xref: /linux/fs/xfs/xfs_log_priv.h (revision 108a42358a05312b2128533c6462a3fdeb410bdf)
10b61f8a4SDave Chinner // SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds /*
37b718769SNathan Scott  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
47b718769SNathan Scott  * All Rights Reserved.
51da177e4SLinus Torvalds  */
61da177e4SLinus Torvalds #ifndef	__XFS_LOG_PRIV_H__
71da177e4SLinus Torvalds #define __XFS_LOG_PRIV_H__
81da177e4SLinus Torvalds 
91da177e4SLinus Torvalds struct xfs_buf;
10ad223e60SMark Tinguely struct xlog;
11a844f451SNathan Scott struct xlog_ticket;
121da177e4SLinus Torvalds struct xfs_mount;
131da177e4SLinus Torvalds 
141da177e4SLinus Torvalds /*
15fc06c6d0SDave Chinner  * Flags for log structure
161da177e4SLinus Torvalds  */
17fc06c6d0SDave Chinner #define XLOG_ACTIVE_RECOVERY	0x2	/* in the middle of recovery */
18fc06c6d0SDave Chinner #define	XLOG_RECOVERY_NEEDED	0x4	/* log was recovered */
19fc06c6d0SDave Chinner #define XLOG_IO_ERROR		0x8	/* log hit an I/O error, and being
20fc06c6d0SDave Chinner 					   shutdown */
21fc06c6d0SDave Chinner #define XLOG_TAIL_WARN		0x10	/* log tail verify warning issued */
221da177e4SLinus Torvalds 
231da177e4SLinus Torvalds /*
241da177e4SLinus Torvalds  * get client id from packed copy.
251da177e4SLinus Torvalds  *
261da177e4SLinus Torvalds  * this hack is here because the xlog_pack code copies four bytes
271da177e4SLinus Torvalds  * of xlog_op_header containing the fields oh_clientid, oh_flags
281da177e4SLinus Torvalds  * and oh_res2 into the packed copy.
291da177e4SLinus Torvalds  *
301da177e4SLinus Torvalds  * later on this four byte chunk is treated as an int and the
311da177e4SLinus Torvalds  * client id is pulled out.
321da177e4SLinus Torvalds  *
331da177e4SLinus Torvalds  * this has endian issues, of course.
341da177e4SLinus Torvalds  */
35b53e675dSChristoph Hellwig static inline uint xlog_get_client_id(__be32 i)
3603bea6feSChristoph Hellwig {
37b53e675dSChristoph Hellwig 	return be32_to_cpu(i) >> 24;
3803bea6feSChristoph Hellwig }
391da177e4SLinus Torvalds 
401da177e4SLinus Torvalds /*
411da177e4SLinus Torvalds  * In core log state
421da177e4SLinus Torvalds  */
431858bb0bSChristoph Hellwig enum xlog_iclog_state {
441858bb0bSChristoph Hellwig 	XLOG_STATE_ACTIVE,	/* Current IC log being written to */
451858bb0bSChristoph Hellwig 	XLOG_STATE_WANT_SYNC,	/* Want to sync this iclog; no more writes */
461858bb0bSChristoph Hellwig 	XLOG_STATE_SYNCING,	/* This IC log is syncing */
471858bb0bSChristoph Hellwig 	XLOG_STATE_DONE_SYNC,	/* Done syncing to disk */
481858bb0bSChristoph Hellwig 	XLOG_STATE_CALLBACK,	/* Callback functions now */
491858bb0bSChristoph Hellwig 	XLOG_STATE_DIRTY,	/* Dirty IC log, not ready for ACTIVE status */
501858bb0bSChristoph Hellwig 	XLOG_STATE_IOERROR,	/* IO error happened in sync'ing log */
511858bb0bSChristoph Hellwig };
521da177e4SLinus Torvalds 
531da177e4SLinus Torvalds /*
5470e42f2dSDave Chinner  * Log ticket flags
551da177e4SLinus Torvalds  */
5670e42f2dSDave Chinner #define XLOG_TIC_PERM_RESERV	0x1	/* permanent reservation */
570b1b213fSChristoph Hellwig 
580b1b213fSChristoph Hellwig #define XLOG_TIC_FLAGS \
5910547941SDave Chinner 	{ XLOG_TIC_PERM_RESERV,	"XLOG_TIC_PERM_RESERV" }
600b1b213fSChristoph Hellwig 
611da177e4SLinus Torvalds /*
621da177e4SLinus Torvalds  * Below are states for covering allocation transactions.
631da177e4SLinus Torvalds  * By covering, we mean changing the h_tail_lsn in the last on-disk
641da177e4SLinus Torvalds  * log write such that no allocation transactions will be re-done during
651da177e4SLinus Torvalds  * recovery after a system crash. Recovery starts at the last on-disk
661da177e4SLinus Torvalds  * log write.
671da177e4SLinus Torvalds  *
681da177e4SLinus Torvalds  * These states are used to insert dummy log entries to cover
691da177e4SLinus Torvalds  * space allocation transactions which can undo non-transactional changes
701da177e4SLinus Torvalds  * after a crash. Writes to a file with space
711da177e4SLinus Torvalds  * already allocated do not result in any transactions. Allocations
721da177e4SLinus Torvalds  * might include space beyond the EOF. So if we just push the EOF a
731da177e4SLinus Torvalds  * little, the last transaction for the file could contain the wrong
741da177e4SLinus Torvalds  * size. If there is no file system activity, after an allocation
751da177e4SLinus Torvalds  * transaction, and the system crashes, the allocation transaction
761da177e4SLinus Torvalds  * will get replayed and the file will be truncated. This could
771da177e4SLinus Torvalds  * be hours/days/... after the allocation occurred.
781da177e4SLinus Torvalds  *
791da177e4SLinus Torvalds  * The fix for this is to do two dummy transactions when the
801da177e4SLinus Torvalds  * system is idle. We need two dummy transaction because the h_tail_lsn
811da177e4SLinus Torvalds  * in the log record header needs to point beyond the last possible
821da177e4SLinus Torvalds  * non-dummy transaction. The first dummy changes the h_tail_lsn to
831da177e4SLinus Torvalds  * the first transaction before the dummy. The second dummy causes
841da177e4SLinus Torvalds  * h_tail_lsn to point to the first dummy. Recovery starts at h_tail_lsn.
851da177e4SLinus Torvalds  *
861da177e4SLinus Torvalds  * These dummy transactions get committed when everything
871da177e4SLinus Torvalds  * is idle (after there has been some activity).
881da177e4SLinus Torvalds  *
891da177e4SLinus Torvalds  * There are 5 states used to control this.
901da177e4SLinus Torvalds  *
911da177e4SLinus Torvalds  *  IDLE -- no logging has been done on the file system or
921da177e4SLinus Torvalds  *		we are done covering previous transactions.
931da177e4SLinus Torvalds  *  NEED -- logging has occurred and we need a dummy transaction
941da177e4SLinus Torvalds  *		when the log becomes idle.
951da177e4SLinus Torvalds  *  DONE -- we were in the NEED state and have committed a dummy
961da177e4SLinus Torvalds  *		transaction.
971da177e4SLinus Torvalds  *  NEED2 -- we detected that a dummy transaction has gone to the
981da177e4SLinus Torvalds  *		on disk log with no other transactions.
991da177e4SLinus Torvalds  *  DONE2 -- we committed a dummy transaction when in the NEED2 state.
1001da177e4SLinus Torvalds  *
1011da177e4SLinus Torvalds  * There are two places where we switch states:
1021da177e4SLinus Torvalds  *
1031da177e4SLinus Torvalds  * 1.) In xfs_sync, when we detect an idle log and are in NEED or NEED2.
1041da177e4SLinus Torvalds  *	We commit the dummy transaction and switch to DONE or DONE2,
1051da177e4SLinus Torvalds  *	respectively. In all other states, we don't do anything.
1061da177e4SLinus Torvalds  *
1071da177e4SLinus Torvalds  * 2.) When we finish writing the on-disk log (xlog_state_clean_log).
1081da177e4SLinus Torvalds  *
1091da177e4SLinus Torvalds  *	No matter what state we are in, if this isn't the dummy
1101da177e4SLinus Torvalds  *	transaction going out, the next state is NEED.
1111da177e4SLinus Torvalds  *	So, if we aren't in the DONE or DONE2 states, the next state
1121da177e4SLinus Torvalds  *	is NEED. We can't be finishing a write of the dummy record
1131da177e4SLinus Torvalds  *	unless it was committed and the state switched to DONE or DONE2.
1141da177e4SLinus Torvalds  *
1151da177e4SLinus Torvalds  *	If we are in the DONE state and this was a write of the
1161da177e4SLinus Torvalds  *		dummy transaction, we move to NEED2.
1171da177e4SLinus Torvalds  *
1181da177e4SLinus Torvalds  *	If we are in the DONE2 state and this was a write of the
1191da177e4SLinus Torvalds  *		dummy transaction, we move to IDLE.
1201da177e4SLinus Torvalds  *
1211da177e4SLinus Torvalds  *
1221da177e4SLinus Torvalds  * Writing only one dummy transaction can get appended to
1231da177e4SLinus Torvalds  * one file space allocation. When this happens, the log recovery
1241da177e4SLinus Torvalds  * code replays the space allocation and a file could be truncated.
1251da177e4SLinus Torvalds  * This is why we have the NEED2 and DONE2 states before going idle.
1261da177e4SLinus Torvalds  */
1271da177e4SLinus Torvalds 
1281da177e4SLinus Torvalds #define XLOG_STATE_COVER_IDLE	0
1291da177e4SLinus Torvalds #define XLOG_STATE_COVER_NEED	1
1301da177e4SLinus Torvalds #define XLOG_STATE_COVER_DONE	2
1311da177e4SLinus Torvalds #define XLOG_STATE_COVER_NEED2	3
1321da177e4SLinus Torvalds #define XLOG_STATE_COVER_DONE2	4
1331da177e4SLinus Torvalds 
1341da177e4SLinus Torvalds #define XLOG_COVER_OPS		5
1351da177e4SLinus Torvalds 
1367e9c6396STim Shimmin /* Ticket reservation region accounting */
1377e9c6396STim Shimmin #define XLOG_TIC_LEN_MAX	15
1387e9c6396STim Shimmin 
1397e9c6396STim Shimmin /*
1407e9c6396STim Shimmin  * Reservation region
1417e9c6396STim Shimmin  * As would be stored in xfs_log_iovec but without the i_addr which
1427e9c6396STim Shimmin  * we don't care about.
1437e9c6396STim Shimmin  */
1447e9c6396STim Shimmin typedef struct xlog_res {
1451259845dSTim Shimmin 	uint	r_len;	/* region length		:4 */
1461259845dSTim Shimmin 	uint	r_type;	/* region's transaction type	:4 */
1477e9c6396STim Shimmin } xlog_res_t;
1487e9c6396STim Shimmin 
1491da177e4SLinus Torvalds typedef struct xlog_ticket {
15010547941SDave Chinner 	struct list_head   t_queue;	 /* reserve/write queue */
15114a7235fSChristoph Hellwig 	struct task_struct *t_task;	 /* task that owns this ticket */
1521da177e4SLinus Torvalds 	xlog_tid_t	   t_tid;	 /* transaction identifier	 : 4  */
153cc09c0dcSDave Chinner 	atomic_t	   t_ref;	 /* ticket reference count       : 4  */
1541da177e4SLinus Torvalds 	int		   t_curr_res;	 /* current reservation in bytes : 4  */
1551da177e4SLinus Torvalds 	int		   t_unit_res;	 /* unit reservation in bytes    : 4  */
1567e9c6396STim Shimmin 	char		   t_ocnt;	 /* original count		 : 1  */
1577e9c6396STim Shimmin 	char		   t_cnt;	 /* current count		 : 1  */
1587e9c6396STim Shimmin 	char		   t_clientid;	 /* who does this belong to;	 : 1  */
1597e9c6396STim Shimmin 	char		   t_flags;	 /* properties of reservation	 : 1  */
1607e9c6396STim Shimmin 
1617e9c6396STim Shimmin         /* reservation array fields */
1627e9c6396STim Shimmin 	uint		   t_res_num;                    /* num in array : 4 */
1637e9c6396STim Shimmin 	uint		   t_res_num_ophdrs;		 /* num op hdrs  : 4 */
1647e9c6396STim Shimmin 	uint		   t_res_arr_sum;		 /* array sum    : 4 */
1657e9c6396STim Shimmin 	uint		   t_res_o_flow;		 /* sum overflow : 4 */
1661259845dSTim Shimmin 	xlog_res_t	   t_res_arr[XLOG_TIC_LEN_MAX];  /* array of res : 8 * 15 */
1671da177e4SLinus Torvalds } xlog_ticket_t;
1687e9c6396STim Shimmin 
1691da177e4SLinus Torvalds /*
1701da177e4SLinus Torvalds  * - A log record header is 512 bytes.  There is plenty of room to grow the
1711da177e4SLinus Torvalds  *	xlog_rec_header_t into the reserved space.
1721da177e4SLinus Torvalds  * - ic_data follows, so a write to disk can start at the beginning of
1731da177e4SLinus Torvalds  *	the iclog.
17412017fafSDavid Chinner  * - ic_forcewait is used to implement synchronous forcing of the iclog to disk.
1751da177e4SLinus Torvalds  * - ic_next is the pointer to the next iclog in the ring.
1761da177e4SLinus Torvalds  * - ic_log is a pointer back to the global log structure.
17779b54d9bSChristoph Hellwig  * - ic_size is the full size of the log buffer, minus the cycle headers.
1781da177e4SLinus Torvalds  * - ic_offset is the current number of bytes written to in this iclog.
1791da177e4SLinus Torvalds  * - ic_refcnt is bumped when someone is writing to the log.
1801da177e4SLinus Torvalds  * - ic_state is the state of the iclog.
181114d23aaSDavid Chinner  *
182114d23aaSDavid Chinner  * Because of cacheline contention on large machines, we need to separate
183114d23aaSDavid Chinner  * various resources onto different cachelines. To start with, make the
184114d23aaSDavid Chinner  * structure cacheline aligned. The following fields can be contended on
185114d23aaSDavid Chinner  * by independent processes:
186114d23aaSDavid Chinner  *
18789ae379dSChristoph Hellwig  *	- ic_callbacks
188114d23aaSDavid Chinner  *	- ic_refcnt
189114d23aaSDavid Chinner  *	- fields protected by the global l_icloglock
190114d23aaSDavid Chinner  *
191114d23aaSDavid Chinner  * so we need to ensure that these fields are located in separate cachelines.
192114d23aaSDavid Chinner  * We'll put all the read-only and l_icloglock fields in the first cacheline,
193114d23aaSDavid Chinner  * and move everything else out to subsequent cachelines.
1941da177e4SLinus Torvalds  */
195b28708d6SChristoph Hellwig typedef struct xlog_in_core {
196eb40a875SDave Chinner 	wait_queue_head_t	ic_force_wait;
197eb40a875SDave Chinner 	wait_queue_head_t	ic_write_wait;
1981da177e4SLinus Torvalds 	struct xlog_in_core	*ic_next;
1991da177e4SLinus Torvalds 	struct xlog_in_core	*ic_prev;
200ad223e60SMark Tinguely 	struct xlog		*ic_log;
20179b54d9bSChristoph Hellwig 	u32			ic_size;
20279b54d9bSChristoph Hellwig 	u32			ic_offset;
2031858bb0bSChristoph Hellwig 	enum xlog_iclog_state	ic_state;
2041da177e4SLinus Torvalds 	char			*ic_datap;	/* pointer to iclog data */
205114d23aaSDavid Chinner 
206114d23aaSDavid Chinner 	/* Callback structures need their own cacheline */
207114d23aaSDavid Chinner 	spinlock_t		ic_callback_lock ____cacheline_aligned_in_smp;
20889ae379dSChristoph Hellwig 	struct list_head	ic_callbacks;
209114d23aaSDavid Chinner 
210114d23aaSDavid Chinner 	/* reference counts need their own cacheline */
211114d23aaSDavid Chinner 	atomic_t		ic_refcnt ____cacheline_aligned_in_smp;
212b28708d6SChristoph Hellwig 	xlog_in_core_2_t	*ic_data;
213b28708d6SChristoph Hellwig #define ic_header	ic_data->hic_header
214366fc4b8SChristoph Hellwig #ifdef DEBUG
215366fc4b8SChristoph Hellwig 	bool			ic_fail_crc : 1;
216366fc4b8SChristoph Hellwig #endif
21779b54d9bSChristoph Hellwig 	struct semaphore	ic_sema;
21879b54d9bSChristoph Hellwig 	struct work_struct	ic_end_io_work;
21979b54d9bSChristoph Hellwig 	struct bio		ic_bio;
22079b54d9bSChristoph Hellwig 	struct bio_vec		ic_bvec[];
2211da177e4SLinus Torvalds } xlog_in_core_t;
2221da177e4SLinus Torvalds 
2231da177e4SLinus Torvalds /*
22471e330b5SDave Chinner  * The CIL context is used to aggregate per-transaction details as well be
22571e330b5SDave Chinner  * passed to the iclog for checkpoint post-commit processing.  After being
22671e330b5SDave Chinner  * passed to the iclog, another context needs to be allocated for tracking the
22771e330b5SDave Chinner  * next set of transactions to be aggregated into a checkpoint.
22871e330b5SDave Chinner  */
22971e330b5SDave Chinner struct xfs_cil;
23071e330b5SDave Chinner 
23171e330b5SDave Chinner struct xfs_cil_ctx {
23271e330b5SDave Chinner 	struct xfs_cil		*cil;
23371e330b5SDave Chinner 	xfs_lsn_t		sequence;	/* chkpt sequence # */
23471e330b5SDave Chinner 	xfs_lsn_t		start_lsn;	/* first LSN of chkpt commit */
23571e330b5SDave Chinner 	xfs_lsn_t		commit_lsn;	/* chkpt commit record lsn */
23671e330b5SDave Chinner 	struct xlog_ticket	*ticket;	/* chkpt ticket */
23771e330b5SDave Chinner 	int			nvecs;		/* number of regions */
23871e330b5SDave Chinner 	int			space_used;	/* aggregate size of regions */
23971e330b5SDave Chinner 	struct list_head	busy_extents;	/* busy extents in chkpt */
24071e330b5SDave Chinner 	struct xfs_log_vec	*lv_chain;	/* logvecs being pushed */
24189ae379dSChristoph Hellwig 	struct list_head	iclog_entry;
24271e330b5SDave Chinner 	struct list_head	committing;	/* ctx committing list */
2434560e78fSChristoph Hellwig 	struct work_struct	discard_endio_work;
24471e330b5SDave Chinner };
24571e330b5SDave Chinner 
24671e330b5SDave Chinner /*
24771e330b5SDave Chinner  * Committed Item List structure
24871e330b5SDave Chinner  *
24971e330b5SDave Chinner  * This structure is used to track log items that have been committed but not
25071e330b5SDave Chinner  * yet written into the log. It is used only when the delayed logging mount
25171e330b5SDave Chinner  * option is enabled.
25271e330b5SDave Chinner  *
25371e330b5SDave Chinner  * This structure tracks the list of committing checkpoint contexts so
25471e330b5SDave Chinner  * we can avoid the problem of having to hold out new transactions during a
25571e330b5SDave Chinner  * flush until we have a the commit record LSN of the checkpoint. We can
25671e330b5SDave Chinner  * traverse the list of committing contexts in xlog_cil_push_lsn() to find a
25771e330b5SDave Chinner  * sequence match and extract the commit LSN directly from there. If the
25871e330b5SDave Chinner  * checkpoint is still in the process of committing, we can block waiting for
25971e330b5SDave Chinner  * the commit LSN to be determined as well. This should make synchronous
26071e330b5SDave Chinner  * operations almost as efficient as the old logging methods.
26171e330b5SDave Chinner  */
26271e330b5SDave Chinner struct xfs_cil {
263ad223e60SMark Tinguely 	struct xlog		*xc_log;
26471e330b5SDave Chinner 	struct list_head	xc_cil;
26571e330b5SDave Chinner 	spinlock_t		xc_cil_lock;
2664bb928cdSDave Chinner 
2674bb928cdSDave Chinner 	struct rw_semaphore	xc_ctx_lock ____cacheline_aligned_in_smp;
26871e330b5SDave Chinner 	struct xfs_cil_ctx	*xc_ctx;
2694bb928cdSDave Chinner 
2704bb928cdSDave Chinner 	spinlock_t		xc_push_lock ____cacheline_aligned_in_smp;
2714bb928cdSDave Chinner 	xfs_lsn_t		xc_push_seq;
27271e330b5SDave Chinner 	struct list_head	xc_committing;
273eb40a875SDave Chinner 	wait_queue_head_t	xc_commit_wait;
274a44f13edSDave Chinner 	xfs_lsn_t		xc_current_sequence;
2754c2d542fSDave Chinner 	struct work_struct	xc_push_work;
2764bb928cdSDave Chinner } ____cacheline_aligned_in_smp;
27771e330b5SDave Chinner 
27871e330b5SDave Chinner /*
27980168676SDave Chinner  * The amount of log space we allow the CIL to aggregate is difficult to size.
28080168676SDave Chinner  * Whatever we choose, we have to make sure we can get a reservation for the
28180168676SDave Chinner  * log space effectively, that it is large enough to capture sufficient
28280168676SDave Chinner  * relogging to reduce log buffer IO significantly, but it is not too large for
28380168676SDave Chinner  * the log or induces too much latency when writing out through the iclogs. We
28480168676SDave Chinner  * track both space consumed and the number of vectors in the checkpoint
28580168676SDave Chinner  * context, so we need to decide which to use for limiting.
286df806158SDave Chinner  *
287df806158SDave Chinner  * Every log buffer we write out during a push needs a header reserved, which
288df806158SDave Chinner  * is at least one sector and more for v2 logs. Hence we need a reservation of
289df806158SDave Chinner  * at least 512 bytes per 32k of log space just for the LR headers. That means
290df806158SDave Chinner  * 16KB of reservation per megabyte of delayed logging space we will consume,
291df806158SDave Chinner  * plus various headers.  The number of headers will vary based on the num of
292df806158SDave Chinner  * io vectors, so limiting on a specific number of vectors is going to result
293df806158SDave Chinner  * in transactions of varying size. IOWs, it is more consistent to track and
294df806158SDave Chinner  * limit space consumed in the log rather than by the number of objects being
295df806158SDave Chinner  * logged in order to prevent checkpoint ticket overruns.
296df806158SDave Chinner  *
297df806158SDave Chinner  * Further, use of static reservations through the log grant mechanism is
298df806158SDave Chinner  * problematic. It introduces a lot of complexity (e.g. reserve grant vs write
299df806158SDave Chinner  * grant) and a significant deadlock potential because regranting write space
300df806158SDave Chinner  * can block on log pushes. Hence if we have to regrant log space during a log
301df806158SDave Chinner  * push, we can deadlock.
302df806158SDave Chinner  *
303df806158SDave Chinner  * However, we can avoid this by use of a dynamic "reservation stealing"
304df806158SDave Chinner  * technique during transaction commit whereby unused reservation space in the
305df806158SDave Chinner  * transaction ticket is transferred to the CIL ctx commit ticket to cover the
306df806158SDave Chinner  * space needed by the checkpoint transaction. This means that we never need to
307df806158SDave Chinner  * specifically reserve space for the CIL checkpoint transaction, nor do we
308df806158SDave Chinner  * need to regrant space once the checkpoint completes. This also means the
309df806158SDave Chinner  * checkpoint transaction ticket is specific to the checkpoint context, rather
310df806158SDave Chinner  * than the CIL itself.
311df806158SDave Chinner  *
31280168676SDave Chinner  * With dynamic reservations, we can effectively make up arbitrary limits for
31380168676SDave Chinner  * the checkpoint size so long as they don't violate any other size rules.
31480168676SDave Chinner  * Recovery imposes a rule that no transaction exceed half the log, so we are
31580168676SDave Chinner  * limited by that.  Furthermore, the log transaction reservation subsystem
31680168676SDave Chinner  * tries to keep 25% of the log free, so we need to keep below that limit or we
31780168676SDave Chinner  * risk running out of free log space to start any new transactions.
31880168676SDave Chinner  *
319*108a4235SDave Chinner  * In order to keep background CIL push efficient, we only need to ensure the
320*108a4235SDave Chinner  * CIL is large enough to maintain sufficient in-memory relogging to avoid
321*108a4235SDave Chinner  * repeated physical writes of frequently modified metadata. If we allow the CIL
322*108a4235SDave Chinner  * to grow to a substantial fraction of the log, then we may be pinning hundreds
323*108a4235SDave Chinner  * of megabytes of metadata in memory until the CIL flushes. This can cause
324*108a4235SDave Chinner  * issues when we are running low on memory - pinned memory cannot be reclaimed,
325*108a4235SDave Chinner  * and the CIL consumes a lot of memory. Hence we need to set an upper physical
326*108a4235SDave Chinner  * size limit for the CIL that limits the maximum amount of memory pinned by the
327*108a4235SDave Chinner  * CIL but does not limit performance by reducing relogging efficiency
328*108a4235SDave Chinner  * significantly.
329*108a4235SDave Chinner  *
330*108a4235SDave Chinner  * As such, the CIL push threshold ends up being the smaller of two thresholds:
331*108a4235SDave Chinner  * - a threshold large enough that it allows CIL to be pushed and progress to be
332*108a4235SDave Chinner  *   made without excessive blocking of incoming transaction commits. This is
333*108a4235SDave Chinner  *   defined to be 12.5% of the log space - half the 25% push threshold of the
334*108a4235SDave Chinner  *   AIL.
335*108a4235SDave Chinner  * - small enough that it doesn't pin excessive amounts of memory but maintains
336*108a4235SDave Chinner  *   close to peak relogging efficiency. This is defined to be 16x the iclog
337*108a4235SDave Chinner  *   buffer window (32MB) as measurements have shown this to be roughly the
338*108a4235SDave Chinner  *   point of diminishing performance increases under highly concurrent
339*108a4235SDave Chinner  *   modification workloads.
340df806158SDave Chinner  */
341*108a4235SDave Chinner #define XLOG_CIL_SPACE_LIMIT(log)	\
342*108a4235SDave Chinner 	min_t(int, (log)->l_logsize >> 3, BBTOB(XLOG_TOTAL_REC_SHIFT(log)) << 4)
343df806158SDave Chinner 
344df806158SDave Chinner /*
34528496968SChristoph Hellwig  * ticket grant locks, queues and accounting have their own cachlines
34628496968SChristoph Hellwig  * as these are quite hot and can be operated on concurrently.
34728496968SChristoph Hellwig  */
34828496968SChristoph Hellwig struct xlog_grant_head {
34928496968SChristoph Hellwig 	spinlock_t		lock ____cacheline_aligned_in_smp;
35028496968SChristoph Hellwig 	struct list_head	waiters;
35128496968SChristoph Hellwig 	atomic64_t		grant;
35228496968SChristoph Hellwig };
35328496968SChristoph Hellwig 
35428496968SChristoph Hellwig /*
3551da177e4SLinus Torvalds  * The reservation head lsn is not made up of a cycle number and block number.
3561da177e4SLinus Torvalds  * Instead, it uses a cycle number and byte number.  Logs don't expect to
3571da177e4SLinus Torvalds  * overflow 31 bits worth of byte offset, so using a byte number will mean
3581da177e4SLinus Torvalds  * that round off problems won't occur when releasing partial reservations.
3591da177e4SLinus Torvalds  */
3609a8d2fdbSMark Tinguely struct xlog {
3614679b2d3SDavid Chinner 	/* The following fields don't need locking */
3624679b2d3SDavid Chinner 	struct xfs_mount	*l_mp;	        /* mount point */
363a9c21c1bSDavid Chinner 	struct xfs_ail		*l_ailp;	/* AIL log is working with */
36471e330b5SDave Chinner 	struct xfs_cil		*l_cilp;	/* CIL log is working with */
3654679b2d3SDavid Chinner 	struct xfs_buftarg	*l_targ;        /* buftarg of log */
3661058d0f5SChristoph Hellwig 	struct workqueue_struct	*l_ioend_workqueue; /* for I/O completions */
367f661f1e0SDave Chinner 	struct delayed_work	l_work;		/* background flush work */
3684679b2d3SDavid Chinner 	uint			l_flags;
3694679b2d3SDavid Chinner 	uint			l_quotaoffs_flag; /* XFS_DQ_*, for QUOTAOFFs */
370d5689eaaSChristoph Hellwig 	struct list_head	*l_buf_cancel_table;
3714679b2d3SDavid Chinner 	int			l_iclog_hsize;  /* size of iclog header */
3724679b2d3SDavid Chinner 	int			l_iclog_heads;  /* # of iclog header sectors */
37348389ef1SAlex Elder 	uint			l_sectBBsize;   /* sector size in BBs (2^n) */
3744679b2d3SDavid Chinner 	int			l_iclog_size;	/* size of log in bytes */
3754679b2d3SDavid Chinner 	int			l_iclog_bufs;	/* number of iclog buffers */
3764679b2d3SDavid Chinner 	xfs_daddr_t		l_logBBstart;   /* start block of log */
3774679b2d3SDavid Chinner 	int			l_logsize;      /* size of log in bytes */
3784679b2d3SDavid Chinner 	int			l_logBBsize;    /* size of log in BB chunks */
3794679b2d3SDavid Chinner 
3801da177e4SLinus Torvalds 	/* The following block of fields are changed while holding icloglock */
381eb40a875SDave Chinner 	wait_queue_head_t	l_flush_wait ____cacheline_aligned_in_smp;
382d748c623SMatthew Wilcox 						/* waiting for iclog flush */
3831da177e4SLinus Torvalds 	int			l_covered_state;/* state of "covering disk
3841da177e4SLinus Torvalds 						 * log entries" */
3851da177e4SLinus Torvalds 	xlog_in_core_t		*l_iclog;       /* head log queue	*/
386b22cd72cSEric Sandeen 	spinlock_t		l_icloglock;    /* grab to change iclog state */
3871da177e4SLinus Torvalds 	int			l_curr_cycle;   /* Cycle number of log writes */
3881da177e4SLinus Torvalds 	int			l_prev_cycle;   /* Cycle number before last
3891da177e4SLinus Torvalds 						 * block increment */
3901da177e4SLinus Torvalds 	int			l_curr_block;   /* current logical log block */
3911da177e4SLinus Torvalds 	int			l_prev_block;   /* previous logical log block */
3921da177e4SLinus Torvalds 
39384f3c683SDave Chinner 	/*
3941c3cb9ecSDave Chinner 	 * l_last_sync_lsn and l_tail_lsn are atomics so they can be set and
3951c3cb9ecSDave Chinner 	 * read without needing to hold specific locks. To avoid operations
3961c3cb9ecSDave Chinner 	 * contending with other hot objects, place each of them on a separate
3971c3cb9ecSDave Chinner 	 * cacheline.
39884f3c683SDave Chinner 	 */
39984f3c683SDave Chinner 	/* lsn of last LR on disk */
40084f3c683SDave Chinner 	atomic64_t		l_last_sync_lsn ____cacheline_aligned_in_smp;
4011c3cb9ecSDave Chinner 	/* lsn of 1st LR with unflushed * buffers */
4021c3cb9ecSDave Chinner 	atomic64_t		l_tail_lsn ____cacheline_aligned_in_smp;
40384f3c683SDave Chinner 
40428496968SChristoph Hellwig 	struct xlog_grant_head	l_reserve_head;
40528496968SChristoph Hellwig 	struct xlog_grant_head	l_write_head;
4063f16b985SDave Chinner 
407baff4e44SBrian Foster 	struct xfs_kobj		l_kobj;
408baff4e44SBrian Foster 
4094679b2d3SDavid Chinner 	/* The following field are used for debugging; need to hold icloglock */
4104679b2d3SDavid Chinner #ifdef DEBUG
4115809d5e0SChristoph Hellwig 	void			*l_iclog_bak[XLOG_MAX_ICLOGS];
4124679b2d3SDavid Chinner #endif
41312818d24SBrian Foster 	/* log recovery lsn tracking (for buffer submission */
41412818d24SBrian Foster 	xfs_lsn_t		l_recovery_lsn;
4159a8d2fdbSMark Tinguely };
4161da177e4SLinus Torvalds 
417d5689eaaSChristoph Hellwig #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
418c8ce540dSDarrick J. Wong 	((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE))
419d5689eaaSChristoph Hellwig 
420b941c719SChristoph Hellwig #define XLOG_FORCED_SHUTDOWN(log) \
421b941c719SChristoph Hellwig 	(unlikely((log)->l_flags & XLOG_IO_ERROR))
422cfcbbbd0SNathan Scott 
4231da177e4SLinus Torvalds /* common routines */
4249a8d2fdbSMark Tinguely extern int
4259a8d2fdbSMark Tinguely xlog_recover(
4269a8d2fdbSMark Tinguely 	struct xlog		*log);
4279a8d2fdbSMark Tinguely extern int
4289a8d2fdbSMark Tinguely xlog_recover_finish(
4299a8d2fdbSMark Tinguely 	struct xlog		*log);
430a7a9250eSHariprasad Kelam extern void
431f0b2efadSBrian Foster xlog_recover_cancel(struct xlog *);
4320e446be4SChristoph Hellwig 
433f9668a09SDave Chinner extern __le32	 xlog_cksum(struct xlog *log, struct xlog_rec_header *rhead,
4340e446be4SChristoph Hellwig 			    char *dp, int size);
4351da177e4SLinus Torvalds 
436eb01c9cdSDavid Chinner extern kmem_zone_t *xfs_log_ticket_zone;
437ad223e60SMark Tinguely struct xlog_ticket *
438ad223e60SMark Tinguely xlog_ticket_alloc(
439ad223e60SMark Tinguely 	struct xlog	*log,
440ad223e60SMark Tinguely 	int		unit_bytes,
441ad223e60SMark Tinguely 	int		count,
442ad223e60SMark Tinguely 	char		client,
443ad223e60SMark Tinguely 	bool		permanent,
44477ba7877SAl Viro 	xfs_km_flags_t	alloc_flags);
44571e330b5SDave Chinner 
446eb01c9cdSDavid Chinner 
447e6b1f273SChristoph Hellwig static inline void
448e6b1f273SChristoph Hellwig xlog_write_adv_cnt(void **ptr, int *len, int *off, size_t bytes)
449e6b1f273SChristoph Hellwig {
450e6b1f273SChristoph Hellwig 	*ptr += bytes;
451e6b1f273SChristoph Hellwig 	*len -= bytes;
452e6b1f273SChristoph Hellwig 	*off += bytes;
453e6b1f273SChristoph Hellwig }
454e6b1f273SChristoph Hellwig 
45571e330b5SDave Chinner void	xlog_print_tic_res(struct xfs_mount *mp, struct xlog_ticket *ticket);
456d4ca1d55SBrian Foster void	xlog_print_trans(struct xfs_trans *);
4577ec94921SDave Chinner int	xlog_write(struct xlog *log, struct xfs_log_vec *log_vector,
4587ec94921SDave Chinner 		struct xlog_ticket *tic, xfs_lsn_t *start_lsn,
4597ec94921SDave Chinner 		struct xlog_in_core **commit_iclog, uint flags,
4607ec94921SDave Chinner 		bool need_start_rec);
461f10e925dSDave Chinner int	xlog_commit_record(struct xlog *log, struct xlog_ticket *ticket,
462dd401770SDave Chinner 		struct xlog_in_core **iclog, xfs_lsn_t *lsn);
4638b41e3f9SChristoph Hellwig void	xfs_log_ticket_ungrant(struct xlog *log, struct xlog_ticket *ticket);
4648b41e3f9SChristoph Hellwig void	xfs_log_ticket_regrant(struct xlog *log, struct xlog_ticket *ticket);
46571e330b5SDave Chinner 
46671e330b5SDave Chinner /*
4671c3cb9ecSDave Chinner  * When we crack an atomic LSN, we sample it first so that the value will not
4681c3cb9ecSDave Chinner  * change while we are cracking it into the component values. This means we
4691c3cb9ecSDave Chinner  * will always get consistent component values to work from. This should always
47025985edcSLucas De Marchi  * be used to sample and crack LSNs that are stored and updated in atomic
4711c3cb9ecSDave Chinner  * variables.
4721c3cb9ecSDave Chinner  */
4731c3cb9ecSDave Chinner static inline void
4741c3cb9ecSDave Chinner xlog_crack_atomic_lsn(atomic64_t *lsn, uint *cycle, uint *block)
4751c3cb9ecSDave Chinner {
4761c3cb9ecSDave Chinner 	xfs_lsn_t val = atomic64_read(lsn);
4771c3cb9ecSDave Chinner 
4781c3cb9ecSDave Chinner 	*cycle = CYCLE_LSN(val);
4791c3cb9ecSDave Chinner 	*block = BLOCK_LSN(val);
4801c3cb9ecSDave Chinner }
4811c3cb9ecSDave Chinner 
4821c3cb9ecSDave Chinner /*
4831c3cb9ecSDave Chinner  * Calculate and assign a value to an atomic LSN variable from component pieces.
4841c3cb9ecSDave Chinner  */
4851c3cb9ecSDave Chinner static inline void
4861c3cb9ecSDave Chinner xlog_assign_atomic_lsn(atomic64_t *lsn, uint cycle, uint block)
4871c3cb9ecSDave Chinner {
4881c3cb9ecSDave Chinner 	atomic64_set(lsn, xlog_assign_lsn(cycle, block));
4891c3cb9ecSDave Chinner }
4901c3cb9ecSDave Chinner 
4911c3cb9ecSDave Chinner /*
492d0eb2f38SDave Chinner  * When we crack the grant head, we sample it first so that the value will not
493a69ed03cSDave Chinner  * change while we are cracking it into the component values. This means we
494a69ed03cSDave Chinner  * will always get consistent component values to work from.
495a69ed03cSDave Chinner  */
496a69ed03cSDave Chinner static inline void
497d0eb2f38SDave Chinner xlog_crack_grant_head_val(int64_t val, int *cycle, int *space)
498a69ed03cSDave Chinner {
499a69ed03cSDave Chinner 	*cycle = val >> 32;
500a69ed03cSDave Chinner 	*space = val & 0xffffffff;
501a69ed03cSDave Chinner }
502a69ed03cSDave Chinner 
503a69ed03cSDave Chinner static inline void
504d0eb2f38SDave Chinner xlog_crack_grant_head(atomic64_t *head, int *cycle, int *space)
505d0eb2f38SDave Chinner {
506d0eb2f38SDave Chinner 	xlog_crack_grant_head_val(atomic64_read(head), cycle, space);
507d0eb2f38SDave Chinner }
508d0eb2f38SDave Chinner 
509d0eb2f38SDave Chinner static inline int64_t
510d0eb2f38SDave Chinner xlog_assign_grant_head_val(int cycle, int space)
511d0eb2f38SDave Chinner {
512d0eb2f38SDave Chinner 	return ((int64_t)cycle << 32) | space;
513d0eb2f38SDave Chinner }
514d0eb2f38SDave Chinner 
515d0eb2f38SDave Chinner static inline void
516c8a09ff8SDave Chinner xlog_assign_grant_head(atomic64_t *head, int cycle, int space)
517a69ed03cSDave Chinner {
518d0eb2f38SDave Chinner 	atomic64_set(head, xlog_assign_grant_head_val(cycle, space));
519a69ed03cSDave Chinner }
520a69ed03cSDave Chinner 
521a69ed03cSDave Chinner /*
52271e330b5SDave Chinner  * Committed Item List interfaces
52371e330b5SDave Chinner  */
5242c6e24ceSDave Chinner int	xlog_cil_init(struct xlog *log);
5252c6e24ceSDave Chinner void	xlog_cil_init_post_recovery(struct xlog *log);
5262c6e24ceSDave Chinner void	xlog_cil_destroy(struct xlog *log);
5272c6e24ceSDave Chinner bool	xlog_cil_empty(struct xlog *log);
52871e330b5SDave Chinner 
529a44f13edSDave Chinner /*
530a44f13edSDave Chinner  * CIL force routines
531a44f13edSDave Chinner  */
532ad223e60SMark Tinguely xfs_lsn_t
533ad223e60SMark Tinguely xlog_cil_force_lsn(
534ad223e60SMark Tinguely 	struct xlog *log,
535ad223e60SMark Tinguely 	xfs_lsn_t sequence);
536a44f13edSDave Chinner 
537a44f13edSDave Chinner static inline void
538ad223e60SMark Tinguely xlog_cil_force(struct xlog *log)
539a44f13edSDave Chinner {
540a44f13edSDave Chinner 	xlog_cil_force_lsn(log, log->l_cilp->xc_current_sequence);
541a44f13edSDave Chinner }
54271e330b5SDave Chinner 
543955e47adSTim Shimmin /*
544eb40a875SDave Chinner  * Wrapper function for waiting on a wait queue serialised against wakeups
545eb40a875SDave Chinner  * by a spinlock. This matches the semantics of all the wait queues used in the
546eb40a875SDave Chinner  * log code.
547eb40a875SDave Chinner  */
548f7559793SDarrick J. Wong static inline void
549f7559793SDarrick J. Wong xlog_wait(
550f7559793SDarrick J. Wong 	struct wait_queue_head	*wq,
551f7559793SDarrick J. Wong 	struct spinlock		*lock)
552f7559793SDarrick J. Wong 		__releases(lock)
553eb40a875SDave Chinner {
554eb40a875SDave Chinner 	DECLARE_WAITQUEUE(wait, current);
555eb40a875SDave Chinner 
556eb40a875SDave Chinner 	add_wait_queue_exclusive(wq, &wait);
557eb40a875SDave Chinner 	__set_current_state(TASK_UNINTERRUPTIBLE);
558eb40a875SDave Chinner 	spin_unlock(lock);
559eb40a875SDave Chinner 	schedule();
560eb40a875SDave Chinner 	remove_wait_queue(wq, &wait);
561eb40a875SDave Chinner }
5621da177e4SLinus Torvalds 
563a45086e2SBrian Foster /*
564a45086e2SBrian Foster  * The LSN is valid so long as it is behind the current LSN. If it isn't, this
565a45086e2SBrian Foster  * means that the next log record that includes this metadata could have a
566a45086e2SBrian Foster  * smaller LSN. In turn, this means that the modification in the log would not
567a45086e2SBrian Foster  * replay.
568a45086e2SBrian Foster  */
569a45086e2SBrian Foster static inline bool
570a45086e2SBrian Foster xlog_valid_lsn(
571a45086e2SBrian Foster 	struct xlog	*log,
572a45086e2SBrian Foster 	xfs_lsn_t	lsn)
573a45086e2SBrian Foster {
574a45086e2SBrian Foster 	int		cur_cycle;
575a45086e2SBrian Foster 	int		cur_block;
576a45086e2SBrian Foster 	bool		valid = true;
577a45086e2SBrian Foster 
578a45086e2SBrian Foster 	/*
579a45086e2SBrian Foster 	 * First, sample the current lsn without locking to avoid added
580a45086e2SBrian Foster 	 * contention from metadata I/O. The current cycle and block are updated
581a45086e2SBrian Foster 	 * (in xlog_state_switch_iclogs()) and read here in a particular order
582a45086e2SBrian Foster 	 * to avoid false negatives (e.g., thinking the metadata LSN is valid
583a45086e2SBrian Foster 	 * when it is not).
584a45086e2SBrian Foster 	 *
585a45086e2SBrian Foster 	 * The current block is always rewound before the cycle is bumped in
586a45086e2SBrian Foster 	 * xlog_state_switch_iclogs() to ensure the current LSN is never seen in
587a45086e2SBrian Foster 	 * a transiently forward state. Instead, we can see the LSN in a
588a45086e2SBrian Foster 	 * transiently behind state if we happen to race with a cycle wrap.
589a45086e2SBrian Foster 	 */
5906aa7de05SMark Rutland 	cur_cycle = READ_ONCE(log->l_curr_cycle);
591a45086e2SBrian Foster 	smp_rmb();
5926aa7de05SMark Rutland 	cur_block = READ_ONCE(log->l_curr_block);
593a45086e2SBrian Foster 
594a45086e2SBrian Foster 	if ((CYCLE_LSN(lsn) > cur_cycle) ||
595a45086e2SBrian Foster 	    (CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block)) {
596a45086e2SBrian Foster 		/*
597a45086e2SBrian Foster 		 * If the metadata LSN appears invalid, it's possible the check
598a45086e2SBrian Foster 		 * above raced with a wrap to the next log cycle. Grab the lock
599a45086e2SBrian Foster 		 * to check for sure.
600a45086e2SBrian Foster 		 */
601a45086e2SBrian Foster 		spin_lock(&log->l_icloglock);
602a45086e2SBrian Foster 		cur_cycle = log->l_curr_cycle;
603a45086e2SBrian Foster 		cur_block = log->l_curr_block;
604a45086e2SBrian Foster 		spin_unlock(&log->l_icloglock);
605a45086e2SBrian Foster 
606a45086e2SBrian Foster 		if ((CYCLE_LSN(lsn) > cur_cycle) ||
607a45086e2SBrian Foster 		    (CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block))
608a45086e2SBrian Foster 			valid = false;
609a45086e2SBrian Foster 	}
610a45086e2SBrian Foster 
611a45086e2SBrian Foster 	return valid;
612a45086e2SBrian Foster }
613a45086e2SBrian Foster 
6141da177e4SLinus Torvalds #endif	/* __XFS_LOG_PRIV_H__ */
615