xref: /linux/fs/xfs/xfs_log_cil.c (revision 4436e6da008fee87d54c038e983e5be9a6baf8fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4  */
5 
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_extent_busy.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_log.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trace.h"
19 #include "xfs_discard.h"
20 
21 /*
22  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
23  * recover, so we don't allow failure here. Also, we allocate in a context that
24  * we don't want to be issuing transactions from, so we need to tell the
25  * allocation code this as well.
26  *
27  * We don't reserve any space for the ticket - we are going to steal whatever
28  * space we require from transactions as they commit. To ensure we reserve all
29  * the space required, we need to set the current reservation of the ticket to
30  * zero so that we know to steal the initial transaction overhead from the
31  * first transaction commit.
32  */
33 static struct xlog_ticket *
34 xlog_cil_ticket_alloc(
35 	struct xlog	*log)
36 {
37 	struct xlog_ticket *tic;
38 
39 	tic = xlog_ticket_alloc(log, 0, 1, 0);
40 
41 	/*
42 	 * set the current reservation to zero so we know to steal the basic
43 	 * transaction overhead reservation from the first transaction commit.
44 	 */
45 	tic->t_curr_res = 0;
46 	tic->t_iclog_hdrs = 0;
47 	return tic;
48 }
49 
50 static inline void
51 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil)
52 {
53 	struct xlog	*log = cil->xc_log;
54 
55 	atomic_set(&cil->xc_iclog_hdrs,
56 		   (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) /
57 			(log->l_iclog_size - log->l_iclog_hsize)));
58 }
59 
60 /*
61  * Check if the current log item was first committed in this sequence.
62  * We can't rely on just the log item being in the CIL, we have to check
63  * the recorded commit sequence number.
64  *
65  * Note: for this to be used in a non-racy manner, it has to be called with
66  * CIL flushing locked out. As a result, it should only be used during the
67  * transaction commit process when deciding what to format into the item.
68  */
69 static bool
70 xlog_item_in_current_chkpt(
71 	struct xfs_cil		*cil,
72 	struct xfs_log_item	*lip)
73 {
74 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
75 		return false;
76 
77 	/*
78 	 * li_seq is written on the first commit of a log item to record the
79 	 * first checkpoint it is written to. Hence if it is different to the
80 	 * current sequence, we're in a new checkpoint.
81 	 */
82 	return lip->li_seq == READ_ONCE(cil->xc_current_sequence);
83 }
84 
85 bool
86 xfs_log_item_in_current_chkpt(
87 	struct xfs_log_item *lip)
88 {
89 	return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip);
90 }
91 
92 /*
93  * Unavoidable forward declaration - xlog_cil_push_work() calls
94  * xlog_cil_ctx_alloc() itself.
95  */
96 static void xlog_cil_push_work(struct work_struct *work);
97 
98 static struct xfs_cil_ctx *
99 xlog_cil_ctx_alloc(void)
100 {
101 	struct xfs_cil_ctx	*ctx;
102 
103 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL);
104 	INIT_LIST_HEAD(&ctx->committing);
105 	INIT_LIST_HEAD(&ctx->busy_extents.extent_list);
106 	INIT_LIST_HEAD(&ctx->log_items);
107 	INIT_LIST_HEAD(&ctx->lv_chain);
108 	INIT_WORK(&ctx->push_work, xlog_cil_push_work);
109 	return ctx;
110 }
111 
112 /*
113  * Aggregate the CIL per cpu structures into global counts, lists, etc and
114  * clear the percpu state ready for the next context to use. This is called
115  * from the push code with the context lock held exclusively, hence nothing else
116  * will be accessing or modifying the per-cpu counters.
117  */
118 static void
119 xlog_cil_push_pcp_aggregate(
120 	struct xfs_cil		*cil,
121 	struct xfs_cil_ctx	*ctx)
122 {
123 	struct xlog_cil_pcp	*cilpcp;
124 	int			cpu;
125 
126 	for_each_cpu(cpu, &ctx->cil_pcpmask) {
127 		cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
128 
129 		ctx->ticket->t_curr_res += cilpcp->space_reserved;
130 		cilpcp->space_reserved = 0;
131 
132 		if (!list_empty(&cilpcp->busy_extents)) {
133 			list_splice_init(&cilpcp->busy_extents,
134 					&ctx->busy_extents.extent_list);
135 		}
136 		if (!list_empty(&cilpcp->log_items))
137 			list_splice_init(&cilpcp->log_items, &ctx->log_items);
138 
139 		/*
140 		 * We're in the middle of switching cil contexts.  Reset the
141 		 * counter we use to detect when the current context is nearing
142 		 * full.
143 		 */
144 		cilpcp->space_used = 0;
145 	}
146 }
147 
148 /*
149  * Aggregate the CIL per-cpu space used counters into the global atomic value.
150  * This is called when the per-cpu counter aggregation will first pass the soft
151  * limit threshold so we can switch to atomic counter aggregation for accurate
152  * detection of hard limit traversal.
153  */
154 static void
155 xlog_cil_insert_pcp_aggregate(
156 	struct xfs_cil		*cil,
157 	struct xfs_cil_ctx	*ctx)
158 {
159 	struct xlog_cil_pcp	*cilpcp;
160 	int			cpu;
161 	int			count = 0;
162 
163 	/* Trigger atomic updates then aggregate only for the first caller */
164 	if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags))
165 		return;
166 
167 	/*
168 	 * We can race with other cpus setting cil_pcpmask.  However, we've
169 	 * atomically cleared PCP_SPACE which forces other threads to add to
170 	 * the global space used count.  cil_pcpmask is a superset of cilpcp
171 	 * structures that could have a nonzero space_used.
172 	 */
173 	for_each_cpu(cpu, &ctx->cil_pcpmask) {
174 		int	old, prev;
175 
176 		cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
177 		do {
178 			old = cilpcp->space_used;
179 			prev = cmpxchg(&cilpcp->space_used, old, 0);
180 		} while (old != prev);
181 		count += old;
182 	}
183 	atomic_add(count, &ctx->space_used);
184 }
185 
186 static void
187 xlog_cil_ctx_switch(
188 	struct xfs_cil		*cil,
189 	struct xfs_cil_ctx	*ctx)
190 {
191 	xlog_cil_set_iclog_hdr_count(cil);
192 	set_bit(XLOG_CIL_EMPTY, &cil->xc_flags);
193 	set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags);
194 	ctx->sequence = ++cil->xc_current_sequence;
195 	ctx->cil = cil;
196 	cil->xc_ctx = ctx;
197 }
198 
199 /*
200  * After the first stage of log recovery is done, we know where the head and
201  * tail of the log are. We need this log initialisation done before we can
202  * initialise the first CIL checkpoint context.
203  *
204  * Here we allocate a log ticket to track space usage during a CIL push.  This
205  * ticket is passed to xlog_write() directly so that we don't slowly leak log
206  * space by failing to account for space used by log headers and additional
207  * region headers for split regions.
208  */
209 void
210 xlog_cil_init_post_recovery(
211 	struct xlog	*log)
212 {
213 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
214 	log->l_cilp->xc_ctx->sequence = 1;
215 	xlog_cil_set_iclog_hdr_count(log->l_cilp);
216 }
217 
218 static inline int
219 xlog_cil_iovec_space(
220 	uint	niovecs)
221 {
222 	return round_up((sizeof(struct xfs_log_vec) +
223 					niovecs * sizeof(struct xfs_log_iovec)),
224 			sizeof(uint64_t));
225 }
226 
227 /*
228  * Allocate or pin log vector buffers for CIL insertion.
229  *
230  * The CIL currently uses disposable buffers for copying a snapshot of the
231  * modified items into the log during a push. The biggest problem with this is
232  * the requirement to allocate the disposable buffer during the commit if:
233  *	a) does not exist; or
234  *	b) it is too small
235  *
236  * If we do this allocation within xlog_cil_insert_format_items(), it is done
237  * under the xc_ctx_lock, which means that a CIL push cannot occur during
238  * the memory allocation. This means that we have a potential deadlock situation
239  * under low memory conditions when we have lots of dirty metadata pinned in
240  * the CIL and we need a CIL commit to occur to free memory.
241  *
242  * To avoid this, we need to move the memory allocation outside the
243  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
244  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
245  * vector buffers between the check and the formatting of the item into the
246  * log vector buffer within the xc_ctx_lock.
247  *
248  * Because the log vector buffer needs to be unchanged during the CIL push
249  * process, we cannot share the buffer between the transaction commit (which
250  * modifies the buffer) and the CIL push context that is writing the changes
251  * into the log. This means skipping preallocation of buffer space is
252  * unreliable, but we most definitely do not want to be allocating and freeing
253  * buffers unnecessarily during commits when overwrites can be done safely.
254  *
255  * The simplest solution to this problem is to allocate a shadow buffer when a
256  * log item is committed for the second time, and then to only use this buffer
257  * if necessary. The buffer can remain attached to the log item until such time
258  * it is needed, and this is the buffer that is reallocated to match the size of
259  * the incoming modification. Then during the formatting of the item we can swap
260  * the active buffer with the new one if we can't reuse the existing buffer. We
261  * don't free the old buffer as it may be reused on the next modification if
262  * it's size is right, otherwise we'll free and reallocate it at that point.
263  *
264  * This function builds a vector for the changes in each log item in the
265  * transaction. It then works out the length of the buffer needed for each log
266  * item, allocates them and attaches the vector to the log item in preparation
267  * for the formatting step which occurs under the xc_ctx_lock.
268  *
269  * While this means the memory footprint goes up, it avoids the repeated
270  * alloc/free pattern that repeated modifications of an item would otherwise
271  * cause, and hence minimises the CPU overhead of such behaviour.
272  */
273 static void
274 xlog_cil_alloc_shadow_bufs(
275 	struct xlog		*log,
276 	struct xfs_trans	*tp)
277 {
278 	struct xfs_log_item	*lip;
279 
280 	list_for_each_entry(lip, &tp->t_items, li_trans) {
281 		struct xfs_log_vec *lv;
282 		int	niovecs = 0;
283 		int	nbytes = 0;
284 		int	buf_size;
285 		bool	ordered = false;
286 
287 		/* Skip items which aren't dirty in this transaction. */
288 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
289 			continue;
290 
291 		/* get number of vecs and size of data to be stored */
292 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
293 
294 		/*
295 		 * Ordered items need to be tracked but we do not wish to write
296 		 * them. We need a logvec to track the object, but we do not
297 		 * need an iovec or buffer to be allocated for copying data.
298 		 */
299 		if (niovecs == XFS_LOG_VEC_ORDERED) {
300 			ordered = true;
301 			niovecs = 0;
302 			nbytes = 0;
303 		}
304 
305 		/*
306 		 * We 64-bit align the length of each iovec so that the start of
307 		 * the next one is naturally aligned.  We'll need to account for
308 		 * that slack space here.
309 		 *
310 		 * We also add the xlog_op_header to each region when
311 		 * formatting, but that's not accounted to the size of the item
312 		 * at this point. Hence we'll need an addition number of bytes
313 		 * for each vector to hold an opheader.
314 		 *
315 		 * Then round nbytes up to 64-bit alignment so that the initial
316 		 * buffer alignment is easy to calculate and verify.
317 		 */
318 		nbytes += niovecs *
319 			(sizeof(uint64_t) + sizeof(struct xlog_op_header));
320 		nbytes = round_up(nbytes, sizeof(uint64_t));
321 
322 		/*
323 		 * The data buffer needs to start 64-bit aligned, so round up
324 		 * that space to ensure we can align it appropriately and not
325 		 * overrun the buffer.
326 		 */
327 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
328 
329 		/*
330 		 * if we have no shadow buffer, or it is too small, we need to
331 		 * reallocate it.
332 		 */
333 		if (!lip->li_lv_shadow ||
334 		    buf_size > lip->li_lv_shadow->lv_size) {
335 			/*
336 			 * We free and allocate here as a realloc would copy
337 			 * unnecessary data. We don't use kvzalloc() for the
338 			 * same reason - we don't need to zero the data area in
339 			 * the buffer, only the log vector header and the iovec
340 			 * storage.
341 			 */
342 			kvfree(lip->li_lv_shadow);
343 			lv = xlog_kvmalloc(buf_size);
344 
345 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
346 
347 			INIT_LIST_HEAD(&lv->lv_list);
348 			lv->lv_item = lip;
349 			lv->lv_size = buf_size;
350 			if (ordered)
351 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
352 			else
353 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
354 			lip->li_lv_shadow = lv;
355 		} else {
356 			/* same or smaller, optimise common overwrite case */
357 			lv = lip->li_lv_shadow;
358 			if (ordered)
359 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
360 			else
361 				lv->lv_buf_len = 0;
362 			lv->lv_bytes = 0;
363 		}
364 
365 		/* Ensure the lv is set up according to ->iop_size */
366 		lv->lv_niovecs = niovecs;
367 
368 		/* The allocated data region lies beyond the iovec region */
369 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
370 	}
371 
372 }
373 
374 /*
375  * Prepare the log item for insertion into the CIL. Calculate the difference in
376  * log space it will consume, and if it is a new item pin it as well.
377  */
378 STATIC void
379 xfs_cil_prepare_item(
380 	struct xlog		*log,
381 	struct xfs_log_vec	*lv,
382 	struct xfs_log_vec	*old_lv,
383 	int			*diff_len)
384 {
385 	/* Account for the new LV being passed in */
386 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
387 		*diff_len += lv->lv_bytes;
388 
389 	/*
390 	 * If there is no old LV, this is the first time we've seen the item in
391 	 * this CIL context and so we need to pin it. If we are replacing the
392 	 * old_lv, then remove the space it accounts for and make it the shadow
393 	 * buffer for later freeing. In both cases we are now switching to the
394 	 * shadow buffer, so update the pointer to it appropriately.
395 	 */
396 	if (!old_lv) {
397 		if (lv->lv_item->li_ops->iop_pin)
398 			lv->lv_item->li_ops->iop_pin(lv->lv_item);
399 		lv->lv_item->li_lv_shadow = NULL;
400 	} else if (old_lv != lv) {
401 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
402 
403 		*diff_len -= old_lv->lv_bytes;
404 		lv->lv_item->li_lv_shadow = old_lv;
405 	}
406 
407 	/* attach new log vector to log item */
408 	lv->lv_item->li_lv = lv;
409 
410 	/*
411 	 * If this is the first time the item is being committed to the
412 	 * CIL, store the sequence number on the log item so we can
413 	 * tell in future commits whether this is the first checkpoint
414 	 * the item is being committed into.
415 	 */
416 	if (!lv->lv_item->li_seq)
417 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
418 }
419 
420 /*
421  * Format log item into a flat buffers
422  *
423  * For delayed logging, we need to hold a formatted buffer containing all the
424  * changes on the log item. This enables us to relog the item in memory and
425  * write it out asynchronously without needing to relock the object that was
426  * modified at the time it gets written into the iclog.
427  *
428  * This function takes the prepared log vectors attached to each log item, and
429  * formats the changes into the log vector buffer. The buffer it uses is
430  * dependent on the current state of the vector in the CIL - the shadow lv is
431  * guaranteed to be large enough for the current modification, but we will only
432  * use that if we can't reuse the existing lv. If we can't reuse the existing
433  * lv, then simple swap it out for the shadow lv. We don't free it - that is
434  * done lazily either by th enext modification or the freeing of the log item.
435  *
436  * We don't set up region headers during this process; we simply copy the
437  * regions into the flat buffer. We can do this because we still have to do a
438  * formatting step to write the regions into the iclog buffer.  Writing the
439  * ophdrs during the iclog write means that we can support splitting large
440  * regions across iclog boundares without needing a change in the format of the
441  * item/region encapsulation.
442  *
443  * Hence what we need to do now is change the rewrite the vector array to point
444  * to the copied region inside the buffer we just allocated. This allows us to
445  * format the regions into the iclog as though they are being formatted
446  * directly out of the objects themselves.
447  */
448 static void
449 xlog_cil_insert_format_items(
450 	struct xlog		*log,
451 	struct xfs_trans	*tp,
452 	int			*diff_len)
453 {
454 	struct xfs_log_item	*lip;
455 
456 	/* Bail out if we didn't find a log item.  */
457 	if (list_empty(&tp->t_items)) {
458 		ASSERT(0);
459 		return;
460 	}
461 
462 	list_for_each_entry(lip, &tp->t_items, li_trans) {
463 		struct xfs_log_vec *lv;
464 		struct xfs_log_vec *old_lv = NULL;
465 		struct xfs_log_vec *shadow;
466 		bool	ordered = false;
467 
468 		/* Skip items which aren't dirty in this transaction. */
469 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
470 			continue;
471 
472 		/*
473 		 * The formatting size information is already attached to
474 		 * the shadow lv on the log item.
475 		 */
476 		shadow = lip->li_lv_shadow;
477 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
478 			ordered = true;
479 
480 		/* Skip items that do not have any vectors for writing */
481 		if (!shadow->lv_niovecs && !ordered)
482 			continue;
483 
484 		/* compare to existing item size */
485 		old_lv = lip->li_lv;
486 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
487 			/* same or smaller, optimise common overwrite case */
488 			lv = lip->li_lv;
489 
490 			if (ordered)
491 				goto insert;
492 
493 			/*
494 			 * set the item up as though it is a new insertion so
495 			 * that the space reservation accounting is correct.
496 			 */
497 			*diff_len -= lv->lv_bytes;
498 
499 			/* Ensure the lv is set up according to ->iop_size */
500 			lv->lv_niovecs = shadow->lv_niovecs;
501 
502 			/* reset the lv buffer information for new formatting */
503 			lv->lv_buf_len = 0;
504 			lv->lv_bytes = 0;
505 			lv->lv_buf = (char *)lv +
506 					xlog_cil_iovec_space(lv->lv_niovecs);
507 		} else {
508 			/* switch to shadow buffer! */
509 			lv = shadow;
510 			lv->lv_item = lip;
511 			if (ordered) {
512 				/* track as an ordered logvec */
513 				ASSERT(lip->li_lv == NULL);
514 				goto insert;
515 			}
516 		}
517 
518 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
519 		lip->li_ops->iop_format(lip, lv);
520 insert:
521 		xfs_cil_prepare_item(log, lv, old_lv, diff_len);
522 	}
523 }
524 
525 /*
526  * The use of lockless waitqueue_active() requires that the caller has
527  * serialised itself against the wakeup call in xlog_cil_push_work(). That
528  * can be done by either holding the push lock or the context lock.
529  */
530 static inline bool
531 xlog_cil_over_hard_limit(
532 	struct xlog	*log,
533 	int32_t		space_used)
534 {
535 	if (waitqueue_active(&log->l_cilp->xc_push_wait))
536 		return true;
537 	if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log))
538 		return true;
539 	return false;
540 }
541 
542 /*
543  * Insert the log items into the CIL and calculate the difference in space
544  * consumed by the item. Add the space to the checkpoint ticket and calculate
545  * if the change requires additional log metadata. If it does, take that space
546  * as well. Remove the amount of space we added to the checkpoint ticket from
547  * the current transaction ticket so that the accounting works out correctly.
548  */
549 static void
550 xlog_cil_insert_items(
551 	struct xlog		*log,
552 	struct xfs_trans	*tp,
553 	uint32_t		released_space)
554 {
555 	struct xfs_cil		*cil = log->l_cilp;
556 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
557 	struct xfs_log_item	*lip;
558 	int			len = 0;
559 	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
560 	int			space_used;
561 	int			order;
562 	unsigned int		cpu_nr;
563 	struct xlog_cil_pcp	*cilpcp;
564 
565 	ASSERT(tp);
566 
567 	/*
568 	 * We can do this safely because the context can't checkpoint until we
569 	 * are done so it doesn't matter exactly how we update the CIL.
570 	 */
571 	xlog_cil_insert_format_items(log, tp, &len);
572 
573 	/*
574 	 * Subtract the space released by intent cancelation from the space we
575 	 * consumed so that we remove it from the CIL space and add it back to
576 	 * the current transaction reservation context.
577 	 */
578 	len -= released_space;
579 
580 	/*
581 	 * Grab the per-cpu pointer for the CIL before we start any accounting.
582 	 * That ensures that we are running with pre-emption disabled and so we
583 	 * can't be scheduled away between split sample/update operations that
584 	 * are done without outside locking to serialise them.
585 	 */
586 	cpu_nr = get_cpu();
587 	cilpcp = this_cpu_ptr(cil->xc_pcp);
588 
589 	/* Tell the future push that there was work added by this CPU. */
590 	if (!cpumask_test_cpu(cpu_nr, &ctx->cil_pcpmask))
591 		cpumask_test_and_set_cpu(cpu_nr, &ctx->cil_pcpmask);
592 
593 	/*
594 	 * We need to take the CIL checkpoint unit reservation on the first
595 	 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't
596 	 * unnecessarily do an atomic op in the fast path here. We can clear the
597 	 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that
598 	 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit.
599 	 */
600 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) &&
601 	    test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
602 		ctx_res = ctx->ticket->t_unit_res;
603 
604 	/*
605 	 * Check if we need to steal iclog headers. atomic_read() is not a
606 	 * locked atomic operation, so we can check the value before we do any
607 	 * real atomic ops in the fast path. If we've already taken the CIL unit
608 	 * reservation from this commit, we've already got one iclog header
609 	 * space reserved so we have to account for that otherwise we risk
610 	 * overrunning the reservation on this ticket.
611 	 *
612 	 * If the CIL is already at the hard limit, we might need more header
613 	 * space that originally reserved. So steal more header space from every
614 	 * commit that occurs once we are over the hard limit to ensure the CIL
615 	 * push won't run out of reservation space.
616 	 *
617 	 * This can steal more than we need, but that's OK.
618 	 *
619 	 * The cil->xc_ctx_lock provides the serialisation necessary for safely
620 	 * calling xlog_cil_over_hard_limit() in this context.
621 	 */
622 	space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len;
623 	if (atomic_read(&cil->xc_iclog_hdrs) > 0 ||
624 	    xlog_cil_over_hard_limit(log, space_used)) {
625 		split_res = log->l_iclog_hsize +
626 					sizeof(struct xlog_op_header);
627 		if (ctx_res)
628 			ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1);
629 		else
630 			ctx_res = split_res * tp->t_ticket->t_iclog_hdrs;
631 		atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs);
632 	}
633 	cilpcp->space_reserved += ctx_res;
634 
635 	/*
636 	 * Accurately account when over the soft limit, otherwise fold the
637 	 * percpu count into the global count if over the per-cpu threshold.
638 	 */
639 	if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) {
640 		atomic_add(len, &ctx->space_used);
641 	} else if (cilpcp->space_used + len >
642 			(XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) {
643 		space_used = atomic_add_return(cilpcp->space_used + len,
644 						&ctx->space_used);
645 		cilpcp->space_used = 0;
646 
647 		/*
648 		 * If we just transitioned over the soft limit, we need to
649 		 * transition to the global atomic counter.
650 		 */
651 		if (space_used >= XLOG_CIL_SPACE_LIMIT(log))
652 			xlog_cil_insert_pcp_aggregate(cil, ctx);
653 	} else {
654 		cilpcp->space_used += len;
655 	}
656 	/* attach the transaction to the CIL if it has any busy extents */
657 	if (!list_empty(&tp->t_busy))
658 		list_splice_init(&tp->t_busy, &cilpcp->busy_extents);
659 
660 	/*
661 	 * Now update the order of everything modified in the transaction
662 	 * and insert items into the CIL if they aren't already there.
663 	 * We do this here so we only need to take the CIL lock once during
664 	 * the transaction commit.
665 	 */
666 	order = atomic_inc_return(&ctx->order_id);
667 	list_for_each_entry(lip, &tp->t_items, li_trans) {
668 		/* Skip items which aren't dirty in this transaction. */
669 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
670 			continue;
671 
672 		lip->li_order_id = order;
673 		if (!list_empty(&lip->li_cil))
674 			continue;
675 		list_add_tail(&lip->li_cil, &cilpcp->log_items);
676 	}
677 	put_cpu();
678 
679 	/*
680 	 * If we've overrun the reservation, dump the tx details before we move
681 	 * the log items. Shutdown is imminent...
682 	 */
683 	tp->t_ticket->t_curr_res -= ctx_res + len;
684 	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
685 		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
686 		xfs_warn(log->l_mp,
687 			 "  log items: %d bytes (iov hdrs: %d bytes)",
688 			 len, iovhdr_res);
689 		xfs_warn(log->l_mp, "  split region headers: %d bytes",
690 			 split_res);
691 		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
692 		xlog_print_trans(tp);
693 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
694 	}
695 }
696 
697 static inline void
698 xlog_cil_ail_insert_batch(
699 	struct xfs_ail		*ailp,
700 	struct xfs_ail_cursor	*cur,
701 	struct xfs_log_item	**log_items,
702 	int			nr_items,
703 	xfs_lsn_t		commit_lsn)
704 {
705 	int	i;
706 
707 	spin_lock(&ailp->ail_lock);
708 	/* xfs_trans_ail_update_bulk drops ailp->ail_lock */
709 	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
710 
711 	for (i = 0; i < nr_items; i++) {
712 		struct xfs_log_item *lip = log_items[i];
713 
714 		if (lip->li_ops->iop_unpin)
715 			lip->li_ops->iop_unpin(lip, 0);
716 	}
717 }
718 
719 /*
720  * Take the checkpoint's log vector chain of items and insert the attached log
721  * items into the AIL. This uses bulk insertion techniques to minimise AIL lock
722  * traffic.
723  *
724  * The AIL tracks log items via the start record LSN of the checkpoint,
725  * not the commit record LSN. This is because we can pipeline multiple
726  * checkpoints, and so the start record of checkpoint N+1 can be
727  * written before the commit record of checkpoint N. i.e:
728  *
729  *   start N			commit N
730  *	+-------------+------------+----------------+
731  *		  start N+1			commit N+1
732  *
733  * The tail of the log cannot be moved to the LSN of commit N when all
734  * the items of that checkpoint are written back, because then the
735  * start record for N+1 is no longer in the active portion of the log
736  * and recovery will fail/corrupt the filesystem.
737  *
738  * Hence when all the log items in checkpoint N are written back, the
739  * tail of the log most now only move as far forwards as the start LSN
740  * of checkpoint N+1.
741  *
742  * If we are called with the aborted flag set, it is because a log write during
743  * a CIL checkpoint commit has failed. In this case, all the items in the
744  * checkpoint have already gone through iop_committed and iop_committing, which
745  * means that checkpoint commit abort handling is treated exactly the same as an
746  * iclog write error even though we haven't started any IO yet. Hence in this
747  * case all we need to do is iop_committed processing, followed by an
748  * iop_unpin(aborted) call.
749  *
750  * The AIL cursor is used to optimise the insert process. If commit_lsn is not
751  * at the end of the AIL, the insert cursor avoids the need to walk the AIL to
752  * find the insertion point on every xfs_log_item_batch_insert() call. This
753  * saves a lot of needless list walking and is a net win, even though it
754  * slightly increases that amount of AIL lock traffic to set it up and tear it
755  * down.
756  */
757 static void
758 xlog_cil_ail_insert(
759 	struct xfs_cil_ctx	*ctx,
760 	bool			aborted)
761 {
762 #define LOG_ITEM_BATCH_SIZE	32
763 	struct xfs_ail		*ailp = ctx->cil->xc_log->l_ailp;
764 	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
765 	struct xfs_log_vec	*lv;
766 	struct xfs_ail_cursor	cur;
767 	xfs_lsn_t		old_head;
768 	int			i = 0;
769 
770 	/*
771 	 * Update the AIL head LSN with the commit record LSN of this
772 	 * checkpoint. As iclogs are always completed in order, this should
773 	 * always be the same (as iclogs can contain multiple commit records) or
774 	 * higher LSN than the current head. We do this before insertion of the
775 	 * items so that log space checks during insertion will reflect the
776 	 * space that this checkpoint has already consumed.  We call
777 	 * xfs_ail_update_finish() so that tail space and space-based wakeups
778 	 * will be recalculated appropriately.
779 	 */
780 	ASSERT(XFS_LSN_CMP(ctx->commit_lsn, ailp->ail_head_lsn) >= 0 ||
781 			aborted);
782 	spin_lock(&ailp->ail_lock);
783 	xfs_trans_ail_cursor_last(ailp, &cur, ctx->start_lsn);
784 	old_head = ailp->ail_head_lsn;
785 	ailp->ail_head_lsn = ctx->commit_lsn;
786 	/* xfs_ail_update_finish() drops the ail_lock */
787 	xfs_ail_update_finish(ailp, NULLCOMMITLSN);
788 
789 	/*
790 	 * We move the AIL head forwards to account for the space used in the
791 	 * log before we remove that space from the grant heads. This prevents a
792 	 * transient condition where reservation space appears to become
793 	 * available on return, only for it to disappear again immediately as
794 	 * the AIL head update accounts in the log tail space.
795 	 */
796 	smp_wmb();	/* paired with smp_rmb in xlog_grant_space_left */
797 	xlog_grant_return_space(ailp->ail_log, old_head, ailp->ail_head_lsn);
798 
799 	/* unpin all the log items */
800 	list_for_each_entry(lv, &ctx->lv_chain, lv_list) {
801 		struct xfs_log_item	*lip = lv->lv_item;
802 		xfs_lsn_t		item_lsn;
803 
804 		if (aborted)
805 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
806 
807 		if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
808 			lip->li_ops->iop_release(lip);
809 			continue;
810 		}
811 
812 		if (lip->li_ops->iop_committed)
813 			item_lsn = lip->li_ops->iop_committed(lip,
814 					ctx->start_lsn);
815 		else
816 			item_lsn = ctx->start_lsn;
817 
818 		/* item_lsn of -1 means the item needs no further processing */
819 		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
820 			continue;
821 
822 		/*
823 		 * if we are aborting the operation, no point in inserting the
824 		 * object into the AIL as we are in a shutdown situation.
825 		 */
826 		if (aborted) {
827 			ASSERT(xlog_is_shutdown(ailp->ail_log));
828 			if (lip->li_ops->iop_unpin)
829 				lip->li_ops->iop_unpin(lip, 1);
830 			continue;
831 		}
832 
833 		if (item_lsn != ctx->start_lsn) {
834 
835 			/*
836 			 * Not a bulk update option due to unusual item_lsn.
837 			 * Push into AIL immediately, rechecking the lsn once
838 			 * we have the ail lock. Then unpin the item. This does
839 			 * not affect the AIL cursor the bulk insert path is
840 			 * using.
841 			 */
842 			spin_lock(&ailp->ail_lock);
843 			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
844 				xfs_trans_ail_update(ailp, lip, item_lsn);
845 			else
846 				spin_unlock(&ailp->ail_lock);
847 			if (lip->li_ops->iop_unpin)
848 				lip->li_ops->iop_unpin(lip, 0);
849 			continue;
850 		}
851 
852 		/* Item is a candidate for bulk AIL insert.  */
853 		log_items[i++] = lv->lv_item;
854 		if (i >= LOG_ITEM_BATCH_SIZE) {
855 			xlog_cil_ail_insert_batch(ailp, &cur, log_items,
856 					LOG_ITEM_BATCH_SIZE, ctx->start_lsn);
857 			i = 0;
858 		}
859 	}
860 
861 	/* make sure we insert the remainder! */
862 	if (i)
863 		xlog_cil_ail_insert_batch(ailp, &cur, log_items, i,
864 				ctx->start_lsn);
865 
866 	spin_lock(&ailp->ail_lock);
867 	xfs_trans_ail_cursor_done(&cur);
868 	spin_unlock(&ailp->ail_lock);
869 }
870 
871 static void
872 xlog_cil_free_logvec(
873 	struct list_head	*lv_chain)
874 {
875 	struct xfs_log_vec	*lv;
876 
877 	while (!list_empty(lv_chain)) {
878 		lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list);
879 		list_del_init(&lv->lv_list);
880 		kvfree(lv);
881 	}
882 }
883 
884 /*
885  * Mark all items committed and clear busy extents. We free the log vector
886  * chains in a separate pass so that we unpin the log items as quickly as
887  * possible.
888  */
889 static void
890 xlog_cil_committed(
891 	struct xfs_cil_ctx	*ctx)
892 {
893 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
894 	bool			abort = xlog_is_shutdown(ctx->cil->xc_log);
895 
896 	/*
897 	 * If the I/O failed, we're aborting the commit and already shutdown.
898 	 * Wake any commit waiters before aborting the log items so we don't
899 	 * block async log pushers on callbacks. Async log pushers explicitly do
900 	 * not wait on log force completion because they may be holding locks
901 	 * required to unpin items.
902 	 */
903 	if (abort) {
904 		spin_lock(&ctx->cil->xc_push_lock);
905 		wake_up_all(&ctx->cil->xc_start_wait);
906 		wake_up_all(&ctx->cil->xc_commit_wait);
907 		spin_unlock(&ctx->cil->xc_push_lock);
908 	}
909 
910 	xlog_cil_ail_insert(ctx, abort);
911 
912 	xfs_extent_busy_sort(&ctx->busy_extents.extent_list);
913 	xfs_extent_busy_clear(mp, &ctx->busy_extents.extent_list,
914 			      xfs_has_discard(mp) && !abort);
915 
916 	spin_lock(&ctx->cil->xc_push_lock);
917 	list_del(&ctx->committing);
918 	spin_unlock(&ctx->cil->xc_push_lock);
919 
920 	xlog_cil_free_logvec(&ctx->lv_chain);
921 
922 	if (!list_empty(&ctx->busy_extents.extent_list)) {
923 		ctx->busy_extents.mount = mp;
924 		ctx->busy_extents.owner = ctx;
925 		xfs_discard_extents(mp, &ctx->busy_extents);
926 		return;
927 	}
928 
929 	kfree(ctx);
930 }
931 
932 void
933 xlog_cil_process_committed(
934 	struct list_head	*list)
935 {
936 	struct xfs_cil_ctx	*ctx;
937 
938 	while ((ctx = list_first_entry_or_null(list,
939 			struct xfs_cil_ctx, iclog_entry))) {
940 		list_del(&ctx->iclog_entry);
941 		xlog_cil_committed(ctx);
942 	}
943 }
944 
945 /*
946 * Record the LSN of the iclog we were just granted space to start writing into.
947 * If the context doesn't have a start_lsn recorded, then this iclog will
948 * contain the start record for the checkpoint. Otherwise this write contains
949 * the commit record for the checkpoint.
950 */
951 void
952 xlog_cil_set_ctx_write_state(
953 	struct xfs_cil_ctx	*ctx,
954 	struct xlog_in_core	*iclog)
955 {
956 	struct xfs_cil		*cil = ctx->cil;
957 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
958 
959 	ASSERT(!ctx->commit_lsn);
960 	if (!ctx->start_lsn) {
961 		spin_lock(&cil->xc_push_lock);
962 		/*
963 		 * The LSN we need to pass to the log items on transaction
964 		 * commit is the LSN reported by the first log vector write, not
965 		 * the commit lsn. If we use the commit record lsn then we can
966 		 * move the grant write head beyond the tail LSN and overwrite
967 		 * it.
968 		 */
969 		ctx->start_lsn = lsn;
970 		wake_up_all(&cil->xc_start_wait);
971 		spin_unlock(&cil->xc_push_lock);
972 
973 		/*
974 		 * Make sure the metadata we are about to overwrite in the log
975 		 * has been flushed to stable storage before this iclog is
976 		 * issued.
977 		 */
978 		spin_lock(&cil->xc_log->l_icloglock);
979 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
980 		spin_unlock(&cil->xc_log->l_icloglock);
981 		return;
982 	}
983 
984 	/*
985 	 * Take a reference to the iclog for the context so that we still hold
986 	 * it when xlog_write is done and has released it. This means the
987 	 * context controls when the iclog is released for IO.
988 	 */
989 	atomic_inc(&iclog->ic_refcnt);
990 
991 	/*
992 	 * xlog_state_get_iclog_space() guarantees there is enough space in the
993 	 * iclog for an entire commit record, so we can attach the context
994 	 * callbacks now.  This needs to be done before we make the commit_lsn
995 	 * visible to waiters so that checkpoints with commit records in the
996 	 * same iclog order their IO completion callbacks in the same order that
997 	 * the commit records appear in the iclog.
998 	 */
999 	spin_lock(&cil->xc_log->l_icloglock);
1000 	list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks);
1001 	spin_unlock(&cil->xc_log->l_icloglock);
1002 
1003 	/*
1004 	 * Now we can record the commit LSN and wake anyone waiting for this
1005 	 * sequence to have the ordered commit record assigned to a physical
1006 	 * location in the log.
1007 	 */
1008 	spin_lock(&cil->xc_push_lock);
1009 	ctx->commit_iclog = iclog;
1010 	ctx->commit_lsn = lsn;
1011 	wake_up_all(&cil->xc_commit_wait);
1012 	spin_unlock(&cil->xc_push_lock);
1013 }
1014 
1015 
1016 /*
1017  * Ensure that the order of log writes follows checkpoint sequence order. This
1018  * relies on the context LSN being zero until the log write has guaranteed the
1019  * LSN that the log write will start at via xlog_state_get_iclog_space().
1020  */
1021 enum _record_type {
1022 	_START_RECORD,
1023 	_COMMIT_RECORD,
1024 };
1025 
1026 static int
1027 xlog_cil_order_write(
1028 	struct xfs_cil		*cil,
1029 	xfs_csn_t		sequence,
1030 	enum _record_type	record)
1031 {
1032 	struct xfs_cil_ctx	*ctx;
1033 
1034 restart:
1035 	spin_lock(&cil->xc_push_lock);
1036 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1037 		/*
1038 		 * Avoid getting stuck in this loop because we were woken by the
1039 		 * shutdown, but then went back to sleep once already in the
1040 		 * shutdown state.
1041 		 */
1042 		if (xlog_is_shutdown(cil->xc_log)) {
1043 			spin_unlock(&cil->xc_push_lock);
1044 			return -EIO;
1045 		}
1046 
1047 		/*
1048 		 * Higher sequences will wait for this one so skip them.
1049 		 * Don't wait for our own sequence, either.
1050 		 */
1051 		if (ctx->sequence >= sequence)
1052 			continue;
1053 
1054 		/* Wait until the LSN for the record has been recorded. */
1055 		switch (record) {
1056 		case _START_RECORD:
1057 			if (!ctx->start_lsn) {
1058 				xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock);
1059 				goto restart;
1060 			}
1061 			break;
1062 		case _COMMIT_RECORD:
1063 			if (!ctx->commit_lsn) {
1064 				xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1065 				goto restart;
1066 			}
1067 			break;
1068 		}
1069 	}
1070 	spin_unlock(&cil->xc_push_lock);
1071 	return 0;
1072 }
1073 
1074 /*
1075  * Write out the log vector change now attached to the CIL context. This will
1076  * write a start record that needs to be strictly ordered in ascending CIL
1077  * sequence order so that log recovery will always use in-order start LSNs when
1078  * replaying checkpoints.
1079  */
1080 static int
1081 xlog_cil_write_chain(
1082 	struct xfs_cil_ctx	*ctx,
1083 	uint32_t		chain_len)
1084 {
1085 	struct xlog		*log = ctx->cil->xc_log;
1086 	int			error;
1087 
1088 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD);
1089 	if (error)
1090 		return error;
1091 	return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len);
1092 }
1093 
1094 /*
1095  * Write out the commit record of a checkpoint transaction to close off a
1096  * running log write. These commit records are strictly ordered in ascending CIL
1097  * sequence order so that log recovery will always replay the checkpoints in the
1098  * correct order.
1099  */
1100 static int
1101 xlog_cil_write_commit_record(
1102 	struct xfs_cil_ctx	*ctx)
1103 {
1104 	struct xlog		*log = ctx->cil->xc_log;
1105 	struct xlog_op_header	ophdr = {
1106 		.oh_clientid = XFS_TRANSACTION,
1107 		.oh_tid = cpu_to_be32(ctx->ticket->t_tid),
1108 		.oh_flags = XLOG_COMMIT_TRANS,
1109 	};
1110 	struct xfs_log_iovec	reg = {
1111 		.i_addr = &ophdr,
1112 		.i_len = sizeof(struct xlog_op_header),
1113 		.i_type = XLOG_REG_TYPE_COMMIT,
1114 	};
1115 	struct xfs_log_vec	vec = {
1116 		.lv_niovecs = 1,
1117 		.lv_iovecp = &reg,
1118 	};
1119 	int			error;
1120 	LIST_HEAD(lv_chain);
1121 	list_add(&vec.lv_list, &lv_chain);
1122 
1123 	if (xlog_is_shutdown(log))
1124 		return -EIO;
1125 
1126 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD);
1127 	if (error)
1128 		return error;
1129 
1130 	/* account for space used by record data */
1131 	ctx->ticket->t_curr_res -= reg.i_len;
1132 	error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len);
1133 	if (error)
1134 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1135 	return error;
1136 }
1137 
1138 struct xlog_cil_trans_hdr {
1139 	struct xlog_op_header	oph[2];
1140 	struct xfs_trans_header	thdr;
1141 	struct xfs_log_iovec	lhdr[2];
1142 };
1143 
1144 /*
1145  * Build a checkpoint transaction header to begin the journal transaction.  We
1146  * need to account for the space used by the transaction header here as it is
1147  * not accounted for in xlog_write().
1148  *
1149  * This is the only place we write a transaction header, so we also build the
1150  * log opheaders that indicate the start of a log transaction and wrap the
1151  * transaction header. We keep the start record in it's own log vector rather
1152  * than compacting them into a single region as this ends up making the logic
1153  * in xlog_write() for handling empty opheaders for start, commit and unmount
1154  * records much simpler.
1155  */
1156 static void
1157 xlog_cil_build_trans_hdr(
1158 	struct xfs_cil_ctx	*ctx,
1159 	struct xlog_cil_trans_hdr *hdr,
1160 	struct xfs_log_vec	*lvhdr,
1161 	int			num_iovecs)
1162 {
1163 	struct xlog_ticket	*tic = ctx->ticket;
1164 	__be32			tid = cpu_to_be32(tic->t_tid);
1165 
1166 	memset(hdr, 0, sizeof(*hdr));
1167 
1168 	/* Log start record */
1169 	hdr->oph[0].oh_tid = tid;
1170 	hdr->oph[0].oh_clientid = XFS_TRANSACTION;
1171 	hdr->oph[0].oh_flags = XLOG_START_TRANS;
1172 
1173 	/* log iovec region pointer */
1174 	hdr->lhdr[0].i_addr = &hdr->oph[0];
1175 	hdr->lhdr[0].i_len = sizeof(struct xlog_op_header);
1176 	hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER;
1177 
1178 	/* log opheader */
1179 	hdr->oph[1].oh_tid = tid;
1180 	hdr->oph[1].oh_clientid = XFS_TRANSACTION;
1181 	hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header));
1182 
1183 	/* transaction header in host byte order format */
1184 	hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
1185 	hdr->thdr.th_type = XFS_TRANS_CHECKPOINT;
1186 	hdr->thdr.th_tid = tic->t_tid;
1187 	hdr->thdr.th_num_items = num_iovecs;
1188 
1189 	/* log iovec region pointer */
1190 	hdr->lhdr[1].i_addr = &hdr->oph[1];
1191 	hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) +
1192 				sizeof(struct xfs_trans_header);
1193 	hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR;
1194 
1195 	lvhdr->lv_niovecs = 2;
1196 	lvhdr->lv_iovecp = &hdr->lhdr[0];
1197 	lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len;
1198 
1199 	tic->t_curr_res -= lvhdr->lv_bytes;
1200 }
1201 
1202 /*
1203  * CIL item reordering compare function. We want to order in ascending ID order,
1204  * but we want to leave items with the same ID in the order they were added to
1205  * the list. This is important for operations like reflink where we log 4 order
1206  * dependent intents in a single transaction when we overwrite an existing
1207  * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop),
1208  * CUI (inc), BUI(remap)...
1209  */
1210 static int
1211 xlog_cil_order_cmp(
1212 	void			*priv,
1213 	const struct list_head	*a,
1214 	const struct list_head	*b)
1215 {
1216 	struct xfs_log_vec	*l1 = container_of(a, struct xfs_log_vec, lv_list);
1217 	struct xfs_log_vec	*l2 = container_of(b, struct xfs_log_vec, lv_list);
1218 
1219 	return l1->lv_order_id > l2->lv_order_id;
1220 }
1221 
1222 /*
1223  * Pull all the log vectors off the items in the CIL, and remove the items from
1224  * the CIL. We don't need the CIL lock here because it's only needed on the
1225  * transaction commit side which is currently locked out by the flush lock.
1226  *
1227  * If a log item is marked with a whiteout, we do not need to write it to the
1228  * journal and so we just move them to the whiteout list for the caller to
1229  * dispose of appropriately.
1230  */
1231 static void
1232 xlog_cil_build_lv_chain(
1233 	struct xfs_cil_ctx	*ctx,
1234 	struct list_head	*whiteouts,
1235 	uint32_t		*num_iovecs,
1236 	uint32_t		*num_bytes)
1237 {
1238 	while (!list_empty(&ctx->log_items)) {
1239 		struct xfs_log_item	*item;
1240 		struct xfs_log_vec	*lv;
1241 
1242 		item = list_first_entry(&ctx->log_items,
1243 					struct xfs_log_item, li_cil);
1244 
1245 		if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) {
1246 			list_move(&item->li_cil, whiteouts);
1247 			trace_xfs_cil_whiteout_skip(item);
1248 			continue;
1249 		}
1250 
1251 		lv = item->li_lv;
1252 		lv->lv_order_id = item->li_order_id;
1253 
1254 		/* we don't write ordered log vectors */
1255 		if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
1256 			*num_bytes += lv->lv_bytes;
1257 		*num_iovecs += lv->lv_niovecs;
1258 		list_add_tail(&lv->lv_list, &ctx->lv_chain);
1259 
1260 		list_del_init(&item->li_cil);
1261 		item->li_order_id = 0;
1262 		item->li_lv = NULL;
1263 	}
1264 }
1265 
1266 static void
1267 xlog_cil_cleanup_whiteouts(
1268 	struct list_head	*whiteouts)
1269 {
1270 	while (!list_empty(whiteouts)) {
1271 		struct xfs_log_item *item = list_first_entry(whiteouts,
1272 						struct xfs_log_item, li_cil);
1273 		list_del_init(&item->li_cil);
1274 		trace_xfs_cil_whiteout_unpin(item);
1275 		item->li_ops->iop_unpin(item, 1);
1276 	}
1277 }
1278 
1279 /*
1280  * Push the Committed Item List to the log.
1281  *
1282  * If the current sequence is the same as xc_push_seq we need to do a flush. If
1283  * xc_push_seq is less than the current sequence, then it has already been
1284  * flushed and we don't need to do anything - the caller will wait for it to
1285  * complete if necessary.
1286  *
1287  * xc_push_seq is checked unlocked against the sequence number for a match.
1288  * Hence we can allow log forces to run racily and not issue pushes for the
1289  * same sequence twice.  If we get a race between multiple pushes for the same
1290  * sequence they will block on the first one and then abort, hence avoiding
1291  * needless pushes.
1292  *
1293  * This runs from a workqueue so it does not inherent any specific memory
1294  * allocation context. However, we do not want to block on memory reclaim
1295  * recursing back into the filesystem because this push may have been triggered
1296  * by memory reclaim itself. Hence we really need to run under full GFP_NOFS
1297  * contraints here.
1298  */
1299 static void
1300 xlog_cil_push_work(
1301 	struct work_struct	*work)
1302 {
1303 	unsigned int		nofs_flags = memalloc_nofs_save();
1304 	struct xfs_cil_ctx	*ctx =
1305 		container_of(work, struct xfs_cil_ctx, push_work);
1306 	struct xfs_cil		*cil = ctx->cil;
1307 	struct xlog		*log = cil->xc_log;
1308 	struct xfs_cil_ctx	*new_ctx;
1309 	int			num_iovecs = 0;
1310 	int			num_bytes = 0;
1311 	int			error = 0;
1312 	struct xlog_cil_trans_hdr thdr;
1313 	struct xfs_log_vec	lvhdr = {};
1314 	xfs_csn_t		push_seq;
1315 	bool			push_commit_stable;
1316 	LIST_HEAD		(whiteouts);
1317 	struct xlog_ticket	*ticket;
1318 
1319 	new_ctx = xlog_cil_ctx_alloc();
1320 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
1321 
1322 	down_write(&cil->xc_ctx_lock);
1323 
1324 	spin_lock(&cil->xc_push_lock);
1325 	push_seq = cil->xc_push_seq;
1326 	ASSERT(push_seq <= ctx->sequence);
1327 	push_commit_stable = cil->xc_push_commit_stable;
1328 	cil->xc_push_commit_stable = false;
1329 
1330 	/*
1331 	 * As we are about to switch to a new, empty CIL context, we no longer
1332 	 * need to throttle tasks on CIL space overruns. Wake any waiters that
1333 	 * the hard push throttle may have caught so they can start committing
1334 	 * to the new context. The ctx->xc_push_lock provides the serialisation
1335 	 * necessary for safely using the lockless waitqueue_active() check in
1336 	 * this context.
1337 	 */
1338 	if (waitqueue_active(&cil->xc_push_wait))
1339 		wake_up_all(&cil->xc_push_wait);
1340 
1341 	xlog_cil_push_pcp_aggregate(cil, ctx);
1342 
1343 	/*
1344 	 * Check if we've anything to push. If there is nothing, then we don't
1345 	 * move on to a new sequence number and so we have to be able to push
1346 	 * this sequence again later.
1347 	 */
1348 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1349 		cil->xc_push_seq = 0;
1350 		spin_unlock(&cil->xc_push_lock);
1351 		goto out_skip;
1352 	}
1353 
1354 
1355 	/* check for a previously pushed sequence */
1356 	if (push_seq < ctx->sequence) {
1357 		spin_unlock(&cil->xc_push_lock);
1358 		goto out_skip;
1359 	}
1360 
1361 	/*
1362 	 * We are now going to push this context, so add it to the committing
1363 	 * list before we do anything else. This ensures that anyone waiting on
1364 	 * this push can easily detect the difference between a "push in
1365 	 * progress" and "CIL is empty, nothing to do".
1366 	 *
1367 	 * IOWs, a wait loop can now check for:
1368 	 *	the current sequence not being found on the committing list;
1369 	 *	an empty CIL; and
1370 	 *	an unchanged sequence number
1371 	 * to detect a push that had nothing to do and therefore does not need
1372 	 * waiting on. If the CIL is not empty, we get put on the committing
1373 	 * list before emptying the CIL and bumping the sequence number. Hence
1374 	 * an empty CIL and an unchanged sequence number means we jumped out
1375 	 * above after doing nothing.
1376 	 *
1377 	 * Hence the waiter will either find the commit sequence on the
1378 	 * committing list or the sequence number will be unchanged and the CIL
1379 	 * still dirty. In that latter case, the push has not yet started, and
1380 	 * so the waiter will have to continue trying to check the CIL
1381 	 * committing list until it is found. In extreme cases of delay, the
1382 	 * sequence may fully commit between the attempts the wait makes to wait
1383 	 * on the commit sequence.
1384 	 */
1385 	list_add(&ctx->committing, &cil->xc_committing);
1386 	spin_unlock(&cil->xc_push_lock);
1387 
1388 	xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes);
1389 
1390 	/*
1391 	 * Switch the contexts so we can drop the context lock and move out
1392 	 * of a shared context. We can't just go straight to the commit record,
1393 	 * though - we need to synchronise with previous and future commits so
1394 	 * that the commit records are correctly ordered in the log to ensure
1395 	 * that we process items during log IO completion in the correct order.
1396 	 *
1397 	 * For example, if we get an EFI in one checkpoint and the EFD in the
1398 	 * next (e.g. due to log forces), we do not want the checkpoint with
1399 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
1400 	 * we must strictly order the commit records of the checkpoints so
1401 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
1402 	 * correct order; and b) the checkpoints are replayed in correct order
1403 	 * in log recovery.
1404 	 *
1405 	 * Hence we need to add this context to the committing context list so
1406 	 * that higher sequences will wait for us to write out a commit record
1407 	 * before they do.
1408 	 *
1409 	 * xfs_log_force_seq requires us to mirror the new sequence into the cil
1410 	 * structure atomically with the addition of this sequence to the
1411 	 * committing list. This also ensures that we can do unlocked checks
1412 	 * against the current sequence in log forces without risking
1413 	 * deferencing a freed context pointer.
1414 	 */
1415 	spin_lock(&cil->xc_push_lock);
1416 	xlog_cil_ctx_switch(cil, new_ctx);
1417 	spin_unlock(&cil->xc_push_lock);
1418 	up_write(&cil->xc_ctx_lock);
1419 
1420 	/*
1421 	 * Sort the log vector chain before we add the transaction headers.
1422 	 * This ensures we always have the transaction headers at the start
1423 	 * of the chain.
1424 	 */
1425 	list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp);
1426 
1427 	/*
1428 	 * Build a checkpoint transaction header and write it to the log to
1429 	 * begin the transaction. We need to account for the space used by the
1430 	 * transaction header here as it is not accounted for in xlog_write().
1431 	 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so
1432 	 * it gets written into the iclog first.
1433 	 */
1434 	xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs);
1435 	num_bytes += lvhdr.lv_bytes;
1436 	list_add(&lvhdr.lv_list, &ctx->lv_chain);
1437 
1438 	/*
1439 	 * Take the lvhdr back off the lv_chain immediately after calling
1440 	 * xlog_cil_write_chain() as it should not be passed to log IO
1441 	 * completion.
1442 	 */
1443 	error = xlog_cil_write_chain(ctx, num_bytes);
1444 	list_del(&lvhdr.lv_list);
1445 	if (error)
1446 		goto out_abort_free_ticket;
1447 
1448 	error = xlog_cil_write_commit_record(ctx);
1449 	if (error)
1450 		goto out_abort_free_ticket;
1451 
1452 	/*
1453 	 * Grab the ticket from the ctx so we can ungrant it after releasing the
1454 	 * commit_iclog. The ctx may be freed by the time we return from
1455 	 * releasing the commit_iclog (i.e. checkpoint has been completed and
1456 	 * callback run) so we can't reference the ctx after the call to
1457 	 * xlog_state_release_iclog().
1458 	 */
1459 	ticket = ctx->ticket;
1460 
1461 	/*
1462 	 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
1463 	 * to complete before we submit the commit_iclog. We can't use state
1464 	 * checks for this - ACTIVE can be either a past completed iclog or a
1465 	 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
1466 	 * past or future iclog awaiting IO or ordered IO completion to be run.
1467 	 * In the latter case, if it's a future iclog and we wait on it, the we
1468 	 * will hang because it won't get processed through to ic_force_wait
1469 	 * wakeup until this commit_iclog is written to disk.  Hence we use the
1470 	 * iclog header lsn and compare it to the commit lsn to determine if we
1471 	 * need to wait on iclogs or not.
1472 	 */
1473 	spin_lock(&log->l_icloglock);
1474 	if (ctx->start_lsn != ctx->commit_lsn) {
1475 		xfs_lsn_t	plsn;
1476 
1477 		plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn);
1478 		if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) {
1479 			/*
1480 			 * Waiting on ic_force_wait orders the completion of
1481 			 * iclogs older than ic_prev. Hence we only need to wait
1482 			 * on the most recent older iclog here.
1483 			 */
1484 			xlog_wait_on_iclog(ctx->commit_iclog->ic_prev);
1485 			spin_lock(&log->l_icloglock);
1486 		}
1487 
1488 		/*
1489 		 * We need to issue a pre-flush so that the ordering for this
1490 		 * checkpoint is correctly preserved down to stable storage.
1491 		 */
1492 		ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
1493 	}
1494 
1495 	/*
1496 	 * The commit iclog must be written to stable storage to guarantee
1497 	 * journal IO vs metadata writeback IO is correctly ordered on stable
1498 	 * storage.
1499 	 *
1500 	 * If the push caller needs the commit to be immediately stable and the
1501 	 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it
1502 	 * will be written when released, switch it's state to WANT_SYNC right
1503 	 * now.
1504 	 */
1505 	ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
1506 	if (push_commit_stable &&
1507 	    ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE)
1508 		xlog_state_switch_iclogs(log, ctx->commit_iclog, 0);
1509 	ticket = ctx->ticket;
1510 	xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1511 
1512 	/* Not safe to reference ctx now! */
1513 
1514 	spin_unlock(&log->l_icloglock);
1515 	xlog_cil_cleanup_whiteouts(&whiteouts);
1516 	xfs_log_ticket_ungrant(log, ticket);
1517 	memalloc_nofs_restore(nofs_flags);
1518 	return;
1519 
1520 out_skip:
1521 	up_write(&cil->xc_ctx_lock);
1522 	xfs_log_ticket_put(new_ctx->ticket);
1523 	kfree(new_ctx);
1524 	memalloc_nofs_restore(nofs_flags);
1525 	return;
1526 
1527 out_abort_free_ticket:
1528 	ASSERT(xlog_is_shutdown(log));
1529 	xlog_cil_cleanup_whiteouts(&whiteouts);
1530 	if (!ctx->commit_iclog) {
1531 		xfs_log_ticket_ungrant(log, ctx->ticket);
1532 		xlog_cil_committed(ctx);
1533 		memalloc_nofs_restore(nofs_flags);
1534 		return;
1535 	}
1536 	spin_lock(&log->l_icloglock);
1537 	ticket = ctx->ticket;
1538 	xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1539 	/* Not safe to reference ctx now! */
1540 	spin_unlock(&log->l_icloglock);
1541 	xfs_log_ticket_ungrant(log, ticket);
1542 	memalloc_nofs_restore(nofs_flags);
1543 }
1544 
1545 /*
1546  * We need to push CIL every so often so we don't cache more than we can fit in
1547  * the log. The limit really is that a checkpoint can't be more than half the
1548  * log (the current checkpoint is not allowed to overwrite the previous
1549  * checkpoint), but commit latency and memory usage limit this to a smaller
1550  * size.
1551  */
1552 static void
1553 xlog_cil_push_background(
1554 	struct xlog	*log)
1555 {
1556 	struct xfs_cil	*cil = log->l_cilp;
1557 	int		space_used = atomic_read(&cil->xc_ctx->space_used);
1558 
1559 	/*
1560 	 * The cil won't be empty because we are called while holding the
1561 	 * context lock so whatever we added to the CIL will still be there.
1562 	 */
1563 	ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1564 
1565 	/*
1566 	 * We are done if:
1567 	 * - we haven't used up all the space available yet; or
1568 	 * - we've already queued up a push; and
1569 	 * - we're not over the hard limit; and
1570 	 * - nothing has been over the hard limit.
1571 	 *
1572 	 * If so, we don't need to take the push lock as there's nothing to do.
1573 	 */
1574 	if (space_used < XLOG_CIL_SPACE_LIMIT(log) ||
1575 	    (cil->xc_push_seq == cil->xc_current_sequence &&
1576 	     space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) &&
1577 	     !waitqueue_active(&cil->xc_push_wait))) {
1578 		up_read(&cil->xc_ctx_lock);
1579 		return;
1580 	}
1581 
1582 	spin_lock(&cil->xc_push_lock);
1583 	if (cil->xc_push_seq < cil->xc_current_sequence) {
1584 		cil->xc_push_seq = cil->xc_current_sequence;
1585 		queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1586 	}
1587 
1588 	/*
1589 	 * Drop the context lock now, we can't hold that if we need to sleep
1590 	 * because we are over the blocking threshold. The push_lock is still
1591 	 * held, so blocking threshold sleep/wakeup is still correctly
1592 	 * serialised here.
1593 	 */
1594 	up_read(&cil->xc_ctx_lock);
1595 
1596 	/*
1597 	 * If we are well over the space limit, throttle the work that is being
1598 	 * done until the push work on this context has begun. Enforce the hard
1599 	 * throttle on all transaction commits once it has been activated, even
1600 	 * if the committing transactions have resulted in the space usage
1601 	 * dipping back down under the hard limit.
1602 	 *
1603 	 * The ctx->xc_push_lock provides the serialisation necessary for safely
1604 	 * calling xlog_cil_over_hard_limit() in this context.
1605 	 */
1606 	if (xlog_cil_over_hard_limit(log, space_used)) {
1607 		trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1608 		ASSERT(space_used < log->l_logsize);
1609 		xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1610 		return;
1611 	}
1612 
1613 	spin_unlock(&cil->xc_push_lock);
1614 
1615 }
1616 
1617 /*
1618  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1619  * number that is passed. When it returns, the work will be queued for
1620  * @push_seq, but it won't be completed.
1621  *
1622  * If the caller is performing a synchronous force, we will flush the workqueue
1623  * to get previously queued work moving to minimise the wait time they will
1624  * undergo waiting for all outstanding pushes to complete. The caller is
1625  * expected to do the required waiting for push_seq to complete.
1626  *
1627  * If the caller is performing an async push, we need to ensure that the
1628  * checkpoint is fully flushed out of the iclogs when we finish the push. If we
1629  * don't do this, then the commit record may remain sitting in memory in an
1630  * ACTIVE iclog. This then requires another full log force to push to disk,
1631  * which defeats the purpose of having an async, non-blocking CIL force
1632  * mechanism. Hence in this case we need to pass a flag to the push work to
1633  * indicate it needs to flush the commit record itself.
1634  */
1635 static void
1636 xlog_cil_push_now(
1637 	struct xlog	*log,
1638 	xfs_lsn_t	push_seq,
1639 	bool		async)
1640 {
1641 	struct xfs_cil	*cil = log->l_cilp;
1642 
1643 	if (!cil)
1644 		return;
1645 
1646 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1647 
1648 	/* start on any pending background push to minimise wait time on it */
1649 	if (!async)
1650 		flush_workqueue(cil->xc_push_wq);
1651 
1652 	spin_lock(&cil->xc_push_lock);
1653 
1654 	/*
1655 	 * If this is an async flush request, we always need to set the
1656 	 * xc_push_commit_stable flag even if something else has already queued
1657 	 * a push. The flush caller is asking for the CIL to be on stable
1658 	 * storage when the next push completes, so regardless of who has queued
1659 	 * the push, the flush requires stable semantics from it.
1660 	 */
1661 	cil->xc_push_commit_stable = async;
1662 
1663 	/*
1664 	 * If the CIL is empty or we've already pushed the sequence then
1665 	 * there's no more work that we need to do.
1666 	 */
1667 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) ||
1668 	    push_seq <= cil->xc_push_seq) {
1669 		spin_unlock(&cil->xc_push_lock);
1670 		return;
1671 	}
1672 
1673 	cil->xc_push_seq = push_seq;
1674 	queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1675 	spin_unlock(&cil->xc_push_lock);
1676 }
1677 
1678 bool
1679 xlog_cil_empty(
1680 	struct xlog	*log)
1681 {
1682 	struct xfs_cil	*cil = log->l_cilp;
1683 	bool		empty = false;
1684 
1685 	spin_lock(&cil->xc_push_lock);
1686 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
1687 		empty = true;
1688 	spin_unlock(&cil->xc_push_lock);
1689 	return empty;
1690 }
1691 
1692 /*
1693  * If there are intent done items in this transaction and the related intent was
1694  * committed in the current (same) CIL checkpoint, we don't need to write either
1695  * the intent or intent done item to the journal as the change will be
1696  * journalled atomically within this checkpoint. As we cannot remove items from
1697  * the CIL here, mark the related intent with a whiteout so that the CIL push
1698  * can remove it rather than writing it to the journal. Then remove the intent
1699  * done item from the current transaction and release it so it doesn't get put
1700  * into the CIL at all.
1701  */
1702 static uint32_t
1703 xlog_cil_process_intents(
1704 	struct xfs_cil		*cil,
1705 	struct xfs_trans	*tp)
1706 {
1707 	struct xfs_log_item	*lip, *ilip, *next;
1708 	uint32_t		len = 0;
1709 
1710 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1711 		if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE))
1712 			continue;
1713 
1714 		ilip = lip->li_ops->iop_intent(lip);
1715 		if (!ilip || !xlog_item_in_current_chkpt(cil, ilip))
1716 			continue;
1717 		set_bit(XFS_LI_WHITEOUT, &ilip->li_flags);
1718 		trace_xfs_cil_whiteout_mark(ilip);
1719 		len += ilip->li_lv->lv_bytes;
1720 		kvfree(ilip->li_lv);
1721 		ilip->li_lv = NULL;
1722 
1723 		xfs_trans_del_item(lip);
1724 		lip->li_ops->iop_release(lip);
1725 	}
1726 	return len;
1727 }
1728 
1729 /*
1730  * Commit a transaction with the given vector to the Committed Item List.
1731  *
1732  * To do this, we need to format the item, pin it in memory if required and
1733  * account for the space used by the transaction. Once we have done that we
1734  * need to release the unused reservation for the transaction, attach the
1735  * transaction to the checkpoint context so we carry the busy extents through
1736  * to checkpoint completion, and then unlock all the items in the transaction.
1737  *
1738  * Called with the context lock already held in read mode to lock out
1739  * background commit, returns without it held once background commits are
1740  * allowed again.
1741  */
1742 void
1743 xlog_cil_commit(
1744 	struct xlog		*log,
1745 	struct xfs_trans	*tp,
1746 	xfs_csn_t		*commit_seq,
1747 	bool			regrant)
1748 {
1749 	struct xfs_cil		*cil = log->l_cilp;
1750 	struct xfs_log_item	*lip, *next;
1751 	uint32_t		released_space = 0;
1752 
1753 	/*
1754 	 * Do all necessary memory allocation before we lock the CIL.
1755 	 * This ensures the allocation does not deadlock with a CIL
1756 	 * push in memory reclaim (e.g. from kswapd).
1757 	 */
1758 	xlog_cil_alloc_shadow_bufs(log, tp);
1759 
1760 	/* lock out background commit */
1761 	down_read(&cil->xc_ctx_lock);
1762 
1763 	if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE)
1764 		released_space = xlog_cil_process_intents(cil, tp);
1765 
1766 	xlog_cil_insert_items(log, tp, released_space);
1767 
1768 	if (regrant && !xlog_is_shutdown(log))
1769 		xfs_log_ticket_regrant(log, tp->t_ticket);
1770 	else
1771 		xfs_log_ticket_ungrant(log, tp->t_ticket);
1772 	tp->t_ticket = NULL;
1773 	xfs_trans_unreserve_and_mod_sb(tp);
1774 
1775 	/*
1776 	 * Once all the items of the transaction have been copied to the CIL,
1777 	 * the items can be unlocked and possibly freed.
1778 	 *
1779 	 * This needs to be done before we drop the CIL context lock because we
1780 	 * have to update state in the log items and unlock them before they go
1781 	 * to disk. If we don't, then the CIL checkpoint can race with us and
1782 	 * we can run checkpoint completion before we've updated and unlocked
1783 	 * the log items. This affects (at least) processing of stale buffers,
1784 	 * inodes and EFIs.
1785 	 */
1786 	trace_xfs_trans_commit_items(tp, _RET_IP_);
1787 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1788 		xfs_trans_del_item(lip);
1789 		if (lip->li_ops->iop_committing)
1790 			lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1791 	}
1792 	if (commit_seq)
1793 		*commit_seq = cil->xc_ctx->sequence;
1794 
1795 	/* xlog_cil_push_background() releases cil->xc_ctx_lock */
1796 	xlog_cil_push_background(log);
1797 }
1798 
1799 /*
1800  * Flush the CIL to stable storage but don't wait for it to complete. This
1801  * requires the CIL push to ensure the commit record for the push hits the disk,
1802  * but otherwise is no different to a push done from a log force.
1803  */
1804 void
1805 xlog_cil_flush(
1806 	struct xlog	*log)
1807 {
1808 	xfs_csn_t	seq = log->l_cilp->xc_current_sequence;
1809 
1810 	trace_xfs_log_force(log->l_mp, seq, _RET_IP_);
1811 	xlog_cil_push_now(log, seq, true);
1812 
1813 	/*
1814 	 * If the CIL is empty, make sure that any previous checkpoint that may
1815 	 * still be in an active iclog is pushed to stable storage.
1816 	 */
1817 	if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags))
1818 		xfs_log_force(log->l_mp, 0);
1819 }
1820 
1821 /*
1822  * Conditionally push the CIL based on the sequence passed in.
1823  *
1824  * We only need to push if we haven't already pushed the sequence number given.
1825  * Hence the only time we will trigger a push here is if the push sequence is
1826  * the same as the current context.
1827  *
1828  * We return the current commit lsn to allow the callers to determine if a
1829  * iclog flush is necessary following this call.
1830  */
1831 xfs_lsn_t
1832 xlog_cil_force_seq(
1833 	struct xlog	*log,
1834 	xfs_csn_t	sequence)
1835 {
1836 	struct xfs_cil		*cil = log->l_cilp;
1837 	struct xfs_cil_ctx	*ctx;
1838 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1839 
1840 	ASSERT(sequence <= cil->xc_current_sequence);
1841 
1842 	if (!sequence)
1843 		sequence = cil->xc_current_sequence;
1844 	trace_xfs_log_force(log->l_mp, sequence, _RET_IP_);
1845 
1846 	/*
1847 	 * check to see if we need to force out the current context.
1848 	 * xlog_cil_push() handles racing pushes for the same sequence,
1849 	 * so no need to deal with it here.
1850 	 */
1851 restart:
1852 	xlog_cil_push_now(log, sequence, false);
1853 
1854 	/*
1855 	 * See if we can find a previous sequence still committing.
1856 	 * We need to wait for all previous sequence commits to complete
1857 	 * before allowing the force of push_seq to go ahead. Hence block
1858 	 * on commits for those as well.
1859 	 */
1860 	spin_lock(&cil->xc_push_lock);
1861 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1862 		/*
1863 		 * Avoid getting stuck in this loop because we were woken by the
1864 		 * shutdown, but then went back to sleep once already in the
1865 		 * shutdown state.
1866 		 */
1867 		if (xlog_is_shutdown(log))
1868 			goto out_shutdown;
1869 		if (ctx->sequence > sequence)
1870 			continue;
1871 		if (!ctx->commit_lsn) {
1872 			/*
1873 			 * It is still being pushed! Wait for the push to
1874 			 * complete, then start again from the beginning.
1875 			 */
1876 			XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
1877 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1878 			goto restart;
1879 		}
1880 		if (ctx->sequence != sequence)
1881 			continue;
1882 		/* found it! */
1883 		commit_lsn = ctx->commit_lsn;
1884 	}
1885 
1886 	/*
1887 	 * The call to xlog_cil_push_now() executes the push in the background.
1888 	 * Hence by the time we have got here it our sequence may not have been
1889 	 * pushed yet. This is true if the current sequence still matches the
1890 	 * push sequence after the above wait loop and the CIL still contains
1891 	 * dirty objects. This is guaranteed by the push code first adding the
1892 	 * context to the committing list before emptying the CIL.
1893 	 *
1894 	 * Hence if we don't find the context in the committing list and the
1895 	 * current sequence number is unchanged then the CIL contents are
1896 	 * significant.  If the CIL is empty, if means there was nothing to push
1897 	 * and that means there is nothing to wait for. If the CIL is not empty,
1898 	 * it means we haven't yet started the push, because if it had started
1899 	 * we would have found the context on the committing list.
1900 	 */
1901 	if (sequence == cil->xc_current_sequence &&
1902 	    !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1903 		spin_unlock(&cil->xc_push_lock);
1904 		goto restart;
1905 	}
1906 
1907 	spin_unlock(&cil->xc_push_lock);
1908 	return commit_lsn;
1909 
1910 	/*
1911 	 * We detected a shutdown in progress. We need to trigger the log force
1912 	 * to pass through it's iclog state machine error handling, even though
1913 	 * we are already in a shutdown state. Hence we can't return
1914 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1915 	 * LSN is already stable), so we return a zero LSN instead.
1916 	 */
1917 out_shutdown:
1918 	spin_unlock(&cil->xc_push_lock);
1919 	return 0;
1920 }
1921 
1922 /*
1923  * Perform initial CIL structure initialisation.
1924  */
1925 int
1926 xlog_cil_init(
1927 	struct xlog		*log)
1928 {
1929 	struct xfs_cil		*cil;
1930 	struct xfs_cil_ctx	*ctx;
1931 	struct xlog_cil_pcp	*cilpcp;
1932 	int			cpu;
1933 
1934 	cil = kzalloc(sizeof(*cil), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1935 	if (!cil)
1936 		return -ENOMEM;
1937 	/*
1938 	 * Limit the CIL pipeline depth to 4 concurrent works to bound the
1939 	 * concurrency the log spinlocks will be exposed to.
1940 	 */
1941 	cil->xc_push_wq = alloc_workqueue("xfs-cil/%s",
1942 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND),
1943 			4, log->l_mp->m_super->s_id);
1944 	if (!cil->xc_push_wq)
1945 		goto out_destroy_cil;
1946 
1947 	cil->xc_log = log;
1948 	cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp);
1949 	if (!cil->xc_pcp)
1950 		goto out_destroy_wq;
1951 
1952 	for_each_possible_cpu(cpu) {
1953 		cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
1954 		INIT_LIST_HEAD(&cilpcp->busy_extents);
1955 		INIT_LIST_HEAD(&cilpcp->log_items);
1956 	}
1957 
1958 	INIT_LIST_HEAD(&cil->xc_committing);
1959 	spin_lock_init(&cil->xc_push_lock);
1960 	init_waitqueue_head(&cil->xc_push_wait);
1961 	init_rwsem(&cil->xc_ctx_lock);
1962 	init_waitqueue_head(&cil->xc_start_wait);
1963 	init_waitqueue_head(&cil->xc_commit_wait);
1964 	log->l_cilp = cil;
1965 
1966 	ctx = xlog_cil_ctx_alloc();
1967 	xlog_cil_ctx_switch(cil, ctx);
1968 	return 0;
1969 
1970 out_destroy_wq:
1971 	destroy_workqueue(cil->xc_push_wq);
1972 out_destroy_cil:
1973 	kfree(cil);
1974 	return -ENOMEM;
1975 }
1976 
1977 void
1978 xlog_cil_destroy(
1979 	struct xlog	*log)
1980 {
1981 	struct xfs_cil	*cil = log->l_cilp;
1982 
1983 	if (cil->xc_ctx) {
1984 		if (cil->xc_ctx->ticket)
1985 			xfs_log_ticket_put(cil->xc_ctx->ticket);
1986 		kfree(cil->xc_ctx);
1987 	}
1988 
1989 	ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1990 	free_percpu(cil->xc_pcp);
1991 	destroy_workqueue(cil->xc_push_wq);
1992 	kfree(cil);
1993 }
1994 
1995