xref: /linux/fs/xfs/xfs_log_cil.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4  */
5 
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_extent_busy.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_log.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trace.h"
19 #include "xfs_discard.h"
20 
21 /*
22  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
23  * recover, so we don't allow failure here. Also, we allocate in a context that
24  * we don't want to be issuing transactions from, so we need to tell the
25  * allocation code this as well.
26  *
27  * We don't reserve any space for the ticket - we are going to steal whatever
28  * space we require from transactions as they commit. To ensure we reserve all
29  * the space required, we need to set the current reservation of the ticket to
30  * zero so that we know to steal the initial transaction overhead from the
31  * first transaction commit.
32  */
33 static struct xlog_ticket *
34 xlog_cil_ticket_alloc(
35 	struct xlog	*log)
36 {
37 	struct xlog_ticket *tic;
38 
39 	tic = xlog_ticket_alloc(log, 0, 1, 0);
40 
41 	/*
42 	 * set the current reservation to zero so we know to steal the basic
43 	 * transaction overhead reservation from the first transaction commit.
44 	 */
45 	tic->t_curr_res = 0;
46 	tic->t_iclog_hdrs = 0;
47 	return tic;
48 }
49 
50 static inline void
51 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil)
52 {
53 	struct xlog	*log = cil->xc_log;
54 
55 	atomic_set(&cil->xc_iclog_hdrs,
56 		   (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) /
57 			(log->l_iclog_size - log->l_iclog_hsize)));
58 }
59 
60 /*
61  * Check if the current log item was first committed in this sequence.
62  * We can't rely on just the log item being in the CIL, we have to check
63  * the recorded commit sequence number.
64  *
65  * Note: for this to be used in a non-racy manner, it has to be called with
66  * CIL flushing locked out. As a result, it should only be used during the
67  * transaction commit process when deciding what to format into the item.
68  */
69 static bool
70 xlog_item_in_current_chkpt(
71 	struct xfs_cil		*cil,
72 	struct xfs_log_item	*lip)
73 {
74 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
75 		return false;
76 
77 	/*
78 	 * li_seq is written on the first commit of a log item to record the
79 	 * first checkpoint it is written to. Hence if it is different to the
80 	 * current sequence, we're in a new checkpoint.
81 	 */
82 	return lip->li_seq == READ_ONCE(cil->xc_current_sequence);
83 }
84 
85 bool
86 xfs_log_item_in_current_chkpt(
87 	struct xfs_log_item *lip)
88 {
89 	return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip);
90 }
91 
92 /*
93  * Unavoidable forward declaration - xlog_cil_push_work() calls
94  * xlog_cil_ctx_alloc() itself.
95  */
96 static void xlog_cil_push_work(struct work_struct *work);
97 
98 static struct xfs_cil_ctx *
99 xlog_cil_ctx_alloc(void)
100 {
101 	struct xfs_cil_ctx	*ctx;
102 
103 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL);
104 	INIT_LIST_HEAD(&ctx->committing);
105 	INIT_LIST_HEAD(&ctx->busy_extents.extent_list);
106 	INIT_LIST_HEAD(&ctx->log_items);
107 	INIT_LIST_HEAD(&ctx->lv_chain);
108 	INIT_WORK(&ctx->push_work, xlog_cil_push_work);
109 	return ctx;
110 }
111 
112 /*
113  * Aggregate the CIL per cpu structures into global counts, lists, etc and
114  * clear the percpu state ready for the next context to use. This is called
115  * from the push code with the context lock held exclusively, hence nothing else
116  * will be accessing or modifying the per-cpu counters.
117  */
118 static void
119 xlog_cil_push_pcp_aggregate(
120 	struct xfs_cil		*cil,
121 	struct xfs_cil_ctx	*ctx)
122 {
123 	struct xlog_cil_pcp	*cilpcp;
124 	int			cpu;
125 
126 	for_each_cpu(cpu, &ctx->cil_pcpmask) {
127 		cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
128 
129 		ctx->ticket->t_curr_res += cilpcp->space_reserved;
130 		cilpcp->space_reserved = 0;
131 
132 		if (!list_empty(&cilpcp->busy_extents)) {
133 			list_splice_init(&cilpcp->busy_extents,
134 					&ctx->busy_extents.extent_list);
135 		}
136 		if (!list_empty(&cilpcp->log_items))
137 			list_splice_init(&cilpcp->log_items, &ctx->log_items);
138 
139 		/*
140 		 * We're in the middle of switching cil contexts.  Reset the
141 		 * counter we use to detect when the current context is nearing
142 		 * full.
143 		 */
144 		cilpcp->space_used = 0;
145 	}
146 }
147 
148 /*
149  * Aggregate the CIL per-cpu space used counters into the global atomic value.
150  * This is called when the per-cpu counter aggregation will first pass the soft
151  * limit threshold so we can switch to atomic counter aggregation for accurate
152  * detection of hard limit traversal.
153  */
154 static void
155 xlog_cil_insert_pcp_aggregate(
156 	struct xfs_cil		*cil,
157 	struct xfs_cil_ctx	*ctx)
158 {
159 	int			cpu;
160 	int			count = 0;
161 
162 	/* Trigger atomic updates then aggregate only for the first caller */
163 	if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags))
164 		return;
165 
166 	/*
167 	 * We can race with other cpus setting cil_pcpmask.  However, we've
168 	 * atomically cleared PCP_SPACE which forces other threads to add to
169 	 * the global space used count.  cil_pcpmask is a superset of cilpcp
170 	 * structures that could have a nonzero space_used.
171 	 */
172 	for_each_cpu(cpu, &ctx->cil_pcpmask) {
173 		struct xlog_cil_pcp	*cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
174 
175 		count += xchg(&cilpcp->space_used, 0);
176 	}
177 	atomic_add(count, &ctx->space_used);
178 }
179 
180 static void
181 xlog_cil_ctx_switch(
182 	struct xfs_cil		*cil,
183 	struct xfs_cil_ctx	*ctx)
184 {
185 	xlog_cil_set_iclog_hdr_count(cil);
186 	set_bit(XLOG_CIL_EMPTY, &cil->xc_flags);
187 	set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags);
188 	ctx->sequence = ++cil->xc_current_sequence;
189 	ctx->cil = cil;
190 	cil->xc_ctx = ctx;
191 }
192 
193 /*
194  * After the first stage of log recovery is done, we know where the head and
195  * tail of the log are. We need this log initialisation done before we can
196  * initialise the first CIL checkpoint context.
197  *
198  * Here we allocate a log ticket to track space usage during a CIL push.  This
199  * ticket is passed to xlog_write() directly so that we don't slowly leak log
200  * space by failing to account for space used by log headers and additional
201  * region headers for split regions.
202  */
203 void
204 xlog_cil_init_post_recovery(
205 	struct xlog	*log)
206 {
207 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
208 	log->l_cilp->xc_ctx->sequence = 1;
209 	xlog_cil_set_iclog_hdr_count(log->l_cilp);
210 }
211 
212 static inline int
213 xlog_cil_iovec_space(
214 	uint	niovecs)
215 {
216 	return round_up((sizeof(struct xfs_log_vec) +
217 					niovecs * sizeof(struct xfs_log_iovec)),
218 			sizeof(uint64_t));
219 }
220 
221 /*
222  * Allocate or pin log vector buffers for CIL insertion.
223  *
224  * The CIL currently uses disposable buffers for copying a snapshot of the
225  * modified items into the log during a push. The biggest problem with this is
226  * the requirement to allocate the disposable buffer during the commit if:
227  *	a) does not exist; or
228  *	b) it is too small
229  *
230  * If we do this allocation within xlog_cil_insert_format_items(), it is done
231  * under the xc_ctx_lock, which means that a CIL push cannot occur during
232  * the memory allocation. This means that we have a potential deadlock situation
233  * under low memory conditions when we have lots of dirty metadata pinned in
234  * the CIL and we need a CIL commit to occur to free memory.
235  *
236  * To avoid this, we need to move the memory allocation outside the
237  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
238  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
239  * vector buffers between the check and the formatting of the item into the
240  * log vector buffer within the xc_ctx_lock.
241  *
242  * Because the log vector buffer needs to be unchanged during the CIL push
243  * process, we cannot share the buffer between the transaction commit (which
244  * modifies the buffer) and the CIL push context that is writing the changes
245  * into the log. This means skipping preallocation of buffer space is
246  * unreliable, but we most definitely do not want to be allocating and freeing
247  * buffers unnecessarily during commits when overwrites can be done safely.
248  *
249  * The simplest solution to this problem is to allocate a shadow buffer when a
250  * log item is committed for the second time, and then to only use this buffer
251  * if necessary. The buffer can remain attached to the log item until such time
252  * it is needed, and this is the buffer that is reallocated to match the size of
253  * the incoming modification. Then during the formatting of the item we can swap
254  * the active buffer with the new one if we can't reuse the existing buffer. We
255  * don't free the old buffer as it may be reused on the next modification if
256  * it's size is right, otherwise we'll free and reallocate it at that point.
257  *
258  * This function builds a vector for the changes in each log item in the
259  * transaction. It then works out the length of the buffer needed for each log
260  * item, allocates them and attaches the vector to the log item in preparation
261  * for the formatting step which occurs under the xc_ctx_lock.
262  *
263  * While this means the memory footprint goes up, it avoids the repeated
264  * alloc/free pattern that repeated modifications of an item would otherwise
265  * cause, and hence minimises the CPU overhead of such behaviour.
266  */
267 static void
268 xlog_cil_alloc_shadow_bufs(
269 	struct xlog		*log,
270 	struct xfs_trans	*tp)
271 {
272 	struct xfs_log_item	*lip;
273 
274 	list_for_each_entry(lip, &tp->t_items, li_trans) {
275 		struct xfs_log_vec *lv;
276 		int	niovecs = 0;
277 		int	nbytes = 0;
278 		int	buf_size;
279 		bool	ordered = false;
280 
281 		/* Skip items which aren't dirty in this transaction. */
282 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
283 			continue;
284 
285 		/* get number of vecs and size of data to be stored */
286 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
287 
288 		/*
289 		 * Ordered items need to be tracked but we do not wish to write
290 		 * them. We need a logvec to track the object, but we do not
291 		 * need an iovec or buffer to be allocated for copying data.
292 		 */
293 		if (niovecs == XFS_LOG_VEC_ORDERED) {
294 			ordered = true;
295 			niovecs = 0;
296 			nbytes = 0;
297 		}
298 
299 		/*
300 		 * We 64-bit align the length of each iovec so that the start of
301 		 * the next one is naturally aligned.  We'll need to account for
302 		 * that slack space here.
303 		 *
304 		 * We also add the xlog_op_header to each region when
305 		 * formatting, but that's not accounted to the size of the item
306 		 * at this point. Hence we'll need an addition number of bytes
307 		 * for each vector to hold an opheader.
308 		 *
309 		 * Then round nbytes up to 64-bit alignment so that the initial
310 		 * buffer alignment is easy to calculate and verify.
311 		 */
312 		nbytes += niovecs *
313 			(sizeof(uint64_t) + sizeof(struct xlog_op_header));
314 		nbytes = round_up(nbytes, sizeof(uint64_t));
315 
316 		/*
317 		 * The data buffer needs to start 64-bit aligned, so round up
318 		 * that space to ensure we can align it appropriately and not
319 		 * overrun the buffer.
320 		 */
321 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
322 
323 		/*
324 		 * if we have no shadow buffer, or it is too small, we need to
325 		 * reallocate it.
326 		 */
327 		if (!lip->li_lv_shadow ||
328 		    buf_size > lip->li_lv_shadow->lv_size) {
329 			/*
330 			 * We free and allocate here as a realloc would copy
331 			 * unnecessary data. We don't use kvzalloc() for the
332 			 * same reason - we don't need to zero the data area in
333 			 * the buffer, only the log vector header and the iovec
334 			 * storage.
335 			 */
336 			kvfree(lip->li_lv_shadow);
337 			lv = xlog_kvmalloc(buf_size);
338 
339 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
340 
341 			INIT_LIST_HEAD(&lv->lv_list);
342 			lv->lv_item = lip;
343 			lv->lv_size = buf_size;
344 			if (ordered)
345 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
346 			else
347 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
348 			lip->li_lv_shadow = lv;
349 		} else {
350 			/* same or smaller, optimise common overwrite case */
351 			lv = lip->li_lv_shadow;
352 			if (ordered)
353 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
354 			else
355 				lv->lv_buf_len = 0;
356 			lv->lv_bytes = 0;
357 		}
358 
359 		/* Ensure the lv is set up according to ->iop_size */
360 		lv->lv_niovecs = niovecs;
361 
362 		/* The allocated data region lies beyond the iovec region */
363 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
364 	}
365 
366 }
367 
368 /*
369  * Prepare the log item for insertion into the CIL. Calculate the difference in
370  * log space it will consume, and if it is a new item pin it as well.
371  */
372 STATIC void
373 xfs_cil_prepare_item(
374 	struct xlog		*log,
375 	struct xfs_log_vec	*lv,
376 	struct xfs_log_vec	*old_lv,
377 	int			*diff_len)
378 {
379 	/* Account for the new LV being passed in */
380 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
381 		*diff_len += lv->lv_bytes;
382 
383 	/*
384 	 * If there is no old LV, this is the first time we've seen the item in
385 	 * this CIL context and so we need to pin it. If we are replacing the
386 	 * old_lv, then remove the space it accounts for and make it the shadow
387 	 * buffer for later freeing. In both cases we are now switching to the
388 	 * shadow buffer, so update the pointer to it appropriately.
389 	 */
390 	if (!old_lv) {
391 		if (lv->lv_item->li_ops->iop_pin)
392 			lv->lv_item->li_ops->iop_pin(lv->lv_item);
393 		lv->lv_item->li_lv_shadow = NULL;
394 	} else if (old_lv != lv) {
395 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
396 
397 		*diff_len -= old_lv->lv_bytes;
398 		lv->lv_item->li_lv_shadow = old_lv;
399 	}
400 
401 	/* attach new log vector to log item */
402 	lv->lv_item->li_lv = lv;
403 
404 	/*
405 	 * If this is the first time the item is being committed to the
406 	 * CIL, store the sequence number on the log item so we can
407 	 * tell in future commits whether this is the first checkpoint
408 	 * the item is being committed into.
409 	 */
410 	if (!lv->lv_item->li_seq)
411 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
412 }
413 
414 /*
415  * Format log item into a flat buffers
416  *
417  * For delayed logging, we need to hold a formatted buffer containing all the
418  * changes on the log item. This enables us to relog the item in memory and
419  * write it out asynchronously without needing to relock the object that was
420  * modified at the time it gets written into the iclog.
421  *
422  * This function takes the prepared log vectors attached to each log item, and
423  * formats the changes into the log vector buffer. The buffer it uses is
424  * dependent on the current state of the vector in the CIL - the shadow lv is
425  * guaranteed to be large enough for the current modification, but we will only
426  * use that if we can't reuse the existing lv. If we can't reuse the existing
427  * lv, then simple swap it out for the shadow lv. We don't free it - that is
428  * done lazily either by th enext modification or the freeing of the log item.
429  *
430  * We don't set up region headers during this process; we simply copy the
431  * regions into the flat buffer. We can do this because we still have to do a
432  * formatting step to write the regions into the iclog buffer.  Writing the
433  * ophdrs during the iclog write means that we can support splitting large
434  * regions across iclog boundares without needing a change in the format of the
435  * item/region encapsulation.
436  *
437  * Hence what we need to do now is change the rewrite the vector array to point
438  * to the copied region inside the buffer we just allocated. This allows us to
439  * format the regions into the iclog as though they are being formatted
440  * directly out of the objects themselves.
441  */
442 static void
443 xlog_cil_insert_format_items(
444 	struct xlog		*log,
445 	struct xfs_trans	*tp,
446 	int			*diff_len)
447 {
448 	struct xfs_log_item	*lip;
449 
450 	/* Bail out if we didn't find a log item.  */
451 	if (list_empty(&tp->t_items)) {
452 		ASSERT(0);
453 		return;
454 	}
455 
456 	list_for_each_entry(lip, &tp->t_items, li_trans) {
457 		struct xfs_log_vec *lv;
458 		struct xfs_log_vec *old_lv = NULL;
459 		struct xfs_log_vec *shadow;
460 		bool	ordered = false;
461 
462 		/* Skip items which aren't dirty in this transaction. */
463 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
464 			continue;
465 
466 		/*
467 		 * The formatting size information is already attached to
468 		 * the shadow lv on the log item.
469 		 */
470 		shadow = lip->li_lv_shadow;
471 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
472 			ordered = true;
473 
474 		/* Skip items that do not have any vectors for writing */
475 		if (!shadow->lv_niovecs && !ordered)
476 			continue;
477 
478 		/* compare to existing item size */
479 		old_lv = lip->li_lv;
480 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
481 			/* same or smaller, optimise common overwrite case */
482 			lv = lip->li_lv;
483 
484 			if (ordered)
485 				goto insert;
486 
487 			/*
488 			 * set the item up as though it is a new insertion so
489 			 * that the space reservation accounting is correct.
490 			 */
491 			*diff_len -= lv->lv_bytes;
492 
493 			/* Ensure the lv is set up according to ->iop_size */
494 			lv->lv_niovecs = shadow->lv_niovecs;
495 
496 			/* reset the lv buffer information for new formatting */
497 			lv->lv_buf_len = 0;
498 			lv->lv_bytes = 0;
499 			lv->lv_buf = (char *)lv +
500 					xlog_cil_iovec_space(lv->lv_niovecs);
501 		} else {
502 			/* switch to shadow buffer! */
503 			lv = shadow;
504 			lv->lv_item = lip;
505 			if (ordered) {
506 				/* track as an ordered logvec */
507 				ASSERT(lip->li_lv == NULL);
508 				goto insert;
509 			}
510 		}
511 
512 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
513 		lip->li_ops->iop_format(lip, lv);
514 insert:
515 		xfs_cil_prepare_item(log, lv, old_lv, diff_len);
516 	}
517 }
518 
519 /*
520  * The use of lockless waitqueue_active() requires that the caller has
521  * serialised itself against the wakeup call in xlog_cil_push_work(). That
522  * can be done by either holding the push lock or the context lock.
523  */
524 static inline bool
525 xlog_cil_over_hard_limit(
526 	struct xlog	*log,
527 	int32_t		space_used)
528 {
529 	if (waitqueue_active(&log->l_cilp->xc_push_wait))
530 		return true;
531 	if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log))
532 		return true;
533 	return false;
534 }
535 
536 /*
537  * Insert the log items into the CIL and calculate the difference in space
538  * consumed by the item. Add the space to the checkpoint ticket and calculate
539  * if the change requires additional log metadata. If it does, take that space
540  * as well. Remove the amount of space we added to the checkpoint ticket from
541  * the current transaction ticket so that the accounting works out correctly.
542  */
543 static void
544 xlog_cil_insert_items(
545 	struct xlog		*log,
546 	struct xfs_trans	*tp,
547 	uint32_t		released_space)
548 {
549 	struct xfs_cil		*cil = log->l_cilp;
550 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
551 	struct xfs_log_item	*lip;
552 	int			len = 0;
553 	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
554 	int			space_used;
555 	int			order;
556 	unsigned int		cpu_nr;
557 	struct xlog_cil_pcp	*cilpcp;
558 
559 	ASSERT(tp);
560 
561 	/*
562 	 * We can do this safely because the context can't checkpoint until we
563 	 * are done so it doesn't matter exactly how we update the CIL.
564 	 */
565 	xlog_cil_insert_format_items(log, tp, &len);
566 
567 	/*
568 	 * Subtract the space released by intent cancelation from the space we
569 	 * consumed so that we remove it from the CIL space and add it back to
570 	 * the current transaction reservation context.
571 	 */
572 	len -= released_space;
573 
574 	/*
575 	 * Grab the per-cpu pointer for the CIL before we start any accounting.
576 	 * That ensures that we are running with pre-emption disabled and so we
577 	 * can't be scheduled away between split sample/update operations that
578 	 * are done without outside locking to serialise them.
579 	 */
580 	cpu_nr = get_cpu();
581 	cilpcp = this_cpu_ptr(cil->xc_pcp);
582 
583 	/* Tell the future push that there was work added by this CPU. */
584 	if (!cpumask_test_cpu(cpu_nr, &ctx->cil_pcpmask))
585 		cpumask_test_and_set_cpu(cpu_nr, &ctx->cil_pcpmask);
586 
587 	/*
588 	 * We need to take the CIL checkpoint unit reservation on the first
589 	 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't
590 	 * unnecessarily do an atomic op in the fast path here. We can clear the
591 	 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that
592 	 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit.
593 	 */
594 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) &&
595 	    test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
596 		ctx_res = ctx->ticket->t_unit_res;
597 
598 	/*
599 	 * Check if we need to steal iclog headers. atomic_read() is not a
600 	 * locked atomic operation, so we can check the value before we do any
601 	 * real atomic ops in the fast path. If we've already taken the CIL unit
602 	 * reservation from this commit, we've already got one iclog header
603 	 * space reserved so we have to account for that otherwise we risk
604 	 * overrunning the reservation on this ticket.
605 	 *
606 	 * If the CIL is already at the hard limit, we might need more header
607 	 * space that originally reserved. So steal more header space from every
608 	 * commit that occurs once we are over the hard limit to ensure the CIL
609 	 * push won't run out of reservation space.
610 	 *
611 	 * This can steal more than we need, but that's OK.
612 	 *
613 	 * The cil->xc_ctx_lock provides the serialisation necessary for safely
614 	 * calling xlog_cil_over_hard_limit() in this context.
615 	 */
616 	space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len;
617 	if (atomic_read(&cil->xc_iclog_hdrs) > 0 ||
618 	    xlog_cil_over_hard_limit(log, space_used)) {
619 		split_res = log->l_iclog_hsize +
620 					sizeof(struct xlog_op_header);
621 		if (ctx_res)
622 			ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1);
623 		else
624 			ctx_res = split_res * tp->t_ticket->t_iclog_hdrs;
625 		atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs);
626 	}
627 	cilpcp->space_reserved += ctx_res;
628 
629 	/*
630 	 * Accurately account when over the soft limit, otherwise fold the
631 	 * percpu count into the global count if over the per-cpu threshold.
632 	 */
633 	if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) {
634 		atomic_add(len, &ctx->space_used);
635 	} else if (cilpcp->space_used + len >
636 			(XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) {
637 		space_used = atomic_add_return(cilpcp->space_used + len,
638 						&ctx->space_used);
639 		cilpcp->space_used = 0;
640 
641 		/*
642 		 * If we just transitioned over the soft limit, we need to
643 		 * transition to the global atomic counter.
644 		 */
645 		if (space_used >= XLOG_CIL_SPACE_LIMIT(log))
646 			xlog_cil_insert_pcp_aggregate(cil, ctx);
647 	} else {
648 		cilpcp->space_used += len;
649 	}
650 	/* attach the transaction to the CIL if it has any busy extents */
651 	if (!list_empty(&tp->t_busy))
652 		list_splice_init(&tp->t_busy, &cilpcp->busy_extents);
653 
654 	/*
655 	 * Now update the order of everything modified in the transaction
656 	 * and insert items into the CIL if they aren't already there.
657 	 * We do this here so we only need to take the CIL lock once during
658 	 * the transaction commit.
659 	 */
660 	order = atomic_inc_return(&ctx->order_id);
661 	list_for_each_entry(lip, &tp->t_items, li_trans) {
662 		/* Skip items which aren't dirty in this transaction. */
663 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
664 			continue;
665 
666 		lip->li_order_id = order;
667 		if (!list_empty(&lip->li_cil))
668 			continue;
669 		list_add_tail(&lip->li_cil, &cilpcp->log_items);
670 	}
671 	put_cpu();
672 
673 	/*
674 	 * If we've overrun the reservation, dump the tx details before we move
675 	 * the log items. Shutdown is imminent...
676 	 */
677 	tp->t_ticket->t_curr_res -= ctx_res + len;
678 	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
679 		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
680 		xfs_warn(log->l_mp,
681 			 "  log items: %d bytes (iov hdrs: %d bytes)",
682 			 len, iovhdr_res);
683 		xfs_warn(log->l_mp, "  split region headers: %d bytes",
684 			 split_res);
685 		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
686 		xlog_print_trans(tp);
687 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
688 	}
689 }
690 
691 static inline void
692 xlog_cil_ail_insert_batch(
693 	struct xfs_ail		*ailp,
694 	struct xfs_ail_cursor	*cur,
695 	struct xfs_log_item	**log_items,
696 	int			nr_items,
697 	xfs_lsn_t		commit_lsn)
698 {
699 	int	i;
700 
701 	spin_lock(&ailp->ail_lock);
702 	/* xfs_trans_ail_update_bulk drops ailp->ail_lock */
703 	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
704 
705 	for (i = 0; i < nr_items; i++) {
706 		struct xfs_log_item *lip = log_items[i];
707 
708 		if (lip->li_ops->iop_unpin)
709 			lip->li_ops->iop_unpin(lip, 0);
710 	}
711 }
712 
713 /*
714  * Take the checkpoint's log vector chain of items and insert the attached log
715  * items into the AIL. This uses bulk insertion techniques to minimise AIL lock
716  * traffic.
717  *
718  * The AIL tracks log items via the start record LSN of the checkpoint,
719  * not the commit record LSN. This is because we can pipeline multiple
720  * checkpoints, and so the start record of checkpoint N+1 can be
721  * written before the commit record of checkpoint N. i.e:
722  *
723  *   start N			commit N
724  *	+-------------+------------+----------------+
725  *		  start N+1			commit N+1
726  *
727  * The tail of the log cannot be moved to the LSN of commit N when all
728  * the items of that checkpoint are written back, because then the
729  * start record for N+1 is no longer in the active portion of the log
730  * and recovery will fail/corrupt the filesystem.
731  *
732  * Hence when all the log items in checkpoint N are written back, the
733  * tail of the log most now only move as far forwards as the start LSN
734  * of checkpoint N+1.
735  *
736  * If we are called with the aborted flag set, it is because a log write during
737  * a CIL checkpoint commit has failed. In this case, all the items in the
738  * checkpoint have already gone through iop_committed and iop_committing, which
739  * means that checkpoint commit abort handling is treated exactly the same as an
740  * iclog write error even though we haven't started any IO yet. Hence in this
741  * case all we need to do is iop_committed processing, followed by an
742  * iop_unpin(aborted) call.
743  *
744  * The AIL cursor is used to optimise the insert process. If commit_lsn is not
745  * at the end of the AIL, the insert cursor avoids the need to walk the AIL to
746  * find the insertion point on every xfs_log_item_batch_insert() call. This
747  * saves a lot of needless list walking and is a net win, even though it
748  * slightly increases that amount of AIL lock traffic to set it up and tear it
749  * down.
750  */
751 static void
752 xlog_cil_ail_insert(
753 	struct xfs_cil_ctx	*ctx,
754 	bool			aborted)
755 {
756 #define LOG_ITEM_BATCH_SIZE	32
757 	struct xfs_ail		*ailp = ctx->cil->xc_log->l_ailp;
758 	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
759 	struct xfs_log_vec	*lv;
760 	struct xfs_ail_cursor	cur;
761 	xfs_lsn_t		old_head;
762 	int			i = 0;
763 
764 	/*
765 	 * Update the AIL head LSN with the commit record LSN of this
766 	 * checkpoint. As iclogs are always completed in order, this should
767 	 * always be the same (as iclogs can contain multiple commit records) or
768 	 * higher LSN than the current head. We do this before insertion of the
769 	 * items so that log space checks during insertion will reflect the
770 	 * space that this checkpoint has already consumed.  We call
771 	 * xfs_ail_update_finish() so that tail space and space-based wakeups
772 	 * will be recalculated appropriately.
773 	 */
774 	ASSERT(XFS_LSN_CMP(ctx->commit_lsn, ailp->ail_head_lsn) >= 0 ||
775 			aborted);
776 	spin_lock(&ailp->ail_lock);
777 	xfs_trans_ail_cursor_last(ailp, &cur, ctx->start_lsn);
778 	old_head = ailp->ail_head_lsn;
779 	ailp->ail_head_lsn = ctx->commit_lsn;
780 	/* xfs_ail_update_finish() drops the ail_lock */
781 	xfs_ail_update_finish(ailp, NULLCOMMITLSN);
782 
783 	/*
784 	 * We move the AIL head forwards to account for the space used in the
785 	 * log before we remove that space from the grant heads. This prevents a
786 	 * transient condition where reservation space appears to become
787 	 * available on return, only for it to disappear again immediately as
788 	 * the AIL head update accounts in the log tail space.
789 	 */
790 	smp_wmb();	/* paired with smp_rmb in xlog_grant_space_left */
791 	xlog_grant_return_space(ailp->ail_log, old_head, ailp->ail_head_lsn);
792 
793 	/* unpin all the log items */
794 	list_for_each_entry(lv, &ctx->lv_chain, lv_list) {
795 		struct xfs_log_item	*lip = lv->lv_item;
796 		xfs_lsn_t		item_lsn;
797 
798 		if (aborted)
799 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
800 
801 		if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
802 			lip->li_ops->iop_release(lip);
803 			continue;
804 		}
805 
806 		if (lip->li_ops->iop_committed)
807 			item_lsn = lip->li_ops->iop_committed(lip,
808 					ctx->start_lsn);
809 		else
810 			item_lsn = ctx->start_lsn;
811 
812 		/* item_lsn of -1 means the item needs no further processing */
813 		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
814 			continue;
815 
816 		/*
817 		 * if we are aborting the operation, no point in inserting the
818 		 * object into the AIL as we are in a shutdown situation.
819 		 */
820 		if (aborted) {
821 			ASSERT(xlog_is_shutdown(ailp->ail_log));
822 			if (lip->li_ops->iop_unpin)
823 				lip->li_ops->iop_unpin(lip, 1);
824 			continue;
825 		}
826 
827 		if (item_lsn != ctx->start_lsn) {
828 
829 			/*
830 			 * Not a bulk update option due to unusual item_lsn.
831 			 * Push into AIL immediately, rechecking the lsn once
832 			 * we have the ail lock. Then unpin the item. This does
833 			 * not affect the AIL cursor the bulk insert path is
834 			 * using.
835 			 */
836 			spin_lock(&ailp->ail_lock);
837 			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
838 				xfs_trans_ail_update(ailp, lip, item_lsn);
839 			else
840 				spin_unlock(&ailp->ail_lock);
841 			if (lip->li_ops->iop_unpin)
842 				lip->li_ops->iop_unpin(lip, 0);
843 			continue;
844 		}
845 
846 		/* Item is a candidate for bulk AIL insert.  */
847 		log_items[i++] = lv->lv_item;
848 		if (i >= LOG_ITEM_BATCH_SIZE) {
849 			xlog_cil_ail_insert_batch(ailp, &cur, log_items,
850 					LOG_ITEM_BATCH_SIZE, ctx->start_lsn);
851 			i = 0;
852 		}
853 	}
854 
855 	/* make sure we insert the remainder! */
856 	if (i)
857 		xlog_cil_ail_insert_batch(ailp, &cur, log_items, i,
858 				ctx->start_lsn);
859 
860 	spin_lock(&ailp->ail_lock);
861 	xfs_trans_ail_cursor_done(&cur);
862 	spin_unlock(&ailp->ail_lock);
863 }
864 
865 static void
866 xlog_cil_free_logvec(
867 	struct list_head	*lv_chain)
868 {
869 	struct xfs_log_vec	*lv;
870 
871 	while (!list_empty(lv_chain)) {
872 		lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list);
873 		list_del_init(&lv->lv_list);
874 		kvfree(lv);
875 	}
876 }
877 
878 /*
879  * Mark all items committed and clear busy extents. We free the log vector
880  * chains in a separate pass so that we unpin the log items as quickly as
881  * possible.
882  */
883 static void
884 xlog_cil_committed(
885 	struct xfs_cil_ctx	*ctx)
886 {
887 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
888 	bool			abort = xlog_is_shutdown(ctx->cil->xc_log);
889 
890 	/*
891 	 * If the I/O failed, we're aborting the commit and already shutdown.
892 	 * Wake any commit waiters before aborting the log items so we don't
893 	 * block async log pushers on callbacks. Async log pushers explicitly do
894 	 * not wait on log force completion because they may be holding locks
895 	 * required to unpin items.
896 	 */
897 	if (abort) {
898 		spin_lock(&ctx->cil->xc_push_lock);
899 		wake_up_all(&ctx->cil->xc_start_wait);
900 		wake_up_all(&ctx->cil->xc_commit_wait);
901 		spin_unlock(&ctx->cil->xc_push_lock);
902 	}
903 
904 	xlog_cil_ail_insert(ctx, abort);
905 
906 	xfs_extent_busy_sort(&ctx->busy_extents.extent_list);
907 	xfs_extent_busy_clear(&ctx->busy_extents.extent_list,
908 			      xfs_has_discard(mp) && !abort);
909 
910 	spin_lock(&ctx->cil->xc_push_lock);
911 	list_del(&ctx->committing);
912 	spin_unlock(&ctx->cil->xc_push_lock);
913 
914 	xlog_cil_free_logvec(&ctx->lv_chain);
915 
916 	if (!list_empty(&ctx->busy_extents.extent_list)) {
917 		ctx->busy_extents.owner = ctx;
918 		xfs_discard_extents(mp, &ctx->busy_extents);
919 		return;
920 	}
921 
922 	kfree(ctx);
923 }
924 
925 void
926 xlog_cil_process_committed(
927 	struct list_head	*list)
928 {
929 	struct xfs_cil_ctx	*ctx;
930 
931 	while ((ctx = list_first_entry_or_null(list,
932 			struct xfs_cil_ctx, iclog_entry))) {
933 		list_del(&ctx->iclog_entry);
934 		xlog_cil_committed(ctx);
935 	}
936 }
937 
938 /*
939 * Record the LSN of the iclog we were just granted space to start writing into.
940 * If the context doesn't have a start_lsn recorded, then this iclog will
941 * contain the start record for the checkpoint. Otherwise this write contains
942 * the commit record for the checkpoint.
943 */
944 void
945 xlog_cil_set_ctx_write_state(
946 	struct xfs_cil_ctx	*ctx,
947 	struct xlog_in_core	*iclog)
948 {
949 	struct xfs_cil		*cil = ctx->cil;
950 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
951 
952 	ASSERT(!ctx->commit_lsn);
953 	if (!ctx->start_lsn) {
954 		spin_lock(&cil->xc_push_lock);
955 		/*
956 		 * The LSN we need to pass to the log items on transaction
957 		 * commit is the LSN reported by the first log vector write, not
958 		 * the commit lsn. If we use the commit record lsn then we can
959 		 * move the grant write head beyond the tail LSN and overwrite
960 		 * it.
961 		 */
962 		ctx->start_lsn = lsn;
963 		wake_up_all(&cil->xc_start_wait);
964 		spin_unlock(&cil->xc_push_lock);
965 
966 		/*
967 		 * Make sure the metadata we are about to overwrite in the log
968 		 * has been flushed to stable storage before this iclog is
969 		 * issued.
970 		 */
971 		spin_lock(&cil->xc_log->l_icloglock);
972 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
973 		spin_unlock(&cil->xc_log->l_icloglock);
974 		return;
975 	}
976 
977 	/*
978 	 * Take a reference to the iclog for the context so that we still hold
979 	 * it when xlog_write is done and has released it. This means the
980 	 * context controls when the iclog is released for IO.
981 	 */
982 	atomic_inc(&iclog->ic_refcnt);
983 
984 	/*
985 	 * xlog_state_get_iclog_space() guarantees there is enough space in the
986 	 * iclog for an entire commit record, so we can attach the context
987 	 * callbacks now.  This needs to be done before we make the commit_lsn
988 	 * visible to waiters so that checkpoints with commit records in the
989 	 * same iclog order their IO completion callbacks in the same order that
990 	 * the commit records appear in the iclog.
991 	 */
992 	spin_lock(&cil->xc_log->l_icloglock);
993 	list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks);
994 	spin_unlock(&cil->xc_log->l_icloglock);
995 
996 	/*
997 	 * Now we can record the commit LSN and wake anyone waiting for this
998 	 * sequence to have the ordered commit record assigned to a physical
999 	 * location in the log.
1000 	 */
1001 	spin_lock(&cil->xc_push_lock);
1002 	ctx->commit_iclog = iclog;
1003 	ctx->commit_lsn = lsn;
1004 	wake_up_all(&cil->xc_commit_wait);
1005 	spin_unlock(&cil->xc_push_lock);
1006 }
1007 
1008 
1009 /*
1010  * Ensure that the order of log writes follows checkpoint sequence order. This
1011  * relies on the context LSN being zero until the log write has guaranteed the
1012  * LSN that the log write will start at via xlog_state_get_iclog_space().
1013  */
1014 enum _record_type {
1015 	_START_RECORD,
1016 	_COMMIT_RECORD,
1017 };
1018 
1019 static int
1020 xlog_cil_order_write(
1021 	struct xfs_cil		*cil,
1022 	xfs_csn_t		sequence,
1023 	enum _record_type	record)
1024 {
1025 	struct xfs_cil_ctx	*ctx;
1026 
1027 restart:
1028 	spin_lock(&cil->xc_push_lock);
1029 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1030 		/*
1031 		 * Avoid getting stuck in this loop because we were woken by the
1032 		 * shutdown, but then went back to sleep once already in the
1033 		 * shutdown state.
1034 		 */
1035 		if (xlog_is_shutdown(cil->xc_log)) {
1036 			spin_unlock(&cil->xc_push_lock);
1037 			return -EIO;
1038 		}
1039 
1040 		/*
1041 		 * Higher sequences will wait for this one so skip them.
1042 		 * Don't wait for our own sequence, either.
1043 		 */
1044 		if (ctx->sequence >= sequence)
1045 			continue;
1046 
1047 		/* Wait until the LSN for the record has been recorded. */
1048 		switch (record) {
1049 		case _START_RECORD:
1050 			if (!ctx->start_lsn) {
1051 				xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock);
1052 				goto restart;
1053 			}
1054 			break;
1055 		case _COMMIT_RECORD:
1056 			if (!ctx->commit_lsn) {
1057 				xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1058 				goto restart;
1059 			}
1060 			break;
1061 		}
1062 	}
1063 	spin_unlock(&cil->xc_push_lock);
1064 	return 0;
1065 }
1066 
1067 /*
1068  * Write out the log vector change now attached to the CIL context. This will
1069  * write a start record that needs to be strictly ordered in ascending CIL
1070  * sequence order so that log recovery will always use in-order start LSNs when
1071  * replaying checkpoints.
1072  */
1073 static int
1074 xlog_cil_write_chain(
1075 	struct xfs_cil_ctx	*ctx,
1076 	uint32_t		chain_len)
1077 {
1078 	struct xlog		*log = ctx->cil->xc_log;
1079 	int			error;
1080 
1081 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD);
1082 	if (error)
1083 		return error;
1084 	return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len);
1085 }
1086 
1087 /*
1088  * Write out the commit record of a checkpoint transaction to close off a
1089  * running log write. These commit records are strictly ordered in ascending CIL
1090  * sequence order so that log recovery will always replay the checkpoints in the
1091  * correct order.
1092  */
1093 static int
1094 xlog_cil_write_commit_record(
1095 	struct xfs_cil_ctx	*ctx)
1096 {
1097 	struct xlog		*log = ctx->cil->xc_log;
1098 	struct xlog_op_header	ophdr = {
1099 		.oh_clientid = XFS_TRANSACTION,
1100 		.oh_tid = cpu_to_be32(ctx->ticket->t_tid),
1101 		.oh_flags = XLOG_COMMIT_TRANS,
1102 	};
1103 	struct xfs_log_iovec	reg = {
1104 		.i_addr = &ophdr,
1105 		.i_len = sizeof(struct xlog_op_header),
1106 		.i_type = XLOG_REG_TYPE_COMMIT,
1107 	};
1108 	struct xfs_log_vec	vec = {
1109 		.lv_niovecs = 1,
1110 		.lv_iovecp = &reg,
1111 	};
1112 	int			error;
1113 	LIST_HEAD(lv_chain);
1114 	list_add(&vec.lv_list, &lv_chain);
1115 
1116 	if (xlog_is_shutdown(log))
1117 		return -EIO;
1118 
1119 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD);
1120 	if (error)
1121 		return error;
1122 
1123 	/* account for space used by record data */
1124 	ctx->ticket->t_curr_res -= reg.i_len;
1125 	error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len);
1126 	if (error)
1127 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1128 	return error;
1129 }
1130 
1131 struct xlog_cil_trans_hdr {
1132 	struct xlog_op_header	oph[2];
1133 	struct xfs_trans_header	thdr;
1134 	struct xfs_log_iovec	lhdr[2];
1135 };
1136 
1137 /*
1138  * Build a checkpoint transaction header to begin the journal transaction.  We
1139  * need to account for the space used by the transaction header here as it is
1140  * not accounted for in xlog_write().
1141  *
1142  * This is the only place we write a transaction header, so we also build the
1143  * log opheaders that indicate the start of a log transaction and wrap the
1144  * transaction header. We keep the start record in it's own log vector rather
1145  * than compacting them into a single region as this ends up making the logic
1146  * in xlog_write() for handling empty opheaders for start, commit and unmount
1147  * records much simpler.
1148  */
1149 static void
1150 xlog_cil_build_trans_hdr(
1151 	struct xfs_cil_ctx	*ctx,
1152 	struct xlog_cil_trans_hdr *hdr,
1153 	struct xfs_log_vec	*lvhdr,
1154 	int			num_iovecs)
1155 {
1156 	struct xlog_ticket	*tic = ctx->ticket;
1157 	__be32			tid = cpu_to_be32(tic->t_tid);
1158 
1159 	memset(hdr, 0, sizeof(*hdr));
1160 
1161 	/* Log start record */
1162 	hdr->oph[0].oh_tid = tid;
1163 	hdr->oph[0].oh_clientid = XFS_TRANSACTION;
1164 	hdr->oph[0].oh_flags = XLOG_START_TRANS;
1165 
1166 	/* log iovec region pointer */
1167 	hdr->lhdr[0].i_addr = &hdr->oph[0];
1168 	hdr->lhdr[0].i_len = sizeof(struct xlog_op_header);
1169 	hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER;
1170 
1171 	/* log opheader */
1172 	hdr->oph[1].oh_tid = tid;
1173 	hdr->oph[1].oh_clientid = XFS_TRANSACTION;
1174 	hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header));
1175 
1176 	/* transaction header in host byte order format */
1177 	hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
1178 	hdr->thdr.th_type = XFS_TRANS_CHECKPOINT;
1179 	hdr->thdr.th_tid = tic->t_tid;
1180 	hdr->thdr.th_num_items = num_iovecs;
1181 
1182 	/* log iovec region pointer */
1183 	hdr->lhdr[1].i_addr = &hdr->oph[1];
1184 	hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) +
1185 				sizeof(struct xfs_trans_header);
1186 	hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR;
1187 
1188 	lvhdr->lv_niovecs = 2;
1189 	lvhdr->lv_iovecp = &hdr->lhdr[0];
1190 	lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len;
1191 
1192 	tic->t_curr_res -= lvhdr->lv_bytes;
1193 }
1194 
1195 /*
1196  * CIL item reordering compare function. We want to order in ascending ID order,
1197  * but we want to leave items with the same ID in the order they were added to
1198  * the list. This is important for operations like reflink where we log 4 order
1199  * dependent intents in a single transaction when we overwrite an existing
1200  * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop),
1201  * CUI (inc), BUI(remap)...
1202  */
1203 static int
1204 xlog_cil_order_cmp(
1205 	void			*priv,
1206 	const struct list_head	*a,
1207 	const struct list_head	*b)
1208 {
1209 	struct xfs_log_vec	*l1 = container_of(a, struct xfs_log_vec, lv_list);
1210 	struct xfs_log_vec	*l2 = container_of(b, struct xfs_log_vec, lv_list);
1211 
1212 	return l1->lv_order_id > l2->lv_order_id;
1213 }
1214 
1215 /*
1216  * Pull all the log vectors off the items in the CIL, and remove the items from
1217  * the CIL. We don't need the CIL lock here because it's only needed on the
1218  * transaction commit side which is currently locked out by the flush lock.
1219  *
1220  * If a log item is marked with a whiteout, we do not need to write it to the
1221  * journal and so we just move them to the whiteout list for the caller to
1222  * dispose of appropriately.
1223  */
1224 static void
1225 xlog_cil_build_lv_chain(
1226 	struct xfs_cil_ctx	*ctx,
1227 	struct list_head	*whiteouts,
1228 	uint32_t		*num_iovecs,
1229 	uint32_t		*num_bytes)
1230 {
1231 	while (!list_empty(&ctx->log_items)) {
1232 		struct xfs_log_item	*item;
1233 		struct xfs_log_vec	*lv;
1234 
1235 		item = list_first_entry(&ctx->log_items,
1236 					struct xfs_log_item, li_cil);
1237 
1238 		if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) {
1239 			list_move(&item->li_cil, whiteouts);
1240 			trace_xfs_cil_whiteout_skip(item);
1241 			continue;
1242 		}
1243 
1244 		lv = item->li_lv;
1245 		lv->lv_order_id = item->li_order_id;
1246 
1247 		/* we don't write ordered log vectors */
1248 		if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
1249 			*num_bytes += lv->lv_bytes;
1250 		*num_iovecs += lv->lv_niovecs;
1251 		list_add_tail(&lv->lv_list, &ctx->lv_chain);
1252 
1253 		list_del_init(&item->li_cil);
1254 		item->li_order_id = 0;
1255 		item->li_lv = NULL;
1256 	}
1257 }
1258 
1259 static void
1260 xlog_cil_cleanup_whiteouts(
1261 	struct list_head	*whiteouts)
1262 {
1263 	while (!list_empty(whiteouts)) {
1264 		struct xfs_log_item *item = list_first_entry(whiteouts,
1265 						struct xfs_log_item, li_cil);
1266 		list_del_init(&item->li_cil);
1267 		trace_xfs_cil_whiteout_unpin(item);
1268 		item->li_ops->iop_unpin(item, 1);
1269 	}
1270 }
1271 
1272 /*
1273  * Push the Committed Item List to the log.
1274  *
1275  * If the current sequence is the same as xc_push_seq we need to do a flush. If
1276  * xc_push_seq is less than the current sequence, then it has already been
1277  * flushed and we don't need to do anything - the caller will wait for it to
1278  * complete if necessary.
1279  *
1280  * xc_push_seq is checked unlocked against the sequence number for a match.
1281  * Hence we can allow log forces to run racily and not issue pushes for the
1282  * same sequence twice.  If we get a race between multiple pushes for the same
1283  * sequence they will block on the first one and then abort, hence avoiding
1284  * needless pushes.
1285  *
1286  * This runs from a workqueue so it does not inherent any specific memory
1287  * allocation context. However, we do not want to block on memory reclaim
1288  * recursing back into the filesystem because this push may have been triggered
1289  * by memory reclaim itself. Hence we really need to run under full GFP_NOFS
1290  * contraints here.
1291  */
1292 static void
1293 xlog_cil_push_work(
1294 	struct work_struct	*work)
1295 {
1296 	unsigned int		nofs_flags = memalloc_nofs_save();
1297 	struct xfs_cil_ctx	*ctx =
1298 		container_of(work, struct xfs_cil_ctx, push_work);
1299 	struct xfs_cil		*cil = ctx->cil;
1300 	struct xlog		*log = cil->xc_log;
1301 	struct xfs_cil_ctx	*new_ctx;
1302 	int			num_iovecs = 0;
1303 	int			num_bytes = 0;
1304 	int			error = 0;
1305 	struct xlog_cil_trans_hdr thdr;
1306 	struct xfs_log_vec	lvhdr = {};
1307 	xfs_csn_t		push_seq;
1308 	bool			push_commit_stable;
1309 	LIST_HEAD		(whiteouts);
1310 	struct xlog_ticket	*ticket;
1311 
1312 	new_ctx = xlog_cil_ctx_alloc();
1313 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
1314 
1315 	down_write(&cil->xc_ctx_lock);
1316 
1317 	spin_lock(&cil->xc_push_lock);
1318 	push_seq = cil->xc_push_seq;
1319 	ASSERT(push_seq <= ctx->sequence);
1320 	push_commit_stable = cil->xc_push_commit_stable;
1321 	cil->xc_push_commit_stable = false;
1322 
1323 	/*
1324 	 * As we are about to switch to a new, empty CIL context, we no longer
1325 	 * need to throttle tasks on CIL space overruns. Wake any waiters that
1326 	 * the hard push throttle may have caught so they can start committing
1327 	 * to the new context. The ctx->xc_push_lock provides the serialisation
1328 	 * necessary for safely using the lockless waitqueue_active() check in
1329 	 * this context.
1330 	 */
1331 	if (waitqueue_active(&cil->xc_push_wait))
1332 		wake_up_all(&cil->xc_push_wait);
1333 
1334 	xlog_cil_push_pcp_aggregate(cil, ctx);
1335 
1336 	/*
1337 	 * Check if we've anything to push. If there is nothing, then we don't
1338 	 * move on to a new sequence number and so we have to be able to push
1339 	 * this sequence again later.
1340 	 */
1341 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1342 		cil->xc_push_seq = 0;
1343 		spin_unlock(&cil->xc_push_lock);
1344 		goto out_skip;
1345 	}
1346 
1347 
1348 	/* check for a previously pushed sequence */
1349 	if (push_seq < ctx->sequence) {
1350 		spin_unlock(&cil->xc_push_lock);
1351 		goto out_skip;
1352 	}
1353 
1354 	/*
1355 	 * We are now going to push this context, so add it to the committing
1356 	 * list before we do anything else. This ensures that anyone waiting on
1357 	 * this push can easily detect the difference between a "push in
1358 	 * progress" and "CIL is empty, nothing to do".
1359 	 *
1360 	 * IOWs, a wait loop can now check for:
1361 	 *	the current sequence not being found on the committing list;
1362 	 *	an empty CIL; and
1363 	 *	an unchanged sequence number
1364 	 * to detect a push that had nothing to do and therefore does not need
1365 	 * waiting on. If the CIL is not empty, we get put on the committing
1366 	 * list before emptying the CIL and bumping the sequence number. Hence
1367 	 * an empty CIL and an unchanged sequence number means we jumped out
1368 	 * above after doing nothing.
1369 	 *
1370 	 * Hence the waiter will either find the commit sequence on the
1371 	 * committing list or the sequence number will be unchanged and the CIL
1372 	 * still dirty. In that latter case, the push has not yet started, and
1373 	 * so the waiter will have to continue trying to check the CIL
1374 	 * committing list until it is found. In extreme cases of delay, the
1375 	 * sequence may fully commit between the attempts the wait makes to wait
1376 	 * on the commit sequence.
1377 	 */
1378 	list_add(&ctx->committing, &cil->xc_committing);
1379 	spin_unlock(&cil->xc_push_lock);
1380 
1381 	xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes);
1382 
1383 	/*
1384 	 * Switch the contexts so we can drop the context lock and move out
1385 	 * of a shared context. We can't just go straight to the commit record,
1386 	 * though - we need to synchronise with previous and future commits so
1387 	 * that the commit records are correctly ordered in the log to ensure
1388 	 * that we process items during log IO completion in the correct order.
1389 	 *
1390 	 * For example, if we get an EFI in one checkpoint and the EFD in the
1391 	 * next (e.g. due to log forces), we do not want the checkpoint with
1392 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
1393 	 * we must strictly order the commit records of the checkpoints so
1394 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
1395 	 * correct order; and b) the checkpoints are replayed in correct order
1396 	 * in log recovery.
1397 	 *
1398 	 * Hence we need to add this context to the committing context list so
1399 	 * that higher sequences will wait for us to write out a commit record
1400 	 * before they do.
1401 	 *
1402 	 * xfs_log_force_seq requires us to mirror the new sequence into the cil
1403 	 * structure atomically with the addition of this sequence to the
1404 	 * committing list. This also ensures that we can do unlocked checks
1405 	 * against the current sequence in log forces without risking
1406 	 * deferencing a freed context pointer.
1407 	 */
1408 	spin_lock(&cil->xc_push_lock);
1409 	xlog_cil_ctx_switch(cil, new_ctx);
1410 	spin_unlock(&cil->xc_push_lock);
1411 	up_write(&cil->xc_ctx_lock);
1412 
1413 	/*
1414 	 * Sort the log vector chain before we add the transaction headers.
1415 	 * This ensures we always have the transaction headers at the start
1416 	 * of the chain.
1417 	 */
1418 	list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp);
1419 
1420 	/*
1421 	 * Build a checkpoint transaction header and write it to the log to
1422 	 * begin the transaction. We need to account for the space used by the
1423 	 * transaction header here as it is not accounted for in xlog_write().
1424 	 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so
1425 	 * it gets written into the iclog first.
1426 	 */
1427 	xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs);
1428 	num_bytes += lvhdr.lv_bytes;
1429 	list_add(&lvhdr.lv_list, &ctx->lv_chain);
1430 
1431 	/*
1432 	 * Take the lvhdr back off the lv_chain immediately after calling
1433 	 * xlog_cil_write_chain() as it should not be passed to log IO
1434 	 * completion.
1435 	 */
1436 	error = xlog_cil_write_chain(ctx, num_bytes);
1437 	list_del(&lvhdr.lv_list);
1438 	if (error)
1439 		goto out_abort_free_ticket;
1440 
1441 	error = xlog_cil_write_commit_record(ctx);
1442 	if (error)
1443 		goto out_abort_free_ticket;
1444 
1445 	/*
1446 	 * Grab the ticket from the ctx so we can ungrant it after releasing the
1447 	 * commit_iclog. The ctx may be freed by the time we return from
1448 	 * releasing the commit_iclog (i.e. checkpoint has been completed and
1449 	 * callback run) so we can't reference the ctx after the call to
1450 	 * xlog_state_release_iclog().
1451 	 */
1452 	ticket = ctx->ticket;
1453 
1454 	/*
1455 	 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
1456 	 * to complete before we submit the commit_iclog. We can't use state
1457 	 * checks for this - ACTIVE can be either a past completed iclog or a
1458 	 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
1459 	 * past or future iclog awaiting IO or ordered IO completion to be run.
1460 	 * In the latter case, if it's a future iclog and we wait on it, the we
1461 	 * will hang because it won't get processed through to ic_force_wait
1462 	 * wakeup until this commit_iclog is written to disk.  Hence we use the
1463 	 * iclog header lsn and compare it to the commit lsn to determine if we
1464 	 * need to wait on iclogs or not.
1465 	 */
1466 	spin_lock(&log->l_icloglock);
1467 	if (ctx->start_lsn != ctx->commit_lsn) {
1468 		xfs_lsn_t	plsn;
1469 
1470 		plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn);
1471 		if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) {
1472 			/*
1473 			 * Waiting on ic_force_wait orders the completion of
1474 			 * iclogs older than ic_prev. Hence we only need to wait
1475 			 * on the most recent older iclog here.
1476 			 */
1477 			xlog_wait_on_iclog(ctx->commit_iclog->ic_prev);
1478 			spin_lock(&log->l_icloglock);
1479 		}
1480 
1481 		/*
1482 		 * We need to issue a pre-flush so that the ordering for this
1483 		 * checkpoint is correctly preserved down to stable storage.
1484 		 */
1485 		ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
1486 	}
1487 
1488 	/*
1489 	 * The commit iclog must be written to stable storage to guarantee
1490 	 * journal IO vs metadata writeback IO is correctly ordered on stable
1491 	 * storage.
1492 	 *
1493 	 * If the push caller needs the commit to be immediately stable and the
1494 	 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it
1495 	 * will be written when released, switch it's state to WANT_SYNC right
1496 	 * now.
1497 	 */
1498 	ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
1499 	if (push_commit_stable &&
1500 	    ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE)
1501 		xlog_state_switch_iclogs(log, ctx->commit_iclog, 0);
1502 	ticket = ctx->ticket;
1503 	xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1504 
1505 	/* Not safe to reference ctx now! */
1506 
1507 	spin_unlock(&log->l_icloglock);
1508 	xlog_cil_cleanup_whiteouts(&whiteouts);
1509 	xfs_log_ticket_ungrant(log, ticket);
1510 	memalloc_nofs_restore(nofs_flags);
1511 	return;
1512 
1513 out_skip:
1514 	up_write(&cil->xc_ctx_lock);
1515 	xfs_log_ticket_put(new_ctx->ticket);
1516 	kfree(new_ctx);
1517 	memalloc_nofs_restore(nofs_flags);
1518 	return;
1519 
1520 out_abort_free_ticket:
1521 	ASSERT(xlog_is_shutdown(log));
1522 	xlog_cil_cleanup_whiteouts(&whiteouts);
1523 	if (!ctx->commit_iclog) {
1524 		xfs_log_ticket_ungrant(log, ctx->ticket);
1525 		xlog_cil_committed(ctx);
1526 		memalloc_nofs_restore(nofs_flags);
1527 		return;
1528 	}
1529 	spin_lock(&log->l_icloglock);
1530 	ticket = ctx->ticket;
1531 	xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1532 	/* Not safe to reference ctx now! */
1533 	spin_unlock(&log->l_icloglock);
1534 	xfs_log_ticket_ungrant(log, ticket);
1535 	memalloc_nofs_restore(nofs_flags);
1536 }
1537 
1538 /*
1539  * We need to push CIL every so often so we don't cache more than we can fit in
1540  * the log. The limit really is that a checkpoint can't be more than half the
1541  * log (the current checkpoint is not allowed to overwrite the previous
1542  * checkpoint), but commit latency and memory usage limit this to a smaller
1543  * size.
1544  */
1545 static void
1546 xlog_cil_push_background(
1547 	struct xlog	*log)
1548 {
1549 	struct xfs_cil	*cil = log->l_cilp;
1550 	int		space_used = atomic_read(&cil->xc_ctx->space_used);
1551 
1552 	/*
1553 	 * The cil won't be empty because we are called while holding the
1554 	 * context lock so whatever we added to the CIL will still be there.
1555 	 */
1556 	ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1557 
1558 	/*
1559 	 * We are done if:
1560 	 * - we haven't used up all the space available yet; or
1561 	 * - we've already queued up a push; and
1562 	 * - we're not over the hard limit; and
1563 	 * - nothing has been over the hard limit.
1564 	 *
1565 	 * If so, we don't need to take the push lock as there's nothing to do.
1566 	 */
1567 	if (space_used < XLOG_CIL_SPACE_LIMIT(log) ||
1568 	    (cil->xc_push_seq == cil->xc_current_sequence &&
1569 	     space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) &&
1570 	     !waitqueue_active(&cil->xc_push_wait))) {
1571 		up_read(&cil->xc_ctx_lock);
1572 		return;
1573 	}
1574 
1575 	spin_lock(&cil->xc_push_lock);
1576 	if (cil->xc_push_seq < cil->xc_current_sequence) {
1577 		cil->xc_push_seq = cil->xc_current_sequence;
1578 		queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1579 	}
1580 
1581 	/*
1582 	 * Drop the context lock now, we can't hold that if we need to sleep
1583 	 * because we are over the blocking threshold. The push_lock is still
1584 	 * held, so blocking threshold sleep/wakeup is still correctly
1585 	 * serialised here.
1586 	 */
1587 	up_read(&cil->xc_ctx_lock);
1588 
1589 	/*
1590 	 * If we are well over the space limit, throttle the work that is being
1591 	 * done until the push work on this context has begun. Enforce the hard
1592 	 * throttle on all transaction commits once it has been activated, even
1593 	 * if the committing transactions have resulted in the space usage
1594 	 * dipping back down under the hard limit.
1595 	 *
1596 	 * The ctx->xc_push_lock provides the serialisation necessary for safely
1597 	 * calling xlog_cil_over_hard_limit() in this context.
1598 	 */
1599 	if (xlog_cil_over_hard_limit(log, space_used)) {
1600 		trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1601 		ASSERT(space_used < log->l_logsize);
1602 		xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1603 		return;
1604 	}
1605 
1606 	spin_unlock(&cil->xc_push_lock);
1607 
1608 }
1609 
1610 /*
1611  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1612  * number that is passed. When it returns, the work will be queued for
1613  * @push_seq, but it won't be completed.
1614  *
1615  * If the caller is performing a synchronous force, we will flush the workqueue
1616  * to get previously queued work moving to minimise the wait time they will
1617  * undergo waiting for all outstanding pushes to complete. The caller is
1618  * expected to do the required waiting for push_seq to complete.
1619  *
1620  * If the caller is performing an async push, we need to ensure that the
1621  * checkpoint is fully flushed out of the iclogs when we finish the push. If we
1622  * don't do this, then the commit record may remain sitting in memory in an
1623  * ACTIVE iclog. This then requires another full log force to push to disk,
1624  * which defeats the purpose of having an async, non-blocking CIL force
1625  * mechanism. Hence in this case we need to pass a flag to the push work to
1626  * indicate it needs to flush the commit record itself.
1627  */
1628 static void
1629 xlog_cil_push_now(
1630 	struct xlog	*log,
1631 	xfs_lsn_t	push_seq,
1632 	bool		async)
1633 {
1634 	struct xfs_cil	*cil = log->l_cilp;
1635 
1636 	if (!cil)
1637 		return;
1638 
1639 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1640 
1641 	/* start on any pending background push to minimise wait time on it */
1642 	if (!async)
1643 		flush_workqueue(cil->xc_push_wq);
1644 
1645 	spin_lock(&cil->xc_push_lock);
1646 
1647 	/*
1648 	 * If this is an async flush request, we always need to set the
1649 	 * xc_push_commit_stable flag even if something else has already queued
1650 	 * a push. The flush caller is asking for the CIL to be on stable
1651 	 * storage when the next push completes, so regardless of who has queued
1652 	 * the push, the flush requires stable semantics from it.
1653 	 */
1654 	cil->xc_push_commit_stable = async;
1655 
1656 	/*
1657 	 * If the CIL is empty or we've already pushed the sequence then
1658 	 * there's no more work that we need to do.
1659 	 */
1660 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) ||
1661 	    push_seq <= cil->xc_push_seq) {
1662 		spin_unlock(&cil->xc_push_lock);
1663 		return;
1664 	}
1665 
1666 	cil->xc_push_seq = push_seq;
1667 	queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1668 	spin_unlock(&cil->xc_push_lock);
1669 }
1670 
1671 bool
1672 xlog_cil_empty(
1673 	struct xlog	*log)
1674 {
1675 	struct xfs_cil	*cil = log->l_cilp;
1676 	bool		empty = false;
1677 
1678 	spin_lock(&cil->xc_push_lock);
1679 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
1680 		empty = true;
1681 	spin_unlock(&cil->xc_push_lock);
1682 	return empty;
1683 }
1684 
1685 /*
1686  * If there are intent done items in this transaction and the related intent was
1687  * committed in the current (same) CIL checkpoint, we don't need to write either
1688  * the intent or intent done item to the journal as the change will be
1689  * journalled atomically within this checkpoint. As we cannot remove items from
1690  * the CIL here, mark the related intent with a whiteout so that the CIL push
1691  * can remove it rather than writing it to the journal. Then remove the intent
1692  * done item from the current transaction and release it so it doesn't get put
1693  * into the CIL at all.
1694  */
1695 static uint32_t
1696 xlog_cil_process_intents(
1697 	struct xfs_cil		*cil,
1698 	struct xfs_trans	*tp)
1699 {
1700 	struct xfs_log_item	*lip, *ilip, *next;
1701 	uint32_t		len = 0;
1702 
1703 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1704 		if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE))
1705 			continue;
1706 
1707 		ilip = lip->li_ops->iop_intent(lip);
1708 		if (!ilip || !xlog_item_in_current_chkpt(cil, ilip))
1709 			continue;
1710 		set_bit(XFS_LI_WHITEOUT, &ilip->li_flags);
1711 		trace_xfs_cil_whiteout_mark(ilip);
1712 		len += ilip->li_lv->lv_bytes;
1713 		kvfree(ilip->li_lv);
1714 		ilip->li_lv = NULL;
1715 
1716 		xfs_trans_del_item(lip);
1717 		lip->li_ops->iop_release(lip);
1718 	}
1719 	return len;
1720 }
1721 
1722 /*
1723  * Commit a transaction with the given vector to the Committed Item List.
1724  *
1725  * To do this, we need to format the item, pin it in memory if required and
1726  * account for the space used by the transaction. Once we have done that we
1727  * need to release the unused reservation for the transaction, attach the
1728  * transaction to the checkpoint context so we carry the busy extents through
1729  * to checkpoint completion, and then unlock all the items in the transaction.
1730  *
1731  * Called with the context lock already held in read mode to lock out
1732  * background commit, returns without it held once background commits are
1733  * allowed again.
1734  */
1735 void
1736 xlog_cil_commit(
1737 	struct xlog		*log,
1738 	struct xfs_trans	*tp,
1739 	xfs_csn_t		*commit_seq,
1740 	bool			regrant)
1741 {
1742 	struct xfs_cil		*cil = log->l_cilp;
1743 	struct xfs_log_item	*lip, *next;
1744 	uint32_t		released_space = 0;
1745 
1746 	/*
1747 	 * Do all necessary memory allocation before we lock the CIL.
1748 	 * This ensures the allocation does not deadlock with a CIL
1749 	 * push in memory reclaim (e.g. from kswapd).
1750 	 */
1751 	xlog_cil_alloc_shadow_bufs(log, tp);
1752 
1753 	/* lock out background commit */
1754 	down_read(&cil->xc_ctx_lock);
1755 
1756 	if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE)
1757 		released_space = xlog_cil_process_intents(cil, tp);
1758 
1759 	xlog_cil_insert_items(log, tp, released_space);
1760 
1761 	if (regrant && !xlog_is_shutdown(log))
1762 		xfs_log_ticket_regrant(log, tp->t_ticket);
1763 	else
1764 		xfs_log_ticket_ungrant(log, tp->t_ticket);
1765 	tp->t_ticket = NULL;
1766 	xfs_trans_unreserve_and_mod_sb(tp);
1767 
1768 	/*
1769 	 * Once all the items of the transaction have been copied to the CIL,
1770 	 * the items can be unlocked and possibly freed.
1771 	 *
1772 	 * This needs to be done before we drop the CIL context lock because we
1773 	 * have to update state in the log items and unlock them before they go
1774 	 * to disk. If we don't, then the CIL checkpoint can race with us and
1775 	 * we can run checkpoint completion before we've updated and unlocked
1776 	 * the log items. This affects (at least) processing of stale buffers,
1777 	 * inodes and EFIs.
1778 	 */
1779 	trace_xfs_trans_commit_items(tp, _RET_IP_);
1780 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1781 		xfs_trans_del_item(lip);
1782 		if (lip->li_ops->iop_committing)
1783 			lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1784 	}
1785 	if (commit_seq)
1786 		*commit_seq = cil->xc_ctx->sequence;
1787 
1788 	/* xlog_cil_push_background() releases cil->xc_ctx_lock */
1789 	xlog_cil_push_background(log);
1790 }
1791 
1792 /*
1793  * Flush the CIL to stable storage but don't wait for it to complete. This
1794  * requires the CIL push to ensure the commit record for the push hits the disk,
1795  * but otherwise is no different to a push done from a log force.
1796  */
1797 void
1798 xlog_cil_flush(
1799 	struct xlog	*log)
1800 {
1801 	xfs_csn_t	seq = log->l_cilp->xc_current_sequence;
1802 
1803 	trace_xfs_log_force(log->l_mp, seq, _RET_IP_);
1804 	xlog_cil_push_now(log, seq, true);
1805 
1806 	/*
1807 	 * If the CIL is empty, make sure that any previous checkpoint that may
1808 	 * still be in an active iclog is pushed to stable storage.
1809 	 */
1810 	if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags))
1811 		xfs_log_force(log->l_mp, 0);
1812 }
1813 
1814 /*
1815  * Conditionally push the CIL based on the sequence passed in.
1816  *
1817  * We only need to push if we haven't already pushed the sequence number given.
1818  * Hence the only time we will trigger a push here is if the push sequence is
1819  * the same as the current context.
1820  *
1821  * We return the current commit lsn to allow the callers to determine if a
1822  * iclog flush is necessary following this call.
1823  */
1824 xfs_lsn_t
1825 xlog_cil_force_seq(
1826 	struct xlog	*log,
1827 	xfs_csn_t	sequence)
1828 {
1829 	struct xfs_cil		*cil = log->l_cilp;
1830 	struct xfs_cil_ctx	*ctx;
1831 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1832 
1833 	ASSERT(sequence <= cil->xc_current_sequence);
1834 
1835 	if (!sequence)
1836 		sequence = cil->xc_current_sequence;
1837 	trace_xfs_log_force(log->l_mp, sequence, _RET_IP_);
1838 
1839 	/*
1840 	 * check to see if we need to force out the current context.
1841 	 * xlog_cil_push() handles racing pushes for the same sequence,
1842 	 * so no need to deal with it here.
1843 	 */
1844 restart:
1845 	xlog_cil_push_now(log, sequence, false);
1846 
1847 	/*
1848 	 * See if we can find a previous sequence still committing.
1849 	 * We need to wait for all previous sequence commits to complete
1850 	 * before allowing the force of push_seq to go ahead. Hence block
1851 	 * on commits for those as well.
1852 	 */
1853 	spin_lock(&cil->xc_push_lock);
1854 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1855 		/*
1856 		 * Avoid getting stuck in this loop because we were woken by the
1857 		 * shutdown, but then went back to sleep once already in the
1858 		 * shutdown state.
1859 		 */
1860 		if (xlog_is_shutdown(log))
1861 			goto out_shutdown;
1862 		if (ctx->sequence > sequence)
1863 			continue;
1864 		if (!ctx->commit_lsn) {
1865 			/*
1866 			 * It is still being pushed! Wait for the push to
1867 			 * complete, then start again from the beginning.
1868 			 */
1869 			XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
1870 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1871 			goto restart;
1872 		}
1873 		if (ctx->sequence != sequence)
1874 			continue;
1875 		/* found it! */
1876 		commit_lsn = ctx->commit_lsn;
1877 	}
1878 
1879 	/*
1880 	 * The call to xlog_cil_push_now() executes the push in the background.
1881 	 * Hence by the time we have got here it our sequence may not have been
1882 	 * pushed yet. This is true if the current sequence still matches the
1883 	 * push sequence after the above wait loop and the CIL still contains
1884 	 * dirty objects. This is guaranteed by the push code first adding the
1885 	 * context to the committing list before emptying the CIL.
1886 	 *
1887 	 * Hence if we don't find the context in the committing list and the
1888 	 * current sequence number is unchanged then the CIL contents are
1889 	 * significant.  If the CIL is empty, if means there was nothing to push
1890 	 * and that means there is nothing to wait for. If the CIL is not empty,
1891 	 * it means we haven't yet started the push, because if it had started
1892 	 * we would have found the context on the committing list.
1893 	 */
1894 	if (sequence == cil->xc_current_sequence &&
1895 	    !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1896 		spin_unlock(&cil->xc_push_lock);
1897 		goto restart;
1898 	}
1899 
1900 	spin_unlock(&cil->xc_push_lock);
1901 	return commit_lsn;
1902 
1903 	/*
1904 	 * We detected a shutdown in progress. We need to trigger the log force
1905 	 * to pass through it's iclog state machine error handling, even though
1906 	 * we are already in a shutdown state. Hence we can't return
1907 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1908 	 * LSN is already stable), so we return a zero LSN instead.
1909 	 */
1910 out_shutdown:
1911 	spin_unlock(&cil->xc_push_lock);
1912 	return 0;
1913 }
1914 
1915 /*
1916  * Perform initial CIL structure initialisation.
1917  */
1918 int
1919 xlog_cil_init(
1920 	struct xlog		*log)
1921 {
1922 	struct xfs_cil		*cil;
1923 	struct xfs_cil_ctx	*ctx;
1924 	struct xlog_cil_pcp	*cilpcp;
1925 	int			cpu;
1926 
1927 	cil = kzalloc(sizeof(*cil), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1928 	if (!cil)
1929 		return -ENOMEM;
1930 	/*
1931 	 * Limit the CIL pipeline depth to 4 concurrent works to bound the
1932 	 * concurrency the log spinlocks will be exposed to.
1933 	 */
1934 	cil->xc_push_wq = alloc_workqueue("xfs-cil/%s",
1935 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND),
1936 			4, log->l_mp->m_super->s_id);
1937 	if (!cil->xc_push_wq)
1938 		goto out_destroy_cil;
1939 
1940 	cil->xc_log = log;
1941 	cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp);
1942 	if (!cil->xc_pcp)
1943 		goto out_destroy_wq;
1944 
1945 	for_each_possible_cpu(cpu) {
1946 		cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
1947 		INIT_LIST_HEAD(&cilpcp->busy_extents);
1948 		INIT_LIST_HEAD(&cilpcp->log_items);
1949 	}
1950 
1951 	INIT_LIST_HEAD(&cil->xc_committing);
1952 	spin_lock_init(&cil->xc_push_lock);
1953 	init_waitqueue_head(&cil->xc_push_wait);
1954 	init_rwsem(&cil->xc_ctx_lock);
1955 	init_waitqueue_head(&cil->xc_start_wait);
1956 	init_waitqueue_head(&cil->xc_commit_wait);
1957 	log->l_cilp = cil;
1958 
1959 	ctx = xlog_cil_ctx_alloc();
1960 	xlog_cil_ctx_switch(cil, ctx);
1961 	return 0;
1962 
1963 out_destroy_wq:
1964 	destroy_workqueue(cil->xc_push_wq);
1965 out_destroy_cil:
1966 	kfree(cil);
1967 	return -ENOMEM;
1968 }
1969 
1970 void
1971 xlog_cil_destroy(
1972 	struct xlog	*log)
1973 {
1974 	struct xfs_cil	*cil = log->l_cilp;
1975 
1976 	if (cil->xc_ctx) {
1977 		if (cil->xc_ctx->ticket)
1978 			xfs_log_ticket_put(cil->xc_ctx->ticket);
1979 		kfree(cil->xc_ctx);
1980 	}
1981 
1982 	ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1983 	free_percpu(cil->xc_pcp);
1984 	destroy_workqueue(cil->xc_push_wq);
1985 	kfree(cil);
1986 }
1987 
1988