1 /* 2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it would be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write the Free Software Foundation, 15 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 16 */ 17 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_log.h" 22 #include "xfs_trans.h" 23 #include "xfs_trans_priv.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_alloc.h" 30 #include "xfs_extent_busy.h" 31 #include "xfs_discard.h" 32 33 /* 34 * Allocate a new ticket. Failing to get a new ticket makes it really hard to 35 * recover, so we don't allow failure here. Also, we allocate in a context that 36 * we don't want to be issuing transactions from, so we need to tell the 37 * allocation code this as well. 38 * 39 * We don't reserve any space for the ticket - we are going to steal whatever 40 * space we require from transactions as they commit. To ensure we reserve all 41 * the space required, we need to set the current reservation of the ticket to 42 * zero so that we know to steal the initial transaction overhead from the 43 * first transaction commit. 44 */ 45 static struct xlog_ticket * 46 xlog_cil_ticket_alloc( 47 struct xlog *log) 48 { 49 struct xlog_ticket *tic; 50 51 tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0, 52 KM_SLEEP|KM_NOFS); 53 tic->t_trans_type = XFS_TRANS_CHECKPOINT; 54 55 /* 56 * set the current reservation to zero so we know to steal the basic 57 * transaction overhead reservation from the first transaction commit. 58 */ 59 tic->t_curr_res = 0; 60 return tic; 61 } 62 63 /* 64 * After the first stage of log recovery is done, we know where the head and 65 * tail of the log are. We need this log initialisation done before we can 66 * initialise the first CIL checkpoint context. 67 * 68 * Here we allocate a log ticket to track space usage during a CIL push. This 69 * ticket is passed to xlog_write() directly so that we don't slowly leak log 70 * space by failing to account for space used by log headers and additional 71 * region headers for split regions. 72 */ 73 void 74 xlog_cil_init_post_recovery( 75 struct xlog *log) 76 { 77 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); 78 log->l_cilp->xc_ctx->sequence = 1; 79 log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle, 80 log->l_curr_block); 81 } 82 83 /* 84 * Format log item into a flat buffers 85 * 86 * For delayed logging, we need to hold a formatted buffer containing all the 87 * changes on the log item. This enables us to relog the item in memory and 88 * write it out asynchronously without needing to relock the object that was 89 * modified at the time it gets written into the iclog. 90 * 91 * This function builds a vector for the changes in each log item in the 92 * transaction. It then works out the length of the buffer needed for each log 93 * item, allocates them and formats the vector for the item into the buffer. 94 * The buffer is then attached to the log item are then inserted into the 95 * Committed Item List for tracking until the next checkpoint is written out. 96 * 97 * We don't set up region headers during this process; we simply copy the 98 * regions into the flat buffer. We can do this because we still have to do a 99 * formatting step to write the regions into the iclog buffer. Writing the 100 * ophdrs during the iclog write means that we can support splitting large 101 * regions across iclog boundares without needing a change in the format of the 102 * item/region encapsulation. 103 * 104 * Hence what we need to do now is change the rewrite the vector array to point 105 * to the copied region inside the buffer we just allocated. This allows us to 106 * format the regions into the iclog as though they are being formatted 107 * directly out of the objects themselves. 108 */ 109 static struct xfs_log_vec * 110 xlog_cil_prepare_log_vecs( 111 struct xfs_trans *tp) 112 { 113 struct xfs_log_item_desc *lidp; 114 struct xfs_log_vec *lv = NULL; 115 struct xfs_log_vec *ret_lv = NULL; 116 117 118 /* Bail out if we didn't find a log item. */ 119 if (list_empty(&tp->t_items)) { 120 ASSERT(0); 121 return NULL; 122 } 123 124 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 125 struct xfs_log_vec *new_lv; 126 void *ptr; 127 int index; 128 int len = 0; 129 uint niovecs; 130 131 /* Skip items which aren't dirty in this transaction. */ 132 if (!(lidp->lid_flags & XFS_LID_DIRTY)) 133 continue; 134 135 /* Skip items that do not have any vectors for writing */ 136 niovecs = IOP_SIZE(lidp->lid_item); 137 if (!niovecs) 138 continue; 139 140 new_lv = kmem_zalloc(sizeof(*new_lv) + 141 niovecs * sizeof(struct xfs_log_iovec), 142 KM_SLEEP); 143 144 /* The allocated iovec region lies beyond the log vector. */ 145 new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1]; 146 new_lv->lv_niovecs = niovecs; 147 new_lv->lv_item = lidp->lid_item; 148 149 /* build the vector array and calculate it's length */ 150 IOP_FORMAT(new_lv->lv_item, new_lv->lv_iovecp); 151 for (index = 0; index < new_lv->lv_niovecs; index++) 152 len += new_lv->lv_iovecp[index].i_len; 153 154 new_lv->lv_buf_len = len; 155 new_lv->lv_buf = kmem_alloc(new_lv->lv_buf_len, 156 KM_SLEEP|KM_NOFS); 157 ptr = new_lv->lv_buf; 158 159 for (index = 0; index < new_lv->lv_niovecs; index++) { 160 struct xfs_log_iovec *vec = &new_lv->lv_iovecp[index]; 161 162 memcpy(ptr, vec->i_addr, vec->i_len); 163 vec->i_addr = ptr; 164 ptr += vec->i_len; 165 } 166 ASSERT(ptr == new_lv->lv_buf + new_lv->lv_buf_len); 167 168 if (!ret_lv) 169 ret_lv = new_lv; 170 else 171 lv->lv_next = new_lv; 172 lv = new_lv; 173 } 174 175 return ret_lv; 176 } 177 178 /* 179 * Prepare the log item for insertion into the CIL. Calculate the difference in 180 * log space and vectors it will consume, and if it is a new item pin it as 181 * well. 182 */ 183 STATIC void 184 xfs_cil_prepare_item( 185 struct xlog *log, 186 struct xfs_log_vec *lv, 187 int *len, 188 int *diff_iovecs) 189 { 190 struct xfs_log_vec *old = lv->lv_item->li_lv; 191 192 if (old) { 193 /* existing lv on log item, space used is a delta */ 194 ASSERT(!list_empty(&lv->lv_item->li_cil)); 195 ASSERT(old->lv_buf && old->lv_buf_len && old->lv_niovecs); 196 197 *len += lv->lv_buf_len - old->lv_buf_len; 198 *diff_iovecs += lv->lv_niovecs - old->lv_niovecs; 199 kmem_free(old->lv_buf); 200 kmem_free(old); 201 } else { 202 /* new lv, must pin the log item */ 203 ASSERT(!lv->lv_item->li_lv); 204 ASSERT(list_empty(&lv->lv_item->li_cil)); 205 206 *len += lv->lv_buf_len; 207 *diff_iovecs += lv->lv_niovecs; 208 IOP_PIN(lv->lv_item); 209 210 } 211 212 /* attach new log vector to log item */ 213 lv->lv_item->li_lv = lv; 214 215 /* 216 * If this is the first time the item is being committed to the 217 * CIL, store the sequence number on the log item so we can 218 * tell in future commits whether this is the first checkpoint 219 * the item is being committed into. 220 */ 221 if (!lv->lv_item->li_seq) 222 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; 223 } 224 225 /* 226 * Insert the log items into the CIL and calculate the difference in space 227 * consumed by the item. Add the space to the checkpoint ticket and calculate 228 * if the change requires additional log metadata. If it does, take that space 229 * as well. Remove the amount of space we added to the checkpoint ticket from 230 * the current transaction ticket so that the accounting works out correctly. 231 */ 232 static void 233 xlog_cil_insert_items( 234 struct xlog *log, 235 struct xfs_log_vec *log_vector, 236 struct xlog_ticket *ticket) 237 { 238 struct xfs_cil *cil = log->l_cilp; 239 struct xfs_cil_ctx *ctx = cil->xc_ctx; 240 struct xfs_log_vec *lv; 241 int len = 0; 242 int diff_iovecs = 0; 243 int iclog_space; 244 245 ASSERT(log_vector); 246 247 /* 248 * Do all the accounting aggregation and switching of log vectors 249 * around in a separate loop to the insertion of items into the CIL. 250 * Then we can do a separate loop to update the CIL within a single 251 * lock/unlock pair. This reduces the number of round trips on the CIL 252 * lock from O(nr_logvectors) to O(1) and greatly reduces the overall 253 * hold time for the transaction commit. 254 * 255 * If this is the first time the item is being placed into the CIL in 256 * this context, pin it so it can't be written to disk until the CIL is 257 * flushed to the iclog and the iclog written to disk. 258 * 259 * We can do this safely because the context can't checkpoint until we 260 * are done so it doesn't matter exactly how we update the CIL. 261 */ 262 for (lv = log_vector; lv; lv = lv->lv_next) 263 xfs_cil_prepare_item(log, lv, &len, &diff_iovecs); 264 265 /* account for space used by new iovec headers */ 266 len += diff_iovecs * sizeof(xlog_op_header_t); 267 268 spin_lock(&cil->xc_cil_lock); 269 270 /* move the items to the tail of the CIL */ 271 for (lv = log_vector; lv; lv = lv->lv_next) 272 list_move_tail(&lv->lv_item->li_cil, &cil->xc_cil); 273 274 ctx->nvecs += diff_iovecs; 275 276 /* 277 * Now transfer enough transaction reservation to the context ticket 278 * for the checkpoint. The context ticket is special - the unit 279 * reservation has to grow as well as the current reservation as we 280 * steal from tickets so we can correctly determine the space used 281 * during the transaction commit. 282 */ 283 if (ctx->ticket->t_curr_res == 0) { 284 /* first commit in checkpoint, steal the header reservation */ 285 ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len); 286 ctx->ticket->t_curr_res = ctx->ticket->t_unit_res; 287 ticket->t_curr_res -= ctx->ticket->t_unit_res; 288 } 289 290 /* do we need space for more log record headers? */ 291 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 292 if (len > 0 && (ctx->space_used / iclog_space != 293 (ctx->space_used + len) / iclog_space)) { 294 int hdrs; 295 296 hdrs = (len + iclog_space - 1) / iclog_space; 297 /* need to take into account split region headers, too */ 298 hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header); 299 ctx->ticket->t_unit_res += hdrs; 300 ctx->ticket->t_curr_res += hdrs; 301 ticket->t_curr_res -= hdrs; 302 ASSERT(ticket->t_curr_res >= len); 303 } 304 ticket->t_curr_res -= len; 305 ctx->space_used += len; 306 307 spin_unlock(&cil->xc_cil_lock); 308 } 309 310 static void 311 xlog_cil_free_logvec( 312 struct xfs_log_vec *log_vector) 313 { 314 struct xfs_log_vec *lv; 315 316 for (lv = log_vector; lv; ) { 317 struct xfs_log_vec *next = lv->lv_next; 318 kmem_free(lv->lv_buf); 319 kmem_free(lv); 320 lv = next; 321 } 322 } 323 324 /* 325 * Mark all items committed and clear busy extents. We free the log vector 326 * chains in a separate pass so that we unpin the log items as quickly as 327 * possible. 328 */ 329 static void 330 xlog_cil_committed( 331 void *args, 332 int abort) 333 { 334 struct xfs_cil_ctx *ctx = args; 335 struct xfs_mount *mp = ctx->cil->xc_log->l_mp; 336 337 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain, 338 ctx->start_lsn, abort); 339 340 xfs_extent_busy_sort(&ctx->busy_extents); 341 xfs_extent_busy_clear(mp, &ctx->busy_extents, 342 (mp->m_flags & XFS_MOUNT_DISCARD) && !abort); 343 344 spin_lock(&ctx->cil->xc_cil_lock); 345 list_del(&ctx->committing); 346 spin_unlock(&ctx->cil->xc_cil_lock); 347 348 xlog_cil_free_logvec(ctx->lv_chain); 349 350 if (!list_empty(&ctx->busy_extents)) { 351 ASSERT(mp->m_flags & XFS_MOUNT_DISCARD); 352 353 xfs_discard_extents(mp, &ctx->busy_extents); 354 xfs_extent_busy_clear(mp, &ctx->busy_extents, false); 355 } 356 357 kmem_free(ctx); 358 } 359 360 /* 361 * Push the Committed Item List to the log. If @push_seq flag is zero, then it 362 * is a background flush and so we can chose to ignore it. Otherwise, if the 363 * current sequence is the same as @push_seq we need to do a flush. If 364 * @push_seq is less than the current sequence, then it has already been 365 * flushed and we don't need to do anything - the caller will wait for it to 366 * complete if necessary. 367 * 368 * @push_seq is a value rather than a flag because that allows us to do an 369 * unlocked check of the sequence number for a match. Hence we can allows log 370 * forces to run racily and not issue pushes for the same sequence twice. If we 371 * get a race between multiple pushes for the same sequence they will block on 372 * the first one and then abort, hence avoiding needless pushes. 373 */ 374 STATIC int 375 xlog_cil_push( 376 struct xlog *log) 377 { 378 struct xfs_cil *cil = log->l_cilp; 379 struct xfs_log_vec *lv; 380 struct xfs_cil_ctx *ctx; 381 struct xfs_cil_ctx *new_ctx; 382 struct xlog_in_core *commit_iclog; 383 struct xlog_ticket *tic; 384 int num_lv; 385 int num_iovecs; 386 int len; 387 int error = 0; 388 struct xfs_trans_header thdr; 389 struct xfs_log_iovec lhdr; 390 struct xfs_log_vec lvhdr = { NULL }; 391 xfs_lsn_t commit_lsn; 392 xfs_lsn_t push_seq; 393 394 if (!cil) 395 return 0; 396 397 new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS); 398 new_ctx->ticket = xlog_cil_ticket_alloc(log); 399 400 down_write(&cil->xc_ctx_lock); 401 ctx = cil->xc_ctx; 402 403 spin_lock(&cil->xc_cil_lock); 404 push_seq = cil->xc_push_seq; 405 ASSERT(push_seq <= ctx->sequence); 406 407 /* 408 * Check if we've anything to push. If there is nothing, then we don't 409 * move on to a new sequence number and so we have to be able to push 410 * this sequence again later. 411 */ 412 if (list_empty(&cil->xc_cil)) { 413 cil->xc_push_seq = 0; 414 spin_unlock(&cil->xc_cil_lock); 415 goto out_skip; 416 } 417 spin_unlock(&cil->xc_cil_lock); 418 419 420 /* check for a previously pushed seqeunce */ 421 if (push_seq < cil->xc_ctx->sequence) 422 goto out_skip; 423 424 /* 425 * pull all the log vectors off the items in the CIL, and 426 * remove the items from the CIL. We don't need the CIL lock 427 * here because it's only needed on the transaction commit 428 * side which is currently locked out by the flush lock. 429 */ 430 lv = NULL; 431 num_lv = 0; 432 num_iovecs = 0; 433 len = 0; 434 while (!list_empty(&cil->xc_cil)) { 435 struct xfs_log_item *item; 436 int i; 437 438 item = list_first_entry(&cil->xc_cil, 439 struct xfs_log_item, li_cil); 440 list_del_init(&item->li_cil); 441 if (!ctx->lv_chain) 442 ctx->lv_chain = item->li_lv; 443 else 444 lv->lv_next = item->li_lv; 445 lv = item->li_lv; 446 item->li_lv = NULL; 447 448 num_lv++; 449 num_iovecs += lv->lv_niovecs; 450 for (i = 0; i < lv->lv_niovecs; i++) 451 len += lv->lv_iovecp[i].i_len; 452 } 453 454 /* 455 * initialise the new context and attach it to the CIL. Then attach 456 * the current context to the CIL committing lsit so it can be found 457 * during log forces to extract the commit lsn of the sequence that 458 * needs to be forced. 459 */ 460 INIT_LIST_HEAD(&new_ctx->committing); 461 INIT_LIST_HEAD(&new_ctx->busy_extents); 462 new_ctx->sequence = ctx->sequence + 1; 463 new_ctx->cil = cil; 464 cil->xc_ctx = new_ctx; 465 466 /* 467 * mirror the new sequence into the cil structure so that we can do 468 * unlocked checks against the current sequence in log forces without 469 * risking deferencing a freed context pointer. 470 */ 471 cil->xc_current_sequence = new_ctx->sequence; 472 473 /* 474 * The switch is now done, so we can drop the context lock and move out 475 * of a shared context. We can't just go straight to the commit record, 476 * though - we need to synchronise with previous and future commits so 477 * that the commit records are correctly ordered in the log to ensure 478 * that we process items during log IO completion in the correct order. 479 * 480 * For example, if we get an EFI in one checkpoint and the EFD in the 481 * next (e.g. due to log forces), we do not want the checkpoint with 482 * the EFD to be committed before the checkpoint with the EFI. Hence 483 * we must strictly order the commit records of the checkpoints so 484 * that: a) the checkpoint callbacks are attached to the iclogs in the 485 * correct order; and b) the checkpoints are replayed in correct order 486 * in log recovery. 487 * 488 * Hence we need to add this context to the committing context list so 489 * that higher sequences will wait for us to write out a commit record 490 * before they do. 491 */ 492 spin_lock(&cil->xc_cil_lock); 493 list_add(&ctx->committing, &cil->xc_committing); 494 spin_unlock(&cil->xc_cil_lock); 495 up_write(&cil->xc_ctx_lock); 496 497 /* 498 * Build a checkpoint transaction header and write it to the log to 499 * begin the transaction. We need to account for the space used by the 500 * transaction header here as it is not accounted for in xlog_write(). 501 * 502 * The LSN we need to pass to the log items on transaction commit is 503 * the LSN reported by the first log vector write. If we use the commit 504 * record lsn then we can move the tail beyond the grant write head. 505 */ 506 tic = ctx->ticket; 507 thdr.th_magic = XFS_TRANS_HEADER_MAGIC; 508 thdr.th_type = XFS_TRANS_CHECKPOINT; 509 thdr.th_tid = tic->t_tid; 510 thdr.th_num_items = num_iovecs; 511 lhdr.i_addr = &thdr; 512 lhdr.i_len = sizeof(xfs_trans_header_t); 513 lhdr.i_type = XLOG_REG_TYPE_TRANSHDR; 514 tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t); 515 516 lvhdr.lv_niovecs = 1; 517 lvhdr.lv_iovecp = &lhdr; 518 lvhdr.lv_next = ctx->lv_chain; 519 520 error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0); 521 if (error) 522 goto out_abort_free_ticket; 523 524 /* 525 * now that we've written the checkpoint into the log, strictly 526 * order the commit records so replay will get them in the right order. 527 */ 528 restart: 529 spin_lock(&cil->xc_cil_lock); 530 list_for_each_entry(new_ctx, &cil->xc_committing, committing) { 531 /* 532 * Higher sequences will wait for this one so skip them. 533 * Don't wait for own own sequence, either. 534 */ 535 if (new_ctx->sequence >= ctx->sequence) 536 continue; 537 if (!new_ctx->commit_lsn) { 538 /* 539 * It is still being pushed! Wait for the push to 540 * complete, then start again from the beginning. 541 */ 542 xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock); 543 goto restart; 544 } 545 } 546 spin_unlock(&cil->xc_cil_lock); 547 548 /* xfs_log_done always frees the ticket on error. */ 549 commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0); 550 if (commit_lsn == -1) 551 goto out_abort; 552 553 /* attach all the transactions w/ busy extents to iclog */ 554 ctx->log_cb.cb_func = xlog_cil_committed; 555 ctx->log_cb.cb_arg = ctx; 556 error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb); 557 if (error) 558 goto out_abort; 559 560 /* 561 * now the checkpoint commit is complete and we've attached the 562 * callbacks to the iclog we can assign the commit LSN to the context 563 * and wake up anyone who is waiting for the commit to complete. 564 */ 565 spin_lock(&cil->xc_cil_lock); 566 ctx->commit_lsn = commit_lsn; 567 wake_up_all(&cil->xc_commit_wait); 568 spin_unlock(&cil->xc_cil_lock); 569 570 /* release the hounds! */ 571 return xfs_log_release_iclog(log->l_mp, commit_iclog); 572 573 out_skip: 574 up_write(&cil->xc_ctx_lock); 575 xfs_log_ticket_put(new_ctx->ticket); 576 kmem_free(new_ctx); 577 return 0; 578 579 out_abort_free_ticket: 580 xfs_log_ticket_put(tic); 581 out_abort: 582 xlog_cil_committed(ctx, XFS_LI_ABORTED); 583 return XFS_ERROR(EIO); 584 } 585 586 static void 587 xlog_cil_push_work( 588 struct work_struct *work) 589 { 590 struct xfs_cil *cil = container_of(work, struct xfs_cil, 591 xc_push_work); 592 xlog_cil_push(cil->xc_log); 593 } 594 595 /* 596 * We need to push CIL every so often so we don't cache more than we can fit in 597 * the log. The limit really is that a checkpoint can't be more than half the 598 * log (the current checkpoint is not allowed to overwrite the previous 599 * checkpoint), but commit latency and memory usage limit this to a smaller 600 * size. 601 */ 602 static void 603 xlog_cil_push_background( 604 struct xlog *log) 605 { 606 struct xfs_cil *cil = log->l_cilp; 607 608 /* 609 * The cil won't be empty because we are called while holding the 610 * context lock so whatever we added to the CIL will still be there 611 */ 612 ASSERT(!list_empty(&cil->xc_cil)); 613 614 /* 615 * don't do a background push if we haven't used up all the 616 * space available yet. 617 */ 618 if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) 619 return; 620 621 spin_lock(&cil->xc_cil_lock); 622 if (cil->xc_push_seq < cil->xc_current_sequence) { 623 cil->xc_push_seq = cil->xc_current_sequence; 624 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work); 625 } 626 spin_unlock(&cil->xc_cil_lock); 627 628 } 629 630 static void 631 xlog_cil_push_foreground( 632 struct xlog *log, 633 xfs_lsn_t push_seq) 634 { 635 struct xfs_cil *cil = log->l_cilp; 636 637 if (!cil) 638 return; 639 640 ASSERT(push_seq && push_seq <= cil->xc_current_sequence); 641 642 /* start on any pending background push to minimise wait time on it */ 643 flush_work(&cil->xc_push_work); 644 645 /* 646 * If the CIL is empty or we've already pushed the sequence then 647 * there's no work we need to do. 648 */ 649 spin_lock(&cil->xc_cil_lock); 650 if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) { 651 spin_unlock(&cil->xc_cil_lock); 652 return; 653 } 654 655 cil->xc_push_seq = push_seq; 656 spin_unlock(&cil->xc_cil_lock); 657 658 /* do the push now */ 659 xlog_cil_push(log); 660 } 661 662 /* 663 * Commit a transaction with the given vector to the Committed Item List. 664 * 665 * To do this, we need to format the item, pin it in memory if required and 666 * account for the space used by the transaction. Once we have done that we 667 * need to release the unused reservation for the transaction, attach the 668 * transaction to the checkpoint context so we carry the busy extents through 669 * to checkpoint completion, and then unlock all the items in the transaction. 670 * 671 * For more specific information about the order of operations in 672 * xfs_log_commit_cil() please refer to the comments in 673 * xfs_trans_commit_iclog(). 674 * 675 * Called with the context lock already held in read mode to lock out 676 * background commit, returns without it held once background commits are 677 * allowed again. 678 */ 679 int 680 xfs_log_commit_cil( 681 struct xfs_mount *mp, 682 struct xfs_trans *tp, 683 xfs_lsn_t *commit_lsn, 684 int flags) 685 { 686 struct xlog *log = mp->m_log; 687 int log_flags = 0; 688 struct xfs_log_vec *log_vector; 689 690 if (flags & XFS_TRANS_RELEASE_LOG_RES) 691 log_flags = XFS_LOG_REL_PERM_RESERV; 692 693 /* 694 * Do all the hard work of formatting items (including memory 695 * allocation) outside the CIL context lock. This prevents stalling CIL 696 * pushes when we are low on memory and a transaction commit spends a 697 * lot of time in memory reclaim. 698 */ 699 log_vector = xlog_cil_prepare_log_vecs(tp); 700 if (!log_vector) 701 return ENOMEM; 702 703 /* lock out background commit */ 704 down_read(&log->l_cilp->xc_ctx_lock); 705 if (commit_lsn) 706 *commit_lsn = log->l_cilp->xc_ctx->sequence; 707 708 xlog_cil_insert_items(log, log_vector, tp->t_ticket); 709 710 /* check we didn't blow the reservation */ 711 if (tp->t_ticket->t_curr_res < 0) 712 xlog_print_tic_res(log->l_mp, tp->t_ticket); 713 714 /* attach the transaction to the CIL if it has any busy extents */ 715 if (!list_empty(&tp->t_busy)) { 716 spin_lock(&log->l_cilp->xc_cil_lock); 717 list_splice_init(&tp->t_busy, 718 &log->l_cilp->xc_ctx->busy_extents); 719 spin_unlock(&log->l_cilp->xc_cil_lock); 720 } 721 722 tp->t_commit_lsn = *commit_lsn; 723 xfs_log_done(mp, tp->t_ticket, NULL, log_flags); 724 xfs_trans_unreserve_and_mod_sb(tp); 725 726 /* 727 * Once all the items of the transaction have been copied to the CIL, 728 * the items can be unlocked and freed. 729 * 730 * This needs to be done before we drop the CIL context lock because we 731 * have to update state in the log items and unlock them before they go 732 * to disk. If we don't, then the CIL checkpoint can race with us and 733 * we can run checkpoint completion before we've updated and unlocked 734 * the log items. This affects (at least) processing of stale buffers, 735 * inodes and EFIs. 736 */ 737 xfs_trans_free_items(tp, *commit_lsn, 0); 738 739 xlog_cil_push_background(log); 740 741 up_read(&log->l_cilp->xc_ctx_lock); 742 return 0; 743 } 744 745 /* 746 * Conditionally push the CIL based on the sequence passed in. 747 * 748 * We only need to push if we haven't already pushed the sequence 749 * number given. Hence the only time we will trigger a push here is 750 * if the push sequence is the same as the current context. 751 * 752 * We return the current commit lsn to allow the callers to determine if a 753 * iclog flush is necessary following this call. 754 */ 755 xfs_lsn_t 756 xlog_cil_force_lsn( 757 struct xlog *log, 758 xfs_lsn_t sequence) 759 { 760 struct xfs_cil *cil = log->l_cilp; 761 struct xfs_cil_ctx *ctx; 762 xfs_lsn_t commit_lsn = NULLCOMMITLSN; 763 764 ASSERT(sequence <= cil->xc_current_sequence); 765 766 /* 767 * check to see if we need to force out the current context. 768 * xlog_cil_push() handles racing pushes for the same sequence, 769 * so no need to deal with it here. 770 */ 771 xlog_cil_push_foreground(log, sequence); 772 773 /* 774 * See if we can find a previous sequence still committing. 775 * We need to wait for all previous sequence commits to complete 776 * before allowing the force of push_seq to go ahead. Hence block 777 * on commits for those as well. 778 */ 779 restart: 780 spin_lock(&cil->xc_cil_lock); 781 list_for_each_entry(ctx, &cil->xc_committing, committing) { 782 if (ctx->sequence > sequence) 783 continue; 784 if (!ctx->commit_lsn) { 785 /* 786 * It is still being pushed! Wait for the push to 787 * complete, then start again from the beginning. 788 */ 789 xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock); 790 goto restart; 791 } 792 if (ctx->sequence != sequence) 793 continue; 794 /* found it! */ 795 commit_lsn = ctx->commit_lsn; 796 } 797 spin_unlock(&cil->xc_cil_lock); 798 return commit_lsn; 799 } 800 801 /* 802 * Check if the current log item was first committed in this sequence. 803 * We can't rely on just the log item being in the CIL, we have to check 804 * the recorded commit sequence number. 805 * 806 * Note: for this to be used in a non-racy manner, it has to be called with 807 * CIL flushing locked out. As a result, it should only be used during the 808 * transaction commit process when deciding what to format into the item. 809 */ 810 bool 811 xfs_log_item_in_current_chkpt( 812 struct xfs_log_item *lip) 813 { 814 struct xfs_cil_ctx *ctx; 815 816 if (list_empty(&lip->li_cil)) 817 return false; 818 819 ctx = lip->li_mountp->m_log->l_cilp->xc_ctx; 820 821 /* 822 * li_seq is written on the first commit of a log item to record the 823 * first checkpoint it is written to. Hence if it is different to the 824 * current sequence, we're in a new checkpoint. 825 */ 826 if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0) 827 return false; 828 return true; 829 } 830 831 /* 832 * Perform initial CIL structure initialisation. 833 */ 834 int 835 xlog_cil_init( 836 struct xlog *log) 837 { 838 struct xfs_cil *cil; 839 struct xfs_cil_ctx *ctx; 840 841 cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL); 842 if (!cil) 843 return ENOMEM; 844 845 ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL); 846 if (!ctx) { 847 kmem_free(cil); 848 return ENOMEM; 849 } 850 851 INIT_WORK(&cil->xc_push_work, xlog_cil_push_work); 852 INIT_LIST_HEAD(&cil->xc_cil); 853 INIT_LIST_HEAD(&cil->xc_committing); 854 spin_lock_init(&cil->xc_cil_lock); 855 init_rwsem(&cil->xc_ctx_lock); 856 init_waitqueue_head(&cil->xc_commit_wait); 857 858 INIT_LIST_HEAD(&ctx->committing); 859 INIT_LIST_HEAD(&ctx->busy_extents); 860 ctx->sequence = 1; 861 ctx->cil = cil; 862 cil->xc_ctx = ctx; 863 cil->xc_current_sequence = ctx->sequence; 864 865 cil->xc_log = log; 866 log->l_cilp = cil; 867 return 0; 868 } 869 870 void 871 xlog_cil_destroy( 872 struct xlog *log) 873 { 874 if (log->l_cilp->xc_ctx) { 875 if (log->l_cilp->xc_ctx->ticket) 876 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket); 877 kmem_free(log->l_cilp->xc_ctx); 878 } 879 880 ASSERT(list_empty(&log->l_cilp->xc_cil)); 881 kmem_free(log->l_cilp); 882 } 883 884