1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. 4 */ 5 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_shared.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_extent_busy.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_log.h" 17 #include "xfs_log_priv.h" 18 #include "xfs_trace.h" 19 #include "xfs_discard.h" 20 21 /* 22 * Allocate a new ticket. Failing to get a new ticket makes it really hard to 23 * recover, so we don't allow failure here. Also, we allocate in a context that 24 * we don't want to be issuing transactions from, so we need to tell the 25 * allocation code this as well. 26 * 27 * We don't reserve any space for the ticket - we are going to steal whatever 28 * space we require from transactions as they commit. To ensure we reserve all 29 * the space required, we need to set the current reservation of the ticket to 30 * zero so that we know to steal the initial transaction overhead from the 31 * first transaction commit. 32 */ 33 static struct xlog_ticket * 34 xlog_cil_ticket_alloc( 35 struct xlog *log) 36 { 37 struct xlog_ticket *tic; 38 39 tic = xlog_ticket_alloc(log, 0, 1, 0); 40 41 /* 42 * set the current reservation to zero so we know to steal the basic 43 * transaction overhead reservation from the first transaction commit. 44 */ 45 tic->t_curr_res = 0; 46 tic->t_iclog_hdrs = 0; 47 return tic; 48 } 49 50 static inline void 51 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil) 52 { 53 struct xlog *log = cil->xc_log; 54 55 atomic_set(&cil->xc_iclog_hdrs, 56 (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) / 57 (log->l_iclog_size - log->l_iclog_hsize))); 58 } 59 60 /* 61 * Check if the current log item was first committed in this sequence. 62 * We can't rely on just the log item being in the CIL, we have to check 63 * the recorded commit sequence number. 64 * 65 * Note: for this to be used in a non-racy manner, it has to be called with 66 * CIL flushing locked out. As a result, it should only be used during the 67 * transaction commit process when deciding what to format into the item. 68 */ 69 static bool 70 xlog_item_in_current_chkpt( 71 struct xfs_cil *cil, 72 struct xfs_log_item *lip) 73 { 74 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 75 return false; 76 77 /* 78 * li_seq is written on the first commit of a log item to record the 79 * first checkpoint it is written to. Hence if it is different to the 80 * current sequence, we're in a new checkpoint. 81 */ 82 return lip->li_seq == READ_ONCE(cil->xc_current_sequence); 83 } 84 85 bool 86 xfs_log_item_in_current_chkpt( 87 struct xfs_log_item *lip) 88 { 89 return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip); 90 } 91 92 /* 93 * Unavoidable forward declaration - xlog_cil_push_work() calls 94 * xlog_cil_ctx_alloc() itself. 95 */ 96 static void xlog_cil_push_work(struct work_struct *work); 97 98 static struct xfs_cil_ctx * 99 xlog_cil_ctx_alloc(void) 100 { 101 struct xfs_cil_ctx *ctx; 102 103 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL); 104 INIT_LIST_HEAD(&ctx->committing); 105 INIT_LIST_HEAD(&ctx->busy_extents.extent_list); 106 INIT_LIST_HEAD(&ctx->log_items); 107 INIT_LIST_HEAD(&ctx->lv_chain); 108 INIT_WORK(&ctx->push_work, xlog_cil_push_work); 109 return ctx; 110 } 111 112 /* 113 * Aggregate the CIL per cpu structures into global counts, lists, etc and 114 * clear the percpu state ready for the next context to use. This is called 115 * from the push code with the context lock held exclusively, hence nothing else 116 * will be accessing or modifying the per-cpu counters. 117 */ 118 static void 119 xlog_cil_push_pcp_aggregate( 120 struct xfs_cil *cil, 121 struct xfs_cil_ctx *ctx) 122 { 123 struct xlog_cil_pcp *cilpcp; 124 int cpu; 125 126 for_each_cpu(cpu, &ctx->cil_pcpmask) { 127 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 128 129 ctx->ticket->t_curr_res += cilpcp->space_reserved; 130 cilpcp->space_reserved = 0; 131 132 if (!list_empty(&cilpcp->busy_extents)) { 133 list_splice_init(&cilpcp->busy_extents, 134 &ctx->busy_extents.extent_list); 135 } 136 if (!list_empty(&cilpcp->log_items)) 137 list_splice_init(&cilpcp->log_items, &ctx->log_items); 138 139 /* 140 * We're in the middle of switching cil contexts. Reset the 141 * counter we use to detect when the current context is nearing 142 * full. 143 */ 144 cilpcp->space_used = 0; 145 } 146 } 147 148 /* 149 * Aggregate the CIL per-cpu space used counters into the global atomic value. 150 * This is called when the per-cpu counter aggregation will first pass the soft 151 * limit threshold so we can switch to atomic counter aggregation for accurate 152 * detection of hard limit traversal. 153 */ 154 static void 155 xlog_cil_insert_pcp_aggregate( 156 struct xfs_cil *cil, 157 struct xfs_cil_ctx *ctx) 158 { 159 int cpu; 160 int count = 0; 161 162 /* Trigger atomic updates then aggregate only for the first caller */ 163 if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) 164 return; 165 166 /* 167 * We can race with other cpus setting cil_pcpmask. However, we've 168 * atomically cleared PCP_SPACE which forces other threads to add to 169 * the global space used count. cil_pcpmask is a superset of cilpcp 170 * structures that could have a nonzero space_used. 171 */ 172 for_each_cpu(cpu, &ctx->cil_pcpmask) { 173 struct xlog_cil_pcp *cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 174 175 count += xchg(&cilpcp->space_used, 0); 176 } 177 atomic_add(count, &ctx->space_used); 178 } 179 180 static void 181 xlog_cil_ctx_switch( 182 struct xfs_cil *cil, 183 struct xfs_cil_ctx *ctx) 184 { 185 xlog_cil_set_iclog_hdr_count(cil); 186 set_bit(XLOG_CIL_EMPTY, &cil->xc_flags); 187 set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags); 188 ctx->sequence = ++cil->xc_current_sequence; 189 ctx->cil = cil; 190 cil->xc_ctx = ctx; 191 } 192 193 /* 194 * After the first stage of log recovery is done, we know where the head and 195 * tail of the log are. We need this log initialisation done before we can 196 * initialise the first CIL checkpoint context. 197 * 198 * Here we allocate a log ticket to track space usage during a CIL push. This 199 * ticket is passed to xlog_write() directly so that we don't slowly leak log 200 * space by failing to account for space used by log headers and additional 201 * region headers for split regions. 202 */ 203 void 204 xlog_cil_init_post_recovery( 205 struct xlog *log) 206 { 207 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); 208 log->l_cilp->xc_ctx->sequence = 1; 209 xlog_cil_set_iclog_hdr_count(log->l_cilp); 210 } 211 212 static inline int 213 xlog_cil_iovec_space( 214 uint niovecs) 215 { 216 return round_up((sizeof(struct xfs_log_vec) + 217 niovecs * sizeof(struct xfs_log_iovec)), 218 sizeof(uint64_t)); 219 } 220 221 /* 222 * Allocate or pin log vector buffers for CIL insertion. 223 * 224 * The CIL currently uses disposable buffers for copying a snapshot of the 225 * modified items into the log during a push. The biggest problem with this is 226 * the requirement to allocate the disposable buffer during the commit if: 227 * a) does not exist; or 228 * b) it is too small 229 * 230 * If we do this allocation within xlog_cil_insert_format_items(), it is done 231 * under the xc_ctx_lock, which means that a CIL push cannot occur during 232 * the memory allocation. This means that we have a potential deadlock situation 233 * under low memory conditions when we have lots of dirty metadata pinned in 234 * the CIL and we need a CIL commit to occur to free memory. 235 * 236 * To avoid this, we need to move the memory allocation outside the 237 * xc_ctx_lock, but because the log vector buffers are disposable, that opens 238 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log 239 * vector buffers between the check and the formatting of the item into the 240 * log vector buffer within the xc_ctx_lock. 241 * 242 * Because the log vector buffer needs to be unchanged during the CIL push 243 * process, we cannot share the buffer between the transaction commit (which 244 * modifies the buffer) and the CIL push context that is writing the changes 245 * into the log. This means skipping preallocation of buffer space is 246 * unreliable, but we most definitely do not want to be allocating and freeing 247 * buffers unnecessarily during commits when overwrites can be done safely. 248 * 249 * The simplest solution to this problem is to allocate a shadow buffer when a 250 * log item is committed for the second time, and then to only use this buffer 251 * if necessary. The buffer can remain attached to the log item until such time 252 * it is needed, and this is the buffer that is reallocated to match the size of 253 * the incoming modification. Then during the formatting of the item we can swap 254 * the active buffer with the new one if we can't reuse the existing buffer. We 255 * don't free the old buffer as it may be reused on the next modification if 256 * it's size is right, otherwise we'll free and reallocate it at that point. 257 * 258 * This function builds a vector for the changes in each log item in the 259 * transaction. It then works out the length of the buffer needed for each log 260 * item, allocates them and attaches the vector to the log item in preparation 261 * for the formatting step which occurs under the xc_ctx_lock. 262 * 263 * While this means the memory footprint goes up, it avoids the repeated 264 * alloc/free pattern that repeated modifications of an item would otherwise 265 * cause, and hence minimises the CPU overhead of such behaviour. 266 */ 267 static void 268 xlog_cil_alloc_shadow_bufs( 269 struct xlog *log, 270 struct xfs_trans *tp) 271 { 272 struct xfs_log_item *lip; 273 274 list_for_each_entry(lip, &tp->t_items, li_trans) { 275 struct xfs_log_vec *lv; 276 int niovecs = 0; 277 int nbytes = 0; 278 int alloc_size; 279 bool ordered = false; 280 281 /* Skip items which aren't dirty in this transaction. */ 282 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 283 continue; 284 285 /* get number of vecs and size of data to be stored */ 286 lip->li_ops->iop_size(lip, &niovecs, &nbytes); 287 288 /* 289 * Ordered items need to be tracked but we do not wish to write 290 * them. We need a logvec to track the object, but we do not 291 * need an iovec or buffer to be allocated for copying data. 292 */ 293 if (niovecs == XFS_LOG_VEC_ORDERED) { 294 ordered = true; 295 niovecs = 0; 296 nbytes = 0; 297 } 298 299 /* 300 * We 64-bit align the length of each iovec so that the start of 301 * the next one is naturally aligned. We'll need to account for 302 * that slack space here. 303 * 304 * We also add the xlog_op_header to each region when 305 * formatting, but that's not accounted to the size of the item 306 * at this point. Hence we'll need an addition number of bytes 307 * for each vector to hold an opheader. 308 * 309 * Then round nbytes up to 64-bit alignment so that the initial 310 * buffer alignment is easy to calculate and verify. 311 */ 312 nbytes = xlog_item_space(niovecs, nbytes); 313 314 /* 315 * The data buffer needs to start 64-bit aligned, so round up 316 * that space to ensure we can align it appropriately and not 317 * overrun the buffer. 318 */ 319 alloc_size = nbytes + xlog_cil_iovec_space(niovecs); 320 321 /* 322 * if we have no shadow buffer, or it is too small, we need to 323 * reallocate it. 324 */ 325 if (!lip->li_lv_shadow || 326 alloc_size > lip->li_lv_shadow->lv_alloc_size) { 327 /* 328 * We free and allocate here as a realloc would copy 329 * unnecessary data. We don't use kvzalloc() for the 330 * same reason - we don't need to zero the data area in 331 * the buffer, only the log vector header and the iovec 332 * storage. 333 */ 334 kvfree(lip->li_lv_shadow); 335 lv = xlog_kvmalloc(alloc_size); 336 337 memset(lv, 0, xlog_cil_iovec_space(niovecs)); 338 339 INIT_LIST_HEAD(&lv->lv_list); 340 lv->lv_item = lip; 341 lv->lv_alloc_size = alloc_size; 342 if (ordered) 343 lv->lv_buf_used = XFS_LOG_VEC_ORDERED; 344 else 345 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1]; 346 lip->li_lv_shadow = lv; 347 } else { 348 /* same or smaller, optimise common overwrite case */ 349 lv = lip->li_lv_shadow; 350 if (ordered) 351 lv->lv_buf_used = XFS_LOG_VEC_ORDERED; 352 else 353 lv->lv_buf_used = 0; 354 lv->lv_bytes = 0; 355 } 356 357 /* Ensure the lv is set up according to ->iop_size */ 358 lv->lv_niovecs = niovecs; 359 360 /* The allocated data region lies beyond the iovec region */ 361 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs); 362 } 363 364 } 365 366 /* 367 * Prepare the log item for insertion into the CIL. Calculate the difference in 368 * log space it will consume, and if it is a new item pin it as well. 369 */ 370 STATIC void 371 xfs_cil_prepare_item( 372 struct xlog *log, 373 struct xfs_log_item *lip, 374 struct xfs_log_vec *lv, 375 int *diff_len) 376 { 377 /* Account for the new LV being passed in */ 378 if (lv->lv_buf_used != XFS_LOG_VEC_ORDERED) 379 *diff_len += lv->lv_bytes; 380 381 /* 382 * If there is no old LV, this is the first time we've seen the item in 383 * this CIL context and so we need to pin it. If we are replacing the 384 * old lv, then remove the space it accounts for and make it the shadow 385 * buffer for later freeing. In both cases we are now switching to the 386 * shadow buffer, so update the pointer to it appropriately. 387 */ 388 if (!lip->li_lv) { 389 if (lv->lv_item->li_ops->iop_pin) 390 lv->lv_item->li_ops->iop_pin(lv->lv_item); 391 lv->lv_item->li_lv_shadow = NULL; 392 } else if (lip->li_lv != lv) { 393 ASSERT(lv->lv_buf_used != XFS_LOG_VEC_ORDERED); 394 395 *diff_len -= lip->li_lv->lv_bytes; 396 lv->lv_item->li_lv_shadow = lip->li_lv; 397 } 398 399 /* attach new log vector to log item */ 400 lv->lv_item->li_lv = lv; 401 402 /* 403 * If this is the first time the item is being committed to the 404 * CIL, store the sequence number on the log item so we can 405 * tell in future commits whether this is the first checkpoint 406 * the item is being committed into. 407 */ 408 if (!lv->lv_item->li_seq) 409 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; 410 } 411 412 /* 413 * Format log item into a flat buffers 414 * 415 * For delayed logging, we need to hold a formatted buffer containing all the 416 * changes on the log item. This enables us to relog the item in memory and 417 * write it out asynchronously without needing to relock the object that was 418 * modified at the time it gets written into the iclog. 419 * 420 * This function takes the prepared log vectors attached to each log item, and 421 * formats the changes into the log vector buffer. The buffer it uses is 422 * dependent on the current state of the vector in the CIL - the shadow lv is 423 * guaranteed to be large enough for the current modification, but we will only 424 * use that if we can't reuse the existing lv. If we can't reuse the existing 425 * lv, then simple swap it out for the shadow lv. We don't free it - that is 426 * done lazily either by th enext modification or the freeing of the log item. 427 * 428 * We don't set up region headers during this process; we simply copy the 429 * regions into the flat buffer. We can do this because we still have to do a 430 * formatting step to write the regions into the iclog buffer. Writing the 431 * ophdrs during the iclog write means that we can support splitting large 432 * regions across iclog boundares without needing a change in the format of the 433 * item/region encapsulation. 434 * 435 * Hence what we need to do now is change the rewrite the vector array to point 436 * to the copied region inside the buffer we just allocated. This allows us to 437 * format the regions into the iclog as though they are being formatted 438 * directly out of the objects themselves. 439 */ 440 static void 441 xlog_cil_insert_format_items( 442 struct xlog *log, 443 struct xfs_trans *tp, 444 int *diff_len) 445 { 446 struct xfs_log_item *lip; 447 448 /* Bail out if we didn't find a log item. */ 449 if (list_empty(&tp->t_items)) { 450 ASSERT(0); 451 return; 452 } 453 454 list_for_each_entry(lip, &tp->t_items, li_trans) { 455 struct xfs_log_vec *lv = lip->li_lv; 456 struct xfs_log_vec *shadow = lip->li_lv_shadow; 457 458 /* Skip items which aren't dirty in this transaction. */ 459 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 460 continue; 461 462 /* 463 * The formatting size information is already attached to 464 * the shadow lv on the log item. 465 */ 466 if (shadow->lv_buf_used == XFS_LOG_VEC_ORDERED) { 467 if (!lv) { 468 lv = shadow; 469 lv->lv_item = lip; 470 } 471 ASSERT(shadow->lv_alloc_size == lv->lv_alloc_size); 472 xfs_cil_prepare_item(log, lip, lv, diff_len); 473 continue; 474 } 475 476 /* Skip items that do not have any vectors for writing */ 477 if (!shadow->lv_niovecs) 478 continue; 479 480 /* compare to existing item size */ 481 if (lv && shadow->lv_alloc_size <= lv->lv_alloc_size) { 482 /* same or smaller, optimise common overwrite case */ 483 484 /* 485 * set the item up as though it is a new insertion so 486 * that the space reservation accounting is correct. 487 */ 488 *diff_len -= lv->lv_bytes; 489 490 /* Ensure the lv is set up according to ->iop_size */ 491 lv->lv_niovecs = shadow->lv_niovecs; 492 493 /* reset the lv buffer information for new formatting */ 494 lv->lv_buf_used = 0; 495 lv->lv_bytes = 0; 496 lv->lv_buf = (char *)lv + 497 xlog_cil_iovec_space(lv->lv_niovecs); 498 } else { 499 /* switch to shadow buffer! */ 500 lv = shadow; 501 lv->lv_item = lip; 502 } 503 504 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t))); 505 lip->li_ops->iop_format(lip, lv); 506 xfs_cil_prepare_item(log, lip, lv, diff_len); 507 } 508 } 509 510 /* 511 * The use of lockless waitqueue_active() requires that the caller has 512 * serialised itself against the wakeup call in xlog_cil_push_work(). That 513 * can be done by either holding the push lock or the context lock. 514 */ 515 static inline bool 516 xlog_cil_over_hard_limit( 517 struct xlog *log, 518 int32_t space_used) 519 { 520 if (waitqueue_active(&log->l_cilp->xc_push_wait)) 521 return true; 522 if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log)) 523 return true; 524 return false; 525 } 526 527 /* 528 * Insert the log items into the CIL and calculate the difference in space 529 * consumed by the item. Add the space to the checkpoint ticket and calculate 530 * if the change requires additional log metadata. If it does, take that space 531 * as well. Remove the amount of space we added to the checkpoint ticket from 532 * the current transaction ticket so that the accounting works out correctly. 533 */ 534 static void 535 xlog_cil_insert_items( 536 struct xlog *log, 537 struct xfs_trans *tp, 538 uint32_t released_space) 539 { 540 struct xfs_cil *cil = log->l_cilp; 541 struct xfs_cil_ctx *ctx = cil->xc_ctx; 542 struct xfs_log_item *lip; 543 int len = 0; 544 int iovhdr_res = 0, split_res = 0, ctx_res = 0; 545 int space_used; 546 int order; 547 unsigned int cpu_nr; 548 struct xlog_cil_pcp *cilpcp; 549 550 ASSERT(tp); 551 552 /* 553 * We can do this safely because the context can't checkpoint until we 554 * are done so it doesn't matter exactly how we update the CIL. 555 */ 556 xlog_cil_insert_format_items(log, tp, &len); 557 558 /* 559 * Subtract the space released by intent cancelation from the space we 560 * consumed so that we remove it from the CIL space and add it back to 561 * the current transaction reservation context. 562 */ 563 len -= released_space; 564 565 /* 566 * Grab the per-cpu pointer for the CIL before we start any accounting. 567 * That ensures that we are running with pre-emption disabled and so we 568 * can't be scheduled away between split sample/update operations that 569 * are done without outside locking to serialise them. 570 */ 571 cpu_nr = get_cpu(); 572 cilpcp = this_cpu_ptr(cil->xc_pcp); 573 574 /* Tell the future push that there was work added by this CPU. */ 575 if (!cpumask_test_cpu(cpu_nr, &ctx->cil_pcpmask)) 576 cpumask_test_and_set_cpu(cpu_nr, &ctx->cil_pcpmask); 577 578 /* 579 * We need to take the CIL checkpoint unit reservation on the first 580 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't 581 * unnecessarily do an atomic op in the fast path here. We can clear the 582 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that 583 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit. 584 */ 585 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) && 586 test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 587 ctx_res = ctx->ticket->t_unit_res; 588 589 /* 590 * Check if we need to steal iclog headers. atomic_read() is not a 591 * locked atomic operation, so we can check the value before we do any 592 * real atomic ops in the fast path. If we've already taken the CIL unit 593 * reservation from this commit, we've already got one iclog header 594 * space reserved so we have to account for that otherwise we risk 595 * overrunning the reservation on this ticket. 596 * 597 * If the CIL is already at the hard limit, we might need more header 598 * space that originally reserved. So steal more header space from every 599 * commit that occurs once we are over the hard limit to ensure the CIL 600 * push won't run out of reservation space. 601 * 602 * This can steal more than we need, but that's OK. 603 * 604 * The cil->xc_ctx_lock provides the serialisation necessary for safely 605 * calling xlog_cil_over_hard_limit() in this context. 606 */ 607 space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len; 608 if (atomic_read(&cil->xc_iclog_hdrs) > 0 || 609 xlog_cil_over_hard_limit(log, space_used)) { 610 split_res = log->l_iclog_hsize + 611 sizeof(struct xlog_op_header); 612 if (ctx_res) 613 ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1); 614 else 615 ctx_res = split_res * tp->t_ticket->t_iclog_hdrs; 616 atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs); 617 } 618 cilpcp->space_reserved += ctx_res; 619 620 /* 621 * Accurately account when over the soft limit, otherwise fold the 622 * percpu count into the global count if over the per-cpu threshold. 623 */ 624 if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) { 625 atomic_add(len, &ctx->space_used); 626 } else if (cilpcp->space_used + len > 627 (XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) { 628 space_used = atomic_add_return(cilpcp->space_used + len, 629 &ctx->space_used); 630 cilpcp->space_used = 0; 631 632 /* 633 * If we just transitioned over the soft limit, we need to 634 * transition to the global atomic counter. 635 */ 636 if (space_used >= XLOG_CIL_SPACE_LIMIT(log)) 637 xlog_cil_insert_pcp_aggregate(cil, ctx); 638 } else { 639 cilpcp->space_used += len; 640 } 641 /* attach the transaction to the CIL if it has any busy extents */ 642 if (!list_empty(&tp->t_busy)) 643 list_splice_init(&tp->t_busy, &cilpcp->busy_extents); 644 645 /* 646 * Now update the order of everything modified in the transaction 647 * and insert items into the CIL if they aren't already there. 648 * We do this here so we only need to take the CIL lock once during 649 * the transaction commit. 650 */ 651 order = atomic_inc_return(&ctx->order_id); 652 list_for_each_entry(lip, &tp->t_items, li_trans) { 653 /* Skip items which aren't dirty in this transaction. */ 654 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 655 continue; 656 657 lip->li_order_id = order; 658 if (!list_empty(&lip->li_cil)) 659 continue; 660 list_add_tail(&lip->li_cil, &cilpcp->log_items); 661 } 662 put_cpu(); 663 664 /* 665 * If we've overrun the reservation, dump the tx details before we move 666 * the log items. Shutdown is imminent... 667 */ 668 tp->t_ticket->t_curr_res -= ctx_res + len; 669 if (WARN_ON(tp->t_ticket->t_curr_res < 0)) { 670 xfs_warn(log->l_mp, "Transaction log reservation overrun:"); 671 xfs_warn(log->l_mp, 672 " log items: %d bytes (iov hdrs: %d bytes)", 673 len, iovhdr_res); 674 xfs_warn(log->l_mp, " split region headers: %d bytes", 675 split_res); 676 xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res); 677 xlog_print_trans(tp); 678 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 679 } 680 } 681 682 static inline void 683 xlog_cil_ail_insert_batch( 684 struct xfs_ail *ailp, 685 struct xfs_ail_cursor *cur, 686 struct xfs_log_item **log_items, 687 int nr_items, 688 xfs_lsn_t commit_lsn) 689 { 690 int i; 691 692 spin_lock(&ailp->ail_lock); 693 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */ 694 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn); 695 696 for (i = 0; i < nr_items; i++) { 697 struct xfs_log_item *lip = log_items[i]; 698 699 if (lip->li_ops->iop_unpin) 700 lip->li_ops->iop_unpin(lip, 0); 701 } 702 } 703 704 /* 705 * Take the checkpoint's log vector chain of items and insert the attached log 706 * items into the AIL. This uses bulk insertion techniques to minimise AIL lock 707 * traffic. 708 * 709 * The AIL tracks log items via the start record LSN of the checkpoint, 710 * not the commit record LSN. This is because we can pipeline multiple 711 * checkpoints, and so the start record of checkpoint N+1 can be 712 * written before the commit record of checkpoint N. i.e: 713 * 714 * start N commit N 715 * +-------------+------------+----------------+ 716 * start N+1 commit N+1 717 * 718 * The tail of the log cannot be moved to the LSN of commit N when all 719 * the items of that checkpoint are written back, because then the 720 * start record for N+1 is no longer in the active portion of the log 721 * and recovery will fail/corrupt the filesystem. 722 * 723 * Hence when all the log items in checkpoint N are written back, the 724 * tail of the log most now only move as far forwards as the start LSN 725 * of checkpoint N+1. 726 * 727 * If we are called with the aborted flag set, it is because a log write during 728 * a CIL checkpoint commit has failed. In this case, all the items in the 729 * checkpoint have already gone through iop_committed and iop_committing, which 730 * means that checkpoint commit abort handling is treated exactly the same as an 731 * iclog write error even though we haven't started any IO yet. Hence in this 732 * case all we need to do is iop_committed processing, followed by an 733 * iop_unpin(aborted) call. 734 * 735 * The AIL cursor is used to optimise the insert process. If commit_lsn is not 736 * at the end of the AIL, the insert cursor avoids the need to walk the AIL to 737 * find the insertion point on every xfs_log_item_batch_insert() call. This 738 * saves a lot of needless list walking and is a net win, even though it 739 * slightly increases that amount of AIL lock traffic to set it up and tear it 740 * down. 741 */ 742 static void 743 xlog_cil_ail_insert( 744 struct xfs_cil_ctx *ctx, 745 bool aborted) 746 { 747 #define LOG_ITEM_BATCH_SIZE 32 748 struct xfs_ail *ailp = ctx->cil->xc_log->l_ailp; 749 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE]; 750 struct xfs_log_vec *lv; 751 struct xfs_ail_cursor cur; 752 xfs_lsn_t old_head; 753 int i = 0; 754 755 /* 756 * Update the AIL head LSN with the commit record LSN of this 757 * checkpoint. As iclogs are always completed in order, this should 758 * always be the same (as iclogs can contain multiple commit records) or 759 * higher LSN than the current head. We do this before insertion of the 760 * items so that log space checks during insertion will reflect the 761 * space that this checkpoint has already consumed. We call 762 * xfs_ail_update_finish() so that tail space and space-based wakeups 763 * will be recalculated appropriately. 764 */ 765 ASSERT(XFS_LSN_CMP(ctx->commit_lsn, ailp->ail_head_lsn) >= 0 || 766 aborted); 767 spin_lock(&ailp->ail_lock); 768 xfs_trans_ail_cursor_last(ailp, &cur, ctx->start_lsn); 769 old_head = ailp->ail_head_lsn; 770 ailp->ail_head_lsn = ctx->commit_lsn; 771 /* xfs_ail_update_finish() drops the ail_lock */ 772 xfs_ail_update_finish(ailp, NULLCOMMITLSN); 773 774 /* 775 * We move the AIL head forwards to account for the space used in the 776 * log before we remove that space from the grant heads. This prevents a 777 * transient condition where reservation space appears to become 778 * available on return, only for it to disappear again immediately as 779 * the AIL head update accounts in the log tail space. 780 */ 781 smp_wmb(); /* paired with smp_rmb in xlog_grant_space_left */ 782 xlog_grant_return_space(ailp->ail_log, old_head, ailp->ail_head_lsn); 783 784 /* unpin all the log items */ 785 list_for_each_entry(lv, &ctx->lv_chain, lv_list) { 786 struct xfs_log_item *lip = lv->lv_item; 787 xfs_lsn_t item_lsn; 788 789 if (aborted) { 790 trace_xlog_ail_insert_abort(lip); 791 set_bit(XFS_LI_ABORTED, &lip->li_flags); 792 } 793 794 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) { 795 lip->li_ops->iop_release(lip); 796 continue; 797 } 798 799 if (lip->li_ops->iop_committed) 800 item_lsn = lip->li_ops->iop_committed(lip, 801 ctx->start_lsn); 802 else 803 item_lsn = ctx->start_lsn; 804 805 /* item_lsn of -1 means the item needs no further processing */ 806 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) 807 continue; 808 809 /* 810 * if we are aborting the operation, no point in inserting the 811 * object into the AIL as we are in a shutdown situation. 812 */ 813 if (aborted) { 814 ASSERT(xlog_is_shutdown(ailp->ail_log)); 815 if (lip->li_ops->iop_unpin) 816 lip->li_ops->iop_unpin(lip, 1); 817 continue; 818 } 819 820 if (item_lsn != ctx->start_lsn) { 821 822 /* 823 * Not a bulk update option due to unusual item_lsn. 824 * Push into AIL immediately, rechecking the lsn once 825 * we have the ail lock. Then unpin the item. This does 826 * not affect the AIL cursor the bulk insert path is 827 * using. 828 */ 829 spin_lock(&ailp->ail_lock); 830 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) 831 xfs_trans_ail_update(ailp, lip, item_lsn); 832 else 833 spin_unlock(&ailp->ail_lock); 834 if (lip->li_ops->iop_unpin) 835 lip->li_ops->iop_unpin(lip, 0); 836 continue; 837 } 838 839 /* Item is a candidate for bulk AIL insert. */ 840 log_items[i++] = lv->lv_item; 841 if (i >= LOG_ITEM_BATCH_SIZE) { 842 xlog_cil_ail_insert_batch(ailp, &cur, log_items, 843 LOG_ITEM_BATCH_SIZE, ctx->start_lsn); 844 i = 0; 845 } 846 } 847 848 /* make sure we insert the remainder! */ 849 if (i) 850 xlog_cil_ail_insert_batch(ailp, &cur, log_items, i, 851 ctx->start_lsn); 852 853 spin_lock(&ailp->ail_lock); 854 xfs_trans_ail_cursor_done(&cur); 855 spin_unlock(&ailp->ail_lock); 856 } 857 858 static void 859 xlog_cil_free_logvec( 860 struct list_head *lv_chain) 861 { 862 struct xfs_log_vec *lv; 863 864 while (!list_empty(lv_chain)) { 865 lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list); 866 list_del_init(&lv->lv_list); 867 kvfree(lv); 868 } 869 } 870 871 /* 872 * Mark all items committed and clear busy extents. We free the log vector 873 * chains in a separate pass so that we unpin the log items as quickly as 874 * possible. 875 */ 876 static void 877 xlog_cil_committed( 878 struct xfs_cil_ctx *ctx) 879 { 880 struct xfs_mount *mp = ctx->cil->xc_log->l_mp; 881 bool abort = xlog_is_shutdown(ctx->cil->xc_log); 882 883 /* 884 * If the I/O failed, we're aborting the commit and already shutdown. 885 * Wake any commit waiters before aborting the log items so we don't 886 * block async log pushers on callbacks. Async log pushers explicitly do 887 * not wait on log force completion because they may be holding locks 888 * required to unpin items. 889 */ 890 if (abort) { 891 spin_lock(&ctx->cil->xc_push_lock); 892 wake_up_all(&ctx->cil->xc_start_wait); 893 wake_up_all(&ctx->cil->xc_commit_wait); 894 spin_unlock(&ctx->cil->xc_push_lock); 895 } 896 897 xlog_cil_ail_insert(ctx, abort); 898 899 xfs_extent_busy_sort(&ctx->busy_extents.extent_list); 900 xfs_extent_busy_clear(&ctx->busy_extents.extent_list, 901 xfs_has_discard(mp) && !abort); 902 903 spin_lock(&ctx->cil->xc_push_lock); 904 list_del(&ctx->committing); 905 spin_unlock(&ctx->cil->xc_push_lock); 906 907 xlog_cil_free_logvec(&ctx->lv_chain); 908 909 if (!list_empty(&ctx->busy_extents.extent_list)) { 910 ctx->busy_extents.owner = ctx; 911 xfs_discard_extents(mp, &ctx->busy_extents); 912 return; 913 } 914 915 kfree(ctx); 916 } 917 918 void 919 xlog_cil_process_committed( 920 struct list_head *list) 921 { 922 struct xfs_cil_ctx *ctx; 923 924 while ((ctx = list_first_entry_or_null(list, 925 struct xfs_cil_ctx, iclog_entry))) { 926 list_del(&ctx->iclog_entry); 927 xlog_cil_committed(ctx); 928 } 929 } 930 931 /* 932 * Record the LSN of the iclog we were just granted space to start writing into. 933 * If the context doesn't have a start_lsn recorded, then this iclog will 934 * contain the start record for the checkpoint. Otherwise this write contains 935 * the commit record for the checkpoint. 936 */ 937 void 938 xlog_cil_set_ctx_write_state( 939 struct xfs_cil_ctx *ctx, 940 struct xlog_in_core *iclog) 941 { 942 struct xfs_cil *cil = ctx->cil; 943 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 944 945 ASSERT(!ctx->commit_lsn); 946 if (!ctx->start_lsn) { 947 spin_lock(&cil->xc_push_lock); 948 /* 949 * The LSN we need to pass to the log items on transaction 950 * commit is the LSN reported by the first log vector write, not 951 * the commit lsn. If we use the commit record lsn then we can 952 * move the grant write head beyond the tail LSN and overwrite 953 * it. 954 */ 955 ctx->start_lsn = lsn; 956 wake_up_all(&cil->xc_start_wait); 957 spin_unlock(&cil->xc_push_lock); 958 959 /* 960 * Make sure the metadata we are about to overwrite in the log 961 * has been flushed to stable storage before this iclog is 962 * issued. 963 */ 964 spin_lock(&cil->xc_log->l_icloglock); 965 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 966 spin_unlock(&cil->xc_log->l_icloglock); 967 return; 968 } 969 970 /* 971 * Take a reference to the iclog for the context so that we still hold 972 * it when xlog_write is done and has released it. This means the 973 * context controls when the iclog is released for IO. 974 */ 975 atomic_inc(&iclog->ic_refcnt); 976 977 /* 978 * xlog_state_get_iclog_space() guarantees there is enough space in the 979 * iclog for an entire commit record, so we can attach the context 980 * callbacks now. This needs to be done before we make the commit_lsn 981 * visible to waiters so that checkpoints with commit records in the 982 * same iclog order their IO completion callbacks in the same order that 983 * the commit records appear in the iclog. 984 */ 985 spin_lock(&cil->xc_log->l_icloglock); 986 list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks); 987 spin_unlock(&cil->xc_log->l_icloglock); 988 989 /* 990 * Now we can record the commit LSN and wake anyone waiting for this 991 * sequence to have the ordered commit record assigned to a physical 992 * location in the log. 993 */ 994 spin_lock(&cil->xc_push_lock); 995 ctx->commit_iclog = iclog; 996 ctx->commit_lsn = lsn; 997 wake_up_all(&cil->xc_commit_wait); 998 spin_unlock(&cil->xc_push_lock); 999 } 1000 1001 1002 /* 1003 * Ensure that the order of log writes follows checkpoint sequence order. This 1004 * relies on the context LSN being zero until the log write has guaranteed the 1005 * LSN that the log write will start at via xlog_state_get_iclog_space(). 1006 */ 1007 enum _record_type { 1008 _START_RECORD, 1009 _COMMIT_RECORD, 1010 }; 1011 1012 static int 1013 xlog_cil_order_write( 1014 struct xfs_cil *cil, 1015 xfs_csn_t sequence, 1016 enum _record_type record) 1017 { 1018 struct xfs_cil_ctx *ctx; 1019 1020 restart: 1021 spin_lock(&cil->xc_push_lock); 1022 list_for_each_entry(ctx, &cil->xc_committing, committing) { 1023 /* 1024 * Avoid getting stuck in this loop because we were woken by the 1025 * shutdown, but then went back to sleep once already in the 1026 * shutdown state. 1027 */ 1028 if (xlog_is_shutdown(cil->xc_log)) { 1029 spin_unlock(&cil->xc_push_lock); 1030 return -EIO; 1031 } 1032 1033 /* 1034 * Higher sequences will wait for this one so skip them. 1035 * Don't wait for our own sequence, either. 1036 */ 1037 if (ctx->sequence >= sequence) 1038 continue; 1039 1040 /* Wait until the LSN for the record has been recorded. */ 1041 switch (record) { 1042 case _START_RECORD: 1043 if (!ctx->start_lsn) { 1044 xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock); 1045 goto restart; 1046 } 1047 break; 1048 case _COMMIT_RECORD: 1049 if (!ctx->commit_lsn) { 1050 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 1051 goto restart; 1052 } 1053 break; 1054 } 1055 } 1056 spin_unlock(&cil->xc_push_lock); 1057 return 0; 1058 } 1059 1060 /* 1061 * Write out the log vector change now attached to the CIL context. This will 1062 * write a start record that needs to be strictly ordered in ascending CIL 1063 * sequence order so that log recovery will always use in-order start LSNs when 1064 * replaying checkpoints. 1065 */ 1066 static int 1067 xlog_cil_write_chain( 1068 struct xfs_cil_ctx *ctx, 1069 uint32_t chain_len) 1070 { 1071 struct xlog *log = ctx->cil->xc_log; 1072 int error; 1073 1074 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD); 1075 if (error) 1076 return error; 1077 return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len); 1078 } 1079 1080 /* 1081 * Write out the commit record of a checkpoint transaction to close off a 1082 * running log write. These commit records are strictly ordered in ascending CIL 1083 * sequence order so that log recovery will always replay the checkpoints in the 1084 * correct order. 1085 */ 1086 static int 1087 xlog_cil_write_commit_record( 1088 struct xfs_cil_ctx *ctx) 1089 { 1090 struct xlog *log = ctx->cil->xc_log; 1091 struct xlog_op_header ophdr = { 1092 .oh_clientid = XFS_TRANSACTION, 1093 .oh_tid = cpu_to_be32(ctx->ticket->t_tid), 1094 .oh_flags = XLOG_COMMIT_TRANS, 1095 }; 1096 struct xfs_log_iovec reg = { 1097 .i_addr = &ophdr, 1098 .i_len = sizeof(struct xlog_op_header), 1099 .i_type = XLOG_REG_TYPE_COMMIT, 1100 }; 1101 struct xfs_log_vec vec = { 1102 .lv_niovecs = 1, 1103 .lv_iovecp = ®, 1104 }; 1105 int error; 1106 LIST_HEAD(lv_chain); 1107 list_add(&vec.lv_list, &lv_chain); 1108 1109 if (xlog_is_shutdown(log)) 1110 return -EIO; 1111 1112 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD); 1113 if (error) 1114 return error; 1115 1116 /* account for space used by record data */ 1117 ctx->ticket->t_curr_res -= reg.i_len; 1118 error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len); 1119 if (error) 1120 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1121 return error; 1122 } 1123 1124 struct xlog_cil_trans_hdr { 1125 struct xlog_op_header oph[2]; 1126 struct xfs_trans_header thdr; 1127 struct xfs_log_iovec lhdr[2]; 1128 }; 1129 1130 /* 1131 * Build a checkpoint transaction header to begin the journal transaction. We 1132 * need to account for the space used by the transaction header here as it is 1133 * not accounted for in xlog_write(). 1134 * 1135 * This is the only place we write a transaction header, so we also build the 1136 * log opheaders that indicate the start of a log transaction and wrap the 1137 * transaction header. We keep the start record in it's own log vector rather 1138 * than compacting them into a single region as this ends up making the logic 1139 * in xlog_write() for handling empty opheaders for start, commit and unmount 1140 * records much simpler. 1141 */ 1142 static void 1143 xlog_cil_build_trans_hdr( 1144 struct xfs_cil_ctx *ctx, 1145 struct xlog_cil_trans_hdr *hdr, 1146 struct xfs_log_vec *lvhdr, 1147 int num_iovecs) 1148 { 1149 struct xlog_ticket *tic = ctx->ticket; 1150 __be32 tid = cpu_to_be32(tic->t_tid); 1151 1152 memset(hdr, 0, sizeof(*hdr)); 1153 1154 /* Log start record */ 1155 hdr->oph[0].oh_tid = tid; 1156 hdr->oph[0].oh_clientid = XFS_TRANSACTION; 1157 hdr->oph[0].oh_flags = XLOG_START_TRANS; 1158 1159 /* log iovec region pointer */ 1160 hdr->lhdr[0].i_addr = &hdr->oph[0]; 1161 hdr->lhdr[0].i_len = sizeof(struct xlog_op_header); 1162 hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER; 1163 1164 /* log opheader */ 1165 hdr->oph[1].oh_tid = tid; 1166 hdr->oph[1].oh_clientid = XFS_TRANSACTION; 1167 hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header)); 1168 1169 /* transaction header in host byte order format */ 1170 hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC; 1171 hdr->thdr.th_type = XFS_TRANS_CHECKPOINT; 1172 hdr->thdr.th_tid = tic->t_tid; 1173 hdr->thdr.th_num_items = num_iovecs; 1174 1175 /* log iovec region pointer */ 1176 hdr->lhdr[1].i_addr = &hdr->oph[1]; 1177 hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) + 1178 sizeof(struct xfs_trans_header); 1179 hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR; 1180 1181 lvhdr->lv_niovecs = 2; 1182 lvhdr->lv_iovecp = &hdr->lhdr[0]; 1183 lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len; 1184 1185 tic->t_curr_res -= lvhdr->lv_bytes; 1186 } 1187 1188 /* 1189 * CIL item reordering compare function. We want to order in ascending ID order, 1190 * but we want to leave items with the same ID in the order they were added to 1191 * the list. This is important for operations like reflink where we log 4 order 1192 * dependent intents in a single transaction when we overwrite an existing 1193 * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop), 1194 * CUI (inc), BUI(remap)... 1195 */ 1196 static int 1197 xlog_cil_order_cmp( 1198 void *priv, 1199 const struct list_head *a, 1200 const struct list_head *b) 1201 { 1202 struct xfs_log_vec *l1 = container_of(a, struct xfs_log_vec, lv_list); 1203 struct xfs_log_vec *l2 = container_of(b, struct xfs_log_vec, lv_list); 1204 1205 return l1->lv_order_id > l2->lv_order_id; 1206 } 1207 1208 /* 1209 * Pull all the log vectors off the items in the CIL, and remove the items from 1210 * the CIL. We don't need the CIL lock here because it's only needed on the 1211 * transaction commit side which is currently locked out by the flush lock. 1212 * 1213 * If a log item is marked with a whiteout, we do not need to write it to the 1214 * journal and so we just move them to the whiteout list for the caller to 1215 * dispose of appropriately. 1216 */ 1217 static void 1218 xlog_cil_build_lv_chain( 1219 struct xfs_cil_ctx *ctx, 1220 struct list_head *whiteouts, 1221 uint32_t *num_iovecs, 1222 uint32_t *num_bytes) 1223 { 1224 while (!list_empty(&ctx->log_items)) { 1225 struct xfs_log_item *item; 1226 struct xfs_log_vec *lv; 1227 1228 item = list_first_entry(&ctx->log_items, 1229 struct xfs_log_item, li_cil); 1230 1231 if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) { 1232 list_move(&item->li_cil, whiteouts); 1233 trace_xfs_cil_whiteout_skip(item); 1234 continue; 1235 } 1236 1237 lv = item->li_lv; 1238 lv->lv_order_id = item->li_order_id; 1239 1240 /* we don't write ordered log vectors */ 1241 if (lv->lv_buf_used != XFS_LOG_VEC_ORDERED) 1242 *num_bytes += lv->lv_bytes; 1243 *num_iovecs += lv->lv_niovecs; 1244 list_add_tail(&lv->lv_list, &ctx->lv_chain); 1245 1246 list_del_init(&item->li_cil); 1247 item->li_order_id = 0; 1248 item->li_lv = NULL; 1249 } 1250 } 1251 1252 static void 1253 xlog_cil_cleanup_whiteouts( 1254 struct list_head *whiteouts) 1255 { 1256 while (!list_empty(whiteouts)) { 1257 struct xfs_log_item *item = list_first_entry(whiteouts, 1258 struct xfs_log_item, li_cil); 1259 list_del_init(&item->li_cil); 1260 trace_xfs_cil_whiteout_unpin(item); 1261 item->li_ops->iop_unpin(item, 1); 1262 } 1263 } 1264 1265 /* 1266 * Push the Committed Item List to the log. 1267 * 1268 * If the current sequence is the same as xc_push_seq we need to do a flush. If 1269 * xc_push_seq is less than the current sequence, then it has already been 1270 * flushed and we don't need to do anything - the caller will wait for it to 1271 * complete if necessary. 1272 * 1273 * xc_push_seq is checked unlocked against the sequence number for a match. 1274 * Hence we can allow log forces to run racily and not issue pushes for the 1275 * same sequence twice. If we get a race between multiple pushes for the same 1276 * sequence they will block on the first one and then abort, hence avoiding 1277 * needless pushes. 1278 * 1279 * This runs from a workqueue so it does not inherent any specific memory 1280 * allocation context. However, we do not want to block on memory reclaim 1281 * recursing back into the filesystem because this push may have been triggered 1282 * by memory reclaim itself. Hence we really need to run under full GFP_NOFS 1283 * contraints here. 1284 */ 1285 static void 1286 xlog_cil_push_work( 1287 struct work_struct *work) 1288 { 1289 unsigned int nofs_flags = memalloc_nofs_save(); 1290 struct xfs_cil_ctx *ctx = 1291 container_of(work, struct xfs_cil_ctx, push_work); 1292 struct xfs_cil *cil = ctx->cil; 1293 struct xlog *log = cil->xc_log; 1294 struct xfs_cil_ctx *new_ctx; 1295 int num_iovecs = 0; 1296 int num_bytes = 0; 1297 int error = 0; 1298 struct xlog_cil_trans_hdr thdr; 1299 struct xfs_log_vec lvhdr = {}; 1300 xfs_csn_t push_seq; 1301 bool push_commit_stable; 1302 LIST_HEAD (whiteouts); 1303 struct xlog_ticket *ticket; 1304 1305 new_ctx = xlog_cil_ctx_alloc(); 1306 new_ctx->ticket = xlog_cil_ticket_alloc(log); 1307 1308 down_write(&cil->xc_ctx_lock); 1309 1310 spin_lock(&cil->xc_push_lock); 1311 push_seq = cil->xc_push_seq; 1312 ASSERT(push_seq <= ctx->sequence); 1313 push_commit_stable = cil->xc_push_commit_stable; 1314 cil->xc_push_commit_stable = false; 1315 1316 /* 1317 * As we are about to switch to a new, empty CIL context, we no longer 1318 * need to throttle tasks on CIL space overruns. Wake any waiters that 1319 * the hard push throttle may have caught so they can start committing 1320 * to the new context. The ctx->xc_push_lock provides the serialisation 1321 * necessary for safely using the lockless waitqueue_active() check in 1322 * this context. 1323 */ 1324 if (waitqueue_active(&cil->xc_push_wait)) 1325 wake_up_all(&cil->xc_push_wait); 1326 1327 xlog_cil_push_pcp_aggregate(cil, ctx); 1328 1329 /* 1330 * Check if we've anything to push. If there is nothing, then we don't 1331 * move on to a new sequence number and so we have to be able to push 1332 * this sequence again later. 1333 */ 1334 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) { 1335 cil->xc_push_seq = 0; 1336 spin_unlock(&cil->xc_push_lock); 1337 goto out_skip; 1338 } 1339 1340 1341 /* check for a previously pushed sequence */ 1342 if (push_seq < ctx->sequence) { 1343 spin_unlock(&cil->xc_push_lock); 1344 goto out_skip; 1345 } 1346 1347 /* 1348 * We are now going to push this context, so add it to the committing 1349 * list before we do anything else. This ensures that anyone waiting on 1350 * this push can easily detect the difference between a "push in 1351 * progress" and "CIL is empty, nothing to do". 1352 * 1353 * IOWs, a wait loop can now check for: 1354 * the current sequence not being found on the committing list; 1355 * an empty CIL; and 1356 * an unchanged sequence number 1357 * to detect a push that had nothing to do and therefore does not need 1358 * waiting on. If the CIL is not empty, we get put on the committing 1359 * list before emptying the CIL and bumping the sequence number. Hence 1360 * an empty CIL and an unchanged sequence number means we jumped out 1361 * above after doing nothing. 1362 * 1363 * Hence the waiter will either find the commit sequence on the 1364 * committing list or the sequence number will be unchanged and the CIL 1365 * still dirty. In that latter case, the push has not yet started, and 1366 * so the waiter will have to continue trying to check the CIL 1367 * committing list until it is found. In extreme cases of delay, the 1368 * sequence may fully commit between the attempts the wait makes to wait 1369 * on the commit sequence. 1370 */ 1371 list_add(&ctx->committing, &cil->xc_committing); 1372 spin_unlock(&cil->xc_push_lock); 1373 1374 xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes); 1375 1376 /* 1377 * Switch the contexts so we can drop the context lock and move out 1378 * of a shared context. We can't just go straight to the commit record, 1379 * though - we need to synchronise with previous and future commits so 1380 * that the commit records are correctly ordered in the log to ensure 1381 * that we process items during log IO completion in the correct order. 1382 * 1383 * For example, if we get an EFI in one checkpoint and the EFD in the 1384 * next (e.g. due to log forces), we do not want the checkpoint with 1385 * the EFD to be committed before the checkpoint with the EFI. Hence 1386 * we must strictly order the commit records of the checkpoints so 1387 * that: a) the checkpoint callbacks are attached to the iclogs in the 1388 * correct order; and b) the checkpoints are replayed in correct order 1389 * in log recovery. 1390 * 1391 * Hence we need to add this context to the committing context list so 1392 * that higher sequences will wait for us to write out a commit record 1393 * before they do. 1394 * 1395 * xfs_log_force_seq requires us to mirror the new sequence into the cil 1396 * structure atomically with the addition of this sequence to the 1397 * committing list. This also ensures that we can do unlocked checks 1398 * against the current sequence in log forces without risking 1399 * deferencing a freed context pointer. 1400 */ 1401 spin_lock(&cil->xc_push_lock); 1402 xlog_cil_ctx_switch(cil, new_ctx); 1403 spin_unlock(&cil->xc_push_lock); 1404 up_write(&cil->xc_ctx_lock); 1405 1406 /* 1407 * Sort the log vector chain before we add the transaction headers. 1408 * This ensures we always have the transaction headers at the start 1409 * of the chain. 1410 */ 1411 list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp); 1412 1413 /* 1414 * Build a checkpoint transaction header and write it to the log to 1415 * begin the transaction. We need to account for the space used by the 1416 * transaction header here as it is not accounted for in xlog_write(). 1417 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so 1418 * it gets written into the iclog first. 1419 */ 1420 xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs); 1421 num_bytes += lvhdr.lv_bytes; 1422 list_add(&lvhdr.lv_list, &ctx->lv_chain); 1423 1424 /* 1425 * Take the lvhdr back off the lv_chain immediately after calling 1426 * xlog_cil_write_chain() as it should not be passed to log IO 1427 * completion. 1428 */ 1429 error = xlog_cil_write_chain(ctx, num_bytes); 1430 list_del(&lvhdr.lv_list); 1431 if (error) 1432 goto out_abort_free_ticket; 1433 1434 error = xlog_cil_write_commit_record(ctx); 1435 if (error) 1436 goto out_abort_free_ticket; 1437 1438 /* 1439 * Grab the ticket from the ctx so we can ungrant it after releasing the 1440 * commit_iclog. The ctx may be freed by the time we return from 1441 * releasing the commit_iclog (i.e. checkpoint has been completed and 1442 * callback run) so we can't reference the ctx after the call to 1443 * xlog_state_release_iclog(). 1444 */ 1445 ticket = ctx->ticket; 1446 1447 /* 1448 * If the checkpoint spans multiple iclogs, wait for all previous iclogs 1449 * to complete before we submit the commit_iclog. We can't use state 1450 * checks for this - ACTIVE can be either a past completed iclog or a 1451 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a 1452 * past or future iclog awaiting IO or ordered IO completion to be run. 1453 * In the latter case, if it's a future iclog and we wait on it, the we 1454 * will hang because it won't get processed through to ic_force_wait 1455 * wakeup until this commit_iclog is written to disk. Hence we use the 1456 * iclog header lsn and compare it to the commit lsn to determine if we 1457 * need to wait on iclogs or not. 1458 */ 1459 spin_lock(&log->l_icloglock); 1460 if (ctx->start_lsn != ctx->commit_lsn) { 1461 xfs_lsn_t plsn; 1462 1463 plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn); 1464 if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) { 1465 /* 1466 * Waiting on ic_force_wait orders the completion of 1467 * iclogs older than ic_prev. Hence we only need to wait 1468 * on the most recent older iclog here. 1469 */ 1470 xlog_wait_on_iclog(ctx->commit_iclog->ic_prev); 1471 spin_lock(&log->l_icloglock); 1472 } 1473 1474 /* 1475 * We need to issue a pre-flush so that the ordering for this 1476 * checkpoint is correctly preserved down to stable storage. 1477 */ 1478 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 1479 } 1480 1481 /* 1482 * The commit iclog must be written to stable storage to guarantee 1483 * journal IO vs metadata writeback IO is correctly ordered on stable 1484 * storage. 1485 * 1486 * If the push caller needs the commit to be immediately stable and the 1487 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it 1488 * will be written when released, switch it's state to WANT_SYNC right 1489 * now. 1490 */ 1491 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA; 1492 if (push_commit_stable && 1493 ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE) 1494 xlog_state_switch_iclogs(log, ctx->commit_iclog, 0); 1495 ticket = ctx->ticket; 1496 xlog_state_release_iclog(log, ctx->commit_iclog, ticket); 1497 1498 /* Not safe to reference ctx now! */ 1499 1500 spin_unlock(&log->l_icloglock); 1501 xlog_cil_cleanup_whiteouts(&whiteouts); 1502 xfs_log_ticket_ungrant(log, ticket); 1503 memalloc_nofs_restore(nofs_flags); 1504 return; 1505 1506 out_skip: 1507 up_write(&cil->xc_ctx_lock); 1508 xfs_log_ticket_put(new_ctx->ticket); 1509 kfree(new_ctx); 1510 memalloc_nofs_restore(nofs_flags); 1511 return; 1512 1513 out_abort_free_ticket: 1514 ASSERT(xlog_is_shutdown(log)); 1515 xlog_cil_cleanup_whiteouts(&whiteouts); 1516 if (!ctx->commit_iclog) { 1517 xfs_log_ticket_ungrant(log, ctx->ticket); 1518 xlog_cil_committed(ctx); 1519 memalloc_nofs_restore(nofs_flags); 1520 return; 1521 } 1522 spin_lock(&log->l_icloglock); 1523 ticket = ctx->ticket; 1524 xlog_state_release_iclog(log, ctx->commit_iclog, ticket); 1525 /* Not safe to reference ctx now! */ 1526 spin_unlock(&log->l_icloglock); 1527 xfs_log_ticket_ungrant(log, ticket); 1528 memalloc_nofs_restore(nofs_flags); 1529 } 1530 1531 /* 1532 * We need to push CIL every so often so we don't cache more than we can fit in 1533 * the log. The limit really is that a checkpoint can't be more than half the 1534 * log (the current checkpoint is not allowed to overwrite the previous 1535 * checkpoint), but commit latency and memory usage limit this to a smaller 1536 * size. 1537 */ 1538 static void 1539 xlog_cil_push_background( 1540 struct xlog *log) 1541 { 1542 struct xfs_cil *cil = log->l_cilp; 1543 int space_used = atomic_read(&cil->xc_ctx->space_used); 1544 1545 /* 1546 * The cil won't be empty because we are called while holding the 1547 * context lock so whatever we added to the CIL will still be there. 1548 */ 1549 ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)); 1550 1551 /* 1552 * We are done if: 1553 * - we haven't used up all the space available yet; or 1554 * - we've already queued up a push; and 1555 * - we're not over the hard limit; and 1556 * - nothing has been over the hard limit. 1557 * 1558 * If so, we don't need to take the push lock as there's nothing to do. 1559 */ 1560 if (space_used < XLOG_CIL_SPACE_LIMIT(log) || 1561 (cil->xc_push_seq == cil->xc_current_sequence && 1562 space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) && 1563 !waitqueue_active(&cil->xc_push_wait))) { 1564 up_read(&cil->xc_ctx_lock); 1565 return; 1566 } 1567 1568 spin_lock(&cil->xc_push_lock); 1569 if (cil->xc_push_seq < cil->xc_current_sequence) { 1570 cil->xc_push_seq = cil->xc_current_sequence; 1571 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1572 } 1573 1574 /* 1575 * Drop the context lock now, we can't hold that if we need to sleep 1576 * because we are over the blocking threshold. The push_lock is still 1577 * held, so blocking threshold sleep/wakeup is still correctly 1578 * serialised here. 1579 */ 1580 up_read(&cil->xc_ctx_lock); 1581 1582 /* 1583 * If we are well over the space limit, throttle the work that is being 1584 * done until the push work on this context has begun. Enforce the hard 1585 * throttle on all transaction commits once it has been activated, even 1586 * if the committing transactions have resulted in the space usage 1587 * dipping back down under the hard limit. 1588 * 1589 * The ctx->xc_push_lock provides the serialisation necessary for safely 1590 * calling xlog_cil_over_hard_limit() in this context. 1591 */ 1592 if (xlog_cil_over_hard_limit(log, space_used)) { 1593 trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket); 1594 ASSERT(space_used < log->l_logsize); 1595 xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock); 1596 return; 1597 } 1598 1599 spin_unlock(&cil->xc_push_lock); 1600 1601 } 1602 1603 /* 1604 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence 1605 * number that is passed. When it returns, the work will be queued for 1606 * @push_seq, but it won't be completed. 1607 * 1608 * If the caller is performing a synchronous force, we will flush the workqueue 1609 * to get previously queued work moving to minimise the wait time they will 1610 * undergo waiting for all outstanding pushes to complete. The caller is 1611 * expected to do the required waiting for push_seq to complete. 1612 * 1613 * If the caller is performing an async push, we need to ensure that the 1614 * checkpoint is fully flushed out of the iclogs when we finish the push. If we 1615 * don't do this, then the commit record may remain sitting in memory in an 1616 * ACTIVE iclog. This then requires another full log force to push to disk, 1617 * which defeats the purpose of having an async, non-blocking CIL force 1618 * mechanism. Hence in this case we need to pass a flag to the push work to 1619 * indicate it needs to flush the commit record itself. 1620 */ 1621 static void 1622 xlog_cil_push_now( 1623 struct xlog *log, 1624 xfs_lsn_t push_seq, 1625 bool async) 1626 { 1627 struct xfs_cil *cil = log->l_cilp; 1628 1629 if (!cil) 1630 return; 1631 1632 ASSERT(push_seq && push_seq <= cil->xc_current_sequence); 1633 1634 /* start on any pending background push to minimise wait time on it */ 1635 if (!async) 1636 flush_workqueue(cil->xc_push_wq); 1637 1638 spin_lock(&cil->xc_push_lock); 1639 1640 /* 1641 * If this is an async flush request, we always need to set the 1642 * xc_push_commit_stable flag even if something else has already queued 1643 * a push. The flush caller is asking for the CIL to be on stable 1644 * storage when the next push completes, so regardless of who has queued 1645 * the push, the flush requires stable semantics from it. 1646 */ 1647 cil->xc_push_commit_stable = async; 1648 1649 /* 1650 * If the CIL is empty or we've already pushed the sequence then 1651 * there's no more work that we need to do. 1652 */ 1653 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) || 1654 push_seq <= cil->xc_push_seq) { 1655 spin_unlock(&cil->xc_push_lock); 1656 return; 1657 } 1658 1659 cil->xc_push_seq = push_seq; 1660 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1661 spin_unlock(&cil->xc_push_lock); 1662 } 1663 1664 bool 1665 xlog_cil_empty( 1666 struct xlog *log) 1667 { 1668 struct xfs_cil *cil = log->l_cilp; 1669 bool empty = false; 1670 1671 spin_lock(&cil->xc_push_lock); 1672 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 1673 empty = true; 1674 spin_unlock(&cil->xc_push_lock); 1675 return empty; 1676 } 1677 1678 /* 1679 * If there are intent done items in this transaction and the related intent was 1680 * committed in the current (same) CIL checkpoint, we don't need to write either 1681 * the intent or intent done item to the journal as the change will be 1682 * journalled atomically within this checkpoint. As we cannot remove items from 1683 * the CIL here, mark the related intent with a whiteout so that the CIL push 1684 * can remove it rather than writing it to the journal. Then remove the intent 1685 * done item from the current transaction and release it so it doesn't get put 1686 * into the CIL at all. 1687 */ 1688 static uint32_t 1689 xlog_cil_process_intents( 1690 struct xfs_cil *cil, 1691 struct xfs_trans *tp) 1692 { 1693 struct xfs_log_item *lip, *ilip, *next; 1694 uint32_t len = 0; 1695 1696 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1697 if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE)) 1698 continue; 1699 1700 ilip = lip->li_ops->iop_intent(lip); 1701 if (!ilip || !xlog_item_in_current_chkpt(cil, ilip)) 1702 continue; 1703 set_bit(XFS_LI_WHITEOUT, &ilip->li_flags); 1704 trace_xfs_cil_whiteout_mark(ilip); 1705 len += ilip->li_lv->lv_bytes; 1706 kvfree(ilip->li_lv); 1707 ilip->li_lv = NULL; 1708 1709 xfs_trans_del_item(lip); 1710 lip->li_ops->iop_release(lip); 1711 } 1712 return len; 1713 } 1714 1715 /* 1716 * Commit a transaction with the given vector to the Committed Item List. 1717 * 1718 * To do this, we need to format the item, pin it in memory if required and 1719 * account for the space used by the transaction. Once we have done that we 1720 * need to release the unused reservation for the transaction, attach the 1721 * transaction to the checkpoint context so we carry the busy extents through 1722 * to checkpoint completion, and then unlock all the items in the transaction. 1723 * 1724 * Called with the context lock already held in read mode to lock out 1725 * background commit, returns without it held once background commits are 1726 * allowed again. 1727 */ 1728 void 1729 xlog_cil_commit( 1730 struct xlog *log, 1731 struct xfs_trans *tp, 1732 xfs_csn_t *commit_seq, 1733 bool regrant) 1734 { 1735 struct xfs_cil *cil = log->l_cilp; 1736 struct xfs_log_item *lip, *next; 1737 uint32_t released_space = 0; 1738 1739 /* 1740 * Do all necessary memory allocation before we lock the CIL. 1741 * This ensures the allocation does not deadlock with a CIL 1742 * push in memory reclaim (e.g. from kswapd). 1743 */ 1744 xlog_cil_alloc_shadow_bufs(log, tp); 1745 1746 /* lock out background commit */ 1747 down_read(&cil->xc_ctx_lock); 1748 1749 if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE) 1750 released_space = xlog_cil_process_intents(cil, tp); 1751 1752 xlog_cil_insert_items(log, tp, released_space); 1753 1754 if (regrant && !xlog_is_shutdown(log)) 1755 xfs_log_ticket_regrant(log, tp->t_ticket); 1756 else 1757 xfs_log_ticket_ungrant(log, tp->t_ticket); 1758 tp->t_ticket = NULL; 1759 xfs_trans_unreserve_and_mod_sb(tp); 1760 1761 /* 1762 * Once all the items of the transaction have been copied to the CIL, 1763 * the items can be unlocked and possibly freed. 1764 * 1765 * This needs to be done before we drop the CIL context lock because we 1766 * have to update state in the log items and unlock them before they go 1767 * to disk. If we don't, then the CIL checkpoint can race with us and 1768 * we can run checkpoint completion before we've updated and unlocked 1769 * the log items. This affects (at least) processing of stale buffers, 1770 * inodes and EFIs. 1771 */ 1772 trace_xfs_trans_commit_items(tp, _RET_IP_); 1773 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1774 xfs_trans_del_item(lip); 1775 if (lip->li_ops->iop_committing) 1776 lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence); 1777 } 1778 if (commit_seq) 1779 *commit_seq = cil->xc_ctx->sequence; 1780 1781 /* xlog_cil_push_background() releases cil->xc_ctx_lock */ 1782 xlog_cil_push_background(log); 1783 } 1784 1785 /* 1786 * Flush the CIL to stable storage but don't wait for it to complete. This 1787 * requires the CIL push to ensure the commit record for the push hits the disk, 1788 * but otherwise is no different to a push done from a log force. 1789 */ 1790 void 1791 xlog_cil_flush( 1792 struct xlog *log) 1793 { 1794 xfs_csn_t seq = log->l_cilp->xc_current_sequence; 1795 1796 trace_xfs_log_force(log->l_mp, seq, _RET_IP_); 1797 xlog_cil_push_now(log, seq, true); 1798 1799 /* 1800 * If the CIL is empty, make sure that any previous checkpoint that may 1801 * still be in an active iclog is pushed to stable storage. 1802 */ 1803 if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags)) 1804 xfs_log_force(log->l_mp, 0); 1805 } 1806 1807 /* 1808 * Conditionally push the CIL based on the sequence passed in. 1809 * 1810 * We only need to push if we haven't already pushed the sequence number given. 1811 * Hence the only time we will trigger a push here is if the push sequence is 1812 * the same as the current context. 1813 * 1814 * We return the current commit lsn to allow the callers to determine if a 1815 * iclog flush is necessary following this call. 1816 */ 1817 xfs_lsn_t 1818 xlog_cil_force_seq( 1819 struct xlog *log, 1820 xfs_csn_t sequence) 1821 { 1822 struct xfs_cil *cil = log->l_cilp; 1823 struct xfs_cil_ctx *ctx; 1824 xfs_lsn_t commit_lsn = NULLCOMMITLSN; 1825 1826 ASSERT(sequence <= cil->xc_current_sequence); 1827 1828 if (!sequence) 1829 sequence = cil->xc_current_sequence; 1830 trace_xfs_log_force(log->l_mp, sequence, _RET_IP_); 1831 1832 /* 1833 * check to see if we need to force out the current context. 1834 * xlog_cil_push() handles racing pushes for the same sequence, 1835 * so no need to deal with it here. 1836 */ 1837 restart: 1838 xlog_cil_push_now(log, sequence, false); 1839 1840 /* 1841 * See if we can find a previous sequence still committing. 1842 * We need to wait for all previous sequence commits to complete 1843 * before allowing the force of push_seq to go ahead. Hence block 1844 * on commits for those as well. 1845 */ 1846 spin_lock(&cil->xc_push_lock); 1847 list_for_each_entry(ctx, &cil->xc_committing, committing) { 1848 /* 1849 * Avoid getting stuck in this loop because we were woken by the 1850 * shutdown, but then went back to sleep once already in the 1851 * shutdown state. 1852 */ 1853 if (xlog_is_shutdown(log)) 1854 goto out_shutdown; 1855 if (ctx->sequence > sequence) 1856 continue; 1857 if (!ctx->commit_lsn) { 1858 /* 1859 * It is still being pushed! Wait for the push to 1860 * complete, then start again from the beginning. 1861 */ 1862 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 1863 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 1864 goto restart; 1865 } 1866 if (ctx->sequence != sequence) 1867 continue; 1868 /* found it! */ 1869 commit_lsn = ctx->commit_lsn; 1870 } 1871 1872 /* 1873 * The call to xlog_cil_push_now() executes the push in the background. 1874 * Hence by the time we have got here it our sequence may not have been 1875 * pushed yet. This is true if the current sequence still matches the 1876 * push sequence after the above wait loop and the CIL still contains 1877 * dirty objects. This is guaranteed by the push code first adding the 1878 * context to the committing list before emptying the CIL. 1879 * 1880 * Hence if we don't find the context in the committing list and the 1881 * current sequence number is unchanged then the CIL contents are 1882 * significant. If the CIL is empty, if means there was nothing to push 1883 * and that means there is nothing to wait for. If the CIL is not empty, 1884 * it means we haven't yet started the push, because if it had started 1885 * we would have found the context on the committing list. 1886 */ 1887 if (sequence == cil->xc_current_sequence && 1888 !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) { 1889 spin_unlock(&cil->xc_push_lock); 1890 goto restart; 1891 } 1892 1893 spin_unlock(&cil->xc_push_lock); 1894 return commit_lsn; 1895 1896 /* 1897 * We detected a shutdown in progress. We need to trigger the log force 1898 * to pass through it's iclog state machine error handling, even though 1899 * we are already in a shutdown state. Hence we can't return 1900 * NULLCOMMITLSN here as that has special meaning to log forces (i.e. 1901 * LSN is already stable), so we return a zero LSN instead. 1902 */ 1903 out_shutdown: 1904 spin_unlock(&cil->xc_push_lock); 1905 return 0; 1906 } 1907 1908 /* 1909 * Perform initial CIL structure initialisation. 1910 */ 1911 int 1912 xlog_cil_init( 1913 struct xlog *log) 1914 { 1915 struct xfs_cil *cil; 1916 struct xfs_cil_ctx *ctx; 1917 struct xlog_cil_pcp *cilpcp; 1918 int cpu; 1919 1920 cil = kzalloc(sizeof(*cil), GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1921 if (!cil) 1922 return -ENOMEM; 1923 /* 1924 * Limit the CIL pipeline depth to 4 concurrent works to bound the 1925 * concurrency the log spinlocks will be exposed to. 1926 */ 1927 cil->xc_push_wq = alloc_workqueue("xfs-cil/%s", 1928 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND), 1929 4, log->l_mp->m_super->s_id); 1930 if (!cil->xc_push_wq) 1931 goto out_destroy_cil; 1932 1933 cil->xc_log = log; 1934 cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp); 1935 if (!cil->xc_pcp) 1936 goto out_destroy_wq; 1937 1938 for_each_possible_cpu(cpu) { 1939 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 1940 INIT_LIST_HEAD(&cilpcp->busy_extents); 1941 INIT_LIST_HEAD(&cilpcp->log_items); 1942 } 1943 1944 INIT_LIST_HEAD(&cil->xc_committing); 1945 spin_lock_init(&cil->xc_push_lock); 1946 init_waitqueue_head(&cil->xc_push_wait); 1947 init_rwsem(&cil->xc_ctx_lock); 1948 init_waitqueue_head(&cil->xc_start_wait); 1949 init_waitqueue_head(&cil->xc_commit_wait); 1950 log->l_cilp = cil; 1951 1952 ctx = xlog_cil_ctx_alloc(); 1953 xlog_cil_ctx_switch(cil, ctx); 1954 return 0; 1955 1956 out_destroy_wq: 1957 destroy_workqueue(cil->xc_push_wq); 1958 out_destroy_cil: 1959 kfree(cil); 1960 return -ENOMEM; 1961 } 1962 1963 void 1964 xlog_cil_destroy( 1965 struct xlog *log) 1966 { 1967 struct xfs_cil *cil = log->l_cilp; 1968 1969 if (cil->xc_ctx) { 1970 if (cil->xc_ctx->ticket) 1971 xfs_log_ticket_put(cil->xc_ctx->ticket); 1972 kfree(cil->xc_ctx); 1973 } 1974 1975 ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)); 1976 free_percpu(cil->xc_pcp); 1977 destroy_workqueue(cil->xc_push_wq); 1978 kfree(cil); 1979 } 1980 1981