1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. 4 */ 5 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_shared.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_extent_busy.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_log.h" 17 #include "xfs_log_priv.h" 18 #include "xfs_trace.h" 19 #include "xfs_discard.h" 20 21 /* 22 * Allocate a new ticket. Failing to get a new ticket makes it really hard to 23 * recover, so we don't allow failure here. Also, we allocate in a context that 24 * we don't want to be issuing transactions from, so we need to tell the 25 * allocation code this as well. 26 * 27 * We don't reserve any space for the ticket - we are going to steal whatever 28 * space we require from transactions as they commit. To ensure we reserve all 29 * the space required, we need to set the current reservation of the ticket to 30 * zero so that we know to steal the initial transaction overhead from the 31 * first transaction commit. 32 */ 33 static struct xlog_ticket * 34 xlog_cil_ticket_alloc( 35 struct xlog *log) 36 { 37 struct xlog_ticket *tic; 38 39 tic = xlog_ticket_alloc(log, 0, 1, 0); 40 41 /* 42 * set the current reservation to zero so we know to steal the basic 43 * transaction overhead reservation from the first transaction commit. 44 */ 45 tic->t_curr_res = 0; 46 tic->t_iclog_hdrs = 0; 47 return tic; 48 } 49 50 static inline void 51 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil) 52 { 53 struct xlog *log = cil->xc_log; 54 55 atomic_set(&cil->xc_iclog_hdrs, 56 (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) / 57 (log->l_iclog_size - log->l_iclog_hsize))); 58 } 59 60 /* 61 * Check if the current log item was first committed in this sequence. 62 * We can't rely on just the log item being in the CIL, we have to check 63 * the recorded commit sequence number. 64 * 65 * Note: for this to be used in a non-racy manner, it has to be called with 66 * CIL flushing locked out. As a result, it should only be used during the 67 * transaction commit process when deciding what to format into the item. 68 */ 69 static bool 70 xlog_item_in_current_chkpt( 71 struct xfs_cil *cil, 72 struct xfs_log_item *lip) 73 { 74 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 75 return false; 76 77 /* 78 * li_seq is written on the first commit of a log item to record the 79 * first checkpoint it is written to. Hence if it is different to the 80 * current sequence, we're in a new checkpoint. 81 */ 82 return lip->li_seq == READ_ONCE(cil->xc_current_sequence); 83 } 84 85 bool 86 xfs_log_item_in_current_chkpt( 87 struct xfs_log_item *lip) 88 { 89 return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip); 90 } 91 92 /* 93 * Unavoidable forward declaration - xlog_cil_push_work() calls 94 * xlog_cil_ctx_alloc() itself. 95 */ 96 static void xlog_cil_push_work(struct work_struct *work); 97 98 static struct xfs_cil_ctx * 99 xlog_cil_ctx_alloc(void) 100 { 101 struct xfs_cil_ctx *ctx; 102 103 ctx = kmem_zalloc(sizeof(*ctx), KM_NOFS); 104 INIT_LIST_HEAD(&ctx->committing); 105 INIT_LIST_HEAD(&ctx->busy_extents.extent_list); 106 INIT_LIST_HEAD(&ctx->log_items); 107 INIT_LIST_HEAD(&ctx->lv_chain); 108 INIT_WORK(&ctx->push_work, xlog_cil_push_work); 109 return ctx; 110 } 111 112 /* 113 * Aggregate the CIL per cpu structures into global counts, lists, etc and 114 * clear the percpu state ready for the next context to use. This is called 115 * from the push code with the context lock held exclusively, hence nothing else 116 * will be accessing or modifying the per-cpu counters. 117 */ 118 static void 119 xlog_cil_push_pcp_aggregate( 120 struct xfs_cil *cil, 121 struct xfs_cil_ctx *ctx) 122 { 123 struct xlog_cil_pcp *cilpcp; 124 int cpu; 125 126 for_each_cpu(cpu, &ctx->cil_pcpmask) { 127 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 128 129 ctx->ticket->t_curr_res += cilpcp->space_reserved; 130 cilpcp->space_reserved = 0; 131 132 if (!list_empty(&cilpcp->busy_extents)) { 133 list_splice_init(&cilpcp->busy_extents, 134 &ctx->busy_extents.extent_list); 135 } 136 if (!list_empty(&cilpcp->log_items)) 137 list_splice_init(&cilpcp->log_items, &ctx->log_items); 138 139 /* 140 * We're in the middle of switching cil contexts. Reset the 141 * counter we use to detect when the current context is nearing 142 * full. 143 */ 144 cilpcp->space_used = 0; 145 } 146 } 147 148 /* 149 * Aggregate the CIL per-cpu space used counters into the global atomic value. 150 * This is called when the per-cpu counter aggregation will first pass the soft 151 * limit threshold so we can switch to atomic counter aggregation for accurate 152 * detection of hard limit traversal. 153 */ 154 static void 155 xlog_cil_insert_pcp_aggregate( 156 struct xfs_cil *cil, 157 struct xfs_cil_ctx *ctx) 158 { 159 struct xlog_cil_pcp *cilpcp; 160 int cpu; 161 int count = 0; 162 163 /* Trigger atomic updates then aggregate only for the first caller */ 164 if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) 165 return; 166 167 /* 168 * We can race with other cpus setting cil_pcpmask. However, we've 169 * atomically cleared PCP_SPACE which forces other threads to add to 170 * the global space used count. cil_pcpmask is a superset of cilpcp 171 * structures that could have a nonzero space_used. 172 */ 173 for_each_cpu(cpu, &ctx->cil_pcpmask) { 174 int old, prev; 175 176 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 177 do { 178 old = cilpcp->space_used; 179 prev = cmpxchg(&cilpcp->space_used, old, 0); 180 } while (old != prev); 181 count += old; 182 } 183 atomic_add(count, &ctx->space_used); 184 } 185 186 static void 187 xlog_cil_ctx_switch( 188 struct xfs_cil *cil, 189 struct xfs_cil_ctx *ctx) 190 { 191 xlog_cil_set_iclog_hdr_count(cil); 192 set_bit(XLOG_CIL_EMPTY, &cil->xc_flags); 193 set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags); 194 ctx->sequence = ++cil->xc_current_sequence; 195 ctx->cil = cil; 196 cil->xc_ctx = ctx; 197 } 198 199 /* 200 * After the first stage of log recovery is done, we know where the head and 201 * tail of the log are. We need this log initialisation done before we can 202 * initialise the first CIL checkpoint context. 203 * 204 * Here we allocate a log ticket to track space usage during a CIL push. This 205 * ticket is passed to xlog_write() directly so that we don't slowly leak log 206 * space by failing to account for space used by log headers and additional 207 * region headers for split regions. 208 */ 209 void 210 xlog_cil_init_post_recovery( 211 struct xlog *log) 212 { 213 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); 214 log->l_cilp->xc_ctx->sequence = 1; 215 xlog_cil_set_iclog_hdr_count(log->l_cilp); 216 } 217 218 static inline int 219 xlog_cil_iovec_space( 220 uint niovecs) 221 { 222 return round_up((sizeof(struct xfs_log_vec) + 223 niovecs * sizeof(struct xfs_log_iovec)), 224 sizeof(uint64_t)); 225 } 226 227 /* 228 * Allocate or pin log vector buffers for CIL insertion. 229 * 230 * The CIL currently uses disposable buffers for copying a snapshot of the 231 * modified items into the log during a push. The biggest problem with this is 232 * the requirement to allocate the disposable buffer during the commit if: 233 * a) does not exist; or 234 * b) it is too small 235 * 236 * If we do this allocation within xlog_cil_insert_format_items(), it is done 237 * under the xc_ctx_lock, which means that a CIL push cannot occur during 238 * the memory allocation. This means that we have a potential deadlock situation 239 * under low memory conditions when we have lots of dirty metadata pinned in 240 * the CIL and we need a CIL commit to occur to free memory. 241 * 242 * To avoid this, we need to move the memory allocation outside the 243 * xc_ctx_lock, but because the log vector buffers are disposable, that opens 244 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log 245 * vector buffers between the check and the formatting of the item into the 246 * log vector buffer within the xc_ctx_lock. 247 * 248 * Because the log vector buffer needs to be unchanged during the CIL push 249 * process, we cannot share the buffer between the transaction commit (which 250 * modifies the buffer) and the CIL push context that is writing the changes 251 * into the log. This means skipping preallocation of buffer space is 252 * unreliable, but we most definitely do not want to be allocating and freeing 253 * buffers unnecessarily during commits when overwrites can be done safely. 254 * 255 * The simplest solution to this problem is to allocate a shadow buffer when a 256 * log item is committed for the second time, and then to only use this buffer 257 * if necessary. The buffer can remain attached to the log item until such time 258 * it is needed, and this is the buffer that is reallocated to match the size of 259 * the incoming modification. Then during the formatting of the item we can swap 260 * the active buffer with the new one if we can't reuse the existing buffer. We 261 * don't free the old buffer as it may be reused on the next modification if 262 * it's size is right, otherwise we'll free and reallocate it at that point. 263 * 264 * This function builds a vector for the changes in each log item in the 265 * transaction. It then works out the length of the buffer needed for each log 266 * item, allocates them and attaches the vector to the log item in preparation 267 * for the formatting step which occurs under the xc_ctx_lock. 268 * 269 * While this means the memory footprint goes up, it avoids the repeated 270 * alloc/free pattern that repeated modifications of an item would otherwise 271 * cause, and hence minimises the CPU overhead of such behaviour. 272 */ 273 static void 274 xlog_cil_alloc_shadow_bufs( 275 struct xlog *log, 276 struct xfs_trans *tp) 277 { 278 struct xfs_log_item *lip; 279 280 list_for_each_entry(lip, &tp->t_items, li_trans) { 281 struct xfs_log_vec *lv; 282 int niovecs = 0; 283 int nbytes = 0; 284 int buf_size; 285 bool ordered = false; 286 287 /* Skip items which aren't dirty in this transaction. */ 288 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 289 continue; 290 291 /* get number of vecs and size of data to be stored */ 292 lip->li_ops->iop_size(lip, &niovecs, &nbytes); 293 294 /* 295 * Ordered items need to be tracked but we do not wish to write 296 * them. We need a logvec to track the object, but we do not 297 * need an iovec or buffer to be allocated for copying data. 298 */ 299 if (niovecs == XFS_LOG_VEC_ORDERED) { 300 ordered = true; 301 niovecs = 0; 302 nbytes = 0; 303 } 304 305 /* 306 * We 64-bit align the length of each iovec so that the start of 307 * the next one is naturally aligned. We'll need to account for 308 * that slack space here. 309 * 310 * We also add the xlog_op_header to each region when 311 * formatting, but that's not accounted to the size of the item 312 * at this point. Hence we'll need an addition number of bytes 313 * for each vector to hold an opheader. 314 * 315 * Then round nbytes up to 64-bit alignment so that the initial 316 * buffer alignment is easy to calculate and verify. 317 */ 318 nbytes += niovecs * 319 (sizeof(uint64_t) + sizeof(struct xlog_op_header)); 320 nbytes = round_up(nbytes, sizeof(uint64_t)); 321 322 /* 323 * The data buffer needs to start 64-bit aligned, so round up 324 * that space to ensure we can align it appropriately and not 325 * overrun the buffer. 326 */ 327 buf_size = nbytes + xlog_cil_iovec_space(niovecs); 328 329 /* 330 * if we have no shadow buffer, or it is too small, we need to 331 * reallocate it. 332 */ 333 if (!lip->li_lv_shadow || 334 buf_size > lip->li_lv_shadow->lv_size) { 335 /* 336 * We free and allocate here as a realloc would copy 337 * unnecessary data. We don't use kvzalloc() for the 338 * same reason - we don't need to zero the data area in 339 * the buffer, only the log vector header and the iovec 340 * storage. 341 */ 342 kmem_free(lip->li_lv_shadow); 343 lv = xlog_kvmalloc(buf_size); 344 345 memset(lv, 0, xlog_cil_iovec_space(niovecs)); 346 347 INIT_LIST_HEAD(&lv->lv_list); 348 lv->lv_item = lip; 349 lv->lv_size = buf_size; 350 if (ordered) 351 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 352 else 353 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1]; 354 lip->li_lv_shadow = lv; 355 } else { 356 /* same or smaller, optimise common overwrite case */ 357 lv = lip->li_lv_shadow; 358 if (ordered) 359 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 360 else 361 lv->lv_buf_len = 0; 362 lv->lv_bytes = 0; 363 } 364 365 /* Ensure the lv is set up according to ->iop_size */ 366 lv->lv_niovecs = niovecs; 367 368 /* The allocated data region lies beyond the iovec region */ 369 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs); 370 } 371 372 } 373 374 /* 375 * Prepare the log item for insertion into the CIL. Calculate the difference in 376 * log space it will consume, and if it is a new item pin it as well. 377 */ 378 STATIC void 379 xfs_cil_prepare_item( 380 struct xlog *log, 381 struct xfs_log_vec *lv, 382 struct xfs_log_vec *old_lv, 383 int *diff_len) 384 { 385 /* Account for the new LV being passed in */ 386 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) 387 *diff_len += lv->lv_bytes; 388 389 /* 390 * If there is no old LV, this is the first time we've seen the item in 391 * this CIL context and so we need to pin it. If we are replacing the 392 * old_lv, then remove the space it accounts for and make it the shadow 393 * buffer for later freeing. In both cases we are now switching to the 394 * shadow buffer, so update the pointer to it appropriately. 395 */ 396 if (!old_lv) { 397 if (lv->lv_item->li_ops->iop_pin) 398 lv->lv_item->li_ops->iop_pin(lv->lv_item); 399 lv->lv_item->li_lv_shadow = NULL; 400 } else if (old_lv != lv) { 401 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED); 402 403 *diff_len -= old_lv->lv_bytes; 404 lv->lv_item->li_lv_shadow = old_lv; 405 } 406 407 /* attach new log vector to log item */ 408 lv->lv_item->li_lv = lv; 409 410 /* 411 * If this is the first time the item is being committed to the 412 * CIL, store the sequence number on the log item so we can 413 * tell in future commits whether this is the first checkpoint 414 * the item is being committed into. 415 */ 416 if (!lv->lv_item->li_seq) 417 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; 418 } 419 420 /* 421 * Format log item into a flat buffers 422 * 423 * For delayed logging, we need to hold a formatted buffer containing all the 424 * changes on the log item. This enables us to relog the item in memory and 425 * write it out asynchronously without needing to relock the object that was 426 * modified at the time it gets written into the iclog. 427 * 428 * This function takes the prepared log vectors attached to each log item, and 429 * formats the changes into the log vector buffer. The buffer it uses is 430 * dependent on the current state of the vector in the CIL - the shadow lv is 431 * guaranteed to be large enough for the current modification, but we will only 432 * use that if we can't reuse the existing lv. If we can't reuse the existing 433 * lv, then simple swap it out for the shadow lv. We don't free it - that is 434 * done lazily either by th enext modification or the freeing of the log item. 435 * 436 * We don't set up region headers during this process; we simply copy the 437 * regions into the flat buffer. We can do this because we still have to do a 438 * formatting step to write the regions into the iclog buffer. Writing the 439 * ophdrs during the iclog write means that we can support splitting large 440 * regions across iclog boundares without needing a change in the format of the 441 * item/region encapsulation. 442 * 443 * Hence what we need to do now is change the rewrite the vector array to point 444 * to the copied region inside the buffer we just allocated. This allows us to 445 * format the regions into the iclog as though they are being formatted 446 * directly out of the objects themselves. 447 */ 448 static void 449 xlog_cil_insert_format_items( 450 struct xlog *log, 451 struct xfs_trans *tp, 452 int *diff_len) 453 { 454 struct xfs_log_item *lip; 455 456 /* Bail out if we didn't find a log item. */ 457 if (list_empty(&tp->t_items)) { 458 ASSERT(0); 459 return; 460 } 461 462 list_for_each_entry(lip, &tp->t_items, li_trans) { 463 struct xfs_log_vec *lv; 464 struct xfs_log_vec *old_lv = NULL; 465 struct xfs_log_vec *shadow; 466 bool ordered = false; 467 468 /* Skip items which aren't dirty in this transaction. */ 469 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 470 continue; 471 472 /* 473 * The formatting size information is already attached to 474 * the shadow lv on the log item. 475 */ 476 shadow = lip->li_lv_shadow; 477 if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED) 478 ordered = true; 479 480 /* Skip items that do not have any vectors for writing */ 481 if (!shadow->lv_niovecs && !ordered) 482 continue; 483 484 /* compare to existing item size */ 485 old_lv = lip->li_lv; 486 if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) { 487 /* same or smaller, optimise common overwrite case */ 488 lv = lip->li_lv; 489 490 if (ordered) 491 goto insert; 492 493 /* 494 * set the item up as though it is a new insertion so 495 * that the space reservation accounting is correct. 496 */ 497 *diff_len -= lv->lv_bytes; 498 499 /* Ensure the lv is set up according to ->iop_size */ 500 lv->lv_niovecs = shadow->lv_niovecs; 501 502 /* reset the lv buffer information for new formatting */ 503 lv->lv_buf_len = 0; 504 lv->lv_bytes = 0; 505 lv->lv_buf = (char *)lv + 506 xlog_cil_iovec_space(lv->lv_niovecs); 507 } else { 508 /* switch to shadow buffer! */ 509 lv = shadow; 510 lv->lv_item = lip; 511 if (ordered) { 512 /* track as an ordered logvec */ 513 ASSERT(lip->li_lv == NULL); 514 goto insert; 515 } 516 } 517 518 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t))); 519 lip->li_ops->iop_format(lip, lv); 520 insert: 521 xfs_cil_prepare_item(log, lv, old_lv, diff_len); 522 } 523 } 524 525 /* 526 * The use of lockless waitqueue_active() requires that the caller has 527 * serialised itself against the wakeup call in xlog_cil_push_work(). That 528 * can be done by either holding the push lock or the context lock. 529 */ 530 static inline bool 531 xlog_cil_over_hard_limit( 532 struct xlog *log, 533 int32_t space_used) 534 { 535 if (waitqueue_active(&log->l_cilp->xc_push_wait)) 536 return true; 537 if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log)) 538 return true; 539 return false; 540 } 541 542 /* 543 * Insert the log items into the CIL and calculate the difference in space 544 * consumed by the item. Add the space to the checkpoint ticket and calculate 545 * if the change requires additional log metadata. If it does, take that space 546 * as well. Remove the amount of space we added to the checkpoint ticket from 547 * the current transaction ticket so that the accounting works out correctly. 548 */ 549 static void 550 xlog_cil_insert_items( 551 struct xlog *log, 552 struct xfs_trans *tp, 553 uint32_t released_space) 554 { 555 struct xfs_cil *cil = log->l_cilp; 556 struct xfs_cil_ctx *ctx = cil->xc_ctx; 557 struct xfs_log_item *lip; 558 int len = 0; 559 int iovhdr_res = 0, split_res = 0, ctx_res = 0; 560 int space_used; 561 int order; 562 unsigned int cpu_nr; 563 struct xlog_cil_pcp *cilpcp; 564 565 ASSERT(tp); 566 567 /* 568 * We can do this safely because the context can't checkpoint until we 569 * are done so it doesn't matter exactly how we update the CIL. 570 */ 571 xlog_cil_insert_format_items(log, tp, &len); 572 573 /* 574 * Subtract the space released by intent cancelation from the space we 575 * consumed so that we remove it from the CIL space and add it back to 576 * the current transaction reservation context. 577 */ 578 len -= released_space; 579 580 /* 581 * Grab the per-cpu pointer for the CIL before we start any accounting. 582 * That ensures that we are running with pre-emption disabled and so we 583 * can't be scheduled away between split sample/update operations that 584 * are done without outside locking to serialise them. 585 */ 586 cpu_nr = get_cpu(); 587 cilpcp = this_cpu_ptr(cil->xc_pcp); 588 589 /* Tell the future push that there was work added by this CPU. */ 590 if (!cpumask_test_cpu(cpu_nr, &ctx->cil_pcpmask)) 591 cpumask_test_and_set_cpu(cpu_nr, &ctx->cil_pcpmask); 592 593 /* 594 * We need to take the CIL checkpoint unit reservation on the first 595 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't 596 * unnecessarily do an atomic op in the fast path here. We can clear the 597 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that 598 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit. 599 */ 600 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) && 601 test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 602 ctx_res = ctx->ticket->t_unit_res; 603 604 /* 605 * Check if we need to steal iclog headers. atomic_read() is not a 606 * locked atomic operation, so we can check the value before we do any 607 * real atomic ops in the fast path. If we've already taken the CIL unit 608 * reservation from this commit, we've already got one iclog header 609 * space reserved so we have to account for that otherwise we risk 610 * overrunning the reservation on this ticket. 611 * 612 * If the CIL is already at the hard limit, we might need more header 613 * space that originally reserved. So steal more header space from every 614 * commit that occurs once we are over the hard limit to ensure the CIL 615 * push won't run out of reservation space. 616 * 617 * This can steal more than we need, but that's OK. 618 * 619 * The cil->xc_ctx_lock provides the serialisation necessary for safely 620 * calling xlog_cil_over_hard_limit() in this context. 621 */ 622 space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len; 623 if (atomic_read(&cil->xc_iclog_hdrs) > 0 || 624 xlog_cil_over_hard_limit(log, space_used)) { 625 split_res = log->l_iclog_hsize + 626 sizeof(struct xlog_op_header); 627 if (ctx_res) 628 ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1); 629 else 630 ctx_res = split_res * tp->t_ticket->t_iclog_hdrs; 631 atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs); 632 } 633 cilpcp->space_reserved += ctx_res; 634 635 /* 636 * Accurately account when over the soft limit, otherwise fold the 637 * percpu count into the global count if over the per-cpu threshold. 638 */ 639 if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) { 640 atomic_add(len, &ctx->space_used); 641 } else if (cilpcp->space_used + len > 642 (XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) { 643 space_used = atomic_add_return(cilpcp->space_used + len, 644 &ctx->space_used); 645 cilpcp->space_used = 0; 646 647 /* 648 * If we just transitioned over the soft limit, we need to 649 * transition to the global atomic counter. 650 */ 651 if (space_used >= XLOG_CIL_SPACE_LIMIT(log)) 652 xlog_cil_insert_pcp_aggregate(cil, ctx); 653 } else { 654 cilpcp->space_used += len; 655 } 656 /* attach the transaction to the CIL if it has any busy extents */ 657 if (!list_empty(&tp->t_busy)) 658 list_splice_init(&tp->t_busy, &cilpcp->busy_extents); 659 660 /* 661 * Now update the order of everything modified in the transaction 662 * and insert items into the CIL if they aren't already there. 663 * We do this here so we only need to take the CIL lock once during 664 * the transaction commit. 665 */ 666 order = atomic_inc_return(&ctx->order_id); 667 list_for_each_entry(lip, &tp->t_items, li_trans) { 668 /* Skip items which aren't dirty in this transaction. */ 669 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 670 continue; 671 672 lip->li_order_id = order; 673 if (!list_empty(&lip->li_cil)) 674 continue; 675 list_add_tail(&lip->li_cil, &cilpcp->log_items); 676 } 677 put_cpu(); 678 679 /* 680 * If we've overrun the reservation, dump the tx details before we move 681 * the log items. Shutdown is imminent... 682 */ 683 tp->t_ticket->t_curr_res -= ctx_res + len; 684 if (WARN_ON(tp->t_ticket->t_curr_res < 0)) { 685 xfs_warn(log->l_mp, "Transaction log reservation overrun:"); 686 xfs_warn(log->l_mp, 687 " log items: %d bytes (iov hdrs: %d bytes)", 688 len, iovhdr_res); 689 xfs_warn(log->l_mp, " split region headers: %d bytes", 690 split_res); 691 xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res); 692 xlog_print_trans(tp); 693 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 694 } 695 } 696 697 static void 698 xlog_cil_free_logvec( 699 struct list_head *lv_chain) 700 { 701 struct xfs_log_vec *lv; 702 703 while (!list_empty(lv_chain)) { 704 lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list); 705 list_del_init(&lv->lv_list); 706 kmem_free(lv); 707 } 708 } 709 710 /* 711 * Mark all items committed and clear busy extents. We free the log vector 712 * chains in a separate pass so that we unpin the log items as quickly as 713 * possible. 714 */ 715 static void 716 xlog_cil_committed( 717 struct xfs_cil_ctx *ctx) 718 { 719 struct xfs_mount *mp = ctx->cil->xc_log->l_mp; 720 bool abort = xlog_is_shutdown(ctx->cil->xc_log); 721 722 /* 723 * If the I/O failed, we're aborting the commit and already shutdown. 724 * Wake any commit waiters before aborting the log items so we don't 725 * block async log pushers on callbacks. Async log pushers explicitly do 726 * not wait on log force completion because they may be holding locks 727 * required to unpin items. 728 */ 729 if (abort) { 730 spin_lock(&ctx->cil->xc_push_lock); 731 wake_up_all(&ctx->cil->xc_start_wait); 732 wake_up_all(&ctx->cil->xc_commit_wait); 733 spin_unlock(&ctx->cil->xc_push_lock); 734 } 735 736 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, &ctx->lv_chain, 737 ctx->start_lsn, abort); 738 739 xfs_extent_busy_sort(&ctx->busy_extents.extent_list); 740 xfs_extent_busy_clear(mp, &ctx->busy_extents.extent_list, 741 xfs_has_discard(mp) && !abort); 742 743 spin_lock(&ctx->cil->xc_push_lock); 744 list_del(&ctx->committing); 745 spin_unlock(&ctx->cil->xc_push_lock); 746 747 xlog_cil_free_logvec(&ctx->lv_chain); 748 749 if (!list_empty(&ctx->busy_extents.extent_list)) { 750 ctx->busy_extents.mount = mp; 751 ctx->busy_extents.owner = ctx; 752 xfs_discard_extents(mp, &ctx->busy_extents); 753 return; 754 } 755 756 kmem_free(ctx); 757 } 758 759 void 760 xlog_cil_process_committed( 761 struct list_head *list) 762 { 763 struct xfs_cil_ctx *ctx; 764 765 while ((ctx = list_first_entry_or_null(list, 766 struct xfs_cil_ctx, iclog_entry))) { 767 list_del(&ctx->iclog_entry); 768 xlog_cil_committed(ctx); 769 } 770 } 771 772 /* 773 * Record the LSN of the iclog we were just granted space to start writing into. 774 * If the context doesn't have a start_lsn recorded, then this iclog will 775 * contain the start record for the checkpoint. Otherwise this write contains 776 * the commit record for the checkpoint. 777 */ 778 void 779 xlog_cil_set_ctx_write_state( 780 struct xfs_cil_ctx *ctx, 781 struct xlog_in_core *iclog) 782 { 783 struct xfs_cil *cil = ctx->cil; 784 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 785 786 ASSERT(!ctx->commit_lsn); 787 if (!ctx->start_lsn) { 788 spin_lock(&cil->xc_push_lock); 789 /* 790 * The LSN we need to pass to the log items on transaction 791 * commit is the LSN reported by the first log vector write, not 792 * the commit lsn. If we use the commit record lsn then we can 793 * move the grant write head beyond the tail LSN and overwrite 794 * it. 795 */ 796 ctx->start_lsn = lsn; 797 wake_up_all(&cil->xc_start_wait); 798 spin_unlock(&cil->xc_push_lock); 799 800 /* 801 * Make sure the metadata we are about to overwrite in the log 802 * has been flushed to stable storage before this iclog is 803 * issued. 804 */ 805 spin_lock(&cil->xc_log->l_icloglock); 806 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 807 spin_unlock(&cil->xc_log->l_icloglock); 808 return; 809 } 810 811 /* 812 * Take a reference to the iclog for the context so that we still hold 813 * it when xlog_write is done and has released it. This means the 814 * context controls when the iclog is released for IO. 815 */ 816 atomic_inc(&iclog->ic_refcnt); 817 818 /* 819 * xlog_state_get_iclog_space() guarantees there is enough space in the 820 * iclog for an entire commit record, so we can attach the context 821 * callbacks now. This needs to be done before we make the commit_lsn 822 * visible to waiters so that checkpoints with commit records in the 823 * same iclog order their IO completion callbacks in the same order that 824 * the commit records appear in the iclog. 825 */ 826 spin_lock(&cil->xc_log->l_icloglock); 827 list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks); 828 spin_unlock(&cil->xc_log->l_icloglock); 829 830 /* 831 * Now we can record the commit LSN and wake anyone waiting for this 832 * sequence to have the ordered commit record assigned to a physical 833 * location in the log. 834 */ 835 spin_lock(&cil->xc_push_lock); 836 ctx->commit_iclog = iclog; 837 ctx->commit_lsn = lsn; 838 wake_up_all(&cil->xc_commit_wait); 839 spin_unlock(&cil->xc_push_lock); 840 } 841 842 843 /* 844 * Ensure that the order of log writes follows checkpoint sequence order. This 845 * relies on the context LSN being zero until the log write has guaranteed the 846 * LSN that the log write will start at via xlog_state_get_iclog_space(). 847 */ 848 enum _record_type { 849 _START_RECORD, 850 _COMMIT_RECORD, 851 }; 852 853 static int 854 xlog_cil_order_write( 855 struct xfs_cil *cil, 856 xfs_csn_t sequence, 857 enum _record_type record) 858 { 859 struct xfs_cil_ctx *ctx; 860 861 restart: 862 spin_lock(&cil->xc_push_lock); 863 list_for_each_entry(ctx, &cil->xc_committing, committing) { 864 /* 865 * Avoid getting stuck in this loop because we were woken by the 866 * shutdown, but then went back to sleep once already in the 867 * shutdown state. 868 */ 869 if (xlog_is_shutdown(cil->xc_log)) { 870 spin_unlock(&cil->xc_push_lock); 871 return -EIO; 872 } 873 874 /* 875 * Higher sequences will wait for this one so skip them. 876 * Don't wait for our own sequence, either. 877 */ 878 if (ctx->sequence >= sequence) 879 continue; 880 881 /* Wait until the LSN for the record has been recorded. */ 882 switch (record) { 883 case _START_RECORD: 884 if (!ctx->start_lsn) { 885 xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock); 886 goto restart; 887 } 888 break; 889 case _COMMIT_RECORD: 890 if (!ctx->commit_lsn) { 891 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 892 goto restart; 893 } 894 break; 895 } 896 } 897 spin_unlock(&cil->xc_push_lock); 898 return 0; 899 } 900 901 /* 902 * Write out the log vector change now attached to the CIL context. This will 903 * write a start record that needs to be strictly ordered in ascending CIL 904 * sequence order so that log recovery will always use in-order start LSNs when 905 * replaying checkpoints. 906 */ 907 static int 908 xlog_cil_write_chain( 909 struct xfs_cil_ctx *ctx, 910 uint32_t chain_len) 911 { 912 struct xlog *log = ctx->cil->xc_log; 913 int error; 914 915 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD); 916 if (error) 917 return error; 918 return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len); 919 } 920 921 /* 922 * Write out the commit record of a checkpoint transaction to close off a 923 * running log write. These commit records are strictly ordered in ascending CIL 924 * sequence order so that log recovery will always replay the checkpoints in the 925 * correct order. 926 */ 927 static int 928 xlog_cil_write_commit_record( 929 struct xfs_cil_ctx *ctx) 930 { 931 struct xlog *log = ctx->cil->xc_log; 932 struct xlog_op_header ophdr = { 933 .oh_clientid = XFS_TRANSACTION, 934 .oh_tid = cpu_to_be32(ctx->ticket->t_tid), 935 .oh_flags = XLOG_COMMIT_TRANS, 936 }; 937 struct xfs_log_iovec reg = { 938 .i_addr = &ophdr, 939 .i_len = sizeof(struct xlog_op_header), 940 .i_type = XLOG_REG_TYPE_COMMIT, 941 }; 942 struct xfs_log_vec vec = { 943 .lv_niovecs = 1, 944 .lv_iovecp = ®, 945 }; 946 int error; 947 LIST_HEAD(lv_chain); 948 list_add(&vec.lv_list, &lv_chain); 949 950 if (xlog_is_shutdown(log)) 951 return -EIO; 952 953 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD); 954 if (error) 955 return error; 956 957 /* account for space used by record data */ 958 ctx->ticket->t_curr_res -= reg.i_len; 959 error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len); 960 if (error) 961 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 962 return error; 963 } 964 965 struct xlog_cil_trans_hdr { 966 struct xlog_op_header oph[2]; 967 struct xfs_trans_header thdr; 968 struct xfs_log_iovec lhdr[2]; 969 }; 970 971 /* 972 * Build a checkpoint transaction header to begin the journal transaction. We 973 * need to account for the space used by the transaction header here as it is 974 * not accounted for in xlog_write(). 975 * 976 * This is the only place we write a transaction header, so we also build the 977 * log opheaders that indicate the start of a log transaction and wrap the 978 * transaction header. We keep the start record in it's own log vector rather 979 * than compacting them into a single region as this ends up making the logic 980 * in xlog_write() for handling empty opheaders for start, commit and unmount 981 * records much simpler. 982 */ 983 static void 984 xlog_cil_build_trans_hdr( 985 struct xfs_cil_ctx *ctx, 986 struct xlog_cil_trans_hdr *hdr, 987 struct xfs_log_vec *lvhdr, 988 int num_iovecs) 989 { 990 struct xlog_ticket *tic = ctx->ticket; 991 __be32 tid = cpu_to_be32(tic->t_tid); 992 993 memset(hdr, 0, sizeof(*hdr)); 994 995 /* Log start record */ 996 hdr->oph[0].oh_tid = tid; 997 hdr->oph[0].oh_clientid = XFS_TRANSACTION; 998 hdr->oph[0].oh_flags = XLOG_START_TRANS; 999 1000 /* log iovec region pointer */ 1001 hdr->lhdr[0].i_addr = &hdr->oph[0]; 1002 hdr->lhdr[0].i_len = sizeof(struct xlog_op_header); 1003 hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER; 1004 1005 /* log opheader */ 1006 hdr->oph[1].oh_tid = tid; 1007 hdr->oph[1].oh_clientid = XFS_TRANSACTION; 1008 hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header)); 1009 1010 /* transaction header in host byte order format */ 1011 hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC; 1012 hdr->thdr.th_type = XFS_TRANS_CHECKPOINT; 1013 hdr->thdr.th_tid = tic->t_tid; 1014 hdr->thdr.th_num_items = num_iovecs; 1015 1016 /* log iovec region pointer */ 1017 hdr->lhdr[1].i_addr = &hdr->oph[1]; 1018 hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) + 1019 sizeof(struct xfs_trans_header); 1020 hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR; 1021 1022 lvhdr->lv_niovecs = 2; 1023 lvhdr->lv_iovecp = &hdr->lhdr[0]; 1024 lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len; 1025 1026 tic->t_curr_res -= lvhdr->lv_bytes; 1027 } 1028 1029 /* 1030 * CIL item reordering compare function. We want to order in ascending ID order, 1031 * but we want to leave items with the same ID in the order they were added to 1032 * the list. This is important for operations like reflink where we log 4 order 1033 * dependent intents in a single transaction when we overwrite an existing 1034 * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop), 1035 * CUI (inc), BUI(remap)... 1036 */ 1037 static int 1038 xlog_cil_order_cmp( 1039 void *priv, 1040 const struct list_head *a, 1041 const struct list_head *b) 1042 { 1043 struct xfs_log_vec *l1 = container_of(a, struct xfs_log_vec, lv_list); 1044 struct xfs_log_vec *l2 = container_of(b, struct xfs_log_vec, lv_list); 1045 1046 return l1->lv_order_id > l2->lv_order_id; 1047 } 1048 1049 /* 1050 * Pull all the log vectors off the items in the CIL, and remove the items from 1051 * the CIL. We don't need the CIL lock here because it's only needed on the 1052 * transaction commit side which is currently locked out by the flush lock. 1053 * 1054 * If a log item is marked with a whiteout, we do not need to write it to the 1055 * journal and so we just move them to the whiteout list for the caller to 1056 * dispose of appropriately. 1057 */ 1058 static void 1059 xlog_cil_build_lv_chain( 1060 struct xfs_cil_ctx *ctx, 1061 struct list_head *whiteouts, 1062 uint32_t *num_iovecs, 1063 uint32_t *num_bytes) 1064 { 1065 while (!list_empty(&ctx->log_items)) { 1066 struct xfs_log_item *item; 1067 struct xfs_log_vec *lv; 1068 1069 item = list_first_entry(&ctx->log_items, 1070 struct xfs_log_item, li_cil); 1071 1072 if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) { 1073 list_move(&item->li_cil, whiteouts); 1074 trace_xfs_cil_whiteout_skip(item); 1075 continue; 1076 } 1077 1078 lv = item->li_lv; 1079 lv->lv_order_id = item->li_order_id; 1080 1081 /* we don't write ordered log vectors */ 1082 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) 1083 *num_bytes += lv->lv_bytes; 1084 *num_iovecs += lv->lv_niovecs; 1085 list_add_tail(&lv->lv_list, &ctx->lv_chain); 1086 1087 list_del_init(&item->li_cil); 1088 item->li_order_id = 0; 1089 item->li_lv = NULL; 1090 } 1091 } 1092 1093 static void 1094 xlog_cil_cleanup_whiteouts( 1095 struct list_head *whiteouts) 1096 { 1097 while (!list_empty(whiteouts)) { 1098 struct xfs_log_item *item = list_first_entry(whiteouts, 1099 struct xfs_log_item, li_cil); 1100 list_del_init(&item->li_cil); 1101 trace_xfs_cil_whiteout_unpin(item); 1102 item->li_ops->iop_unpin(item, 1); 1103 } 1104 } 1105 1106 /* 1107 * Push the Committed Item List to the log. 1108 * 1109 * If the current sequence is the same as xc_push_seq we need to do a flush. If 1110 * xc_push_seq is less than the current sequence, then it has already been 1111 * flushed and we don't need to do anything - the caller will wait for it to 1112 * complete if necessary. 1113 * 1114 * xc_push_seq is checked unlocked against the sequence number for a match. 1115 * Hence we can allow log forces to run racily and not issue pushes for the 1116 * same sequence twice. If we get a race between multiple pushes for the same 1117 * sequence they will block on the first one and then abort, hence avoiding 1118 * needless pushes. 1119 */ 1120 static void 1121 xlog_cil_push_work( 1122 struct work_struct *work) 1123 { 1124 struct xfs_cil_ctx *ctx = 1125 container_of(work, struct xfs_cil_ctx, push_work); 1126 struct xfs_cil *cil = ctx->cil; 1127 struct xlog *log = cil->xc_log; 1128 struct xfs_cil_ctx *new_ctx; 1129 int num_iovecs = 0; 1130 int num_bytes = 0; 1131 int error = 0; 1132 struct xlog_cil_trans_hdr thdr; 1133 struct xfs_log_vec lvhdr = {}; 1134 xfs_csn_t push_seq; 1135 bool push_commit_stable; 1136 LIST_HEAD (whiteouts); 1137 struct xlog_ticket *ticket; 1138 1139 new_ctx = xlog_cil_ctx_alloc(); 1140 new_ctx->ticket = xlog_cil_ticket_alloc(log); 1141 1142 down_write(&cil->xc_ctx_lock); 1143 1144 spin_lock(&cil->xc_push_lock); 1145 push_seq = cil->xc_push_seq; 1146 ASSERT(push_seq <= ctx->sequence); 1147 push_commit_stable = cil->xc_push_commit_stable; 1148 cil->xc_push_commit_stable = false; 1149 1150 /* 1151 * As we are about to switch to a new, empty CIL context, we no longer 1152 * need to throttle tasks on CIL space overruns. Wake any waiters that 1153 * the hard push throttle may have caught so they can start committing 1154 * to the new context. The ctx->xc_push_lock provides the serialisation 1155 * necessary for safely using the lockless waitqueue_active() check in 1156 * this context. 1157 */ 1158 if (waitqueue_active(&cil->xc_push_wait)) 1159 wake_up_all(&cil->xc_push_wait); 1160 1161 xlog_cil_push_pcp_aggregate(cil, ctx); 1162 1163 /* 1164 * Check if we've anything to push. If there is nothing, then we don't 1165 * move on to a new sequence number and so we have to be able to push 1166 * this sequence again later. 1167 */ 1168 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) { 1169 cil->xc_push_seq = 0; 1170 spin_unlock(&cil->xc_push_lock); 1171 goto out_skip; 1172 } 1173 1174 1175 /* check for a previously pushed sequence */ 1176 if (push_seq < ctx->sequence) { 1177 spin_unlock(&cil->xc_push_lock); 1178 goto out_skip; 1179 } 1180 1181 /* 1182 * We are now going to push this context, so add it to the committing 1183 * list before we do anything else. This ensures that anyone waiting on 1184 * this push can easily detect the difference between a "push in 1185 * progress" and "CIL is empty, nothing to do". 1186 * 1187 * IOWs, a wait loop can now check for: 1188 * the current sequence not being found on the committing list; 1189 * an empty CIL; and 1190 * an unchanged sequence number 1191 * to detect a push that had nothing to do and therefore does not need 1192 * waiting on. If the CIL is not empty, we get put on the committing 1193 * list before emptying the CIL and bumping the sequence number. Hence 1194 * an empty CIL and an unchanged sequence number means we jumped out 1195 * above after doing nothing. 1196 * 1197 * Hence the waiter will either find the commit sequence on the 1198 * committing list or the sequence number will be unchanged and the CIL 1199 * still dirty. In that latter case, the push has not yet started, and 1200 * so the waiter will have to continue trying to check the CIL 1201 * committing list until it is found. In extreme cases of delay, the 1202 * sequence may fully commit between the attempts the wait makes to wait 1203 * on the commit sequence. 1204 */ 1205 list_add(&ctx->committing, &cil->xc_committing); 1206 spin_unlock(&cil->xc_push_lock); 1207 1208 xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes); 1209 1210 /* 1211 * Switch the contexts so we can drop the context lock and move out 1212 * of a shared context. We can't just go straight to the commit record, 1213 * though - we need to synchronise with previous and future commits so 1214 * that the commit records are correctly ordered in the log to ensure 1215 * that we process items during log IO completion in the correct order. 1216 * 1217 * For example, if we get an EFI in one checkpoint and the EFD in the 1218 * next (e.g. due to log forces), we do not want the checkpoint with 1219 * the EFD to be committed before the checkpoint with the EFI. Hence 1220 * we must strictly order the commit records of the checkpoints so 1221 * that: a) the checkpoint callbacks are attached to the iclogs in the 1222 * correct order; and b) the checkpoints are replayed in correct order 1223 * in log recovery. 1224 * 1225 * Hence we need to add this context to the committing context list so 1226 * that higher sequences will wait for us to write out a commit record 1227 * before they do. 1228 * 1229 * xfs_log_force_seq requires us to mirror the new sequence into the cil 1230 * structure atomically with the addition of this sequence to the 1231 * committing list. This also ensures that we can do unlocked checks 1232 * against the current sequence in log forces without risking 1233 * deferencing a freed context pointer. 1234 */ 1235 spin_lock(&cil->xc_push_lock); 1236 xlog_cil_ctx_switch(cil, new_ctx); 1237 spin_unlock(&cil->xc_push_lock); 1238 up_write(&cil->xc_ctx_lock); 1239 1240 /* 1241 * Sort the log vector chain before we add the transaction headers. 1242 * This ensures we always have the transaction headers at the start 1243 * of the chain. 1244 */ 1245 list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp); 1246 1247 /* 1248 * Build a checkpoint transaction header and write it to the log to 1249 * begin the transaction. We need to account for the space used by the 1250 * transaction header here as it is not accounted for in xlog_write(). 1251 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so 1252 * it gets written into the iclog first. 1253 */ 1254 xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs); 1255 num_bytes += lvhdr.lv_bytes; 1256 list_add(&lvhdr.lv_list, &ctx->lv_chain); 1257 1258 /* 1259 * Take the lvhdr back off the lv_chain immediately after calling 1260 * xlog_cil_write_chain() as it should not be passed to log IO 1261 * completion. 1262 */ 1263 error = xlog_cil_write_chain(ctx, num_bytes); 1264 list_del(&lvhdr.lv_list); 1265 if (error) 1266 goto out_abort_free_ticket; 1267 1268 error = xlog_cil_write_commit_record(ctx); 1269 if (error) 1270 goto out_abort_free_ticket; 1271 1272 /* 1273 * Grab the ticket from the ctx so we can ungrant it after releasing the 1274 * commit_iclog. The ctx may be freed by the time we return from 1275 * releasing the commit_iclog (i.e. checkpoint has been completed and 1276 * callback run) so we can't reference the ctx after the call to 1277 * xlog_state_release_iclog(). 1278 */ 1279 ticket = ctx->ticket; 1280 1281 /* 1282 * If the checkpoint spans multiple iclogs, wait for all previous iclogs 1283 * to complete before we submit the commit_iclog. We can't use state 1284 * checks for this - ACTIVE can be either a past completed iclog or a 1285 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a 1286 * past or future iclog awaiting IO or ordered IO completion to be run. 1287 * In the latter case, if it's a future iclog and we wait on it, the we 1288 * will hang because it won't get processed through to ic_force_wait 1289 * wakeup until this commit_iclog is written to disk. Hence we use the 1290 * iclog header lsn and compare it to the commit lsn to determine if we 1291 * need to wait on iclogs or not. 1292 */ 1293 spin_lock(&log->l_icloglock); 1294 if (ctx->start_lsn != ctx->commit_lsn) { 1295 xfs_lsn_t plsn; 1296 1297 plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn); 1298 if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) { 1299 /* 1300 * Waiting on ic_force_wait orders the completion of 1301 * iclogs older than ic_prev. Hence we only need to wait 1302 * on the most recent older iclog here. 1303 */ 1304 xlog_wait_on_iclog(ctx->commit_iclog->ic_prev); 1305 spin_lock(&log->l_icloglock); 1306 } 1307 1308 /* 1309 * We need to issue a pre-flush so that the ordering for this 1310 * checkpoint is correctly preserved down to stable storage. 1311 */ 1312 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 1313 } 1314 1315 /* 1316 * The commit iclog must be written to stable storage to guarantee 1317 * journal IO vs metadata writeback IO is correctly ordered on stable 1318 * storage. 1319 * 1320 * If the push caller needs the commit to be immediately stable and the 1321 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it 1322 * will be written when released, switch it's state to WANT_SYNC right 1323 * now. 1324 */ 1325 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA; 1326 if (push_commit_stable && 1327 ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE) 1328 xlog_state_switch_iclogs(log, ctx->commit_iclog, 0); 1329 ticket = ctx->ticket; 1330 xlog_state_release_iclog(log, ctx->commit_iclog, ticket); 1331 1332 /* Not safe to reference ctx now! */ 1333 1334 spin_unlock(&log->l_icloglock); 1335 xlog_cil_cleanup_whiteouts(&whiteouts); 1336 xfs_log_ticket_ungrant(log, ticket); 1337 return; 1338 1339 out_skip: 1340 up_write(&cil->xc_ctx_lock); 1341 xfs_log_ticket_put(new_ctx->ticket); 1342 kmem_free(new_ctx); 1343 return; 1344 1345 out_abort_free_ticket: 1346 ASSERT(xlog_is_shutdown(log)); 1347 xlog_cil_cleanup_whiteouts(&whiteouts); 1348 if (!ctx->commit_iclog) { 1349 xfs_log_ticket_ungrant(log, ctx->ticket); 1350 xlog_cil_committed(ctx); 1351 return; 1352 } 1353 spin_lock(&log->l_icloglock); 1354 ticket = ctx->ticket; 1355 xlog_state_release_iclog(log, ctx->commit_iclog, ticket); 1356 /* Not safe to reference ctx now! */ 1357 spin_unlock(&log->l_icloglock); 1358 xfs_log_ticket_ungrant(log, ticket); 1359 } 1360 1361 /* 1362 * We need to push CIL every so often so we don't cache more than we can fit in 1363 * the log. The limit really is that a checkpoint can't be more than half the 1364 * log (the current checkpoint is not allowed to overwrite the previous 1365 * checkpoint), but commit latency and memory usage limit this to a smaller 1366 * size. 1367 */ 1368 static void 1369 xlog_cil_push_background( 1370 struct xlog *log) __releases(cil->xc_ctx_lock) 1371 { 1372 struct xfs_cil *cil = log->l_cilp; 1373 int space_used = atomic_read(&cil->xc_ctx->space_used); 1374 1375 /* 1376 * The cil won't be empty because we are called while holding the 1377 * context lock so whatever we added to the CIL will still be there. 1378 */ 1379 ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)); 1380 1381 /* 1382 * We are done if: 1383 * - we haven't used up all the space available yet; or 1384 * - we've already queued up a push; and 1385 * - we're not over the hard limit; and 1386 * - nothing has been over the hard limit. 1387 * 1388 * If so, we don't need to take the push lock as there's nothing to do. 1389 */ 1390 if (space_used < XLOG_CIL_SPACE_LIMIT(log) || 1391 (cil->xc_push_seq == cil->xc_current_sequence && 1392 space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) && 1393 !waitqueue_active(&cil->xc_push_wait))) { 1394 up_read(&cil->xc_ctx_lock); 1395 return; 1396 } 1397 1398 spin_lock(&cil->xc_push_lock); 1399 if (cil->xc_push_seq < cil->xc_current_sequence) { 1400 cil->xc_push_seq = cil->xc_current_sequence; 1401 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1402 } 1403 1404 /* 1405 * Drop the context lock now, we can't hold that if we need to sleep 1406 * because we are over the blocking threshold. The push_lock is still 1407 * held, so blocking threshold sleep/wakeup is still correctly 1408 * serialised here. 1409 */ 1410 up_read(&cil->xc_ctx_lock); 1411 1412 /* 1413 * If we are well over the space limit, throttle the work that is being 1414 * done until the push work on this context has begun. Enforce the hard 1415 * throttle on all transaction commits once it has been activated, even 1416 * if the committing transactions have resulted in the space usage 1417 * dipping back down under the hard limit. 1418 * 1419 * The ctx->xc_push_lock provides the serialisation necessary for safely 1420 * calling xlog_cil_over_hard_limit() in this context. 1421 */ 1422 if (xlog_cil_over_hard_limit(log, space_used)) { 1423 trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket); 1424 ASSERT(space_used < log->l_logsize); 1425 xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock); 1426 return; 1427 } 1428 1429 spin_unlock(&cil->xc_push_lock); 1430 1431 } 1432 1433 /* 1434 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence 1435 * number that is passed. When it returns, the work will be queued for 1436 * @push_seq, but it won't be completed. 1437 * 1438 * If the caller is performing a synchronous force, we will flush the workqueue 1439 * to get previously queued work moving to minimise the wait time they will 1440 * undergo waiting for all outstanding pushes to complete. The caller is 1441 * expected to do the required waiting for push_seq to complete. 1442 * 1443 * If the caller is performing an async push, we need to ensure that the 1444 * checkpoint is fully flushed out of the iclogs when we finish the push. If we 1445 * don't do this, then the commit record may remain sitting in memory in an 1446 * ACTIVE iclog. This then requires another full log force to push to disk, 1447 * which defeats the purpose of having an async, non-blocking CIL force 1448 * mechanism. Hence in this case we need to pass a flag to the push work to 1449 * indicate it needs to flush the commit record itself. 1450 */ 1451 static void 1452 xlog_cil_push_now( 1453 struct xlog *log, 1454 xfs_lsn_t push_seq, 1455 bool async) 1456 { 1457 struct xfs_cil *cil = log->l_cilp; 1458 1459 if (!cil) 1460 return; 1461 1462 ASSERT(push_seq && push_seq <= cil->xc_current_sequence); 1463 1464 /* start on any pending background push to minimise wait time on it */ 1465 if (!async) 1466 flush_workqueue(cil->xc_push_wq); 1467 1468 spin_lock(&cil->xc_push_lock); 1469 1470 /* 1471 * If this is an async flush request, we always need to set the 1472 * xc_push_commit_stable flag even if something else has already queued 1473 * a push. The flush caller is asking for the CIL to be on stable 1474 * storage when the next push completes, so regardless of who has queued 1475 * the push, the flush requires stable semantics from it. 1476 */ 1477 cil->xc_push_commit_stable = async; 1478 1479 /* 1480 * If the CIL is empty or we've already pushed the sequence then 1481 * there's no more work that we need to do. 1482 */ 1483 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) || 1484 push_seq <= cil->xc_push_seq) { 1485 spin_unlock(&cil->xc_push_lock); 1486 return; 1487 } 1488 1489 cil->xc_push_seq = push_seq; 1490 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1491 spin_unlock(&cil->xc_push_lock); 1492 } 1493 1494 bool 1495 xlog_cil_empty( 1496 struct xlog *log) 1497 { 1498 struct xfs_cil *cil = log->l_cilp; 1499 bool empty = false; 1500 1501 spin_lock(&cil->xc_push_lock); 1502 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 1503 empty = true; 1504 spin_unlock(&cil->xc_push_lock); 1505 return empty; 1506 } 1507 1508 /* 1509 * If there are intent done items in this transaction and the related intent was 1510 * committed in the current (same) CIL checkpoint, we don't need to write either 1511 * the intent or intent done item to the journal as the change will be 1512 * journalled atomically within this checkpoint. As we cannot remove items from 1513 * the CIL here, mark the related intent with a whiteout so that the CIL push 1514 * can remove it rather than writing it to the journal. Then remove the intent 1515 * done item from the current transaction and release it so it doesn't get put 1516 * into the CIL at all. 1517 */ 1518 static uint32_t 1519 xlog_cil_process_intents( 1520 struct xfs_cil *cil, 1521 struct xfs_trans *tp) 1522 { 1523 struct xfs_log_item *lip, *ilip, *next; 1524 uint32_t len = 0; 1525 1526 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1527 if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE)) 1528 continue; 1529 1530 ilip = lip->li_ops->iop_intent(lip); 1531 if (!ilip || !xlog_item_in_current_chkpt(cil, ilip)) 1532 continue; 1533 set_bit(XFS_LI_WHITEOUT, &ilip->li_flags); 1534 trace_xfs_cil_whiteout_mark(ilip); 1535 len += ilip->li_lv->lv_bytes; 1536 kmem_free(ilip->li_lv); 1537 ilip->li_lv = NULL; 1538 1539 xfs_trans_del_item(lip); 1540 lip->li_ops->iop_release(lip); 1541 } 1542 return len; 1543 } 1544 1545 /* 1546 * Commit a transaction with the given vector to the Committed Item List. 1547 * 1548 * To do this, we need to format the item, pin it in memory if required and 1549 * account for the space used by the transaction. Once we have done that we 1550 * need to release the unused reservation for the transaction, attach the 1551 * transaction to the checkpoint context so we carry the busy extents through 1552 * to checkpoint completion, and then unlock all the items in the transaction. 1553 * 1554 * Called with the context lock already held in read mode to lock out 1555 * background commit, returns without it held once background commits are 1556 * allowed again. 1557 */ 1558 void 1559 xlog_cil_commit( 1560 struct xlog *log, 1561 struct xfs_trans *tp, 1562 xfs_csn_t *commit_seq, 1563 bool regrant) 1564 { 1565 struct xfs_cil *cil = log->l_cilp; 1566 struct xfs_log_item *lip, *next; 1567 uint32_t released_space = 0; 1568 1569 /* 1570 * Do all necessary memory allocation before we lock the CIL. 1571 * This ensures the allocation does not deadlock with a CIL 1572 * push in memory reclaim (e.g. from kswapd). 1573 */ 1574 xlog_cil_alloc_shadow_bufs(log, tp); 1575 1576 /* lock out background commit */ 1577 down_read(&cil->xc_ctx_lock); 1578 1579 if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE) 1580 released_space = xlog_cil_process_intents(cil, tp); 1581 1582 xlog_cil_insert_items(log, tp, released_space); 1583 1584 if (regrant && !xlog_is_shutdown(log)) 1585 xfs_log_ticket_regrant(log, tp->t_ticket); 1586 else 1587 xfs_log_ticket_ungrant(log, tp->t_ticket); 1588 tp->t_ticket = NULL; 1589 xfs_trans_unreserve_and_mod_sb(tp); 1590 1591 /* 1592 * Once all the items of the transaction have been copied to the CIL, 1593 * the items can be unlocked and possibly freed. 1594 * 1595 * This needs to be done before we drop the CIL context lock because we 1596 * have to update state in the log items and unlock them before they go 1597 * to disk. If we don't, then the CIL checkpoint can race with us and 1598 * we can run checkpoint completion before we've updated and unlocked 1599 * the log items. This affects (at least) processing of stale buffers, 1600 * inodes and EFIs. 1601 */ 1602 trace_xfs_trans_commit_items(tp, _RET_IP_); 1603 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1604 xfs_trans_del_item(lip); 1605 if (lip->li_ops->iop_committing) 1606 lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence); 1607 } 1608 if (commit_seq) 1609 *commit_seq = cil->xc_ctx->sequence; 1610 1611 /* xlog_cil_push_background() releases cil->xc_ctx_lock */ 1612 xlog_cil_push_background(log); 1613 } 1614 1615 /* 1616 * Flush the CIL to stable storage but don't wait for it to complete. This 1617 * requires the CIL push to ensure the commit record for the push hits the disk, 1618 * but otherwise is no different to a push done from a log force. 1619 */ 1620 void 1621 xlog_cil_flush( 1622 struct xlog *log) 1623 { 1624 xfs_csn_t seq = log->l_cilp->xc_current_sequence; 1625 1626 trace_xfs_log_force(log->l_mp, seq, _RET_IP_); 1627 xlog_cil_push_now(log, seq, true); 1628 1629 /* 1630 * If the CIL is empty, make sure that any previous checkpoint that may 1631 * still be in an active iclog is pushed to stable storage. 1632 */ 1633 if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags)) 1634 xfs_log_force(log->l_mp, 0); 1635 } 1636 1637 /* 1638 * Conditionally push the CIL based on the sequence passed in. 1639 * 1640 * We only need to push if we haven't already pushed the sequence number given. 1641 * Hence the only time we will trigger a push here is if the push sequence is 1642 * the same as the current context. 1643 * 1644 * We return the current commit lsn to allow the callers to determine if a 1645 * iclog flush is necessary following this call. 1646 */ 1647 xfs_lsn_t 1648 xlog_cil_force_seq( 1649 struct xlog *log, 1650 xfs_csn_t sequence) 1651 { 1652 struct xfs_cil *cil = log->l_cilp; 1653 struct xfs_cil_ctx *ctx; 1654 xfs_lsn_t commit_lsn = NULLCOMMITLSN; 1655 1656 ASSERT(sequence <= cil->xc_current_sequence); 1657 1658 if (!sequence) 1659 sequence = cil->xc_current_sequence; 1660 trace_xfs_log_force(log->l_mp, sequence, _RET_IP_); 1661 1662 /* 1663 * check to see if we need to force out the current context. 1664 * xlog_cil_push() handles racing pushes for the same sequence, 1665 * so no need to deal with it here. 1666 */ 1667 restart: 1668 xlog_cil_push_now(log, sequence, false); 1669 1670 /* 1671 * See if we can find a previous sequence still committing. 1672 * We need to wait for all previous sequence commits to complete 1673 * before allowing the force of push_seq to go ahead. Hence block 1674 * on commits for those as well. 1675 */ 1676 spin_lock(&cil->xc_push_lock); 1677 list_for_each_entry(ctx, &cil->xc_committing, committing) { 1678 /* 1679 * Avoid getting stuck in this loop because we were woken by the 1680 * shutdown, but then went back to sleep once already in the 1681 * shutdown state. 1682 */ 1683 if (xlog_is_shutdown(log)) 1684 goto out_shutdown; 1685 if (ctx->sequence > sequence) 1686 continue; 1687 if (!ctx->commit_lsn) { 1688 /* 1689 * It is still being pushed! Wait for the push to 1690 * complete, then start again from the beginning. 1691 */ 1692 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 1693 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 1694 goto restart; 1695 } 1696 if (ctx->sequence != sequence) 1697 continue; 1698 /* found it! */ 1699 commit_lsn = ctx->commit_lsn; 1700 } 1701 1702 /* 1703 * The call to xlog_cil_push_now() executes the push in the background. 1704 * Hence by the time we have got here it our sequence may not have been 1705 * pushed yet. This is true if the current sequence still matches the 1706 * push sequence after the above wait loop and the CIL still contains 1707 * dirty objects. This is guaranteed by the push code first adding the 1708 * context to the committing list before emptying the CIL. 1709 * 1710 * Hence if we don't find the context in the committing list and the 1711 * current sequence number is unchanged then the CIL contents are 1712 * significant. If the CIL is empty, if means there was nothing to push 1713 * and that means there is nothing to wait for. If the CIL is not empty, 1714 * it means we haven't yet started the push, because if it had started 1715 * we would have found the context on the committing list. 1716 */ 1717 if (sequence == cil->xc_current_sequence && 1718 !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) { 1719 spin_unlock(&cil->xc_push_lock); 1720 goto restart; 1721 } 1722 1723 spin_unlock(&cil->xc_push_lock); 1724 return commit_lsn; 1725 1726 /* 1727 * We detected a shutdown in progress. We need to trigger the log force 1728 * to pass through it's iclog state machine error handling, even though 1729 * we are already in a shutdown state. Hence we can't return 1730 * NULLCOMMITLSN here as that has special meaning to log forces (i.e. 1731 * LSN is already stable), so we return a zero LSN instead. 1732 */ 1733 out_shutdown: 1734 spin_unlock(&cil->xc_push_lock); 1735 return 0; 1736 } 1737 1738 /* 1739 * Perform initial CIL structure initialisation. 1740 */ 1741 int 1742 xlog_cil_init( 1743 struct xlog *log) 1744 { 1745 struct xfs_cil *cil; 1746 struct xfs_cil_ctx *ctx; 1747 struct xlog_cil_pcp *cilpcp; 1748 int cpu; 1749 1750 cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL); 1751 if (!cil) 1752 return -ENOMEM; 1753 /* 1754 * Limit the CIL pipeline depth to 4 concurrent works to bound the 1755 * concurrency the log spinlocks will be exposed to. 1756 */ 1757 cil->xc_push_wq = alloc_workqueue("xfs-cil/%s", 1758 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND), 1759 4, log->l_mp->m_super->s_id); 1760 if (!cil->xc_push_wq) 1761 goto out_destroy_cil; 1762 1763 cil->xc_log = log; 1764 cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp); 1765 if (!cil->xc_pcp) 1766 goto out_destroy_wq; 1767 1768 for_each_possible_cpu(cpu) { 1769 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 1770 INIT_LIST_HEAD(&cilpcp->busy_extents); 1771 INIT_LIST_HEAD(&cilpcp->log_items); 1772 } 1773 1774 INIT_LIST_HEAD(&cil->xc_committing); 1775 spin_lock_init(&cil->xc_push_lock); 1776 init_waitqueue_head(&cil->xc_push_wait); 1777 init_rwsem(&cil->xc_ctx_lock); 1778 init_waitqueue_head(&cil->xc_start_wait); 1779 init_waitqueue_head(&cil->xc_commit_wait); 1780 log->l_cilp = cil; 1781 1782 ctx = xlog_cil_ctx_alloc(); 1783 xlog_cil_ctx_switch(cil, ctx); 1784 return 0; 1785 1786 out_destroy_wq: 1787 destroy_workqueue(cil->xc_push_wq); 1788 out_destroy_cil: 1789 kmem_free(cil); 1790 return -ENOMEM; 1791 } 1792 1793 void 1794 xlog_cil_destroy( 1795 struct xlog *log) 1796 { 1797 struct xfs_cil *cil = log->l_cilp; 1798 1799 if (cil->xc_ctx) { 1800 if (cil->xc_ctx->ticket) 1801 xfs_log_ticket_put(cil->xc_ctx->ticket); 1802 kmem_free(cil->xc_ctx); 1803 } 1804 1805 ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)); 1806 free_percpu(cil->xc_pcp); 1807 destroy_workqueue(cil->xc_push_wq); 1808 kmem_free(cil); 1809 } 1810 1811