xref: /linux/fs/xfs/xfs_log_cil.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4  */
5 
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_extent_busy.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_log.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trace.h"
19 #include "xfs_discard.h"
20 
21 /*
22  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
23  * recover, so we don't allow failure here. Also, we allocate in a context that
24  * we don't want to be issuing transactions from, so we need to tell the
25  * allocation code this as well.
26  *
27  * We don't reserve any space for the ticket - we are going to steal whatever
28  * space we require from transactions as they commit. To ensure we reserve all
29  * the space required, we need to set the current reservation of the ticket to
30  * zero so that we know to steal the initial transaction overhead from the
31  * first transaction commit.
32  */
33 static struct xlog_ticket *
34 xlog_cil_ticket_alloc(
35 	struct xlog	*log)
36 {
37 	struct xlog_ticket *tic;
38 
39 	tic = xlog_ticket_alloc(log, 0, 1, 0);
40 
41 	/*
42 	 * set the current reservation to zero so we know to steal the basic
43 	 * transaction overhead reservation from the first transaction commit.
44 	 */
45 	tic->t_curr_res = 0;
46 	tic->t_iclog_hdrs = 0;
47 	return tic;
48 }
49 
50 static inline void
51 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil)
52 {
53 	struct xlog	*log = cil->xc_log;
54 
55 	atomic_set(&cil->xc_iclog_hdrs,
56 		   (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) /
57 			(log->l_iclog_size - log->l_iclog_hsize)));
58 }
59 
60 /*
61  * Check if the current log item was first committed in this sequence.
62  * We can't rely on just the log item being in the CIL, we have to check
63  * the recorded commit sequence number.
64  *
65  * Note: for this to be used in a non-racy manner, it has to be called with
66  * CIL flushing locked out. As a result, it should only be used during the
67  * transaction commit process when deciding what to format into the item.
68  */
69 static bool
70 xlog_item_in_current_chkpt(
71 	struct xfs_cil		*cil,
72 	struct xfs_log_item	*lip)
73 {
74 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
75 		return false;
76 
77 	/*
78 	 * li_seq is written on the first commit of a log item to record the
79 	 * first checkpoint it is written to. Hence if it is different to the
80 	 * current sequence, we're in a new checkpoint.
81 	 */
82 	return lip->li_seq == READ_ONCE(cil->xc_current_sequence);
83 }
84 
85 bool
86 xfs_log_item_in_current_chkpt(
87 	struct xfs_log_item *lip)
88 {
89 	return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip);
90 }
91 
92 /*
93  * Unavoidable forward declaration - xlog_cil_push_work() calls
94  * xlog_cil_ctx_alloc() itself.
95  */
96 static void xlog_cil_push_work(struct work_struct *work);
97 
98 static struct xfs_cil_ctx *
99 xlog_cil_ctx_alloc(void)
100 {
101 	struct xfs_cil_ctx	*ctx;
102 
103 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL);
104 	INIT_LIST_HEAD(&ctx->committing);
105 	INIT_LIST_HEAD(&ctx->busy_extents.extent_list);
106 	INIT_LIST_HEAD(&ctx->log_items);
107 	INIT_LIST_HEAD(&ctx->lv_chain);
108 	INIT_WORK(&ctx->push_work, xlog_cil_push_work);
109 	return ctx;
110 }
111 
112 /*
113  * Aggregate the CIL per cpu structures into global counts, lists, etc and
114  * clear the percpu state ready for the next context to use. This is called
115  * from the push code with the context lock held exclusively, hence nothing else
116  * will be accessing or modifying the per-cpu counters.
117  */
118 static void
119 xlog_cil_push_pcp_aggregate(
120 	struct xfs_cil		*cil,
121 	struct xfs_cil_ctx	*ctx)
122 {
123 	struct xlog_cil_pcp	*cilpcp;
124 	int			cpu;
125 
126 	for_each_cpu(cpu, &ctx->cil_pcpmask) {
127 		cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
128 
129 		ctx->ticket->t_curr_res += cilpcp->space_reserved;
130 		cilpcp->space_reserved = 0;
131 
132 		if (!list_empty(&cilpcp->busy_extents)) {
133 			list_splice_init(&cilpcp->busy_extents,
134 					&ctx->busy_extents.extent_list);
135 		}
136 		if (!list_empty(&cilpcp->log_items))
137 			list_splice_init(&cilpcp->log_items, &ctx->log_items);
138 
139 		/*
140 		 * We're in the middle of switching cil contexts.  Reset the
141 		 * counter we use to detect when the current context is nearing
142 		 * full.
143 		 */
144 		cilpcp->space_used = 0;
145 	}
146 }
147 
148 /*
149  * Aggregate the CIL per-cpu space used counters into the global atomic value.
150  * This is called when the per-cpu counter aggregation will first pass the soft
151  * limit threshold so we can switch to atomic counter aggregation for accurate
152  * detection of hard limit traversal.
153  */
154 static void
155 xlog_cil_insert_pcp_aggregate(
156 	struct xfs_cil		*cil,
157 	struct xfs_cil_ctx	*ctx)
158 {
159 	int			cpu;
160 	int			count = 0;
161 
162 	/* Trigger atomic updates then aggregate only for the first caller */
163 	if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags))
164 		return;
165 
166 	/*
167 	 * We can race with other cpus setting cil_pcpmask.  However, we've
168 	 * atomically cleared PCP_SPACE which forces other threads to add to
169 	 * the global space used count.  cil_pcpmask is a superset of cilpcp
170 	 * structures that could have a nonzero space_used.
171 	 */
172 	for_each_cpu(cpu, &ctx->cil_pcpmask) {
173 		struct xlog_cil_pcp	*cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
174 		int			old = READ_ONCE(cilpcp->space_used);
175 
176 		while (!try_cmpxchg(&cilpcp->space_used, &old, 0))
177 			;
178 		count += old;
179 	}
180 	atomic_add(count, &ctx->space_used);
181 }
182 
183 static void
184 xlog_cil_ctx_switch(
185 	struct xfs_cil		*cil,
186 	struct xfs_cil_ctx	*ctx)
187 {
188 	xlog_cil_set_iclog_hdr_count(cil);
189 	set_bit(XLOG_CIL_EMPTY, &cil->xc_flags);
190 	set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags);
191 	ctx->sequence = ++cil->xc_current_sequence;
192 	ctx->cil = cil;
193 	cil->xc_ctx = ctx;
194 }
195 
196 /*
197  * After the first stage of log recovery is done, we know where the head and
198  * tail of the log are. We need this log initialisation done before we can
199  * initialise the first CIL checkpoint context.
200  *
201  * Here we allocate a log ticket to track space usage during a CIL push.  This
202  * ticket is passed to xlog_write() directly so that we don't slowly leak log
203  * space by failing to account for space used by log headers and additional
204  * region headers for split regions.
205  */
206 void
207 xlog_cil_init_post_recovery(
208 	struct xlog	*log)
209 {
210 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
211 	log->l_cilp->xc_ctx->sequence = 1;
212 	xlog_cil_set_iclog_hdr_count(log->l_cilp);
213 }
214 
215 static inline int
216 xlog_cil_iovec_space(
217 	uint	niovecs)
218 {
219 	return round_up((sizeof(struct xfs_log_vec) +
220 					niovecs * sizeof(struct xfs_log_iovec)),
221 			sizeof(uint64_t));
222 }
223 
224 /*
225  * Allocate or pin log vector buffers for CIL insertion.
226  *
227  * The CIL currently uses disposable buffers for copying a snapshot of the
228  * modified items into the log during a push. The biggest problem with this is
229  * the requirement to allocate the disposable buffer during the commit if:
230  *	a) does not exist; or
231  *	b) it is too small
232  *
233  * If we do this allocation within xlog_cil_insert_format_items(), it is done
234  * under the xc_ctx_lock, which means that a CIL push cannot occur during
235  * the memory allocation. This means that we have a potential deadlock situation
236  * under low memory conditions when we have lots of dirty metadata pinned in
237  * the CIL and we need a CIL commit to occur to free memory.
238  *
239  * To avoid this, we need to move the memory allocation outside the
240  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
241  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
242  * vector buffers between the check and the formatting of the item into the
243  * log vector buffer within the xc_ctx_lock.
244  *
245  * Because the log vector buffer needs to be unchanged during the CIL push
246  * process, we cannot share the buffer between the transaction commit (which
247  * modifies the buffer) and the CIL push context that is writing the changes
248  * into the log. This means skipping preallocation of buffer space is
249  * unreliable, but we most definitely do not want to be allocating and freeing
250  * buffers unnecessarily during commits when overwrites can be done safely.
251  *
252  * The simplest solution to this problem is to allocate a shadow buffer when a
253  * log item is committed for the second time, and then to only use this buffer
254  * if necessary. The buffer can remain attached to the log item until such time
255  * it is needed, and this is the buffer that is reallocated to match the size of
256  * the incoming modification. Then during the formatting of the item we can swap
257  * the active buffer with the new one if we can't reuse the existing buffer. We
258  * don't free the old buffer as it may be reused on the next modification if
259  * it's size is right, otherwise we'll free and reallocate it at that point.
260  *
261  * This function builds a vector for the changes in each log item in the
262  * transaction. It then works out the length of the buffer needed for each log
263  * item, allocates them and attaches the vector to the log item in preparation
264  * for the formatting step which occurs under the xc_ctx_lock.
265  *
266  * While this means the memory footprint goes up, it avoids the repeated
267  * alloc/free pattern that repeated modifications of an item would otherwise
268  * cause, and hence minimises the CPU overhead of such behaviour.
269  */
270 static void
271 xlog_cil_alloc_shadow_bufs(
272 	struct xlog		*log,
273 	struct xfs_trans	*tp)
274 {
275 	struct xfs_log_item	*lip;
276 
277 	list_for_each_entry(lip, &tp->t_items, li_trans) {
278 		struct xfs_log_vec *lv;
279 		int	niovecs = 0;
280 		int	nbytes = 0;
281 		int	buf_size;
282 		bool	ordered = false;
283 
284 		/* Skip items which aren't dirty in this transaction. */
285 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
286 			continue;
287 
288 		/* get number of vecs and size of data to be stored */
289 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
290 
291 		/*
292 		 * Ordered items need to be tracked but we do not wish to write
293 		 * them. We need a logvec to track the object, but we do not
294 		 * need an iovec or buffer to be allocated for copying data.
295 		 */
296 		if (niovecs == XFS_LOG_VEC_ORDERED) {
297 			ordered = true;
298 			niovecs = 0;
299 			nbytes = 0;
300 		}
301 
302 		/*
303 		 * We 64-bit align the length of each iovec so that the start of
304 		 * the next one is naturally aligned.  We'll need to account for
305 		 * that slack space here.
306 		 *
307 		 * We also add the xlog_op_header to each region when
308 		 * formatting, but that's not accounted to the size of the item
309 		 * at this point. Hence we'll need an addition number of bytes
310 		 * for each vector to hold an opheader.
311 		 *
312 		 * Then round nbytes up to 64-bit alignment so that the initial
313 		 * buffer alignment is easy to calculate and verify.
314 		 */
315 		nbytes += niovecs *
316 			(sizeof(uint64_t) + sizeof(struct xlog_op_header));
317 		nbytes = round_up(nbytes, sizeof(uint64_t));
318 
319 		/*
320 		 * The data buffer needs to start 64-bit aligned, so round up
321 		 * that space to ensure we can align it appropriately and not
322 		 * overrun the buffer.
323 		 */
324 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
325 
326 		/*
327 		 * if we have no shadow buffer, or it is too small, we need to
328 		 * reallocate it.
329 		 */
330 		if (!lip->li_lv_shadow ||
331 		    buf_size > lip->li_lv_shadow->lv_size) {
332 			/*
333 			 * We free and allocate here as a realloc would copy
334 			 * unnecessary data. We don't use kvzalloc() for the
335 			 * same reason - we don't need to zero the data area in
336 			 * the buffer, only the log vector header and the iovec
337 			 * storage.
338 			 */
339 			kvfree(lip->li_lv_shadow);
340 			lv = xlog_kvmalloc(buf_size);
341 
342 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
343 
344 			INIT_LIST_HEAD(&lv->lv_list);
345 			lv->lv_item = lip;
346 			lv->lv_size = buf_size;
347 			if (ordered)
348 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
349 			else
350 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
351 			lip->li_lv_shadow = lv;
352 		} else {
353 			/* same or smaller, optimise common overwrite case */
354 			lv = lip->li_lv_shadow;
355 			if (ordered)
356 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
357 			else
358 				lv->lv_buf_len = 0;
359 			lv->lv_bytes = 0;
360 		}
361 
362 		/* Ensure the lv is set up according to ->iop_size */
363 		lv->lv_niovecs = niovecs;
364 
365 		/* The allocated data region lies beyond the iovec region */
366 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
367 	}
368 
369 }
370 
371 /*
372  * Prepare the log item for insertion into the CIL. Calculate the difference in
373  * log space it will consume, and if it is a new item pin it as well.
374  */
375 STATIC void
376 xfs_cil_prepare_item(
377 	struct xlog		*log,
378 	struct xfs_log_vec	*lv,
379 	struct xfs_log_vec	*old_lv,
380 	int			*diff_len)
381 {
382 	/* Account for the new LV being passed in */
383 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
384 		*diff_len += lv->lv_bytes;
385 
386 	/*
387 	 * If there is no old LV, this is the first time we've seen the item in
388 	 * this CIL context and so we need to pin it. If we are replacing the
389 	 * old_lv, then remove the space it accounts for and make it the shadow
390 	 * buffer for later freeing. In both cases we are now switching to the
391 	 * shadow buffer, so update the pointer to it appropriately.
392 	 */
393 	if (!old_lv) {
394 		if (lv->lv_item->li_ops->iop_pin)
395 			lv->lv_item->li_ops->iop_pin(lv->lv_item);
396 		lv->lv_item->li_lv_shadow = NULL;
397 	} else if (old_lv != lv) {
398 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
399 
400 		*diff_len -= old_lv->lv_bytes;
401 		lv->lv_item->li_lv_shadow = old_lv;
402 	}
403 
404 	/* attach new log vector to log item */
405 	lv->lv_item->li_lv = lv;
406 
407 	/*
408 	 * If this is the first time the item is being committed to the
409 	 * CIL, store the sequence number on the log item so we can
410 	 * tell in future commits whether this is the first checkpoint
411 	 * the item is being committed into.
412 	 */
413 	if (!lv->lv_item->li_seq)
414 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
415 }
416 
417 /*
418  * Format log item into a flat buffers
419  *
420  * For delayed logging, we need to hold a formatted buffer containing all the
421  * changes on the log item. This enables us to relog the item in memory and
422  * write it out asynchronously without needing to relock the object that was
423  * modified at the time it gets written into the iclog.
424  *
425  * This function takes the prepared log vectors attached to each log item, and
426  * formats the changes into the log vector buffer. The buffer it uses is
427  * dependent on the current state of the vector in the CIL - the shadow lv is
428  * guaranteed to be large enough for the current modification, but we will only
429  * use that if we can't reuse the existing lv. If we can't reuse the existing
430  * lv, then simple swap it out for the shadow lv. We don't free it - that is
431  * done lazily either by th enext modification or the freeing of the log item.
432  *
433  * We don't set up region headers during this process; we simply copy the
434  * regions into the flat buffer. We can do this because we still have to do a
435  * formatting step to write the regions into the iclog buffer.  Writing the
436  * ophdrs during the iclog write means that we can support splitting large
437  * regions across iclog boundares without needing a change in the format of the
438  * item/region encapsulation.
439  *
440  * Hence what we need to do now is change the rewrite the vector array to point
441  * to the copied region inside the buffer we just allocated. This allows us to
442  * format the regions into the iclog as though they are being formatted
443  * directly out of the objects themselves.
444  */
445 static void
446 xlog_cil_insert_format_items(
447 	struct xlog		*log,
448 	struct xfs_trans	*tp,
449 	int			*diff_len)
450 {
451 	struct xfs_log_item	*lip;
452 
453 	/* Bail out if we didn't find a log item.  */
454 	if (list_empty(&tp->t_items)) {
455 		ASSERT(0);
456 		return;
457 	}
458 
459 	list_for_each_entry(lip, &tp->t_items, li_trans) {
460 		struct xfs_log_vec *lv;
461 		struct xfs_log_vec *old_lv = NULL;
462 		struct xfs_log_vec *shadow;
463 		bool	ordered = false;
464 
465 		/* Skip items which aren't dirty in this transaction. */
466 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
467 			continue;
468 
469 		/*
470 		 * The formatting size information is already attached to
471 		 * the shadow lv on the log item.
472 		 */
473 		shadow = lip->li_lv_shadow;
474 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
475 			ordered = true;
476 
477 		/* Skip items that do not have any vectors for writing */
478 		if (!shadow->lv_niovecs && !ordered)
479 			continue;
480 
481 		/* compare to existing item size */
482 		old_lv = lip->li_lv;
483 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
484 			/* same or smaller, optimise common overwrite case */
485 			lv = lip->li_lv;
486 
487 			if (ordered)
488 				goto insert;
489 
490 			/*
491 			 * set the item up as though it is a new insertion so
492 			 * that the space reservation accounting is correct.
493 			 */
494 			*diff_len -= lv->lv_bytes;
495 
496 			/* Ensure the lv is set up according to ->iop_size */
497 			lv->lv_niovecs = shadow->lv_niovecs;
498 
499 			/* reset the lv buffer information for new formatting */
500 			lv->lv_buf_len = 0;
501 			lv->lv_bytes = 0;
502 			lv->lv_buf = (char *)lv +
503 					xlog_cil_iovec_space(lv->lv_niovecs);
504 		} else {
505 			/* switch to shadow buffer! */
506 			lv = shadow;
507 			lv->lv_item = lip;
508 			if (ordered) {
509 				/* track as an ordered logvec */
510 				ASSERT(lip->li_lv == NULL);
511 				goto insert;
512 			}
513 		}
514 
515 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
516 		lip->li_ops->iop_format(lip, lv);
517 insert:
518 		xfs_cil_prepare_item(log, lv, old_lv, diff_len);
519 	}
520 }
521 
522 /*
523  * The use of lockless waitqueue_active() requires that the caller has
524  * serialised itself against the wakeup call in xlog_cil_push_work(). That
525  * can be done by either holding the push lock or the context lock.
526  */
527 static inline bool
528 xlog_cil_over_hard_limit(
529 	struct xlog	*log,
530 	int32_t		space_used)
531 {
532 	if (waitqueue_active(&log->l_cilp->xc_push_wait))
533 		return true;
534 	if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log))
535 		return true;
536 	return false;
537 }
538 
539 /*
540  * Insert the log items into the CIL and calculate the difference in space
541  * consumed by the item. Add the space to the checkpoint ticket and calculate
542  * if the change requires additional log metadata. If it does, take that space
543  * as well. Remove the amount of space we added to the checkpoint ticket from
544  * the current transaction ticket so that the accounting works out correctly.
545  */
546 static void
547 xlog_cil_insert_items(
548 	struct xlog		*log,
549 	struct xfs_trans	*tp,
550 	uint32_t		released_space)
551 {
552 	struct xfs_cil		*cil = log->l_cilp;
553 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
554 	struct xfs_log_item	*lip;
555 	int			len = 0;
556 	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
557 	int			space_used;
558 	int			order;
559 	unsigned int		cpu_nr;
560 	struct xlog_cil_pcp	*cilpcp;
561 
562 	ASSERT(tp);
563 
564 	/*
565 	 * We can do this safely because the context can't checkpoint until we
566 	 * are done so it doesn't matter exactly how we update the CIL.
567 	 */
568 	xlog_cil_insert_format_items(log, tp, &len);
569 
570 	/*
571 	 * Subtract the space released by intent cancelation from the space we
572 	 * consumed so that we remove it from the CIL space and add it back to
573 	 * the current transaction reservation context.
574 	 */
575 	len -= released_space;
576 
577 	/*
578 	 * Grab the per-cpu pointer for the CIL before we start any accounting.
579 	 * That ensures that we are running with pre-emption disabled and so we
580 	 * can't be scheduled away between split sample/update operations that
581 	 * are done without outside locking to serialise them.
582 	 */
583 	cpu_nr = get_cpu();
584 	cilpcp = this_cpu_ptr(cil->xc_pcp);
585 
586 	/* Tell the future push that there was work added by this CPU. */
587 	if (!cpumask_test_cpu(cpu_nr, &ctx->cil_pcpmask))
588 		cpumask_test_and_set_cpu(cpu_nr, &ctx->cil_pcpmask);
589 
590 	/*
591 	 * We need to take the CIL checkpoint unit reservation on the first
592 	 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't
593 	 * unnecessarily do an atomic op in the fast path here. We can clear the
594 	 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that
595 	 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit.
596 	 */
597 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) &&
598 	    test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
599 		ctx_res = ctx->ticket->t_unit_res;
600 
601 	/*
602 	 * Check if we need to steal iclog headers. atomic_read() is not a
603 	 * locked atomic operation, so we can check the value before we do any
604 	 * real atomic ops in the fast path. If we've already taken the CIL unit
605 	 * reservation from this commit, we've already got one iclog header
606 	 * space reserved so we have to account for that otherwise we risk
607 	 * overrunning the reservation on this ticket.
608 	 *
609 	 * If the CIL is already at the hard limit, we might need more header
610 	 * space that originally reserved. So steal more header space from every
611 	 * commit that occurs once we are over the hard limit to ensure the CIL
612 	 * push won't run out of reservation space.
613 	 *
614 	 * This can steal more than we need, but that's OK.
615 	 *
616 	 * The cil->xc_ctx_lock provides the serialisation necessary for safely
617 	 * calling xlog_cil_over_hard_limit() in this context.
618 	 */
619 	space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len;
620 	if (atomic_read(&cil->xc_iclog_hdrs) > 0 ||
621 	    xlog_cil_over_hard_limit(log, space_used)) {
622 		split_res = log->l_iclog_hsize +
623 					sizeof(struct xlog_op_header);
624 		if (ctx_res)
625 			ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1);
626 		else
627 			ctx_res = split_res * tp->t_ticket->t_iclog_hdrs;
628 		atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs);
629 	}
630 	cilpcp->space_reserved += ctx_res;
631 
632 	/*
633 	 * Accurately account when over the soft limit, otherwise fold the
634 	 * percpu count into the global count if over the per-cpu threshold.
635 	 */
636 	if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) {
637 		atomic_add(len, &ctx->space_used);
638 	} else if (cilpcp->space_used + len >
639 			(XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) {
640 		space_used = atomic_add_return(cilpcp->space_used + len,
641 						&ctx->space_used);
642 		cilpcp->space_used = 0;
643 
644 		/*
645 		 * If we just transitioned over the soft limit, we need to
646 		 * transition to the global atomic counter.
647 		 */
648 		if (space_used >= XLOG_CIL_SPACE_LIMIT(log))
649 			xlog_cil_insert_pcp_aggregate(cil, ctx);
650 	} else {
651 		cilpcp->space_used += len;
652 	}
653 	/* attach the transaction to the CIL if it has any busy extents */
654 	if (!list_empty(&tp->t_busy))
655 		list_splice_init(&tp->t_busy, &cilpcp->busy_extents);
656 
657 	/*
658 	 * Now update the order of everything modified in the transaction
659 	 * and insert items into the CIL if they aren't already there.
660 	 * We do this here so we only need to take the CIL lock once during
661 	 * the transaction commit.
662 	 */
663 	order = atomic_inc_return(&ctx->order_id);
664 	list_for_each_entry(lip, &tp->t_items, li_trans) {
665 		/* Skip items which aren't dirty in this transaction. */
666 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
667 			continue;
668 
669 		lip->li_order_id = order;
670 		if (!list_empty(&lip->li_cil))
671 			continue;
672 		list_add_tail(&lip->li_cil, &cilpcp->log_items);
673 	}
674 	put_cpu();
675 
676 	/*
677 	 * If we've overrun the reservation, dump the tx details before we move
678 	 * the log items. Shutdown is imminent...
679 	 */
680 	tp->t_ticket->t_curr_res -= ctx_res + len;
681 	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
682 		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
683 		xfs_warn(log->l_mp,
684 			 "  log items: %d bytes (iov hdrs: %d bytes)",
685 			 len, iovhdr_res);
686 		xfs_warn(log->l_mp, "  split region headers: %d bytes",
687 			 split_res);
688 		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
689 		xlog_print_trans(tp);
690 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
691 	}
692 }
693 
694 static inline void
695 xlog_cil_ail_insert_batch(
696 	struct xfs_ail		*ailp,
697 	struct xfs_ail_cursor	*cur,
698 	struct xfs_log_item	**log_items,
699 	int			nr_items,
700 	xfs_lsn_t		commit_lsn)
701 {
702 	int	i;
703 
704 	spin_lock(&ailp->ail_lock);
705 	/* xfs_trans_ail_update_bulk drops ailp->ail_lock */
706 	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
707 
708 	for (i = 0; i < nr_items; i++) {
709 		struct xfs_log_item *lip = log_items[i];
710 
711 		if (lip->li_ops->iop_unpin)
712 			lip->li_ops->iop_unpin(lip, 0);
713 	}
714 }
715 
716 /*
717  * Take the checkpoint's log vector chain of items and insert the attached log
718  * items into the AIL. This uses bulk insertion techniques to minimise AIL lock
719  * traffic.
720  *
721  * The AIL tracks log items via the start record LSN of the checkpoint,
722  * not the commit record LSN. This is because we can pipeline multiple
723  * checkpoints, and so the start record of checkpoint N+1 can be
724  * written before the commit record of checkpoint N. i.e:
725  *
726  *   start N			commit N
727  *	+-------------+------------+----------------+
728  *		  start N+1			commit N+1
729  *
730  * The tail of the log cannot be moved to the LSN of commit N when all
731  * the items of that checkpoint are written back, because then the
732  * start record for N+1 is no longer in the active portion of the log
733  * and recovery will fail/corrupt the filesystem.
734  *
735  * Hence when all the log items in checkpoint N are written back, the
736  * tail of the log most now only move as far forwards as the start LSN
737  * of checkpoint N+1.
738  *
739  * If we are called with the aborted flag set, it is because a log write during
740  * a CIL checkpoint commit has failed. In this case, all the items in the
741  * checkpoint have already gone through iop_committed and iop_committing, which
742  * means that checkpoint commit abort handling is treated exactly the same as an
743  * iclog write error even though we haven't started any IO yet. Hence in this
744  * case all we need to do is iop_committed processing, followed by an
745  * iop_unpin(aborted) call.
746  *
747  * The AIL cursor is used to optimise the insert process. If commit_lsn is not
748  * at the end of the AIL, the insert cursor avoids the need to walk the AIL to
749  * find the insertion point on every xfs_log_item_batch_insert() call. This
750  * saves a lot of needless list walking and is a net win, even though it
751  * slightly increases that amount of AIL lock traffic to set it up and tear it
752  * down.
753  */
754 static void
755 xlog_cil_ail_insert(
756 	struct xfs_cil_ctx	*ctx,
757 	bool			aborted)
758 {
759 #define LOG_ITEM_BATCH_SIZE	32
760 	struct xfs_ail		*ailp = ctx->cil->xc_log->l_ailp;
761 	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
762 	struct xfs_log_vec	*lv;
763 	struct xfs_ail_cursor	cur;
764 	xfs_lsn_t		old_head;
765 	int			i = 0;
766 
767 	/*
768 	 * Update the AIL head LSN with the commit record LSN of this
769 	 * checkpoint. As iclogs are always completed in order, this should
770 	 * always be the same (as iclogs can contain multiple commit records) or
771 	 * higher LSN than the current head. We do this before insertion of the
772 	 * items so that log space checks during insertion will reflect the
773 	 * space that this checkpoint has already consumed.  We call
774 	 * xfs_ail_update_finish() so that tail space and space-based wakeups
775 	 * will be recalculated appropriately.
776 	 */
777 	ASSERT(XFS_LSN_CMP(ctx->commit_lsn, ailp->ail_head_lsn) >= 0 ||
778 			aborted);
779 	spin_lock(&ailp->ail_lock);
780 	xfs_trans_ail_cursor_last(ailp, &cur, ctx->start_lsn);
781 	old_head = ailp->ail_head_lsn;
782 	ailp->ail_head_lsn = ctx->commit_lsn;
783 	/* xfs_ail_update_finish() drops the ail_lock */
784 	xfs_ail_update_finish(ailp, NULLCOMMITLSN);
785 
786 	/*
787 	 * We move the AIL head forwards to account for the space used in the
788 	 * log before we remove that space from the grant heads. This prevents a
789 	 * transient condition where reservation space appears to become
790 	 * available on return, only for it to disappear again immediately as
791 	 * the AIL head update accounts in the log tail space.
792 	 */
793 	smp_wmb();	/* paired with smp_rmb in xlog_grant_space_left */
794 	xlog_grant_return_space(ailp->ail_log, old_head, ailp->ail_head_lsn);
795 
796 	/* unpin all the log items */
797 	list_for_each_entry(lv, &ctx->lv_chain, lv_list) {
798 		struct xfs_log_item	*lip = lv->lv_item;
799 		xfs_lsn_t		item_lsn;
800 
801 		if (aborted)
802 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
803 
804 		if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
805 			lip->li_ops->iop_release(lip);
806 			continue;
807 		}
808 
809 		if (lip->li_ops->iop_committed)
810 			item_lsn = lip->li_ops->iop_committed(lip,
811 					ctx->start_lsn);
812 		else
813 			item_lsn = ctx->start_lsn;
814 
815 		/* item_lsn of -1 means the item needs no further processing */
816 		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
817 			continue;
818 
819 		/*
820 		 * if we are aborting the operation, no point in inserting the
821 		 * object into the AIL as we are in a shutdown situation.
822 		 */
823 		if (aborted) {
824 			ASSERT(xlog_is_shutdown(ailp->ail_log));
825 			if (lip->li_ops->iop_unpin)
826 				lip->li_ops->iop_unpin(lip, 1);
827 			continue;
828 		}
829 
830 		if (item_lsn != ctx->start_lsn) {
831 
832 			/*
833 			 * Not a bulk update option due to unusual item_lsn.
834 			 * Push into AIL immediately, rechecking the lsn once
835 			 * we have the ail lock. Then unpin the item. This does
836 			 * not affect the AIL cursor the bulk insert path is
837 			 * using.
838 			 */
839 			spin_lock(&ailp->ail_lock);
840 			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
841 				xfs_trans_ail_update(ailp, lip, item_lsn);
842 			else
843 				spin_unlock(&ailp->ail_lock);
844 			if (lip->li_ops->iop_unpin)
845 				lip->li_ops->iop_unpin(lip, 0);
846 			continue;
847 		}
848 
849 		/* Item is a candidate for bulk AIL insert.  */
850 		log_items[i++] = lv->lv_item;
851 		if (i >= LOG_ITEM_BATCH_SIZE) {
852 			xlog_cil_ail_insert_batch(ailp, &cur, log_items,
853 					LOG_ITEM_BATCH_SIZE, ctx->start_lsn);
854 			i = 0;
855 		}
856 	}
857 
858 	/* make sure we insert the remainder! */
859 	if (i)
860 		xlog_cil_ail_insert_batch(ailp, &cur, log_items, i,
861 				ctx->start_lsn);
862 
863 	spin_lock(&ailp->ail_lock);
864 	xfs_trans_ail_cursor_done(&cur);
865 	spin_unlock(&ailp->ail_lock);
866 }
867 
868 static void
869 xlog_cil_free_logvec(
870 	struct list_head	*lv_chain)
871 {
872 	struct xfs_log_vec	*lv;
873 
874 	while (!list_empty(lv_chain)) {
875 		lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list);
876 		list_del_init(&lv->lv_list);
877 		kvfree(lv);
878 	}
879 }
880 
881 /*
882  * Mark all items committed and clear busy extents. We free the log vector
883  * chains in a separate pass so that we unpin the log items as quickly as
884  * possible.
885  */
886 static void
887 xlog_cil_committed(
888 	struct xfs_cil_ctx	*ctx)
889 {
890 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
891 	bool			abort = xlog_is_shutdown(ctx->cil->xc_log);
892 
893 	/*
894 	 * If the I/O failed, we're aborting the commit and already shutdown.
895 	 * Wake any commit waiters before aborting the log items so we don't
896 	 * block async log pushers on callbacks. Async log pushers explicitly do
897 	 * not wait on log force completion because they may be holding locks
898 	 * required to unpin items.
899 	 */
900 	if (abort) {
901 		spin_lock(&ctx->cil->xc_push_lock);
902 		wake_up_all(&ctx->cil->xc_start_wait);
903 		wake_up_all(&ctx->cil->xc_commit_wait);
904 		spin_unlock(&ctx->cil->xc_push_lock);
905 	}
906 
907 	xlog_cil_ail_insert(ctx, abort);
908 
909 	xfs_extent_busy_sort(&ctx->busy_extents.extent_list);
910 	xfs_extent_busy_clear(mp, &ctx->busy_extents.extent_list,
911 			      xfs_has_discard(mp) && !abort);
912 
913 	spin_lock(&ctx->cil->xc_push_lock);
914 	list_del(&ctx->committing);
915 	spin_unlock(&ctx->cil->xc_push_lock);
916 
917 	xlog_cil_free_logvec(&ctx->lv_chain);
918 
919 	if (!list_empty(&ctx->busy_extents.extent_list)) {
920 		ctx->busy_extents.mount = mp;
921 		ctx->busy_extents.owner = ctx;
922 		xfs_discard_extents(mp, &ctx->busy_extents);
923 		return;
924 	}
925 
926 	kfree(ctx);
927 }
928 
929 void
930 xlog_cil_process_committed(
931 	struct list_head	*list)
932 {
933 	struct xfs_cil_ctx	*ctx;
934 
935 	while ((ctx = list_first_entry_or_null(list,
936 			struct xfs_cil_ctx, iclog_entry))) {
937 		list_del(&ctx->iclog_entry);
938 		xlog_cil_committed(ctx);
939 	}
940 }
941 
942 /*
943 * Record the LSN of the iclog we were just granted space to start writing into.
944 * If the context doesn't have a start_lsn recorded, then this iclog will
945 * contain the start record for the checkpoint. Otherwise this write contains
946 * the commit record for the checkpoint.
947 */
948 void
949 xlog_cil_set_ctx_write_state(
950 	struct xfs_cil_ctx	*ctx,
951 	struct xlog_in_core	*iclog)
952 {
953 	struct xfs_cil		*cil = ctx->cil;
954 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
955 
956 	ASSERT(!ctx->commit_lsn);
957 	if (!ctx->start_lsn) {
958 		spin_lock(&cil->xc_push_lock);
959 		/*
960 		 * The LSN we need to pass to the log items on transaction
961 		 * commit is the LSN reported by the first log vector write, not
962 		 * the commit lsn. If we use the commit record lsn then we can
963 		 * move the grant write head beyond the tail LSN and overwrite
964 		 * it.
965 		 */
966 		ctx->start_lsn = lsn;
967 		wake_up_all(&cil->xc_start_wait);
968 		spin_unlock(&cil->xc_push_lock);
969 
970 		/*
971 		 * Make sure the metadata we are about to overwrite in the log
972 		 * has been flushed to stable storage before this iclog is
973 		 * issued.
974 		 */
975 		spin_lock(&cil->xc_log->l_icloglock);
976 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
977 		spin_unlock(&cil->xc_log->l_icloglock);
978 		return;
979 	}
980 
981 	/*
982 	 * Take a reference to the iclog for the context so that we still hold
983 	 * it when xlog_write is done and has released it. This means the
984 	 * context controls when the iclog is released for IO.
985 	 */
986 	atomic_inc(&iclog->ic_refcnt);
987 
988 	/*
989 	 * xlog_state_get_iclog_space() guarantees there is enough space in the
990 	 * iclog for an entire commit record, so we can attach the context
991 	 * callbacks now.  This needs to be done before we make the commit_lsn
992 	 * visible to waiters so that checkpoints with commit records in the
993 	 * same iclog order their IO completion callbacks in the same order that
994 	 * the commit records appear in the iclog.
995 	 */
996 	spin_lock(&cil->xc_log->l_icloglock);
997 	list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks);
998 	spin_unlock(&cil->xc_log->l_icloglock);
999 
1000 	/*
1001 	 * Now we can record the commit LSN and wake anyone waiting for this
1002 	 * sequence to have the ordered commit record assigned to a physical
1003 	 * location in the log.
1004 	 */
1005 	spin_lock(&cil->xc_push_lock);
1006 	ctx->commit_iclog = iclog;
1007 	ctx->commit_lsn = lsn;
1008 	wake_up_all(&cil->xc_commit_wait);
1009 	spin_unlock(&cil->xc_push_lock);
1010 }
1011 
1012 
1013 /*
1014  * Ensure that the order of log writes follows checkpoint sequence order. This
1015  * relies on the context LSN being zero until the log write has guaranteed the
1016  * LSN that the log write will start at via xlog_state_get_iclog_space().
1017  */
1018 enum _record_type {
1019 	_START_RECORD,
1020 	_COMMIT_RECORD,
1021 };
1022 
1023 static int
1024 xlog_cil_order_write(
1025 	struct xfs_cil		*cil,
1026 	xfs_csn_t		sequence,
1027 	enum _record_type	record)
1028 {
1029 	struct xfs_cil_ctx	*ctx;
1030 
1031 restart:
1032 	spin_lock(&cil->xc_push_lock);
1033 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1034 		/*
1035 		 * Avoid getting stuck in this loop because we were woken by the
1036 		 * shutdown, but then went back to sleep once already in the
1037 		 * shutdown state.
1038 		 */
1039 		if (xlog_is_shutdown(cil->xc_log)) {
1040 			spin_unlock(&cil->xc_push_lock);
1041 			return -EIO;
1042 		}
1043 
1044 		/*
1045 		 * Higher sequences will wait for this one so skip them.
1046 		 * Don't wait for our own sequence, either.
1047 		 */
1048 		if (ctx->sequence >= sequence)
1049 			continue;
1050 
1051 		/* Wait until the LSN for the record has been recorded. */
1052 		switch (record) {
1053 		case _START_RECORD:
1054 			if (!ctx->start_lsn) {
1055 				xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock);
1056 				goto restart;
1057 			}
1058 			break;
1059 		case _COMMIT_RECORD:
1060 			if (!ctx->commit_lsn) {
1061 				xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1062 				goto restart;
1063 			}
1064 			break;
1065 		}
1066 	}
1067 	spin_unlock(&cil->xc_push_lock);
1068 	return 0;
1069 }
1070 
1071 /*
1072  * Write out the log vector change now attached to the CIL context. This will
1073  * write a start record that needs to be strictly ordered in ascending CIL
1074  * sequence order so that log recovery will always use in-order start LSNs when
1075  * replaying checkpoints.
1076  */
1077 static int
1078 xlog_cil_write_chain(
1079 	struct xfs_cil_ctx	*ctx,
1080 	uint32_t		chain_len)
1081 {
1082 	struct xlog		*log = ctx->cil->xc_log;
1083 	int			error;
1084 
1085 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD);
1086 	if (error)
1087 		return error;
1088 	return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len);
1089 }
1090 
1091 /*
1092  * Write out the commit record of a checkpoint transaction to close off a
1093  * running log write. These commit records are strictly ordered in ascending CIL
1094  * sequence order so that log recovery will always replay the checkpoints in the
1095  * correct order.
1096  */
1097 static int
1098 xlog_cil_write_commit_record(
1099 	struct xfs_cil_ctx	*ctx)
1100 {
1101 	struct xlog		*log = ctx->cil->xc_log;
1102 	struct xlog_op_header	ophdr = {
1103 		.oh_clientid = XFS_TRANSACTION,
1104 		.oh_tid = cpu_to_be32(ctx->ticket->t_tid),
1105 		.oh_flags = XLOG_COMMIT_TRANS,
1106 	};
1107 	struct xfs_log_iovec	reg = {
1108 		.i_addr = &ophdr,
1109 		.i_len = sizeof(struct xlog_op_header),
1110 		.i_type = XLOG_REG_TYPE_COMMIT,
1111 	};
1112 	struct xfs_log_vec	vec = {
1113 		.lv_niovecs = 1,
1114 		.lv_iovecp = &reg,
1115 	};
1116 	int			error;
1117 	LIST_HEAD(lv_chain);
1118 	list_add(&vec.lv_list, &lv_chain);
1119 
1120 	if (xlog_is_shutdown(log))
1121 		return -EIO;
1122 
1123 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD);
1124 	if (error)
1125 		return error;
1126 
1127 	/* account for space used by record data */
1128 	ctx->ticket->t_curr_res -= reg.i_len;
1129 	error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len);
1130 	if (error)
1131 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1132 	return error;
1133 }
1134 
1135 struct xlog_cil_trans_hdr {
1136 	struct xlog_op_header	oph[2];
1137 	struct xfs_trans_header	thdr;
1138 	struct xfs_log_iovec	lhdr[2];
1139 };
1140 
1141 /*
1142  * Build a checkpoint transaction header to begin the journal transaction.  We
1143  * need to account for the space used by the transaction header here as it is
1144  * not accounted for in xlog_write().
1145  *
1146  * This is the only place we write a transaction header, so we also build the
1147  * log opheaders that indicate the start of a log transaction and wrap the
1148  * transaction header. We keep the start record in it's own log vector rather
1149  * than compacting them into a single region as this ends up making the logic
1150  * in xlog_write() for handling empty opheaders for start, commit and unmount
1151  * records much simpler.
1152  */
1153 static void
1154 xlog_cil_build_trans_hdr(
1155 	struct xfs_cil_ctx	*ctx,
1156 	struct xlog_cil_trans_hdr *hdr,
1157 	struct xfs_log_vec	*lvhdr,
1158 	int			num_iovecs)
1159 {
1160 	struct xlog_ticket	*tic = ctx->ticket;
1161 	__be32			tid = cpu_to_be32(tic->t_tid);
1162 
1163 	memset(hdr, 0, sizeof(*hdr));
1164 
1165 	/* Log start record */
1166 	hdr->oph[0].oh_tid = tid;
1167 	hdr->oph[0].oh_clientid = XFS_TRANSACTION;
1168 	hdr->oph[0].oh_flags = XLOG_START_TRANS;
1169 
1170 	/* log iovec region pointer */
1171 	hdr->lhdr[0].i_addr = &hdr->oph[0];
1172 	hdr->lhdr[0].i_len = sizeof(struct xlog_op_header);
1173 	hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER;
1174 
1175 	/* log opheader */
1176 	hdr->oph[1].oh_tid = tid;
1177 	hdr->oph[1].oh_clientid = XFS_TRANSACTION;
1178 	hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header));
1179 
1180 	/* transaction header in host byte order format */
1181 	hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
1182 	hdr->thdr.th_type = XFS_TRANS_CHECKPOINT;
1183 	hdr->thdr.th_tid = tic->t_tid;
1184 	hdr->thdr.th_num_items = num_iovecs;
1185 
1186 	/* log iovec region pointer */
1187 	hdr->lhdr[1].i_addr = &hdr->oph[1];
1188 	hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) +
1189 				sizeof(struct xfs_trans_header);
1190 	hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR;
1191 
1192 	lvhdr->lv_niovecs = 2;
1193 	lvhdr->lv_iovecp = &hdr->lhdr[0];
1194 	lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len;
1195 
1196 	tic->t_curr_res -= lvhdr->lv_bytes;
1197 }
1198 
1199 /*
1200  * CIL item reordering compare function. We want to order in ascending ID order,
1201  * but we want to leave items with the same ID in the order they were added to
1202  * the list. This is important for operations like reflink where we log 4 order
1203  * dependent intents in a single transaction when we overwrite an existing
1204  * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop),
1205  * CUI (inc), BUI(remap)...
1206  */
1207 static int
1208 xlog_cil_order_cmp(
1209 	void			*priv,
1210 	const struct list_head	*a,
1211 	const struct list_head	*b)
1212 {
1213 	struct xfs_log_vec	*l1 = container_of(a, struct xfs_log_vec, lv_list);
1214 	struct xfs_log_vec	*l2 = container_of(b, struct xfs_log_vec, lv_list);
1215 
1216 	return l1->lv_order_id > l2->lv_order_id;
1217 }
1218 
1219 /*
1220  * Pull all the log vectors off the items in the CIL, and remove the items from
1221  * the CIL. We don't need the CIL lock here because it's only needed on the
1222  * transaction commit side which is currently locked out by the flush lock.
1223  *
1224  * If a log item is marked with a whiteout, we do not need to write it to the
1225  * journal and so we just move them to the whiteout list for the caller to
1226  * dispose of appropriately.
1227  */
1228 static void
1229 xlog_cil_build_lv_chain(
1230 	struct xfs_cil_ctx	*ctx,
1231 	struct list_head	*whiteouts,
1232 	uint32_t		*num_iovecs,
1233 	uint32_t		*num_bytes)
1234 {
1235 	while (!list_empty(&ctx->log_items)) {
1236 		struct xfs_log_item	*item;
1237 		struct xfs_log_vec	*lv;
1238 
1239 		item = list_first_entry(&ctx->log_items,
1240 					struct xfs_log_item, li_cil);
1241 
1242 		if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) {
1243 			list_move(&item->li_cil, whiteouts);
1244 			trace_xfs_cil_whiteout_skip(item);
1245 			continue;
1246 		}
1247 
1248 		lv = item->li_lv;
1249 		lv->lv_order_id = item->li_order_id;
1250 
1251 		/* we don't write ordered log vectors */
1252 		if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
1253 			*num_bytes += lv->lv_bytes;
1254 		*num_iovecs += lv->lv_niovecs;
1255 		list_add_tail(&lv->lv_list, &ctx->lv_chain);
1256 
1257 		list_del_init(&item->li_cil);
1258 		item->li_order_id = 0;
1259 		item->li_lv = NULL;
1260 	}
1261 }
1262 
1263 static void
1264 xlog_cil_cleanup_whiteouts(
1265 	struct list_head	*whiteouts)
1266 {
1267 	while (!list_empty(whiteouts)) {
1268 		struct xfs_log_item *item = list_first_entry(whiteouts,
1269 						struct xfs_log_item, li_cil);
1270 		list_del_init(&item->li_cil);
1271 		trace_xfs_cil_whiteout_unpin(item);
1272 		item->li_ops->iop_unpin(item, 1);
1273 	}
1274 }
1275 
1276 /*
1277  * Push the Committed Item List to the log.
1278  *
1279  * If the current sequence is the same as xc_push_seq we need to do a flush. If
1280  * xc_push_seq is less than the current sequence, then it has already been
1281  * flushed and we don't need to do anything - the caller will wait for it to
1282  * complete if necessary.
1283  *
1284  * xc_push_seq is checked unlocked against the sequence number for a match.
1285  * Hence we can allow log forces to run racily and not issue pushes for the
1286  * same sequence twice.  If we get a race between multiple pushes for the same
1287  * sequence they will block on the first one and then abort, hence avoiding
1288  * needless pushes.
1289  *
1290  * This runs from a workqueue so it does not inherent any specific memory
1291  * allocation context. However, we do not want to block on memory reclaim
1292  * recursing back into the filesystem because this push may have been triggered
1293  * by memory reclaim itself. Hence we really need to run under full GFP_NOFS
1294  * contraints here.
1295  */
1296 static void
1297 xlog_cil_push_work(
1298 	struct work_struct	*work)
1299 {
1300 	unsigned int		nofs_flags = memalloc_nofs_save();
1301 	struct xfs_cil_ctx	*ctx =
1302 		container_of(work, struct xfs_cil_ctx, push_work);
1303 	struct xfs_cil		*cil = ctx->cil;
1304 	struct xlog		*log = cil->xc_log;
1305 	struct xfs_cil_ctx	*new_ctx;
1306 	int			num_iovecs = 0;
1307 	int			num_bytes = 0;
1308 	int			error = 0;
1309 	struct xlog_cil_trans_hdr thdr;
1310 	struct xfs_log_vec	lvhdr = {};
1311 	xfs_csn_t		push_seq;
1312 	bool			push_commit_stable;
1313 	LIST_HEAD		(whiteouts);
1314 	struct xlog_ticket	*ticket;
1315 
1316 	new_ctx = xlog_cil_ctx_alloc();
1317 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
1318 
1319 	down_write(&cil->xc_ctx_lock);
1320 
1321 	spin_lock(&cil->xc_push_lock);
1322 	push_seq = cil->xc_push_seq;
1323 	ASSERT(push_seq <= ctx->sequence);
1324 	push_commit_stable = cil->xc_push_commit_stable;
1325 	cil->xc_push_commit_stable = false;
1326 
1327 	/*
1328 	 * As we are about to switch to a new, empty CIL context, we no longer
1329 	 * need to throttle tasks on CIL space overruns. Wake any waiters that
1330 	 * the hard push throttle may have caught so they can start committing
1331 	 * to the new context. The ctx->xc_push_lock provides the serialisation
1332 	 * necessary for safely using the lockless waitqueue_active() check in
1333 	 * this context.
1334 	 */
1335 	if (waitqueue_active(&cil->xc_push_wait))
1336 		wake_up_all(&cil->xc_push_wait);
1337 
1338 	xlog_cil_push_pcp_aggregate(cil, ctx);
1339 
1340 	/*
1341 	 * Check if we've anything to push. If there is nothing, then we don't
1342 	 * move on to a new sequence number and so we have to be able to push
1343 	 * this sequence again later.
1344 	 */
1345 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1346 		cil->xc_push_seq = 0;
1347 		spin_unlock(&cil->xc_push_lock);
1348 		goto out_skip;
1349 	}
1350 
1351 
1352 	/* check for a previously pushed sequence */
1353 	if (push_seq < ctx->sequence) {
1354 		spin_unlock(&cil->xc_push_lock);
1355 		goto out_skip;
1356 	}
1357 
1358 	/*
1359 	 * We are now going to push this context, so add it to the committing
1360 	 * list before we do anything else. This ensures that anyone waiting on
1361 	 * this push can easily detect the difference between a "push in
1362 	 * progress" and "CIL is empty, nothing to do".
1363 	 *
1364 	 * IOWs, a wait loop can now check for:
1365 	 *	the current sequence not being found on the committing list;
1366 	 *	an empty CIL; and
1367 	 *	an unchanged sequence number
1368 	 * to detect a push that had nothing to do and therefore does not need
1369 	 * waiting on. If the CIL is not empty, we get put on the committing
1370 	 * list before emptying the CIL and bumping the sequence number. Hence
1371 	 * an empty CIL and an unchanged sequence number means we jumped out
1372 	 * above after doing nothing.
1373 	 *
1374 	 * Hence the waiter will either find the commit sequence on the
1375 	 * committing list or the sequence number will be unchanged and the CIL
1376 	 * still dirty. In that latter case, the push has not yet started, and
1377 	 * so the waiter will have to continue trying to check the CIL
1378 	 * committing list until it is found. In extreme cases of delay, the
1379 	 * sequence may fully commit between the attempts the wait makes to wait
1380 	 * on the commit sequence.
1381 	 */
1382 	list_add(&ctx->committing, &cil->xc_committing);
1383 	spin_unlock(&cil->xc_push_lock);
1384 
1385 	xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes);
1386 
1387 	/*
1388 	 * Switch the contexts so we can drop the context lock and move out
1389 	 * of a shared context. We can't just go straight to the commit record,
1390 	 * though - we need to synchronise with previous and future commits so
1391 	 * that the commit records are correctly ordered in the log to ensure
1392 	 * that we process items during log IO completion in the correct order.
1393 	 *
1394 	 * For example, if we get an EFI in one checkpoint and the EFD in the
1395 	 * next (e.g. due to log forces), we do not want the checkpoint with
1396 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
1397 	 * we must strictly order the commit records of the checkpoints so
1398 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
1399 	 * correct order; and b) the checkpoints are replayed in correct order
1400 	 * in log recovery.
1401 	 *
1402 	 * Hence we need to add this context to the committing context list so
1403 	 * that higher sequences will wait for us to write out a commit record
1404 	 * before they do.
1405 	 *
1406 	 * xfs_log_force_seq requires us to mirror the new sequence into the cil
1407 	 * structure atomically with the addition of this sequence to the
1408 	 * committing list. This also ensures that we can do unlocked checks
1409 	 * against the current sequence in log forces without risking
1410 	 * deferencing a freed context pointer.
1411 	 */
1412 	spin_lock(&cil->xc_push_lock);
1413 	xlog_cil_ctx_switch(cil, new_ctx);
1414 	spin_unlock(&cil->xc_push_lock);
1415 	up_write(&cil->xc_ctx_lock);
1416 
1417 	/*
1418 	 * Sort the log vector chain before we add the transaction headers.
1419 	 * This ensures we always have the transaction headers at the start
1420 	 * of the chain.
1421 	 */
1422 	list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp);
1423 
1424 	/*
1425 	 * Build a checkpoint transaction header and write it to the log to
1426 	 * begin the transaction. We need to account for the space used by the
1427 	 * transaction header here as it is not accounted for in xlog_write().
1428 	 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so
1429 	 * it gets written into the iclog first.
1430 	 */
1431 	xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs);
1432 	num_bytes += lvhdr.lv_bytes;
1433 	list_add(&lvhdr.lv_list, &ctx->lv_chain);
1434 
1435 	/*
1436 	 * Take the lvhdr back off the lv_chain immediately after calling
1437 	 * xlog_cil_write_chain() as it should not be passed to log IO
1438 	 * completion.
1439 	 */
1440 	error = xlog_cil_write_chain(ctx, num_bytes);
1441 	list_del(&lvhdr.lv_list);
1442 	if (error)
1443 		goto out_abort_free_ticket;
1444 
1445 	error = xlog_cil_write_commit_record(ctx);
1446 	if (error)
1447 		goto out_abort_free_ticket;
1448 
1449 	/*
1450 	 * Grab the ticket from the ctx so we can ungrant it after releasing the
1451 	 * commit_iclog. The ctx may be freed by the time we return from
1452 	 * releasing the commit_iclog (i.e. checkpoint has been completed and
1453 	 * callback run) so we can't reference the ctx after the call to
1454 	 * xlog_state_release_iclog().
1455 	 */
1456 	ticket = ctx->ticket;
1457 
1458 	/*
1459 	 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
1460 	 * to complete before we submit the commit_iclog. We can't use state
1461 	 * checks for this - ACTIVE can be either a past completed iclog or a
1462 	 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
1463 	 * past or future iclog awaiting IO or ordered IO completion to be run.
1464 	 * In the latter case, if it's a future iclog and we wait on it, the we
1465 	 * will hang because it won't get processed through to ic_force_wait
1466 	 * wakeup until this commit_iclog is written to disk.  Hence we use the
1467 	 * iclog header lsn and compare it to the commit lsn to determine if we
1468 	 * need to wait on iclogs or not.
1469 	 */
1470 	spin_lock(&log->l_icloglock);
1471 	if (ctx->start_lsn != ctx->commit_lsn) {
1472 		xfs_lsn_t	plsn;
1473 
1474 		plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn);
1475 		if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) {
1476 			/*
1477 			 * Waiting on ic_force_wait orders the completion of
1478 			 * iclogs older than ic_prev. Hence we only need to wait
1479 			 * on the most recent older iclog here.
1480 			 */
1481 			xlog_wait_on_iclog(ctx->commit_iclog->ic_prev);
1482 			spin_lock(&log->l_icloglock);
1483 		}
1484 
1485 		/*
1486 		 * We need to issue a pre-flush so that the ordering for this
1487 		 * checkpoint is correctly preserved down to stable storage.
1488 		 */
1489 		ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
1490 	}
1491 
1492 	/*
1493 	 * The commit iclog must be written to stable storage to guarantee
1494 	 * journal IO vs metadata writeback IO is correctly ordered on stable
1495 	 * storage.
1496 	 *
1497 	 * If the push caller needs the commit to be immediately stable and the
1498 	 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it
1499 	 * will be written when released, switch it's state to WANT_SYNC right
1500 	 * now.
1501 	 */
1502 	ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
1503 	if (push_commit_stable &&
1504 	    ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE)
1505 		xlog_state_switch_iclogs(log, ctx->commit_iclog, 0);
1506 	ticket = ctx->ticket;
1507 	xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1508 
1509 	/* Not safe to reference ctx now! */
1510 
1511 	spin_unlock(&log->l_icloglock);
1512 	xlog_cil_cleanup_whiteouts(&whiteouts);
1513 	xfs_log_ticket_ungrant(log, ticket);
1514 	memalloc_nofs_restore(nofs_flags);
1515 	return;
1516 
1517 out_skip:
1518 	up_write(&cil->xc_ctx_lock);
1519 	xfs_log_ticket_put(new_ctx->ticket);
1520 	kfree(new_ctx);
1521 	memalloc_nofs_restore(nofs_flags);
1522 	return;
1523 
1524 out_abort_free_ticket:
1525 	ASSERT(xlog_is_shutdown(log));
1526 	xlog_cil_cleanup_whiteouts(&whiteouts);
1527 	if (!ctx->commit_iclog) {
1528 		xfs_log_ticket_ungrant(log, ctx->ticket);
1529 		xlog_cil_committed(ctx);
1530 		memalloc_nofs_restore(nofs_flags);
1531 		return;
1532 	}
1533 	spin_lock(&log->l_icloglock);
1534 	ticket = ctx->ticket;
1535 	xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1536 	/* Not safe to reference ctx now! */
1537 	spin_unlock(&log->l_icloglock);
1538 	xfs_log_ticket_ungrant(log, ticket);
1539 	memalloc_nofs_restore(nofs_flags);
1540 }
1541 
1542 /*
1543  * We need to push CIL every so often so we don't cache more than we can fit in
1544  * the log. The limit really is that a checkpoint can't be more than half the
1545  * log (the current checkpoint is not allowed to overwrite the previous
1546  * checkpoint), but commit latency and memory usage limit this to a smaller
1547  * size.
1548  */
1549 static void
1550 xlog_cil_push_background(
1551 	struct xlog	*log)
1552 {
1553 	struct xfs_cil	*cil = log->l_cilp;
1554 	int		space_used = atomic_read(&cil->xc_ctx->space_used);
1555 
1556 	/*
1557 	 * The cil won't be empty because we are called while holding the
1558 	 * context lock so whatever we added to the CIL will still be there.
1559 	 */
1560 	ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1561 
1562 	/*
1563 	 * We are done if:
1564 	 * - we haven't used up all the space available yet; or
1565 	 * - we've already queued up a push; and
1566 	 * - we're not over the hard limit; and
1567 	 * - nothing has been over the hard limit.
1568 	 *
1569 	 * If so, we don't need to take the push lock as there's nothing to do.
1570 	 */
1571 	if (space_used < XLOG_CIL_SPACE_LIMIT(log) ||
1572 	    (cil->xc_push_seq == cil->xc_current_sequence &&
1573 	     space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) &&
1574 	     !waitqueue_active(&cil->xc_push_wait))) {
1575 		up_read(&cil->xc_ctx_lock);
1576 		return;
1577 	}
1578 
1579 	spin_lock(&cil->xc_push_lock);
1580 	if (cil->xc_push_seq < cil->xc_current_sequence) {
1581 		cil->xc_push_seq = cil->xc_current_sequence;
1582 		queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1583 	}
1584 
1585 	/*
1586 	 * Drop the context lock now, we can't hold that if we need to sleep
1587 	 * because we are over the blocking threshold. The push_lock is still
1588 	 * held, so blocking threshold sleep/wakeup is still correctly
1589 	 * serialised here.
1590 	 */
1591 	up_read(&cil->xc_ctx_lock);
1592 
1593 	/*
1594 	 * If we are well over the space limit, throttle the work that is being
1595 	 * done until the push work on this context has begun. Enforce the hard
1596 	 * throttle on all transaction commits once it has been activated, even
1597 	 * if the committing transactions have resulted in the space usage
1598 	 * dipping back down under the hard limit.
1599 	 *
1600 	 * The ctx->xc_push_lock provides the serialisation necessary for safely
1601 	 * calling xlog_cil_over_hard_limit() in this context.
1602 	 */
1603 	if (xlog_cil_over_hard_limit(log, space_used)) {
1604 		trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1605 		ASSERT(space_used < log->l_logsize);
1606 		xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1607 		return;
1608 	}
1609 
1610 	spin_unlock(&cil->xc_push_lock);
1611 
1612 }
1613 
1614 /*
1615  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1616  * number that is passed. When it returns, the work will be queued for
1617  * @push_seq, but it won't be completed.
1618  *
1619  * If the caller is performing a synchronous force, we will flush the workqueue
1620  * to get previously queued work moving to minimise the wait time they will
1621  * undergo waiting for all outstanding pushes to complete. The caller is
1622  * expected to do the required waiting for push_seq to complete.
1623  *
1624  * If the caller is performing an async push, we need to ensure that the
1625  * checkpoint is fully flushed out of the iclogs when we finish the push. If we
1626  * don't do this, then the commit record may remain sitting in memory in an
1627  * ACTIVE iclog. This then requires another full log force to push to disk,
1628  * which defeats the purpose of having an async, non-blocking CIL force
1629  * mechanism. Hence in this case we need to pass a flag to the push work to
1630  * indicate it needs to flush the commit record itself.
1631  */
1632 static void
1633 xlog_cil_push_now(
1634 	struct xlog	*log,
1635 	xfs_lsn_t	push_seq,
1636 	bool		async)
1637 {
1638 	struct xfs_cil	*cil = log->l_cilp;
1639 
1640 	if (!cil)
1641 		return;
1642 
1643 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1644 
1645 	/* start on any pending background push to minimise wait time on it */
1646 	if (!async)
1647 		flush_workqueue(cil->xc_push_wq);
1648 
1649 	spin_lock(&cil->xc_push_lock);
1650 
1651 	/*
1652 	 * If this is an async flush request, we always need to set the
1653 	 * xc_push_commit_stable flag even if something else has already queued
1654 	 * a push. The flush caller is asking for the CIL to be on stable
1655 	 * storage when the next push completes, so regardless of who has queued
1656 	 * the push, the flush requires stable semantics from it.
1657 	 */
1658 	cil->xc_push_commit_stable = async;
1659 
1660 	/*
1661 	 * If the CIL is empty or we've already pushed the sequence then
1662 	 * there's no more work that we need to do.
1663 	 */
1664 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) ||
1665 	    push_seq <= cil->xc_push_seq) {
1666 		spin_unlock(&cil->xc_push_lock);
1667 		return;
1668 	}
1669 
1670 	cil->xc_push_seq = push_seq;
1671 	queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1672 	spin_unlock(&cil->xc_push_lock);
1673 }
1674 
1675 bool
1676 xlog_cil_empty(
1677 	struct xlog	*log)
1678 {
1679 	struct xfs_cil	*cil = log->l_cilp;
1680 	bool		empty = false;
1681 
1682 	spin_lock(&cil->xc_push_lock);
1683 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
1684 		empty = true;
1685 	spin_unlock(&cil->xc_push_lock);
1686 	return empty;
1687 }
1688 
1689 /*
1690  * If there are intent done items in this transaction and the related intent was
1691  * committed in the current (same) CIL checkpoint, we don't need to write either
1692  * the intent or intent done item to the journal as the change will be
1693  * journalled atomically within this checkpoint. As we cannot remove items from
1694  * the CIL here, mark the related intent with a whiteout so that the CIL push
1695  * can remove it rather than writing it to the journal. Then remove the intent
1696  * done item from the current transaction and release it so it doesn't get put
1697  * into the CIL at all.
1698  */
1699 static uint32_t
1700 xlog_cil_process_intents(
1701 	struct xfs_cil		*cil,
1702 	struct xfs_trans	*tp)
1703 {
1704 	struct xfs_log_item	*lip, *ilip, *next;
1705 	uint32_t		len = 0;
1706 
1707 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1708 		if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE))
1709 			continue;
1710 
1711 		ilip = lip->li_ops->iop_intent(lip);
1712 		if (!ilip || !xlog_item_in_current_chkpt(cil, ilip))
1713 			continue;
1714 		set_bit(XFS_LI_WHITEOUT, &ilip->li_flags);
1715 		trace_xfs_cil_whiteout_mark(ilip);
1716 		len += ilip->li_lv->lv_bytes;
1717 		kvfree(ilip->li_lv);
1718 		ilip->li_lv = NULL;
1719 
1720 		xfs_trans_del_item(lip);
1721 		lip->li_ops->iop_release(lip);
1722 	}
1723 	return len;
1724 }
1725 
1726 /*
1727  * Commit a transaction with the given vector to the Committed Item List.
1728  *
1729  * To do this, we need to format the item, pin it in memory if required and
1730  * account for the space used by the transaction. Once we have done that we
1731  * need to release the unused reservation for the transaction, attach the
1732  * transaction to the checkpoint context so we carry the busy extents through
1733  * to checkpoint completion, and then unlock all the items in the transaction.
1734  *
1735  * Called with the context lock already held in read mode to lock out
1736  * background commit, returns without it held once background commits are
1737  * allowed again.
1738  */
1739 void
1740 xlog_cil_commit(
1741 	struct xlog		*log,
1742 	struct xfs_trans	*tp,
1743 	xfs_csn_t		*commit_seq,
1744 	bool			regrant)
1745 {
1746 	struct xfs_cil		*cil = log->l_cilp;
1747 	struct xfs_log_item	*lip, *next;
1748 	uint32_t		released_space = 0;
1749 
1750 	/*
1751 	 * Do all necessary memory allocation before we lock the CIL.
1752 	 * This ensures the allocation does not deadlock with a CIL
1753 	 * push in memory reclaim (e.g. from kswapd).
1754 	 */
1755 	xlog_cil_alloc_shadow_bufs(log, tp);
1756 
1757 	/* lock out background commit */
1758 	down_read(&cil->xc_ctx_lock);
1759 
1760 	if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE)
1761 		released_space = xlog_cil_process_intents(cil, tp);
1762 
1763 	xlog_cil_insert_items(log, tp, released_space);
1764 
1765 	if (regrant && !xlog_is_shutdown(log))
1766 		xfs_log_ticket_regrant(log, tp->t_ticket);
1767 	else
1768 		xfs_log_ticket_ungrant(log, tp->t_ticket);
1769 	tp->t_ticket = NULL;
1770 	xfs_trans_unreserve_and_mod_sb(tp);
1771 
1772 	/*
1773 	 * Once all the items of the transaction have been copied to the CIL,
1774 	 * the items can be unlocked and possibly freed.
1775 	 *
1776 	 * This needs to be done before we drop the CIL context lock because we
1777 	 * have to update state in the log items and unlock them before they go
1778 	 * to disk. If we don't, then the CIL checkpoint can race with us and
1779 	 * we can run checkpoint completion before we've updated and unlocked
1780 	 * the log items. This affects (at least) processing of stale buffers,
1781 	 * inodes and EFIs.
1782 	 */
1783 	trace_xfs_trans_commit_items(tp, _RET_IP_);
1784 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1785 		xfs_trans_del_item(lip);
1786 		if (lip->li_ops->iop_committing)
1787 			lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1788 	}
1789 	if (commit_seq)
1790 		*commit_seq = cil->xc_ctx->sequence;
1791 
1792 	/* xlog_cil_push_background() releases cil->xc_ctx_lock */
1793 	xlog_cil_push_background(log);
1794 }
1795 
1796 /*
1797  * Flush the CIL to stable storage but don't wait for it to complete. This
1798  * requires the CIL push to ensure the commit record for the push hits the disk,
1799  * but otherwise is no different to a push done from a log force.
1800  */
1801 void
1802 xlog_cil_flush(
1803 	struct xlog	*log)
1804 {
1805 	xfs_csn_t	seq = log->l_cilp->xc_current_sequence;
1806 
1807 	trace_xfs_log_force(log->l_mp, seq, _RET_IP_);
1808 	xlog_cil_push_now(log, seq, true);
1809 
1810 	/*
1811 	 * If the CIL is empty, make sure that any previous checkpoint that may
1812 	 * still be in an active iclog is pushed to stable storage.
1813 	 */
1814 	if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags))
1815 		xfs_log_force(log->l_mp, 0);
1816 }
1817 
1818 /*
1819  * Conditionally push the CIL based on the sequence passed in.
1820  *
1821  * We only need to push if we haven't already pushed the sequence number given.
1822  * Hence the only time we will trigger a push here is if the push sequence is
1823  * the same as the current context.
1824  *
1825  * We return the current commit lsn to allow the callers to determine if a
1826  * iclog flush is necessary following this call.
1827  */
1828 xfs_lsn_t
1829 xlog_cil_force_seq(
1830 	struct xlog	*log,
1831 	xfs_csn_t	sequence)
1832 {
1833 	struct xfs_cil		*cil = log->l_cilp;
1834 	struct xfs_cil_ctx	*ctx;
1835 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1836 
1837 	ASSERT(sequence <= cil->xc_current_sequence);
1838 
1839 	if (!sequence)
1840 		sequence = cil->xc_current_sequence;
1841 	trace_xfs_log_force(log->l_mp, sequence, _RET_IP_);
1842 
1843 	/*
1844 	 * check to see if we need to force out the current context.
1845 	 * xlog_cil_push() handles racing pushes for the same sequence,
1846 	 * so no need to deal with it here.
1847 	 */
1848 restart:
1849 	xlog_cil_push_now(log, sequence, false);
1850 
1851 	/*
1852 	 * See if we can find a previous sequence still committing.
1853 	 * We need to wait for all previous sequence commits to complete
1854 	 * before allowing the force of push_seq to go ahead. Hence block
1855 	 * on commits for those as well.
1856 	 */
1857 	spin_lock(&cil->xc_push_lock);
1858 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1859 		/*
1860 		 * Avoid getting stuck in this loop because we were woken by the
1861 		 * shutdown, but then went back to sleep once already in the
1862 		 * shutdown state.
1863 		 */
1864 		if (xlog_is_shutdown(log))
1865 			goto out_shutdown;
1866 		if (ctx->sequence > sequence)
1867 			continue;
1868 		if (!ctx->commit_lsn) {
1869 			/*
1870 			 * It is still being pushed! Wait for the push to
1871 			 * complete, then start again from the beginning.
1872 			 */
1873 			XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
1874 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1875 			goto restart;
1876 		}
1877 		if (ctx->sequence != sequence)
1878 			continue;
1879 		/* found it! */
1880 		commit_lsn = ctx->commit_lsn;
1881 	}
1882 
1883 	/*
1884 	 * The call to xlog_cil_push_now() executes the push in the background.
1885 	 * Hence by the time we have got here it our sequence may not have been
1886 	 * pushed yet. This is true if the current sequence still matches the
1887 	 * push sequence after the above wait loop and the CIL still contains
1888 	 * dirty objects. This is guaranteed by the push code first adding the
1889 	 * context to the committing list before emptying the CIL.
1890 	 *
1891 	 * Hence if we don't find the context in the committing list and the
1892 	 * current sequence number is unchanged then the CIL contents are
1893 	 * significant.  If the CIL is empty, if means there was nothing to push
1894 	 * and that means there is nothing to wait for. If the CIL is not empty,
1895 	 * it means we haven't yet started the push, because if it had started
1896 	 * we would have found the context on the committing list.
1897 	 */
1898 	if (sequence == cil->xc_current_sequence &&
1899 	    !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1900 		spin_unlock(&cil->xc_push_lock);
1901 		goto restart;
1902 	}
1903 
1904 	spin_unlock(&cil->xc_push_lock);
1905 	return commit_lsn;
1906 
1907 	/*
1908 	 * We detected a shutdown in progress. We need to trigger the log force
1909 	 * to pass through it's iclog state machine error handling, even though
1910 	 * we are already in a shutdown state. Hence we can't return
1911 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1912 	 * LSN is already stable), so we return a zero LSN instead.
1913 	 */
1914 out_shutdown:
1915 	spin_unlock(&cil->xc_push_lock);
1916 	return 0;
1917 }
1918 
1919 /*
1920  * Perform initial CIL structure initialisation.
1921  */
1922 int
1923 xlog_cil_init(
1924 	struct xlog		*log)
1925 {
1926 	struct xfs_cil		*cil;
1927 	struct xfs_cil_ctx	*ctx;
1928 	struct xlog_cil_pcp	*cilpcp;
1929 	int			cpu;
1930 
1931 	cil = kzalloc(sizeof(*cil), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1932 	if (!cil)
1933 		return -ENOMEM;
1934 	/*
1935 	 * Limit the CIL pipeline depth to 4 concurrent works to bound the
1936 	 * concurrency the log spinlocks will be exposed to.
1937 	 */
1938 	cil->xc_push_wq = alloc_workqueue("xfs-cil/%s",
1939 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND),
1940 			4, log->l_mp->m_super->s_id);
1941 	if (!cil->xc_push_wq)
1942 		goto out_destroy_cil;
1943 
1944 	cil->xc_log = log;
1945 	cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp);
1946 	if (!cil->xc_pcp)
1947 		goto out_destroy_wq;
1948 
1949 	for_each_possible_cpu(cpu) {
1950 		cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
1951 		INIT_LIST_HEAD(&cilpcp->busy_extents);
1952 		INIT_LIST_HEAD(&cilpcp->log_items);
1953 	}
1954 
1955 	INIT_LIST_HEAD(&cil->xc_committing);
1956 	spin_lock_init(&cil->xc_push_lock);
1957 	init_waitqueue_head(&cil->xc_push_wait);
1958 	init_rwsem(&cil->xc_ctx_lock);
1959 	init_waitqueue_head(&cil->xc_start_wait);
1960 	init_waitqueue_head(&cil->xc_commit_wait);
1961 	log->l_cilp = cil;
1962 
1963 	ctx = xlog_cil_ctx_alloc();
1964 	xlog_cil_ctx_switch(cil, ctx);
1965 	return 0;
1966 
1967 out_destroy_wq:
1968 	destroy_workqueue(cil->xc_push_wq);
1969 out_destroy_cil:
1970 	kfree(cil);
1971 	return -ENOMEM;
1972 }
1973 
1974 void
1975 xlog_cil_destroy(
1976 	struct xlog	*log)
1977 {
1978 	struct xfs_cil	*cil = log->l_cilp;
1979 
1980 	if (cil->xc_ctx) {
1981 		if (cil->xc_ctx->ticket)
1982 			xfs_log_ticket_put(cil->xc_ctx->ticket);
1983 		kfree(cil->xc_ctx);
1984 	}
1985 
1986 	ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1987 	free_percpu(cil->xc_pcp);
1988 	destroy_workqueue(cil->xc_push_wq);
1989 	kfree(cil);
1990 }
1991 
1992