xref: /linux/fs/xfs/xfs_log_cil.c (revision c4c11dd160a8cc98f402c4e12f94b1572e822ffd)
1 /*
2  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write the Free Software Foundation,
15  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_trans_priv.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_alloc.h"
30 #include "xfs_extent_busy.h"
31 #include "xfs_discard.h"
32 
33 /*
34  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
35  * recover, so we don't allow failure here. Also, we allocate in a context that
36  * we don't want to be issuing transactions from, so we need to tell the
37  * allocation code this as well.
38  *
39  * We don't reserve any space for the ticket - we are going to steal whatever
40  * space we require from transactions as they commit. To ensure we reserve all
41  * the space required, we need to set the current reservation of the ticket to
42  * zero so that we know to steal the initial transaction overhead from the
43  * first transaction commit.
44  */
45 static struct xlog_ticket *
46 xlog_cil_ticket_alloc(
47 	struct xlog	*log)
48 {
49 	struct xlog_ticket *tic;
50 
51 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
52 				KM_SLEEP|KM_NOFS);
53 	tic->t_trans_type = XFS_TRANS_CHECKPOINT;
54 
55 	/*
56 	 * set the current reservation to zero so we know to steal the basic
57 	 * transaction overhead reservation from the first transaction commit.
58 	 */
59 	tic->t_curr_res = 0;
60 	return tic;
61 }
62 
63 /*
64  * After the first stage of log recovery is done, we know where the head and
65  * tail of the log are. We need this log initialisation done before we can
66  * initialise the first CIL checkpoint context.
67  *
68  * Here we allocate a log ticket to track space usage during a CIL push.  This
69  * ticket is passed to xlog_write() directly so that we don't slowly leak log
70  * space by failing to account for space used by log headers and additional
71  * region headers for split regions.
72  */
73 void
74 xlog_cil_init_post_recovery(
75 	struct xlog	*log)
76 {
77 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
78 	log->l_cilp->xc_ctx->sequence = 1;
79 	log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
80 								log->l_curr_block);
81 }
82 
83 /*
84  * Format log item into a flat buffers
85  *
86  * For delayed logging, we need to hold a formatted buffer containing all the
87  * changes on the log item. This enables us to relog the item in memory and
88  * write it out asynchronously without needing to relock the object that was
89  * modified at the time it gets written into the iclog.
90  *
91  * This function builds a vector for the changes in each log item in the
92  * transaction. It then works out the length of the buffer needed for each log
93  * item, allocates them and formats the vector for the item into the buffer.
94  * The buffer is then attached to the log item are then inserted into the
95  * Committed Item List for tracking until the next checkpoint is written out.
96  *
97  * We don't set up region headers during this process; we simply copy the
98  * regions into the flat buffer. We can do this because we still have to do a
99  * formatting step to write the regions into the iclog buffer.  Writing the
100  * ophdrs during the iclog write means that we can support splitting large
101  * regions across iclog boundares without needing a change in the format of the
102  * item/region encapsulation.
103  *
104  * Hence what we need to do now is change the rewrite the vector array to point
105  * to the copied region inside the buffer we just allocated. This allows us to
106  * format the regions into the iclog as though they are being formatted
107  * directly out of the objects themselves.
108  */
109 static struct xfs_log_vec *
110 xlog_cil_prepare_log_vecs(
111 	struct xfs_trans	*tp)
112 {
113 	struct xfs_log_item_desc *lidp;
114 	struct xfs_log_vec	*lv = NULL;
115 	struct xfs_log_vec	*ret_lv = NULL;
116 
117 
118 	/* Bail out if we didn't find a log item.  */
119 	if (list_empty(&tp->t_items)) {
120 		ASSERT(0);
121 		return NULL;
122 	}
123 
124 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
125 		struct xfs_log_vec *new_lv;
126 		void	*ptr;
127 		int	index;
128 		int	len = 0;
129 		uint	niovecs;
130 		bool	ordered = false;
131 
132 		/* Skip items which aren't dirty in this transaction. */
133 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
134 			continue;
135 
136 		/* Skip items that do not have any vectors for writing */
137 		niovecs = IOP_SIZE(lidp->lid_item);
138 		if (!niovecs)
139 			continue;
140 
141 		/*
142 		 * Ordered items need to be tracked but we do not wish to write
143 		 * them. We need a logvec to track the object, but we do not
144 		 * need an iovec or buffer to be allocated for copying data.
145 		 */
146 		if (niovecs == XFS_LOG_VEC_ORDERED) {
147 			ordered = true;
148 			niovecs = 0;
149 		}
150 
151 		new_lv = kmem_zalloc(sizeof(*new_lv) +
152 				niovecs * sizeof(struct xfs_log_iovec),
153 				KM_SLEEP|KM_NOFS);
154 
155 		new_lv->lv_item = lidp->lid_item;
156 		new_lv->lv_niovecs = niovecs;
157 		if (ordered) {
158 			/* track as an ordered logvec */
159 			new_lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
160 			goto next;
161 		}
162 
163 		/* The allocated iovec region lies beyond the log vector. */
164 		new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1];
165 
166 		/* build the vector array and calculate it's length */
167 		IOP_FORMAT(new_lv->lv_item, new_lv->lv_iovecp);
168 		for (index = 0; index < new_lv->lv_niovecs; index++)
169 			len += new_lv->lv_iovecp[index].i_len;
170 
171 		new_lv->lv_buf_len = len;
172 		new_lv->lv_buf = kmem_alloc(new_lv->lv_buf_len,
173 				KM_SLEEP|KM_NOFS);
174 		ptr = new_lv->lv_buf;
175 
176 		for (index = 0; index < new_lv->lv_niovecs; index++) {
177 			struct xfs_log_iovec *vec = &new_lv->lv_iovecp[index];
178 
179 			memcpy(ptr, vec->i_addr, vec->i_len);
180 			vec->i_addr = ptr;
181 			ptr += vec->i_len;
182 		}
183 		ASSERT(ptr == new_lv->lv_buf + new_lv->lv_buf_len);
184 
185 next:
186 		if (!ret_lv)
187 			ret_lv = new_lv;
188 		else
189 			lv->lv_next = new_lv;
190 		lv = new_lv;
191 	}
192 
193 	return ret_lv;
194 }
195 
196 /*
197  * Prepare the log item for insertion into the CIL. Calculate the difference in
198  * log space and vectors it will consume, and if it is a new item pin it as
199  * well.
200  */
201 STATIC void
202 xfs_cil_prepare_item(
203 	struct xlog		*log,
204 	struct xfs_log_vec	*lv,
205 	int			*len,
206 	int			*diff_iovecs)
207 {
208 	struct xfs_log_vec	*old = lv->lv_item->li_lv;
209 
210 	if (old) {
211 		/* existing lv on log item, space used is a delta */
212 		ASSERT((old->lv_buf && old->lv_buf_len && old->lv_niovecs) ||
213 			old->lv_buf_len == XFS_LOG_VEC_ORDERED);
214 
215 		/*
216 		 * If the new item is ordered, keep the old one that is already
217 		 * tracking dirty or ordered regions
218 		 */
219 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
220 			ASSERT(!lv->lv_buf);
221 			kmem_free(lv);
222 			return;
223 		}
224 
225 		*len += lv->lv_buf_len - old->lv_buf_len;
226 		*diff_iovecs += lv->lv_niovecs - old->lv_niovecs;
227 		kmem_free(old->lv_buf);
228 		kmem_free(old);
229 	} else {
230 		/* new lv, must pin the log item */
231 		ASSERT(!lv->lv_item->li_lv);
232 
233 		if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
234 			*len += lv->lv_buf_len;
235 			*diff_iovecs += lv->lv_niovecs;
236 		}
237 		IOP_PIN(lv->lv_item);
238 
239 	}
240 
241 	/* attach new log vector to log item */
242 	lv->lv_item->li_lv = lv;
243 
244 	/*
245 	 * If this is the first time the item is being committed to the
246 	 * CIL, store the sequence number on the log item so we can
247 	 * tell in future commits whether this is the first checkpoint
248 	 * the item is being committed into.
249 	 */
250 	if (!lv->lv_item->li_seq)
251 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
252 }
253 
254 /*
255  * Insert the log items into the CIL and calculate the difference in space
256  * consumed by the item. Add the space to the checkpoint ticket and calculate
257  * if the change requires additional log metadata. If it does, take that space
258  * as well. Remove the amount of space we added to the checkpoint ticket from
259  * the current transaction ticket so that the accounting works out correctly.
260  */
261 static void
262 xlog_cil_insert_items(
263 	struct xlog		*log,
264 	struct xfs_log_vec	*log_vector,
265 	struct xlog_ticket	*ticket)
266 {
267 	struct xfs_cil		*cil = log->l_cilp;
268 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
269 	struct xfs_log_vec	*lv;
270 	int			len = 0;
271 	int			diff_iovecs = 0;
272 	int			iclog_space;
273 
274 	ASSERT(log_vector);
275 
276 	/*
277 	 * Do all the accounting aggregation and switching of log vectors
278 	 * around in a separate loop to the insertion of items into the CIL.
279 	 * Then we can do a separate loop to update the CIL within a single
280 	 * lock/unlock pair. This reduces the number of round trips on the CIL
281 	 * lock from O(nr_logvectors) to O(1) and greatly reduces the overall
282 	 * hold time for the transaction commit.
283 	 *
284 	 * If this is the first time the item is being placed into the CIL in
285 	 * this context, pin it so it can't be written to disk until the CIL is
286 	 * flushed to the iclog and the iclog written to disk.
287 	 *
288 	 * We can do this safely because the context can't checkpoint until we
289 	 * are done so it doesn't matter exactly how we update the CIL.
290 	 */
291 	spin_lock(&cil->xc_cil_lock);
292 	for (lv = log_vector; lv; ) {
293 		struct xfs_log_vec *next = lv->lv_next;
294 
295 		ASSERT(lv->lv_item->li_lv || list_empty(&lv->lv_item->li_cil));
296 		lv->lv_next = NULL;
297 
298 		/*
299 		 * xfs_cil_prepare_item() may free the lv, so move the item on
300 		 * the CIL first.
301 		 */
302 		list_move_tail(&lv->lv_item->li_cil, &cil->xc_cil);
303 		xfs_cil_prepare_item(log, lv, &len, &diff_iovecs);
304 		lv = next;
305 	}
306 
307 	/* account for space used by new iovec headers  */
308 	len += diff_iovecs * sizeof(xlog_op_header_t);
309 	ctx->nvecs += diff_iovecs;
310 
311 	/*
312 	 * Now transfer enough transaction reservation to the context ticket
313 	 * for the checkpoint. The context ticket is special - the unit
314 	 * reservation has to grow as well as the current reservation as we
315 	 * steal from tickets so we can correctly determine the space used
316 	 * during the transaction commit.
317 	 */
318 	if (ctx->ticket->t_curr_res == 0) {
319 		/* first commit in checkpoint, steal the header reservation */
320 		ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len);
321 		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
322 		ticket->t_curr_res -= ctx->ticket->t_unit_res;
323 	}
324 
325 	/* do we need space for more log record headers? */
326 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
327 	if (len > 0 && (ctx->space_used / iclog_space !=
328 				(ctx->space_used + len) / iclog_space)) {
329 		int hdrs;
330 
331 		hdrs = (len + iclog_space - 1) / iclog_space;
332 		/* need to take into account split region headers, too */
333 		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
334 		ctx->ticket->t_unit_res += hdrs;
335 		ctx->ticket->t_curr_res += hdrs;
336 		ticket->t_curr_res -= hdrs;
337 		ASSERT(ticket->t_curr_res >= len);
338 	}
339 	ticket->t_curr_res -= len;
340 	ctx->space_used += len;
341 
342 	spin_unlock(&cil->xc_cil_lock);
343 }
344 
345 static void
346 xlog_cil_free_logvec(
347 	struct xfs_log_vec	*log_vector)
348 {
349 	struct xfs_log_vec	*lv;
350 
351 	for (lv = log_vector; lv; ) {
352 		struct xfs_log_vec *next = lv->lv_next;
353 		kmem_free(lv->lv_buf);
354 		kmem_free(lv);
355 		lv = next;
356 	}
357 }
358 
359 /*
360  * Mark all items committed and clear busy extents. We free the log vector
361  * chains in a separate pass so that we unpin the log items as quickly as
362  * possible.
363  */
364 static void
365 xlog_cil_committed(
366 	void	*args,
367 	int	abort)
368 {
369 	struct xfs_cil_ctx	*ctx = args;
370 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
371 
372 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
373 					ctx->start_lsn, abort);
374 
375 	xfs_extent_busy_sort(&ctx->busy_extents);
376 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
377 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
378 
379 	spin_lock(&ctx->cil->xc_cil_lock);
380 	list_del(&ctx->committing);
381 	spin_unlock(&ctx->cil->xc_cil_lock);
382 
383 	xlog_cil_free_logvec(ctx->lv_chain);
384 
385 	if (!list_empty(&ctx->busy_extents)) {
386 		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
387 
388 		xfs_discard_extents(mp, &ctx->busy_extents);
389 		xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
390 	}
391 
392 	kmem_free(ctx);
393 }
394 
395 /*
396  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
397  * is a background flush and so we can chose to ignore it. Otherwise, if the
398  * current sequence is the same as @push_seq we need to do a flush. If
399  * @push_seq is less than the current sequence, then it has already been
400  * flushed and we don't need to do anything - the caller will wait for it to
401  * complete if necessary.
402  *
403  * @push_seq is a value rather than a flag because that allows us to do an
404  * unlocked check of the sequence number for a match. Hence we can allows log
405  * forces to run racily and not issue pushes for the same sequence twice. If we
406  * get a race between multiple pushes for the same sequence they will block on
407  * the first one and then abort, hence avoiding needless pushes.
408  */
409 STATIC int
410 xlog_cil_push(
411 	struct xlog		*log)
412 {
413 	struct xfs_cil		*cil = log->l_cilp;
414 	struct xfs_log_vec	*lv;
415 	struct xfs_cil_ctx	*ctx;
416 	struct xfs_cil_ctx	*new_ctx;
417 	struct xlog_in_core	*commit_iclog;
418 	struct xlog_ticket	*tic;
419 	int			num_iovecs;
420 	int			error = 0;
421 	struct xfs_trans_header thdr;
422 	struct xfs_log_iovec	lhdr;
423 	struct xfs_log_vec	lvhdr = { NULL };
424 	xfs_lsn_t		commit_lsn;
425 	xfs_lsn_t		push_seq;
426 
427 	if (!cil)
428 		return 0;
429 
430 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
431 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
432 
433 	down_write(&cil->xc_ctx_lock);
434 	ctx = cil->xc_ctx;
435 
436 	spin_lock(&cil->xc_cil_lock);
437 	push_seq = cil->xc_push_seq;
438 	ASSERT(push_seq <= ctx->sequence);
439 
440 	/*
441 	 * Check if we've anything to push. If there is nothing, then we don't
442 	 * move on to a new sequence number and so we have to be able to push
443 	 * this sequence again later.
444 	 */
445 	if (list_empty(&cil->xc_cil)) {
446 		cil->xc_push_seq = 0;
447 		spin_unlock(&cil->xc_cil_lock);
448 		goto out_skip;
449 	}
450 	spin_unlock(&cil->xc_cil_lock);
451 
452 
453 	/* check for a previously pushed seqeunce */
454 	if (push_seq < cil->xc_ctx->sequence)
455 		goto out_skip;
456 
457 	/*
458 	 * pull all the log vectors off the items in the CIL, and
459 	 * remove the items from the CIL. We don't need the CIL lock
460 	 * here because it's only needed on the transaction commit
461 	 * side which is currently locked out by the flush lock.
462 	 */
463 	lv = NULL;
464 	num_iovecs = 0;
465 	while (!list_empty(&cil->xc_cil)) {
466 		struct xfs_log_item	*item;
467 
468 		item = list_first_entry(&cil->xc_cil,
469 					struct xfs_log_item, li_cil);
470 		list_del_init(&item->li_cil);
471 		if (!ctx->lv_chain)
472 			ctx->lv_chain = item->li_lv;
473 		else
474 			lv->lv_next = item->li_lv;
475 		lv = item->li_lv;
476 		item->li_lv = NULL;
477 		num_iovecs += lv->lv_niovecs;
478 	}
479 
480 	/*
481 	 * initialise the new context and attach it to the CIL. Then attach
482 	 * the current context to the CIL committing lsit so it can be found
483 	 * during log forces to extract the commit lsn of the sequence that
484 	 * needs to be forced.
485 	 */
486 	INIT_LIST_HEAD(&new_ctx->committing);
487 	INIT_LIST_HEAD(&new_ctx->busy_extents);
488 	new_ctx->sequence = ctx->sequence + 1;
489 	new_ctx->cil = cil;
490 	cil->xc_ctx = new_ctx;
491 
492 	/*
493 	 * mirror the new sequence into the cil structure so that we can do
494 	 * unlocked checks against the current sequence in log forces without
495 	 * risking deferencing a freed context pointer.
496 	 */
497 	cil->xc_current_sequence = new_ctx->sequence;
498 
499 	/*
500 	 * The switch is now done, so we can drop the context lock and move out
501 	 * of a shared context. We can't just go straight to the commit record,
502 	 * though - we need to synchronise with previous and future commits so
503 	 * that the commit records are correctly ordered in the log to ensure
504 	 * that we process items during log IO completion in the correct order.
505 	 *
506 	 * For example, if we get an EFI in one checkpoint and the EFD in the
507 	 * next (e.g. due to log forces), we do not want the checkpoint with
508 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
509 	 * we must strictly order the commit records of the checkpoints so
510 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
511 	 * correct order; and b) the checkpoints are replayed in correct order
512 	 * in log recovery.
513 	 *
514 	 * Hence we need to add this context to the committing context list so
515 	 * that higher sequences will wait for us to write out a commit record
516 	 * before they do.
517 	 */
518 	spin_lock(&cil->xc_cil_lock);
519 	list_add(&ctx->committing, &cil->xc_committing);
520 	spin_unlock(&cil->xc_cil_lock);
521 	up_write(&cil->xc_ctx_lock);
522 
523 	/*
524 	 * Build a checkpoint transaction header and write it to the log to
525 	 * begin the transaction. We need to account for the space used by the
526 	 * transaction header here as it is not accounted for in xlog_write().
527 	 *
528 	 * The LSN we need to pass to the log items on transaction commit is
529 	 * the LSN reported by the first log vector write. If we use the commit
530 	 * record lsn then we can move the tail beyond the grant write head.
531 	 */
532 	tic = ctx->ticket;
533 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
534 	thdr.th_type = XFS_TRANS_CHECKPOINT;
535 	thdr.th_tid = tic->t_tid;
536 	thdr.th_num_items = num_iovecs;
537 	lhdr.i_addr = &thdr;
538 	lhdr.i_len = sizeof(xfs_trans_header_t);
539 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
540 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
541 
542 	lvhdr.lv_niovecs = 1;
543 	lvhdr.lv_iovecp = &lhdr;
544 	lvhdr.lv_next = ctx->lv_chain;
545 
546 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
547 	if (error)
548 		goto out_abort_free_ticket;
549 
550 	/*
551 	 * now that we've written the checkpoint into the log, strictly
552 	 * order the commit records so replay will get them in the right order.
553 	 */
554 restart:
555 	spin_lock(&cil->xc_cil_lock);
556 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
557 		/*
558 		 * Higher sequences will wait for this one so skip them.
559 		 * Don't wait for own own sequence, either.
560 		 */
561 		if (new_ctx->sequence >= ctx->sequence)
562 			continue;
563 		if (!new_ctx->commit_lsn) {
564 			/*
565 			 * It is still being pushed! Wait for the push to
566 			 * complete, then start again from the beginning.
567 			 */
568 			xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
569 			goto restart;
570 		}
571 	}
572 	spin_unlock(&cil->xc_cil_lock);
573 
574 	/* xfs_log_done always frees the ticket on error. */
575 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
576 	if (commit_lsn == -1)
577 		goto out_abort;
578 
579 	/* attach all the transactions w/ busy extents to iclog */
580 	ctx->log_cb.cb_func = xlog_cil_committed;
581 	ctx->log_cb.cb_arg = ctx;
582 	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
583 	if (error)
584 		goto out_abort;
585 
586 	/*
587 	 * now the checkpoint commit is complete and we've attached the
588 	 * callbacks to the iclog we can assign the commit LSN to the context
589 	 * and wake up anyone who is waiting for the commit to complete.
590 	 */
591 	spin_lock(&cil->xc_cil_lock);
592 	ctx->commit_lsn = commit_lsn;
593 	wake_up_all(&cil->xc_commit_wait);
594 	spin_unlock(&cil->xc_cil_lock);
595 
596 	/* release the hounds! */
597 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
598 
599 out_skip:
600 	up_write(&cil->xc_ctx_lock);
601 	xfs_log_ticket_put(new_ctx->ticket);
602 	kmem_free(new_ctx);
603 	return 0;
604 
605 out_abort_free_ticket:
606 	xfs_log_ticket_put(tic);
607 out_abort:
608 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
609 	return XFS_ERROR(EIO);
610 }
611 
612 static void
613 xlog_cil_push_work(
614 	struct work_struct	*work)
615 {
616 	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
617 							xc_push_work);
618 	xlog_cil_push(cil->xc_log);
619 }
620 
621 /*
622  * We need to push CIL every so often so we don't cache more than we can fit in
623  * the log. The limit really is that a checkpoint can't be more than half the
624  * log (the current checkpoint is not allowed to overwrite the previous
625  * checkpoint), but commit latency and memory usage limit this to a smaller
626  * size.
627  */
628 static void
629 xlog_cil_push_background(
630 	struct xlog	*log)
631 {
632 	struct xfs_cil	*cil = log->l_cilp;
633 
634 	/*
635 	 * The cil won't be empty because we are called while holding the
636 	 * context lock so whatever we added to the CIL will still be there
637 	 */
638 	ASSERT(!list_empty(&cil->xc_cil));
639 
640 	/*
641 	 * don't do a background push if we haven't used up all the
642 	 * space available yet.
643 	 */
644 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
645 		return;
646 
647 	spin_lock(&cil->xc_cil_lock);
648 	if (cil->xc_push_seq < cil->xc_current_sequence) {
649 		cil->xc_push_seq = cil->xc_current_sequence;
650 		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
651 	}
652 	spin_unlock(&cil->xc_cil_lock);
653 
654 }
655 
656 static void
657 xlog_cil_push_foreground(
658 	struct xlog	*log,
659 	xfs_lsn_t	push_seq)
660 {
661 	struct xfs_cil	*cil = log->l_cilp;
662 
663 	if (!cil)
664 		return;
665 
666 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
667 
668 	/* start on any pending background push to minimise wait time on it */
669 	flush_work(&cil->xc_push_work);
670 
671 	/*
672 	 * If the CIL is empty or we've already pushed the sequence then
673 	 * there's no work we need to do.
674 	 */
675 	spin_lock(&cil->xc_cil_lock);
676 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
677 		spin_unlock(&cil->xc_cil_lock);
678 		return;
679 	}
680 
681 	cil->xc_push_seq = push_seq;
682 	spin_unlock(&cil->xc_cil_lock);
683 
684 	/* do the push now */
685 	xlog_cil_push(log);
686 }
687 
688 /*
689  * Commit a transaction with the given vector to the Committed Item List.
690  *
691  * To do this, we need to format the item, pin it in memory if required and
692  * account for the space used by the transaction. Once we have done that we
693  * need to release the unused reservation for the transaction, attach the
694  * transaction to the checkpoint context so we carry the busy extents through
695  * to checkpoint completion, and then unlock all the items in the transaction.
696  *
697  * Called with the context lock already held in read mode to lock out
698  * background commit, returns without it held once background commits are
699  * allowed again.
700  */
701 int
702 xfs_log_commit_cil(
703 	struct xfs_mount	*mp,
704 	struct xfs_trans	*tp,
705 	xfs_lsn_t		*commit_lsn,
706 	int			flags)
707 {
708 	struct xlog		*log = mp->m_log;
709 	int			log_flags = 0;
710 	struct xfs_log_vec	*log_vector;
711 
712 	if (flags & XFS_TRANS_RELEASE_LOG_RES)
713 		log_flags = XFS_LOG_REL_PERM_RESERV;
714 
715 	/*
716 	 * Do all the hard work of formatting items (including memory
717 	 * allocation) outside the CIL context lock. This prevents stalling CIL
718 	 * pushes when we are low on memory and a transaction commit spends a
719 	 * lot of time in memory reclaim.
720 	 */
721 	log_vector = xlog_cil_prepare_log_vecs(tp);
722 	if (!log_vector)
723 		return ENOMEM;
724 
725 	/* lock out background commit */
726 	down_read(&log->l_cilp->xc_ctx_lock);
727 	if (commit_lsn)
728 		*commit_lsn = log->l_cilp->xc_ctx->sequence;
729 
730 	/* xlog_cil_insert_items() destroys log_vector list */
731 	xlog_cil_insert_items(log, log_vector, tp->t_ticket);
732 
733 	/* check we didn't blow the reservation */
734 	if (tp->t_ticket->t_curr_res < 0)
735 		xlog_print_tic_res(log->l_mp, tp->t_ticket);
736 
737 	/* attach the transaction to the CIL if it has any busy extents */
738 	if (!list_empty(&tp->t_busy)) {
739 		spin_lock(&log->l_cilp->xc_cil_lock);
740 		list_splice_init(&tp->t_busy,
741 					&log->l_cilp->xc_ctx->busy_extents);
742 		spin_unlock(&log->l_cilp->xc_cil_lock);
743 	}
744 
745 	tp->t_commit_lsn = *commit_lsn;
746 	xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
747 	xfs_trans_unreserve_and_mod_sb(tp);
748 
749 	/*
750 	 * Once all the items of the transaction have been copied to the CIL,
751 	 * the items can be unlocked and freed.
752 	 *
753 	 * This needs to be done before we drop the CIL context lock because we
754 	 * have to update state in the log items and unlock them before they go
755 	 * to disk. If we don't, then the CIL checkpoint can race with us and
756 	 * we can run checkpoint completion before we've updated and unlocked
757 	 * the log items. This affects (at least) processing of stale buffers,
758 	 * inodes and EFIs.
759 	 */
760 	xfs_trans_free_items(tp, *commit_lsn, 0);
761 
762 	xlog_cil_push_background(log);
763 
764 	up_read(&log->l_cilp->xc_ctx_lock);
765 	return 0;
766 }
767 
768 /*
769  * Conditionally push the CIL based on the sequence passed in.
770  *
771  * We only need to push if we haven't already pushed the sequence
772  * number given. Hence the only time we will trigger a push here is
773  * if the push sequence is the same as the current context.
774  *
775  * We return the current commit lsn to allow the callers to determine if a
776  * iclog flush is necessary following this call.
777  */
778 xfs_lsn_t
779 xlog_cil_force_lsn(
780 	struct xlog	*log,
781 	xfs_lsn_t	sequence)
782 {
783 	struct xfs_cil		*cil = log->l_cilp;
784 	struct xfs_cil_ctx	*ctx;
785 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
786 
787 	ASSERT(sequence <= cil->xc_current_sequence);
788 
789 	/*
790 	 * check to see if we need to force out the current context.
791 	 * xlog_cil_push() handles racing pushes for the same sequence,
792 	 * so no need to deal with it here.
793 	 */
794 	xlog_cil_push_foreground(log, sequence);
795 
796 	/*
797 	 * See if we can find a previous sequence still committing.
798 	 * We need to wait for all previous sequence commits to complete
799 	 * before allowing the force of push_seq to go ahead. Hence block
800 	 * on commits for those as well.
801 	 */
802 restart:
803 	spin_lock(&cil->xc_cil_lock);
804 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
805 		if (ctx->sequence > sequence)
806 			continue;
807 		if (!ctx->commit_lsn) {
808 			/*
809 			 * It is still being pushed! Wait for the push to
810 			 * complete, then start again from the beginning.
811 			 */
812 			xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
813 			goto restart;
814 		}
815 		if (ctx->sequence != sequence)
816 			continue;
817 		/* found it! */
818 		commit_lsn = ctx->commit_lsn;
819 	}
820 	spin_unlock(&cil->xc_cil_lock);
821 	return commit_lsn;
822 }
823 
824 /*
825  * Check if the current log item was first committed in this sequence.
826  * We can't rely on just the log item being in the CIL, we have to check
827  * the recorded commit sequence number.
828  *
829  * Note: for this to be used in a non-racy manner, it has to be called with
830  * CIL flushing locked out. As a result, it should only be used during the
831  * transaction commit process when deciding what to format into the item.
832  */
833 bool
834 xfs_log_item_in_current_chkpt(
835 	struct xfs_log_item *lip)
836 {
837 	struct xfs_cil_ctx *ctx;
838 
839 	if (list_empty(&lip->li_cil))
840 		return false;
841 
842 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
843 
844 	/*
845 	 * li_seq is written on the first commit of a log item to record the
846 	 * first checkpoint it is written to. Hence if it is different to the
847 	 * current sequence, we're in a new checkpoint.
848 	 */
849 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
850 		return false;
851 	return true;
852 }
853 
854 /*
855  * Perform initial CIL structure initialisation.
856  */
857 int
858 xlog_cil_init(
859 	struct xlog	*log)
860 {
861 	struct xfs_cil	*cil;
862 	struct xfs_cil_ctx *ctx;
863 
864 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
865 	if (!cil)
866 		return ENOMEM;
867 
868 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
869 	if (!ctx) {
870 		kmem_free(cil);
871 		return ENOMEM;
872 	}
873 
874 	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
875 	INIT_LIST_HEAD(&cil->xc_cil);
876 	INIT_LIST_HEAD(&cil->xc_committing);
877 	spin_lock_init(&cil->xc_cil_lock);
878 	init_rwsem(&cil->xc_ctx_lock);
879 	init_waitqueue_head(&cil->xc_commit_wait);
880 
881 	INIT_LIST_HEAD(&ctx->committing);
882 	INIT_LIST_HEAD(&ctx->busy_extents);
883 	ctx->sequence = 1;
884 	ctx->cil = cil;
885 	cil->xc_ctx = ctx;
886 	cil->xc_current_sequence = ctx->sequence;
887 
888 	cil->xc_log = log;
889 	log->l_cilp = cil;
890 	return 0;
891 }
892 
893 void
894 xlog_cil_destroy(
895 	struct xlog	*log)
896 {
897 	if (log->l_cilp->xc_ctx) {
898 		if (log->l_cilp->xc_ctx->ticket)
899 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
900 		kmem_free(log->l_cilp->xc_ctx);
901 	}
902 
903 	ASSERT(list_empty(&log->l_cilp->xc_cil));
904 	kmem_free(log->l_cilp);
905 }
906 
907