xref: /linux/fs/xfs/xfs_log_cil.c (revision 3f374d7972c48bc0824bdabb8f94fe82e54fd07d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4  */
5 
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_extent_busy.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_log.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trace.h"
19 
20 struct workqueue_struct *xfs_discard_wq;
21 
22 /*
23  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
24  * recover, so we don't allow failure here. Also, we allocate in a context that
25  * we don't want to be issuing transactions from, so we need to tell the
26  * allocation code this as well.
27  *
28  * We don't reserve any space for the ticket - we are going to steal whatever
29  * space we require from transactions as they commit. To ensure we reserve all
30  * the space required, we need to set the current reservation of the ticket to
31  * zero so that we know to steal the initial transaction overhead from the
32  * first transaction commit.
33  */
34 static struct xlog_ticket *
35 xlog_cil_ticket_alloc(
36 	struct xlog	*log)
37 {
38 	struct xlog_ticket *tic;
39 
40 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0);
41 
42 	/*
43 	 * set the current reservation to zero so we know to steal the basic
44 	 * transaction overhead reservation from the first transaction commit.
45 	 */
46 	tic->t_curr_res = 0;
47 	return tic;
48 }
49 
50 /*
51  * Unavoidable forward declaration - xlog_cil_push_work() calls
52  * xlog_cil_ctx_alloc() itself.
53  */
54 static void xlog_cil_push_work(struct work_struct *work);
55 
56 static struct xfs_cil_ctx *
57 xlog_cil_ctx_alloc(void)
58 {
59 	struct xfs_cil_ctx	*ctx;
60 
61 	ctx = kmem_zalloc(sizeof(*ctx), KM_NOFS);
62 	INIT_LIST_HEAD(&ctx->committing);
63 	INIT_LIST_HEAD(&ctx->busy_extents);
64 	INIT_WORK(&ctx->push_work, xlog_cil_push_work);
65 	return ctx;
66 }
67 
68 static void
69 xlog_cil_ctx_switch(
70 	struct xfs_cil		*cil,
71 	struct xfs_cil_ctx	*ctx)
72 {
73 	ctx->sequence = ++cil->xc_current_sequence;
74 	ctx->cil = cil;
75 	cil->xc_ctx = ctx;
76 }
77 
78 /*
79  * After the first stage of log recovery is done, we know where the head and
80  * tail of the log are. We need this log initialisation done before we can
81  * initialise the first CIL checkpoint context.
82  *
83  * Here we allocate a log ticket to track space usage during a CIL push.  This
84  * ticket is passed to xlog_write() directly so that we don't slowly leak log
85  * space by failing to account for space used by log headers and additional
86  * region headers for split regions.
87  */
88 void
89 xlog_cil_init_post_recovery(
90 	struct xlog	*log)
91 {
92 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
93 	log->l_cilp->xc_ctx->sequence = 1;
94 }
95 
96 static inline int
97 xlog_cil_iovec_space(
98 	uint	niovecs)
99 {
100 	return round_up((sizeof(struct xfs_log_vec) +
101 					niovecs * sizeof(struct xfs_log_iovec)),
102 			sizeof(uint64_t));
103 }
104 
105 /*
106  * shadow buffers can be large, so we need to use kvmalloc() here to ensure
107  * success. Unfortunately, kvmalloc() only allows GFP_KERNEL contexts to fall
108  * back to vmalloc, so we can't actually do anything useful with gfp flags to
109  * control the kmalloc() behaviour within kvmalloc(). Hence kmalloc() will do
110  * direct reclaim and compaction in the slow path, both of which are
111  * horrendously expensive. We just want kmalloc to fail fast and fall back to
112  * vmalloc if it can't get somethign straight away from the free lists or buddy
113  * allocator. Hence we have to open code kvmalloc outselves here.
114  *
115  * Also, we are in memalloc_nofs_save task context here, so despite the use of
116  * GFP_KERNEL here, we are actually going to be doing GFP_NOFS allocations. This
117  * is actually the only way to make vmalloc() do GFP_NOFS allocations, so lets
118  * just all pretend this is a GFP_KERNEL context operation....
119  */
120 static inline void *
121 xlog_cil_kvmalloc(
122 	size_t		buf_size)
123 {
124 	gfp_t		flags = GFP_KERNEL;
125 	void		*p;
126 
127 	flags &= ~__GFP_DIRECT_RECLAIM;
128 	flags |= __GFP_NOWARN | __GFP_NORETRY;
129 	do {
130 		p = kmalloc(buf_size, flags);
131 		if (!p)
132 			p = vmalloc(buf_size);
133 	} while (!p);
134 
135 	return p;
136 }
137 
138 /*
139  * Allocate or pin log vector buffers for CIL insertion.
140  *
141  * The CIL currently uses disposable buffers for copying a snapshot of the
142  * modified items into the log during a push. The biggest problem with this is
143  * the requirement to allocate the disposable buffer during the commit if:
144  *	a) does not exist; or
145  *	b) it is too small
146  *
147  * If we do this allocation within xlog_cil_insert_format_items(), it is done
148  * under the xc_ctx_lock, which means that a CIL push cannot occur during
149  * the memory allocation. This means that we have a potential deadlock situation
150  * under low memory conditions when we have lots of dirty metadata pinned in
151  * the CIL and we need a CIL commit to occur to free memory.
152  *
153  * To avoid this, we need to move the memory allocation outside the
154  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
155  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
156  * vector buffers between the check and the formatting of the item into the
157  * log vector buffer within the xc_ctx_lock.
158  *
159  * Because the log vector buffer needs to be unchanged during the CIL push
160  * process, we cannot share the buffer between the transaction commit (which
161  * modifies the buffer) and the CIL push context that is writing the changes
162  * into the log. This means skipping preallocation of buffer space is
163  * unreliable, but we most definitely do not want to be allocating and freeing
164  * buffers unnecessarily during commits when overwrites can be done safely.
165  *
166  * The simplest solution to this problem is to allocate a shadow buffer when a
167  * log item is committed for the second time, and then to only use this buffer
168  * if necessary. The buffer can remain attached to the log item until such time
169  * it is needed, and this is the buffer that is reallocated to match the size of
170  * the incoming modification. Then during the formatting of the item we can swap
171  * the active buffer with the new one if we can't reuse the existing buffer. We
172  * don't free the old buffer as it may be reused on the next modification if
173  * it's size is right, otherwise we'll free and reallocate it at that point.
174  *
175  * This function builds a vector for the changes in each log item in the
176  * transaction. It then works out the length of the buffer needed for each log
177  * item, allocates them and attaches the vector to the log item in preparation
178  * for the formatting step which occurs under the xc_ctx_lock.
179  *
180  * While this means the memory footprint goes up, it avoids the repeated
181  * alloc/free pattern that repeated modifications of an item would otherwise
182  * cause, and hence minimises the CPU overhead of such behaviour.
183  */
184 static void
185 xlog_cil_alloc_shadow_bufs(
186 	struct xlog		*log,
187 	struct xfs_trans	*tp)
188 {
189 	struct xfs_log_item	*lip;
190 
191 	list_for_each_entry(lip, &tp->t_items, li_trans) {
192 		struct xfs_log_vec *lv;
193 		int	niovecs = 0;
194 		int	nbytes = 0;
195 		int	buf_size;
196 		bool	ordered = false;
197 
198 		/* Skip items which aren't dirty in this transaction. */
199 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
200 			continue;
201 
202 		/* get number of vecs and size of data to be stored */
203 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
204 
205 		/*
206 		 * Ordered items need to be tracked but we do not wish to write
207 		 * them. We need a logvec to track the object, but we do not
208 		 * need an iovec or buffer to be allocated for copying data.
209 		 */
210 		if (niovecs == XFS_LOG_VEC_ORDERED) {
211 			ordered = true;
212 			niovecs = 0;
213 			nbytes = 0;
214 		}
215 
216 		/*
217 		 * We 64-bit align the length of each iovec so that the start
218 		 * of the next one is naturally aligned.  We'll need to
219 		 * account for that slack space here. Then round nbytes up
220 		 * to 64-bit alignment so that the initial buffer alignment is
221 		 * easy to calculate and verify.
222 		 */
223 		nbytes += niovecs * sizeof(uint64_t);
224 		nbytes = round_up(nbytes, sizeof(uint64_t));
225 
226 		/*
227 		 * The data buffer needs to start 64-bit aligned, so round up
228 		 * that space to ensure we can align it appropriately and not
229 		 * overrun the buffer.
230 		 */
231 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
232 
233 		/*
234 		 * if we have no shadow buffer, or it is too small, we need to
235 		 * reallocate it.
236 		 */
237 		if (!lip->li_lv_shadow ||
238 		    buf_size > lip->li_lv_shadow->lv_size) {
239 			/*
240 			 * We free and allocate here as a realloc would copy
241 			 * unnecessary data. We don't use kvzalloc() for the
242 			 * same reason - we don't need to zero the data area in
243 			 * the buffer, only the log vector header and the iovec
244 			 * storage.
245 			 */
246 			kmem_free(lip->li_lv_shadow);
247 			lv = xlog_cil_kvmalloc(buf_size);
248 
249 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
250 
251 			lv->lv_item = lip;
252 			lv->lv_size = buf_size;
253 			if (ordered)
254 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
255 			else
256 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
257 			lip->li_lv_shadow = lv;
258 		} else {
259 			/* same or smaller, optimise common overwrite case */
260 			lv = lip->li_lv_shadow;
261 			if (ordered)
262 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
263 			else
264 				lv->lv_buf_len = 0;
265 			lv->lv_bytes = 0;
266 			lv->lv_next = NULL;
267 		}
268 
269 		/* Ensure the lv is set up according to ->iop_size */
270 		lv->lv_niovecs = niovecs;
271 
272 		/* The allocated data region lies beyond the iovec region */
273 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
274 	}
275 
276 }
277 
278 /*
279  * Prepare the log item for insertion into the CIL. Calculate the difference in
280  * log space and vectors it will consume, and if it is a new item pin it as
281  * well.
282  */
283 STATIC void
284 xfs_cil_prepare_item(
285 	struct xlog		*log,
286 	struct xfs_log_vec	*lv,
287 	struct xfs_log_vec	*old_lv,
288 	int			*diff_len,
289 	int			*diff_iovecs)
290 {
291 	/* Account for the new LV being passed in */
292 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
293 		*diff_len += lv->lv_bytes;
294 		*diff_iovecs += lv->lv_niovecs;
295 	}
296 
297 	/*
298 	 * If there is no old LV, this is the first time we've seen the item in
299 	 * this CIL context and so we need to pin it. If we are replacing the
300 	 * old_lv, then remove the space it accounts for and make it the shadow
301 	 * buffer for later freeing. In both cases we are now switching to the
302 	 * shadow buffer, so update the pointer to it appropriately.
303 	 */
304 	if (!old_lv) {
305 		if (lv->lv_item->li_ops->iop_pin)
306 			lv->lv_item->li_ops->iop_pin(lv->lv_item);
307 		lv->lv_item->li_lv_shadow = NULL;
308 	} else if (old_lv != lv) {
309 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
310 
311 		*diff_len -= old_lv->lv_bytes;
312 		*diff_iovecs -= old_lv->lv_niovecs;
313 		lv->lv_item->li_lv_shadow = old_lv;
314 	}
315 
316 	/* attach new log vector to log item */
317 	lv->lv_item->li_lv = lv;
318 
319 	/*
320 	 * If this is the first time the item is being committed to the
321 	 * CIL, store the sequence number on the log item so we can
322 	 * tell in future commits whether this is the first checkpoint
323 	 * the item is being committed into.
324 	 */
325 	if (!lv->lv_item->li_seq)
326 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
327 }
328 
329 /*
330  * Format log item into a flat buffers
331  *
332  * For delayed logging, we need to hold a formatted buffer containing all the
333  * changes on the log item. This enables us to relog the item in memory and
334  * write it out asynchronously without needing to relock the object that was
335  * modified at the time it gets written into the iclog.
336  *
337  * This function takes the prepared log vectors attached to each log item, and
338  * formats the changes into the log vector buffer. The buffer it uses is
339  * dependent on the current state of the vector in the CIL - the shadow lv is
340  * guaranteed to be large enough for the current modification, but we will only
341  * use that if we can't reuse the existing lv. If we can't reuse the existing
342  * lv, then simple swap it out for the shadow lv. We don't free it - that is
343  * done lazily either by th enext modification or the freeing of the log item.
344  *
345  * We don't set up region headers during this process; we simply copy the
346  * regions into the flat buffer. We can do this because we still have to do a
347  * formatting step to write the regions into the iclog buffer.  Writing the
348  * ophdrs during the iclog write means that we can support splitting large
349  * regions across iclog boundares without needing a change in the format of the
350  * item/region encapsulation.
351  *
352  * Hence what we need to do now is change the rewrite the vector array to point
353  * to the copied region inside the buffer we just allocated. This allows us to
354  * format the regions into the iclog as though they are being formatted
355  * directly out of the objects themselves.
356  */
357 static void
358 xlog_cil_insert_format_items(
359 	struct xlog		*log,
360 	struct xfs_trans	*tp,
361 	int			*diff_len,
362 	int			*diff_iovecs)
363 {
364 	struct xfs_log_item	*lip;
365 
366 
367 	/* Bail out if we didn't find a log item.  */
368 	if (list_empty(&tp->t_items)) {
369 		ASSERT(0);
370 		return;
371 	}
372 
373 	list_for_each_entry(lip, &tp->t_items, li_trans) {
374 		struct xfs_log_vec *lv;
375 		struct xfs_log_vec *old_lv = NULL;
376 		struct xfs_log_vec *shadow;
377 		bool	ordered = false;
378 
379 		/* Skip items which aren't dirty in this transaction. */
380 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
381 			continue;
382 
383 		/*
384 		 * The formatting size information is already attached to
385 		 * the shadow lv on the log item.
386 		 */
387 		shadow = lip->li_lv_shadow;
388 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
389 			ordered = true;
390 
391 		/* Skip items that do not have any vectors for writing */
392 		if (!shadow->lv_niovecs && !ordered)
393 			continue;
394 
395 		/* compare to existing item size */
396 		old_lv = lip->li_lv;
397 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
398 			/* same or smaller, optimise common overwrite case */
399 			lv = lip->li_lv;
400 			lv->lv_next = NULL;
401 
402 			if (ordered)
403 				goto insert;
404 
405 			/*
406 			 * set the item up as though it is a new insertion so
407 			 * that the space reservation accounting is correct.
408 			 */
409 			*diff_iovecs -= lv->lv_niovecs;
410 			*diff_len -= lv->lv_bytes;
411 
412 			/* Ensure the lv is set up according to ->iop_size */
413 			lv->lv_niovecs = shadow->lv_niovecs;
414 
415 			/* reset the lv buffer information for new formatting */
416 			lv->lv_buf_len = 0;
417 			lv->lv_bytes = 0;
418 			lv->lv_buf = (char *)lv +
419 					xlog_cil_iovec_space(lv->lv_niovecs);
420 		} else {
421 			/* switch to shadow buffer! */
422 			lv = shadow;
423 			lv->lv_item = lip;
424 			if (ordered) {
425 				/* track as an ordered logvec */
426 				ASSERT(lip->li_lv == NULL);
427 				goto insert;
428 			}
429 		}
430 
431 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
432 		lip->li_ops->iop_format(lip, lv);
433 insert:
434 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
435 	}
436 }
437 
438 /*
439  * Insert the log items into the CIL and calculate the difference in space
440  * consumed by the item. Add the space to the checkpoint ticket and calculate
441  * if the change requires additional log metadata. If it does, take that space
442  * as well. Remove the amount of space we added to the checkpoint ticket from
443  * the current transaction ticket so that the accounting works out correctly.
444  */
445 static void
446 xlog_cil_insert_items(
447 	struct xlog		*log,
448 	struct xfs_trans	*tp)
449 {
450 	struct xfs_cil		*cil = log->l_cilp;
451 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
452 	struct xfs_log_item	*lip;
453 	int			len = 0;
454 	int			diff_iovecs = 0;
455 	int			iclog_space;
456 	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
457 
458 	ASSERT(tp);
459 
460 	/*
461 	 * We can do this safely because the context can't checkpoint until we
462 	 * are done so it doesn't matter exactly how we update the CIL.
463 	 */
464 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
465 
466 	spin_lock(&cil->xc_cil_lock);
467 
468 	/* account for space used by new iovec headers  */
469 	iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t);
470 	len += iovhdr_res;
471 	ctx->nvecs += diff_iovecs;
472 
473 	/* attach the transaction to the CIL if it has any busy extents */
474 	if (!list_empty(&tp->t_busy))
475 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
476 
477 	/*
478 	 * Now transfer enough transaction reservation to the context ticket
479 	 * for the checkpoint. The context ticket is special - the unit
480 	 * reservation has to grow as well as the current reservation as we
481 	 * steal from tickets so we can correctly determine the space used
482 	 * during the transaction commit.
483 	 */
484 	if (ctx->ticket->t_curr_res == 0) {
485 		ctx_res = ctx->ticket->t_unit_res;
486 		ctx->ticket->t_curr_res = ctx_res;
487 		tp->t_ticket->t_curr_res -= ctx_res;
488 	}
489 
490 	/* do we need space for more log record headers? */
491 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
492 	if (len > 0 && (ctx->space_used / iclog_space !=
493 				(ctx->space_used + len) / iclog_space)) {
494 		split_res = (len + iclog_space - 1) / iclog_space;
495 		/* need to take into account split region headers, too */
496 		split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
497 		ctx->ticket->t_unit_res += split_res;
498 		ctx->ticket->t_curr_res += split_res;
499 		tp->t_ticket->t_curr_res -= split_res;
500 		ASSERT(tp->t_ticket->t_curr_res >= len);
501 	}
502 	tp->t_ticket->t_curr_res -= len;
503 	ctx->space_used += len;
504 
505 	/*
506 	 * If we've overrun the reservation, dump the tx details before we move
507 	 * the log items. Shutdown is imminent...
508 	 */
509 	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
510 		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
511 		xfs_warn(log->l_mp,
512 			 "  log items: %d bytes (iov hdrs: %d bytes)",
513 			 len, iovhdr_res);
514 		xfs_warn(log->l_mp, "  split region headers: %d bytes",
515 			 split_res);
516 		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
517 		xlog_print_trans(tp);
518 	}
519 
520 	/*
521 	 * Now (re-)position everything modified at the tail of the CIL.
522 	 * We do this here so we only need to take the CIL lock once during
523 	 * the transaction commit.
524 	 */
525 	list_for_each_entry(lip, &tp->t_items, li_trans) {
526 
527 		/* Skip items which aren't dirty in this transaction. */
528 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
529 			continue;
530 
531 		/*
532 		 * Only move the item if it isn't already at the tail. This is
533 		 * to prevent a transient list_empty() state when reinserting
534 		 * an item that is already the only item in the CIL.
535 		 */
536 		if (!list_is_last(&lip->li_cil, &cil->xc_cil))
537 			list_move_tail(&lip->li_cil, &cil->xc_cil);
538 	}
539 
540 	spin_unlock(&cil->xc_cil_lock);
541 
542 	if (tp->t_ticket->t_curr_res < 0)
543 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
544 }
545 
546 static void
547 xlog_cil_free_logvec(
548 	struct xfs_log_vec	*log_vector)
549 {
550 	struct xfs_log_vec	*lv;
551 
552 	for (lv = log_vector; lv; ) {
553 		struct xfs_log_vec *next = lv->lv_next;
554 		kmem_free(lv);
555 		lv = next;
556 	}
557 }
558 
559 static void
560 xlog_discard_endio_work(
561 	struct work_struct	*work)
562 {
563 	struct xfs_cil_ctx	*ctx =
564 		container_of(work, struct xfs_cil_ctx, discard_endio_work);
565 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
566 
567 	xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
568 	kmem_free(ctx);
569 }
570 
571 /*
572  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
573  * pagb_lock.  Note that we need a unbounded workqueue, otherwise we might
574  * get the execution delayed up to 30 seconds for weird reasons.
575  */
576 static void
577 xlog_discard_endio(
578 	struct bio		*bio)
579 {
580 	struct xfs_cil_ctx	*ctx = bio->bi_private;
581 
582 	INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
583 	queue_work(xfs_discard_wq, &ctx->discard_endio_work);
584 	bio_put(bio);
585 }
586 
587 static void
588 xlog_discard_busy_extents(
589 	struct xfs_mount	*mp,
590 	struct xfs_cil_ctx	*ctx)
591 {
592 	struct list_head	*list = &ctx->busy_extents;
593 	struct xfs_extent_busy	*busyp;
594 	struct bio		*bio = NULL;
595 	struct blk_plug		plug;
596 	int			error = 0;
597 
598 	ASSERT(xfs_has_discard(mp));
599 
600 	blk_start_plug(&plug);
601 	list_for_each_entry(busyp, list, list) {
602 		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
603 					 busyp->length);
604 
605 		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
606 				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
607 				XFS_FSB_TO_BB(mp, busyp->length),
608 				GFP_NOFS, 0, &bio);
609 		if (error && error != -EOPNOTSUPP) {
610 			xfs_info(mp,
611 	 "discard failed for extent [0x%llx,%u], error %d",
612 				 (unsigned long long)busyp->bno,
613 				 busyp->length,
614 				 error);
615 			break;
616 		}
617 	}
618 
619 	if (bio) {
620 		bio->bi_private = ctx;
621 		bio->bi_end_io = xlog_discard_endio;
622 		submit_bio(bio);
623 	} else {
624 		xlog_discard_endio_work(&ctx->discard_endio_work);
625 	}
626 	blk_finish_plug(&plug);
627 }
628 
629 /*
630  * Mark all items committed and clear busy extents. We free the log vector
631  * chains in a separate pass so that we unpin the log items as quickly as
632  * possible.
633  */
634 static void
635 xlog_cil_committed(
636 	struct xfs_cil_ctx	*ctx)
637 {
638 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
639 	bool			abort = xlog_is_shutdown(ctx->cil->xc_log);
640 
641 	/*
642 	 * If the I/O failed, we're aborting the commit and already shutdown.
643 	 * Wake any commit waiters before aborting the log items so we don't
644 	 * block async log pushers on callbacks. Async log pushers explicitly do
645 	 * not wait on log force completion because they may be holding locks
646 	 * required to unpin items.
647 	 */
648 	if (abort) {
649 		spin_lock(&ctx->cil->xc_push_lock);
650 		wake_up_all(&ctx->cil->xc_start_wait);
651 		wake_up_all(&ctx->cil->xc_commit_wait);
652 		spin_unlock(&ctx->cil->xc_push_lock);
653 	}
654 
655 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
656 					ctx->start_lsn, abort);
657 
658 	xfs_extent_busy_sort(&ctx->busy_extents);
659 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
660 			      xfs_has_discard(mp) && !abort);
661 
662 	spin_lock(&ctx->cil->xc_push_lock);
663 	list_del(&ctx->committing);
664 	spin_unlock(&ctx->cil->xc_push_lock);
665 
666 	xlog_cil_free_logvec(ctx->lv_chain);
667 
668 	if (!list_empty(&ctx->busy_extents))
669 		xlog_discard_busy_extents(mp, ctx);
670 	else
671 		kmem_free(ctx);
672 }
673 
674 void
675 xlog_cil_process_committed(
676 	struct list_head	*list)
677 {
678 	struct xfs_cil_ctx	*ctx;
679 
680 	while ((ctx = list_first_entry_or_null(list,
681 			struct xfs_cil_ctx, iclog_entry))) {
682 		list_del(&ctx->iclog_entry);
683 		xlog_cil_committed(ctx);
684 	}
685 }
686 
687 /*
688 * Record the LSN of the iclog we were just granted space to start writing into.
689 * If the context doesn't have a start_lsn recorded, then this iclog will
690 * contain the start record for the checkpoint. Otherwise this write contains
691 * the commit record for the checkpoint.
692 */
693 void
694 xlog_cil_set_ctx_write_state(
695 	struct xfs_cil_ctx	*ctx,
696 	struct xlog_in_core	*iclog)
697 {
698 	struct xfs_cil		*cil = ctx->cil;
699 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
700 
701 	ASSERT(!ctx->commit_lsn);
702 	if (!ctx->start_lsn) {
703 		spin_lock(&cil->xc_push_lock);
704 		/*
705 		 * The LSN we need to pass to the log items on transaction
706 		 * commit is the LSN reported by the first log vector write, not
707 		 * the commit lsn. If we use the commit record lsn then we can
708 		 * move the grant write head beyond the tail LSN and overwrite
709 		 * it.
710 		 */
711 		ctx->start_lsn = lsn;
712 		wake_up_all(&cil->xc_start_wait);
713 		spin_unlock(&cil->xc_push_lock);
714 
715 		/*
716 		 * Make sure the metadata we are about to overwrite in the log
717 		 * has been flushed to stable storage before this iclog is
718 		 * issued.
719 		 */
720 		spin_lock(&cil->xc_log->l_icloglock);
721 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
722 		spin_unlock(&cil->xc_log->l_icloglock);
723 		return;
724 	}
725 
726 	/*
727 	 * Take a reference to the iclog for the context so that we still hold
728 	 * it when xlog_write is done and has released it. This means the
729 	 * context controls when the iclog is released for IO.
730 	 */
731 	atomic_inc(&iclog->ic_refcnt);
732 
733 	/*
734 	 * xlog_state_get_iclog_space() guarantees there is enough space in the
735 	 * iclog for an entire commit record, so we can attach the context
736 	 * callbacks now.  This needs to be done before we make the commit_lsn
737 	 * visible to waiters so that checkpoints with commit records in the
738 	 * same iclog order their IO completion callbacks in the same order that
739 	 * the commit records appear in the iclog.
740 	 */
741 	spin_lock(&cil->xc_log->l_icloglock);
742 	list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks);
743 	spin_unlock(&cil->xc_log->l_icloglock);
744 
745 	/*
746 	 * Now we can record the commit LSN and wake anyone waiting for this
747 	 * sequence to have the ordered commit record assigned to a physical
748 	 * location in the log.
749 	 */
750 	spin_lock(&cil->xc_push_lock);
751 	ctx->commit_iclog = iclog;
752 	ctx->commit_lsn = lsn;
753 	wake_up_all(&cil->xc_commit_wait);
754 	spin_unlock(&cil->xc_push_lock);
755 }
756 
757 
758 /*
759  * Ensure that the order of log writes follows checkpoint sequence order. This
760  * relies on the context LSN being zero until the log write has guaranteed the
761  * LSN that the log write will start at via xlog_state_get_iclog_space().
762  */
763 enum _record_type {
764 	_START_RECORD,
765 	_COMMIT_RECORD,
766 };
767 
768 static int
769 xlog_cil_order_write(
770 	struct xfs_cil		*cil,
771 	xfs_csn_t		sequence,
772 	enum _record_type	record)
773 {
774 	struct xfs_cil_ctx	*ctx;
775 
776 restart:
777 	spin_lock(&cil->xc_push_lock);
778 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
779 		/*
780 		 * Avoid getting stuck in this loop because we were woken by the
781 		 * shutdown, but then went back to sleep once already in the
782 		 * shutdown state.
783 		 */
784 		if (xlog_is_shutdown(cil->xc_log)) {
785 			spin_unlock(&cil->xc_push_lock);
786 			return -EIO;
787 		}
788 
789 		/*
790 		 * Higher sequences will wait for this one so skip them.
791 		 * Don't wait for our own sequence, either.
792 		 */
793 		if (ctx->sequence >= sequence)
794 			continue;
795 
796 		/* Wait until the LSN for the record has been recorded. */
797 		switch (record) {
798 		case _START_RECORD:
799 			if (!ctx->start_lsn) {
800 				xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock);
801 				goto restart;
802 			}
803 			break;
804 		case _COMMIT_RECORD:
805 			if (!ctx->commit_lsn) {
806 				xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
807 				goto restart;
808 			}
809 			break;
810 		}
811 	}
812 	spin_unlock(&cil->xc_push_lock);
813 	return 0;
814 }
815 
816 /*
817  * Write out the log vector change now attached to the CIL context. This will
818  * write a start record that needs to be strictly ordered in ascending CIL
819  * sequence order so that log recovery will always use in-order start LSNs when
820  * replaying checkpoints.
821  */
822 static int
823 xlog_cil_write_chain(
824 	struct xfs_cil_ctx	*ctx,
825 	struct xfs_log_vec	*chain)
826 {
827 	struct xlog		*log = ctx->cil->xc_log;
828 	int			error;
829 
830 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD);
831 	if (error)
832 		return error;
833 	return xlog_write(log, ctx, chain, ctx->ticket, XLOG_START_TRANS);
834 }
835 
836 /*
837  * Write out the commit record of a checkpoint transaction to close off a
838  * running log write. These commit records are strictly ordered in ascending CIL
839  * sequence order so that log recovery will always replay the checkpoints in the
840  * correct order.
841  */
842 static int
843 xlog_cil_write_commit_record(
844 	struct xfs_cil_ctx	*ctx)
845 {
846 	struct xlog		*log = ctx->cil->xc_log;
847 	struct xfs_log_iovec	reg = {
848 		.i_addr = NULL,
849 		.i_len = 0,
850 		.i_type = XLOG_REG_TYPE_COMMIT,
851 	};
852 	struct xfs_log_vec	vec = {
853 		.lv_niovecs = 1,
854 		.lv_iovecp = &reg,
855 	};
856 	int			error;
857 
858 	if (xlog_is_shutdown(log))
859 		return -EIO;
860 
861 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD);
862 	if (error)
863 		return error;
864 
865 	error = xlog_write(log, ctx, &vec, ctx->ticket, XLOG_COMMIT_TRANS);
866 	if (error)
867 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
868 	return error;
869 }
870 
871 /*
872  * Push the Committed Item List to the log.
873  *
874  * If the current sequence is the same as xc_push_seq we need to do a flush. If
875  * xc_push_seq is less than the current sequence, then it has already been
876  * flushed and we don't need to do anything - the caller will wait for it to
877  * complete if necessary.
878  *
879  * xc_push_seq is checked unlocked against the sequence number for a match.
880  * Hence we can allow log forces to run racily and not issue pushes for the
881  * same sequence twice.  If we get a race between multiple pushes for the same
882  * sequence they will block on the first one and then abort, hence avoiding
883  * needless pushes.
884  */
885 static void
886 xlog_cil_push_work(
887 	struct work_struct	*work)
888 {
889 	struct xfs_cil_ctx	*ctx =
890 		container_of(work, struct xfs_cil_ctx, push_work);
891 	struct xfs_cil		*cil = ctx->cil;
892 	struct xlog		*log = cil->xc_log;
893 	struct xfs_log_vec	*lv;
894 	struct xfs_cil_ctx	*new_ctx;
895 	struct xlog_ticket	*tic;
896 	int			num_iovecs;
897 	int			error = 0;
898 	struct xfs_trans_header thdr;
899 	struct xfs_log_iovec	lhdr;
900 	struct xfs_log_vec	lvhdr = { NULL };
901 	xfs_csn_t		push_seq;
902 	bool			push_commit_stable;
903 
904 	new_ctx = xlog_cil_ctx_alloc();
905 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
906 
907 	down_write(&cil->xc_ctx_lock);
908 
909 	spin_lock(&cil->xc_push_lock);
910 	push_seq = cil->xc_push_seq;
911 	ASSERT(push_seq <= ctx->sequence);
912 	push_commit_stable = cil->xc_push_commit_stable;
913 	cil->xc_push_commit_stable = false;
914 
915 	/*
916 	 * As we are about to switch to a new, empty CIL context, we no longer
917 	 * need to throttle tasks on CIL space overruns. Wake any waiters that
918 	 * the hard push throttle may have caught so they can start committing
919 	 * to the new context. The ctx->xc_push_lock provides the serialisation
920 	 * necessary for safely using the lockless waitqueue_active() check in
921 	 * this context.
922 	 */
923 	if (waitqueue_active(&cil->xc_push_wait))
924 		wake_up_all(&cil->xc_push_wait);
925 
926 	/*
927 	 * Check if we've anything to push. If there is nothing, then we don't
928 	 * move on to a new sequence number and so we have to be able to push
929 	 * this sequence again later.
930 	 */
931 	if (list_empty(&cil->xc_cil)) {
932 		cil->xc_push_seq = 0;
933 		spin_unlock(&cil->xc_push_lock);
934 		goto out_skip;
935 	}
936 
937 
938 	/* check for a previously pushed sequence */
939 	if (push_seq < ctx->sequence) {
940 		spin_unlock(&cil->xc_push_lock);
941 		goto out_skip;
942 	}
943 
944 	/*
945 	 * We are now going to push this context, so add it to the committing
946 	 * list before we do anything else. This ensures that anyone waiting on
947 	 * this push can easily detect the difference between a "push in
948 	 * progress" and "CIL is empty, nothing to do".
949 	 *
950 	 * IOWs, a wait loop can now check for:
951 	 *	the current sequence not being found on the committing list;
952 	 *	an empty CIL; and
953 	 *	an unchanged sequence number
954 	 * to detect a push that had nothing to do and therefore does not need
955 	 * waiting on. If the CIL is not empty, we get put on the committing
956 	 * list before emptying the CIL and bumping the sequence number. Hence
957 	 * an empty CIL and an unchanged sequence number means we jumped out
958 	 * above after doing nothing.
959 	 *
960 	 * Hence the waiter will either find the commit sequence on the
961 	 * committing list or the sequence number will be unchanged and the CIL
962 	 * still dirty. In that latter case, the push has not yet started, and
963 	 * so the waiter will have to continue trying to check the CIL
964 	 * committing list until it is found. In extreme cases of delay, the
965 	 * sequence may fully commit between the attempts the wait makes to wait
966 	 * on the commit sequence.
967 	 */
968 	list_add(&ctx->committing, &cil->xc_committing);
969 	spin_unlock(&cil->xc_push_lock);
970 
971 	/*
972 	 * Pull all the log vectors off the items in the CIL, and remove the
973 	 * items from the CIL. We don't need the CIL lock here because it's only
974 	 * needed on the transaction commit side which is currently locked out
975 	 * by the flush lock.
976 	 */
977 	lv = NULL;
978 	num_iovecs = 0;
979 	while (!list_empty(&cil->xc_cil)) {
980 		struct xfs_log_item	*item;
981 
982 		item = list_first_entry(&cil->xc_cil,
983 					struct xfs_log_item, li_cil);
984 		list_del_init(&item->li_cil);
985 		if (!ctx->lv_chain)
986 			ctx->lv_chain = item->li_lv;
987 		else
988 			lv->lv_next = item->li_lv;
989 		lv = item->li_lv;
990 		item->li_lv = NULL;
991 		num_iovecs += lv->lv_niovecs;
992 	}
993 
994 	/*
995 	 * Switch the contexts so we can drop the context lock and move out
996 	 * of a shared context. We can't just go straight to the commit record,
997 	 * though - we need to synchronise with previous and future commits so
998 	 * that the commit records are correctly ordered in the log to ensure
999 	 * that we process items during log IO completion in the correct order.
1000 	 *
1001 	 * For example, if we get an EFI in one checkpoint and the EFD in the
1002 	 * next (e.g. due to log forces), we do not want the checkpoint with
1003 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
1004 	 * we must strictly order the commit records of the checkpoints so
1005 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
1006 	 * correct order; and b) the checkpoints are replayed in correct order
1007 	 * in log recovery.
1008 	 *
1009 	 * Hence we need to add this context to the committing context list so
1010 	 * that higher sequences will wait for us to write out a commit record
1011 	 * before they do.
1012 	 *
1013 	 * xfs_log_force_seq requires us to mirror the new sequence into the cil
1014 	 * structure atomically with the addition of this sequence to the
1015 	 * committing list. This also ensures that we can do unlocked checks
1016 	 * against the current sequence in log forces without risking
1017 	 * deferencing a freed context pointer.
1018 	 */
1019 	spin_lock(&cil->xc_push_lock);
1020 	xlog_cil_ctx_switch(cil, new_ctx);
1021 	spin_unlock(&cil->xc_push_lock);
1022 	up_write(&cil->xc_ctx_lock);
1023 
1024 	/*
1025 	 * Build a checkpoint transaction header and write it to the log to
1026 	 * begin the transaction. We need to account for the space used by the
1027 	 * transaction header here as it is not accounted for in xlog_write().
1028 	 *
1029 	 * The LSN we need to pass to the log items on transaction commit is
1030 	 * the LSN reported by the first log vector write. If we use the commit
1031 	 * record lsn then we can move the tail beyond the grant write head.
1032 	 */
1033 	tic = ctx->ticket;
1034 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
1035 	thdr.th_type = XFS_TRANS_CHECKPOINT;
1036 	thdr.th_tid = tic->t_tid;
1037 	thdr.th_num_items = num_iovecs;
1038 	lhdr.i_addr = &thdr;
1039 	lhdr.i_len = sizeof(xfs_trans_header_t);
1040 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
1041 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
1042 
1043 	lvhdr.lv_niovecs = 1;
1044 	lvhdr.lv_iovecp = &lhdr;
1045 	lvhdr.lv_next = ctx->lv_chain;
1046 
1047 	error = xlog_cil_write_chain(ctx, &lvhdr);
1048 	if (error)
1049 		goto out_abort_free_ticket;
1050 
1051 	error = xlog_cil_write_commit_record(ctx);
1052 	if (error)
1053 		goto out_abort_free_ticket;
1054 
1055 	xfs_log_ticket_ungrant(log, tic);
1056 
1057 	/*
1058 	 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
1059 	 * to complete before we submit the commit_iclog. We can't use state
1060 	 * checks for this - ACTIVE can be either a past completed iclog or a
1061 	 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
1062 	 * past or future iclog awaiting IO or ordered IO completion to be run.
1063 	 * In the latter case, if it's a future iclog and we wait on it, the we
1064 	 * will hang because it won't get processed through to ic_force_wait
1065 	 * wakeup until this commit_iclog is written to disk.  Hence we use the
1066 	 * iclog header lsn and compare it to the commit lsn to determine if we
1067 	 * need to wait on iclogs or not.
1068 	 */
1069 	spin_lock(&log->l_icloglock);
1070 	if (ctx->start_lsn != ctx->commit_lsn) {
1071 		xfs_lsn_t	plsn;
1072 
1073 		plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn);
1074 		if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) {
1075 			/*
1076 			 * Waiting on ic_force_wait orders the completion of
1077 			 * iclogs older than ic_prev. Hence we only need to wait
1078 			 * on the most recent older iclog here.
1079 			 */
1080 			xlog_wait_on_iclog(ctx->commit_iclog->ic_prev);
1081 			spin_lock(&log->l_icloglock);
1082 		}
1083 
1084 		/*
1085 		 * We need to issue a pre-flush so that the ordering for this
1086 		 * checkpoint is correctly preserved down to stable storage.
1087 		 */
1088 		ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
1089 	}
1090 
1091 	/*
1092 	 * The commit iclog must be written to stable storage to guarantee
1093 	 * journal IO vs metadata writeback IO is correctly ordered on stable
1094 	 * storage.
1095 	 *
1096 	 * If the push caller needs the commit to be immediately stable and the
1097 	 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it
1098 	 * will be written when released, switch it's state to WANT_SYNC right
1099 	 * now.
1100 	 */
1101 	ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
1102 	if (push_commit_stable &&
1103 	    ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE)
1104 		xlog_state_switch_iclogs(log, ctx->commit_iclog, 0);
1105 	xlog_state_release_iclog(log, ctx->commit_iclog);
1106 
1107 	/* Not safe to reference ctx now! */
1108 
1109 	spin_unlock(&log->l_icloglock);
1110 	return;
1111 
1112 out_skip:
1113 	up_write(&cil->xc_ctx_lock);
1114 	xfs_log_ticket_put(new_ctx->ticket);
1115 	kmem_free(new_ctx);
1116 	return;
1117 
1118 out_abort_free_ticket:
1119 	xfs_log_ticket_ungrant(log, tic);
1120 	ASSERT(xlog_is_shutdown(log));
1121 	if (!ctx->commit_iclog) {
1122 		xlog_cil_committed(ctx);
1123 		return;
1124 	}
1125 	spin_lock(&log->l_icloglock);
1126 	xlog_state_release_iclog(log, ctx->commit_iclog);
1127 	/* Not safe to reference ctx now! */
1128 	spin_unlock(&log->l_icloglock);
1129 }
1130 
1131 /*
1132  * We need to push CIL every so often so we don't cache more than we can fit in
1133  * the log. The limit really is that a checkpoint can't be more than half the
1134  * log (the current checkpoint is not allowed to overwrite the previous
1135  * checkpoint), but commit latency and memory usage limit this to a smaller
1136  * size.
1137  */
1138 static void
1139 xlog_cil_push_background(
1140 	struct xlog	*log) __releases(cil->xc_ctx_lock)
1141 {
1142 	struct xfs_cil	*cil = log->l_cilp;
1143 
1144 	/*
1145 	 * The cil won't be empty because we are called while holding the
1146 	 * context lock so whatever we added to the CIL will still be there
1147 	 */
1148 	ASSERT(!list_empty(&cil->xc_cil));
1149 
1150 	/*
1151 	 * Don't do a background push if we haven't used up all the
1152 	 * space available yet.
1153 	 */
1154 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) {
1155 		up_read(&cil->xc_ctx_lock);
1156 		return;
1157 	}
1158 
1159 	spin_lock(&cil->xc_push_lock);
1160 	if (cil->xc_push_seq < cil->xc_current_sequence) {
1161 		cil->xc_push_seq = cil->xc_current_sequence;
1162 		queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1163 	}
1164 
1165 	/*
1166 	 * Drop the context lock now, we can't hold that if we need to sleep
1167 	 * because we are over the blocking threshold. The push_lock is still
1168 	 * held, so blocking threshold sleep/wakeup is still correctly
1169 	 * serialised here.
1170 	 */
1171 	up_read(&cil->xc_ctx_lock);
1172 
1173 	/*
1174 	 * If we are well over the space limit, throttle the work that is being
1175 	 * done until the push work on this context has begun. Enforce the hard
1176 	 * throttle on all transaction commits once it has been activated, even
1177 	 * if the committing transactions have resulted in the space usage
1178 	 * dipping back down under the hard limit.
1179 	 *
1180 	 * The ctx->xc_push_lock provides the serialisation necessary for safely
1181 	 * using the lockless waitqueue_active() check in this context.
1182 	 */
1183 	if (cil->xc_ctx->space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log) ||
1184 	    waitqueue_active(&cil->xc_push_wait)) {
1185 		trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1186 		ASSERT(cil->xc_ctx->space_used < log->l_logsize);
1187 		xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1188 		return;
1189 	}
1190 
1191 	spin_unlock(&cil->xc_push_lock);
1192 
1193 }
1194 
1195 /*
1196  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1197  * number that is passed. When it returns, the work will be queued for
1198  * @push_seq, but it won't be completed.
1199  *
1200  * If the caller is performing a synchronous force, we will flush the workqueue
1201  * to get previously queued work moving to minimise the wait time they will
1202  * undergo waiting for all outstanding pushes to complete. The caller is
1203  * expected to do the required waiting for push_seq to complete.
1204  *
1205  * If the caller is performing an async push, we need to ensure that the
1206  * checkpoint is fully flushed out of the iclogs when we finish the push. If we
1207  * don't do this, then the commit record may remain sitting in memory in an
1208  * ACTIVE iclog. This then requires another full log force to push to disk,
1209  * which defeats the purpose of having an async, non-blocking CIL force
1210  * mechanism. Hence in this case we need to pass a flag to the push work to
1211  * indicate it needs to flush the commit record itself.
1212  */
1213 static void
1214 xlog_cil_push_now(
1215 	struct xlog	*log,
1216 	xfs_lsn_t	push_seq,
1217 	bool		async)
1218 {
1219 	struct xfs_cil	*cil = log->l_cilp;
1220 
1221 	if (!cil)
1222 		return;
1223 
1224 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1225 
1226 	/* start on any pending background push to minimise wait time on it */
1227 	if (!async)
1228 		flush_workqueue(cil->xc_push_wq);
1229 
1230 	spin_lock(&cil->xc_push_lock);
1231 
1232 	/*
1233 	 * If this is an async flush request, we always need to set the
1234 	 * xc_push_commit_stable flag even if something else has already queued
1235 	 * a push. The flush caller is asking for the CIL to be on stable
1236 	 * storage when the next push completes, so regardless of who has queued
1237 	 * the push, the flush requires stable semantics from it.
1238 	 */
1239 	cil->xc_push_commit_stable = async;
1240 
1241 	/*
1242 	 * If the CIL is empty or we've already pushed the sequence then
1243 	 * there's no more work that we need to do.
1244 	 */
1245 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
1246 		spin_unlock(&cil->xc_push_lock);
1247 		return;
1248 	}
1249 
1250 	cil->xc_push_seq = push_seq;
1251 	queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1252 	spin_unlock(&cil->xc_push_lock);
1253 }
1254 
1255 bool
1256 xlog_cil_empty(
1257 	struct xlog	*log)
1258 {
1259 	struct xfs_cil	*cil = log->l_cilp;
1260 	bool		empty = false;
1261 
1262 	spin_lock(&cil->xc_push_lock);
1263 	if (list_empty(&cil->xc_cil))
1264 		empty = true;
1265 	spin_unlock(&cil->xc_push_lock);
1266 	return empty;
1267 }
1268 
1269 /*
1270  * Commit a transaction with the given vector to the Committed Item List.
1271  *
1272  * To do this, we need to format the item, pin it in memory if required and
1273  * account for the space used by the transaction. Once we have done that we
1274  * need to release the unused reservation for the transaction, attach the
1275  * transaction to the checkpoint context so we carry the busy extents through
1276  * to checkpoint completion, and then unlock all the items in the transaction.
1277  *
1278  * Called with the context lock already held in read mode to lock out
1279  * background commit, returns without it held once background commits are
1280  * allowed again.
1281  */
1282 void
1283 xlog_cil_commit(
1284 	struct xlog		*log,
1285 	struct xfs_trans	*tp,
1286 	xfs_csn_t		*commit_seq,
1287 	bool			regrant)
1288 {
1289 	struct xfs_cil		*cil = log->l_cilp;
1290 	struct xfs_log_item	*lip, *next;
1291 
1292 	/*
1293 	 * Do all necessary memory allocation before we lock the CIL.
1294 	 * This ensures the allocation does not deadlock with a CIL
1295 	 * push in memory reclaim (e.g. from kswapd).
1296 	 */
1297 	xlog_cil_alloc_shadow_bufs(log, tp);
1298 
1299 	/* lock out background commit */
1300 	down_read(&cil->xc_ctx_lock);
1301 
1302 	xlog_cil_insert_items(log, tp);
1303 
1304 	if (regrant && !xlog_is_shutdown(log))
1305 		xfs_log_ticket_regrant(log, tp->t_ticket);
1306 	else
1307 		xfs_log_ticket_ungrant(log, tp->t_ticket);
1308 	tp->t_ticket = NULL;
1309 	xfs_trans_unreserve_and_mod_sb(tp);
1310 
1311 	/*
1312 	 * Once all the items of the transaction have been copied to the CIL,
1313 	 * the items can be unlocked and possibly freed.
1314 	 *
1315 	 * This needs to be done before we drop the CIL context lock because we
1316 	 * have to update state in the log items and unlock them before they go
1317 	 * to disk. If we don't, then the CIL checkpoint can race with us and
1318 	 * we can run checkpoint completion before we've updated and unlocked
1319 	 * the log items. This affects (at least) processing of stale buffers,
1320 	 * inodes and EFIs.
1321 	 */
1322 	trace_xfs_trans_commit_items(tp, _RET_IP_);
1323 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1324 		xfs_trans_del_item(lip);
1325 		if (lip->li_ops->iop_committing)
1326 			lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1327 	}
1328 	if (commit_seq)
1329 		*commit_seq = cil->xc_ctx->sequence;
1330 
1331 	/* xlog_cil_push_background() releases cil->xc_ctx_lock */
1332 	xlog_cil_push_background(log);
1333 }
1334 
1335 /*
1336  * Flush the CIL to stable storage but don't wait for it to complete. This
1337  * requires the CIL push to ensure the commit record for the push hits the disk,
1338  * but otherwise is no different to a push done from a log force.
1339  */
1340 void
1341 xlog_cil_flush(
1342 	struct xlog	*log)
1343 {
1344 	xfs_csn_t	seq = log->l_cilp->xc_current_sequence;
1345 
1346 	trace_xfs_log_force(log->l_mp, seq, _RET_IP_);
1347 	xlog_cil_push_now(log, seq, true);
1348 
1349 	/*
1350 	 * If the CIL is empty, make sure that any previous checkpoint that may
1351 	 * still be in an active iclog is pushed to stable storage.
1352 	 */
1353 	if (list_empty(&log->l_cilp->xc_cil))
1354 		xfs_log_force(log->l_mp, 0);
1355 }
1356 
1357 /*
1358  * Conditionally push the CIL based on the sequence passed in.
1359  *
1360  * We only need to push if we haven't already pushed the sequence number given.
1361  * Hence the only time we will trigger a push here is if the push sequence is
1362  * the same as the current context.
1363  *
1364  * We return the current commit lsn to allow the callers to determine if a
1365  * iclog flush is necessary following this call.
1366  */
1367 xfs_lsn_t
1368 xlog_cil_force_seq(
1369 	struct xlog	*log,
1370 	xfs_csn_t	sequence)
1371 {
1372 	struct xfs_cil		*cil = log->l_cilp;
1373 	struct xfs_cil_ctx	*ctx;
1374 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1375 
1376 	ASSERT(sequence <= cil->xc_current_sequence);
1377 
1378 	if (!sequence)
1379 		sequence = cil->xc_current_sequence;
1380 	trace_xfs_log_force(log->l_mp, sequence, _RET_IP_);
1381 
1382 	/*
1383 	 * check to see if we need to force out the current context.
1384 	 * xlog_cil_push() handles racing pushes for the same sequence,
1385 	 * so no need to deal with it here.
1386 	 */
1387 restart:
1388 	xlog_cil_push_now(log, sequence, false);
1389 
1390 	/*
1391 	 * See if we can find a previous sequence still committing.
1392 	 * We need to wait for all previous sequence commits to complete
1393 	 * before allowing the force of push_seq to go ahead. Hence block
1394 	 * on commits for those as well.
1395 	 */
1396 	spin_lock(&cil->xc_push_lock);
1397 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1398 		/*
1399 		 * Avoid getting stuck in this loop because we were woken by the
1400 		 * shutdown, but then went back to sleep once already in the
1401 		 * shutdown state.
1402 		 */
1403 		if (xlog_is_shutdown(log))
1404 			goto out_shutdown;
1405 		if (ctx->sequence > sequence)
1406 			continue;
1407 		if (!ctx->commit_lsn) {
1408 			/*
1409 			 * It is still being pushed! Wait for the push to
1410 			 * complete, then start again from the beginning.
1411 			 */
1412 			XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
1413 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1414 			goto restart;
1415 		}
1416 		if (ctx->sequence != sequence)
1417 			continue;
1418 		/* found it! */
1419 		commit_lsn = ctx->commit_lsn;
1420 	}
1421 
1422 	/*
1423 	 * The call to xlog_cil_push_now() executes the push in the background.
1424 	 * Hence by the time we have got here it our sequence may not have been
1425 	 * pushed yet. This is true if the current sequence still matches the
1426 	 * push sequence after the above wait loop and the CIL still contains
1427 	 * dirty objects. This is guaranteed by the push code first adding the
1428 	 * context to the committing list before emptying the CIL.
1429 	 *
1430 	 * Hence if we don't find the context in the committing list and the
1431 	 * current sequence number is unchanged then the CIL contents are
1432 	 * significant.  If the CIL is empty, if means there was nothing to push
1433 	 * and that means there is nothing to wait for. If the CIL is not empty,
1434 	 * it means we haven't yet started the push, because if it had started
1435 	 * we would have found the context on the committing list.
1436 	 */
1437 	if (sequence == cil->xc_current_sequence &&
1438 	    !list_empty(&cil->xc_cil)) {
1439 		spin_unlock(&cil->xc_push_lock);
1440 		goto restart;
1441 	}
1442 
1443 	spin_unlock(&cil->xc_push_lock);
1444 	return commit_lsn;
1445 
1446 	/*
1447 	 * We detected a shutdown in progress. We need to trigger the log force
1448 	 * to pass through it's iclog state machine error handling, even though
1449 	 * we are already in a shutdown state. Hence we can't return
1450 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1451 	 * LSN is already stable), so we return a zero LSN instead.
1452 	 */
1453 out_shutdown:
1454 	spin_unlock(&cil->xc_push_lock);
1455 	return 0;
1456 }
1457 
1458 /*
1459  * Check if the current log item was first committed in this sequence.
1460  * We can't rely on just the log item being in the CIL, we have to check
1461  * the recorded commit sequence number.
1462  *
1463  * Note: for this to be used in a non-racy manner, it has to be called with
1464  * CIL flushing locked out. As a result, it should only be used during the
1465  * transaction commit process when deciding what to format into the item.
1466  */
1467 bool
1468 xfs_log_item_in_current_chkpt(
1469 	struct xfs_log_item	*lip)
1470 {
1471 	struct xfs_cil		*cil = lip->li_log->l_cilp;
1472 
1473 	if (list_empty(&lip->li_cil))
1474 		return false;
1475 
1476 	/*
1477 	 * li_seq is written on the first commit of a log item to record the
1478 	 * first checkpoint it is written to. Hence if it is different to the
1479 	 * current sequence, we're in a new checkpoint.
1480 	 */
1481 	return lip->li_seq == READ_ONCE(cil->xc_current_sequence);
1482 }
1483 
1484 /*
1485  * Perform initial CIL structure initialisation.
1486  */
1487 int
1488 xlog_cil_init(
1489 	struct xlog	*log)
1490 {
1491 	struct xfs_cil	*cil;
1492 	struct xfs_cil_ctx *ctx;
1493 
1494 	cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL);
1495 	if (!cil)
1496 		return -ENOMEM;
1497 	/*
1498 	 * Limit the CIL pipeline depth to 4 concurrent works to bound the
1499 	 * concurrency the log spinlocks will be exposed to.
1500 	 */
1501 	cil->xc_push_wq = alloc_workqueue("xfs-cil/%s",
1502 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND),
1503 			4, log->l_mp->m_super->s_id);
1504 	if (!cil->xc_push_wq)
1505 		goto out_destroy_cil;
1506 
1507 	INIT_LIST_HEAD(&cil->xc_cil);
1508 	INIT_LIST_HEAD(&cil->xc_committing);
1509 	spin_lock_init(&cil->xc_cil_lock);
1510 	spin_lock_init(&cil->xc_push_lock);
1511 	init_waitqueue_head(&cil->xc_push_wait);
1512 	init_rwsem(&cil->xc_ctx_lock);
1513 	init_waitqueue_head(&cil->xc_start_wait);
1514 	init_waitqueue_head(&cil->xc_commit_wait);
1515 	cil->xc_log = log;
1516 	log->l_cilp = cil;
1517 
1518 	ctx = xlog_cil_ctx_alloc();
1519 	xlog_cil_ctx_switch(cil, ctx);
1520 
1521 	return 0;
1522 
1523 out_destroy_cil:
1524 	kmem_free(cil);
1525 	return -ENOMEM;
1526 }
1527 
1528 void
1529 xlog_cil_destroy(
1530 	struct xlog	*log)
1531 {
1532 	if (log->l_cilp->xc_ctx) {
1533 		if (log->l_cilp->xc_ctx->ticket)
1534 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1535 		kmem_free(log->l_cilp->xc_ctx);
1536 	}
1537 
1538 	ASSERT(list_empty(&log->l_cilp->xc_cil));
1539 	destroy_workqueue(log->l_cilp->xc_push_wq);
1540 	kmem_free(log->l_cilp);
1541 }
1542 
1543