torvalds  */
3509a8d2fdbSMark Tinguely struct xlog {
3514679b2d3SDavid Chinner 	/* The following fields don't need locking */
3524679b2d3SDavid Chinner 	struct xfs_mount	*l_mp;	        /* mount point */
353a9c21c1bSDavid Chinner 	struct xfs_ail		*l_ailp;	/* AIL log is working with */
35471e330b5SDave Chinner 	struct xfs_cil		*l_cilp;	/* CIL log is working with */
3554679b2d3SDavid Chinner 	struct xfs_buf		*l_xbuf;        /* extra buffer for log
3564679b2d3SDavid Chinner 						 * wrapping */
3574679b2d3SDavid Chinner 	struct xfs_buftarg	*l_targ;        /* buftarg of log */
358f661f1e0SDave Chinner 	struct delayed_work	l_work;		/* background flush work */
3594679b2d3SDavid Chinner 	uint			l_flags;
3604679b2d3SDavid Chinner 	uint			l_quotaoffs_flag; /* XFS_DQ_*, for QUOTAOFFs */
361d5689eaaSChristoph Hellwig 	struct list_head	*l_buf_cancel_table;
3624679b2d3SDavid Chinner 	int			l_iclog_hsize;  /* size of iclog header */
3634679b2d3SDavid Chinner 	int			l_iclog_heads;  /* # of iclog header sectors */
36448389ef1SAlex Elder 	uint			l_sectBBsize;   /* sector size in BBs (2^n) */
3654679b2d3SDavid Chinner 	int			l_iclog_size;	/* size of log in bytes */
3664679b2d3SDavid Chinner 	int			l_iclog_bufs;	/* number of iclog buffers */
3674679b2d3SDavid Chinner 	xfs_daddr_t		l_logBBstart;   /* start block of log */
3684679b2d3SDavid Chinner 	int			l_logsize;      /* size of log in bytes */
3694679b2d3SDavid Chinner 	int			l_logBBsize;    /* size of log in BB chunks */
3704679b2d3SDavid Chinner 
3711da177e4SLinus Torvalds 	/* The following block of fields are changed while holding icloglock */
372eb40a875SDave Chinner 	wait_queue_head_t	l_flush_wait ____cacheline_aligned_in_smp;
373d748c623SMatthew Wilcox 						/* waiting for iclog flush */
3741da177e4SLinus Torvalds 	int			l_covered_state;/* state of "covering disk
3751da177e4SLinus Torvalds 						 * log entries" */
3761da177e4SLinus Torvalds 	xlog_in_core_t		*l_iclog;       /* head log queue	*/
377b22cd72cSEric Sandeen 	spinlock_t		l_icloglock;    /* grab to change iclog state */
3781da177e4SLinus Torvalds 	int			l_curr_cycle;   /* Cycle number of log writes */
3791da177e4SLinus Torvalds 	int			l_prev_cycle;   /* Cycle number before last
3801da177e4SLinus Torvalds 						 * block increment */
3811da177e4SLinus Torvalds 	int			l_curr_block;   /* current logical log block */
3821da177e4SLinus Torvalds 	int			l_prev_block;   /* previous logical log block */
3831da177e4SLinus Torvalds 
38484f3c683SDave Chinner 	/*
3851c3cb9ecSDave Chinner 	 * l_last_sync_lsn and l_tail_lsn are atomics so they can be set and
3861c3cb9ecSDave Chinner 	 * read without needing to hold specific locks. To avoid operations
3871c3cb9ecSDave Chinner 	 * contending with other hot objects, place each of them on a separate
3881c3cb9ecSDave Chinner 	 * cacheline.
38984f3c683SDave Chinner 	 */
39084f3c683SDave Chinner 	/* lsn of last LR on disk */
39184f3c683SDave Chinner 	atomic64_t		l_last_sync_lsn ____cacheline_aligned_in_smp;
3921c3cb9ecSDave Chinner 	/* lsn of 1st LR with unflushed * buffers */
3931c3cb9ecSDave Chinner 	atomic64_t		l_tail_lsn ____cacheline_aligned_in_smp;
39484f3c683SDave Chinner 
39528496968SChristoph Hellwig 	struct xlog_grant_head	l_reserve_head;
39628496968SChristoph Hellwig 	struct xlog_grant_head	l_write_head;
3973f16b985SDave Chinner 
398baff4e44SBrian Foster 	struct xfs_kobj		l_kobj;
399baff4e44SBrian Foster 
4004679b2d3SDavid Chinner 	/* The following field are used for debugging; need to hold icloglock */
4014679b2d3SDavid Chinner #ifdef DEBUG
4025809d5e0SChristoph Hellwig 	void			*l_iclog_bak[XLOG_MAX_ICLOGS];
403609adfc2SBrian Foster 	/* log record crc error injection factor */
404609adfc2SBrian Foster 	uint32_t		l_badcrc_factor;
4054679b2d3SDavid Chinner #endif
40612818d24SBrian Foster 	/* log recovery lsn tracking (for buffer submission */
40712818d24SBrian Foster 	xfs_lsn_t		l_recovery_lsn;
4089a8d2fdbSMark Tinguely };
4091da177e4SLinus Torvalds 
410d5689eaaSChristoph Hellwig #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
411c8ce540dSDarrick J. Wong 	((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE))
412d5689eaaSChristoph Hellwig 
413cfcbbbd0SNathan Scott #define XLOG_FORCED_SHUTDOWN(log)	((log)->l_flags & XLOG_IO_ERROR)
414cfcbbbd0SNathan Scott 
4151da177e4SLinus Torvalds /* common routines */
4169a8d2fdbSMark Tinguely extern int
4179a8d2fdbSMark Tinguely xlog_recover(
4189a8d2fdbSMark Tinguely 	struct xlog		*log);
4199a8d2fdbSMark Tinguely extern int
4209a8d2fdbSMark Tinguely xlog_recover_finish(
4219a8d2fdbSMark Tinguely 	struct xlog		*log);
422f0b2efadSBrian Foster extern int
423f0b2efadSBrian Foster xlog_recover_cancel(struct xlog *);
4240e446be4SChristoph Hellwig 
425f9668a09SDave Chinner extern __le32	 xlog_cksum(struct xlog *log, struct xlog_rec_header *rhead,
4260e446be4SChristoph Hellwig 			    char *dp, int size);
4271da177e4SLinus Torvalds 
428eb01c9cdSDavid Chinner extern kmem_zone_t *xfs_log_ticket_zone;
429ad223e60SMark Tinguely struct xlog_ticket *
430ad223e60SMark Tinguely xlog_ticket_alloc(
431ad223e60SMark Tinguely 	struct xlog	*log,
432ad223e60SMark Tinguely 	int		unit_bytes,
433ad223e60SMark Tinguely 	int		count,
434ad223e60SMark Tinguely 	char		client,
435ad223e60SMark Tinguely 	bool		permanent,
43677ba7877SAl Viro 	xfs_km_flags_t	alloc_flags);
43771e330b5SDave Chinner 
438eb01c9cdSDavid Chinner 
439e6b1f273SChristoph Hellwig static inline void
440e6b1f273SChristoph Hellwig xlog_write_adv_cnt(void **ptr, int *len, int *off, size_t bytes)
441e6b1f273SChristoph Hellwig {
442e6b1f273SChristoph Hellwig 	*ptr += bytes;
443e6b1f273SChristoph Hellwig 	*len -= bytes;
444e6b1f273SChristoph Hellwig 	*off += bytes;
445e6b1f273SChristoph Hellwig }
446e6b1f273SChristoph Hellwig 
44771e330b5SDave Chinner void	xlog_print_tic_res(struct xfs_mount *mp, struct xlog_ticket *ticket);
448d4ca1d55SBrian Foster void	xlog_print_trans(struct xfs_trans *);
449ad223e60SMark Tinguely int
450ad223e60SMark Tinguely xlog_write(
451ad223e60SMark Tinguely 	struct xlog		*log,
452ad223e60SMark Tinguely 	struct xfs_log_vec	*log_vector,
453ad223e60SMark Tinguely 	struct xlog_ticket	*tic,
454ad223e60SMark Tinguely 	xfs_lsn_t		*start_lsn,
455ad223e60SMark Tinguely 	struct xlog_in_core	**commit_iclog,
456ad223e60SMark Tinguely 	uint			flags);
45771e330b5SDave Chinner 
45871e330b5SDave Chinner /*
4591c3cb9ecSDave Chinner  * When we crack an atomic LSN, we sample it first so that the value will not
4601c3cb9ecSDave Chinner  * change while we are cracking it into the component values. This means we
4611c3cb9ecSDave Chinner  * will always get consistent component values to work from. This should always
46225985edcSLucas De Marchi  * be used to sample and crack LSNs that are stored and updated in atomic
4631c3cb9ecSDave Chinner  * variables.
4641c3cb9ecSDave Chinner  */
4651c3cb9ecSDave Chinner static inline void
4661c3cb9ecSDave Chinner xlog_crack_atomic_lsn(atomic64_t *lsn, uint *cycle, uint *block)
4671c3cb9ecSDave Chinner {
4681c3cb9ecSDave Chinner 	xfs_lsn_t val = atomic64_read(lsn);
4691c3cb9ecSDave Chinner 
4701c3cb9ecSDave Chinner 	*cycle = CYCLE_LSN(val);
4711c3cb9ecSDave Chinner 	*block = BLOCK_LSN(val);
4721c3cb9ecSDave Chinner }
4731c3cb9ecSDave Chinner 
4741c3cb9ecSDave Chinner /*
4751c3cb9ecSDave Chinner  * Calculate and assign a value to an atomic LSN variable from component pieces.
4761c3cb9ecSDave Chinner  */
4771c3cb9ecSDave Chinner static inline void
4781c3cb9ecSDave Chinner xlog_assign_atomic_lsn(atomic64_t *lsn, uint cycle, uint block)
4791c3cb9ecSDave Chinner {
4801c3cb9ecSDave Chinner 	atomic64_set(lsn, xlog_assign_lsn(cycle, block));
4811c3cb9ecSDave Chinner }
4821c3cb9ecSDave Chinner 
4831c3cb9ecSDave Chinner /*
484d0eb2f38SDave Chinner  * When we crack the grant head, we sample it first so that the value will not
485a69ed03cSDave Chinner  * change while we are cracking it into the component values. This means we
486a69ed03cSDave Chinner  * will always get consistent component values to work from.
487a69ed03cSDave Chinner  */
488a69ed03cSDave Chinner static inline void
489d0eb2f38SDave Chinner xlog_crack_grant_head_val(int64_t val, int *cycle, int *space)
490a69ed03cSDave Chinner {
491a69ed03cSDave Chinner 	*cycle = val >> 32;
492a69ed03cSDave Chinner 	*space = val & 0xffffffff;
493a69ed03cSDave Chinner }
494a69ed03cSDave Chinner 
495a69ed03cSDave Chinner static inline void
496d0eb2f38SDave Chinner xlog_crack_grant_head(atomic64_t *head, int *cycle, int *space)
497d0eb2f38SDave Chinner {
498d0eb2f38SDave Chinner 	xlog_crack_grant_head_val(atomic64_read(head), cycle, space);
499d0eb2f38SDave Chinner }
500d0eb2f38SDave Chinner 
501d0eb2f38SDave Chinner static inline int64_t
502d0eb2f38SDave Chinner xlog_assign_grant_head_val(int cycle, int space)
503d0eb2f38SDave Chinner {
504d0eb2f38SDave Chinner 	return ((int64_t)cycle << 32) | space;
505d0eb2f38SDave Chinner }
506d0eb2f38SDave Chinner 
507d0eb2f38SDave Chinner static inline void
508c8a09ff8SDave Chinner xlog_assign_grant_head(atomic64_t *head, int cycle, int space)
509a69ed03cSDave Chinner {
510d0eb2f38SDave Chinner 	atomic64_set(head, xlog_assign_grant_head_val(cycle, space));
511a69ed03cSDave Chinner }
512a69ed03cSDave Chinner 
513a69ed03cSDave Chinner /*
51471e330b5SDave Chinner  * Committed Item List interfaces
51571e330b5SDave Chinner  */
5162c6e24ceSDave Chinner int	xlog_cil_init(struct xlog *log);
5172c6e24ceSDave Chinner void	xlog_cil_init_post_recovery(struct xlog *log);
5182c6e24ceSDave Chinner void	xlog_cil_destroy(struct xlog *log);
5192c6e24ceSDave Chinner bool	xlog_cil_empty(struct xlog *log);
52071e330b5SDave Chinner 
521a44f13edSDave Chinner /*
522a44f13edSDave Chinner  * CIL force routines
523a44f13edSDave Chinner  */
524ad223e60SMark Tinguely xfs_lsn_t
525ad223e60SMark Tinguely xlog_cil_force_lsn(
526ad223e60SMark Tinguely 	struct xlog *log,
527ad223e60SMark Tinguely 	xfs_lsn_t sequence);
528a44f13edSDave Chinner 
529a44f13edSDave Chinner static inline void
530ad223e60SMark Tinguely xlog_cil_force(struct xlog *log)
531a44f13edSDave Chinner {
532a44f13edSDave Chinner 	xlog_cil_force_lsn(log, log->l_cilp->xc_current_sequence);
533a44f13edSDave Chinner }
53471e330b5SDave Chinner 
535955e47adSTim Shimmin /*
536955e47adSTim Shimmin  * Unmount record type is used as a pseudo transaction type for the ticket.
537955e47adSTim Shimmin  * It's value must be outside the range of XFS_TRANS_* values.
538955e47adSTim Shimmin  */
539955e47adSTim Shimmin #define XLOG_UNMOUNT_REC_TYPE	(-1U)
540955e47adSTim Shimmin 
541eb40a875SDave Chinner /*
542eb40a875SDave Chinner  * Wrapper function for waiting on a wait queue serialised against wakeups
543eb40a875SDave Chinner  * by a spinlock. This matches the semantics of all the wait queues used in the
544eb40a875SDave Chinner  * log code.
545eb40a875SDave Chinner  */
546eb40a875SDave Chinner static inline void xlog_wait(wait_queue_head_t *wq, spinlock_t *lock)
547eb40a875SDave Chinner {
548eb40a875SDave Chinner 	DECLARE_WAITQUEUE(wait, current);
549eb40a875SDave Chinner 
550eb40a875SDave Chinner 	add_wait_queue_exclusive(wq, &wait);
551eb40a875SDave Chinner 	__set_current_state(TASK_UNINTERRUPTIBLE);
552eb40a875SDave Chinner 	spin_unlock(lock);
553eb40a875SDave Chinner 	schedule();
554eb40a875SDave Chinner 	remove_wait_queue(wq, &wait);
555eb40a875SDave Chinner }
5561da177e4SLinus Torvalds 
557a45086e2SBrian Foster /*
558a45086e2SBrian Foster  * The LSN is valid so long as it is behind the current LSN. If it isn't, this
559a45086e2SBrian Foster  * means that the next log record that includes this metadata could have a
560a45086e2SBrian Foster  * smaller LSN. In turn, this means that the modification in the log would not
561a45086e2SBrian Foster  * replay.
562a45086e2SBrian Foster  */
563a45086e2SBrian Foster static inline bool
564a45086e2SBrian Foster xlog_valid_lsn(
565a45086e2SBrian Foster 	struct xlog	*log,
566a45086e2SBrian Foster 	xfs_lsn_t	lsn)
567a45086e2SBrian Foster {
568a45086e2SBrian Foster 	int		cur_cycle;
569a45086e2SBrian Foster 	int		cur_block;
570a45086e2SBrian Foster 	bool		valid = true;
571a45086e2SBrian Foster 
572a45086e2SBrian Foster 	/*
573a45086e2SBrian Foster 	 * First, sample the current lsn without locking to avoid added
574a45086e2SBrian Foster 	 * contention from metadata I/O. The current cycle and block are updated
575a45086e2SBrian Foster 	 * (in xlog_state_switch_iclogs()) and read here in a particular order
576a45086e2SBrian Foster 	 * to avoid false negatives (e.g., thinking the metadata LSN is valid
577a45086e2SBrian Foster 	 * when it is not).
578a45086e2SBrian Foster 	 *
579a45086e2SBrian Foster 	 * The current block is always rewound before the cycle is bumped in
580a45086e2SBrian Foster 	 * xlog_state_switch_iclogs() to ensure the current LSN is never seen in
581a45086e2SBrian Foster 	 * a transiently forward state. Instead, we can see the LSN in a
582a45086e2SBrian Foster 	 * transiently behind state if we happen to race with a cycle wrap.
583a45086e2SBrian Foster 	 */
5846aa7de05SMark Rutland 	cur_cycle = READ_ONCE(log->l_curr_cycle);
585a45086e2SBrian Foster 	smp_rmb();
5866aa7de05SMark Rutland 	cur_block = READ_ONCE(log->l_curr_block);
587a45086e2SBrian Foster 
588a45086e2SBrian Foster 	if ((CYCLE_LSN(lsn) > cur_cycle) ||
589a45086e2SBrian Foster 	    (CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block)) {
590a45086e2SBrian Foster 		/*
591a45086e2SBrian Foster 		 * If the metadata LSN appears invalid, it's possible the check
592a45086e2SBrian Foster 		 * above raced with a wrap to the next log cycle. Grab the lock
593a45086e2SBrian Foster 		 * to check for sure.
594a45086e2SBrian Foster 		 */
595a45086e2SBrian Foster 		spin_lock(&log->l_icloglock);
596a45086e2SBrian Foster 		cur_cycle = log->l_curr_cycle;
597a45086e2SBrian Foster 		cur_block = log->l_curr_block;
598a45086e2SBrian Foster 		spin_unlock(&log->l_icloglock);
599a45086e2SBrian Foster 
600a45086e2SBrian Foster 		if ((CYCLE_LSN(lsn) > cur_cycle) ||
601a45086e2SBrian Foster 		    (CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block))
602a45086e2SBrian Foster 			valid = false;
603a45086e2SBrian Foster 	}
604a45086e2SBrian Foster 
605a45086e2SBrian Foster 	return valid;
606a45086e2SBrian Foster }
607a45086e2SBrian Foster 
6081da177e4SLinus Torvalds #endif	/* __XFS_LOG_PRIV_H__ */
609