1 /* 2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it would be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write the Free Software Foundation, 15 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 16 */ 17 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_log_priv.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_mount.h" 30 #include "xfs_error.h" 31 #include "xfs_alloc.h" 32 #include "xfs_discard.h" 33 34 /* 35 * Perform initial CIL structure initialisation. 36 */ 37 int 38 xlog_cil_init( 39 struct log *log) 40 { 41 struct xfs_cil *cil; 42 struct xfs_cil_ctx *ctx; 43 44 cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL); 45 if (!cil) 46 return ENOMEM; 47 48 ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL); 49 if (!ctx) { 50 kmem_free(cil); 51 return ENOMEM; 52 } 53 54 INIT_LIST_HEAD(&cil->xc_cil); 55 INIT_LIST_HEAD(&cil->xc_committing); 56 spin_lock_init(&cil->xc_cil_lock); 57 init_rwsem(&cil->xc_ctx_lock); 58 init_waitqueue_head(&cil->xc_commit_wait); 59 60 INIT_LIST_HEAD(&ctx->committing); 61 INIT_LIST_HEAD(&ctx->busy_extents); 62 ctx->sequence = 1; 63 ctx->cil = cil; 64 cil->xc_ctx = ctx; 65 cil->xc_current_sequence = ctx->sequence; 66 67 cil->xc_log = log; 68 log->l_cilp = cil; 69 return 0; 70 } 71 72 void 73 xlog_cil_destroy( 74 struct log *log) 75 { 76 if (log->l_cilp->xc_ctx) { 77 if (log->l_cilp->xc_ctx->ticket) 78 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket); 79 kmem_free(log->l_cilp->xc_ctx); 80 } 81 82 ASSERT(list_empty(&log->l_cilp->xc_cil)); 83 kmem_free(log->l_cilp); 84 } 85 86 /* 87 * Allocate a new ticket. Failing to get a new ticket makes it really hard to 88 * recover, so we don't allow failure here. Also, we allocate in a context that 89 * we don't want to be issuing transactions from, so we need to tell the 90 * allocation code this as well. 91 * 92 * We don't reserve any space for the ticket - we are going to steal whatever 93 * space we require from transactions as they commit. To ensure we reserve all 94 * the space required, we need to set the current reservation of the ticket to 95 * zero so that we know to steal the initial transaction overhead from the 96 * first transaction commit. 97 */ 98 static struct xlog_ticket * 99 xlog_cil_ticket_alloc( 100 struct log *log) 101 { 102 struct xlog_ticket *tic; 103 104 tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0, 105 KM_SLEEP|KM_NOFS); 106 tic->t_trans_type = XFS_TRANS_CHECKPOINT; 107 108 /* 109 * set the current reservation to zero so we know to steal the basic 110 * transaction overhead reservation from the first transaction commit. 111 */ 112 tic->t_curr_res = 0; 113 return tic; 114 } 115 116 /* 117 * After the first stage of log recovery is done, we know where the head and 118 * tail of the log are. We need this log initialisation done before we can 119 * initialise the first CIL checkpoint context. 120 * 121 * Here we allocate a log ticket to track space usage during a CIL push. This 122 * ticket is passed to xlog_write() directly so that we don't slowly leak log 123 * space by failing to account for space used by log headers and additional 124 * region headers for split regions. 125 */ 126 void 127 xlog_cil_init_post_recovery( 128 struct log *log) 129 { 130 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); 131 log->l_cilp->xc_ctx->sequence = 1; 132 log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle, 133 log->l_curr_block); 134 } 135 136 /* 137 * Format log item into a flat buffers 138 * 139 * For delayed logging, we need to hold a formatted buffer containing all the 140 * changes on the log item. This enables us to relog the item in memory and 141 * write it out asynchronously without needing to relock the object that was 142 * modified at the time it gets written into the iclog. 143 * 144 * This function builds a vector for the changes in each log item in the 145 * transaction. It then works out the length of the buffer needed for each log 146 * item, allocates them and formats the vector for the item into the buffer. 147 * The buffer is then attached to the log item are then inserted into the 148 * Committed Item List for tracking until the next checkpoint is written out. 149 * 150 * We don't set up region headers during this process; we simply copy the 151 * regions into the flat buffer. We can do this because we still have to do a 152 * formatting step to write the regions into the iclog buffer. Writing the 153 * ophdrs during the iclog write means that we can support splitting large 154 * regions across iclog boundares without needing a change in the format of the 155 * item/region encapsulation. 156 * 157 * Hence what we need to do now is change the rewrite the vector array to point 158 * to the copied region inside the buffer we just allocated. This allows us to 159 * format the regions into the iclog as though they are being formatted 160 * directly out of the objects themselves. 161 */ 162 static struct xfs_log_vec * 163 xlog_cil_prepare_log_vecs( 164 struct xfs_trans *tp) 165 { 166 struct xfs_log_item_desc *lidp; 167 struct xfs_log_vec *lv = NULL; 168 struct xfs_log_vec *ret_lv = NULL; 169 170 171 /* Bail out if we didn't find a log item. */ 172 if (list_empty(&tp->t_items)) { 173 ASSERT(0); 174 return NULL; 175 } 176 177 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 178 struct xfs_log_vec *new_lv; 179 void *ptr; 180 int index; 181 int len = 0; 182 uint niovecs; 183 184 /* Skip items which aren't dirty in this transaction. */ 185 if (!(lidp->lid_flags & XFS_LID_DIRTY)) 186 continue; 187 188 /* Skip items that do not have any vectors for writing */ 189 niovecs = IOP_SIZE(lidp->lid_item); 190 if (!niovecs) 191 continue; 192 193 new_lv = kmem_zalloc(sizeof(*new_lv) + 194 niovecs * sizeof(struct xfs_log_iovec), 195 KM_SLEEP); 196 197 /* The allocated iovec region lies beyond the log vector. */ 198 new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1]; 199 new_lv->lv_niovecs = niovecs; 200 new_lv->lv_item = lidp->lid_item; 201 202 /* build the vector array and calculate it's length */ 203 IOP_FORMAT(new_lv->lv_item, new_lv->lv_iovecp); 204 for (index = 0; index < new_lv->lv_niovecs; index++) 205 len += new_lv->lv_iovecp[index].i_len; 206 207 new_lv->lv_buf_len = len; 208 new_lv->lv_buf = kmem_alloc(new_lv->lv_buf_len, 209 KM_SLEEP|KM_NOFS); 210 ptr = new_lv->lv_buf; 211 212 for (index = 0; index < new_lv->lv_niovecs; index++) { 213 struct xfs_log_iovec *vec = &new_lv->lv_iovecp[index]; 214 215 memcpy(ptr, vec->i_addr, vec->i_len); 216 vec->i_addr = ptr; 217 ptr += vec->i_len; 218 } 219 ASSERT(ptr == new_lv->lv_buf + new_lv->lv_buf_len); 220 221 if (!ret_lv) 222 ret_lv = new_lv; 223 else 224 lv->lv_next = new_lv; 225 lv = new_lv; 226 } 227 228 return ret_lv; 229 } 230 231 /* 232 * Prepare the log item for insertion into the CIL. Calculate the difference in 233 * log space and vectors it will consume, and if it is a new item pin it as 234 * well. 235 */ 236 STATIC void 237 xfs_cil_prepare_item( 238 struct log *log, 239 struct xfs_log_vec *lv, 240 int *len, 241 int *diff_iovecs) 242 { 243 struct xfs_log_vec *old = lv->lv_item->li_lv; 244 245 if (old) { 246 /* existing lv on log item, space used is a delta */ 247 ASSERT(!list_empty(&lv->lv_item->li_cil)); 248 ASSERT(old->lv_buf && old->lv_buf_len && old->lv_niovecs); 249 250 *len += lv->lv_buf_len - old->lv_buf_len; 251 *diff_iovecs += lv->lv_niovecs - old->lv_niovecs; 252 kmem_free(old->lv_buf); 253 kmem_free(old); 254 } else { 255 /* new lv, must pin the log item */ 256 ASSERT(!lv->lv_item->li_lv); 257 ASSERT(list_empty(&lv->lv_item->li_cil)); 258 259 *len += lv->lv_buf_len; 260 *diff_iovecs += lv->lv_niovecs; 261 IOP_PIN(lv->lv_item); 262 263 } 264 265 /* attach new log vector to log item */ 266 lv->lv_item->li_lv = lv; 267 268 /* 269 * If this is the first time the item is being committed to the 270 * CIL, store the sequence number on the log item so we can 271 * tell in future commits whether this is the first checkpoint 272 * the item is being committed into. 273 */ 274 if (!lv->lv_item->li_seq) 275 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; 276 } 277 278 /* 279 * Insert the log items into the CIL and calculate the difference in space 280 * consumed by the item. Add the space to the checkpoint ticket and calculate 281 * if the change requires additional log metadata. If it does, take that space 282 * as well. Remove the amount of space we added to the checkpoint ticket from 283 * the current transaction ticket so that the accounting works out correctly. 284 */ 285 static void 286 xlog_cil_insert_items( 287 struct log *log, 288 struct xfs_log_vec *log_vector, 289 struct xlog_ticket *ticket) 290 { 291 struct xfs_cil *cil = log->l_cilp; 292 struct xfs_cil_ctx *ctx = cil->xc_ctx; 293 struct xfs_log_vec *lv; 294 int len = 0; 295 int diff_iovecs = 0; 296 int iclog_space; 297 298 ASSERT(log_vector); 299 300 /* 301 * Do all the accounting aggregation and switching of log vectors 302 * around in a separate loop to the insertion of items into the CIL. 303 * Then we can do a separate loop to update the CIL within a single 304 * lock/unlock pair. This reduces the number of round trips on the CIL 305 * lock from O(nr_logvectors) to O(1) and greatly reduces the overall 306 * hold time for the transaction commit. 307 * 308 * If this is the first time the item is being placed into the CIL in 309 * this context, pin it so it can't be written to disk until the CIL is 310 * flushed to the iclog and the iclog written to disk. 311 * 312 * We can do this safely because the context can't checkpoint until we 313 * are done so it doesn't matter exactly how we update the CIL. 314 */ 315 for (lv = log_vector; lv; lv = lv->lv_next) 316 xfs_cil_prepare_item(log, lv, &len, &diff_iovecs); 317 318 /* account for space used by new iovec headers */ 319 len += diff_iovecs * sizeof(xlog_op_header_t); 320 321 spin_lock(&cil->xc_cil_lock); 322 323 /* move the items to the tail of the CIL */ 324 for (lv = log_vector; lv; lv = lv->lv_next) 325 list_move_tail(&lv->lv_item->li_cil, &cil->xc_cil); 326 327 ctx->nvecs += diff_iovecs; 328 329 /* 330 * Now transfer enough transaction reservation to the context ticket 331 * for the checkpoint. The context ticket is special - the unit 332 * reservation has to grow as well as the current reservation as we 333 * steal from tickets so we can correctly determine the space used 334 * during the transaction commit. 335 */ 336 if (ctx->ticket->t_curr_res == 0) { 337 /* first commit in checkpoint, steal the header reservation */ 338 ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len); 339 ctx->ticket->t_curr_res = ctx->ticket->t_unit_res; 340 ticket->t_curr_res -= ctx->ticket->t_unit_res; 341 } 342 343 /* do we need space for more log record headers? */ 344 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 345 if (len > 0 && (ctx->space_used / iclog_space != 346 (ctx->space_used + len) / iclog_space)) { 347 int hdrs; 348 349 hdrs = (len + iclog_space - 1) / iclog_space; 350 /* need to take into account split region headers, too */ 351 hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header); 352 ctx->ticket->t_unit_res += hdrs; 353 ctx->ticket->t_curr_res += hdrs; 354 ticket->t_curr_res -= hdrs; 355 ASSERT(ticket->t_curr_res >= len); 356 } 357 ticket->t_curr_res -= len; 358 ctx->space_used += len; 359 360 spin_unlock(&cil->xc_cil_lock); 361 } 362 363 static void 364 xlog_cil_free_logvec( 365 struct xfs_log_vec *log_vector) 366 { 367 struct xfs_log_vec *lv; 368 369 for (lv = log_vector; lv; ) { 370 struct xfs_log_vec *next = lv->lv_next; 371 kmem_free(lv->lv_buf); 372 kmem_free(lv); 373 lv = next; 374 } 375 } 376 377 /* 378 * Mark all items committed and clear busy extents. We free the log vector 379 * chains in a separate pass so that we unpin the log items as quickly as 380 * possible. 381 */ 382 static void 383 xlog_cil_committed( 384 void *args, 385 int abort) 386 { 387 struct xfs_cil_ctx *ctx = args; 388 struct xfs_mount *mp = ctx->cil->xc_log->l_mp; 389 390 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain, 391 ctx->start_lsn, abort); 392 393 xfs_alloc_busy_sort(&ctx->busy_extents); 394 xfs_alloc_busy_clear(mp, &ctx->busy_extents, 395 (mp->m_flags & XFS_MOUNT_DISCARD) && !abort); 396 397 spin_lock(&ctx->cil->xc_cil_lock); 398 list_del(&ctx->committing); 399 spin_unlock(&ctx->cil->xc_cil_lock); 400 401 xlog_cil_free_logvec(ctx->lv_chain); 402 403 if (!list_empty(&ctx->busy_extents)) { 404 ASSERT(mp->m_flags & XFS_MOUNT_DISCARD); 405 406 xfs_discard_extents(mp, &ctx->busy_extents); 407 xfs_alloc_busy_clear(mp, &ctx->busy_extents, false); 408 } 409 410 kmem_free(ctx); 411 } 412 413 /* 414 * Push the Committed Item List to the log. If @push_seq flag is zero, then it 415 * is a background flush and so we can chose to ignore it. Otherwise, if the 416 * current sequence is the same as @push_seq we need to do a flush. If 417 * @push_seq is less than the current sequence, then it has already been 418 * flushed and we don't need to do anything - the caller will wait for it to 419 * complete if necessary. 420 * 421 * @push_seq is a value rather than a flag because that allows us to do an 422 * unlocked check of the sequence number for a match. Hence we can allows log 423 * forces to run racily and not issue pushes for the same sequence twice. If we 424 * get a race between multiple pushes for the same sequence they will block on 425 * the first one and then abort, hence avoiding needless pushes. 426 */ 427 STATIC int 428 xlog_cil_push( 429 struct log *log, 430 xfs_lsn_t push_seq) 431 { 432 struct xfs_cil *cil = log->l_cilp; 433 struct xfs_log_vec *lv; 434 struct xfs_cil_ctx *ctx; 435 struct xfs_cil_ctx *new_ctx; 436 struct xlog_in_core *commit_iclog; 437 struct xlog_ticket *tic; 438 int num_lv; 439 int num_iovecs; 440 int len; 441 int error = 0; 442 struct xfs_trans_header thdr; 443 struct xfs_log_iovec lhdr; 444 struct xfs_log_vec lvhdr = { NULL }; 445 xfs_lsn_t commit_lsn; 446 447 if (!cil) 448 return 0; 449 450 ASSERT(!push_seq || push_seq <= cil->xc_ctx->sequence); 451 452 new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS); 453 new_ctx->ticket = xlog_cil_ticket_alloc(log); 454 455 /* 456 * Lock out transaction commit, but don't block for background pushes 457 * unless we are well over the CIL space limit. See the definition of 458 * XLOG_CIL_HARD_SPACE_LIMIT() for the full explanation of the logic 459 * used here. 460 */ 461 if (!down_write_trylock(&cil->xc_ctx_lock)) { 462 if (!push_seq && 463 cil->xc_ctx->space_used < XLOG_CIL_HARD_SPACE_LIMIT(log)) 464 goto out_free_ticket; 465 down_write(&cil->xc_ctx_lock); 466 } 467 ctx = cil->xc_ctx; 468 469 /* check if we've anything to push */ 470 if (list_empty(&cil->xc_cil)) 471 goto out_skip; 472 473 /* check for spurious background flush */ 474 if (!push_seq && cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) 475 goto out_skip; 476 477 /* check for a previously pushed seqeunce */ 478 if (push_seq && push_seq < cil->xc_ctx->sequence) 479 goto out_skip; 480 481 /* 482 * pull all the log vectors off the items in the CIL, and 483 * remove the items from the CIL. We don't need the CIL lock 484 * here because it's only needed on the transaction commit 485 * side which is currently locked out by the flush lock. 486 */ 487 lv = NULL; 488 num_lv = 0; 489 num_iovecs = 0; 490 len = 0; 491 while (!list_empty(&cil->xc_cil)) { 492 struct xfs_log_item *item; 493 int i; 494 495 item = list_first_entry(&cil->xc_cil, 496 struct xfs_log_item, li_cil); 497 list_del_init(&item->li_cil); 498 if (!ctx->lv_chain) 499 ctx->lv_chain = item->li_lv; 500 else 501 lv->lv_next = item->li_lv; 502 lv = item->li_lv; 503 item->li_lv = NULL; 504 505 num_lv++; 506 num_iovecs += lv->lv_niovecs; 507 for (i = 0; i < lv->lv_niovecs; i++) 508 len += lv->lv_iovecp[i].i_len; 509 } 510 511 /* 512 * initialise the new context and attach it to the CIL. Then attach 513 * the current context to the CIL committing lsit so it can be found 514 * during log forces to extract the commit lsn of the sequence that 515 * needs to be forced. 516 */ 517 INIT_LIST_HEAD(&new_ctx->committing); 518 INIT_LIST_HEAD(&new_ctx->busy_extents); 519 new_ctx->sequence = ctx->sequence + 1; 520 new_ctx->cil = cil; 521 cil->xc_ctx = new_ctx; 522 523 /* 524 * mirror the new sequence into the cil structure so that we can do 525 * unlocked checks against the current sequence in log forces without 526 * risking deferencing a freed context pointer. 527 */ 528 cil->xc_current_sequence = new_ctx->sequence; 529 530 /* 531 * The switch is now done, so we can drop the context lock and move out 532 * of a shared context. We can't just go straight to the commit record, 533 * though - we need to synchronise with previous and future commits so 534 * that the commit records are correctly ordered in the log to ensure 535 * that we process items during log IO completion in the correct order. 536 * 537 * For example, if we get an EFI in one checkpoint and the EFD in the 538 * next (e.g. due to log forces), we do not want the checkpoint with 539 * the EFD to be committed before the checkpoint with the EFI. Hence 540 * we must strictly order the commit records of the checkpoints so 541 * that: a) the checkpoint callbacks are attached to the iclogs in the 542 * correct order; and b) the checkpoints are replayed in correct order 543 * in log recovery. 544 * 545 * Hence we need to add this context to the committing context list so 546 * that higher sequences will wait for us to write out a commit record 547 * before they do. 548 */ 549 spin_lock(&cil->xc_cil_lock); 550 list_add(&ctx->committing, &cil->xc_committing); 551 spin_unlock(&cil->xc_cil_lock); 552 up_write(&cil->xc_ctx_lock); 553 554 /* 555 * Build a checkpoint transaction header and write it to the log to 556 * begin the transaction. We need to account for the space used by the 557 * transaction header here as it is not accounted for in xlog_write(). 558 * 559 * The LSN we need to pass to the log items on transaction commit is 560 * the LSN reported by the first log vector write. If we use the commit 561 * record lsn then we can move the tail beyond the grant write head. 562 */ 563 tic = ctx->ticket; 564 thdr.th_magic = XFS_TRANS_HEADER_MAGIC; 565 thdr.th_type = XFS_TRANS_CHECKPOINT; 566 thdr.th_tid = tic->t_tid; 567 thdr.th_num_items = num_iovecs; 568 lhdr.i_addr = &thdr; 569 lhdr.i_len = sizeof(xfs_trans_header_t); 570 lhdr.i_type = XLOG_REG_TYPE_TRANSHDR; 571 tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t); 572 573 lvhdr.lv_niovecs = 1; 574 lvhdr.lv_iovecp = &lhdr; 575 lvhdr.lv_next = ctx->lv_chain; 576 577 error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0); 578 if (error) 579 goto out_abort_free_ticket; 580 581 /* 582 * now that we've written the checkpoint into the log, strictly 583 * order the commit records so replay will get them in the right order. 584 */ 585 restart: 586 spin_lock(&cil->xc_cil_lock); 587 list_for_each_entry(new_ctx, &cil->xc_committing, committing) { 588 /* 589 * Higher sequences will wait for this one so skip them. 590 * Don't wait for own own sequence, either. 591 */ 592 if (new_ctx->sequence >= ctx->sequence) 593 continue; 594 if (!new_ctx->commit_lsn) { 595 /* 596 * It is still being pushed! Wait for the push to 597 * complete, then start again from the beginning. 598 */ 599 xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock); 600 goto restart; 601 } 602 } 603 spin_unlock(&cil->xc_cil_lock); 604 605 /* xfs_log_done always frees the ticket on error. */ 606 commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0); 607 if (commit_lsn == -1) 608 goto out_abort; 609 610 /* attach all the transactions w/ busy extents to iclog */ 611 ctx->log_cb.cb_func = xlog_cil_committed; 612 ctx->log_cb.cb_arg = ctx; 613 error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb); 614 if (error) 615 goto out_abort; 616 617 /* 618 * now the checkpoint commit is complete and we've attached the 619 * callbacks to the iclog we can assign the commit LSN to the context 620 * and wake up anyone who is waiting for the commit to complete. 621 */ 622 spin_lock(&cil->xc_cil_lock); 623 ctx->commit_lsn = commit_lsn; 624 wake_up_all(&cil->xc_commit_wait); 625 spin_unlock(&cil->xc_cil_lock); 626 627 /* release the hounds! */ 628 return xfs_log_release_iclog(log->l_mp, commit_iclog); 629 630 out_skip: 631 up_write(&cil->xc_ctx_lock); 632 out_free_ticket: 633 xfs_log_ticket_put(new_ctx->ticket); 634 kmem_free(new_ctx); 635 return 0; 636 637 out_abort_free_ticket: 638 xfs_log_ticket_put(tic); 639 out_abort: 640 xlog_cil_committed(ctx, XFS_LI_ABORTED); 641 return XFS_ERROR(EIO); 642 } 643 644 /* 645 * Commit a transaction with the given vector to the Committed Item List. 646 * 647 * To do this, we need to format the item, pin it in memory if required and 648 * account for the space used by the transaction. Once we have done that we 649 * need to release the unused reservation for the transaction, attach the 650 * transaction to the checkpoint context so we carry the busy extents through 651 * to checkpoint completion, and then unlock all the items in the transaction. 652 * 653 * For more specific information about the order of operations in 654 * xfs_log_commit_cil() please refer to the comments in 655 * xfs_trans_commit_iclog(). 656 * 657 * Called with the context lock already held in read mode to lock out 658 * background commit, returns without it held once background commits are 659 * allowed again. 660 */ 661 int 662 xfs_log_commit_cil( 663 struct xfs_mount *mp, 664 struct xfs_trans *tp, 665 xfs_lsn_t *commit_lsn, 666 int flags) 667 { 668 struct log *log = mp->m_log; 669 int log_flags = 0; 670 int push = 0; 671 struct xfs_log_vec *log_vector; 672 673 if (flags & XFS_TRANS_RELEASE_LOG_RES) 674 log_flags = XFS_LOG_REL_PERM_RESERV; 675 676 /* 677 * Do all the hard work of formatting items (including memory 678 * allocation) outside the CIL context lock. This prevents stalling CIL 679 * pushes when we are low on memory and a transaction commit spends a 680 * lot of time in memory reclaim. 681 */ 682 log_vector = xlog_cil_prepare_log_vecs(tp); 683 if (!log_vector) 684 return ENOMEM; 685 686 /* lock out background commit */ 687 down_read(&log->l_cilp->xc_ctx_lock); 688 if (commit_lsn) 689 *commit_lsn = log->l_cilp->xc_ctx->sequence; 690 691 xlog_cil_insert_items(log, log_vector, tp->t_ticket); 692 693 /* check we didn't blow the reservation */ 694 if (tp->t_ticket->t_curr_res < 0) 695 xlog_print_tic_res(log->l_mp, tp->t_ticket); 696 697 /* attach the transaction to the CIL if it has any busy extents */ 698 if (!list_empty(&tp->t_busy)) { 699 spin_lock(&log->l_cilp->xc_cil_lock); 700 list_splice_init(&tp->t_busy, 701 &log->l_cilp->xc_ctx->busy_extents); 702 spin_unlock(&log->l_cilp->xc_cil_lock); 703 } 704 705 tp->t_commit_lsn = *commit_lsn; 706 xfs_log_done(mp, tp->t_ticket, NULL, log_flags); 707 xfs_trans_unreserve_and_mod_sb(tp); 708 709 /* 710 * Once all the items of the transaction have been copied to the CIL, 711 * the items can be unlocked and freed. 712 * 713 * This needs to be done before we drop the CIL context lock because we 714 * have to update state in the log items and unlock them before they go 715 * to disk. If we don't, then the CIL checkpoint can race with us and 716 * we can run checkpoint completion before we've updated and unlocked 717 * the log items. This affects (at least) processing of stale buffers, 718 * inodes and EFIs. 719 */ 720 xfs_trans_free_items(tp, *commit_lsn, 0); 721 722 /* check for background commit before unlock */ 723 if (log->l_cilp->xc_ctx->space_used > XLOG_CIL_SPACE_LIMIT(log)) 724 push = 1; 725 726 up_read(&log->l_cilp->xc_ctx_lock); 727 728 /* 729 * We need to push CIL every so often so we don't cache more than we 730 * can fit in the log. The limit really is that a checkpoint can't be 731 * more than half the log (the current checkpoint is not allowed to 732 * overwrite the previous checkpoint), but commit latency and memory 733 * usage limit this to a smaller size in most cases. 734 */ 735 if (push) 736 xlog_cil_push(log, 0); 737 return 0; 738 } 739 740 /* 741 * Conditionally push the CIL based on the sequence passed in. 742 * 743 * We only need to push if we haven't already pushed the sequence 744 * number given. Hence the only time we will trigger a push here is 745 * if the push sequence is the same as the current context. 746 * 747 * We return the current commit lsn to allow the callers to determine if a 748 * iclog flush is necessary following this call. 749 * 750 * XXX: Initially, just push the CIL unconditionally and return whatever 751 * commit lsn is there. It'll be empty, so this is broken for now. 752 */ 753 xfs_lsn_t 754 xlog_cil_force_lsn( 755 struct log *log, 756 xfs_lsn_t sequence) 757 { 758 struct xfs_cil *cil = log->l_cilp; 759 struct xfs_cil_ctx *ctx; 760 xfs_lsn_t commit_lsn = NULLCOMMITLSN; 761 762 ASSERT(sequence <= cil->xc_current_sequence); 763 764 /* 765 * check to see if we need to force out the current context. 766 * xlog_cil_push() handles racing pushes for the same sequence, 767 * so no need to deal with it here. 768 */ 769 if (sequence == cil->xc_current_sequence) 770 xlog_cil_push(log, sequence); 771 772 /* 773 * See if we can find a previous sequence still committing. 774 * We need to wait for all previous sequence commits to complete 775 * before allowing the force of push_seq to go ahead. Hence block 776 * on commits for those as well. 777 */ 778 restart: 779 spin_lock(&cil->xc_cil_lock); 780 list_for_each_entry(ctx, &cil->xc_committing, committing) { 781 if (ctx->sequence > sequence) 782 continue; 783 if (!ctx->commit_lsn) { 784 /* 785 * It is still being pushed! Wait for the push to 786 * complete, then start again from the beginning. 787 */ 788 xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock); 789 goto restart; 790 } 791 if (ctx->sequence != sequence) 792 continue; 793 /* found it! */ 794 commit_lsn = ctx->commit_lsn; 795 } 796 spin_unlock(&cil->xc_cil_lock); 797 return commit_lsn; 798 } 799 800 /* 801 * Check if the current log item was first committed in this sequence. 802 * We can't rely on just the log item being in the CIL, we have to check 803 * the recorded commit sequence number. 804 * 805 * Note: for this to be used in a non-racy manner, it has to be called with 806 * CIL flushing locked out. As a result, it should only be used during the 807 * transaction commit process when deciding what to format into the item. 808 */ 809 bool 810 xfs_log_item_in_current_chkpt( 811 struct xfs_log_item *lip) 812 { 813 struct xfs_cil_ctx *ctx; 814 815 if (list_empty(&lip->li_cil)) 816 return false; 817 818 ctx = lip->li_mountp->m_log->l_cilp->xc_ctx; 819 820 /* 821 * li_seq is written on the first commit of a log item to record the 822 * first checkpoint it is written to. Hence if it is different to the 823 * current sequence, we're in a new checkpoint. 824 */ 825 if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0) 826 return false; 827 return true; 828 } 829