1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. 4 */ 5 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_shared.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_extent_busy.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_log.h" 17 #include "xfs_log_priv.h" 18 #include "xfs_trace.h" 19 20 struct workqueue_struct *xfs_discard_wq; 21 22 /* 23 * Allocate a new ticket. Failing to get a new ticket makes it really hard to 24 * recover, so we don't allow failure here. Also, we allocate in a context that 25 * we don't want to be issuing transactions from, so we need to tell the 26 * allocation code this as well. 27 * 28 * We don't reserve any space for the ticket - we are going to steal whatever 29 * space we require from transactions as they commit. To ensure we reserve all 30 * the space required, we need to set the current reservation of the ticket to 31 * zero so that we know to steal the initial transaction overhead from the 32 * first transaction commit. 33 */ 34 static struct xlog_ticket * 35 xlog_cil_ticket_alloc( 36 struct xlog *log) 37 { 38 struct xlog_ticket *tic; 39 40 tic = xlog_ticket_alloc(log, 0, 1, 0); 41 42 /* 43 * set the current reservation to zero so we know to steal the basic 44 * transaction overhead reservation from the first transaction commit. 45 */ 46 tic->t_curr_res = 0; 47 return tic; 48 } 49 50 /* 51 * Check if the current log item was first committed in this sequence. 52 * We can't rely on just the log item being in the CIL, we have to check 53 * the recorded commit sequence number. 54 * 55 * Note: for this to be used in a non-racy manner, it has to be called with 56 * CIL flushing locked out. As a result, it should only be used during the 57 * transaction commit process when deciding what to format into the item. 58 */ 59 static bool 60 xlog_item_in_current_chkpt( 61 struct xfs_cil *cil, 62 struct xfs_log_item *lip) 63 { 64 if (list_empty(&lip->li_cil)) 65 return false; 66 67 /* 68 * li_seq is written on the first commit of a log item to record the 69 * first checkpoint it is written to. Hence if it is different to the 70 * current sequence, we're in a new checkpoint. 71 */ 72 return lip->li_seq == READ_ONCE(cil->xc_current_sequence); 73 } 74 75 bool 76 xfs_log_item_in_current_chkpt( 77 struct xfs_log_item *lip) 78 { 79 return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip); 80 } 81 82 /* 83 * Unavoidable forward declaration - xlog_cil_push_work() calls 84 * xlog_cil_ctx_alloc() itself. 85 */ 86 static void xlog_cil_push_work(struct work_struct *work); 87 88 static struct xfs_cil_ctx * 89 xlog_cil_ctx_alloc(void) 90 { 91 struct xfs_cil_ctx *ctx; 92 93 ctx = kmem_zalloc(sizeof(*ctx), KM_NOFS); 94 INIT_LIST_HEAD(&ctx->committing); 95 INIT_LIST_HEAD(&ctx->busy_extents); 96 INIT_WORK(&ctx->push_work, xlog_cil_push_work); 97 return ctx; 98 } 99 100 static void 101 xlog_cil_ctx_switch( 102 struct xfs_cil *cil, 103 struct xfs_cil_ctx *ctx) 104 { 105 ctx->sequence = ++cil->xc_current_sequence; 106 ctx->cil = cil; 107 cil->xc_ctx = ctx; 108 } 109 110 /* 111 * After the first stage of log recovery is done, we know where the head and 112 * tail of the log are. We need this log initialisation done before we can 113 * initialise the first CIL checkpoint context. 114 * 115 * Here we allocate a log ticket to track space usage during a CIL push. This 116 * ticket is passed to xlog_write() directly so that we don't slowly leak log 117 * space by failing to account for space used by log headers and additional 118 * region headers for split regions. 119 */ 120 void 121 xlog_cil_init_post_recovery( 122 struct xlog *log) 123 { 124 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); 125 log->l_cilp->xc_ctx->sequence = 1; 126 } 127 128 static inline int 129 xlog_cil_iovec_space( 130 uint niovecs) 131 { 132 return round_up((sizeof(struct xfs_log_vec) + 133 niovecs * sizeof(struct xfs_log_iovec)), 134 sizeof(uint64_t)); 135 } 136 137 /* 138 * Allocate or pin log vector buffers for CIL insertion. 139 * 140 * The CIL currently uses disposable buffers for copying a snapshot of the 141 * modified items into the log during a push. The biggest problem with this is 142 * the requirement to allocate the disposable buffer during the commit if: 143 * a) does not exist; or 144 * b) it is too small 145 * 146 * If we do this allocation within xlog_cil_insert_format_items(), it is done 147 * under the xc_ctx_lock, which means that a CIL push cannot occur during 148 * the memory allocation. This means that we have a potential deadlock situation 149 * under low memory conditions when we have lots of dirty metadata pinned in 150 * the CIL and we need a CIL commit to occur to free memory. 151 * 152 * To avoid this, we need to move the memory allocation outside the 153 * xc_ctx_lock, but because the log vector buffers are disposable, that opens 154 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log 155 * vector buffers between the check and the formatting of the item into the 156 * log vector buffer within the xc_ctx_lock. 157 * 158 * Because the log vector buffer needs to be unchanged during the CIL push 159 * process, we cannot share the buffer between the transaction commit (which 160 * modifies the buffer) and the CIL push context that is writing the changes 161 * into the log. This means skipping preallocation of buffer space is 162 * unreliable, but we most definitely do not want to be allocating and freeing 163 * buffers unnecessarily during commits when overwrites can be done safely. 164 * 165 * The simplest solution to this problem is to allocate a shadow buffer when a 166 * log item is committed for the second time, and then to only use this buffer 167 * if necessary. The buffer can remain attached to the log item until such time 168 * it is needed, and this is the buffer that is reallocated to match the size of 169 * the incoming modification. Then during the formatting of the item we can swap 170 * the active buffer with the new one if we can't reuse the existing buffer. We 171 * don't free the old buffer as it may be reused on the next modification if 172 * it's size is right, otherwise we'll free and reallocate it at that point. 173 * 174 * This function builds a vector for the changes in each log item in the 175 * transaction. It then works out the length of the buffer needed for each log 176 * item, allocates them and attaches the vector to the log item in preparation 177 * for the formatting step which occurs under the xc_ctx_lock. 178 * 179 * While this means the memory footprint goes up, it avoids the repeated 180 * alloc/free pattern that repeated modifications of an item would otherwise 181 * cause, and hence minimises the CPU overhead of such behaviour. 182 */ 183 static void 184 xlog_cil_alloc_shadow_bufs( 185 struct xlog *log, 186 struct xfs_trans *tp) 187 { 188 struct xfs_log_item *lip; 189 190 list_for_each_entry(lip, &tp->t_items, li_trans) { 191 struct xfs_log_vec *lv; 192 int niovecs = 0; 193 int nbytes = 0; 194 int buf_size; 195 bool ordered = false; 196 197 /* Skip items which aren't dirty in this transaction. */ 198 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 199 continue; 200 201 /* get number of vecs and size of data to be stored */ 202 lip->li_ops->iop_size(lip, &niovecs, &nbytes); 203 204 /* 205 * Ordered items need to be tracked but we do not wish to write 206 * them. We need a logvec to track the object, but we do not 207 * need an iovec or buffer to be allocated for copying data. 208 */ 209 if (niovecs == XFS_LOG_VEC_ORDERED) { 210 ordered = true; 211 niovecs = 0; 212 nbytes = 0; 213 } 214 215 /* 216 * We 64-bit align the length of each iovec so that the start of 217 * the next one is naturally aligned. We'll need to account for 218 * that slack space here. 219 * 220 * We also add the xlog_op_header to each region when 221 * formatting, but that's not accounted to the size of the item 222 * at this point. Hence we'll need an addition number of bytes 223 * for each vector to hold an opheader. 224 * 225 * Then round nbytes up to 64-bit alignment so that the initial 226 * buffer alignment is easy to calculate and verify. 227 */ 228 nbytes += niovecs * 229 (sizeof(uint64_t) + sizeof(struct xlog_op_header)); 230 nbytes = round_up(nbytes, sizeof(uint64_t)); 231 232 /* 233 * The data buffer needs to start 64-bit aligned, so round up 234 * that space to ensure we can align it appropriately and not 235 * overrun the buffer. 236 */ 237 buf_size = nbytes + xlog_cil_iovec_space(niovecs); 238 239 /* 240 * if we have no shadow buffer, or it is too small, we need to 241 * reallocate it. 242 */ 243 if (!lip->li_lv_shadow || 244 buf_size > lip->li_lv_shadow->lv_size) { 245 /* 246 * We free and allocate here as a realloc would copy 247 * unnecessary data. We don't use kvzalloc() for the 248 * same reason - we don't need to zero the data area in 249 * the buffer, only the log vector header and the iovec 250 * storage. 251 */ 252 kmem_free(lip->li_lv_shadow); 253 lv = xlog_kvmalloc(buf_size); 254 255 memset(lv, 0, xlog_cil_iovec_space(niovecs)); 256 257 lv->lv_item = lip; 258 lv->lv_size = buf_size; 259 if (ordered) 260 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 261 else 262 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1]; 263 lip->li_lv_shadow = lv; 264 } else { 265 /* same or smaller, optimise common overwrite case */ 266 lv = lip->li_lv_shadow; 267 if (ordered) 268 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 269 else 270 lv->lv_buf_len = 0; 271 lv->lv_bytes = 0; 272 lv->lv_next = NULL; 273 } 274 275 /* Ensure the lv is set up according to ->iop_size */ 276 lv->lv_niovecs = niovecs; 277 278 /* The allocated data region lies beyond the iovec region */ 279 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs); 280 } 281 282 } 283 284 /* 285 * Prepare the log item for insertion into the CIL. Calculate the difference in 286 * log space it will consume, and if it is a new item pin it as well. 287 */ 288 STATIC void 289 xfs_cil_prepare_item( 290 struct xlog *log, 291 struct xfs_log_vec *lv, 292 struct xfs_log_vec *old_lv, 293 int *diff_len) 294 { 295 /* Account for the new LV being passed in */ 296 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) 297 *diff_len += lv->lv_bytes; 298 299 /* 300 * If there is no old LV, this is the first time we've seen the item in 301 * this CIL context and so we need to pin it. If we are replacing the 302 * old_lv, then remove the space it accounts for and make it the shadow 303 * buffer for later freeing. In both cases we are now switching to the 304 * shadow buffer, so update the pointer to it appropriately. 305 */ 306 if (!old_lv) { 307 if (lv->lv_item->li_ops->iop_pin) 308 lv->lv_item->li_ops->iop_pin(lv->lv_item); 309 lv->lv_item->li_lv_shadow = NULL; 310 } else if (old_lv != lv) { 311 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED); 312 313 *diff_len -= old_lv->lv_bytes; 314 lv->lv_item->li_lv_shadow = old_lv; 315 } 316 317 /* attach new log vector to log item */ 318 lv->lv_item->li_lv = lv; 319 320 /* 321 * If this is the first time the item is being committed to the 322 * CIL, store the sequence number on the log item so we can 323 * tell in future commits whether this is the first checkpoint 324 * the item is being committed into. 325 */ 326 if (!lv->lv_item->li_seq) 327 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; 328 } 329 330 /* 331 * Format log item into a flat buffers 332 * 333 * For delayed logging, we need to hold a formatted buffer containing all the 334 * changes on the log item. This enables us to relog the item in memory and 335 * write it out asynchronously without needing to relock the object that was 336 * modified at the time it gets written into the iclog. 337 * 338 * This function takes the prepared log vectors attached to each log item, and 339 * formats the changes into the log vector buffer. The buffer it uses is 340 * dependent on the current state of the vector in the CIL - the shadow lv is 341 * guaranteed to be large enough for the current modification, but we will only 342 * use that if we can't reuse the existing lv. If we can't reuse the existing 343 * lv, then simple swap it out for the shadow lv. We don't free it - that is 344 * done lazily either by th enext modification or the freeing of the log item. 345 * 346 * We don't set up region headers during this process; we simply copy the 347 * regions into the flat buffer. We can do this because we still have to do a 348 * formatting step to write the regions into the iclog buffer. Writing the 349 * ophdrs during the iclog write means that we can support splitting large 350 * regions across iclog boundares without needing a change in the format of the 351 * item/region encapsulation. 352 * 353 * Hence what we need to do now is change the rewrite the vector array to point 354 * to the copied region inside the buffer we just allocated. This allows us to 355 * format the regions into the iclog as though they are being formatted 356 * directly out of the objects themselves. 357 */ 358 static void 359 xlog_cil_insert_format_items( 360 struct xlog *log, 361 struct xfs_trans *tp, 362 int *diff_len) 363 { 364 struct xfs_log_item *lip; 365 366 /* Bail out if we didn't find a log item. */ 367 if (list_empty(&tp->t_items)) { 368 ASSERT(0); 369 return; 370 } 371 372 list_for_each_entry(lip, &tp->t_items, li_trans) { 373 struct xfs_log_vec *lv; 374 struct xfs_log_vec *old_lv = NULL; 375 struct xfs_log_vec *shadow; 376 bool ordered = false; 377 378 /* Skip items which aren't dirty in this transaction. */ 379 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 380 continue; 381 382 /* 383 * The formatting size information is already attached to 384 * the shadow lv on the log item. 385 */ 386 shadow = lip->li_lv_shadow; 387 if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED) 388 ordered = true; 389 390 /* Skip items that do not have any vectors for writing */ 391 if (!shadow->lv_niovecs && !ordered) 392 continue; 393 394 /* compare to existing item size */ 395 old_lv = lip->li_lv; 396 if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) { 397 /* same or smaller, optimise common overwrite case */ 398 lv = lip->li_lv; 399 lv->lv_next = NULL; 400 401 if (ordered) 402 goto insert; 403 404 /* 405 * set the item up as though it is a new insertion so 406 * that the space reservation accounting is correct. 407 */ 408 *diff_len -= lv->lv_bytes; 409 410 /* Ensure the lv is set up according to ->iop_size */ 411 lv->lv_niovecs = shadow->lv_niovecs; 412 413 /* reset the lv buffer information for new formatting */ 414 lv->lv_buf_len = 0; 415 lv->lv_bytes = 0; 416 lv->lv_buf = (char *)lv + 417 xlog_cil_iovec_space(lv->lv_niovecs); 418 } else { 419 /* switch to shadow buffer! */ 420 lv = shadow; 421 lv->lv_item = lip; 422 if (ordered) { 423 /* track as an ordered logvec */ 424 ASSERT(lip->li_lv == NULL); 425 goto insert; 426 } 427 } 428 429 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t))); 430 lip->li_ops->iop_format(lip, lv); 431 insert: 432 xfs_cil_prepare_item(log, lv, old_lv, diff_len); 433 } 434 } 435 436 /* 437 * Insert the log items into the CIL and calculate the difference in space 438 * consumed by the item. Add the space to the checkpoint ticket and calculate 439 * if the change requires additional log metadata. If it does, take that space 440 * as well. Remove the amount of space we added to the checkpoint ticket from 441 * the current transaction ticket so that the accounting works out correctly. 442 */ 443 static void 444 xlog_cil_insert_items( 445 struct xlog *log, 446 struct xfs_trans *tp, 447 uint32_t released_space) 448 { 449 struct xfs_cil *cil = log->l_cilp; 450 struct xfs_cil_ctx *ctx = cil->xc_ctx; 451 struct xfs_log_item *lip; 452 int len = 0; 453 int iclog_space; 454 int iovhdr_res = 0, split_res = 0, ctx_res = 0; 455 456 ASSERT(tp); 457 458 /* 459 * We can do this safely because the context can't checkpoint until we 460 * are done so it doesn't matter exactly how we update the CIL. 461 */ 462 xlog_cil_insert_format_items(log, tp, &len); 463 464 spin_lock(&cil->xc_cil_lock); 465 466 /* attach the transaction to the CIL if it has any busy extents */ 467 if (!list_empty(&tp->t_busy)) 468 list_splice_init(&tp->t_busy, &ctx->busy_extents); 469 470 /* 471 * Now transfer enough transaction reservation to the context ticket 472 * for the checkpoint. The context ticket is special - the unit 473 * reservation has to grow as well as the current reservation as we 474 * steal from tickets so we can correctly determine the space used 475 * during the transaction commit. 476 */ 477 if (ctx->ticket->t_curr_res == 0) { 478 ctx_res = ctx->ticket->t_unit_res; 479 ctx->ticket->t_curr_res = ctx_res; 480 tp->t_ticket->t_curr_res -= ctx_res; 481 } 482 483 /* do we need space for more log record headers? */ 484 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 485 if (len > 0 && (ctx->space_used / iclog_space != 486 (ctx->space_used + len) / iclog_space)) { 487 split_res = (len + iclog_space - 1) / iclog_space; 488 /* need to take into account split region headers, too */ 489 split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header); 490 ctx->ticket->t_unit_res += split_res; 491 ctx->ticket->t_curr_res += split_res; 492 tp->t_ticket->t_curr_res -= split_res; 493 ASSERT(tp->t_ticket->t_curr_res >= len); 494 } 495 tp->t_ticket->t_curr_res -= len; 496 tp->t_ticket->t_curr_res += released_space; 497 ctx->space_used += len; 498 ctx->space_used -= released_space; 499 500 /* 501 * If we've overrun the reservation, dump the tx details before we move 502 * the log items. Shutdown is imminent... 503 */ 504 if (WARN_ON(tp->t_ticket->t_curr_res < 0)) { 505 xfs_warn(log->l_mp, "Transaction log reservation overrun:"); 506 xfs_warn(log->l_mp, 507 " log items: %d bytes (iov hdrs: %d bytes)", 508 len, iovhdr_res); 509 xfs_warn(log->l_mp, " split region headers: %d bytes", 510 split_res); 511 xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res); 512 xlog_print_trans(tp); 513 } 514 515 /* 516 * Now (re-)position everything modified at the tail of the CIL. 517 * We do this here so we only need to take the CIL lock once during 518 * the transaction commit. 519 */ 520 list_for_each_entry(lip, &tp->t_items, li_trans) { 521 522 /* Skip items which aren't dirty in this transaction. */ 523 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 524 continue; 525 526 /* 527 * Only move the item if it isn't already at the tail. This is 528 * to prevent a transient list_empty() state when reinserting 529 * an item that is already the only item in the CIL. 530 */ 531 if (!list_is_last(&lip->li_cil, &cil->xc_cil)) 532 list_move_tail(&lip->li_cil, &cil->xc_cil); 533 } 534 535 spin_unlock(&cil->xc_cil_lock); 536 537 if (tp->t_ticket->t_curr_res < 0) 538 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 539 } 540 541 static void 542 xlog_cil_free_logvec( 543 struct xfs_log_vec *log_vector) 544 { 545 struct xfs_log_vec *lv; 546 547 for (lv = log_vector; lv; ) { 548 struct xfs_log_vec *next = lv->lv_next; 549 kmem_free(lv); 550 lv = next; 551 } 552 } 553 554 static void 555 xlog_discard_endio_work( 556 struct work_struct *work) 557 { 558 struct xfs_cil_ctx *ctx = 559 container_of(work, struct xfs_cil_ctx, discard_endio_work); 560 struct xfs_mount *mp = ctx->cil->xc_log->l_mp; 561 562 xfs_extent_busy_clear(mp, &ctx->busy_extents, false); 563 kmem_free(ctx); 564 } 565 566 /* 567 * Queue up the actual completion to a thread to avoid IRQ-safe locking for 568 * pagb_lock. Note that we need a unbounded workqueue, otherwise we might 569 * get the execution delayed up to 30 seconds for weird reasons. 570 */ 571 static void 572 xlog_discard_endio( 573 struct bio *bio) 574 { 575 struct xfs_cil_ctx *ctx = bio->bi_private; 576 577 INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work); 578 queue_work(xfs_discard_wq, &ctx->discard_endio_work); 579 bio_put(bio); 580 } 581 582 static void 583 xlog_discard_busy_extents( 584 struct xfs_mount *mp, 585 struct xfs_cil_ctx *ctx) 586 { 587 struct list_head *list = &ctx->busy_extents; 588 struct xfs_extent_busy *busyp; 589 struct bio *bio = NULL; 590 struct blk_plug plug; 591 int error = 0; 592 593 ASSERT(xfs_has_discard(mp)); 594 595 blk_start_plug(&plug); 596 list_for_each_entry(busyp, list, list) { 597 trace_xfs_discard_extent(mp, busyp->agno, busyp->bno, 598 busyp->length); 599 600 error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev, 601 XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno), 602 XFS_FSB_TO_BB(mp, busyp->length), 603 GFP_NOFS, &bio); 604 if (error && error != -EOPNOTSUPP) { 605 xfs_info(mp, 606 "discard failed for extent [0x%llx,%u], error %d", 607 (unsigned long long)busyp->bno, 608 busyp->length, 609 error); 610 break; 611 } 612 } 613 614 if (bio) { 615 bio->bi_private = ctx; 616 bio->bi_end_io = xlog_discard_endio; 617 submit_bio(bio); 618 } else { 619 xlog_discard_endio_work(&ctx->discard_endio_work); 620 } 621 blk_finish_plug(&plug); 622 } 623 624 /* 625 * Mark all items committed and clear busy extents. We free the log vector 626 * chains in a separate pass so that we unpin the log items as quickly as 627 * possible. 628 */ 629 static void 630 xlog_cil_committed( 631 struct xfs_cil_ctx *ctx) 632 { 633 struct xfs_mount *mp = ctx->cil->xc_log->l_mp; 634 bool abort = xlog_is_shutdown(ctx->cil->xc_log); 635 636 /* 637 * If the I/O failed, we're aborting the commit and already shutdown. 638 * Wake any commit waiters before aborting the log items so we don't 639 * block async log pushers on callbacks. Async log pushers explicitly do 640 * not wait on log force completion because they may be holding locks 641 * required to unpin items. 642 */ 643 if (abort) { 644 spin_lock(&ctx->cil->xc_push_lock); 645 wake_up_all(&ctx->cil->xc_start_wait); 646 wake_up_all(&ctx->cil->xc_commit_wait); 647 spin_unlock(&ctx->cil->xc_push_lock); 648 } 649 650 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain, 651 ctx->start_lsn, abort); 652 653 xfs_extent_busy_sort(&ctx->busy_extents); 654 xfs_extent_busy_clear(mp, &ctx->busy_extents, 655 xfs_has_discard(mp) && !abort); 656 657 spin_lock(&ctx->cil->xc_push_lock); 658 list_del(&ctx->committing); 659 spin_unlock(&ctx->cil->xc_push_lock); 660 661 xlog_cil_free_logvec(ctx->lv_chain); 662 663 if (!list_empty(&ctx->busy_extents)) 664 xlog_discard_busy_extents(mp, ctx); 665 else 666 kmem_free(ctx); 667 } 668 669 void 670 xlog_cil_process_committed( 671 struct list_head *list) 672 { 673 struct xfs_cil_ctx *ctx; 674 675 while ((ctx = list_first_entry_or_null(list, 676 struct xfs_cil_ctx, iclog_entry))) { 677 list_del(&ctx->iclog_entry); 678 xlog_cil_committed(ctx); 679 } 680 } 681 682 /* 683 * Record the LSN of the iclog we were just granted space to start writing into. 684 * If the context doesn't have a start_lsn recorded, then this iclog will 685 * contain the start record for the checkpoint. Otherwise this write contains 686 * the commit record for the checkpoint. 687 */ 688 void 689 xlog_cil_set_ctx_write_state( 690 struct xfs_cil_ctx *ctx, 691 struct xlog_in_core *iclog) 692 { 693 struct xfs_cil *cil = ctx->cil; 694 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 695 696 ASSERT(!ctx->commit_lsn); 697 if (!ctx->start_lsn) { 698 spin_lock(&cil->xc_push_lock); 699 /* 700 * The LSN we need to pass to the log items on transaction 701 * commit is the LSN reported by the first log vector write, not 702 * the commit lsn. If we use the commit record lsn then we can 703 * move the grant write head beyond the tail LSN and overwrite 704 * it. 705 */ 706 ctx->start_lsn = lsn; 707 wake_up_all(&cil->xc_start_wait); 708 spin_unlock(&cil->xc_push_lock); 709 710 /* 711 * Make sure the metadata we are about to overwrite in the log 712 * has been flushed to stable storage before this iclog is 713 * issued. 714 */ 715 spin_lock(&cil->xc_log->l_icloglock); 716 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 717 spin_unlock(&cil->xc_log->l_icloglock); 718 return; 719 } 720 721 /* 722 * Take a reference to the iclog for the context so that we still hold 723 * it when xlog_write is done and has released it. This means the 724 * context controls when the iclog is released for IO. 725 */ 726 atomic_inc(&iclog->ic_refcnt); 727 728 /* 729 * xlog_state_get_iclog_space() guarantees there is enough space in the 730 * iclog for an entire commit record, so we can attach the context 731 * callbacks now. This needs to be done before we make the commit_lsn 732 * visible to waiters so that checkpoints with commit records in the 733 * same iclog order their IO completion callbacks in the same order that 734 * the commit records appear in the iclog. 735 */ 736 spin_lock(&cil->xc_log->l_icloglock); 737 list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks); 738 spin_unlock(&cil->xc_log->l_icloglock); 739 740 /* 741 * Now we can record the commit LSN and wake anyone waiting for this 742 * sequence to have the ordered commit record assigned to a physical 743 * location in the log. 744 */ 745 spin_lock(&cil->xc_push_lock); 746 ctx->commit_iclog = iclog; 747 ctx->commit_lsn = lsn; 748 wake_up_all(&cil->xc_commit_wait); 749 spin_unlock(&cil->xc_push_lock); 750 } 751 752 753 /* 754 * Ensure that the order of log writes follows checkpoint sequence order. This 755 * relies on the context LSN being zero until the log write has guaranteed the 756 * LSN that the log write will start at via xlog_state_get_iclog_space(). 757 */ 758 enum _record_type { 759 _START_RECORD, 760 _COMMIT_RECORD, 761 }; 762 763 static int 764 xlog_cil_order_write( 765 struct xfs_cil *cil, 766 xfs_csn_t sequence, 767 enum _record_type record) 768 { 769 struct xfs_cil_ctx *ctx; 770 771 restart: 772 spin_lock(&cil->xc_push_lock); 773 list_for_each_entry(ctx, &cil->xc_committing, committing) { 774 /* 775 * Avoid getting stuck in this loop because we were woken by the 776 * shutdown, but then went back to sleep once already in the 777 * shutdown state. 778 */ 779 if (xlog_is_shutdown(cil->xc_log)) { 780 spin_unlock(&cil->xc_push_lock); 781 return -EIO; 782 } 783 784 /* 785 * Higher sequences will wait for this one so skip them. 786 * Don't wait for our own sequence, either. 787 */ 788 if (ctx->sequence >= sequence) 789 continue; 790 791 /* Wait until the LSN for the record has been recorded. */ 792 switch (record) { 793 case _START_RECORD: 794 if (!ctx->start_lsn) { 795 xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock); 796 goto restart; 797 } 798 break; 799 case _COMMIT_RECORD: 800 if (!ctx->commit_lsn) { 801 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 802 goto restart; 803 } 804 break; 805 } 806 } 807 spin_unlock(&cil->xc_push_lock); 808 return 0; 809 } 810 811 /* 812 * Write out the log vector change now attached to the CIL context. This will 813 * write a start record that needs to be strictly ordered in ascending CIL 814 * sequence order so that log recovery will always use in-order start LSNs when 815 * replaying checkpoints. 816 */ 817 static int 818 xlog_cil_write_chain( 819 struct xfs_cil_ctx *ctx, 820 struct xfs_log_vec *chain, 821 uint32_t chain_len) 822 { 823 struct xlog *log = ctx->cil->xc_log; 824 int error; 825 826 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD); 827 if (error) 828 return error; 829 return xlog_write(log, ctx, chain, ctx->ticket, chain_len); 830 } 831 832 /* 833 * Write out the commit record of a checkpoint transaction to close off a 834 * running log write. These commit records are strictly ordered in ascending CIL 835 * sequence order so that log recovery will always replay the checkpoints in the 836 * correct order. 837 */ 838 static int 839 xlog_cil_write_commit_record( 840 struct xfs_cil_ctx *ctx) 841 { 842 struct xlog *log = ctx->cil->xc_log; 843 struct xlog_op_header ophdr = { 844 .oh_clientid = XFS_TRANSACTION, 845 .oh_tid = cpu_to_be32(ctx->ticket->t_tid), 846 .oh_flags = XLOG_COMMIT_TRANS, 847 }; 848 struct xfs_log_iovec reg = { 849 .i_addr = &ophdr, 850 .i_len = sizeof(struct xlog_op_header), 851 .i_type = XLOG_REG_TYPE_COMMIT, 852 }; 853 struct xfs_log_vec vec = { 854 .lv_niovecs = 1, 855 .lv_iovecp = ®, 856 }; 857 int error; 858 859 if (xlog_is_shutdown(log)) 860 return -EIO; 861 862 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD); 863 if (error) 864 return error; 865 866 /* account for space used by record data */ 867 ctx->ticket->t_curr_res -= reg.i_len; 868 error = xlog_write(log, ctx, &vec, ctx->ticket, reg.i_len); 869 if (error) 870 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 871 return error; 872 } 873 874 struct xlog_cil_trans_hdr { 875 struct xlog_op_header oph[2]; 876 struct xfs_trans_header thdr; 877 struct xfs_log_iovec lhdr[2]; 878 }; 879 880 /* 881 * Build a checkpoint transaction header to begin the journal transaction. We 882 * need to account for the space used by the transaction header here as it is 883 * not accounted for in xlog_write(). 884 * 885 * This is the only place we write a transaction header, so we also build the 886 * log opheaders that indicate the start of a log transaction and wrap the 887 * transaction header. We keep the start record in it's own log vector rather 888 * than compacting them into a single region as this ends up making the logic 889 * in xlog_write() for handling empty opheaders for start, commit and unmount 890 * records much simpler. 891 */ 892 static void 893 xlog_cil_build_trans_hdr( 894 struct xfs_cil_ctx *ctx, 895 struct xlog_cil_trans_hdr *hdr, 896 struct xfs_log_vec *lvhdr, 897 int num_iovecs) 898 { 899 struct xlog_ticket *tic = ctx->ticket; 900 __be32 tid = cpu_to_be32(tic->t_tid); 901 902 memset(hdr, 0, sizeof(*hdr)); 903 904 /* Log start record */ 905 hdr->oph[0].oh_tid = tid; 906 hdr->oph[0].oh_clientid = XFS_TRANSACTION; 907 hdr->oph[0].oh_flags = XLOG_START_TRANS; 908 909 /* log iovec region pointer */ 910 hdr->lhdr[0].i_addr = &hdr->oph[0]; 911 hdr->lhdr[0].i_len = sizeof(struct xlog_op_header); 912 hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER; 913 914 /* log opheader */ 915 hdr->oph[1].oh_tid = tid; 916 hdr->oph[1].oh_clientid = XFS_TRANSACTION; 917 hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header)); 918 919 /* transaction header in host byte order format */ 920 hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC; 921 hdr->thdr.th_type = XFS_TRANS_CHECKPOINT; 922 hdr->thdr.th_tid = tic->t_tid; 923 hdr->thdr.th_num_items = num_iovecs; 924 925 /* log iovec region pointer */ 926 hdr->lhdr[1].i_addr = &hdr->oph[1]; 927 hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) + 928 sizeof(struct xfs_trans_header); 929 hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR; 930 931 lvhdr->lv_niovecs = 2; 932 lvhdr->lv_iovecp = &hdr->lhdr[0]; 933 lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len; 934 lvhdr->lv_next = ctx->lv_chain; 935 936 tic->t_curr_res -= lvhdr->lv_bytes; 937 } 938 939 /* 940 * Pull all the log vectors off the items in the CIL, and remove the items from 941 * the CIL. We don't need the CIL lock here because it's only needed on the 942 * transaction commit side which is currently locked out by the flush lock. 943 * 944 * If a log item is marked with a whiteout, we do not need to write it to the 945 * journal and so we just move them to the whiteout list for the caller to 946 * dispose of appropriately. 947 */ 948 static void 949 xlog_cil_build_lv_chain( 950 struct xfs_cil *cil, 951 struct xfs_cil_ctx *ctx, 952 struct list_head *whiteouts, 953 uint32_t *num_iovecs, 954 uint32_t *num_bytes) 955 { 956 struct xfs_log_vec *lv = NULL; 957 958 while (!list_empty(&cil->xc_cil)) { 959 struct xfs_log_item *item; 960 961 item = list_first_entry(&cil->xc_cil, 962 struct xfs_log_item, li_cil); 963 964 if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) { 965 list_move(&item->li_cil, whiteouts); 966 trace_xfs_cil_whiteout_skip(item); 967 continue; 968 } 969 970 list_del_init(&item->li_cil); 971 if (!ctx->lv_chain) 972 ctx->lv_chain = item->li_lv; 973 else 974 lv->lv_next = item->li_lv; 975 lv = item->li_lv; 976 item->li_lv = NULL; 977 *num_iovecs += lv->lv_niovecs; 978 979 /* we don't write ordered log vectors */ 980 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) 981 *num_bytes += lv->lv_bytes; 982 } 983 } 984 985 static void 986 xlog_cil_cleanup_whiteouts( 987 struct list_head *whiteouts) 988 { 989 while (!list_empty(whiteouts)) { 990 struct xfs_log_item *item = list_first_entry(whiteouts, 991 struct xfs_log_item, li_cil); 992 list_del_init(&item->li_cil); 993 trace_xfs_cil_whiteout_unpin(item); 994 item->li_ops->iop_unpin(item, 1); 995 } 996 } 997 998 /* 999 * Push the Committed Item List to the log. 1000 * 1001 * If the current sequence is the same as xc_push_seq we need to do a flush. If 1002 * xc_push_seq is less than the current sequence, then it has already been 1003 * flushed and we don't need to do anything - the caller will wait for it to 1004 * complete if necessary. 1005 * 1006 * xc_push_seq is checked unlocked against the sequence number for a match. 1007 * Hence we can allow log forces to run racily and not issue pushes for the 1008 * same sequence twice. If we get a race between multiple pushes for the same 1009 * sequence they will block on the first one and then abort, hence avoiding 1010 * needless pushes. 1011 */ 1012 static void 1013 xlog_cil_push_work( 1014 struct work_struct *work) 1015 { 1016 struct xfs_cil_ctx *ctx = 1017 container_of(work, struct xfs_cil_ctx, push_work); 1018 struct xfs_cil *cil = ctx->cil; 1019 struct xlog *log = cil->xc_log; 1020 struct xfs_cil_ctx *new_ctx; 1021 int num_iovecs = 0; 1022 int num_bytes = 0; 1023 int error = 0; 1024 struct xlog_cil_trans_hdr thdr; 1025 struct xfs_log_vec lvhdr = { NULL }; 1026 xfs_csn_t push_seq; 1027 bool push_commit_stable; 1028 LIST_HEAD (whiteouts); 1029 1030 new_ctx = xlog_cil_ctx_alloc(); 1031 new_ctx->ticket = xlog_cil_ticket_alloc(log); 1032 1033 down_write(&cil->xc_ctx_lock); 1034 1035 spin_lock(&cil->xc_push_lock); 1036 push_seq = cil->xc_push_seq; 1037 ASSERT(push_seq <= ctx->sequence); 1038 push_commit_stable = cil->xc_push_commit_stable; 1039 cil->xc_push_commit_stable = false; 1040 1041 /* 1042 * As we are about to switch to a new, empty CIL context, we no longer 1043 * need to throttle tasks on CIL space overruns. Wake any waiters that 1044 * the hard push throttle may have caught so they can start committing 1045 * to the new context. The ctx->xc_push_lock provides the serialisation 1046 * necessary for safely using the lockless waitqueue_active() check in 1047 * this context. 1048 */ 1049 if (waitqueue_active(&cil->xc_push_wait)) 1050 wake_up_all(&cil->xc_push_wait); 1051 1052 /* 1053 * Check if we've anything to push. If there is nothing, then we don't 1054 * move on to a new sequence number and so we have to be able to push 1055 * this sequence again later. 1056 */ 1057 if (list_empty(&cil->xc_cil)) { 1058 cil->xc_push_seq = 0; 1059 spin_unlock(&cil->xc_push_lock); 1060 goto out_skip; 1061 } 1062 1063 1064 /* check for a previously pushed sequence */ 1065 if (push_seq < ctx->sequence) { 1066 spin_unlock(&cil->xc_push_lock); 1067 goto out_skip; 1068 } 1069 1070 /* 1071 * We are now going to push this context, so add it to the committing 1072 * list before we do anything else. This ensures that anyone waiting on 1073 * this push can easily detect the difference between a "push in 1074 * progress" and "CIL is empty, nothing to do". 1075 * 1076 * IOWs, a wait loop can now check for: 1077 * the current sequence not being found on the committing list; 1078 * an empty CIL; and 1079 * an unchanged sequence number 1080 * to detect a push that had nothing to do and therefore does not need 1081 * waiting on. If the CIL is not empty, we get put on the committing 1082 * list before emptying the CIL and bumping the sequence number. Hence 1083 * an empty CIL and an unchanged sequence number means we jumped out 1084 * above after doing nothing. 1085 * 1086 * Hence the waiter will either find the commit sequence on the 1087 * committing list or the sequence number will be unchanged and the CIL 1088 * still dirty. In that latter case, the push has not yet started, and 1089 * so the waiter will have to continue trying to check the CIL 1090 * committing list until it is found. In extreme cases of delay, the 1091 * sequence may fully commit between the attempts the wait makes to wait 1092 * on the commit sequence. 1093 */ 1094 list_add(&ctx->committing, &cil->xc_committing); 1095 spin_unlock(&cil->xc_push_lock); 1096 1097 xlog_cil_build_lv_chain(cil, ctx, &whiteouts, &num_iovecs, &num_bytes); 1098 1099 /* 1100 * Switch the contexts so we can drop the context lock and move out 1101 * of a shared context. We can't just go straight to the commit record, 1102 * though - we need to synchronise with previous and future commits so 1103 * that the commit records are correctly ordered in the log to ensure 1104 * that we process items during log IO completion in the correct order. 1105 * 1106 * For example, if we get an EFI in one checkpoint and the EFD in the 1107 * next (e.g. due to log forces), we do not want the checkpoint with 1108 * the EFD to be committed before the checkpoint with the EFI. Hence 1109 * we must strictly order the commit records of the checkpoints so 1110 * that: a) the checkpoint callbacks are attached to the iclogs in the 1111 * correct order; and b) the checkpoints are replayed in correct order 1112 * in log recovery. 1113 * 1114 * Hence we need to add this context to the committing context list so 1115 * that higher sequences will wait for us to write out a commit record 1116 * before they do. 1117 * 1118 * xfs_log_force_seq requires us to mirror the new sequence into the cil 1119 * structure atomically with the addition of this sequence to the 1120 * committing list. This also ensures that we can do unlocked checks 1121 * against the current sequence in log forces without risking 1122 * deferencing a freed context pointer. 1123 */ 1124 spin_lock(&cil->xc_push_lock); 1125 xlog_cil_ctx_switch(cil, new_ctx); 1126 spin_unlock(&cil->xc_push_lock); 1127 up_write(&cil->xc_ctx_lock); 1128 1129 /* 1130 * Build a checkpoint transaction header and write it to the log to 1131 * begin the transaction. We need to account for the space used by the 1132 * transaction header here as it is not accounted for in xlog_write(). 1133 */ 1134 xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs); 1135 num_bytes += lvhdr.lv_bytes; 1136 1137 error = xlog_cil_write_chain(ctx, &lvhdr, num_bytes); 1138 if (error) 1139 goto out_abort_free_ticket; 1140 1141 error = xlog_cil_write_commit_record(ctx); 1142 if (error) 1143 goto out_abort_free_ticket; 1144 1145 xfs_log_ticket_ungrant(log, ctx->ticket); 1146 1147 /* 1148 * If the checkpoint spans multiple iclogs, wait for all previous iclogs 1149 * to complete before we submit the commit_iclog. We can't use state 1150 * checks for this - ACTIVE can be either a past completed iclog or a 1151 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a 1152 * past or future iclog awaiting IO or ordered IO completion to be run. 1153 * In the latter case, if it's a future iclog and we wait on it, the we 1154 * will hang because it won't get processed through to ic_force_wait 1155 * wakeup until this commit_iclog is written to disk. Hence we use the 1156 * iclog header lsn and compare it to the commit lsn to determine if we 1157 * need to wait on iclogs or not. 1158 */ 1159 spin_lock(&log->l_icloglock); 1160 if (ctx->start_lsn != ctx->commit_lsn) { 1161 xfs_lsn_t plsn; 1162 1163 plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn); 1164 if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) { 1165 /* 1166 * Waiting on ic_force_wait orders the completion of 1167 * iclogs older than ic_prev. Hence we only need to wait 1168 * on the most recent older iclog here. 1169 */ 1170 xlog_wait_on_iclog(ctx->commit_iclog->ic_prev); 1171 spin_lock(&log->l_icloglock); 1172 } 1173 1174 /* 1175 * We need to issue a pre-flush so that the ordering for this 1176 * checkpoint is correctly preserved down to stable storage. 1177 */ 1178 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 1179 } 1180 1181 /* 1182 * The commit iclog must be written to stable storage to guarantee 1183 * journal IO vs metadata writeback IO is correctly ordered on stable 1184 * storage. 1185 * 1186 * If the push caller needs the commit to be immediately stable and the 1187 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it 1188 * will be written when released, switch it's state to WANT_SYNC right 1189 * now. 1190 */ 1191 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA; 1192 if (push_commit_stable && 1193 ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE) 1194 xlog_state_switch_iclogs(log, ctx->commit_iclog, 0); 1195 xlog_state_release_iclog(log, ctx->commit_iclog); 1196 1197 /* Not safe to reference ctx now! */ 1198 1199 spin_unlock(&log->l_icloglock); 1200 xlog_cil_cleanup_whiteouts(&whiteouts); 1201 return; 1202 1203 out_skip: 1204 up_write(&cil->xc_ctx_lock); 1205 xfs_log_ticket_put(new_ctx->ticket); 1206 kmem_free(new_ctx); 1207 return; 1208 1209 out_abort_free_ticket: 1210 xfs_log_ticket_ungrant(log, ctx->ticket); 1211 ASSERT(xlog_is_shutdown(log)); 1212 xlog_cil_cleanup_whiteouts(&whiteouts); 1213 if (!ctx->commit_iclog) { 1214 xlog_cil_committed(ctx); 1215 return; 1216 } 1217 spin_lock(&log->l_icloglock); 1218 xlog_state_release_iclog(log, ctx->commit_iclog); 1219 /* Not safe to reference ctx now! */ 1220 spin_unlock(&log->l_icloglock); 1221 } 1222 1223 /* 1224 * We need to push CIL every so often so we don't cache more than we can fit in 1225 * the log. The limit really is that a checkpoint can't be more than half the 1226 * log (the current checkpoint is not allowed to overwrite the previous 1227 * checkpoint), but commit latency and memory usage limit this to a smaller 1228 * size. 1229 */ 1230 static void 1231 xlog_cil_push_background( 1232 struct xlog *log) __releases(cil->xc_ctx_lock) 1233 { 1234 struct xfs_cil *cil = log->l_cilp; 1235 1236 /* 1237 * The cil won't be empty because we are called while holding the 1238 * context lock so whatever we added to the CIL will still be there 1239 */ 1240 ASSERT(!list_empty(&cil->xc_cil)); 1241 1242 /* 1243 * Don't do a background push if we haven't used up all the 1244 * space available yet. 1245 */ 1246 if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) { 1247 up_read(&cil->xc_ctx_lock); 1248 return; 1249 } 1250 1251 spin_lock(&cil->xc_push_lock); 1252 if (cil->xc_push_seq < cil->xc_current_sequence) { 1253 cil->xc_push_seq = cil->xc_current_sequence; 1254 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1255 } 1256 1257 /* 1258 * Drop the context lock now, we can't hold that if we need to sleep 1259 * because we are over the blocking threshold. The push_lock is still 1260 * held, so blocking threshold sleep/wakeup is still correctly 1261 * serialised here. 1262 */ 1263 up_read(&cil->xc_ctx_lock); 1264 1265 /* 1266 * If we are well over the space limit, throttle the work that is being 1267 * done until the push work on this context has begun. Enforce the hard 1268 * throttle on all transaction commits once it has been activated, even 1269 * if the committing transactions have resulted in the space usage 1270 * dipping back down under the hard limit. 1271 * 1272 * The ctx->xc_push_lock provides the serialisation necessary for safely 1273 * using the lockless waitqueue_active() check in this context. 1274 */ 1275 if (cil->xc_ctx->space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log) || 1276 waitqueue_active(&cil->xc_push_wait)) { 1277 trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket); 1278 ASSERT(cil->xc_ctx->space_used < log->l_logsize); 1279 xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock); 1280 return; 1281 } 1282 1283 spin_unlock(&cil->xc_push_lock); 1284 1285 } 1286 1287 /* 1288 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence 1289 * number that is passed. When it returns, the work will be queued for 1290 * @push_seq, but it won't be completed. 1291 * 1292 * If the caller is performing a synchronous force, we will flush the workqueue 1293 * to get previously queued work moving to minimise the wait time they will 1294 * undergo waiting for all outstanding pushes to complete. The caller is 1295 * expected to do the required waiting for push_seq to complete. 1296 * 1297 * If the caller is performing an async push, we need to ensure that the 1298 * checkpoint is fully flushed out of the iclogs when we finish the push. If we 1299 * don't do this, then the commit record may remain sitting in memory in an 1300 * ACTIVE iclog. This then requires another full log force to push to disk, 1301 * which defeats the purpose of having an async, non-blocking CIL force 1302 * mechanism. Hence in this case we need to pass a flag to the push work to 1303 * indicate it needs to flush the commit record itself. 1304 */ 1305 static void 1306 xlog_cil_push_now( 1307 struct xlog *log, 1308 xfs_lsn_t push_seq, 1309 bool async) 1310 { 1311 struct xfs_cil *cil = log->l_cilp; 1312 1313 if (!cil) 1314 return; 1315 1316 ASSERT(push_seq && push_seq <= cil->xc_current_sequence); 1317 1318 /* start on any pending background push to minimise wait time on it */ 1319 if (!async) 1320 flush_workqueue(cil->xc_push_wq); 1321 1322 spin_lock(&cil->xc_push_lock); 1323 1324 /* 1325 * If this is an async flush request, we always need to set the 1326 * xc_push_commit_stable flag even if something else has already queued 1327 * a push. The flush caller is asking for the CIL to be on stable 1328 * storage when the next push completes, so regardless of who has queued 1329 * the push, the flush requires stable semantics from it. 1330 */ 1331 cil->xc_push_commit_stable = async; 1332 1333 /* 1334 * If the CIL is empty or we've already pushed the sequence then 1335 * there's no more work that we need to do. 1336 */ 1337 if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) { 1338 spin_unlock(&cil->xc_push_lock); 1339 return; 1340 } 1341 1342 cil->xc_push_seq = push_seq; 1343 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1344 spin_unlock(&cil->xc_push_lock); 1345 } 1346 1347 bool 1348 xlog_cil_empty( 1349 struct xlog *log) 1350 { 1351 struct xfs_cil *cil = log->l_cilp; 1352 bool empty = false; 1353 1354 spin_lock(&cil->xc_push_lock); 1355 if (list_empty(&cil->xc_cil)) 1356 empty = true; 1357 spin_unlock(&cil->xc_push_lock); 1358 return empty; 1359 } 1360 1361 /* 1362 * If there are intent done items in this transaction and the related intent was 1363 * committed in the current (same) CIL checkpoint, we don't need to write either 1364 * the intent or intent done item to the journal as the change will be 1365 * journalled atomically within this checkpoint. As we cannot remove items from 1366 * the CIL here, mark the related intent with a whiteout so that the CIL push 1367 * can remove it rather than writing it to the journal. Then remove the intent 1368 * done item from the current transaction and release it so it doesn't get put 1369 * into the CIL at all. 1370 */ 1371 static uint32_t 1372 xlog_cil_process_intents( 1373 struct xfs_cil *cil, 1374 struct xfs_trans *tp) 1375 { 1376 struct xfs_log_item *lip, *ilip, *next; 1377 uint32_t len = 0; 1378 1379 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1380 if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE)) 1381 continue; 1382 1383 ilip = lip->li_ops->iop_intent(lip); 1384 if (!ilip || !xlog_item_in_current_chkpt(cil, ilip)) 1385 continue; 1386 set_bit(XFS_LI_WHITEOUT, &ilip->li_flags); 1387 trace_xfs_cil_whiteout_mark(ilip); 1388 len += ilip->li_lv->lv_bytes; 1389 kmem_free(ilip->li_lv); 1390 ilip->li_lv = NULL; 1391 1392 xfs_trans_del_item(lip); 1393 lip->li_ops->iop_release(lip); 1394 } 1395 return len; 1396 } 1397 1398 /* 1399 * Commit a transaction with the given vector to the Committed Item List. 1400 * 1401 * To do this, we need to format the item, pin it in memory if required and 1402 * account for the space used by the transaction. Once we have done that we 1403 * need to release the unused reservation for the transaction, attach the 1404 * transaction to the checkpoint context so we carry the busy extents through 1405 * to checkpoint completion, and then unlock all the items in the transaction. 1406 * 1407 * Called with the context lock already held in read mode to lock out 1408 * background commit, returns without it held once background commits are 1409 * allowed again. 1410 */ 1411 void 1412 xlog_cil_commit( 1413 struct xlog *log, 1414 struct xfs_trans *tp, 1415 xfs_csn_t *commit_seq, 1416 bool regrant) 1417 { 1418 struct xfs_cil *cil = log->l_cilp; 1419 struct xfs_log_item *lip, *next; 1420 uint32_t released_space = 0; 1421 1422 /* 1423 * Do all necessary memory allocation before we lock the CIL. 1424 * This ensures the allocation does not deadlock with a CIL 1425 * push in memory reclaim (e.g. from kswapd). 1426 */ 1427 xlog_cil_alloc_shadow_bufs(log, tp); 1428 1429 /* lock out background commit */ 1430 down_read(&cil->xc_ctx_lock); 1431 1432 if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE) 1433 released_space = xlog_cil_process_intents(cil, tp); 1434 1435 xlog_cil_insert_items(log, tp, released_space); 1436 1437 if (regrant && !xlog_is_shutdown(log)) 1438 xfs_log_ticket_regrant(log, tp->t_ticket); 1439 else 1440 xfs_log_ticket_ungrant(log, tp->t_ticket); 1441 tp->t_ticket = NULL; 1442 xfs_trans_unreserve_and_mod_sb(tp); 1443 1444 /* 1445 * Once all the items of the transaction have been copied to the CIL, 1446 * the items can be unlocked and possibly freed. 1447 * 1448 * This needs to be done before we drop the CIL context lock because we 1449 * have to update state in the log items and unlock them before they go 1450 * to disk. If we don't, then the CIL checkpoint can race with us and 1451 * we can run checkpoint completion before we've updated and unlocked 1452 * the log items. This affects (at least) processing of stale buffers, 1453 * inodes and EFIs. 1454 */ 1455 trace_xfs_trans_commit_items(tp, _RET_IP_); 1456 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1457 xfs_trans_del_item(lip); 1458 if (lip->li_ops->iop_committing) 1459 lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence); 1460 } 1461 if (commit_seq) 1462 *commit_seq = cil->xc_ctx->sequence; 1463 1464 /* xlog_cil_push_background() releases cil->xc_ctx_lock */ 1465 xlog_cil_push_background(log); 1466 } 1467 1468 /* 1469 * Flush the CIL to stable storage but don't wait for it to complete. This 1470 * requires the CIL push to ensure the commit record for the push hits the disk, 1471 * but otherwise is no different to a push done from a log force. 1472 */ 1473 void 1474 xlog_cil_flush( 1475 struct xlog *log) 1476 { 1477 xfs_csn_t seq = log->l_cilp->xc_current_sequence; 1478 1479 trace_xfs_log_force(log->l_mp, seq, _RET_IP_); 1480 xlog_cil_push_now(log, seq, true); 1481 1482 /* 1483 * If the CIL is empty, make sure that any previous checkpoint that may 1484 * still be in an active iclog is pushed to stable storage. 1485 */ 1486 if (list_empty(&log->l_cilp->xc_cil)) 1487 xfs_log_force(log->l_mp, 0); 1488 } 1489 1490 /* 1491 * Conditionally push the CIL based on the sequence passed in. 1492 * 1493 * We only need to push if we haven't already pushed the sequence number given. 1494 * Hence the only time we will trigger a push here is if the push sequence is 1495 * the same as the current context. 1496 * 1497 * We return the current commit lsn to allow the callers to determine if a 1498 * iclog flush is necessary following this call. 1499 */ 1500 xfs_lsn_t 1501 xlog_cil_force_seq( 1502 struct xlog *log, 1503 xfs_csn_t sequence) 1504 { 1505 struct xfs_cil *cil = log->l_cilp; 1506 struct xfs_cil_ctx *ctx; 1507 xfs_lsn_t commit_lsn = NULLCOMMITLSN; 1508 1509 ASSERT(sequence <= cil->xc_current_sequence); 1510 1511 if (!sequence) 1512 sequence = cil->xc_current_sequence; 1513 trace_xfs_log_force(log->l_mp, sequence, _RET_IP_); 1514 1515 /* 1516 * check to see if we need to force out the current context. 1517 * xlog_cil_push() handles racing pushes for the same sequence, 1518 * so no need to deal with it here. 1519 */ 1520 restart: 1521 xlog_cil_push_now(log, sequence, false); 1522 1523 /* 1524 * See if we can find a previous sequence still committing. 1525 * We need to wait for all previous sequence commits to complete 1526 * before allowing the force of push_seq to go ahead. Hence block 1527 * on commits for those as well. 1528 */ 1529 spin_lock(&cil->xc_push_lock); 1530 list_for_each_entry(ctx, &cil->xc_committing, committing) { 1531 /* 1532 * Avoid getting stuck in this loop because we were woken by the 1533 * shutdown, but then went back to sleep once already in the 1534 * shutdown state. 1535 */ 1536 if (xlog_is_shutdown(log)) 1537 goto out_shutdown; 1538 if (ctx->sequence > sequence) 1539 continue; 1540 if (!ctx->commit_lsn) { 1541 /* 1542 * It is still being pushed! Wait for the push to 1543 * complete, then start again from the beginning. 1544 */ 1545 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 1546 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 1547 goto restart; 1548 } 1549 if (ctx->sequence != sequence) 1550 continue; 1551 /* found it! */ 1552 commit_lsn = ctx->commit_lsn; 1553 } 1554 1555 /* 1556 * The call to xlog_cil_push_now() executes the push in the background. 1557 * Hence by the time we have got here it our sequence may not have been 1558 * pushed yet. This is true if the current sequence still matches the 1559 * push sequence after the above wait loop and the CIL still contains 1560 * dirty objects. This is guaranteed by the push code first adding the 1561 * context to the committing list before emptying the CIL. 1562 * 1563 * Hence if we don't find the context in the committing list and the 1564 * current sequence number is unchanged then the CIL contents are 1565 * significant. If the CIL is empty, if means there was nothing to push 1566 * and that means there is nothing to wait for. If the CIL is not empty, 1567 * it means we haven't yet started the push, because if it had started 1568 * we would have found the context on the committing list. 1569 */ 1570 if (sequence == cil->xc_current_sequence && 1571 !list_empty(&cil->xc_cil)) { 1572 spin_unlock(&cil->xc_push_lock); 1573 goto restart; 1574 } 1575 1576 spin_unlock(&cil->xc_push_lock); 1577 return commit_lsn; 1578 1579 /* 1580 * We detected a shutdown in progress. We need to trigger the log force 1581 * to pass through it's iclog state machine error handling, even though 1582 * we are already in a shutdown state. Hence we can't return 1583 * NULLCOMMITLSN here as that has special meaning to log forces (i.e. 1584 * LSN is already stable), so we return a zero LSN instead. 1585 */ 1586 out_shutdown: 1587 spin_unlock(&cil->xc_push_lock); 1588 return 0; 1589 } 1590 1591 /* 1592 * Perform initial CIL structure initialisation. 1593 */ 1594 int 1595 xlog_cil_init( 1596 struct xlog *log) 1597 { 1598 struct xfs_cil *cil; 1599 struct xfs_cil_ctx *ctx; 1600 1601 cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL); 1602 if (!cil) 1603 return -ENOMEM; 1604 /* 1605 * Limit the CIL pipeline depth to 4 concurrent works to bound the 1606 * concurrency the log spinlocks will be exposed to. 1607 */ 1608 cil->xc_push_wq = alloc_workqueue("xfs-cil/%s", 1609 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND), 1610 4, log->l_mp->m_super->s_id); 1611 if (!cil->xc_push_wq) 1612 goto out_destroy_cil; 1613 1614 INIT_LIST_HEAD(&cil->xc_cil); 1615 INIT_LIST_HEAD(&cil->xc_committing); 1616 spin_lock_init(&cil->xc_cil_lock); 1617 spin_lock_init(&cil->xc_push_lock); 1618 init_waitqueue_head(&cil->xc_push_wait); 1619 init_rwsem(&cil->xc_ctx_lock); 1620 init_waitqueue_head(&cil->xc_start_wait); 1621 init_waitqueue_head(&cil->xc_commit_wait); 1622 cil->xc_log = log; 1623 log->l_cilp = cil; 1624 1625 ctx = xlog_cil_ctx_alloc(); 1626 xlog_cil_ctx_switch(cil, ctx); 1627 1628 return 0; 1629 1630 out_destroy_cil: 1631 kmem_free(cil); 1632 return -ENOMEM; 1633 } 1634 1635 void 1636 xlog_cil_destroy( 1637 struct xlog *log) 1638 { 1639 if (log->l_cilp->xc_ctx) { 1640 if (log->l_cilp->xc_ctx->ticket) 1641 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket); 1642 kmem_free(log->l_cilp->xc_ctx); 1643 } 1644 1645 ASSERT(list_empty(&log->l_cilp->xc_cil)); 1646 destroy_workqueue(log->l_cilp->xc_push_wq); 1647 kmem_free(log->l_cilp); 1648 } 1649 1650