xref: /linux/fs/xfs/xfs_log_cil.c (revision 8c994eff8fcfe8ecb1f1dbebed25b4d7bb75be12)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4  */
5 
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_extent_busy.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_log.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trace.h"
19 
20 struct workqueue_struct *xfs_discard_wq;
21 
22 /*
23  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
24  * recover, so we don't allow failure here. Also, we allocate in a context that
25  * we don't want to be issuing transactions from, so we need to tell the
26  * allocation code this as well.
27  *
28  * We don't reserve any space for the ticket - we are going to steal whatever
29  * space we require from transactions as they commit. To ensure we reserve all
30  * the space required, we need to set the current reservation of the ticket to
31  * zero so that we know to steal the initial transaction overhead from the
32  * first transaction commit.
33  */
34 static struct xlog_ticket *
35 xlog_cil_ticket_alloc(
36 	struct xlog	*log)
37 {
38 	struct xlog_ticket *tic;
39 
40 	tic = xlog_ticket_alloc(log, 0, 1, 0);
41 
42 	/*
43 	 * set the current reservation to zero so we know to steal the basic
44 	 * transaction overhead reservation from the first transaction commit.
45 	 */
46 	tic->t_curr_res = 0;
47 	tic->t_iclog_hdrs = 0;
48 	return tic;
49 }
50 
51 static inline void
52 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil)
53 {
54 	struct xlog	*log = cil->xc_log;
55 
56 	atomic_set(&cil->xc_iclog_hdrs,
57 		   (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) /
58 			(log->l_iclog_size - log->l_iclog_hsize)));
59 }
60 
61 /*
62  * Check if the current log item was first committed in this sequence.
63  * We can't rely on just the log item being in the CIL, we have to check
64  * the recorded commit sequence number.
65  *
66  * Note: for this to be used in a non-racy manner, it has to be called with
67  * CIL flushing locked out. As a result, it should only be used during the
68  * transaction commit process when deciding what to format into the item.
69  */
70 static bool
71 xlog_item_in_current_chkpt(
72 	struct xfs_cil		*cil,
73 	struct xfs_log_item	*lip)
74 {
75 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
76 		return false;
77 
78 	/*
79 	 * li_seq is written on the first commit of a log item to record the
80 	 * first checkpoint it is written to. Hence if it is different to the
81 	 * current sequence, we're in a new checkpoint.
82 	 */
83 	return lip->li_seq == READ_ONCE(cil->xc_current_sequence);
84 }
85 
86 bool
87 xfs_log_item_in_current_chkpt(
88 	struct xfs_log_item *lip)
89 {
90 	return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip);
91 }
92 
93 /*
94  * Unavoidable forward declaration - xlog_cil_push_work() calls
95  * xlog_cil_ctx_alloc() itself.
96  */
97 static void xlog_cil_push_work(struct work_struct *work);
98 
99 static struct xfs_cil_ctx *
100 xlog_cil_ctx_alloc(void)
101 {
102 	struct xfs_cil_ctx	*ctx;
103 
104 	ctx = kmem_zalloc(sizeof(*ctx), KM_NOFS);
105 	INIT_LIST_HEAD(&ctx->committing);
106 	INIT_LIST_HEAD(&ctx->busy_extents);
107 	INIT_LIST_HEAD(&ctx->log_items);
108 	INIT_LIST_HEAD(&ctx->lv_chain);
109 	INIT_WORK(&ctx->push_work, xlog_cil_push_work);
110 	return ctx;
111 }
112 
113 /*
114  * Aggregate the CIL per cpu structures into global counts, lists, etc and
115  * clear the percpu state ready for the next context to use. This is called
116  * from the push code with the context lock held exclusively, hence nothing else
117  * will be accessing or modifying the per-cpu counters.
118  */
119 static void
120 xlog_cil_push_pcp_aggregate(
121 	struct xfs_cil		*cil,
122 	struct xfs_cil_ctx	*ctx)
123 {
124 	struct xlog_cil_pcp	*cilpcp;
125 	int			cpu;
126 
127 	for_each_online_cpu(cpu) {
128 		cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
129 
130 		ctx->ticket->t_curr_res += cilpcp->space_reserved;
131 		cilpcp->space_reserved = 0;
132 
133 		if (!list_empty(&cilpcp->busy_extents)) {
134 			list_splice_init(&cilpcp->busy_extents,
135 					&ctx->busy_extents);
136 		}
137 		if (!list_empty(&cilpcp->log_items))
138 			list_splice_init(&cilpcp->log_items, &ctx->log_items);
139 
140 		/*
141 		 * We're in the middle of switching cil contexts.  Reset the
142 		 * counter we use to detect when the current context is nearing
143 		 * full.
144 		 */
145 		cilpcp->space_used = 0;
146 	}
147 }
148 
149 /*
150  * Aggregate the CIL per-cpu space used counters into the global atomic value.
151  * This is called when the per-cpu counter aggregation will first pass the soft
152  * limit threshold so we can switch to atomic counter aggregation for accurate
153  * detection of hard limit traversal.
154  */
155 static void
156 xlog_cil_insert_pcp_aggregate(
157 	struct xfs_cil		*cil,
158 	struct xfs_cil_ctx	*ctx)
159 {
160 	struct xlog_cil_pcp	*cilpcp;
161 	int			cpu;
162 	int			count = 0;
163 
164 	/* Trigger atomic updates then aggregate only for the first caller */
165 	if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags))
166 		return;
167 
168 	for_each_online_cpu(cpu) {
169 		int	old, prev;
170 
171 		cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
172 		do {
173 			old = cilpcp->space_used;
174 			prev = cmpxchg(&cilpcp->space_used, old, 0);
175 		} while (old != prev);
176 		count += old;
177 	}
178 	atomic_add(count, &ctx->space_used);
179 }
180 
181 static void
182 xlog_cil_ctx_switch(
183 	struct xfs_cil		*cil,
184 	struct xfs_cil_ctx	*ctx)
185 {
186 	xlog_cil_set_iclog_hdr_count(cil);
187 	set_bit(XLOG_CIL_EMPTY, &cil->xc_flags);
188 	set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags);
189 	ctx->sequence = ++cil->xc_current_sequence;
190 	ctx->cil = cil;
191 	cil->xc_ctx = ctx;
192 }
193 
194 /*
195  * After the first stage of log recovery is done, we know where the head and
196  * tail of the log are. We need this log initialisation done before we can
197  * initialise the first CIL checkpoint context.
198  *
199  * Here we allocate a log ticket to track space usage during a CIL push.  This
200  * ticket is passed to xlog_write() directly so that we don't slowly leak log
201  * space by failing to account for space used by log headers and additional
202  * region headers for split regions.
203  */
204 void
205 xlog_cil_init_post_recovery(
206 	struct xlog	*log)
207 {
208 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
209 	log->l_cilp->xc_ctx->sequence = 1;
210 	xlog_cil_set_iclog_hdr_count(log->l_cilp);
211 }
212 
213 static inline int
214 xlog_cil_iovec_space(
215 	uint	niovecs)
216 {
217 	return round_up((sizeof(struct xfs_log_vec) +
218 					niovecs * sizeof(struct xfs_log_iovec)),
219 			sizeof(uint64_t));
220 }
221 
222 /*
223  * Allocate or pin log vector buffers for CIL insertion.
224  *
225  * The CIL currently uses disposable buffers for copying a snapshot of the
226  * modified items into the log during a push. The biggest problem with this is
227  * the requirement to allocate the disposable buffer during the commit if:
228  *	a) does not exist; or
229  *	b) it is too small
230  *
231  * If we do this allocation within xlog_cil_insert_format_items(), it is done
232  * under the xc_ctx_lock, which means that a CIL push cannot occur during
233  * the memory allocation. This means that we have a potential deadlock situation
234  * under low memory conditions when we have lots of dirty metadata pinned in
235  * the CIL and we need a CIL commit to occur to free memory.
236  *
237  * To avoid this, we need to move the memory allocation outside the
238  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
239  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
240  * vector buffers between the check and the formatting of the item into the
241  * log vector buffer within the xc_ctx_lock.
242  *
243  * Because the log vector buffer needs to be unchanged during the CIL push
244  * process, we cannot share the buffer between the transaction commit (which
245  * modifies the buffer) and the CIL push context that is writing the changes
246  * into the log. This means skipping preallocation of buffer space is
247  * unreliable, but we most definitely do not want to be allocating and freeing
248  * buffers unnecessarily during commits when overwrites can be done safely.
249  *
250  * The simplest solution to this problem is to allocate a shadow buffer when a
251  * log item is committed for the second time, and then to only use this buffer
252  * if necessary. The buffer can remain attached to the log item until such time
253  * it is needed, and this is the buffer that is reallocated to match the size of
254  * the incoming modification. Then during the formatting of the item we can swap
255  * the active buffer with the new one if we can't reuse the existing buffer. We
256  * don't free the old buffer as it may be reused on the next modification if
257  * it's size is right, otherwise we'll free and reallocate it at that point.
258  *
259  * This function builds a vector for the changes in each log item in the
260  * transaction. It then works out the length of the buffer needed for each log
261  * item, allocates them and attaches the vector to the log item in preparation
262  * for the formatting step which occurs under the xc_ctx_lock.
263  *
264  * While this means the memory footprint goes up, it avoids the repeated
265  * alloc/free pattern that repeated modifications of an item would otherwise
266  * cause, and hence minimises the CPU overhead of such behaviour.
267  */
268 static void
269 xlog_cil_alloc_shadow_bufs(
270 	struct xlog		*log,
271 	struct xfs_trans	*tp)
272 {
273 	struct xfs_log_item	*lip;
274 
275 	list_for_each_entry(lip, &tp->t_items, li_trans) {
276 		struct xfs_log_vec *lv;
277 		int	niovecs = 0;
278 		int	nbytes = 0;
279 		int	buf_size;
280 		bool	ordered = false;
281 
282 		/* Skip items which aren't dirty in this transaction. */
283 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
284 			continue;
285 
286 		/* get number of vecs and size of data to be stored */
287 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
288 
289 		/*
290 		 * Ordered items need to be tracked but we do not wish to write
291 		 * them. We need a logvec to track the object, but we do not
292 		 * need an iovec or buffer to be allocated for copying data.
293 		 */
294 		if (niovecs == XFS_LOG_VEC_ORDERED) {
295 			ordered = true;
296 			niovecs = 0;
297 			nbytes = 0;
298 		}
299 
300 		/*
301 		 * We 64-bit align the length of each iovec so that the start of
302 		 * the next one is naturally aligned.  We'll need to account for
303 		 * that slack space here.
304 		 *
305 		 * We also add the xlog_op_header to each region when
306 		 * formatting, but that's not accounted to the size of the item
307 		 * at this point. Hence we'll need an addition number of bytes
308 		 * for each vector to hold an opheader.
309 		 *
310 		 * Then round nbytes up to 64-bit alignment so that the initial
311 		 * buffer alignment is easy to calculate and verify.
312 		 */
313 		nbytes += niovecs *
314 			(sizeof(uint64_t) + sizeof(struct xlog_op_header));
315 		nbytes = round_up(nbytes, sizeof(uint64_t));
316 
317 		/*
318 		 * The data buffer needs to start 64-bit aligned, so round up
319 		 * that space to ensure we can align it appropriately and not
320 		 * overrun the buffer.
321 		 */
322 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
323 
324 		/*
325 		 * if we have no shadow buffer, or it is too small, we need to
326 		 * reallocate it.
327 		 */
328 		if (!lip->li_lv_shadow ||
329 		    buf_size > lip->li_lv_shadow->lv_size) {
330 			/*
331 			 * We free and allocate here as a realloc would copy
332 			 * unnecessary data. We don't use kvzalloc() for the
333 			 * same reason - we don't need to zero the data area in
334 			 * the buffer, only the log vector header and the iovec
335 			 * storage.
336 			 */
337 			kmem_free(lip->li_lv_shadow);
338 			lv = xlog_kvmalloc(buf_size);
339 
340 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
341 
342 			INIT_LIST_HEAD(&lv->lv_list);
343 			lv->lv_item = lip;
344 			lv->lv_size = buf_size;
345 			if (ordered)
346 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
347 			else
348 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
349 			lip->li_lv_shadow = lv;
350 		} else {
351 			/* same or smaller, optimise common overwrite case */
352 			lv = lip->li_lv_shadow;
353 			if (ordered)
354 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
355 			else
356 				lv->lv_buf_len = 0;
357 			lv->lv_bytes = 0;
358 		}
359 
360 		/* Ensure the lv is set up according to ->iop_size */
361 		lv->lv_niovecs = niovecs;
362 
363 		/* The allocated data region lies beyond the iovec region */
364 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
365 	}
366 
367 }
368 
369 /*
370  * Prepare the log item for insertion into the CIL. Calculate the difference in
371  * log space it will consume, and if it is a new item pin it as well.
372  */
373 STATIC void
374 xfs_cil_prepare_item(
375 	struct xlog		*log,
376 	struct xfs_log_vec	*lv,
377 	struct xfs_log_vec	*old_lv,
378 	int			*diff_len)
379 {
380 	/* Account for the new LV being passed in */
381 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
382 		*diff_len += lv->lv_bytes;
383 
384 	/*
385 	 * If there is no old LV, this is the first time we've seen the item in
386 	 * this CIL context and so we need to pin it. If we are replacing the
387 	 * old_lv, then remove the space it accounts for and make it the shadow
388 	 * buffer for later freeing. In both cases we are now switching to the
389 	 * shadow buffer, so update the pointer to it appropriately.
390 	 */
391 	if (!old_lv) {
392 		if (lv->lv_item->li_ops->iop_pin)
393 			lv->lv_item->li_ops->iop_pin(lv->lv_item);
394 		lv->lv_item->li_lv_shadow = NULL;
395 	} else if (old_lv != lv) {
396 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
397 
398 		*diff_len -= old_lv->lv_bytes;
399 		lv->lv_item->li_lv_shadow = old_lv;
400 	}
401 
402 	/* attach new log vector to log item */
403 	lv->lv_item->li_lv = lv;
404 
405 	/*
406 	 * If this is the first time the item is being committed to the
407 	 * CIL, store the sequence number on the log item so we can
408 	 * tell in future commits whether this is the first checkpoint
409 	 * the item is being committed into.
410 	 */
411 	if (!lv->lv_item->li_seq)
412 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
413 }
414 
415 /*
416  * Format log item into a flat buffers
417  *
418  * For delayed logging, we need to hold a formatted buffer containing all the
419  * changes on the log item. This enables us to relog the item in memory and
420  * write it out asynchronously without needing to relock the object that was
421  * modified at the time it gets written into the iclog.
422  *
423  * This function takes the prepared log vectors attached to each log item, and
424  * formats the changes into the log vector buffer. The buffer it uses is
425  * dependent on the current state of the vector in the CIL - the shadow lv is
426  * guaranteed to be large enough for the current modification, but we will only
427  * use that if we can't reuse the existing lv. If we can't reuse the existing
428  * lv, then simple swap it out for the shadow lv. We don't free it - that is
429  * done lazily either by th enext modification or the freeing of the log item.
430  *
431  * We don't set up region headers during this process; we simply copy the
432  * regions into the flat buffer. We can do this because we still have to do a
433  * formatting step to write the regions into the iclog buffer.  Writing the
434  * ophdrs during the iclog write means that we can support splitting large
435  * regions across iclog boundares without needing a change in the format of the
436  * item/region encapsulation.
437  *
438  * Hence what we need to do now is change the rewrite the vector array to point
439  * to the copied region inside the buffer we just allocated. This allows us to
440  * format the regions into the iclog as though they are being formatted
441  * directly out of the objects themselves.
442  */
443 static void
444 xlog_cil_insert_format_items(
445 	struct xlog		*log,
446 	struct xfs_trans	*tp,
447 	int			*diff_len)
448 {
449 	struct xfs_log_item	*lip;
450 
451 	/* Bail out if we didn't find a log item.  */
452 	if (list_empty(&tp->t_items)) {
453 		ASSERT(0);
454 		return;
455 	}
456 
457 	list_for_each_entry(lip, &tp->t_items, li_trans) {
458 		struct xfs_log_vec *lv;
459 		struct xfs_log_vec *old_lv = NULL;
460 		struct xfs_log_vec *shadow;
461 		bool	ordered = false;
462 
463 		/* Skip items which aren't dirty in this transaction. */
464 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
465 			continue;
466 
467 		/*
468 		 * The formatting size information is already attached to
469 		 * the shadow lv on the log item.
470 		 */
471 		shadow = lip->li_lv_shadow;
472 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
473 			ordered = true;
474 
475 		/* Skip items that do not have any vectors for writing */
476 		if (!shadow->lv_niovecs && !ordered)
477 			continue;
478 
479 		/* compare to existing item size */
480 		old_lv = lip->li_lv;
481 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
482 			/* same or smaller, optimise common overwrite case */
483 			lv = lip->li_lv;
484 
485 			if (ordered)
486 				goto insert;
487 
488 			/*
489 			 * set the item up as though it is a new insertion so
490 			 * that the space reservation accounting is correct.
491 			 */
492 			*diff_len -= lv->lv_bytes;
493 
494 			/* Ensure the lv is set up according to ->iop_size */
495 			lv->lv_niovecs = shadow->lv_niovecs;
496 
497 			/* reset the lv buffer information for new formatting */
498 			lv->lv_buf_len = 0;
499 			lv->lv_bytes = 0;
500 			lv->lv_buf = (char *)lv +
501 					xlog_cil_iovec_space(lv->lv_niovecs);
502 		} else {
503 			/* switch to shadow buffer! */
504 			lv = shadow;
505 			lv->lv_item = lip;
506 			if (ordered) {
507 				/* track as an ordered logvec */
508 				ASSERT(lip->li_lv == NULL);
509 				goto insert;
510 			}
511 		}
512 
513 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
514 		lip->li_ops->iop_format(lip, lv);
515 insert:
516 		xfs_cil_prepare_item(log, lv, old_lv, diff_len);
517 	}
518 }
519 
520 /*
521  * The use of lockless waitqueue_active() requires that the caller has
522  * serialised itself against the wakeup call in xlog_cil_push_work(). That
523  * can be done by either holding the push lock or the context lock.
524  */
525 static inline bool
526 xlog_cil_over_hard_limit(
527 	struct xlog	*log,
528 	int32_t		space_used)
529 {
530 	if (waitqueue_active(&log->l_cilp->xc_push_wait))
531 		return true;
532 	if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log))
533 		return true;
534 	return false;
535 }
536 
537 /*
538  * Insert the log items into the CIL and calculate the difference in space
539  * consumed by the item. Add the space to the checkpoint ticket and calculate
540  * if the change requires additional log metadata. If it does, take that space
541  * as well. Remove the amount of space we added to the checkpoint ticket from
542  * the current transaction ticket so that the accounting works out correctly.
543  */
544 static void
545 xlog_cil_insert_items(
546 	struct xlog		*log,
547 	struct xfs_trans	*tp,
548 	uint32_t		released_space)
549 {
550 	struct xfs_cil		*cil = log->l_cilp;
551 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
552 	struct xfs_log_item	*lip;
553 	int			len = 0;
554 	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
555 	int			space_used;
556 	int			order;
557 	struct xlog_cil_pcp	*cilpcp;
558 
559 	ASSERT(tp);
560 
561 	/*
562 	 * We can do this safely because the context can't checkpoint until we
563 	 * are done so it doesn't matter exactly how we update the CIL.
564 	 */
565 	xlog_cil_insert_format_items(log, tp, &len);
566 
567 	/*
568 	 * Subtract the space released by intent cancelation from the space we
569 	 * consumed so that we remove it from the CIL space and add it back to
570 	 * the current transaction reservation context.
571 	 */
572 	len -= released_space;
573 
574 	/*
575 	 * Grab the per-cpu pointer for the CIL before we start any accounting.
576 	 * That ensures that we are running with pre-emption disabled and so we
577 	 * can't be scheduled away between split sample/update operations that
578 	 * are done without outside locking to serialise them.
579 	 */
580 	cilpcp = get_cpu_ptr(cil->xc_pcp);
581 
582 	/*
583 	 * We need to take the CIL checkpoint unit reservation on the first
584 	 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't
585 	 * unnecessarily do an atomic op in the fast path here. We can clear the
586 	 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that
587 	 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit.
588 	 */
589 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) &&
590 	    test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
591 		ctx_res = ctx->ticket->t_unit_res;
592 
593 	/*
594 	 * Check if we need to steal iclog headers. atomic_read() is not a
595 	 * locked atomic operation, so we can check the value before we do any
596 	 * real atomic ops in the fast path. If we've already taken the CIL unit
597 	 * reservation from this commit, we've already got one iclog header
598 	 * space reserved so we have to account for that otherwise we risk
599 	 * overrunning the reservation on this ticket.
600 	 *
601 	 * If the CIL is already at the hard limit, we might need more header
602 	 * space that originally reserved. So steal more header space from every
603 	 * commit that occurs once we are over the hard limit to ensure the CIL
604 	 * push won't run out of reservation space.
605 	 *
606 	 * This can steal more than we need, but that's OK.
607 	 *
608 	 * The cil->xc_ctx_lock provides the serialisation necessary for safely
609 	 * calling xlog_cil_over_hard_limit() in this context.
610 	 */
611 	space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len;
612 	if (atomic_read(&cil->xc_iclog_hdrs) > 0 ||
613 	    xlog_cil_over_hard_limit(log, space_used)) {
614 		split_res = log->l_iclog_hsize +
615 					sizeof(struct xlog_op_header);
616 		if (ctx_res)
617 			ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1);
618 		else
619 			ctx_res = split_res * tp->t_ticket->t_iclog_hdrs;
620 		atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs);
621 	}
622 	cilpcp->space_reserved += ctx_res;
623 
624 	/*
625 	 * Accurately account when over the soft limit, otherwise fold the
626 	 * percpu count into the global count if over the per-cpu threshold.
627 	 */
628 	if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) {
629 		atomic_add(len, &ctx->space_used);
630 	} else if (cilpcp->space_used + len >
631 			(XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) {
632 		space_used = atomic_add_return(cilpcp->space_used + len,
633 						&ctx->space_used);
634 		cilpcp->space_used = 0;
635 
636 		/*
637 		 * If we just transitioned over the soft limit, we need to
638 		 * transition to the global atomic counter.
639 		 */
640 		if (space_used >= XLOG_CIL_SPACE_LIMIT(log))
641 			xlog_cil_insert_pcp_aggregate(cil, ctx);
642 	} else {
643 		cilpcp->space_used += len;
644 	}
645 	/* attach the transaction to the CIL if it has any busy extents */
646 	if (!list_empty(&tp->t_busy))
647 		list_splice_init(&tp->t_busy, &cilpcp->busy_extents);
648 
649 	/*
650 	 * Now update the order of everything modified in the transaction
651 	 * and insert items into the CIL if they aren't already there.
652 	 * We do this here so we only need to take the CIL lock once during
653 	 * the transaction commit.
654 	 */
655 	order = atomic_inc_return(&ctx->order_id);
656 	list_for_each_entry(lip, &tp->t_items, li_trans) {
657 		/* Skip items which aren't dirty in this transaction. */
658 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
659 			continue;
660 
661 		lip->li_order_id = order;
662 		if (!list_empty(&lip->li_cil))
663 			continue;
664 		list_add_tail(&lip->li_cil, &cilpcp->log_items);
665 	}
666 	put_cpu_ptr(cilpcp);
667 
668 	/*
669 	 * If we've overrun the reservation, dump the tx details before we move
670 	 * the log items. Shutdown is imminent...
671 	 */
672 	tp->t_ticket->t_curr_res -= ctx_res + len;
673 	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
674 		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
675 		xfs_warn(log->l_mp,
676 			 "  log items: %d bytes (iov hdrs: %d bytes)",
677 			 len, iovhdr_res);
678 		xfs_warn(log->l_mp, "  split region headers: %d bytes",
679 			 split_res);
680 		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
681 		xlog_print_trans(tp);
682 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
683 	}
684 }
685 
686 static void
687 xlog_cil_free_logvec(
688 	struct list_head	*lv_chain)
689 {
690 	struct xfs_log_vec	*lv;
691 
692 	while (!list_empty(lv_chain)) {
693 		lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list);
694 		list_del_init(&lv->lv_list);
695 		kmem_free(lv);
696 	}
697 }
698 
699 static void
700 xlog_discard_endio_work(
701 	struct work_struct	*work)
702 {
703 	struct xfs_cil_ctx	*ctx =
704 		container_of(work, struct xfs_cil_ctx, discard_endio_work);
705 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
706 
707 	xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
708 	kmem_free(ctx);
709 }
710 
711 /*
712  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
713  * pagb_lock.  Note that we need a unbounded workqueue, otherwise we might
714  * get the execution delayed up to 30 seconds for weird reasons.
715  */
716 static void
717 xlog_discard_endio(
718 	struct bio		*bio)
719 {
720 	struct xfs_cil_ctx	*ctx = bio->bi_private;
721 
722 	INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
723 	queue_work(xfs_discard_wq, &ctx->discard_endio_work);
724 	bio_put(bio);
725 }
726 
727 static void
728 xlog_discard_busy_extents(
729 	struct xfs_mount	*mp,
730 	struct xfs_cil_ctx	*ctx)
731 {
732 	struct list_head	*list = &ctx->busy_extents;
733 	struct xfs_extent_busy	*busyp;
734 	struct bio		*bio = NULL;
735 	struct blk_plug		plug;
736 	int			error = 0;
737 
738 	ASSERT(xfs_has_discard(mp));
739 
740 	blk_start_plug(&plug);
741 	list_for_each_entry(busyp, list, list) {
742 		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
743 					 busyp->length);
744 
745 		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
746 				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
747 				XFS_FSB_TO_BB(mp, busyp->length),
748 				GFP_NOFS, &bio);
749 		if (error && error != -EOPNOTSUPP) {
750 			xfs_info(mp,
751 	 "discard failed for extent [0x%llx,%u], error %d",
752 				 (unsigned long long)busyp->bno,
753 				 busyp->length,
754 				 error);
755 			break;
756 		}
757 	}
758 
759 	if (bio) {
760 		bio->bi_private = ctx;
761 		bio->bi_end_io = xlog_discard_endio;
762 		submit_bio(bio);
763 	} else {
764 		xlog_discard_endio_work(&ctx->discard_endio_work);
765 	}
766 	blk_finish_plug(&plug);
767 }
768 
769 /*
770  * Mark all items committed and clear busy extents. We free the log vector
771  * chains in a separate pass so that we unpin the log items as quickly as
772  * possible.
773  */
774 static void
775 xlog_cil_committed(
776 	struct xfs_cil_ctx	*ctx)
777 {
778 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
779 	bool			abort = xlog_is_shutdown(ctx->cil->xc_log);
780 
781 	/*
782 	 * If the I/O failed, we're aborting the commit and already shutdown.
783 	 * Wake any commit waiters before aborting the log items so we don't
784 	 * block async log pushers on callbacks. Async log pushers explicitly do
785 	 * not wait on log force completion because they may be holding locks
786 	 * required to unpin items.
787 	 */
788 	if (abort) {
789 		spin_lock(&ctx->cil->xc_push_lock);
790 		wake_up_all(&ctx->cil->xc_start_wait);
791 		wake_up_all(&ctx->cil->xc_commit_wait);
792 		spin_unlock(&ctx->cil->xc_push_lock);
793 	}
794 
795 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, &ctx->lv_chain,
796 					ctx->start_lsn, abort);
797 
798 	xfs_extent_busy_sort(&ctx->busy_extents);
799 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
800 			      xfs_has_discard(mp) && !abort);
801 
802 	spin_lock(&ctx->cil->xc_push_lock);
803 	list_del(&ctx->committing);
804 	spin_unlock(&ctx->cil->xc_push_lock);
805 
806 	xlog_cil_free_logvec(&ctx->lv_chain);
807 
808 	if (!list_empty(&ctx->busy_extents))
809 		xlog_discard_busy_extents(mp, ctx);
810 	else
811 		kmem_free(ctx);
812 }
813 
814 void
815 xlog_cil_process_committed(
816 	struct list_head	*list)
817 {
818 	struct xfs_cil_ctx	*ctx;
819 
820 	while ((ctx = list_first_entry_or_null(list,
821 			struct xfs_cil_ctx, iclog_entry))) {
822 		list_del(&ctx->iclog_entry);
823 		xlog_cil_committed(ctx);
824 	}
825 }
826 
827 /*
828 * Record the LSN of the iclog we were just granted space to start writing into.
829 * If the context doesn't have a start_lsn recorded, then this iclog will
830 * contain the start record for the checkpoint. Otherwise this write contains
831 * the commit record for the checkpoint.
832 */
833 void
834 xlog_cil_set_ctx_write_state(
835 	struct xfs_cil_ctx	*ctx,
836 	struct xlog_in_core	*iclog)
837 {
838 	struct xfs_cil		*cil = ctx->cil;
839 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
840 
841 	ASSERT(!ctx->commit_lsn);
842 	if (!ctx->start_lsn) {
843 		spin_lock(&cil->xc_push_lock);
844 		/*
845 		 * The LSN we need to pass to the log items on transaction
846 		 * commit is the LSN reported by the first log vector write, not
847 		 * the commit lsn. If we use the commit record lsn then we can
848 		 * move the grant write head beyond the tail LSN and overwrite
849 		 * it.
850 		 */
851 		ctx->start_lsn = lsn;
852 		wake_up_all(&cil->xc_start_wait);
853 		spin_unlock(&cil->xc_push_lock);
854 
855 		/*
856 		 * Make sure the metadata we are about to overwrite in the log
857 		 * has been flushed to stable storage before this iclog is
858 		 * issued.
859 		 */
860 		spin_lock(&cil->xc_log->l_icloglock);
861 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
862 		spin_unlock(&cil->xc_log->l_icloglock);
863 		return;
864 	}
865 
866 	/*
867 	 * Take a reference to the iclog for the context so that we still hold
868 	 * it when xlog_write is done and has released it. This means the
869 	 * context controls when the iclog is released for IO.
870 	 */
871 	atomic_inc(&iclog->ic_refcnt);
872 
873 	/*
874 	 * xlog_state_get_iclog_space() guarantees there is enough space in the
875 	 * iclog for an entire commit record, so we can attach the context
876 	 * callbacks now.  This needs to be done before we make the commit_lsn
877 	 * visible to waiters so that checkpoints with commit records in the
878 	 * same iclog order their IO completion callbacks in the same order that
879 	 * the commit records appear in the iclog.
880 	 */
881 	spin_lock(&cil->xc_log->l_icloglock);
882 	list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks);
883 	spin_unlock(&cil->xc_log->l_icloglock);
884 
885 	/*
886 	 * Now we can record the commit LSN and wake anyone waiting for this
887 	 * sequence to have the ordered commit record assigned to a physical
888 	 * location in the log.
889 	 */
890 	spin_lock(&cil->xc_push_lock);
891 	ctx->commit_iclog = iclog;
892 	ctx->commit_lsn = lsn;
893 	wake_up_all(&cil->xc_commit_wait);
894 	spin_unlock(&cil->xc_push_lock);
895 }
896 
897 
898 /*
899  * Ensure that the order of log writes follows checkpoint sequence order. This
900  * relies on the context LSN being zero until the log write has guaranteed the
901  * LSN that the log write will start at via xlog_state_get_iclog_space().
902  */
903 enum _record_type {
904 	_START_RECORD,
905 	_COMMIT_RECORD,
906 };
907 
908 static int
909 xlog_cil_order_write(
910 	struct xfs_cil		*cil,
911 	xfs_csn_t		sequence,
912 	enum _record_type	record)
913 {
914 	struct xfs_cil_ctx	*ctx;
915 
916 restart:
917 	spin_lock(&cil->xc_push_lock);
918 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
919 		/*
920 		 * Avoid getting stuck in this loop because we were woken by the
921 		 * shutdown, but then went back to sleep once already in the
922 		 * shutdown state.
923 		 */
924 		if (xlog_is_shutdown(cil->xc_log)) {
925 			spin_unlock(&cil->xc_push_lock);
926 			return -EIO;
927 		}
928 
929 		/*
930 		 * Higher sequences will wait for this one so skip them.
931 		 * Don't wait for our own sequence, either.
932 		 */
933 		if (ctx->sequence >= sequence)
934 			continue;
935 
936 		/* Wait until the LSN for the record has been recorded. */
937 		switch (record) {
938 		case _START_RECORD:
939 			if (!ctx->start_lsn) {
940 				xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock);
941 				goto restart;
942 			}
943 			break;
944 		case _COMMIT_RECORD:
945 			if (!ctx->commit_lsn) {
946 				xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
947 				goto restart;
948 			}
949 			break;
950 		}
951 	}
952 	spin_unlock(&cil->xc_push_lock);
953 	return 0;
954 }
955 
956 /*
957  * Write out the log vector change now attached to the CIL context. This will
958  * write a start record that needs to be strictly ordered in ascending CIL
959  * sequence order so that log recovery will always use in-order start LSNs when
960  * replaying checkpoints.
961  */
962 static int
963 xlog_cil_write_chain(
964 	struct xfs_cil_ctx	*ctx,
965 	uint32_t		chain_len)
966 {
967 	struct xlog		*log = ctx->cil->xc_log;
968 	int			error;
969 
970 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD);
971 	if (error)
972 		return error;
973 	return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len);
974 }
975 
976 /*
977  * Write out the commit record of a checkpoint transaction to close off a
978  * running log write. These commit records are strictly ordered in ascending CIL
979  * sequence order so that log recovery will always replay the checkpoints in the
980  * correct order.
981  */
982 static int
983 xlog_cil_write_commit_record(
984 	struct xfs_cil_ctx	*ctx)
985 {
986 	struct xlog		*log = ctx->cil->xc_log;
987 	struct xlog_op_header	ophdr = {
988 		.oh_clientid = XFS_TRANSACTION,
989 		.oh_tid = cpu_to_be32(ctx->ticket->t_tid),
990 		.oh_flags = XLOG_COMMIT_TRANS,
991 	};
992 	struct xfs_log_iovec	reg = {
993 		.i_addr = &ophdr,
994 		.i_len = sizeof(struct xlog_op_header),
995 		.i_type = XLOG_REG_TYPE_COMMIT,
996 	};
997 	struct xfs_log_vec	vec = {
998 		.lv_niovecs = 1,
999 		.lv_iovecp = &reg,
1000 	};
1001 	int			error;
1002 	LIST_HEAD(lv_chain);
1003 	list_add(&vec.lv_list, &lv_chain);
1004 
1005 	if (xlog_is_shutdown(log))
1006 		return -EIO;
1007 
1008 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD);
1009 	if (error)
1010 		return error;
1011 
1012 	/* account for space used by record data */
1013 	ctx->ticket->t_curr_res -= reg.i_len;
1014 	error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len);
1015 	if (error)
1016 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1017 	return error;
1018 }
1019 
1020 struct xlog_cil_trans_hdr {
1021 	struct xlog_op_header	oph[2];
1022 	struct xfs_trans_header	thdr;
1023 	struct xfs_log_iovec	lhdr[2];
1024 };
1025 
1026 /*
1027  * Build a checkpoint transaction header to begin the journal transaction.  We
1028  * need to account for the space used by the transaction header here as it is
1029  * not accounted for in xlog_write().
1030  *
1031  * This is the only place we write a transaction header, so we also build the
1032  * log opheaders that indicate the start of a log transaction and wrap the
1033  * transaction header. We keep the start record in it's own log vector rather
1034  * than compacting them into a single region as this ends up making the logic
1035  * in xlog_write() for handling empty opheaders for start, commit and unmount
1036  * records much simpler.
1037  */
1038 static void
1039 xlog_cil_build_trans_hdr(
1040 	struct xfs_cil_ctx	*ctx,
1041 	struct xlog_cil_trans_hdr *hdr,
1042 	struct xfs_log_vec	*lvhdr,
1043 	int			num_iovecs)
1044 {
1045 	struct xlog_ticket	*tic = ctx->ticket;
1046 	__be32			tid = cpu_to_be32(tic->t_tid);
1047 
1048 	memset(hdr, 0, sizeof(*hdr));
1049 
1050 	/* Log start record */
1051 	hdr->oph[0].oh_tid = tid;
1052 	hdr->oph[0].oh_clientid = XFS_TRANSACTION;
1053 	hdr->oph[0].oh_flags = XLOG_START_TRANS;
1054 
1055 	/* log iovec region pointer */
1056 	hdr->lhdr[0].i_addr = &hdr->oph[0];
1057 	hdr->lhdr[0].i_len = sizeof(struct xlog_op_header);
1058 	hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER;
1059 
1060 	/* log opheader */
1061 	hdr->oph[1].oh_tid = tid;
1062 	hdr->oph[1].oh_clientid = XFS_TRANSACTION;
1063 	hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header));
1064 
1065 	/* transaction header in host byte order format */
1066 	hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
1067 	hdr->thdr.th_type = XFS_TRANS_CHECKPOINT;
1068 	hdr->thdr.th_tid = tic->t_tid;
1069 	hdr->thdr.th_num_items = num_iovecs;
1070 
1071 	/* log iovec region pointer */
1072 	hdr->lhdr[1].i_addr = &hdr->oph[1];
1073 	hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) +
1074 				sizeof(struct xfs_trans_header);
1075 	hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR;
1076 
1077 	lvhdr->lv_niovecs = 2;
1078 	lvhdr->lv_iovecp = &hdr->lhdr[0];
1079 	lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len;
1080 
1081 	tic->t_curr_res -= lvhdr->lv_bytes;
1082 }
1083 
1084 /*
1085  * CIL item reordering compare function. We want to order in ascending ID order,
1086  * but we want to leave items with the same ID in the order they were added to
1087  * the list. This is important for operations like reflink where we log 4 order
1088  * dependent intents in a single transaction when we overwrite an existing
1089  * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop),
1090  * CUI (inc), BUI(remap)...
1091  */
1092 static int
1093 xlog_cil_order_cmp(
1094 	void			*priv,
1095 	const struct list_head	*a,
1096 	const struct list_head	*b)
1097 {
1098 	struct xfs_log_vec	*l1 = container_of(a, struct xfs_log_vec, lv_list);
1099 	struct xfs_log_vec	*l2 = container_of(b, struct xfs_log_vec, lv_list);
1100 
1101 	return l1->lv_order_id > l2->lv_order_id;
1102 }
1103 
1104 /*
1105  * Pull all the log vectors off the items in the CIL, and remove the items from
1106  * the CIL. We don't need the CIL lock here because it's only needed on the
1107  * transaction commit side which is currently locked out by the flush lock.
1108  *
1109  * If a log item is marked with a whiteout, we do not need to write it to the
1110  * journal and so we just move them to the whiteout list for the caller to
1111  * dispose of appropriately.
1112  */
1113 static void
1114 xlog_cil_build_lv_chain(
1115 	struct xfs_cil_ctx	*ctx,
1116 	struct list_head	*whiteouts,
1117 	uint32_t		*num_iovecs,
1118 	uint32_t		*num_bytes)
1119 {
1120 	while (!list_empty(&ctx->log_items)) {
1121 		struct xfs_log_item	*item;
1122 		struct xfs_log_vec	*lv;
1123 
1124 		item = list_first_entry(&ctx->log_items,
1125 					struct xfs_log_item, li_cil);
1126 
1127 		if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) {
1128 			list_move(&item->li_cil, whiteouts);
1129 			trace_xfs_cil_whiteout_skip(item);
1130 			continue;
1131 		}
1132 
1133 		lv = item->li_lv;
1134 		lv->lv_order_id = item->li_order_id;
1135 
1136 		/* we don't write ordered log vectors */
1137 		if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
1138 			*num_bytes += lv->lv_bytes;
1139 		*num_iovecs += lv->lv_niovecs;
1140 		list_add_tail(&lv->lv_list, &ctx->lv_chain);
1141 
1142 		list_del_init(&item->li_cil);
1143 		item->li_order_id = 0;
1144 		item->li_lv = NULL;
1145 	}
1146 }
1147 
1148 static void
1149 xlog_cil_cleanup_whiteouts(
1150 	struct list_head	*whiteouts)
1151 {
1152 	while (!list_empty(whiteouts)) {
1153 		struct xfs_log_item *item = list_first_entry(whiteouts,
1154 						struct xfs_log_item, li_cil);
1155 		list_del_init(&item->li_cil);
1156 		trace_xfs_cil_whiteout_unpin(item);
1157 		item->li_ops->iop_unpin(item, 1);
1158 	}
1159 }
1160 
1161 /*
1162  * Push the Committed Item List to the log.
1163  *
1164  * If the current sequence is the same as xc_push_seq we need to do a flush. If
1165  * xc_push_seq is less than the current sequence, then it has already been
1166  * flushed and we don't need to do anything - the caller will wait for it to
1167  * complete if necessary.
1168  *
1169  * xc_push_seq is checked unlocked against the sequence number for a match.
1170  * Hence we can allow log forces to run racily and not issue pushes for the
1171  * same sequence twice.  If we get a race between multiple pushes for the same
1172  * sequence they will block on the first one and then abort, hence avoiding
1173  * needless pushes.
1174  */
1175 static void
1176 xlog_cil_push_work(
1177 	struct work_struct	*work)
1178 {
1179 	struct xfs_cil_ctx	*ctx =
1180 		container_of(work, struct xfs_cil_ctx, push_work);
1181 	struct xfs_cil		*cil = ctx->cil;
1182 	struct xlog		*log = cil->xc_log;
1183 	struct xfs_cil_ctx	*new_ctx;
1184 	int			num_iovecs = 0;
1185 	int			num_bytes = 0;
1186 	int			error = 0;
1187 	struct xlog_cil_trans_hdr thdr;
1188 	struct xfs_log_vec	lvhdr = {};
1189 	xfs_csn_t		push_seq;
1190 	bool			push_commit_stable;
1191 	LIST_HEAD		(whiteouts);
1192 	struct xlog_ticket	*ticket;
1193 
1194 	new_ctx = xlog_cil_ctx_alloc();
1195 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
1196 
1197 	down_write(&cil->xc_ctx_lock);
1198 
1199 	spin_lock(&cil->xc_push_lock);
1200 	push_seq = cil->xc_push_seq;
1201 	ASSERT(push_seq <= ctx->sequence);
1202 	push_commit_stable = cil->xc_push_commit_stable;
1203 	cil->xc_push_commit_stable = false;
1204 
1205 	/*
1206 	 * As we are about to switch to a new, empty CIL context, we no longer
1207 	 * need to throttle tasks on CIL space overruns. Wake any waiters that
1208 	 * the hard push throttle may have caught so they can start committing
1209 	 * to the new context. The ctx->xc_push_lock provides the serialisation
1210 	 * necessary for safely using the lockless waitqueue_active() check in
1211 	 * this context.
1212 	 */
1213 	if (waitqueue_active(&cil->xc_push_wait))
1214 		wake_up_all(&cil->xc_push_wait);
1215 
1216 	xlog_cil_push_pcp_aggregate(cil, ctx);
1217 
1218 	/*
1219 	 * Check if we've anything to push. If there is nothing, then we don't
1220 	 * move on to a new sequence number and so we have to be able to push
1221 	 * this sequence again later.
1222 	 */
1223 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1224 		cil->xc_push_seq = 0;
1225 		spin_unlock(&cil->xc_push_lock);
1226 		goto out_skip;
1227 	}
1228 
1229 
1230 	/* check for a previously pushed sequence */
1231 	if (push_seq < ctx->sequence) {
1232 		spin_unlock(&cil->xc_push_lock);
1233 		goto out_skip;
1234 	}
1235 
1236 	/*
1237 	 * We are now going to push this context, so add it to the committing
1238 	 * list before we do anything else. This ensures that anyone waiting on
1239 	 * this push can easily detect the difference between a "push in
1240 	 * progress" and "CIL is empty, nothing to do".
1241 	 *
1242 	 * IOWs, a wait loop can now check for:
1243 	 *	the current sequence not being found on the committing list;
1244 	 *	an empty CIL; and
1245 	 *	an unchanged sequence number
1246 	 * to detect a push that had nothing to do and therefore does not need
1247 	 * waiting on. If the CIL is not empty, we get put on the committing
1248 	 * list before emptying the CIL and bumping the sequence number. Hence
1249 	 * an empty CIL and an unchanged sequence number means we jumped out
1250 	 * above after doing nothing.
1251 	 *
1252 	 * Hence the waiter will either find the commit sequence on the
1253 	 * committing list or the sequence number will be unchanged and the CIL
1254 	 * still dirty. In that latter case, the push has not yet started, and
1255 	 * so the waiter will have to continue trying to check the CIL
1256 	 * committing list until it is found. In extreme cases of delay, the
1257 	 * sequence may fully commit between the attempts the wait makes to wait
1258 	 * on the commit sequence.
1259 	 */
1260 	list_add(&ctx->committing, &cil->xc_committing);
1261 	spin_unlock(&cil->xc_push_lock);
1262 
1263 	xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes);
1264 
1265 	/*
1266 	 * Switch the contexts so we can drop the context lock and move out
1267 	 * of a shared context. We can't just go straight to the commit record,
1268 	 * though - we need to synchronise with previous and future commits so
1269 	 * that the commit records are correctly ordered in the log to ensure
1270 	 * that we process items during log IO completion in the correct order.
1271 	 *
1272 	 * For example, if we get an EFI in one checkpoint and the EFD in the
1273 	 * next (e.g. due to log forces), we do not want the checkpoint with
1274 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
1275 	 * we must strictly order the commit records of the checkpoints so
1276 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
1277 	 * correct order; and b) the checkpoints are replayed in correct order
1278 	 * in log recovery.
1279 	 *
1280 	 * Hence we need to add this context to the committing context list so
1281 	 * that higher sequences will wait for us to write out a commit record
1282 	 * before they do.
1283 	 *
1284 	 * xfs_log_force_seq requires us to mirror the new sequence into the cil
1285 	 * structure atomically with the addition of this sequence to the
1286 	 * committing list. This also ensures that we can do unlocked checks
1287 	 * against the current sequence in log forces without risking
1288 	 * deferencing a freed context pointer.
1289 	 */
1290 	spin_lock(&cil->xc_push_lock);
1291 	xlog_cil_ctx_switch(cil, new_ctx);
1292 	spin_unlock(&cil->xc_push_lock);
1293 	up_write(&cil->xc_ctx_lock);
1294 
1295 	/*
1296 	 * Sort the log vector chain before we add the transaction headers.
1297 	 * This ensures we always have the transaction headers at the start
1298 	 * of the chain.
1299 	 */
1300 	list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp);
1301 
1302 	/*
1303 	 * Build a checkpoint transaction header and write it to the log to
1304 	 * begin the transaction. We need to account for the space used by the
1305 	 * transaction header here as it is not accounted for in xlog_write().
1306 	 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so
1307 	 * it gets written into the iclog first.
1308 	 */
1309 	xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs);
1310 	num_bytes += lvhdr.lv_bytes;
1311 	list_add(&lvhdr.lv_list, &ctx->lv_chain);
1312 
1313 	/*
1314 	 * Take the lvhdr back off the lv_chain immediately after calling
1315 	 * xlog_cil_write_chain() as it should not be passed to log IO
1316 	 * completion.
1317 	 */
1318 	error = xlog_cil_write_chain(ctx, num_bytes);
1319 	list_del(&lvhdr.lv_list);
1320 	if (error)
1321 		goto out_abort_free_ticket;
1322 
1323 	error = xlog_cil_write_commit_record(ctx);
1324 	if (error)
1325 		goto out_abort_free_ticket;
1326 
1327 	/*
1328 	 * Grab the ticket from the ctx so we can ungrant it after releasing the
1329 	 * commit_iclog. The ctx may be freed by the time we return from
1330 	 * releasing the commit_iclog (i.e. checkpoint has been completed and
1331 	 * callback run) so we can't reference the ctx after the call to
1332 	 * xlog_state_release_iclog().
1333 	 */
1334 	ticket = ctx->ticket;
1335 
1336 	/*
1337 	 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
1338 	 * to complete before we submit the commit_iclog. We can't use state
1339 	 * checks for this - ACTIVE can be either a past completed iclog or a
1340 	 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
1341 	 * past or future iclog awaiting IO or ordered IO completion to be run.
1342 	 * In the latter case, if it's a future iclog and we wait on it, the we
1343 	 * will hang because it won't get processed through to ic_force_wait
1344 	 * wakeup until this commit_iclog is written to disk.  Hence we use the
1345 	 * iclog header lsn and compare it to the commit lsn to determine if we
1346 	 * need to wait on iclogs or not.
1347 	 */
1348 	spin_lock(&log->l_icloglock);
1349 	if (ctx->start_lsn != ctx->commit_lsn) {
1350 		xfs_lsn_t	plsn;
1351 
1352 		plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn);
1353 		if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) {
1354 			/*
1355 			 * Waiting on ic_force_wait orders the completion of
1356 			 * iclogs older than ic_prev. Hence we only need to wait
1357 			 * on the most recent older iclog here.
1358 			 */
1359 			xlog_wait_on_iclog(ctx->commit_iclog->ic_prev);
1360 			spin_lock(&log->l_icloglock);
1361 		}
1362 
1363 		/*
1364 		 * We need to issue a pre-flush so that the ordering for this
1365 		 * checkpoint is correctly preserved down to stable storage.
1366 		 */
1367 		ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
1368 	}
1369 
1370 	/*
1371 	 * The commit iclog must be written to stable storage to guarantee
1372 	 * journal IO vs metadata writeback IO is correctly ordered on stable
1373 	 * storage.
1374 	 *
1375 	 * If the push caller needs the commit to be immediately stable and the
1376 	 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it
1377 	 * will be written when released, switch it's state to WANT_SYNC right
1378 	 * now.
1379 	 */
1380 	ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
1381 	if (push_commit_stable &&
1382 	    ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE)
1383 		xlog_state_switch_iclogs(log, ctx->commit_iclog, 0);
1384 	ticket = ctx->ticket;
1385 	xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1386 
1387 	/* Not safe to reference ctx now! */
1388 
1389 	spin_unlock(&log->l_icloglock);
1390 	xlog_cil_cleanup_whiteouts(&whiteouts);
1391 	xfs_log_ticket_ungrant(log, ticket);
1392 	return;
1393 
1394 out_skip:
1395 	up_write(&cil->xc_ctx_lock);
1396 	xfs_log_ticket_put(new_ctx->ticket);
1397 	kmem_free(new_ctx);
1398 	return;
1399 
1400 out_abort_free_ticket:
1401 	ASSERT(xlog_is_shutdown(log));
1402 	xlog_cil_cleanup_whiteouts(&whiteouts);
1403 	if (!ctx->commit_iclog) {
1404 		xfs_log_ticket_ungrant(log, ctx->ticket);
1405 		xlog_cil_committed(ctx);
1406 		return;
1407 	}
1408 	spin_lock(&log->l_icloglock);
1409 	ticket = ctx->ticket;
1410 	xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1411 	/* Not safe to reference ctx now! */
1412 	spin_unlock(&log->l_icloglock);
1413 	xfs_log_ticket_ungrant(log, ticket);
1414 }
1415 
1416 /*
1417  * We need to push CIL every so often so we don't cache more than we can fit in
1418  * the log. The limit really is that a checkpoint can't be more than half the
1419  * log (the current checkpoint is not allowed to overwrite the previous
1420  * checkpoint), but commit latency and memory usage limit this to a smaller
1421  * size.
1422  */
1423 static void
1424 xlog_cil_push_background(
1425 	struct xlog	*log) __releases(cil->xc_ctx_lock)
1426 {
1427 	struct xfs_cil	*cil = log->l_cilp;
1428 	int		space_used = atomic_read(&cil->xc_ctx->space_used);
1429 
1430 	/*
1431 	 * The cil won't be empty because we are called while holding the
1432 	 * context lock so whatever we added to the CIL will still be there.
1433 	 */
1434 	ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1435 
1436 	/*
1437 	 * We are done if:
1438 	 * - we haven't used up all the space available yet; or
1439 	 * - we've already queued up a push; and
1440 	 * - we're not over the hard limit; and
1441 	 * - nothing has been over the hard limit.
1442 	 *
1443 	 * If so, we don't need to take the push lock as there's nothing to do.
1444 	 */
1445 	if (space_used < XLOG_CIL_SPACE_LIMIT(log) ||
1446 	    (cil->xc_push_seq == cil->xc_current_sequence &&
1447 	     space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) &&
1448 	     !waitqueue_active(&cil->xc_push_wait))) {
1449 		up_read(&cil->xc_ctx_lock);
1450 		return;
1451 	}
1452 
1453 	spin_lock(&cil->xc_push_lock);
1454 	if (cil->xc_push_seq < cil->xc_current_sequence) {
1455 		cil->xc_push_seq = cil->xc_current_sequence;
1456 		queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1457 	}
1458 
1459 	/*
1460 	 * Drop the context lock now, we can't hold that if we need to sleep
1461 	 * because we are over the blocking threshold. The push_lock is still
1462 	 * held, so blocking threshold sleep/wakeup is still correctly
1463 	 * serialised here.
1464 	 */
1465 	up_read(&cil->xc_ctx_lock);
1466 
1467 	/*
1468 	 * If we are well over the space limit, throttle the work that is being
1469 	 * done until the push work on this context has begun. Enforce the hard
1470 	 * throttle on all transaction commits once it has been activated, even
1471 	 * if the committing transactions have resulted in the space usage
1472 	 * dipping back down under the hard limit.
1473 	 *
1474 	 * The ctx->xc_push_lock provides the serialisation necessary for safely
1475 	 * calling xlog_cil_over_hard_limit() in this context.
1476 	 */
1477 	if (xlog_cil_over_hard_limit(log, space_used)) {
1478 		trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1479 		ASSERT(space_used < log->l_logsize);
1480 		xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1481 		return;
1482 	}
1483 
1484 	spin_unlock(&cil->xc_push_lock);
1485 
1486 }
1487 
1488 /*
1489  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1490  * number that is passed. When it returns, the work will be queued for
1491  * @push_seq, but it won't be completed.
1492  *
1493  * If the caller is performing a synchronous force, we will flush the workqueue
1494  * to get previously queued work moving to minimise the wait time they will
1495  * undergo waiting for all outstanding pushes to complete. The caller is
1496  * expected to do the required waiting for push_seq to complete.
1497  *
1498  * If the caller is performing an async push, we need to ensure that the
1499  * checkpoint is fully flushed out of the iclogs when we finish the push. If we
1500  * don't do this, then the commit record may remain sitting in memory in an
1501  * ACTIVE iclog. This then requires another full log force to push to disk,
1502  * which defeats the purpose of having an async, non-blocking CIL force
1503  * mechanism. Hence in this case we need to pass a flag to the push work to
1504  * indicate it needs to flush the commit record itself.
1505  */
1506 static void
1507 xlog_cil_push_now(
1508 	struct xlog	*log,
1509 	xfs_lsn_t	push_seq,
1510 	bool		async)
1511 {
1512 	struct xfs_cil	*cil = log->l_cilp;
1513 
1514 	if (!cil)
1515 		return;
1516 
1517 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1518 
1519 	/* start on any pending background push to minimise wait time on it */
1520 	if (!async)
1521 		flush_workqueue(cil->xc_push_wq);
1522 
1523 	spin_lock(&cil->xc_push_lock);
1524 
1525 	/*
1526 	 * If this is an async flush request, we always need to set the
1527 	 * xc_push_commit_stable flag even if something else has already queued
1528 	 * a push. The flush caller is asking for the CIL to be on stable
1529 	 * storage when the next push completes, so regardless of who has queued
1530 	 * the push, the flush requires stable semantics from it.
1531 	 */
1532 	cil->xc_push_commit_stable = async;
1533 
1534 	/*
1535 	 * If the CIL is empty or we've already pushed the sequence then
1536 	 * there's no more work that we need to do.
1537 	 */
1538 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) ||
1539 	    push_seq <= cil->xc_push_seq) {
1540 		spin_unlock(&cil->xc_push_lock);
1541 		return;
1542 	}
1543 
1544 	cil->xc_push_seq = push_seq;
1545 	queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1546 	spin_unlock(&cil->xc_push_lock);
1547 }
1548 
1549 bool
1550 xlog_cil_empty(
1551 	struct xlog	*log)
1552 {
1553 	struct xfs_cil	*cil = log->l_cilp;
1554 	bool		empty = false;
1555 
1556 	spin_lock(&cil->xc_push_lock);
1557 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
1558 		empty = true;
1559 	spin_unlock(&cil->xc_push_lock);
1560 	return empty;
1561 }
1562 
1563 /*
1564  * If there are intent done items in this transaction and the related intent was
1565  * committed in the current (same) CIL checkpoint, we don't need to write either
1566  * the intent or intent done item to the journal as the change will be
1567  * journalled atomically within this checkpoint. As we cannot remove items from
1568  * the CIL here, mark the related intent with a whiteout so that the CIL push
1569  * can remove it rather than writing it to the journal. Then remove the intent
1570  * done item from the current transaction and release it so it doesn't get put
1571  * into the CIL at all.
1572  */
1573 static uint32_t
1574 xlog_cil_process_intents(
1575 	struct xfs_cil		*cil,
1576 	struct xfs_trans	*tp)
1577 {
1578 	struct xfs_log_item	*lip, *ilip, *next;
1579 	uint32_t		len = 0;
1580 
1581 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1582 		if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE))
1583 			continue;
1584 
1585 		ilip = lip->li_ops->iop_intent(lip);
1586 		if (!ilip || !xlog_item_in_current_chkpt(cil, ilip))
1587 			continue;
1588 		set_bit(XFS_LI_WHITEOUT, &ilip->li_flags);
1589 		trace_xfs_cil_whiteout_mark(ilip);
1590 		len += ilip->li_lv->lv_bytes;
1591 		kmem_free(ilip->li_lv);
1592 		ilip->li_lv = NULL;
1593 
1594 		xfs_trans_del_item(lip);
1595 		lip->li_ops->iop_release(lip);
1596 	}
1597 	return len;
1598 }
1599 
1600 /*
1601  * Commit a transaction with the given vector to the Committed Item List.
1602  *
1603  * To do this, we need to format the item, pin it in memory if required and
1604  * account for the space used by the transaction. Once we have done that we
1605  * need to release the unused reservation for the transaction, attach the
1606  * transaction to the checkpoint context so we carry the busy extents through
1607  * to checkpoint completion, and then unlock all the items in the transaction.
1608  *
1609  * Called with the context lock already held in read mode to lock out
1610  * background commit, returns without it held once background commits are
1611  * allowed again.
1612  */
1613 void
1614 xlog_cil_commit(
1615 	struct xlog		*log,
1616 	struct xfs_trans	*tp,
1617 	xfs_csn_t		*commit_seq,
1618 	bool			regrant)
1619 {
1620 	struct xfs_cil		*cil = log->l_cilp;
1621 	struct xfs_log_item	*lip, *next;
1622 	uint32_t		released_space = 0;
1623 
1624 	/*
1625 	 * Do all necessary memory allocation before we lock the CIL.
1626 	 * This ensures the allocation does not deadlock with a CIL
1627 	 * push in memory reclaim (e.g. from kswapd).
1628 	 */
1629 	xlog_cil_alloc_shadow_bufs(log, tp);
1630 
1631 	/* lock out background commit */
1632 	down_read(&cil->xc_ctx_lock);
1633 
1634 	if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE)
1635 		released_space = xlog_cil_process_intents(cil, tp);
1636 
1637 	xlog_cil_insert_items(log, tp, released_space);
1638 
1639 	if (regrant && !xlog_is_shutdown(log))
1640 		xfs_log_ticket_regrant(log, tp->t_ticket);
1641 	else
1642 		xfs_log_ticket_ungrant(log, tp->t_ticket);
1643 	tp->t_ticket = NULL;
1644 	xfs_trans_unreserve_and_mod_sb(tp);
1645 
1646 	/*
1647 	 * Once all the items of the transaction have been copied to the CIL,
1648 	 * the items can be unlocked and possibly freed.
1649 	 *
1650 	 * This needs to be done before we drop the CIL context lock because we
1651 	 * have to update state in the log items and unlock them before they go
1652 	 * to disk. If we don't, then the CIL checkpoint can race with us and
1653 	 * we can run checkpoint completion before we've updated and unlocked
1654 	 * the log items. This affects (at least) processing of stale buffers,
1655 	 * inodes and EFIs.
1656 	 */
1657 	trace_xfs_trans_commit_items(tp, _RET_IP_);
1658 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1659 		xfs_trans_del_item(lip);
1660 		if (lip->li_ops->iop_committing)
1661 			lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1662 	}
1663 	if (commit_seq)
1664 		*commit_seq = cil->xc_ctx->sequence;
1665 
1666 	/* xlog_cil_push_background() releases cil->xc_ctx_lock */
1667 	xlog_cil_push_background(log);
1668 }
1669 
1670 /*
1671  * Flush the CIL to stable storage but don't wait for it to complete. This
1672  * requires the CIL push to ensure the commit record for the push hits the disk,
1673  * but otherwise is no different to a push done from a log force.
1674  */
1675 void
1676 xlog_cil_flush(
1677 	struct xlog	*log)
1678 {
1679 	xfs_csn_t	seq = log->l_cilp->xc_current_sequence;
1680 
1681 	trace_xfs_log_force(log->l_mp, seq, _RET_IP_);
1682 	xlog_cil_push_now(log, seq, true);
1683 
1684 	/*
1685 	 * If the CIL is empty, make sure that any previous checkpoint that may
1686 	 * still be in an active iclog is pushed to stable storage.
1687 	 */
1688 	if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags))
1689 		xfs_log_force(log->l_mp, 0);
1690 }
1691 
1692 /*
1693  * Conditionally push the CIL based on the sequence passed in.
1694  *
1695  * We only need to push if we haven't already pushed the sequence number given.
1696  * Hence the only time we will trigger a push here is if the push sequence is
1697  * the same as the current context.
1698  *
1699  * We return the current commit lsn to allow the callers to determine if a
1700  * iclog flush is necessary following this call.
1701  */
1702 xfs_lsn_t
1703 xlog_cil_force_seq(
1704 	struct xlog	*log,
1705 	xfs_csn_t	sequence)
1706 {
1707 	struct xfs_cil		*cil = log->l_cilp;
1708 	struct xfs_cil_ctx	*ctx;
1709 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1710 
1711 	ASSERT(sequence <= cil->xc_current_sequence);
1712 
1713 	if (!sequence)
1714 		sequence = cil->xc_current_sequence;
1715 	trace_xfs_log_force(log->l_mp, sequence, _RET_IP_);
1716 
1717 	/*
1718 	 * check to see if we need to force out the current context.
1719 	 * xlog_cil_push() handles racing pushes for the same sequence,
1720 	 * so no need to deal with it here.
1721 	 */
1722 restart:
1723 	xlog_cil_push_now(log, sequence, false);
1724 
1725 	/*
1726 	 * See if we can find a previous sequence still committing.
1727 	 * We need to wait for all previous sequence commits to complete
1728 	 * before allowing the force of push_seq to go ahead. Hence block
1729 	 * on commits for those as well.
1730 	 */
1731 	spin_lock(&cil->xc_push_lock);
1732 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1733 		/*
1734 		 * Avoid getting stuck in this loop because we were woken by the
1735 		 * shutdown, but then went back to sleep once already in the
1736 		 * shutdown state.
1737 		 */
1738 		if (xlog_is_shutdown(log))
1739 			goto out_shutdown;
1740 		if (ctx->sequence > sequence)
1741 			continue;
1742 		if (!ctx->commit_lsn) {
1743 			/*
1744 			 * It is still being pushed! Wait for the push to
1745 			 * complete, then start again from the beginning.
1746 			 */
1747 			XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
1748 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1749 			goto restart;
1750 		}
1751 		if (ctx->sequence != sequence)
1752 			continue;
1753 		/* found it! */
1754 		commit_lsn = ctx->commit_lsn;
1755 	}
1756 
1757 	/*
1758 	 * The call to xlog_cil_push_now() executes the push in the background.
1759 	 * Hence by the time we have got here it our sequence may not have been
1760 	 * pushed yet. This is true if the current sequence still matches the
1761 	 * push sequence after the above wait loop and the CIL still contains
1762 	 * dirty objects. This is guaranteed by the push code first adding the
1763 	 * context to the committing list before emptying the CIL.
1764 	 *
1765 	 * Hence if we don't find the context in the committing list and the
1766 	 * current sequence number is unchanged then the CIL contents are
1767 	 * significant.  If the CIL is empty, if means there was nothing to push
1768 	 * and that means there is nothing to wait for. If the CIL is not empty,
1769 	 * it means we haven't yet started the push, because if it had started
1770 	 * we would have found the context on the committing list.
1771 	 */
1772 	if (sequence == cil->xc_current_sequence &&
1773 	    !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1774 		spin_unlock(&cil->xc_push_lock);
1775 		goto restart;
1776 	}
1777 
1778 	spin_unlock(&cil->xc_push_lock);
1779 	return commit_lsn;
1780 
1781 	/*
1782 	 * We detected a shutdown in progress. We need to trigger the log force
1783 	 * to pass through it's iclog state machine error handling, even though
1784 	 * we are already in a shutdown state. Hence we can't return
1785 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1786 	 * LSN is already stable), so we return a zero LSN instead.
1787 	 */
1788 out_shutdown:
1789 	spin_unlock(&cil->xc_push_lock);
1790 	return 0;
1791 }
1792 
1793 /*
1794  * Move dead percpu state to the relevant CIL context structures.
1795  *
1796  * We have to lock the CIL context here to ensure that nothing is modifying
1797  * the percpu state, either addition or removal. Both of these are done under
1798  * the CIL context lock, so grabbing that exclusively here will ensure we can
1799  * safely drain the cilpcp for the CPU that is dying.
1800  */
1801 void
1802 xlog_cil_pcp_dead(
1803 	struct xlog		*log,
1804 	unsigned int		cpu)
1805 {
1806 	struct xfs_cil		*cil = log->l_cilp;
1807 	struct xlog_cil_pcp	*cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
1808 	struct xfs_cil_ctx	*ctx;
1809 
1810 	down_write(&cil->xc_ctx_lock);
1811 	ctx = cil->xc_ctx;
1812 	if (ctx->ticket)
1813 		ctx->ticket->t_curr_res += cilpcp->space_reserved;
1814 	cilpcp->space_reserved = 0;
1815 
1816 	if (!list_empty(&cilpcp->log_items))
1817 		list_splice_init(&cilpcp->log_items, &ctx->log_items);
1818 	if (!list_empty(&cilpcp->busy_extents))
1819 		list_splice_init(&cilpcp->busy_extents, &ctx->busy_extents);
1820 	atomic_add(cilpcp->space_used, &ctx->space_used);
1821 	cilpcp->space_used = 0;
1822 	up_write(&cil->xc_ctx_lock);
1823 }
1824 
1825 /*
1826  * Perform initial CIL structure initialisation.
1827  */
1828 int
1829 xlog_cil_init(
1830 	struct xlog		*log)
1831 {
1832 	struct xfs_cil		*cil;
1833 	struct xfs_cil_ctx	*ctx;
1834 	struct xlog_cil_pcp	*cilpcp;
1835 	int			cpu;
1836 
1837 	cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL);
1838 	if (!cil)
1839 		return -ENOMEM;
1840 	/*
1841 	 * Limit the CIL pipeline depth to 4 concurrent works to bound the
1842 	 * concurrency the log spinlocks will be exposed to.
1843 	 */
1844 	cil->xc_push_wq = alloc_workqueue("xfs-cil/%s",
1845 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND),
1846 			4, log->l_mp->m_super->s_id);
1847 	if (!cil->xc_push_wq)
1848 		goto out_destroy_cil;
1849 
1850 	cil->xc_log = log;
1851 	cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp);
1852 	if (!cil->xc_pcp)
1853 		goto out_destroy_wq;
1854 
1855 	for_each_possible_cpu(cpu) {
1856 		cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
1857 		INIT_LIST_HEAD(&cilpcp->busy_extents);
1858 		INIT_LIST_HEAD(&cilpcp->log_items);
1859 	}
1860 
1861 	INIT_LIST_HEAD(&cil->xc_committing);
1862 	spin_lock_init(&cil->xc_push_lock);
1863 	init_waitqueue_head(&cil->xc_push_wait);
1864 	init_rwsem(&cil->xc_ctx_lock);
1865 	init_waitqueue_head(&cil->xc_start_wait);
1866 	init_waitqueue_head(&cil->xc_commit_wait);
1867 	log->l_cilp = cil;
1868 
1869 	ctx = xlog_cil_ctx_alloc();
1870 	xlog_cil_ctx_switch(cil, ctx);
1871 	return 0;
1872 
1873 out_destroy_wq:
1874 	destroy_workqueue(cil->xc_push_wq);
1875 out_destroy_cil:
1876 	kmem_free(cil);
1877 	return -ENOMEM;
1878 }
1879 
1880 void
1881 xlog_cil_destroy(
1882 	struct xlog	*log)
1883 {
1884 	struct xfs_cil	*cil = log->l_cilp;
1885 
1886 	if (cil->xc_ctx) {
1887 		if (cil->xc_ctx->ticket)
1888 			xfs_log_ticket_put(cil->xc_ctx->ticket);
1889 		kmem_free(cil->xc_ctx);
1890 	}
1891 
1892 	ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1893 	free_percpu(cil->xc_pcp);
1894 	destroy_workqueue(cil->xc_push_wq);
1895 	kmem_free(cil);
1896 }
1897 
1898