1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. 4 */ 5 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_shared.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_extent_busy.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_log.h" 17 #include "xfs_log_priv.h" 18 #include "xfs_trace.h" 19 #include "xfs_discard.h" 20 21 /* 22 * Allocate a new ticket. Failing to get a new ticket makes it really hard to 23 * recover, so we don't allow failure here. Also, we allocate in a context that 24 * we don't want to be issuing transactions from, so we need to tell the 25 * allocation code this as well. 26 * 27 * We don't reserve any space for the ticket - we are going to steal whatever 28 * space we require from transactions as they commit. To ensure we reserve all 29 * the space required, we need to set the current reservation of the ticket to 30 * zero so that we know to steal the initial transaction overhead from the 31 * first transaction commit. 32 */ 33 static struct xlog_ticket * 34 xlog_cil_ticket_alloc( 35 struct xlog *log) 36 { 37 struct xlog_ticket *tic; 38 39 tic = xlog_ticket_alloc(log, 0, 1, 0); 40 41 /* 42 * set the current reservation to zero so we know to steal the basic 43 * transaction overhead reservation from the first transaction commit. 44 */ 45 tic->t_curr_res = 0; 46 tic->t_iclog_hdrs = 0; 47 return tic; 48 } 49 50 static inline void 51 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil) 52 { 53 struct xlog *log = cil->xc_log; 54 55 atomic_set(&cil->xc_iclog_hdrs, 56 (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) / 57 (log->l_iclog_size - log->l_iclog_hsize))); 58 } 59 60 /* 61 * Check if the current log item was first committed in this sequence. 62 * We can't rely on just the log item being in the CIL, we have to check 63 * the recorded commit sequence number. 64 * 65 * Note: for this to be used in a non-racy manner, it has to be called with 66 * CIL flushing locked out. As a result, it should only be used during the 67 * transaction commit process when deciding what to format into the item. 68 */ 69 static bool 70 xlog_item_in_current_chkpt( 71 struct xfs_cil *cil, 72 struct xfs_log_item *lip) 73 { 74 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 75 return false; 76 77 /* 78 * li_seq is written on the first commit of a log item to record the 79 * first checkpoint it is written to. Hence if it is different to the 80 * current sequence, we're in a new checkpoint. 81 */ 82 return lip->li_seq == READ_ONCE(cil->xc_current_sequence); 83 } 84 85 bool 86 xfs_log_item_in_current_chkpt( 87 struct xfs_log_item *lip) 88 { 89 return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip); 90 } 91 92 /* 93 * Unavoidable forward declaration - xlog_cil_push_work() calls 94 * xlog_cil_ctx_alloc() itself. 95 */ 96 static void xlog_cil_push_work(struct work_struct *work); 97 98 static struct xfs_cil_ctx * 99 xlog_cil_ctx_alloc(void) 100 { 101 struct xfs_cil_ctx *ctx; 102 103 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL); 104 INIT_LIST_HEAD(&ctx->committing); 105 INIT_LIST_HEAD(&ctx->busy_extents.extent_list); 106 INIT_LIST_HEAD(&ctx->log_items); 107 INIT_LIST_HEAD(&ctx->lv_chain); 108 INIT_WORK(&ctx->push_work, xlog_cil_push_work); 109 return ctx; 110 } 111 112 /* 113 * Aggregate the CIL per cpu structures into global counts, lists, etc and 114 * clear the percpu state ready for the next context to use. This is called 115 * from the push code with the context lock held exclusively, hence nothing else 116 * will be accessing or modifying the per-cpu counters. 117 */ 118 static void 119 xlog_cil_push_pcp_aggregate( 120 struct xfs_cil *cil, 121 struct xfs_cil_ctx *ctx) 122 { 123 struct xlog_cil_pcp *cilpcp; 124 int cpu; 125 126 for_each_cpu(cpu, &ctx->cil_pcpmask) { 127 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 128 129 ctx->ticket->t_curr_res += cilpcp->space_reserved; 130 cilpcp->space_reserved = 0; 131 132 if (!list_empty(&cilpcp->busy_extents)) { 133 list_splice_init(&cilpcp->busy_extents, 134 &ctx->busy_extents.extent_list); 135 } 136 if (!list_empty(&cilpcp->log_items)) 137 list_splice_init(&cilpcp->log_items, &ctx->log_items); 138 139 /* 140 * We're in the middle of switching cil contexts. Reset the 141 * counter we use to detect when the current context is nearing 142 * full. 143 */ 144 cilpcp->space_used = 0; 145 } 146 } 147 148 /* 149 * Aggregate the CIL per-cpu space used counters into the global atomic value. 150 * This is called when the per-cpu counter aggregation will first pass the soft 151 * limit threshold so we can switch to atomic counter aggregation for accurate 152 * detection of hard limit traversal. 153 */ 154 static void 155 xlog_cil_insert_pcp_aggregate( 156 struct xfs_cil *cil, 157 struct xfs_cil_ctx *ctx) 158 { 159 int cpu; 160 int count = 0; 161 162 /* Trigger atomic updates then aggregate only for the first caller */ 163 if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) 164 return; 165 166 /* 167 * We can race with other cpus setting cil_pcpmask. However, we've 168 * atomically cleared PCP_SPACE which forces other threads to add to 169 * the global space used count. cil_pcpmask is a superset of cilpcp 170 * structures that could have a nonzero space_used. 171 */ 172 for_each_cpu(cpu, &ctx->cil_pcpmask) { 173 struct xlog_cil_pcp *cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 174 175 count += xchg(&cilpcp->space_used, 0); 176 } 177 atomic_add(count, &ctx->space_used); 178 } 179 180 static void 181 xlog_cil_ctx_switch( 182 struct xfs_cil *cil, 183 struct xfs_cil_ctx *ctx) 184 { 185 xlog_cil_set_iclog_hdr_count(cil); 186 set_bit(XLOG_CIL_EMPTY, &cil->xc_flags); 187 set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags); 188 ctx->sequence = ++cil->xc_current_sequence; 189 ctx->cil = cil; 190 cil->xc_ctx = ctx; 191 } 192 193 /* 194 * After the first stage of log recovery is done, we know where the head and 195 * tail of the log are. We need this log initialisation done before we can 196 * initialise the first CIL checkpoint context. 197 * 198 * Here we allocate a log ticket to track space usage during a CIL push. This 199 * ticket is passed to xlog_write() directly so that we don't slowly leak log 200 * space by failing to account for space used by log headers and additional 201 * region headers for split regions. 202 */ 203 void 204 xlog_cil_init_post_recovery( 205 struct xlog *log) 206 { 207 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); 208 log->l_cilp->xc_ctx->sequence = 1; 209 xlog_cil_set_iclog_hdr_count(log->l_cilp); 210 } 211 212 static inline int 213 xlog_cil_iovec_space( 214 uint niovecs) 215 { 216 return round_up((sizeof(struct xfs_log_vec) + 217 niovecs * sizeof(struct xfs_log_iovec)), 218 sizeof(uint64_t)); 219 } 220 221 /* 222 * Allocate or pin log vector buffers for CIL insertion. 223 * 224 * The CIL currently uses disposable buffers for copying a snapshot of the 225 * modified items into the log during a push. The biggest problem with this is 226 * the requirement to allocate the disposable buffer during the commit if: 227 * a) does not exist; or 228 * b) it is too small 229 * 230 * If we do this allocation within xlog_cil_insert_format_items(), it is done 231 * under the xc_ctx_lock, which means that a CIL push cannot occur during 232 * the memory allocation. This means that we have a potential deadlock situation 233 * under low memory conditions when we have lots of dirty metadata pinned in 234 * the CIL and we need a CIL commit to occur to free memory. 235 * 236 * To avoid this, we need to move the memory allocation outside the 237 * xc_ctx_lock, but because the log vector buffers are disposable, that opens 238 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log 239 * vector buffers between the check and the formatting of the item into the 240 * log vector buffer within the xc_ctx_lock. 241 * 242 * Because the log vector buffer needs to be unchanged during the CIL push 243 * process, we cannot share the buffer between the transaction commit (which 244 * modifies the buffer) and the CIL push context that is writing the changes 245 * into the log. This means skipping preallocation of buffer space is 246 * unreliable, but we most definitely do not want to be allocating and freeing 247 * buffers unnecessarily during commits when overwrites can be done safely. 248 * 249 * The simplest solution to this problem is to allocate a shadow buffer when a 250 * log item is committed for the second time, and then to only use this buffer 251 * if necessary. The buffer can remain attached to the log item until such time 252 * it is needed, and this is the buffer that is reallocated to match the size of 253 * the incoming modification. Then during the formatting of the item we can swap 254 * the active buffer with the new one if we can't reuse the existing buffer. We 255 * don't free the old buffer as it may be reused on the next modification if 256 * it's size is right, otherwise we'll free and reallocate it at that point. 257 * 258 * This function builds a vector for the changes in each log item in the 259 * transaction. It then works out the length of the buffer needed for each log 260 * item, allocates them and attaches the vector to the log item in preparation 261 * for the formatting step which occurs under the xc_ctx_lock. 262 * 263 * While this means the memory footprint goes up, it avoids the repeated 264 * alloc/free pattern that repeated modifications of an item would otherwise 265 * cause, and hence minimises the CPU overhead of such behaviour. 266 */ 267 static void 268 xlog_cil_alloc_shadow_bufs( 269 struct xlog *log, 270 struct xfs_trans *tp) 271 { 272 struct xfs_log_item *lip; 273 274 list_for_each_entry(lip, &tp->t_items, li_trans) { 275 struct xfs_log_vec *lv; 276 int niovecs = 0; 277 int nbytes = 0; 278 int buf_size; 279 bool ordered = false; 280 281 /* Skip items which aren't dirty in this transaction. */ 282 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 283 continue; 284 285 /* get number of vecs and size of data to be stored */ 286 lip->li_ops->iop_size(lip, &niovecs, &nbytes); 287 288 /* 289 * Ordered items need to be tracked but we do not wish to write 290 * them. We need a logvec to track the object, but we do not 291 * need an iovec or buffer to be allocated for copying data. 292 */ 293 if (niovecs == XFS_LOG_VEC_ORDERED) { 294 ordered = true; 295 niovecs = 0; 296 nbytes = 0; 297 } 298 299 /* 300 * We 64-bit align the length of each iovec so that the start of 301 * the next one is naturally aligned. We'll need to account for 302 * that slack space here. 303 * 304 * We also add the xlog_op_header to each region when 305 * formatting, but that's not accounted to the size of the item 306 * at this point. Hence we'll need an addition number of bytes 307 * for each vector to hold an opheader. 308 * 309 * Then round nbytes up to 64-bit alignment so that the initial 310 * buffer alignment is easy to calculate and verify. 311 */ 312 nbytes += niovecs * 313 (sizeof(uint64_t) + sizeof(struct xlog_op_header)); 314 nbytes = round_up(nbytes, sizeof(uint64_t)); 315 316 /* 317 * The data buffer needs to start 64-bit aligned, so round up 318 * that space to ensure we can align it appropriately and not 319 * overrun the buffer. 320 */ 321 buf_size = nbytes + xlog_cil_iovec_space(niovecs); 322 323 /* 324 * if we have no shadow buffer, or it is too small, we need to 325 * reallocate it. 326 */ 327 if (!lip->li_lv_shadow || 328 buf_size > lip->li_lv_shadow->lv_size) { 329 /* 330 * We free and allocate here as a realloc would copy 331 * unnecessary data. We don't use kvzalloc() for the 332 * same reason - we don't need to zero the data area in 333 * the buffer, only the log vector header and the iovec 334 * storage. 335 */ 336 kvfree(lip->li_lv_shadow); 337 lv = xlog_kvmalloc(buf_size); 338 339 memset(lv, 0, xlog_cil_iovec_space(niovecs)); 340 341 INIT_LIST_HEAD(&lv->lv_list); 342 lv->lv_item = lip; 343 lv->lv_size = buf_size; 344 if (ordered) 345 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 346 else 347 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1]; 348 lip->li_lv_shadow = lv; 349 } else { 350 /* same or smaller, optimise common overwrite case */ 351 lv = lip->li_lv_shadow; 352 if (ordered) 353 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 354 else 355 lv->lv_buf_len = 0; 356 lv->lv_bytes = 0; 357 } 358 359 /* Ensure the lv is set up according to ->iop_size */ 360 lv->lv_niovecs = niovecs; 361 362 /* The allocated data region lies beyond the iovec region */ 363 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs); 364 } 365 366 } 367 368 /* 369 * Prepare the log item for insertion into the CIL. Calculate the difference in 370 * log space it will consume, and if it is a new item pin it as well. 371 */ 372 STATIC void 373 xfs_cil_prepare_item( 374 struct xlog *log, 375 struct xfs_log_vec *lv, 376 struct xfs_log_vec *old_lv, 377 int *diff_len) 378 { 379 /* Account for the new LV being passed in */ 380 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) 381 *diff_len += lv->lv_bytes; 382 383 /* 384 * If there is no old LV, this is the first time we've seen the item in 385 * this CIL context and so we need to pin it. If we are replacing the 386 * old_lv, then remove the space it accounts for and make it the shadow 387 * buffer for later freeing. In both cases we are now switching to the 388 * shadow buffer, so update the pointer to it appropriately. 389 */ 390 if (!old_lv) { 391 if (lv->lv_item->li_ops->iop_pin) 392 lv->lv_item->li_ops->iop_pin(lv->lv_item); 393 lv->lv_item->li_lv_shadow = NULL; 394 } else if (old_lv != lv) { 395 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED); 396 397 *diff_len -= old_lv->lv_bytes; 398 lv->lv_item->li_lv_shadow = old_lv; 399 } 400 401 /* attach new log vector to log item */ 402 lv->lv_item->li_lv = lv; 403 404 /* 405 * If this is the first time the item is being committed to the 406 * CIL, store the sequence number on the log item so we can 407 * tell in future commits whether this is the first checkpoint 408 * the item is being committed into. 409 */ 410 if (!lv->lv_item->li_seq) 411 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; 412 } 413 414 /* 415 * Format log item into a flat buffers 416 * 417 * For delayed logging, we need to hold a formatted buffer containing all the 418 * changes on the log item. This enables us to relog the item in memory and 419 * write it out asynchronously without needing to relock the object that was 420 * modified at the time it gets written into the iclog. 421 * 422 * This function takes the prepared log vectors attached to each log item, and 423 * formats the changes into the log vector buffer. The buffer it uses is 424 * dependent on the current state of the vector in the CIL - the shadow lv is 425 * guaranteed to be large enough for the current modification, but we will only 426 * use that if we can't reuse the existing lv. If we can't reuse the existing 427 * lv, then simple swap it out for the shadow lv. We don't free it - that is 428 * done lazily either by th enext modification or the freeing of the log item. 429 * 430 * We don't set up region headers during this process; we simply copy the 431 * regions into the flat buffer. We can do this because we still have to do a 432 * formatting step to write the regions into the iclog buffer. Writing the 433 * ophdrs during the iclog write means that we can support splitting large 434 * regions across iclog boundares without needing a change in the format of the 435 * item/region encapsulation. 436 * 437 * Hence what we need to do now is change the rewrite the vector array to point 438 * to the copied region inside the buffer we just allocated. This allows us to 439 * format the regions into the iclog as though they are being formatted 440 * directly out of the objects themselves. 441 */ 442 static void 443 xlog_cil_insert_format_items( 444 struct xlog *log, 445 struct xfs_trans *tp, 446 int *diff_len) 447 { 448 struct xfs_log_item *lip; 449 450 /* Bail out if we didn't find a log item. */ 451 if (list_empty(&tp->t_items)) { 452 ASSERT(0); 453 return; 454 } 455 456 list_for_each_entry(lip, &tp->t_items, li_trans) { 457 struct xfs_log_vec *lv; 458 struct xfs_log_vec *old_lv = NULL; 459 struct xfs_log_vec *shadow; 460 bool ordered = false; 461 462 /* Skip items which aren't dirty in this transaction. */ 463 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 464 continue; 465 466 /* 467 * The formatting size information is already attached to 468 * the shadow lv on the log item. 469 */ 470 shadow = lip->li_lv_shadow; 471 if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED) 472 ordered = true; 473 474 /* Skip items that do not have any vectors for writing */ 475 if (!shadow->lv_niovecs && !ordered) 476 continue; 477 478 /* compare to existing item size */ 479 old_lv = lip->li_lv; 480 if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) { 481 /* same or smaller, optimise common overwrite case */ 482 lv = lip->li_lv; 483 484 if (ordered) 485 goto insert; 486 487 /* 488 * set the item up as though it is a new insertion so 489 * that the space reservation accounting is correct. 490 */ 491 *diff_len -= lv->lv_bytes; 492 493 /* Ensure the lv is set up according to ->iop_size */ 494 lv->lv_niovecs = shadow->lv_niovecs; 495 496 /* reset the lv buffer information for new formatting */ 497 lv->lv_buf_len = 0; 498 lv->lv_bytes = 0; 499 lv->lv_buf = (char *)lv + 500 xlog_cil_iovec_space(lv->lv_niovecs); 501 } else { 502 /* switch to shadow buffer! */ 503 lv = shadow; 504 lv->lv_item = lip; 505 if (ordered) { 506 /* track as an ordered logvec */ 507 ASSERT(lip->li_lv == NULL); 508 goto insert; 509 } 510 } 511 512 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t))); 513 lip->li_ops->iop_format(lip, lv); 514 insert: 515 xfs_cil_prepare_item(log, lv, old_lv, diff_len); 516 } 517 } 518 519 /* 520 * The use of lockless waitqueue_active() requires that the caller has 521 * serialised itself against the wakeup call in xlog_cil_push_work(). That 522 * can be done by either holding the push lock or the context lock. 523 */ 524 static inline bool 525 xlog_cil_over_hard_limit( 526 struct xlog *log, 527 int32_t space_used) 528 { 529 if (waitqueue_active(&log->l_cilp->xc_push_wait)) 530 return true; 531 if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log)) 532 return true; 533 return false; 534 } 535 536 /* 537 * Insert the log items into the CIL and calculate the difference in space 538 * consumed by the item. Add the space to the checkpoint ticket and calculate 539 * if the change requires additional log metadata. If it does, take that space 540 * as well. Remove the amount of space we added to the checkpoint ticket from 541 * the current transaction ticket so that the accounting works out correctly. 542 */ 543 static void 544 xlog_cil_insert_items( 545 struct xlog *log, 546 struct xfs_trans *tp, 547 uint32_t released_space) 548 { 549 struct xfs_cil *cil = log->l_cilp; 550 struct xfs_cil_ctx *ctx = cil->xc_ctx; 551 struct xfs_log_item *lip; 552 int len = 0; 553 int iovhdr_res = 0, split_res = 0, ctx_res = 0; 554 int space_used; 555 int order; 556 unsigned int cpu_nr; 557 struct xlog_cil_pcp *cilpcp; 558 559 ASSERT(tp); 560 561 /* 562 * We can do this safely because the context can't checkpoint until we 563 * are done so it doesn't matter exactly how we update the CIL. 564 */ 565 xlog_cil_insert_format_items(log, tp, &len); 566 567 /* 568 * Subtract the space released by intent cancelation from the space we 569 * consumed so that we remove it from the CIL space and add it back to 570 * the current transaction reservation context. 571 */ 572 len -= released_space; 573 574 /* 575 * Grab the per-cpu pointer for the CIL before we start any accounting. 576 * That ensures that we are running with pre-emption disabled and so we 577 * can't be scheduled away between split sample/update operations that 578 * are done without outside locking to serialise them. 579 */ 580 cpu_nr = get_cpu(); 581 cilpcp = this_cpu_ptr(cil->xc_pcp); 582 583 /* Tell the future push that there was work added by this CPU. */ 584 if (!cpumask_test_cpu(cpu_nr, &ctx->cil_pcpmask)) 585 cpumask_test_and_set_cpu(cpu_nr, &ctx->cil_pcpmask); 586 587 /* 588 * We need to take the CIL checkpoint unit reservation on the first 589 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't 590 * unnecessarily do an atomic op in the fast path here. We can clear the 591 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that 592 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit. 593 */ 594 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) && 595 test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 596 ctx_res = ctx->ticket->t_unit_res; 597 598 /* 599 * Check if we need to steal iclog headers. atomic_read() is not a 600 * locked atomic operation, so we can check the value before we do any 601 * real atomic ops in the fast path. If we've already taken the CIL unit 602 * reservation from this commit, we've already got one iclog header 603 * space reserved so we have to account for that otherwise we risk 604 * overrunning the reservation on this ticket. 605 * 606 * If the CIL is already at the hard limit, we might need more header 607 * space that originally reserved. So steal more header space from every 608 * commit that occurs once we are over the hard limit to ensure the CIL 609 * push won't run out of reservation space. 610 * 611 * This can steal more than we need, but that's OK. 612 * 613 * The cil->xc_ctx_lock provides the serialisation necessary for safely 614 * calling xlog_cil_over_hard_limit() in this context. 615 */ 616 space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len; 617 if (atomic_read(&cil->xc_iclog_hdrs) > 0 || 618 xlog_cil_over_hard_limit(log, space_used)) { 619 split_res = log->l_iclog_hsize + 620 sizeof(struct xlog_op_header); 621 if (ctx_res) 622 ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1); 623 else 624 ctx_res = split_res * tp->t_ticket->t_iclog_hdrs; 625 atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs); 626 } 627 cilpcp->space_reserved += ctx_res; 628 629 /* 630 * Accurately account when over the soft limit, otherwise fold the 631 * percpu count into the global count if over the per-cpu threshold. 632 */ 633 if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) { 634 atomic_add(len, &ctx->space_used); 635 } else if (cilpcp->space_used + len > 636 (XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) { 637 space_used = atomic_add_return(cilpcp->space_used + len, 638 &ctx->space_used); 639 cilpcp->space_used = 0; 640 641 /* 642 * If we just transitioned over the soft limit, we need to 643 * transition to the global atomic counter. 644 */ 645 if (space_used >= XLOG_CIL_SPACE_LIMIT(log)) 646 xlog_cil_insert_pcp_aggregate(cil, ctx); 647 } else { 648 cilpcp->space_used += len; 649 } 650 /* attach the transaction to the CIL if it has any busy extents */ 651 if (!list_empty(&tp->t_busy)) 652 list_splice_init(&tp->t_busy, &cilpcp->busy_extents); 653 654 /* 655 * Now update the order of everything modified in the transaction 656 * and insert items into the CIL if they aren't already there. 657 * We do this here so we only need to take the CIL lock once during 658 * the transaction commit. 659 */ 660 order = atomic_inc_return(&ctx->order_id); 661 list_for_each_entry(lip, &tp->t_items, li_trans) { 662 /* Skip items which aren't dirty in this transaction. */ 663 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 664 continue; 665 666 lip->li_order_id = order; 667 if (!list_empty(&lip->li_cil)) 668 continue; 669 list_add_tail(&lip->li_cil, &cilpcp->log_items); 670 } 671 put_cpu(); 672 673 /* 674 * If we've overrun the reservation, dump the tx details before we move 675 * the log items. Shutdown is imminent... 676 */ 677 tp->t_ticket->t_curr_res -= ctx_res + len; 678 if (WARN_ON(tp->t_ticket->t_curr_res < 0)) { 679 xfs_warn(log->l_mp, "Transaction log reservation overrun:"); 680 xfs_warn(log->l_mp, 681 " log items: %d bytes (iov hdrs: %d bytes)", 682 len, iovhdr_res); 683 xfs_warn(log->l_mp, " split region headers: %d bytes", 684 split_res); 685 xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res); 686 xlog_print_trans(tp); 687 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 688 } 689 } 690 691 static inline void 692 xlog_cil_ail_insert_batch( 693 struct xfs_ail *ailp, 694 struct xfs_ail_cursor *cur, 695 struct xfs_log_item **log_items, 696 int nr_items, 697 xfs_lsn_t commit_lsn) 698 { 699 int i; 700 701 spin_lock(&ailp->ail_lock); 702 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */ 703 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn); 704 705 for (i = 0; i < nr_items; i++) { 706 struct xfs_log_item *lip = log_items[i]; 707 708 if (lip->li_ops->iop_unpin) 709 lip->li_ops->iop_unpin(lip, 0); 710 } 711 } 712 713 /* 714 * Take the checkpoint's log vector chain of items and insert the attached log 715 * items into the AIL. This uses bulk insertion techniques to minimise AIL lock 716 * traffic. 717 * 718 * The AIL tracks log items via the start record LSN of the checkpoint, 719 * not the commit record LSN. This is because we can pipeline multiple 720 * checkpoints, and so the start record of checkpoint N+1 can be 721 * written before the commit record of checkpoint N. i.e: 722 * 723 * start N commit N 724 * +-------------+------------+----------------+ 725 * start N+1 commit N+1 726 * 727 * The tail of the log cannot be moved to the LSN of commit N when all 728 * the items of that checkpoint are written back, because then the 729 * start record for N+1 is no longer in the active portion of the log 730 * and recovery will fail/corrupt the filesystem. 731 * 732 * Hence when all the log items in checkpoint N are written back, the 733 * tail of the log most now only move as far forwards as the start LSN 734 * of checkpoint N+1. 735 * 736 * If we are called with the aborted flag set, it is because a log write during 737 * a CIL checkpoint commit has failed. In this case, all the items in the 738 * checkpoint have already gone through iop_committed and iop_committing, which 739 * means that checkpoint commit abort handling is treated exactly the same as an 740 * iclog write error even though we haven't started any IO yet. Hence in this 741 * case all we need to do is iop_committed processing, followed by an 742 * iop_unpin(aborted) call. 743 * 744 * The AIL cursor is used to optimise the insert process. If commit_lsn is not 745 * at the end of the AIL, the insert cursor avoids the need to walk the AIL to 746 * find the insertion point on every xfs_log_item_batch_insert() call. This 747 * saves a lot of needless list walking and is a net win, even though it 748 * slightly increases that amount of AIL lock traffic to set it up and tear it 749 * down. 750 */ 751 static void 752 xlog_cil_ail_insert( 753 struct xfs_cil_ctx *ctx, 754 bool aborted) 755 { 756 #define LOG_ITEM_BATCH_SIZE 32 757 struct xfs_ail *ailp = ctx->cil->xc_log->l_ailp; 758 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE]; 759 struct xfs_log_vec *lv; 760 struct xfs_ail_cursor cur; 761 xfs_lsn_t old_head; 762 int i = 0; 763 764 /* 765 * Update the AIL head LSN with the commit record LSN of this 766 * checkpoint. As iclogs are always completed in order, this should 767 * always be the same (as iclogs can contain multiple commit records) or 768 * higher LSN than the current head. We do this before insertion of the 769 * items so that log space checks during insertion will reflect the 770 * space that this checkpoint has already consumed. We call 771 * xfs_ail_update_finish() so that tail space and space-based wakeups 772 * will be recalculated appropriately. 773 */ 774 ASSERT(XFS_LSN_CMP(ctx->commit_lsn, ailp->ail_head_lsn) >= 0 || 775 aborted); 776 spin_lock(&ailp->ail_lock); 777 xfs_trans_ail_cursor_last(ailp, &cur, ctx->start_lsn); 778 old_head = ailp->ail_head_lsn; 779 ailp->ail_head_lsn = ctx->commit_lsn; 780 /* xfs_ail_update_finish() drops the ail_lock */ 781 xfs_ail_update_finish(ailp, NULLCOMMITLSN); 782 783 /* 784 * We move the AIL head forwards to account for the space used in the 785 * log before we remove that space from the grant heads. This prevents a 786 * transient condition where reservation space appears to become 787 * available on return, only for it to disappear again immediately as 788 * the AIL head update accounts in the log tail space. 789 */ 790 smp_wmb(); /* paired with smp_rmb in xlog_grant_space_left */ 791 xlog_grant_return_space(ailp->ail_log, old_head, ailp->ail_head_lsn); 792 793 /* unpin all the log items */ 794 list_for_each_entry(lv, &ctx->lv_chain, lv_list) { 795 struct xfs_log_item *lip = lv->lv_item; 796 xfs_lsn_t item_lsn; 797 798 if (aborted) 799 set_bit(XFS_LI_ABORTED, &lip->li_flags); 800 801 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) { 802 lip->li_ops->iop_release(lip); 803 continue; 804 } 805 806 if (lip->li_ops->iop_committed) 807 item_lsn = lip->li_ops->iop_committed(lip, 808 ctx->start_lsn); 809 else 810 item_lsn = ctx->start_lsn; 811 812 /* item_lsn of -1 means the item needs no further processing */ 813 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) 814 continue; 815 816 /* 817 * if we are aborting the operation, no point in inserting the 818 * object into the AIL as we are in a shutdown situation. 819 */ 820 if (aborted) { 821 ASSERT(xlog_is_shutdown(ailp->ail_log)); 822 if (lip->li_ops->iop_unpin) 823 lip->li_ops->iop_unpin(lip, 1); 824 continue; 825 } 826 827 if (item_lsn != ctx->start_lsn) { 828 829 /* 830 * Not a bulk update option due to unusual item_lsn. 831 * Push into AIL immediately, rechecking the lsn once 832 * we have the ail lock. Then unpin the item. This does 833 * not affect the AIL cursor the bulk insert path is 834 * using. 835 */ 836 spin_lock(&ailp->ail_lock); 837 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) 838 xfs_trans_ail_update(ailp, lip, item_lsn); 839 else 840 spin_unlock(&ailp->ail_lock); 841 if (lip->li_ops->iop_unpin) 842 lip->li_ops->iop_unpin(lip, 0); 843 continue; 844 } 845 846 /* Item is a candidate for bulk AIL insert. */ 847 log_items[i++] = lv->lv_item; 848 if (i >= LOG_ITEM_BATCH_SIZE) { 849 xlog_cil_ail_insert_batch(ailp, &cur, log_items, 850 LOG_ITEM_BATCH_SIZE, ctx->start_lsn); 851 i = 0; 852 } 853 } 854 855 /* make sure we insert the remainder! */ 856 if (i) 857 xlog_cil_ail_insert_batch(ailp, &cur, log_items, i, 858 ctx->start_lsn); 859 860 spin_lock(&ailp->ail_lock); 861 xfs_trans_ail_cursor_done(&cur); 862 spin_unlock(&ailp->ail_lock); 863 } 864 865 static void 866 xlog_cil_free_logvec( 867 struct list_head *lv_chain) 868 { 869 struct xfs_log_vec *lv; 870 871 while (!list_empty(lv_chain)) { 872 lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list); 873 list_del_init(&lv->lv_list); 874 kvfree(lv); 875 } 876 } 877 878 /* 879 * Mark all items committed and clear busy extents. We free the log vector 880 * chains in a separate pass so that we unpin the log items as quickly as 881 * possible. 882 */ 883 static void 884 xlog_cil_committed( 885 struct xfs_cil_ctx *ctx) 886 { 887 struct xfs_mount *mp = ctx->cil->xc_log->l_mp; 888 bool abort = xlog_is_shutdown(ctx->cil->xc_log); 889 890 /* 891 * If the I/O failed, we're aborting the commit and already shutdown. 892 * Wake any commit waiters before aborting the log items so we don't 893 * block async log pushers on callbacks. Async log pushers explicitly do 894 * not wait on log force completion because they may be holding locks 895 * required to unpin items. 896 */ 897 if (abort) { 898 spin_lock(&ctx->cil->xc_push_lock); 899 wake_up_all(&ctx->cil->xc_start_wait); 900 wake_up_all(&ctx->cil->xc_commit_wait); 901 spin_unlock(&ctx->cil->xc_push_lock); 902 } 903 904 xlog_cil_ail_insert(ctx, abort); 905 906 xfs_extent_busy_sort(&ctx->busy_extents.extent_list); 907 xfs_extent_busy_clear(&ctx->busy_extents.extent_list, 908 xfs_has_discard(mp) && !abort); 909 910 spin_lock(&ctx->cil->xc_push_lock); 911 list_del(&ctx->committing); 912 spin_unlock(&ctx->cil->xc_push_lock); 913 914 xlog_cil_free_logvec(&ctx->lv_chain); 915 916 if (!list_empty(&ctx->busy_extents.extent_list)) { 917 ctx->busy_extents.owner = ctx; 918 xfs_discard_extents(mp, &ctx->busy_extents); 919 return; 920 } 921 922 kfree(ctx); 923 } 924 925 void 926 xlog_cil_process_committed( 927 struct list_head *list) 928 { 929 struct xfs_cil_ctx *ctx; 930 931 while ((ctx = list_first_entry_or_null(list, 932 struct xfs_cil_ctx, iclog_entry))) { 933 list_del(&ctx->iclog_entry); 934 xlog_cil_committed(ctx); 935 } 936 } 937 938 /* 939 * Record the LSN of the iclog we were just granted space to start writing into. 940 * If the context doesn't have a start_lsn recorded, then this iclog will 941 * contain the start record for the checkpoint. Otherwise this write contains 942 * the commit record for the checkpoint. 943 */ 944 void 945 xlog_cil_set_ctx_write_state( 946 struct xfs_cil_ctx *ctx, 947 struct xlog_in_core *iclog) 948 { 949 struct xfs_cil *cil = ctx->cil; 950 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 951 952 ASSERT(!ctx->commit_lsn); 953 if (!ctx->start_lsn) { 954 spin_lock(&cil->xc_push_lock); 955 /* 956 * The LSN we need to pass to the log items on transaction 957 * commit is the LSN reported by the first log vector write, not 958 * the commit lsn. If we use the commit record lsn then we can 959 * move the grant write head beyond the tail LSN and overwrite 960 * it. 961 */ 962 ctx->start_lsn = lsn; 963 wake_up_all(&cil->xc_start_wait); 964 spin_unlock(&cil->xc_push_lock); 965 966 /* 967 * Make sure the metadata we are about to overwrite in the log 968 * has been flushed to stable storage before this iclog is 969 * issued. 970 */ 971 spin_lock(&cil->xc_log->l_icloglock); 972 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 973 spin_unlock(&cil->xc_log->l_icloglock); 974 return; 975 } 976 977 /* 978 * Take a reference to the iclog for the context so that we still hold 979 * it when xlog_write is done and has released it. This means the 980 * context controls when the iclog is released for IO. 981 */ 982 atomic_inc(&iclog->ic_refcnt); 983 984 /* 985 * xlog_state_get_iclog_space() guarantees there is enough space in the 986 * iclog for an entire commit record, so we can attach the context 987 * callbacks now. This needs to be done before we make the commit_lsn 988 * visible to waiters so that checkpoints with commit records in the 989 * same iclog order their IO completion callbacks in the same order that 990 * the commit records appear in the iclog. 991 */ 992 spin_lock(&cil->xc_log->l_icloglock); 993 list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks); 994 spin_unlock(&cil->xc_log->l_icloglock); 995 996 /* 997 * Now we can record the commit LSN and wake anyone waiting for this 998 * sequence to have the ordered commit record assigned to a physical 999 * location in the log. 1000 */ 1001 spin_lock(&cil->xc_push_lock); 1002 ctx->commit_iclog = iclog; 1003 ctx->commit_lsn = lsn; 1004 wake_up_all(&cil->xc_commit_wait); 1005 spin_unlock(&cil->xc_push_lock); 1006 } 1007 1008 1009 /* 1010 * Ensure that the order of log writes follows checkpoint sequence order. This 1011 * relies on the context LSN being zero until the log write has guaranteed the 1012 * LSN that the log write will start at via xlog_state_get_iclog_space(). 1013 */ 1014 enum _record_type { 1015 _START_RECORD, 1016 _COMMIT_RECORD, 1017 }; 1018 1019 static int 1020 xlog_cil_order_write( 1021 struct xfs_cil *cil, 1022 xfs_csn_t sequence, 1023 enum _record_type record) 1024 { 1025 struct xfs_cil_ctx *ctx; 1026 1027 restart: 1028 spin_lock(&cil->xc_push_lock); 1029 list_for_each_entry(ctx, &cil->xc_committing, committing) { 1030 /* 1031 * Avoid getting stuck in this loop because we were woken by the 1032 * shutdown, but then went back to sleep once already in the 1033 * shutdown state. 1034 */ 1035 if (xlog_is_shutdown(cil->xc_log)) { 1036 spin_unlock(&cil->xc_push_lock); 1037 return -EIO; 1038 } 1039 1040 /* 1041 * Higher sequences will wait for this one so skip them. 1042 * Don't wait for our own sequence, either. 1043 */ 1044 if (ctx->sequence >= sequence) 1045 continue; 1046 1047 /* Wait until the LSN for the record has been recorded. */ 1048 switch (record) { 1049 case _START_RECORD: 1050 if (!ctx->start_lsn) { 1051 xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock); 1052 goto restart; 1053 } 1054 break; 1055 case _COMMIT_RECORD: 1056 if (!ctx->commit_lsn) { 1057 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 1058 goto restart; 1059 } 1060 break; 1061 } 1062 } 1063 spin_unlock(&cil->xc_push_lock); 1064 return 0; 1065 } 1066 1067 /* 1068 * Write out the log vector change now attached to the CIL context. This will 1069 * write a start record that needs to be strictly ordered in ascending CIL 1070 * sequence order so that log recovery will always use in-order start LSNs when 1071 * replaying checkpoints. 1072 */ 1073 static int 1074 xlog_cil_write_chain( 1075 struct xfs_cil_ctx *ctx, 1076 uint32_t chain_len) 1077 { 1078 struct xlog *log = ctx->cil->xc_log; 1079 int error; 1080 1081 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD); 1082 if (error) 1083 return error; 1084 return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len); 1085 } 1086 1087 /* 1088 * Write out the commit record of a checkpoint transaction to close off a 1089 * running log write. These commit records are strictly ordered in ascending CIL 1090 * sequence order so that log recovery will always replay the checkpoints in the 1091 * correct order. 1092 */ 1093 static int 1094 xlog_cil_write_commit_record( 1095 struct xfs_cil_ctx *ctx) 1096 { 1097 struct xlog *log = ctx->cil->xc_log; 1098 struct xlog_op_header ophdr = { 1099 .oh_clientid = XFS_TRANSACTION, 1100 .oh_tid = cpu_to_be32(ctx->ticket->t_tid), 1101 .oh_flags = XLOG_COMMIT_TRANS, 1102 }; 1103 struct xfs_log_iovec reg = { 1104 .i_addr = &ophdr, 1105 .i_len = sizeof(struct xlog_op_header), 1106 .i_type = XLOG_REG_TYPE_COMMIT, 1107 }; 1108 struct xfs_log_vec vec = { 1109 .lv_niovecs = 1, 1110 .lv_iovecp = ®, 1111 }; 1112 int error; 1113 LIST_HEAD(lv_chain); 1114 list_add(&vec.lv_list, &lv_chain); 1115 1116 if (xlog_is_shutdown(log)) 1117 return -EIO; 1118 1119 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD); 1120 if (error) 1121 return error; 1122 1123 /* account for space used by record data */ 1124 ctx->ticket->t_curr_res -= reg.i_len; 1125 error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len); 1126 if (error) 1127 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1128 return error; 1129 } 1130 1131 struct xlog_cil_trans_hdr { 1132 struct xlog_op_header oph[2]; 1133 struct xfs_trans_header thdr; 1134 struct xfs_log_iovec lhdr[2]; 1135 }; 1136 1137 /* 1138 * Build a checkpoint transaction header to begin the journal transaction. We 1139 * need to account for the space used by the transaction header here as it is 1140 * not accounted for in xlog_write(). 1141 * 1142 * This is the only place we write a transaction header, so we also build the 1143 * log opheaders that indicate the start of a log transaction and wrap the 1144 * transaction header. We keep the start record in it's own log vector rather 1145 * than compacting them into a single region as this ends up making the logic 1146 * in xlog_write() for handling empty opheaders for start, commit and unmount 1147 * records much simpler. 1148 */ 1149 static void 1150 xlog_cil_build_trans_hdr( 1151 struct xfs_cil_ctx *ctx, 1152 struct xlog_cil_trans_hdr *hdr, 1153 struct xfs_log_vec *lvhdr, 1154 int num_iovecs) 1155 { 1156 struct xlog_ticket *tic = ctx->ticket; 1157 __be32 tid = cpu_to_be32(tic->t_tid); 1158 1159 memset(hdr, 0, sizeof(*hdr)); 1160 1161 /* Log start record */ 1162 hdr->oph[0].oh_tid = tid; 1163 hdr->oph[0].oh_clientid = XFS_TRANSACTION; 1164 hdr->oph[0].oh_flags = XLOG_START_TRANS; 1165 1166 /* log iovec region pointer */ 1167 hdr->lhdr[0].i_addr = &hdr->oph[0]; 1168 hdr->lhdr[0].i_len = sizeof(struct xlog_op_header); 1169 hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER; 1170 1171 /* log opheader */ 1172 hdr->oph[1].oh_tid = tid; 1173 hdr->oph[1].oh_clientid = XFS_TRANSACTION; 1174 hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header)); 1175 1176 /* transaction header in host byte order format */ 1177 hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC; 1178 hdr->thdr.th_type = XFS_TRANS_CHECKPOINT; 1179 hdr->thdr.th_tid = tic->t_tid; 1180 hdr->thdr.th_num_items = num_iovecs; 1181 1182 /* log iovec region pointer */ 1183 hdr->lhdr[1].i_addr = &hdr->oph[1]; 1184 hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) + 1185 sizeof(struct xfs_trans_header); 1186 hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR; 1187 1188 lvhdr->lv_niovecs = 2; 1189 lvhdr->lv_iovecp = &hdr->lhdr[0]; 1190 lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len; 1191 1192 tic->t_curr_res -= lvhdr->lv_bytes; 1193 } 1194 1195 /* 1196 * CIL item reordering compare function. We want to order in ascending ID order, 1197 * but we want to leave items with the same ID in the order they were added to 1198 * the list. This is important for operations like reflink where we log 4 order 1199 * dependent intents in a single transaction when we overwrite an existing 1200 * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop), 1201 * CUI (inc), BUI(remap)... 1202 */ 1203 static int 1204 xlog_cil_order_cmp( 1205 void *priv, 1206 const struct list_head *a, 1207 const struct list_head *b) 1208 { 1209 struct xfs_log_vec *l1 = container_of(a, struct xfs_log_vec, lv_list); 1210 struct xfs_log_vec *l2 = container_of(b, struct xfs_log_vec, lv_list); 1211 1212 return l1->lv_order_id > l2->lv_order_id; 1213 } 1214 1215 /* 1216 * Pull all the log vectors off the items in the CIL, and remove the items from 1217 * the CIL. We don't need the CIL lock here because it's only needed on the 1218 * transaction commit side which is currently locked out by the flush lock. 1219 * 1220 * If a log item is marked with a whiteout, we do not need to write it to the 1221 * journal and so we just move them to the whiteout list for the caller to 1222 * dispose of appropriately. 1223 */ 1224 static void 1225 xlog_cil_build_lv_chain( 1226 struct xfs_cil_ctx *ctx, 1227 struct list_head *whiteouts, 1228 uint32_t *num_iovecs, 1229 uint32_t *num_bytes) 1230 { 1231 while (!list_empty(&ctx->log_items)) { 1232 struct xfs_log_item *item; 1233 struct xfs_log_vec *lv; 1234 1235 item = list_first_entry(&ctx->log_items, 1236 struct xfs_log_item, li_cil); 1237 1238 if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) { 1239 list_move(&item->li_cil, whiteouts); 1240 trace_xfs_cil_whiteout_skip(item); 1241 continue; 1242 } 1243 1244 lv = item->li_lv; 1245 lv->lv_order_id = item->li_order_id; 1246 1247 /* we don't write ordered log vectors */ 1248 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) 1249 *num_bytes += lv->lv_bytes; 1250 *num_iovecs += lv->lv_niovecs; 1251 list_add_tail(&lv->lv_list, &ctx->lv_chain); 1252 1253 list_del_init(&item->li_cil); 1254 item->li_order_id = 0; 1255 item->li_lv = NULL; 1256 } 1257 } 1258 1259 static void 1260 xlog_cil_cleanup_whiteouts( 1261 struct list_head *whiteouts) 1262 { 1263 while (!list_empty(whiteouts)) { 1264 struct xfs_log_item *item = list_first_entry(whiteouts, 1265 struct xfs_log_item, li_cil); 1266 list_del_init(&item->li_cil); 1267 trace_xfs_cil_whiteout_unpin(item); 1268 item->li_ops->iop_unpin(item, 1); 1269 } 1270 } 1271 1272 /* 1273 * Push the Committed Item List to the log. 1274 * 1275 * If the current sequence is the same as xc_push_seq we need to do a flush. If 1276 * xc_push_seq is less than the current sequence, then it has already been 1277 * flushed and we don't need to do anything - the caller will wait for it to 1278 * complete if necessary. 1279 * 1280 * xc_push_seq is checked unlocked against the sequence number for a match. 1281 * Hence we can allow log forces to run racily and not issue pushes for the 1282 * same sequence twice. If we get a race between multiple pushes for the same 1283 * sequence they will block on the first one and then abort, hence avoiding 1284 * needless pushes. 1285 * 1286 * This runs from a workqueue so it does not inherent any specific memory 1287 * allocation context. However, we do not want to block on memory reclaim 1288 * recursing back into the filesystem because this push may have been triggered 1289 * by memory reclaim itself. Hence we really need to run under full GFP_NOFS 1290 * contraints here. 1291 */ 1292 static void 1293 xlog_cil_push_work( 1294 struct work_struct *work) 1295 { 1296 unsigned int nofs_flags = memalloc_nofs_save(); 1297 struct xfs_cil_ctx *ctx = 1298 container_of(work, struct xfs_cil_ctx, push_work); 1299 struct xfs_cil *cil = ctx->cil; 1300 struct xlog *log = cil->xc_log; 1301 struct xfs_cil_ctx *new_ctx; 1302 int num_iovecs = 0; 1303 int num_bytes = 0; 1304 int error = 0; 1305 struct xlog_cil_trans_hdr thdr; 1306 struct xfs_log_vec lvhdr = {}; 1307 xfs_csn_t push_seq; 1308 bool push_commit_stable; 1309 LIST_HEAD (whiteouts); 1310 struct xlog_ticket *ticket; 1311 1312 new_ctx = xlog_cil_ctx_alloc(); 1313 new_ctx->ticket = xlog_cil_ticket_alloc(log); 1314 1315 down_write(&cil->xc_ctx_lock); 1316 1317 spin_lock(&cil->xc_push_lock); 1318 push_seq = cil->xc_push_seq; 1319 ASSERT(push_seq <= ctx->sequence); 1320 push_commit_stable = cil->xc_push_commit_stable; 1321 cil->xc_push_commit_stable = false; 1322 1323 /* 1324 * As we are about to switch to a new, empty CIL context, we no longer 1325 * need to throttle tasks on CIL space overruns. Wake any waiters that 1326 * the hard push throttle may have caught so they can start committing 1327 * to the new context. The ctx->xc_push_lock provides the serialisation 1328 * necessary for safely using the lockless waitqueue_active() check in 1329 * this context. 1330 */ 1331 if (waitqueue_active(&cil->xc_push_wait)) 1332 wake_up_all(&cil->xc_push_wait); 1333 1334 xlog_cil_push_pcp_aggregate(cil, ctx); 1335 1336 /* 1337 * Check if we've anything to push. If there is nothing, then we don't 1338 * move on to a new sequence number and so we have to be able to push 1339 * this sequence again later. 1340 */ 1341 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) { 1342 cil->xc_push_seq = 0; 1343 spin_unlock(&cil->xc_push_lock); 1344 goto out_skip; 1345 } 1346 1347 1348 /* check for a previously pushed sequence */ 1349 if (push_seq < ctx->sequence) { 1350 spin_unlock(&cil->xc_push_lock); 1351 goto out_skip; 1352 } 1353 1354 /* 1355 * We are now going to push this context, so add it to the committing 1356 * list before we do anything else. This ensures that anyone waiting on 1357 * this push can easily detect the difference between a "push in 1358 * progress" and "CIL is empty, nothing to do". 1359 * 1360 * IOWs, a wait loop can now check for: 1361 * the current sequence not being found on the committing list; 1362 * an empty CIL; and 1363 * an unchanged sequence number 1364 * to detect a push that had nothing to do and therefore does not need 1365 * waiting on. If the CIL is not empty, we get put on the committing 1366 * list before emptying the CIL and bumping the sequence number. Hence 1367 * an empty CIL and an unchanged sequence number means we jumped out 1368 * above after doing nothing. 1369 * 1370 * Hence the waiter will either find the commit sequence on the 1371 * committing list or the sequence number will be unchanged and the CIL 1372 * still dirty. In that latter case, the push has not yet started, and 1373 * so the waiter will have to continue trying to check the CIL 1374 * committing list until it is found. In extreme cases of delay, the 1375 * sequence may fully commit between the attempts the wait makes to wait 1376 * on the commit sequence. 1377 */ 1378 list_add(&ctx->committing, &cil->xc_committing); 1379 spin_unlock(&cil->xc_push_lock); 1380 1381 xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes); 1382 1383 /* 1384 * Switch the contexts so we can drop the context lock and move out 1385 * of a shared context. We can't just go straight to the commit record, 1386 * though - we need to synchronise with previous and future commits so 1387 * that the commit records are correctly ordered in the log to ensure 1388 * that we process items during log IO completion in the correct order. 1389 * 1390 * For example, if we get an EFI in one checkpoint and the EFD in the 1391 * next (e.g. due to log forces), we do not want the checkpoint with 1392 * the EFD to be committed before the checkpoint with the EFI. Hence 1393 * we must strictly order the commit records of the checkpoints so 1394 * that: a) the checkpoint callbacks are attached to the iclogs in the 1395 * correct order; and b) the checkpoints are replayed in correct order 1396 * in log recovery. 1397 * 1398 * Hence we need to add this context to the committing context list so 1399 * that higher sequences will wait for us to write out a commit record 1400 * before they do. 1401 * 1402 * xfs_log_force_seq requires us to mirror the new sequence into the cil 1403 * structure atomically with the addition of this sequence to the 1404 * committing list. This also ensures that we can do unlocked checks 1405 * against the current sequence in log forces without risking 1406 * deferencing a freed context pointer. 1407 */ 1408 spin_lock(&cil->xc_push_lock); 1409 xlog_cil_ctx_switch(cil, new_ctx); 1410 spin_unlock(&cil->xc_push_lock); 1411 up_write(&cil->xc_ctx_lock); 1412 1413 /* 1414 * Sort the log vector chain before we add the transaction headers. 1415 * This ensures we always have the transaction headers at the start 1416 * of the chain. 1417 */ 1418 list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp); 1419 1420 /* 1421 * Build a checkpoint transaction header and write it to the log to 1422 * begin the transaction. We need to account for the space used by the 1423 * transaction header here as it is not accounted for in xlog_write(). 1424 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so 1425 * it gets written into the iclog first. 1426 */ 1427 xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs); 1428 num_bytes += lvhdr.lv_bytes; 1429 list_add(&lvhdr.lv_list, &ctx->lv_chain); 1430 1431 /* 1432 * Take the lvhdr back off the lv_chain immediately after calling 1433 * xlog_cil_write_chain() as it should not be passed to log IO 1434 * completion. 1435 */ 1436 error = xlog_cil_write_chain(ctx, num_bytes); 1437 list_del(&lvhdr.lv_list); 1438 if (error) 1439 goto out_abort_free_ticket; 1440 1441 error = xlog_cil_write_commit_record(ctx); 1442 if (error) 1443 goto out_abort_free_ticket; 1444 1445 /* 1446 * Grab the ticket from the ctx so we can ungrant it after releasing the 1447 * commit_iclog. The ctx may be freed by the time we return from 1448 * releasing the commit_iclog (i.e. checkpoint has been completed and 1449 * callback run) so we can't reference the ctx after the call to 1450 * xlog_state_release_iclog(). 1451 */ 1452 ticket = ctx->ticket; 1453 1454 /* 1455 * If the checkpoint spans multiple iclogs, wait for all previous iclogs 1456 * to complete before we submit the commit_iclog. We can't use state 1457 * checks for this - ACTIVE can be either a past completed iclog or a 1458 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a 1459 * past or future iclog awaiting IO or ordered IO completion to be run. 1460 * In the latter case, if it's a future iclog and we wait on it, the we 1461 * will hang because it won't get processed through to ic_force_wait 1462 * wakeup until this commit_iclog is written to disk. Hence we use the 1463 * iclog header lsn and compare it to the commit lsn to determine if we 1464 * need to wait on iclogs or not. 1465 */ 1466 spin_lock(&log->l_icloglock); 1467 if (ctx->start_lsn != ctx->commit_lsn) { 1468 xfs_lsn_t plsn; 1469 1470 plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn); 1471 if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) { 1472 /* 1473 * Waiting on ic_force_wait orders the completion of 1474 * iclogs older than ic_prev. Hence we only need to wait 1475 * on the most recent older iclog here. 1476 */ 1477 xlog_wait_on_iclog(ctx->commit_iclog->ic_prev); 1478 spin_lock(&log->l_icloglock); 1479 } 1480 1481 /* 1482 * We need to issue a pre-flush so that the ordering for this 1483 * checkpoint is correctly preserved down to stable storage. 1484 */ 1485 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 1486 } 1487 1488 /* 1489 * The commit iclog must be written to stable storage to guarantee 1490 * journal IO vs metadata writeback IO is correctly ordered on stable 1491 * storage. 1492 * 1493 * If the push caller needs the commit to be immediately stable and the 1494 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it 1495 * will be written when released, switch it's state to WANT_SYNC right 1496 * now. 1497 */ 1498 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA; 1499 if (push_commit_stable && 1500 ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE) 1501 xlog_state_switch_iclogs(log, ctx->commit_iclog, 0); 1502 ticket = ctx->ticket; 1503 xlog_state_release_iclog(log, ctx->commit_iclog, ticket); 1504 1505 /* Not safe to reference ctx now! */ 1506 1507 spin_unlock(&log->l_icloglock); 1508 xlog_cil_cleanup_whiteouts(&whiteouts); 1509 xfs_log_ticket_ungrant(log, ticket); 1510 memalloc_nofs_restore(nofs_flags); 1511 return; 1512 1513 out_skip: 1514 up_write(&cil->xc_ctx_lock); 1515 xfs_log_ticket_put(new_ctx->ticket); 1516 kfree(new_ctx); 1517 memalloc_nofs_restore(nofs_flags); 1518 return; 1519 1520 out_abort_free_ticket: 1521 ASSERT(xlog_is_shutdown(log)); 1522 xlog_cil_cleanup_whiteouts(&whiteouts); 1523 if (!ctx->commit_iclog) { 1524 xfs_log_ticket_ungrant(log, ctx->ticket); 1525 xlog_cil_committed(ctx); 1526 memalloc_nofs_restore(nofs_flags); 1527 return; 1528 } 1529 spin_lock(&log->l_icloglock); 1530 ticket = ctx->ticket; 1531 xlog_state_release_iclog(log, ctx->commit_iclog, ticket); 1532 /* Not safe to reference ctx now! */ 1533 spin_unlock(&log->l_icloglock); 1534 xfs_log_ticket_ungrant(log, ticket); 1535 memalloc_nofs_restore(nofs_flags); 1536 } 1537 1538 /* 1539 * We need to push CIL every so often so we don't cache more than we can fit in 1540 * the log. The limit really is that a checkpoint can't be more than half the 1541 * log (the current checkpoint is not allowed to overwrite the previous 1542 * checkpoint), but commit latency and memory usage limit this to a smaller 1543 * size. 1544 */ 1545 static void 1546 xlog_cil_push_background( 1547 struct xlog *log) 1548 { 1549 struct xfs_cil *cil = log->l_cilp; 1550 int space_used = atomic_read(&cil->xc_ctx->space_used); 1551 1552 /* 1553 * The cil won't be empty because we are called while holding the 1554 * context lock so whatever we added to the CIL will still be there. 1555 */ 1556 ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)); 1557 1558 /* 1559 * We are done if: 1560 * - we haven't used up all the space available yet; or 1561 * - we've already queued up a push; and 1562 * - we're not over the hard limit; and 1563 * - nothing has been over the hard limit. 1564 * 1565 * If so, we don't need to take the push lock as there's nothing to do. 1566 */ 1567 if (space_used < XLOG_CIL_SPACE_LIMIT(log) || 1568 (cil->xc_push_seq == cil->xc_current_sequence && 1569 space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) && 1570 !waitqueue_active(&cil->xc_push_wait))) { 1571 up_read(&cil->xc_ctx_lock); 1572 return; 1573 } 1574 1575 spin_lock(&cil->xc_push_lock); 1576 if (cil->xc_push_seq < cil->xc_current_sequence) { 1577 cil->xc_push_seq = cil->xc_current_sequence; 1578 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1579 } 1580 1581 /* 1582 * Drop the context lock now, we can't hold that if we need to sleep 1583 * because we are over the blocking threshold. The push_lock is still 1584 * held, so blocking threshold sleep/wakeup is still correctly 1585 * serialised here. 1586 */ 1587 up_read(&cil->xc_ctx_lock); 1588 1589 /* 1590 * If we are well over the space limit, throttle the work that is being 1591 * done until the push work on this context has begun. Enforce the hard 1592 * throttle on all transaction commits once it has been activated, even 1593 * if the committing transactions have resulted in the space usage 1594 * dipping back down under the hard limit. 1595 * 1596 * The ctx->xc_push_lock provides the serialisation necessary for safely 1597 * calling xlog_cil_over_hard_limit() in this context. 1598 */ 1599 if (xlog_cil_over_hard_limit(log, space_used)) { 1600 trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket); 1601 ASSERT(space_used < log->l_logsize); 1602 xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock); 1603 return; 1604 } 1605 1606 spin_unlock(&cil->xc_push_lock); 1607 1608 } 1609 1610 /* 1611 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence 1612 * number that is passed. When it returns, the work will be queued for 1613 * @push_seq, but it won't be completed. 1614 * 1615 * If the caller is performing a synchronous force, we will flush the workqueue 1616 * to get previously queued work moving to minimise the wait time they will 1617 * undergo waiting for all outstanding pushes to complete. The caller is 1618 * expected to do the required waiting for push_seq to complete. 1619 * 1620 * If the caller is performing an async push, we need to ensure that the 1621 * checkpoint is fully flushed out of the iclogs when we finish the push. If we 1622 * don't do this, then the commit record may remain sitting in memory in an 1623 * ACTIVE iclog. This then requires another full log force to push to disk, 1624 * which defeats the purpose of having an async, non-blocking CIL force 1625 * mechanism. Hence in this case we need to pass a flag to the push work to 1626 * indicate it needs to flush the commit record itself. 1627 */ 1628 static void 1629 xlog_cil_push_now( 1630 struct xlog *log, 1631 xfs_lsn_t push_seq, 1632 bool async) 1633 { 1634 struct xfs_cil *cil = log->l_cilp; 1635 1636 if (!cil) 1637 return; 1638 1639 ASSERT(push_seq && push_seq <= cil->xc_current_sequence); 1640 1641 /* start on any pending background push to minimise wait time on it */ 1642 if (!async) 1643 flush_workqueue(cil->xc_push_wq); 1644 1645 spin_lock(&cil->xc_push_lock); 1646 1647 /* 1648 * If this is an async flush request, we always need to set the 1649 * xc_push_commit_stable flag even if something else has already queued 1650 * a push. The flush caller is asking for the CIL to be on stable 1651 * storage when the next push completes, so regardless of who has queued 1652 * the push, the flush requires stable semantics from it. 1653 */ 1654 cil->xc_push_commit_stable = async; 1655 1656 /* 1657 * If the CIL is empty or we've already pushed the sequence then 1658 * there's no more work that we need to do. 1659 */ 1660 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) || 1661 push_seq <= cil->xc_push_seq) { 1662 spin_unlock(&cil->xc_push_lock); 1663 return; 1664 } 1665 1666 cil->xc_push_seq = push_seq; 1667 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1668 spin_unlock(&cil->xc_push_lock); 1669 } 1670 1671 bool 1672 xlog_cil_empty( 1673 struct xlog *log) 1674 { 1675 struct xfs_cil *cil = log->l_cilp; 1676 bool empty = false; 1677 1678 spin_lock(&cil->xc_push_lock); 1679 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 1680 empty = true; 1681 spin_unlock(&cil->xc_push_lock); 1682 return empty; 1683 } 1684 1685 /* 1686 * If there are intent done items in this transaction and the related intent was 1687 * committed in the current (same) CIL checkpoint, we don't need to write either 1688 * the intent or intent done item to the journal as the change will be 1689 * journalled atomically within this checkpoint. As we cannot remove items from 1690 * the CIL here, mark the related intent with a whiteout so that the CIL push 1691 * can remove it rather than writing it to the journal. Then remove the intent 1692 * done item from the current transaction and release it so it doesn't get put 1693 * into the CIL at all. 1694 */ 1695 static uint32_t 1696 xlog_cil_process_intents( 1697 struct xfs_cil *cil, 1698 struct xfs_trans *tp) 1699 { 1700 struct xfs_log_item *lip, *ilip, *next; 1701 uint32_t len = 0; 1702 1703 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1704 if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE)) 1705 continue; 1706 1707 ilip = lip->li_ops->iop_intent(lip); 1708 if (!ilip || !xlog_item_in_current_chkpt(cil, ilip)) 1709 continue; 1710 set_bit(XFS_LI_WHITEOUT, &ilip->li_flags); 1711 trace_xfs_cil_whiteout_mark(ilip); 1712 len += ilip->li_lv->lv_bytes; 1713 kvfree(ilip->li_lv); 1714 ilip->li_lv = NULL; 1715 1716 xfs_trans_del_item(lip); 1717 lip->li_ops->iop_release(lip); 1718 } 1719 return len; 1720 } 1721 1722 /* 1723 * Commit a transaction with the given vector to the Committed Item List. 1724 * 1725 * To do this, we need to format the item, pin it in memory if required and 1726 * account for the space used by the transaction. Once we have done that we 1727 * need to release the unused reservation for the transaction, attach the 1728 * transaction to the checkpoint context so we carry the busy extents through 1729 * to checkpoint completion, and then unlock all the items in the transaction. 1730 * 1731 * Called with the context lock already held in read mode to lock out 1732 * background commit, returns without it held once background commits are 1733 * allowed again. 1734 */ 1735 void 1736 xlog_cil_commit( 1737 struct xlog *log, 1738 struct xfs_trans *tp, 1739 xfs_csn_t *commit_seq, 1740 bool regrant) 1741 { 1742 struct xfs_cil *cil = log->l_cilp; 1743 struct xfs_log_item *lip, *next; 1744 uint32_t released_space = 0; 1745 1746 /* 1747 * Do all necessary memory allocation before we lock the CIL. 1748 * This ensures the allocation does not deadlock with a CIL 1749 * push in memory reclaim (e.g. from kswapd). 1750 */ 1751 xlog_cil_alloc_shadow_bufs(log, tp); 1752 1753 /* lock out background commit */ 1754 down_read(&cil->xc_ctx_lock); 1755 1756 if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE) 1757 released_space = xlog_cil_process_intents(cil, tp); 1758 1759 xlog_cil_insert_items(log, tp, released_space); 1760 1761 if (regrant && !xlog_is_shutdown(log)) 1762 xfs_log_ticket_regrant(log, tp->t_ticket); 1763 else 1764 xfs_log_ticket_ungrant(log, tp->t_ticket); 1765 tp->t_ticket = NULL; 1766 xfs_trans_unreserve_and_mod_sb(tp); 1767 1768 /* 1769 * Once all the items of the transaction have been copied to the CIL, 1770 * the items can be unlocked and possibly freed. 1771 * 1772 * This needs to be done before we drop the CIL context lock because we 1773 * have to update state in the log items and unlock them before they go 1774 * to disk. If we don't, then the CIL checkpoint can race with us and 1775 * we can run checkpoint completion before we've updated and unlocked 1776 * the log items. This affects (at least) processing of stale buffers, 1777 * inodes and EFIs. 1778 */ 1779 trace_xfs_trans_commit_items(tp, _RET_IP_); 1780 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1781 xfs_trans_del_item(lip); 1782 if (lip->li_ops->iop_committing) 1783 lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence); 1784 } 1785 if (commit_seq) 1786 *commit_seq = cil->xc_ctx->sequence; 1787 1788 /* xlog_cil_push_background() releases cil->xc_ctx_lock */ 1789 xlog_cil_push_background(log); 1790 } 1791 1792 /* 1793 * Flush the CIL to stable storage but don't wait for it to complete. This 1794 * requires the CIL push to ensure the commit record for the push hits the disk, 1795 * but otherwise is no different to a push done from a log force. 1796 */ 1797 void 1798 xlog_cil_flush( 1799 struct xlog *log) 1800 { 1801 xfs_csn_t seq = log->l_cilp->xc_current_sequence; 1802 1803 trace_xfs_log_force(log->l_mp, seq, _RET_IP_); 1804 xlog_cil_push_now(log, seq, true); 1805 1806 /* 1807 * If the CIL is empty, make sure that any previous checkpoint that may 1808 * still be in an active iclog is pushed to stable storage. 1809 */ 1810 if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags)) 1811 xfs_log_force(log->l_mp, 0); 1812 } 1813 1814 /* 1815 * Conditionally push the CIL based on the sequence passed in. 1816 * 1817 * We only need to push if we haven't already pushed the sequence number given. 1818 * Hence the only time we will trigger a push here is if the push sequence is 1819 * the same as the current context. 1820 * 1821 * We return the current commit lsn to allow the callers to determine if a 1822 * iclog flush is necessary following this call. 1823 */ 1824 xfs_lsn_t 1825 xlog_cil_force_seq( 1826 struct xlog *log, 1827 xfs_csn_t sequence) 1828 { 1829 struct xfs_cil *cil = log->l_cilp; 1830 struct xfs_cil_ctx *ctx; 1831 xfs_lsn_t commit_lsn = NULLCOMMITLSN; 1832 1833 ASSERT(sequence <= cil->xc_current_sequence); 1834 1835 if (!sequence) 1836 sequence = cil->xc_current_sequence; 1837 trace_xfs_log_force(log->l_mp, sequence, _RET_IP_); 1838 1839 /* 1840 * check to see if we need to force out the current context. 1841 * xlog_cil_push() handles racing pushes for the same sequence, 1842 * so no need to deal with it here. 1843 */ 1844 restart: 1845 xlog_cil_push_now(log, sequence, false); 1846 1847 /* 1848 * See if we can find a previous sequence still committing. 1849 * We need to wait for all previous sequence commits to complete 1850 * before allowing the force of push_seq to go ahead. Hence block 1851 * on commits for those as well. 1852 */ 1853 spin_lock(&cil->xc_push_lock); 1854 list_for_each_entry(ctx, &cil->xc_committing, committing) { 1855 /* 1856 * Avoid getting stuck in this loop because we were woken by the 1857 * shutdown, but then went back to sleep once already in the 1858 * shutdown state. 1859 */ 1860 if (xlog_is_shutdown(log)) 1861 goto out_shutdown; 1862 if (ctx->sequence > sequence) 1863 continue; 1864 if (!ctx->commit_lsn) { 1865 /* 1866 * It is still being pushed! Wait for the push to 1867 * complete, then start again from the beginning. 1868 */ 1869 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 1870 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 1871 goto restart; 1872 } 1873 if (ctx->sequence != sequence) 1874 continue; 1875 /* found it! */ 1876 commit_lsn = ctx->commit_lsn; 1877 } 1878 1879 /* 1880 * The call to xlog_cil_push_now() executes the push in the background. 1881 * Hence by the time we have got here it our sequence may not have been 1882 * pushed yet. This is true if the current sequence still matches the 1883 * push sequence after the above wait loop and the CIL still contains 1884 * dirty objects. This is guaranteed by the push code first adding the 1885 * context to the committing list before emptying the CIL. 1886 * 1887 * Hence if we don't find the context in the committing list and the 1888 * current sequence number is unchanged then the CIL contents are 1889 * significant. If the CIL is empty, if means there was nothing to push 1890 * and that means there is nothing to wait for. If the CIL is not empty, 1891 * it means we haven't yet started the push, because if it had started 1892 * we would have found the context on the committing list. 1893 */ 1894 if (sequence == cil->xc_current_sequence && 1895 !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) { 1896 spin_unlock(&cil->xc_push_lock); 1897 goto restart; 1898 } 1899 1900 spin_unlock(&cil->xc_push_lock); 1901 return commit_lsn; 1902 1903 /* 1904 * We detected a shutdown in progress. We need to trigger the log force 1905 * to pass through it's iclog state machine error handling, even though 1906 * we are already in a shutdown state. Hence we can't return 1907 * NULLCOMMITLSN here as that has special meaning to log forces (i.e. 1908 * LSN is already stable), so we return a zero LSN instead. 1909 */ 1910 out_shutdown: 1911 spin_unlock(&cil->xc_push_lock); 1912 return 0; 1913 } 1914 1915 /* 1916 * Perform initial CIL structure initialisation. 1917 */ 1918 int 1919 xlog_cil_init( 1920 struct xlog *log) 1921 { 1922 struct xfs_cil *cil; 1923 struct xfs_cil_ctx *ctx; 1924 struct xlog_cil_pcp *cilpcp; 1925 int cpu; 1926 1927 cil = kzalloc(sizeof(*cil), GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1928 if (!cil) 1929 return -ENOMEM; 1930 /* 1931 * Limit the CIL pipeline depth to 4 concurrent works to bound the 1932 * concurrency the log spinlocks will be exposed to. 1933 */ 1934 cil->xc_push_wq = alloc_workqueue("xfs-cil/%s", 1935 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND), 1936 4, log->l_mp->m_super->s_id); 1937 if (!cil->xc_push_wq) 1938 goto out_destroy_cil; 1939 1940 cil->xc_log = log; 1941 cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp); 1942 if (!cil->xc_pcp) 1943 goto out_destroy_wq; 1944 1945 for_each_possible_cpu(cpu) { 1946 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 1947 INIT_LIST_HEAD(&cilpcp->busy_extents); 1948 INIT_LIST_HEAD(&cilpcp->log_items); 1949 } 1950 1951 INIT_LIST_HEAD(&cil->xc_committing); 1952 spin_lock_init(&cil->xc_push_lock); 1953 init_waitqueue_head(&cil->xc_push_wait); 1954 init_rwsem(&cil->xc_ctx_lock); 1955 init_waitqueue_head(&cil->xc_start_wait); 1956 init_waitqueue_head(&cil->xc_commit_wait); 1957 log->l_cilp = cil; 1958 1959 ctx = xlog_cil_ctx_alloc(); 1960 xlog_cil_ctx_switch(cil, ctx); 1961 return 0; 1962 1963 out_destroy_wq: 1964 destroy_workqueue(cil->xc_push_wq); 1965 out_destroy_cil: 1966 kfree(cil); 1967 return -ENOMEM; 1968 } 1969 1970 void 1971 xlog_cil_destroy( 1972 struct xlog *log) 1973 { 1974 struct xfs_cil *cil = log->l_cilp; 1975 1976 if (cil->xc_ctx) { 1977 if (cil->xc_ctx->ticket) 1978 xfs_log_ticket_put(cil->xc_ctx->ticket); 1979 kfree(cil->xc_ctx); 1980 } 1981 1982 ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)); 1983 free_percpu(cil->xc_pcp); 1984 destroy_workqueue(cil->xc_push_wq); 1985 kfree(cil); 1986 } 1987 1988