1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. 4 */ 5 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_shared.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_extent_busy.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_log.h" 17 #include "xfs_log_priv.h" 18 #include "xfs_trace.h" 19 #include "xfs_discard.h" 20 21 /* 22 * Allocate a new ticket. Failing to get a new ticket makes it really hard to 23 * recover, so we don't allow failure here. Also, we allocate in a context that 24 * we don't want to be issuing transactions from, so we need to tell the 25 * allocation code this as well. 26 * 27 * We don't reserve any space for the ticket - we are going to steal whatever 28 * space we require from transactions as they commit. To ensure we reserve all 29 * the space required, we need to set the current reservation of the ticket to 30 * zero so that we know to steal the initial transaction overhead from the 31 * first transaction commit. 32 */ 33 static struct xlog_ticket * 34 xlog_cil_ticket_alloc( 35 struct xlog *log) 36 { 37 struct xlog_ticket *tic; 38 39 tic = xlog_ticket_alloc(log, 0, 1, 0); 40 41 /* 42 * set the current reservation to zero so we know to steal the basic 43 * transaction overhead reservation from the first transaction commit. 44 */ 45 tic->t_curr_res = 0; 46 tic->t_iclog_hdrs = 0; 47 return tic; 48 } 49 50 static inline void 51 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil) 52 { 53 struct xlog *log = cil->xc_log; 54 55 atomic_set(&cil->xc_iclog_hdrs, 56 (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) / 57 (log->l_iclog_size - log->l_iclog_hsize))); 58 } 59 60 /* 61 * Check if the current log item was first committed in this sequence. 62 * We can't rely on just the log item being in the CIL, we have to check 63 * the recorded commit sequence number. 64 * 65 * Note: for this to be used in a non-racy manner, it has to be called with 66 * CIL flushing locked out. As a result, it should only be used during the 67 * transaction commit process when deciding what to format into the item. 68 */ 69 static bool 70 xlog_item_in_current_chkpt( 71 struct xfs_cil *cil, 72 struct xfs_log_item *lip) 73 { 74 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 75 return false; 76 77 /* 78 * li_seq is written on the first commit of a log item to record the 79 * first checkpoint it is written to. Hence if it is different to the 80 * current sequence, we're in a new checkpoint. 81 */ 82 return lip->li_seq == READ_ONCE(cil->xc_current_sequence); 83 } 84 85 bool 86 xfs_log_item_in_current_chkpt( 87 struct xfs_log_item *lip) 88 { 89 return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip); 90 } 91 92 /* 93 * Unavoidable forward declaration - xlog_cil_push_work() calls 94 * xlog_cil_ctx_alloc() itself. 95 */ 96 static void xlog_cil_push_work(struct work_struct *work); 97 98 static struct xfs_cil_ctx * 99 xlog_cil_ctx_alloc(void) 100 { 101 struct xfs_cil_ctx *ctx; 102 103 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL); 104 INIT_LIST_HEAD(&ctx->committing); 105 INIT_LIST_HEAD(&ctx->busy_extents.extent_list); 106 INIT_LIST_HEAD(&ctx->log_items); 107 INIT_LIST_HEAD(&ctx->lv_chain); 108 INIT_WORK(&ctx->push_work, xlog_cil_push_work); 109 return ctx; 110 } 111 112 /* 113 * Aggregate the CIL per cpu structures into global counts, lists, etc and 114 * clear the percpu state ready for the next context to use. This is called 115 * from the push code with the context lock held exclusively, hence nothing else 116 * will be accessing or modifying the per-cpu counters. 117 */ 118 static void 119 xlog_cil_push_pcp_aggregate( 120 struct xfs_cil *cil, 121 struct xfs_cil_ctx *ctx) 122 { 123 struct xlog_cil_pcp *cilpcp; 124 int cpu; 125 126 for_each_cpu(cpu, &ctx->cil_pcpmask) { 127 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 128 129 ctx->ticket->t_curr_res += cilpcp->space_reserved; 130 cilpcp->space_reserved = 0; 131 132 if (!list_empty(&cilpcp->busy_extents)) { 133 list_splice_init(&cilpcp->busy_extents, 134 &ctx->busy_extents.extent_list); 135 } 136 if (!list_empty(&cilpcp->log_items)) 137 list_splice_init(&cilpcp->log_items, &ctx->log_items); 138 139 /* 140 * We're in the middle of switching cil contexts. Reset the 141 * counter we use to detect when the current context is nearing 142 * full. 143 */ 144 cilpcp->space_used = 0; 145 } 146 } 147 148 /* 149 * Aggregate the CIL per-cpu space used counters into the global atomic value. 150 * This is called when the per-cpu counter aggregation will first pass the soft 151 * limit threshold so we can switch to atomic counter aggregation for accurate 152 * detection of hard limit traversal. 153 */ 154 static void 155 xlog_cil_insert_pcp_aggregate( 156 struct xfs_cil *cil, 157 struct xfs_cil_ctx *ctx) 158 { 159 struct xlog_cil_pcp *cilpcp; 160 int cpu; 161 int count = 0; 162 163 /* Trigger atomic updates then aggregate only for the first caller */ 164 if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) 165 return; 166 167 /* 168 * We can race with other cpus setting cil_pcpmask. However, we've 169 * atomically cleared PCP_SPACE which forces other threads to add to 170 * the global space used count. cil_pcpmask is a superset of cilpcp 171 * structures that could have a nonzero space_used. 172 */ 173 for_each_cpu(cpu, &ctx->cil_pcpmask) { 174 int old, prev; 175 176 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 177 do { 178 old = cilpcp->space_used; 179 prev = cmpxchg(&cilpcp->space_used, old, 0); 180 } while (old != prev); 181 count += old; 182 } 183 atomic_add(count, &ctx->space_used); 184 } 185 186 static void 187 xlog_cil_ctx_switch( 188 struct xfs_cil *cil, 189 struct xfs_cil_ctx *ctx) 190 { 191 xlog_cil_set_iclog_hdr_count(cil); 192 set_bit(XLOG_CIL_EMPTY, &cil->xc_flags); 193 set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags); 194 ctx->sequence = ++cil->xc_current_sequence; 195 ctx->cil = cil; 196 cil->xc_ctx = ctx; 197 } 198 199 /* 200 * After the first stage of log recovery is done, we know where the head and 201 * tail of the log are. We need this log initialisation done before we can 202 * initialise the first CIL checkpoint context. 203 * 204 * Here we allocate a log ticket to track space usage during a CIL push. This 205 * ticket is passed to xlog_write() directly so that we don't slowly leak log 206 * space by failing to account for space used by log headers and additional 207 * region headers for split regions. 208 */ 209 void 210 xlog_cil_init_post_recovery( 211 struct xlog *log) 212 { 213 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); 214 log->l_cilp->xc_ctx->sequence = 1; 215 xlog_cil_set_iclog_hdr_count(log->l_cilp); 216 } 217 218 static inline int 219 xlog_cil_iovec_space( 220 uint niovecs) 221 { 222 return round_up((sizeof(struct xfs_log_vec) + 223 niovecs * sizeof(struct xfs_log_iovec)), 224 sizeof(uint64_t)); 225 } 226 227 /* 228 * Allocate or pin log vector buffers for CIL insertion. 229 * 230 * The CIL currently uses disposable buffers for copying a snapshot of the 231 * modified items into the log during a push. The biggest problem with this is 232 * the requirement to allocate the disposable buffer during the commit if: 233 * a) does not exist; or 234 * b) it is too small 235 * 236 * If we do this allocation within xlog_cil_insert_format_items(), it is done 237 * under the xc_ctx_lock, which means that a CIL push cannot occur during 238 * the memory allocation. This means that we have a potential deadlock situation 239 * under low memory conditions when we have lots of dirty metadata pinned in 240 * the CIL and we need a CIL commit to occur to free memory. 241 * 242 * To avoid this, we need to move the memory allocation outside the 243 * xc_ctx_lock, but because the log vector buffers are disposable, that opens 244 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log 245 * vector buffers between the check and the formatting of the item into the 246 * log vector buffer within the xc_ctx_lock. 247 * 248 * Because the log vector buffer needs to be unchanged during the CIL push 249 * process, we cannot share the buffer between the transaction commit (which 250 * modifies the buffer) and the CIL push context that is writing the changes 251 * into the log. This means skipping preallocation of buffer space is 252 * unreliable, but we most definitely do not want to be allocating and freeing 253 * buffers unnecessarily during commits when overwrites can be done safely. 254 * 255 * The simplest solution to this problem is to allocate a shadow buffer when a 256 * log item is committed for the second time, and then to only use this buffer 257 * if necessary. The buffer can remain attached to the log item until such time 258 * it is needed, and this is the buffer that is reallocated to match the size of 259 * the incoming modification. Then during the formatting of the item we can swap 260 * the active buffer with the new one if we can't reuse the existing buffer. We 261 * don't free the old buffer as it may be reused on the next modification if 262 * it's size is right, otherwise we'll free and reallocate it at that point. 263 * 264 * This function builds a vector for the changes in each log item in the 265 * transaction. It then works out the length of the buffer needed for each log 266 * item, allocates them and attaches the vector to the log item in preparation 267 * for the formatting step which occurs under the xc_ctx_lock. 268 * 269 * While this means the memory footprint goes up, it avoids the repeated 270 * alloc/free pattern that repeated modifications of an item would otherwise 271 * cause, and hence minimises the CPU overhead of such behaviour. 272 */ 273 static void 274 xlog_cil_alloc_shadow_bufs( 275 struct xlog *log, 276 struct xfs_trans *tp) 277 { 278 struct xfs_log_item *lip; 279 280 list_for_each_entry(lip, &tp->t_items, li_trans) { 281 struct xfs_log_vec *lv; 282 int niovecs = 0; 283 int nbytes = 0; 284 int buf_size; 285 bool ordered = false; 286 287 /* Skip items which aren't dirty in this transaction. */ 288 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 289 continue; 290 291 /* get number of vecs and size of data to be stored */ 292 lip->li_ops->iop_size(lip, &niovecs, &nbytes); 293 294 /* 295 * Ordered items need to be tracked but we do not wish to write 296 * them. We need a logvec to track the object, but we do not 297 * need an iovec or buffer to be allocated for copying data. 298 */ 299 if (niovecs == XFS_LOG_VEC_ORDERED) { 300 ordered = true; 301 niovecs = 0; 302 nbytes = 0; 303 } 304 305 /* 306 * We 64-bit align the length of each iovec so that the start of 307 * the next one is naturally aligned. We'll need to account for 308 * that slack space here. 309 * 310 * We also add the xlog_op_header to each region when 311 * formatting, but that's not accounted to the size of the item 312 * at this point. Hence we'll need an addition number of bytes 313 * for each vector to hold an opheader. 314 * 315 * Then round nbytes up to 64-bit alignment so that the initial 316 * buffer alignment is easy to calculate and verify. 317 */ 318 nbytes += niovecs * 319 (sizeof(uint64_t) + sizeof(struct xlog_op_header)); 320 nbytes = round_up(nbytes, sizeof(uint64_t)); 321 322 /* 323 * The data buffer needs to start 64-bit aligned, so round up 324 * that space to ensure we can align it appropriately and not 325 * overrun the buffer. 326 */ 327 buf_size = nbytes + xlog_cil_iovec_space(niovecs); 328 329 /* 330 * if we have no shadow buffer, or it is too small, we need to 331 * reallocate it. 332 */ 333 if (!lip->li_lv_shadow || 334 buf_size > lip->li_lv_shadow->lv_size) { 335 /* 336 * We free and allocate here as a realloc would copy 337 * unnecessary data. We don't use kvzalloc() for the 338 * same reason - we don't need to zero the data area in 339 * the buffer, only the log vector header and the iovec 340 * storage. 341 */ 342 kvfree(lip->li_lv_shadow); 343 lv = xlog_kvmalloc(buf_size); 344 345 memset(lv, 0, xlog_cil_iovec_space(niovecs)); 346 347 INIT_LIST_HEAD(&lv->lv_list); 348 lv->lv_item = lip; 349 lv->lv_size = buf_size; 350 if (ordered) 351 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 352 else 353 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1]; 354 lip->li_lv_shadow = lv; 355 } else { 356 /* same or smaller, optimise common overwrite case */ 357 lv = lip->li_lv_shadow; 358 if (ordered) 359 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 360 else 361 lv->lv_buf_len = 0; 362 lv->lv_bytes = 0; 363 } 364 365 /* Ensure the lv is set up according to ->iop_size */ 366 lv->lv_niovecs = niovecs; 367 368 /* The allocated data region lies beyond the iovec region */ 369 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs); 370 } 371 372 } 373 374 /* 375 * Prepare the log item for insertion into the CIL. Calculate the difference in 376 * log space it will consume, and if it is a new item pin it as well. 377 */ 378 STATIC void 379 xfs_cil_prepare_item( 380 struct xlog *log, 381 struct xfs_log_vec *lv, 382 struct xfs_log_vec *old_lv, 383 int *diff_len) 384 { 385 /* Account for the new LV being passed in */ 386 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) 387 *diff_len += lv->lv_bytes; 388 389 /* 390 * If there is no old LV, this is the first time we've seen the item in 391 * this CIL context and so we need to pin it. If we are replacing the 392 * old_lv, then remove the space it accounts for and make it the shadow 393 * buffer for later freeing. In both cases we are now switching to the 394 * shadow buffer, so update the pointer to it appropriately. 395 */ 396 if (!old_lv) { 397 if (lv->lv_item->li_ops->iop_pin) 398 lv->lv_item->li_ops->iop_pin(lv->lv_item); 399 lv->lv_item->li_lv_shadow = NULL; 400 } else if (old_lv != lv) { 401 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED); 402 403 *diff_len -= old_lv->lv_bytes; 404 lv->lv_item->li_lv_shadow = old_lv; 405 } 406 407 /* attach new log vector to log item */ 408 lv->lv_item->li_lv = lv; 409 410 /* 411 * If this is the first time the item is being committed to the 412 * CIL, store the sequence number on the log item so we can 413 * tell in future commits whether this is the first checkpoint 414 * the item is being committed into. 415 */ 416 if (!lv->lv_item->li_seq) 417 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; 418 } 419 420 /* 421 * Format log item into a flat buffers 422 * 423 * For delayed logging, we need to hold a formatted buffer containing all the 424 * changes on the log item. This enables us to relog the item in memory and 425 * write it out asynchronously without needing to relock the object that was 426 * modified at the time it gets written into the iclog. 427 * 428 * This function takes the prepared log vectors attached to each log item, and 429 * formats the changes into the log vector buffer. The buffer it uses is 430 * dependent on the current state of the vector in the CIL - the shadow lv is 431 * guaranteed to be large enough for the current modification, but we will only 432 * use that if we can't reuse the existing lv. If we can't reuse the existing 433 * lv, then simple swap it out for the shadow lv. We don't free it - that is 434 * done lazily either by th enext modification or the freeing of the log item. 435 * 436 * We don't set up region headers during this process; we simply copy the 437 * regions into the flat buffer. We can do this because we still have to do a 438 * formatting step to write the regions into the iclog buffer. Writing the 439 * ophdrs during the iclog write means that we can support splitting large 440 * regions across iclog boundares without needing a change in the format of the 441 * item/region encapsulation. 442 * 443 * Hence what we need to do now is change the rewrite the vector array to point 444 * to the copied region inside the buffer we just allocated. This allows us to 445 * format the regions into the iclog as though they are being formatted 446 * directly out of the objects themselves. 447 */ 448 static void 449 xlog_cil_insert_format_items( 450 struct xlog *log, 451 struct xfs_trans *tp, 452 int *diff_len) 453 { 454 struct xfs_log_item *lip; 455 456 /* Bail out if we didn't find a log item. */ 457 if (list_empty(&tp->t_items)) { 458 ASSERT(0); 459 return; 460 } 461 462 list_for_each_entry(lip, &tp->t_items, li_trans) { 463 struct xfs_log_vec *lv; 464 struct xfs_log_vec *old_lv = NULL; 465 struct xfs_log_vec *shadow; 466 bool ordered = false; 467 468 /* Skip items which aren't dirty in this transaction. */ 469 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 470 continue; 471 472 /* 473 * The formatting size information is already attached to 474 * the shadow lv on the log item. 475 */ 476 shadow = lip->li_lv_shadow; 477 if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED) 478 ordered = true; 479 480 /* Skip items that do not have any vectors for writing */ 481 if (!shadow->lv_niovecs && !ordered) 482 continue; 483 484 /* compare to existing item size */ 485 old_lv = lip->li_lv; 486 if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) { 487 /* same or smaller, optimise common overwrite case */ 488 lv = lip->li_lv; 489 490 if (ordered) 491 goto insert; 492 493 /* 494 * set the item up as though it is a new insertion so 495 * that the space reservation accounting is correct. 496 */ 497 *diff_len -= lv->lv_bytes; 498 499 /* Ensure the lv is set up according to ->iop_size */ 500 lv->lv_niovecs = shadow->lv_niovecs; 501 502 /* reset the lv buffer information for new formatting */ 503 lv->lv_buf_len = 0; 504 lv->lv_bytes = 0; 505 lv->lv_buf = (char *)lv + 506 xlog_cil_iovec_space(lv->lv_niovecs); 507 } else { 508 /* switch to shadow buffer! */ 509 lv = shadow; 510 lv->lv_item = lip; 511 if (ordered) { 512 /* track as an ordered logvec */ 513 ASSERT(lip->li_lv == NULL); 514 goto insert; 515 } 516 } 517 518 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t))); 519 lip->li_ops->iop_format(lip, lv); 520 insert: 521 xfs_cil_prepare_item(log, lv, old_lv, diff_len); 522 } 523 } 524 525 /* 526 * The use of lockless waitqueue_active() requires that the caller has 527 * serialised itself against the wakeup call in xlog_cil_push_work(). That 528 * can be done by either holding the push lock or the context lock. 529 */ 530 static inline bool 531 xlog_cil_over_hard_limit( 532 struct xlog *log, 533 int32_t space_used) 534 { 535 if (waitqueue_active(&log->l_cilp->xc_push_wait)) 536 return true; 537 if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log)) 538 return true; 539 return false; 540 } 541 542 /* 543 * Insert the log items into the CIL and calculate the difference in space 544 * consumed by the item. Add the space to the checkpoint ticket and calculate 545 * if the change requires additional log metadata. If it does, take that space 546 * as well. Remove the amount of space we added to the checkpoint ticket from 547 * the current transaction ticket so that the accounting works out correctly. 548 */ 549 static void 550 xlog_cil_insert_items( 551 struct xlog *log, 552 struct xfs_trans *tp, 553 uint32_t released_space) 554 { 555 struct xfs_cil *cil = log->l_cilp; 556 struct xfs_cil_ctx *ctx = cil->xc_ctx; 557 struct xfs_log_item *lip; 558 int len = 0; 559 int iovhdr_res = 0, split_res = 0, ctx_res = 0; 560 int space_used; 561 int order; 562 unsigned int cpu_nr; 563 struct xlog_cil_pcp *cilpcp; 564 565 ASSERT(tp); 566 567 /* 568 * We can do this safely because the context can't checkpoint until we 569 * are done so it doesn't matter exactly how we update the CIL. 570 */ 571 xlog_cil_insert_format_items(log, tp, &len); 572 573 /* 574 * Subtract the space released by intent cancelation from the space we 575 * consumed so that we remove it from the CIL space and add it back to 576 * the current transaction reservation context. 577 */ 578 len -= released_space; 579 580 /* 581 * Grab the per-cpu pointer for the CIL before we start any accounting. 582 * That ensures that we are running with pre-emption disabled and so we 583 * can't be scheduled away between split sample/update operations that 584 * are done without outside locking to serialise them. 585 */ 586 cpu_nr = get_cpu(); 587 cilpcp = this_cpu_ptr(cil->xc_pcp); 588 589 /* Tell the future push that there was work added by this CPU. */ 590 if (!cpumask_test_cpu(cpu_nr, &ctx->cil_pcpmask)) 591 cpumask_test_and_set_cpu(cpu_nr, &ctx->cil_pcpmask); 592 593 /* 594 * We need to take the CIL checkpoint unit reservation on the first 595 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't 596 * unnecessarily do an atomic op in the fast path here. We can clear the 597 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that 598 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit. 599 */ 600 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) && 601 test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 602 ctx_res = ctx->ticket->t_unit_res; 603 604 /* 605 * Check if we need to steal iclog headers. atomic_read() is not a 606 * locked atomic operation, so we can check the value before we do any 607 * real atomic ops in the fast path. If we've already taken the CIL unit 608 * reservation from this commit, we've already got one iclog header 609 * space reserved so we have to account for that otherwise we risk 610 * overrunning the reservation on this ticket. 611 * 612 * If the CIL is already at the hard limit, we might need more header 613 * space that originally reserved. So steal more header space from every 614 * commit that occurs once we are over the hard limit to ensure the CIL 615 * push won't run out of reservation space. 616 * 617 * This can steal more than we need, but that's OK. 618 * 619 * The cil->xc_ctx_lock provides the serialisation necessary for safely 620 * calling xlog_cil_over_hard_limit() in this context. 621 */ 622 space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len; 623 if (atomic_read(&cil->xc_iclog_hdrs) > 0 || 624 xlog_cil_over_hard_limit(log, space_used)) { 625 split_res = log->l_iclog_hsize + 626 sizeof(struct xlog_op_header); 627 if (ctx_res) 628 ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1); 629 else 630 ctx_res = split_res * tp->t_ticket->t_iclog_hdrs; 631 atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs); 632 } 633 cilpcp->space_reserved += ctx_res; 634 635 /* 636 * Accurately account when over the soft limit, otherwise fold the 637 * percpu count into the global count if over the per-cpu threshold. 638 */ 639 if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) { 640 atomic_add(len, &ctx->space_used); 641 } else if (cilpcp->space_used + len > 642 (XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) { 643 space_used = atomic_add_return(cilpcp->space_used + len, 644 &ctx->space_used); 645 cilpcp->space_used = 0; 646 647 /* 648 * If we just transitioned over the soft limit, we need to 649 * transition to the global atomic counter. 650 */ 651 if (space_used >= XLOG_CIL_SPACE_LIMIT(log)) 652 xlog_cil_insert_pcp_aggregate(cil, ctx); 653 } else { 654 cilpcp->space_used += len; 655 } 656 /* attach the transaction to the CIL if it has any busy extents */ 657 if (!list_empty(&tp->t_busy)) 658 list_splice_init(&tp->t_busy, &cilpcp->busy_extents); 659 660 /* 661 * Now update the order of everything modified in the transaction 662 * and insert items into the CIL if they aren't already there. 663 * We do this here so we only need to take the CIL lock once during 664 * the transaction commit. 665 */ 666 order = atomic_inc_return(&ctx->order_id); 667 list_for_each_entry(lip, &tp->t_items, li_trans) { 668 /* Skip items which aren't dirty in this transaction. */ 669 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 670 continue; 671 672 lip->li_order_id = order; 673 if (!list_empty(&lip->li_cil)) 674 continue; 675 list_add_tail(&lip->li_cil, &cilpcp->log_items); 676 } 677 put_cpu(); 678 679 /* 680 * If we've overrun the reservation, dump the tx details before we move 681 * the log items. Shutdown is imminent... 682 */ 683 tp->t_ticket->t_curr_res -= ctx_res + len; 684 if (WARN_ON(tp->t_ticket->t_curr_res < 0)) { 685 xfs_warn(log->l_mp, "Transaction log reservation overrun:"); 686 xfs_warn(log->l_mp, 687 " log items: %d bytes (iov hdrs: %d bytes)", 688 len, iovhdr_res); 689 xfs_warn(log->l_mp, " split region headers: %d bytes", 690 split_res); 691 xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res); 692 xlog_print_trans(tp); 693 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 694 } 695 } 696 697 static void 698 xlog_cil_free_logvec( 699 struct list_head *lv_chain) 700 { 701 struct xfs_log_vec *lv; 702 703 while (!list_empty(lv_chain)) { 704 lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list); 705 list_del_init(&lv->lv_list); 706 kvfree(lv); 707 } 708 } 709 710 /* 711 * Mark all items committed and clear busy extents. We free the log vector 712 * chains in a separate pass so that we unpin the log items as quickly as 713 * possible. 714 */ 715 static void 716 xlog_cil_committed( 717 struct xfs_cil_ctx *ctx) 718 { 719 struct xfs_mount *mp = ctx->cil->xc_log->l_mp; 720 bool abort = xlog_is_shutdown(ctx->cil->xc_log); 721 722 /* 723 * If the I/O failed, we're aborting the commit and already shutdown. 724 * Wake any commit waiters before aborting the log items so we don't 725 * block async log pushers on callbacks. Async log pushers explicitly do 726 * not wait on log force completion because they may be holding locks 727 * required to unpin items. 728 */ 729 if (abort) { 730 spin_lock(&ctx->cil->xc_push_lock); 731 wake_up_all(&ctx->cil->xc_start_wait); 732 wake_up_all(&ctx->cil->xc_commit_wait); 733 spin_unlock(&ctx->cil->xc_push_lock); 734 } 735 736 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, &ctx->lv_chain, 737 ctx->start_lsn, abort); 738 739 xfs_extent_busy_sort(&ctx->busy_extents.extent_list); 740 xfs_extent_busy_clear(mp, &ctx->busy_extents.extent_list, 741 xfs_has_discard(mp) && !abort); 742 743 spin_lock(&ctx->cil->xc_push_lock); 744 list_del(&ctx->committing); 745 spin_unlock(&ctx->cil->xc_push_lock); 746 747 xlog_cil_free_logvec(&ctx->lv_chain); 748 749 if (!list_empty(&ctx->busy_extents.extent_list)) { 750 ctx->busy_extents.mount = mp; 751 ctx->busy_extents.owner = ctx; 752 xfs_discard_extents(mp, &ctx->busy_extents); 753 return; 754 } 755 756 kfree(ctx); 757 } 758 759 void 760 xlog_cil_process_committed( 761 struct list_head *list) 762 { 763 struct xfs_cil_ctx *ctx; 764 765 while ((ctx = list_first_entry_or_null(list, 766 struct xfs_cil_ctx, iclog_entry))) { 767 list_del(&ctx->iclog_entry); 768 xlog_cil_committed(ctx); 769 } 770 } 771 772 /* 773 * Record the LSN of the iclog we were just granted space to start writing into. 774 * If the context doesn't have a start_lsn recorded, then this iclog will 775 * contain the start record for the checkpoint. Otherwise this write contains 776 * the commit record for the checkpoint. 777 */ 778 void 779 xlog_cil_set_ctx_write_state( 780 struct xfs_cil_ctx *ctx, 781 struct xlog_in_core *iclog) 782 { 783 struct xfs_cil *cil = ctx->cil; 784 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 785 786 ASSERT(!ctx->commit_lsn); 787 if (!ctx->start_lsn) { 788 spin_lock(&cil->xc_push_lock); 789 /* 790 * The LSN we need to pass to the log items on transaction 791 * commit is the LSN reported by the first log vector write, not 792 * the commit lsn. If we use the commit record lsn then we can 793 * move the grant write head beyond the tail LSN and overwrite 794 * it. 795 */ 796 ctx->start_lsn = lsn; 797 wake_up_all(&cil->xc_start_wait); 798 spin_unlock(&cil->xc_push_lock); 799 800 /* 801 * Make sure the metadata we are about to overwrite in the log 802 * has been flushed to stable storage before this iclog is 803 * issued. 804 */ 805 spin_lock(&cil->xc_log->l_icloglock); 806 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 807 spin_unlock(&cil->xc_log->l_icloglock); 808 return; 809 } 810 811 /* 812 * Take a reference to the iclog for the context so that we still hold 813 * it when xlog_write is done and has released it. This means the 814 * context controls when the iclog is released for IO. 815 */ 816 atomic_inc(&iclog->ic_refcnt); 817 818 /* 819 * xlog_state_get_iclog_space() guarantees there is enough space in the 820 * iclog for an entire commit record, so we can attach the context 821 * callbacks now. This needs to be done before we make the commit_lsn 822 * visible to waiters so that checkpoints with commit records in the 823 * same iclog order their IO completion callbacks in the same order that 824 * the commit records appear in the iclog. 825 */ 826 spin_lock(&cil->xc_log->l_icloglock); 827 list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks); 828 spin_unlock(&cil->xc_log->l_icloglock); 829 830 /* 831 * Now we can record the commit LSN and wake anyone waiting for this 832 * sequence to have the ordered commit record assigned to a physical 833 * location in the log. 834 */ 835 spin_lock(&cil->xc_push_lock); 836 ctx->commit_iclog = iclog; 837 ctx->commit_lsn = lsn; 838 wake_up_all(&cil->xc_commit_wait); 839 spin_unlock(&cil->xc_push_lock); 840 } 841 842 843 /* 844 * Ensure that the order of log writes follows checkpoint sequence order. This 845 * relies on the context LSN being zero until the log write has guaranteed the 846 * LSN that the log write will start at via xlog_state_get_iclog_space(). 847 */ 848 enum _record_type { 849 _START_RECORD, 850 _COMMIT_RECORD, 851 }; 852 853 static int 854 xlog_cil_order_write( 855 struct xfs_cil *cil, 856 xfs_csn_t sequence, 857 enum _record_type record) 858 { 859 struct xfs_cil_ctx *ctx; 860 861 restart: 862 spin_lock(&cil->xc_push_lock); 863 list_for_each_entry(ctx, &cil->xc_committing, committing) { 864 /* 865 * Avoid getting stuck in this loop because we were woken by the 866 * shutdown, but then went back to sleep once already in the 867 * shutdown state. 868 */ 869 if (xlog_is_shutdown(cil->xc_log)) { 870 spin_unlock(&cil->xc_push_lock); 871 return -EIO; 872 } 873 874 /* 875 * Higher sequences will wait for this one so skip them. 876 * Don't wait for our own sequence, either. 877 */ 878 if (ctx->sequence >= sequence) 879 continue; 880 881 /* Wait until the LSN for the record has been recorded. */ 882 switch (record) { 883 case _START_RECORD: 884 if (!ctx->start_lsn) { 885 xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock); 886 goto restart; 887 } 888 break; 889 case _COMMIT_RECORD: 890 if (!ctx->commit_lsn) { 891 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 892 goto restart; 893 } 894 break; 895 } 896 } 897 spin_unlock(&cil->xc_push_lock); 898 return 0; 899 } 900 901 /* 902 * Write out the log vector change now attached to the CIL context. This will 903 * write a start record that needs to be strictly ordered in ascending CIL 904 * sequence order so that log recovery will always use in-order start LSNs when 905 * replaying checkpoints. 906 */ 907 static int 908 xlog_cil_write_chain( 909 struct xfs_cil_ctx *ctx, 910 uint32_t chain_len) 911 { 912 struct xlog *log = ctx->cil->xc_log; 913 int error; 914 915 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD); 916 if (error) 917 return error; 918 return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len); 919 } 920 921 /* 922 * Write out the commit record of a checkpoint transaction to close off a 923 * running log write. These commit records are strictly ordered in ascending CIL 924 * sequence order so that log recovery will always replay the checkpoints in the 925 * correct order. 926 */ 927 static int 928 xlog_cil_write_commit_record( 929 struct xfs_cil_ctx *ctx) 930 { 931 struct xlog *log = ctx->cil->xc_log; 932 struct xlog_op_header ophdr = { 933 .oh_clientid = XFS_TRANSACTION, 934 .oh_tid = cpu_to_be32(ctx->ticket->t_tid), 935 .oh_flags = XLOG_COMMIT_TRANS, 936 }; 937 struct xfs_log_iovec reg = { 938 .i_addr = &ophdr, 939 .i_len = sizeof(struct xlog_op_header), 940 .i_type = XLOG_REG_TYPE_COMMIT, 941 }; 942 struct xfs_log_vec vec = { 943 .lv_niovecs = 1, 944 .lv_iovecp = ®, 945 }; 946 int error; 947 LIST_HEAD(lv_chain); 948 list_add(&vec.lv_list, &lv_chain); 949 950 if (xlog_is_shutdown(log)) 951 return -EIO; 952 953 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD); 954 if (error) 955 return error; 956 957 /* account for space used by record data */ 958 ctx->ticket->t_curr_res -= reg.i_len; 959 error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len); 960 if (error) 961 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 962 return error; 963 } 964 965 struct xlog_cil_trans_hdr { 966 struct xlog_op_header oph[2]; 967 struct xfs_trans_header thdr; 968 struct xfs_log_iovec lhdr[2]; 969 }; 970 971 /* 972 * Build a checkpoint transaction header to begin the journal transaction. We 973 * need to account for the space used by the transaction header here as it is 974 * not accounted for in xlog_write(). 975 * 976 * This is the only place we write a transaction header, so we also build the 977 * log opheaders that indicate the start of a log transaction and wrap the 978 * transaction header. We keep the start record in it's own log vector rather 979 * than compacting them into a single region as this ends up making the logic 980 * in xlog_write() for handling empty opheaders for start, commit and unmount 981 * records much simpler. 982 */ 983 static void 984 xlog_cil_build_trans_hdr( 985 struct xfs_cil_ctx *ctx, 986 struct xlog_cil_trans_hdr *hdr, 987 struct xfs_log_vec *lvhdr, 988 int num_iovecs) 989 { 990 struct xlog_ticket *tic = ctx->ticket; 991 __be32 tid = cpu_to_be32(tic->t_tid); 992 993 memset(hdr, 0, sizeof(*hdr)); 994 995 /* Log start record */ 996 hdr->oph[0].oh_tid = tid; 997 hdr->oph[0].oh_clientid = XFS_TRANSACTION; 998 hdr->oph[0].oh_flags = XLOG_START_TRANS; 999 1000 /* log iovec region pointer */ 1001 hdr->lhdr[0].i_addr = &hdr->oph[0]; 1002 hdr->lhdr[0].i_len = sizeof(struct xlog_op_header); 1003 hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER; 1004 1005 /* log opheader */ 1006 hdr->oph[1].oh_tid = tid; 1007 hdr->oph[1].oh_clientid = XFS_TRANSACTION; 1008 hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header)); 1009 1010 /* transaction header in host byte order format */ 1011 hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC; 1012 hdr->thdr.th_type = XFS_TRANS_CHECKPOINT; 1013 hdr->thdr.th_tid = tic->t_tid; 1014 hdr->thdr.th_num_items = num_iovecs; 1015 1016 /* log iovec region pointer */ 1017 hdr->lhdr[1].i_addr = &hdr->oph[1]; 1018 hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) + 1019 sizeof(struct xfs_trans_header); 1020 hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR; 1021 1022 lvhdr->lv_niovecs = 2; 1023 lvhdr->lv_iovecp = &hdr->lhdr[0]; 1024 lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len; 1025 1026 tic->t_curr_res -= lvhdr->lv_bytes; 1027 } 1028 1029 /* 1030 * CIL item reordering compare function. We want to order in ascending ID order, 1031 * but we want to leave items with the same ID in the order they were added to 1032 * the list. This is important for operations like reflink where we log 4 order 1033 * dependent intents in a single transaction when we overwrite an existing 1034 * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop), 1035 * CUI (inc), BUI(remap)... 1036 */ 1037 static int 1038 xlog_cil_order_cmp( 1039 void *priv, 1040 const struct list_head *a, 1041 const struct list_head *b) 1042 { 1043 struct xfs_log_vec *l1 = container_of(a, struct xfs_log_vec, lv_list); 1044 struct xfs_log_vec *l2 = container_of(b, struct xfs_log_vec, lv_list); 1045 1046 return l1->lv_order_id > l2->lv_order_id; 1047 } 1048 1049 /* 1050 * Pull all the log vectors off the items in the CIL, and remove the items from 1051 * the CIL. We don't need the CIL lock here because it's only needed on the 1052 * transaction commit side which is currently locked out by the flush lock. 1053 * 1054 * If a log item is marked with a whiteout, we do not need to write it to the 1055 * journal and so we just move them to the whiteout list for the caller to 1056 * dispose of appropriately. 1057 */ 1058 static void 1059 xlog_cil_build_lv_chain( 1060 struct xfs_cil_ctx *ctx, 1061 struct list_head *whiteouts, 1062 uint32_t *num_iovecs, 1063 uint32_t *num_bytes) 1064 { 1065 while (!list_empty(&ctx->log_items)) { 1066 struct xfs_log_item *item; 1067 struct xfs_log_vec *lv; 1068 1069 item = list_first_entry(&ctx->log_items, 1070 struct xfs_log_item, li_cil); 1071 1072 if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) { 1073 list_move(&item->li_cil, whiteouts); 1074 trace_xfs_cil_whiteout_skip(item); 1075 continue; 1076 } 1077 1078 lv = item->li_lv; 1079 lv->lv_order_id = item->li_order_id; 1080 1081 /* we don't write ordered log vectors */ 1082 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) 1083 *num_bytes += lv->lv_bytes; 1084 *num_iovecs += lv->lv_niovecs; 1085 list_add_tail(&lv->lv_list, &ctx->lv_chain); 1086 1087 list_del_init(&item->li_cil); 1088 item->li_order_id = 0; 1089 item->li_lv = NULL; 1090 } 1091 } 1092 1093 static void 1094 xlog_cil_cleanup_whiteouts( 1095 struct list_head *whiteouts) 1096 { 1097 while (!list_empty(whiteouts)) { 1098 struct xfs_log_item *item = list_first_entry(whiteouts, 1099 struct xfs_log_item, li_cil); 1100 list_del_init(&item->li_cil); 1101 trace_xfs_cil_whiteout_unpin(item); 1102 item->li_ops->iop_unpin(item, 1); 1103 } 1104 } 1105 1106 /* 1107 * Push the Committed Item List to the log. 1108 * 1109 * If the current sequence is the same as xc_push_seq we need to do a flush. If 1110 * xc_push_seq is less than the current sequence, then it has already been 1111 * flushed and we don't need to do anything - the caller will wait for it to 1112 * complete if necessary. 1113 * 1114 * xc_push_seq is checked unlocked against the sequence number for a match. 1115 * Hence we can allow log forces to run racily and not issue pushes for the 1116 * same sequence twice. If we get a race between multiple pushes for the same 1117 * sequence they will block on the first one and then abort, hence avoiding 1118 * needless pushes. 1119 * 1120 * This runs from a workqueue so it does not inherent any specific memory 1121 * allocation context. However, we do not want to block on memory reclaim 1122 * recursing back into the filesystem because this push may have been triggered 1123 * by memory reclaim itself. Hence we really need to run under full GFP_NOFS 1124 * contraints here. 1125 */ 1126 static void 1127 xlog_cil_push_work( 1128 struct work_struct *work) 1129 { 1130 unsigned int nofs_flags = memalloc_nofs_save(); 1131 struct xfs_cil_ctx *ctx = 1132 container_of(work, struct xfs_cil_ctx, push_work); 1133 struct xfs_cil *cil = ctx->cil; 1134 struct xlog *log = cil->xc_log; 1135 struct xfs_cil_ctx *new_ctx; 1136 int num_iovecs = 0; 1137 int num_bytes = 0; 1138 int error = 0; 1139 struct xlog_cil_trans_hdr thdr; 1140 struct xfs_log_vec lvhdr = {}; 1141 xfs_csn_t push_seq; 1142 bool push_commit_stable; 1143 LIST_HEAD (whiteouts); 1144 struct xlog_ticket *ticket; 1145 1146 new_ctx = xlog_cil_ctx_alloc(); 1147 new_ctx->ticket = xlog_cil_ticket_alloc(log); 1148 1149 down_write(&cil->xc_ctx_lock); 1150 1151 spin_lock(&cil->xc_push_lock); 1152 push_seq = cil->xc_push_seq; 1153 ASSERT(push_seq <= ctx->sequence); 1154 push_commit_stable = cil->xc_push_commit_stable; 1155 cil->xc_push_commit_stable = false; 1156 1157 /* 1158 * As we are about to switch to a new, empty CIL context, we no longer 1159 * need to throttle tasks on CIL space overruns. Wake any waiters that 1160 * the hard push throttle may have caught so they can start committing 1161 * to the new context. The ctx->xc_push_lock provides the serialisation 1162 * necessary for safely using the lockless waitqueue_active() check in 1163 * this context. 1164 */ 1165 if (waitqueue_active(&cil->xc_push_wait)) 1166 wake_up_all(&cil->xc_push_wait); 1167 1168 xlog_cil_push_pcp_aggregate(cil, ctx); 1169 1170 /* 1171 * Check if we've anything to push. If there is nothing, then we don't 1172 * move on to a new sequence number and so we have to be able to push 1173 * this sequence again later. 1174 */ 1175 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) { 1176 cil->xc_push_seq = 0; 1177 spin_unlock(&cil->xc_push_lock); 1178 goto out_skip; 1179 } 1180 1181 1182 /* check for a previously pushed sequence */ 1183 if (push_seq < ctx->sequence) { 1184 spin_unlock(&cil->xc_push_lock); 1185 goto out_skip; 1186 } 1187 1188 /* 1189 * We are now going to push this context, so add it to the committing 1190 * list before we do anything else. This ensures that anyone waiting on 1191 * this push can easily detect the difference between a "push in 1192 * progress" and "CIL is empty, nothing to do". 1193 * 1194 * IOWs, a wait loop can now check for: 1195 * the current sequence not being found on the committing list; 1196 * an empty CIL; and 1197 * an unchanged sequence number 1198 * to detect a push that had nothing to do and therefore does not need 1199 * waiting on. If the CIL is not empty, we get put on the committing 1200 * list before emptying the CIL and bumping the sequence number. Hence 1201 * an empty CIL and an unchanged sequence number means we jumped out 1202 * above after doing nothing. 1203 * 1204 * Hence the waiter will either find the commit sequence on the 1205 * committing list or the sequence number will be unchanged and the CIL 1206 * still dirty. In that latter case, the push has not yet started, and 1207 * so the waiter will have to continue trying to check the CIL 1208 * committing list until it is found. In extreme cases of delay, the 1209 * sequence may fully commit between the attempts the wait makes to wait 1210 * on the commit sequence. 1211 */ 1212 list_add(&ctx->committing, &cil->xc_committing); 1213 spin_unlock(&cil->xc_push_lock); 1214 1215 xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes); 1216 1217 /* 1218 * Switch the contexts so we can drop the context lock and move out 1219 * of a shared context. We can't just go straight to the commit record, 1220 * though - we need to synchronise with previous and future commits so 1221 * that the commit records are correctly ordered in the log to ensure 1222 * that we process items during log IO completion in the correct order. 1223 * 1224 * For example, if we get an EFI in one checkpoint and the EFD in the 1225 * next (e.g. due to log forces), we do not want the checkpoint with 1226 * the EFD to be committed before the checkpoint with the EFI. Hence 1227 * we must strictly order the commit records of the checkpoints so 1228 * that: a) the checkpoint callbacks are attached to the iclogs in the 1229 * correct order; and b) the checkpoints are replayed in correct order 1230 * in log recovery. 1231 * 1232 * Hence we need to add this context to the committing context list so 1233 * that higher sequences will wait for us to write out a commit record 1234 * before they do. 1235 * 1236 * xfs_log_force_seq requires us to mirror the new sequence into the cil 1237 * structure atomically with the addition of this sequence to the 1238 * committing list. This also ensures that we can do unlocked checks 1239 * against the current sequence in log forces without risking 1240 * deferencing a freed context pointer. 1241 */ 1242 spin_lock(&cil->xc_push_lock); 1243 xlog_cil_ctx_switch(cil, new_ctx); 1244 spin_unlock(&cil->xc_push_lock); 1245 up_write(&cil->xc_ctx_lock); 1246 1247 /* 1248 * Sort the log vector chain before we add the transaction headers. 1249 * This ensures we always have the transaction headers at the start 1250 * of the chain. 1251 */ 1252 list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp); 1253 1254 /* 1255 * Build a checkpoint transaction header and write it to the log to 1256 * begin the transaction. We need to account for the space used by the 1257 * transaction header here as it is not accounted for in xlog_write(). 1258 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so 1259 * it gets written into the iclog first. 1260 */ 1261 xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs); 1262 num_bytes += lvhdr.lv_bytes; 1263 list_add(&lvhdr.lv_list, &ctx->lv_chain); 1264 1265 /* 1266 * Take the lvhdr back off the lv_chain immediately after calling 1267 * xlog_cil_write_chain() as it should not be passed to log IO 1268 * completion. 1269 */ 1270 error = xlog_cil_write_chain(ctx, num_bytes); 1271 list_del(&lvhdr.lv_list); 1272 if (error) 1273 goto out_abort_free_ticket; 1274 1275 error = xlog_cil_write_commit_record(ctx); 1276 if (error) 1277 goto out_abort_free_ticket; 1278 1279 /* 1280 * Grab the ticket from the ctx so we can ungrant it after releasing the 1281 * commit_iclog. The ctx may be freed by the time we return from 1282 * releasing the commit_iclog (i.e. checkpoint has been completed and 1283 * callback run) so we can't reference the ctx after the call to 1284 * xlog_state_release_iclog(). 1285 */ 1286 ticket = ctx->ticket; 1287 1288 /* 1289 * If the checkpoint spans multiple iclogs, wait for all previous iclogs 1290 * to complete before we submit the commit_iclog. We can't use state 1291 * checks for this - ACTIVE can be either a past completed iclog or a 1292 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a 1293 * past or future iclog awaiting IO or ordered IO completion to be run. 1294 * In the latter case, if it's a future iclog and we wait on it, the we 1295 * will hang because it won't get processed through to ic_force_wait 1296 * wakeup until this commit_iclog is written to disk. Hence we use the 1297 * iclog header lsn and compare it to the commit lsn to determine if we 1298 * need to wait on iclogs or not. 1299 */ 1300 spin_lock(&log->l_icloglock); 1301 if (ctx->start_lsn != ctx->commit_lsn) { 1302 xfs_lsn_t plsn; 1303 1304 plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn); 1305 if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) { 1306 /* 1307 * Waiting on ic_force_wait orders the completion of 1308 * iclogs older than ic_prev. Hence we only need to wait 1309 * on the most recent older iclog here. 1310 */ 1311 xlog_wait_on_iclog(ctx->commit_iclog->ic_prev); 1312 spin_lock(&log->l_icloglock); 1313 } 1314 1315 /* 1316 * We need to issue a pre-flush so that the ordering for this 1317 * checkpoint is correctly preserved down to stable storage. 1318 */ 1319 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 1320 } 1321 1322 /* 1323 * The commit iclog must be written to stable storage to guarantee 1324 * journal IO vs metadata writeback IO is correctly ordered on stable 1325 * storage. 1326 * 1327 * If the push caller needs the commit to be immediately stable and the 1328 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it 1329 * will be written when released, switch it's state to WANT_SYNC right 1330 * now. 1331 */ 1332 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA; 1333 if (push_commit_stable && 1334 ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE) 1335 xlog_state_switch_iclogs(log, ctx->commit_iclog, 0); 1336 ticket = ctx->ticket; 1337 xlog_state_release_iclog(log, ctx->commit_iclog, ticket); 1338 1339 /* Not safe to reference ctx now! */ 1340 1341 spin_unlock(&log->l_icloglock); 1342 xlog_cil_cleanup_whiteouts(&whiteouts); 1343 xfs_log_ticket_ungrant(log, ticket); 1344 memalloc_nofs_restore(nofs_flags); 1345 return; 1346 1347 out_skip: 1348 up_write(&cil->xc_ctx_lock); 1349 xfs_log_ticket_put(new_ctx->ticket); 1350 kfree(new_ctx); 1351 memalloc_nofs_restore(nofs_flags); 1352 return; 1353 1354 out_abort_free_ticket: 1355 ASSERT(xlog_is_shutdown(log)); 1356 xlog_cil_cleanup_whiteouts(&whiteouts); 1357 if (!ctx->commit_iclog) { 1358 xfs_log_ticket_ungrant(log, ctx->ticket); 1359 xlog_cil_committed(ctx); 1360 memalloc_nofs_restore(nofs_flags); 1361 return; 1362 } 1363 spin_lock(&log->l_icloglock); 1364 ticket = ctx->ticket; 1365 xlog_state_release_iclog(log, ctx->commit_iclog, ticket); 1366 /* Not safe to reference ctx now! */ 1367 spin_unlock(&log->l_icloglock); 1368 xfs_log_ticket_ungrant(log, ticket); 1369 memalloc_nofs_restore(nofs_flags); 1370 } 1371 1372 /* 1373 * We need to push CIL every so often so we don't cache more than we can fit in 1374 * the log. The limit really is that a checkpoint can't be more than half the 1375 * log (the current checkpoint is not allowed to overwrite the previous 1376 * checkpoint), but commit latency and memory usage limit this to a smaller 1377 * size. 1378 */ 1379 static void 1380 xlog_cil_push_background( 1381 struct xlog *log) 1382 { 1383 struct xfs_cil *cil = log->l_cilp; 1384 int space_used = atomic_read(&cil->xc_ctx->space_used); 1385 1386 /* 1387 * The cil won't be empty because we are called while holding the 1388 * context lock so whatever we added to the CIL will still be there. 1389 */ 1390 ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)); 1391 1392 /* 1393 * We are done if: 1394 * - we haven't used up all the space available yet; or 1395 * - we've already queued up a push; and 1396 * - we're not over the hard limit; and 1397 * - nothing has been over the hard limit. 1398 * 1399 * If so, we don't need to take the push lock as there's nothing to do. 1400 */ 1401 if (space_used < XLOG_CIL_SPACE_LIMIT(log) || 1402 (cil->xc_push_seq == cil->xc_current_sequence && 1403 space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) && 1404 !waitqueue_active(&cil->xc_push_wait))) { 1405 up_read(&cil->xc_ctx_lock); 1406 return; 1407 } 1408 1409 spin_lock(&cil->xc_push_lock); 1410 if (cil->xc_push_seq < cil->xc_current_sequence) { 1411 cil->xc_push_seq = cil->xc_current_sequence; 1412 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1413 } 1414 1415 /* 1416 * Drop the context lock now, we can't hold that if we need to sleep 1417 * because we are over the blocking threshold. The push_lock is still 1418 * held, so blocking threshold sleep/wakeup is still correctly 1419 * serialised here. 1420 */ 1421 up_read(&cil->xc_ctx_lock); 1422 1423 /* 1424 * If we are well over the space limit, throttle the work that is being 1425 * done until the push work on this context has begun. Enforce the hard 1426 * throttle on all transaction commits once it has been activated, even 1427 * if the committing transactions have resulted in the space usage 1428 * dipping back down under the hard limit. 1429 * 1430 * The ctx->xc_push_lock provides the serialisation necessary for safely 1431 * calling xlog_cil_over_hard_limit() in this context. 1432 */ 1433 if (xlog_cil_over_hard_limit(log, space_used)) { 1434 trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket); 1435 ASSERT(space_used < log->l_logsize); 1436 xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock); 1437 return; 1438 } 1439 1440 spin_unlock(&cil->xc_push_lock); 1441 1442 } 1443 1444 /* 1445 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence 1446 * number that is passed. When it returns, the work will be queued for 1447 * @push_seq, but it won't be completed. 1448 * 1449 * If the caller is performing a synchronous force, we will flush the workqueue 1450 * to get previously queued work moving to minimise the wait time they will 1451 * undergo waiting for all outstanding pushes to complete. The caller is 1452 * expected to do the required waiting for push_seq to complete. 1453 * 1454 * If the caller is performing an async push, we need to ensure that the 1455 * checkpoint is fully flushed out of the iclogs when we finish the push. If we 1456 * don't do this, then the commit record may remain sitting in memory in an 1457 * ACTIVE iclog. This then requires another full log force to push to disk, 1458 * which defeats the purpose of having an async, non-blocking CIL force 1459 * mechanism. Hence in this case we need to pass a flag to the push work to 1460 * indicate it needs to flush the commit record itself. 1461 */ 1462 static void 1463 xlog_cil_push_now( 1464 struct xlog *log, 1465 xfs_lsn_t push_seq, 1466 bool async) 1467 { 1468 struct xfs_cil *cil = log->l_cilp; 1469 1470 if (!cil) 1471 return; 1472 1473 ASSERT(push_seq && push_seq <= cil->xc_current_sequence); 1474 1475 /* start on any pending background push to minimise wait time on it */ 1476 if (!async) 1477 flush_workqueue(cil->xc_push_wq); 1478 1479 spin_lock(&cil->xc_push_lock); 1480 1481 /* 1482 * If this is an async flush request, we always need to set the 1483 * xc_push_commit_stable flag even if something else has already queued 1484 * a push. The flush caller is asking for the CIL to be on stable 1485 * storage when the next push completes, so regardless of who has queued 1486 * the push, the flush requires stable semantics from it. 1487 */ 1488 cil->xc_push_commit_stable = async; 1489 1490 /* 1491 * If the CIL is empty or we've already pushed the sequence then 1492 * there's no more work that we need to do. 1493 */ 1494 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) || 1495 push_seq <= cil->xc_push_seq) { 1496 spin_unlock(&cil->xc_push_lock); 1497 return; 1498 } 1499 1500 cil->xc_push_seq = push_seq; 1501 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1502 spin_unlock(&cil->xc_push_lock); 1503 } 1504 1505 bool 1506 xlog_cil_empty( 1507 struct xlog *log) 1508 { 1509 struct xfs_cil *cil = log->l_cilp; 1510 bool empty = false; 1511 1512 spin_lock(&cil->xc_push_lock); 1513 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 1514 empty = true; 1515 spin_unlock(&cil->xc_push_lock); 1516 return empty; 1517 } 1518 1519 /* 1520 * If there are intent done items in this transaction and the related intent was 1521 * committed in the current (same) CIL checkpoint, we don't need to write either 1522 * the intent or intent done item to the journal as the change will be 1523 * journalled atomically within this checkpoint. As we cannot remove items from 1524 * the CIL here, mark the related intent with a whiteout so that the CIL push 1525 * can remove it rather than writing it to the journal. Then remove the intent 1526 * done item from the current transaction and release it so it doesn't get put 1527 * into the CIL at all. 1528 */ 1529 static uint32_t 1530 xlog_cil_process_intents( 1531 struct xfs_cil *cil, 1532 struct xfs_trans *tp) 1533 { 1534 struct xfs_log_item *lip, *ilip, *next; 1535 uint32_t len = 0; 1536 1537 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1538 if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE)) 1539 continue; 1540 1541 ilip = lip->li_ops->iop_intent(lip); 1542 if (!ilip || !xlog_item_in_current_chkpt(cil, ilip)) 1543 continue; 1544 set_bit(XFS_LI_WHITEOUT, &ilip->li_flags); 1545 trace_xfs_cil_whiteout_mark(ilip); 1546 len += ilip->li_lv->lv_bytes; 1547 kvfree(ilip->li_lv); 1548 ilip->li_lv = NULL; 1549 1550 xfs_trans_del_item(lip); 1551 lip->li_ops->iop_release(lip); 1552 } 1553 return len; 1554 } 1555 1556 /* 1557 * Commit a transaction with the given vector to the Committed Item List. 1558 * 1559 * To do this, we need to format the item, pin it in memory if required and 1560 * account for the space used by the transaction. Once we have done that we 1561 * need to release the unused reservation for the transaction, attach the 1562 * transaction to the checkpoint context so we carry the busy extents through 1563 * to checkpoint completion, and then unlock all the items in the transaction. 1564 * 1565 * Called with the context lock already held in read mode to lock out 1566 * background commit, returns without it held once background commits are 1567 * allowed again. 1568 */ 1569 void 1570 xlog_cil_commit( 1571 struct xlog *log, 1572 struct xfs_trans *tp, 1573 xfs_csn_t *commit_seq, 1574 bool regrant) 1575 { 1576 struct xfs_cil *cil = log->l_cilp; 1577 struct xfs_log_item *lip, *next; 1578 uint32_t released_space = 0; 1579 1580 /* 1581 * Do all necessary memory allocation before we lock the CIL. 1582 * This ensures the allocation does not deadlock with a CIL 1583 * push in memory reclaim (e.g. from kswapd). 1584 */ 1585 xlog_cil_alloc_shadow_bufs(log, tp); 1586 1587 /* lock out background commit */ 1588 down_read(&cil->xc_ctx_lock); 1589 1590 if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE) 1591 released_space = xlog_cil_process_intents(cil, tp); 1592 1593 xlog_cil_insert_items(log, tp, released_space); 1594 1595 if (regrant && !xlog_is_shutdown(log)) 1596 xfs_log_ticket_regrant(log, tp->t_ticket); 1597 else 1598 xfs_log_ticket_ungrant(log, tp->t_ticket); 1599 tp->t_ticket = NULL; 1600 xfs_trans_unreserve_and_mod_sb(tp); 1601 1602 /* 1603 * Once all the items of the transaction have been copied to the CIL, 1604 * the items can be unlocked and possibly freed. 1605 * 1606 * This needs to be done before we drop the CIL context lock because we 1607 * have to update state in the log items and unlock them before they go 1608 * to disk. If we don't, then the CIL checkpoint can race with us and 1609 * we can run checkpoint completion before we've updated and unlocked 1610 * the log items. This affects (at least) processing of stale buffers, 1611 * inodes and EFIs. 1612 */ 1613 trace_xfs_trans_commit_items(tp, _RET_IP_); 1614 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1615 xfs_trans_del_item(lip); 1616 if (lip->li_ops->iop_committing) 1617 lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence); 1618 } 1619 if (commit_seq) 1620 *commit_seq = cil->xc_ctx->sequence; 1621 1622 /* xlog_cil_push_background() releases cil->xc_ctx_lock */ 1623 xlog_cil_push_background(log); 1624 } 1625 1626 /* 1627 * Flush the CIL to stable storage but don't wait for it to complete. This 1628 * requires the CIL push to ensure the commit record for the push hits the disk, 1629 * but otherwise is no different to a push done from a log force. 1630 */ 1631 void 1632 xlog_cil_flush( 1633 struct xlog *log) 1634 { 1635 xfs_csn_t seq = log->l_cilp->xc_current_sequence; 1636 1637 trace_xfs_log_force(log->l_mp, seq, _RET_IP_); 1638 xlog_cil_push_now(log, seq, true); 1639 1640 /* 1641 * If the CIL is empty, make sure that any previous checkpoint that may 1642 * still be in an active iclog is pushed to stable storage. 1643 */ 1644 if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags)) 1645 xfs_log_force(log->l_mp, 0); 1646 } 1647 1648 /* 1649 * Conditionally push the CIL based on the sequence passed in. 1650 * 1651 * We only need to push if we haven't already pushed the sequence number given. 1652 * Hence the only time we will trigger a push here is if the push sequence is 1653 * the same as the current context. 1654 * 1655 * We return the current commit lsn to allow the callers to determine if a 1656 * iclog flush is necessary following this call. 1657 */ 1658 xfs_lsn_t 1659 xlog_cil_force_seq( 1660 struct xlog *log, 1661 xfs_csn_t sequence) 1662 { 1663 struct xfs_cil *cil = log->l_cilp; 1664 struct xfs_cil_ctx *ctx; 1665 xfs_lsn_t commit_lsn = NULLCOMMITLSN; 1666 1667 ASSERT(sequence <= cil->xc_current_sequence); 1668 1669 if (!sequence) 1670 sequence = cil->xc_current_sequence; 1671 trace_xfs_log_force(log->l_mp, sequence, _RET_IP_); 1672 1673 /* 1674 * check to see if we need to force out the current context. 1675 * xlog_cil_push() handles racing pushes for the same sequence, 1676 * so no need to deal with it here. 1677 */ 1678 restart: 1679 xlog_cil_push_now(log, sequence, false); 1680 1681 /* 1682 * See if we can find a previous sequence still committing. 1683 * We need to wait for all previous sequence commits to complete 1684 * before allowing the force of push_seq to go ahead. Hence block 1685 * on commits for those as well. 1686 */ 1687 spin_lock(&cil->xc_push_lock); 1688 list_for_each_entry(ctx, &cil->xc_committing, committing) { 1689 /* 1690 * Avoid getting stuck in this loop because we were woken by the 1691 * shutdown, but then went back to sleep once already in the 1692 * shutdown state. 1693 */ 1694 if (xlog_is_shutdown(log)) 1695 goto out_shutdown; 1696 if (ctx->sequence > sequence) 1697 continue; 1698 if (!ctx->commit_lsn) { 1699 /* 1700 * It is still being pushed! Wait for the push to 1701 * complete, then start again from the beginning. 1702 */ 1703 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 1704 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 1705 goto restart; 1706 } 1707 if (ctx->sequence != sequence) 1708 continue; 1709 /* found it! */ 1710 commit_lsn = ctx->commit_lsn; 1711 } 1712 1713 /* 1714 * The call to xlog_cil_push_now() executes the push in the background. 1715 * Hence by the time we have got here it our sequence may not have been 1716 * pushed yet. This is true if the current sequence still matches the 1717 * push sequence after the above wait loop and the CIL still contains 1718 * dirty objects. This is guaranteed by the push code first adding the 1719 * context to the committing list before emptying the CIL. 1720 * 1721 * Hence if we don't find the context in the committing list and the 1722 * current sequence number is unchanged then the CIL contents are 1723 * significant. If the CIL is empty, if means there was nothing to push 1724 * and that means there is nothing to wait for. If the CIL is not empty, 1725 * it means we haven't yet started the push, because if it had started 1726 * we would have found the context on the committing list. 1727 */ 1728 if (sequence == cil->xc_current_sequence && 1729 !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) { 1730 spin_unlock(&cil->xc_push_lock); 1731 goto restart; 1732 } 1733 1734 spin_unlock(&cil->xc_push_lock); 1735 return commit_lsn; 1736 1737 /* 1738 * We detected a shutdown in progress. We need to trigger the log force 1739 * to pass through it's iclog state machine error handling, even though 1740 * we are already in a shutdown state. Hence we can't return 1741 * NULLCOMMITLSN here as that has special meaning to log forces (i.e. 1742 * LSN is already stable), so we return a zero LSN instead. 1743 */ 1744 out_shutdown: 1745 spin_unlock(&cil->xc_push_lock); 1746 return 0; 1747 } 1748 1749 /* 1750 * Perform initial CIL structure initialisation. 1751 */ 1752 int 1753 xlog_cil_init( 1754 struct xlog *log) 1755 { 1756 struct xfs_cil *cil; 1757 struct xfs_cil_ctx *ctx; 1758 struct xlog_cil_pcp *cilpcp; 1759 int cpu; 1760 1761 cil = kzalloc(sizeof(*cil), GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1762 if (!cil) 1763 return -ENOMEM; 1764 /* 1765 * Limit the CIL pipeline depth to 4 concurrent works to bound the 1766 * concurrency the log spinlocks will be exposed to. 1767 */ 1768 cil->xc_push_wq = alloc_workqueue("xfs-cil/%s", 1769 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND), 1770 4, log->l_mp->m_super->s_id); 1771 if (!cil->xc_push_wq) 1772 goto out_destroy_cil; 1773 1774 cil->xc_log = log; 1775 cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp); 1776 if (!cil->xc_pcp) 1777 goto out_destroy_wq; 1778 1779 for_each_possible_cpu(cpu) { 1780 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 1781 INIT_LIST_HEAD(&cilpcp->busy_extents); 1782 INIT_LIST_HEAD(&cilpcp->log_items); 1783 } 1784 1785 INIT_LIST_HEAD(&cil->xc_committing); 1786 spin_lock_init(&cil->xc_push_lock); 1787 init_waitqueue_head(&cil->xc_push_wait); 1788 init_rwsem(&cil->xc_ctx_lock); 1789 init_waitqueue_head(&cil->xc_start_wait); 1790 init_waitqueue_head(&cil->xc_commit_wait); 1791 log->l_cilp = cil; 1792 1793 ctx = xlog_cil_ctx_alloc(); 1794 xlog_cil_ctx_switch(cil, ctx); 1795 return 0; 1796 1797 out_destroy_wq: 1798 destroy_workqueue(cil->xc_push_wq); 1799 out_destroy_cil: 1800 kfree(cil); 1801 return -ENOMEM; 1802 } 1803 1804 void 1805 xlog_cil_destroy( 1806 struct xlog *log) 1807 { 1808 struct xfs_cil *cil = log->l_cilp; 1809 1810 if (cil->xc_ctx) { 1811 if (cil->xc_ctx->ticket) 1812 xfs_log_ticket_put(cil->xc_ctx->ticket); 1813 kfree(cil->xc_ctx); 1814 } 1815 1816 ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)); 1817 free_percpu(cil->xc_pcp); 1818 destroy_workqueue(cil->xc_push_wq); 1819 kfree(cil); 1820 } 1821 1822