1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. 4 */ 5 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_shared.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_extent_busy.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_log.h" 17 #include "xfs_log_priv.h" 18 #include "xfs_trace.h" 19 20 struct workqueue_struct *xfs_discard_wq; 21 22 /* 23 * Allocate a new ticket. Failing to get a new ticket makes it really hard to 24 * recover, so we don't allow failure here. Also, we allocate in a context that 25 * we don't want to be issuing transactions from, so we need to tell the 26 * allocation code this as well. 27 * 28 * We don't reserve any space for the ticket - we are going to steal whatever 29 * space we require from transactions as they commit. To ensure we reserve all 30 * the space required, we need to set the current reservation of the ticket to 31 * zero so that we know to steal the initial transaction overhead from the 32 * first transaction commit. 33 */ 34 static struct xlog_ticket * 35 xlog_cil_ticket_alloc( 36 struct xlog *log) 37 { 38 struct xlog_ticket *tic; 39 40 tic = xlog_ticket_alloc(log, 0, 1, 0); 41 42 /* 43 * set the current reservation to zero so we know to steal the basic 44 * transaction overhead reservation from the first transaction commit. 45 */ 46 tic->t_curr_res = 0; 47 tic->t_iclog_hdrs = 0; 48 return tic; 49 } 50 51 static inline void 52 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil) 53 { 54 struct xlog *log = cil->xc_log; 55 56 atomic_set(&cil->xc_iclog_hdrs, 57 (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) / 58 (log->l_iclog_size - log->l_iclog_hsize))); 59 } 60 61 /* 62 * Check if the current log item was first committed in this sequence. 63 * We can't rely on just the log item being in the CIL, we have to check 64 * the recorded commit sequence number. 65 * 66 * Note: for this to be used in a non-racy manner, it has to be called with 67 * CIL flushing locked out. As a result, it should only be used during the 68 * transaction commit process when deciding what to format into the item. 69 */ 70 static bool 71 xlog_item_in_current_chkpt( 72 struct xfs_cil *cil, 73 struct xfs_log_item *lip) 74 { 75 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 76 return false; 77 78 /* 79 * li_seq is written on the first commit of a log item to record the 80 * first checkpoint it is written to. Hence if it is different to the 81 * current sequence, we're in a new checkpoint. 82 */ 83 return lip->li_seq == READ_ONCE(cil->xc_current_sequence); 84 } 85 86 bool 87 xfs_log_item_in_current_chkpt( 88 struct xfs_log_item *lip) 89 { 90 return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip); 91 } 92 93 /* 94 * Unavoidable forward declaration - xlog_cil_push_work() calls 95 * xlog_cil_ctx_alloc() itself. 96 */ 97 static void xlog_cil_push_work(struct work_struct *work); 98 99 static struct xfs_cil_ctx * 100 xlog_cil_ctx_alloc(void) 101 { 102 struct xfs_cil_ctx *ctx; 103 104 ctx = kmem_zalloc(sizeof(*ctx), KM_NOFS); 105 INIT_LIST_HEAD(&ctx->committing); 106 INIT_LIST_HEAD(&ctx->busy_extents); 107 INIT_LIST_HEAD(&ctx->log_items); 108 INIT_LIST_HEAD(&ctx->lv_chain); 109 INIT_WORK(&ctx->push_work, xlog_cil_push_work); 110 return ctx; 111 } 112 113 /* 114 * Aggregate the CIL per cpu structures into global counts, lists, etc and 115 * clear the percpu state ready for the next context to use. This is called 116 * from the push code with the context lock held exclusively, hence nothing else 117 * will be accessing or modifying the per-cpu counters. 118 */ 119 static void 120 xlog_cil_push_pcp_aggregate( 121 struct xfs_cil *cil, 122 struct xfs_cil_ctx *ctx) 123 { 124 struct xlog_cil_pcp *cilpcp; 125 int cpu; 126 127 for_each_online_cpu(cpu) { 128 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 129 130 ctx->ticket->t_curr_res += cilpcp->space_reserved; 131 cilpcp->space_reserved = 0; 132 133 if (!list_empty(&cilpcp->busy_extents)) { 134 list_splice_init(&cilpcp->busy_extents, 135 &ctx->busy_extents); 136 } 137 if (!list_empty(&cilpcp->log_items)) 138 list_splice_init(&cilpcp->log_items, &ctx->log_items); 139 140 /* 141 * We're in the middle of switching cil contexts. Reset the 142 * counter we use to detect when the current context is nearing 143 * full. 144 */ 145 cilpcp->space_used = 0; 146 } 147 } 148 149 /* 150 * Aggregate the CIL per-cpu space used counters into the global atomic value. 151 * This is called when the per-cpu counter aggregation will first pass the soft 152 * limit threshold so we can switch to atomic counter aggregation for accurate 153 * detection of hard limit traversal. 154 */ 155 static void 156 xlog_cil_insert_pcp_aggregate( 157 struct xfs_cil *cil, 158 struct xfs_cil_ctx *ctx) 159 { 160 struct xlog_cil_pcp *cilpcp; 161 int cpu; 162 int count = 0; 163 164 /* Trigger atomic updates then aggregate only for the first caller */ 165 if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) 166 return; 167 168 for_each_online_cpu(cpu) { 169 int old, prev; 170 171 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 172 do { 173 old = cilpcp->space_used; 174 prev = cmpxchg(&cilpcp->space_used, old, 0); 175 } while (old != prev); 176 count += old; 177 } 178 atomic_add(count, &ctx->space_used); 179 } 180 181 static void 182 xlog_cil_ctx_switch( 183 struct xfs_cil *cil, 184 struct xfs_cil_ctx *ctx) 185 { 186 xlog_cil_set_iclog_hdr_count(cil); 187 set_bit(XLOG_CIL_EMPTY, &cil->xc_flags); 188 set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags); 189 ctx->sequence = ++cil->xc_current_sequence; 190 ctx->cil = cil; 191 cil->xc_ctx = ctx; 192 } 193 194 /* 195 * After the first stage of log recovery is done, we know where the head and 196 * tail of the log are. We need this log initialisation done before we can 197 * initialise the first CIL checkpoint context. 198 * 199 * Here we allocate a log ticket to track space usage during a CIL push. This 200 * ticket is passed to xlog_write() directly so that we don't slowly leak log 201 * space by failing to account for space used by log headers and additional 202 * region headers for split regions. 203 */ 204 void 205 xlog_cil_init_post_recovery( 206 struct xlog *log) 207 { 208 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); 209 log->l_cilp->xc_ctx->sequence = 1; 210 xlog_cil_set_iclog_hdr_count(log->l_cilp); 211 } 212 213 static inline int 214 xlog_cil_iovec_space( 215 uint niovecs) 216 { 217 return round_up((sizeof(struct xfs_log_vec) + 218 niovecs * sizeof(struct xfs_log_iovec)), 219 sizeof(uint64_t)); 220 } 221 222 /* 223 * Allocate or pin log vector buffers for CIL insertion. 224 * 225 * The CIL currently uses disposable buffers for copying a snapshot of the 226 * modified items into the log during a push. The biggest problem with this is 227 * the requirement to allocate the disposable buffer during the commit if: 228 * a) does not exist; or 229 * b) it is too small 230 * 231 * If we do this allocation within xlog_cil_insert_format_items(), it is done 232 * under the xc_ctx_lock, which means that a CIL push cannot occur during 233 * the memory allocation. This means that we have a potential deadlock situation 234 * under low memory conditions when we have lots of dirty metadata pinned in 235 * the CIL and we need a CIL commit to occur to free memory. 236 * 237 * To avoid this, we need to move the memory allocation outside the 238 * xc_ctx_lock, but because the log vector buffers are disposable, that opens 239 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log 240 * vector buffers between the check and the formatting of the item into the 241 * log vector buffer within the xc_ctx_lock. 242 * 243 * Because the log vector buffer needs to be unchanged during the CIL push 244 * process, we cannot share the buffer between the transaction commit (which 245 * modifies the buffer) and the CIL push context that is writing the changes 246 * into the log. This means skipping preallocation of buffer space is 247 * unreliable, but we most definitely do not want to be allocating and freeing 248 * buffers unnecessarily during commits when overwrites can be done safely. 249 * 250 * The simplest solution to this problem is to allocate a shadow buffer when a 251 * log item is committed for the second time, and then to only use this buffer 252 * if necessary. The buffer can remain attached to the log item until such time 253 * it is needed, and this is the buffer that is reallocated to match the size of 254 * the incoming modification. Then during the formatting of the item we can swap 255 * the active buffer with the new one if we can't reuse the existing buffer. We 256 * don't free the old buffer as it may be reused on the next modification if 257 * it's size is right, otherwise we'll free and reallocate it at that point. 258 * 259 * This function builds a vector for the changes in each log item in the 260 * transaction. It then works out the length of the buffer needed for each log 261 * item, allocates them and attaches the vector to the log item in preparation 262 * for the formatting step which occurs under the xc_ctx_lock. 263 * 264 * While this means the memory footprint goes up, it avoids the repeated 265 * alloc/free pattern that repeated modifications of an item would otherwise 266 * cause, and hence minimises the CPU overhead of such behaviour. 267 */ 268 static void 269 xlog_cil_alloc_shadow_bufs( 270 struct xlog *log, 271 struct xfs_trans *tp) 272 { 273 struct xfs_log_item *lip; 274 275 list_for_each_entry(lip, &tp->t_items, li_trans) { 276 struct xfs_log_vec *lv; 277 int niovecs = 0; 278 int nbytes = 0; 279 int buf_size; 280 bool ordered = false; 281 282 /* Skip items which aren't dirty in this transaction. */ 283 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 284 continue; 285 286 /* get number of vecs and size of data to be stored */ 287 lip->li_ops->iop_size(lip, &niovecs, &nbytes); 288 289 /* 290 * Ordered items need to be tracked but we do not wish to write 291 * them. We need a logvec to track the object, but we do not 292 * need an iovec or buffer to be allocated for copying data. 293 */ 294 if (niovecs == XFS_LOG_VEC_ORDERED) { 295 ordered = true; 296 niovecs = 0; 297 nbytes = 0; 298 } 299 300 /* 301 * We 64-bit align the length of each iovec so that the start of 302 * the next one is naturally aligned. We'll need to account for 303 * that slack space here. 304 * 305 * We also add the xlog_op_header to each region when 306 * formatting, but that's not accounted to the size of the item 307 * at this point. Hence we'll need an addition number of bytes 308 * for each vector to hold an opheader. 309 * 310 * Then round nbytes up to 64-bit alignment so that the initial 311 * buffer alignment is easy to calculate and verify. 312 */ 313 nbytes += niovecs * 314 (sizeof(uint64_t) + sizeof(struct xlog_op_header)); 315 nbytes = round_up(nbytes, sizeof(uint64_t)); 316 317 /* 318 * The data buffer needs to start 64-bit aligned, so round up 319 * that space to ensure we can align it appropriately and not 320 * overrun the buffer. 321 */ 322 buf_size = nbytes + xlog_cil_iovec_space(niovecs); 323 324 /* 325 * if we have no shadow buffer, or it is too small, we need to 326 * reallocate it. 327 */ 328 if (!lip->li_lv_shadow || 329 buf_size > lip->li_lv_shadow->lv_size) { 330 /* 331 * We free and allocate here as a realloc would copy 332 * unnecessary data. We don't use kvzalloc() for the 333 * same reason - we don't need to zero the data area in 334 * the buffer, only the log vector header and the iovec 335 * storage. 336 */ 337 kmem_free(lip->li_lv_shadow); 338 lv = xlog_kvmalloc(buf_size); 339 340 memset(lv, 0, xlog_cil_iovec_space(niovecs)); 341 342 INIT_LIST_HEAD(&lv->lv_list); 343 lv->lv_item = lip; 344 lv->lv_size = buf_size; 345 if (ordered) 346 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 347 else 348 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1]; 349 lip->li_lv_shadow = lv; 350 } else { 351 /* same or smaller, optimise common overwrite case */ 352 lv = lip->li_lv_shadow; 353 if (ordered) 354 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 355 else 356 lv->lv_buf_len = 0; 357 lv->lv_bytes = 0; 358 } 359 360 /* Ensure the lv is set up according to ->iop_size */ 361 lv->lv_niovecs = niovecs; 362 363 /* The allocated data region lies beyond the iovec region */ 364 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs); 365 } 366 367 } 368 369 /* 370 * Prepare the log item for insertion into the CIL. Calculate the difference in 371 * log space it will consume, and if it is a new item pin it as well. 372 */ 373 STATIC void 374 xfs_cil_prepare_item( 375 struct xlog *log, 376 struct xfs_log_vec *lv, 377 struct xfs_log_vec *old_lv, 378 int *diff_len) 379 { 380 /* Account for the new LV being passed in */ 381 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) 382 *diff_len += lv->lv_bytes; 383 384 /* 385 * If there is no old LV, this is the first time we've seen the item in 386 * this CIL context and so we need to pin it. If we are replacing the 387 * old_lv, then remove the space it accounts for and make it the shadow 388 * buffer for later freeing. In both cases we are now switching to the 389 * shadow buffer, so update the pointer to it appropriately. 390 */ 391 if (!old_lv) { 392 if (lv->lv_item->li_ops->iop_pin) 393 lv->lv_item->li_ops->iop_pin(lv->lv_item); 394 lv->lv_item->li_lv_shadow = NULL; 395 } else if (old_lv != lv) { 396 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED); 397 398 *diff_len -= old_lv->lv_bytes; 399 lv->lv_item->li_lv_shadow = old_lv; 400 } 401 402 /* attach new log vector to log item */ 403 lv->lv_item->li_lv = lv; 404 405 /* 406 * If this is the first time the item is being committed to the 407 * CIL, store the sequence number on the log item so we can 408 * tell in future commits whether this is the first checkpoint 409 * the item is being committed into. 410 */ 411 if (!lv->lv_item->li_seq) 412 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; 413 } 414 415 /* 416 * Format log item into a flat buffers 417 * 418 * For delayed logging, we need to hold a formatted buffer containing all the 419 * changes on the log item. This enables us to relog the item in memory and 420 * write it out asynchronously without needing to relock the object that was 421 * modified at the time it gets written into the iclog. 422 * 423 * This function takes the prepared log vectors attached to each log item, and 424 * formats the changes into the log vector buffer. The buffer it uses is 425 * dependent on the current state of the vector in the CIL - the shadow lv is 426 * guaranteed to be large enough for the current modification, but we will only 427 * use that if we can't reuse the existing lv. If we can't reuse the existing 428 * lv, then simple swap it out for the shadow lv. We don't free it - that is 429 * done lazily either by th enext modification or the freeing of the log item. 430 * 431 * We don't set up region headers during this process; we simply copy the 432 * regions into the flat buffer. We can do this because we still have to do a 433 * formatting step to write the regions into the iclog buffer. Writing the 434 * ophdrs during the iclog write means that we can support splitting large 435 * regions across iclog boundares without needing a change in the format of the 436 * item/region encapsulation. 437 * 438 * Hence what we need to do now is change the rewrite the vector array to point 439 * to the copied region inside the buffer we just allocated. This allows us to 440 * format the regions into the iclog as though they are being formatted 441 * directly out of the objects themselves. 442 */ 443 static void 444 xlog_cil_insert_format_items( 445 struct xlog *log, 446 struct xfs_trans *tp, 447 int *diff_len) 448 { 449 struct xfs_log_item *lip; 450 451 /* Bail out if we didn't find a log item. */ 452 if (list_empty(&tp->t_items)) { 453 ASSERT(0); 454 return; 455 } 456 457 list_for_each_entry(lip, &tp->t_items, li_trans) { 458 struct xfs_log_vec *lv; 459 struct xfs_log_vec *old_lv = NULL; 460 struct xfs_log_vec *shadow; 461 bool ordered = false; 462 463 /* Skip items which aren't dirty in this transaction. */ 464 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 465 continue; 466 467 /* 468 * The formatting size information is already attached to 469 * the shadow lv on the log item. 470 */ 471 shadow = lip->li_lv_shadow; 472 if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED) 473 ordered = true; 474 475 /* Skip items that do not have any vectors for writing */ 476 if (!shadow->lv_niovecs && !ordered) 477 continue; 478 479 /* compare to existing item size */ 480 old_lv = lip->li_lv; 481 if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) { 482 /* same or smaller, optimise common overwrite case */ 483 lv = lip->li_lv; 484 485 if (ordered) 486 goto insert; 487 488 /* 489 * set the item up as though it is a new insertion so 490 * that the space reservation accounting is correct. 491 */ 492 *diff_len -= lv->lv_bytes; 493 494 /* Ensure the lv is set up according to ->iop_size */ 495 lv->lv_niovecs = shadow->lv_niovecs; 496 497 /* reset the lv buffer information for new formatting */ 498 lv->lv_buf_len = 0; 499 lv->lv_bytes = 0; 500 lv->lv_buf = (char *)lv + 501 xlog_cil_iovec_space(lv->lv_niovecs); 502 } else { 503 /* switch to shadow buffer! */ 504 lv = shadow; 505 lv->lv_item = lip; 506 if (ordered) { 507 /* track as an ordered logvec */ 508 ASSERT(lip->li_lv == NULL); 509 goto insert; 510 } 511 } 512 513 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t))); 514 lip->li_ops->iop_format(lip, lv); 515 insert: 516 xfs_cil_prepare_item(log, lv, old_lv, diff_len); 517 } 518 } 519 520 /* 521 * The use of lockless waitqueue_active() requires that the caller has 522 * serialised itself against the wakeup call in xlog_cil_push_work(). That 523 * can be done by either holding the push lock or the context lock. 524 */ 525 static inline bool 526 xlog_cil_over_hard_limit( 527 struct xlog *log, 528 int32_t space_used) 529 { 530 if (waitqueue_active(&log->l_cilp->xc_push_wait)) 531 return true; 532 if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log)) 533 return true; 534 return false; 535 } 536 537 /* 538 * Insert the log items into the CIL and calculate the difference in space 539 * consumed by the item. Add the space to the checkpoint ticket and calculate 540 * if the change requires additional log metadata. If it does, take that space 541 * as well. Remove the amount of space we added to the checkpoint ticket from 542 * the current transaction ticket so that the accounting works out correctly. 543 */ 544 static void 545 xlog_cil_insert_items( 546 struct xlog *log, 547 struct xfs_trans *tp, 548 uint32_t released_space) 549 { 550 struct xfs_cil *cil = log->l_cilp; 551 struct xfs_cil_ctx *ctx = cil->xc_ctx; 552 struct xfs_log_item *lip; 553 int len = 0; 554 int iovhdr_res = 0, split_res = 0, ctx_res = 0; 555 int space_used; 556 int order; 557 struct xlog_cil_pcp *cilpcp; 558 559 ASSERT(tp); 560 561 /* 562 * We can do this safely because the context can't checkpoint until we 563 * are done so it doesn't matter exactly how we update the CIL. 564 */ 565 xlog_cil_insert_format_items(log, tp, &len); 566 567 /* 568 * Subtract the space released by intent cancelation from the space we 569 * consumed so that we remove it from the CIL space and add it back to 570 * the current transaction reservation context. 571 */ 572 len -= released_space; 573 574 /* 575 * Grab the per-cpu pointer for the CIL before we start any accounting. 576 * That ensures that we are running with pre-emption disabled and so we 577 * can't be scheduled away between split sample/update operations that 578 * are done without outside locking to serialise them. 579 */ 580 cilpcp = get_cpu_ptr(cil->xc_pcp); 581 582 /* 583 * We need to take the CIL checkpoint unit reservation on the first 584 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't 585 * unnecessarily do an atomic op in the fast path here. We can clear the 586 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that 587 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit. 588 */ 589 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) && 590 test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 591 ctx_res = ctx->ticket->t_unit_res; 592 593 /* 594 * Check if we need to steal iclog headers. atomic_read() is not a 595 * locked atomic operation, so we can check the value before we do any 596 * real atomic ops in the fast path. If we've already taken the CIL unit 597 * reservation from this commit, we've already got one iclog header 598 * space reserved so we have to account for that otherwise we risk 599 * overrunning the reservation on this ticket. 600 * 601 * If the CIL is already at the hard limit, we might need more header 602 * space that originally reserved. So steal more header space from every 603 * commit that occurs once we are over the hard limit to ensure the CIL 604 * push won't run out of reservation space. 605 * 606 * This can steal more than we need, but that's OK. 607 * 608 * The cil->xc_ctx_lock provides the serialisation necessary for safely 609 * calling xlog_cil_over_hard_limit() in this context. 610 */ 611 space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len; 612 if (atomic_read(&cil->xc_iclog_hdrs) > 0 || 613 xlog_cil_over_hard_limit(log, space_used)) { 614 split_res = log->l_iclog_hsize + 615 sizeof(struct xlog_op_header); 616 if (ctx_res) 617 ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1); 618 else 619 ctx_res = split_res * tp->t_ticket->t_iclog_hdrs; 620 atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs); 621 } 622 cilpcp->space_reserved += ctx_res; 623 624 /* 625 * Accurately account when over the soft limit, otherwise fold the 626 * percpu count into the global count if over the per-cpu threshold. 627 */ 628 if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) { 629 atomic_add(len, &ctx->space_used); 630 } else if (cilpcp->space_used + len > 631 (XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) { 632 space_used = atomic_add_return(cilpcp->space_used + len, 633 &ctx->space_used); 634 cilpcp->space_used = 0; 635 636 /* 637 * If we just transitioned over the soft limit, we need to 638 * transition to the global atomic counter. 639 */ 640 if (space_used >= XLOG_CIL_SPACE_LIMIT(log)) 641 xlog_cil_insert_pcp_aggregate(cil, ctx); 642 } else { 643 cilpcp->space_used += len; 644 } 645 /* attach the transaction to the CIL if it has any busy extents */ 646 if (!list_empty(&tp->t_busy)) 647 list_splice_init(&tp->t_busy, &cilpcp->busy_extents); 648 649 /* 650 * Now update the order of everything modified in the transaction 651 * and insert items into the CIL if they aren't already there. 652 * We do this here so we only need to take the CIL lock once during 653 * the transaction commit. 654 */ 655 order = atomic_inc_return(&ctx->order_id); 656 list_for_each_entry(lip, &tp->t_items, li_trans) { 657 /* Skip items which aren't dirty in this transaction. */ 658 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 659 continue; 660 661 lip->li_order_id = order; 662 if (!list_empty(&lip->li_cil)) 663 continue; 664 list_add_tail(&lip->li_cil, &cilpcp->log_items); 665 } 666 put_cpu_ptr(cilpcp); 667 668 /* 669 * If we've overrun the reservation, dump the tx details before we move 670 * the log items. Shutdown is imminent... 671 */ 672 tp->t_ticket->t_curr_res -= ctx_res + len; 673 if (WARN_ON(tp->t_ticket->t_curr_res < 0)) { 674 xfs_warn(log->l_mp, "Transaction log reservation overrun:"); 675 xfs_warn(log->l_mp, 676 " log items: %d bytes (iov hdrs: %d bytes)", 677 len, iovhdr_res); 678 xfs_warn(log->l_mp, " split region headers: %d bytes", 679 split_res); 680 xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res); 681 xlog_print_trans(tp); 682 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 683 } 684 } 685 686 static void 687 xlog_cil_free_logvec( 688 struct list_head *lv_chain) 689 { 690 struct xfs_log_vec *lv; 691 692 while (!list_empty(lv_chain)) { 693 lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list); 694 list_del_init(&lv->lv_list); 695 kmem_free(lv); 696 } 697 } 698 699 static void 700 xlog_discard_endio_work( 701 struct work_struct *work) 702 { 703 struct xfs_cil_ctx *ctx = 704 container_of(work, struct xfs_cil_ctx, discard_endio_work); 705 struct xfs_mount *mp = ctx->cil->xc_log->l_mp; 706 707 xfs_extent_busy_clear(mp, &ctx->busy_extents, false); 708 kmem_free(ctx); 709 } 710 711 /* 712 * Queue up the actual completion to a thread to avoid IRQ-safe locking for 713 * pagb_lock. Note that we need a unbounded workqueue, otherwise we might 714 * get the execution delayed up to 30 seconds for weird reasons. 715 */ 716 static void 717 xlog_discard_endio( 718 struct bio *bio) 719 { 720 struct xfs_cil_ctx *ctx = bio->bi_private; 721 722 INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work); 723 queue_work(xfs_discard_wq, &ctx->discard_endio_work); 724 bio_put(bio); 725 } 726 727 static void 728 xlog_discard_busy_extents( 729 struct xfs_mount *mp, 730 struct xfs_cil_ctx *ctx) 731 { 732 struct list_head *list = &ctx->busy_extents; 733 struct xfs_extent_busy *busyp; 734 struct bio *bio = NULL; 735 struct blk_plug plug; 736 int error = 0; 737 738 ASSERT(xfs_has_discard(mp)); 739 740 blk_start_plug(&plug); 741 list_for_each_entry(busyp, list, list) { 742 trace_xfs_discard_extent(mp, busyp->agno, busyp->bno, 743 busyp->length); 744 745 error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev, 746 XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno), 747 XFS_FSB_TO_BB(mp, busyp->length), 748 GFP_NOFS, &bio); 749 if (error && error != -EOPNOTSUPP) { 750 xfs_info(mp, 751 "discard failed for extent [0x%llx,%u], error %d", 752 (unsigned long long)busyp->bno, 753 busyp->length, 754 error); 755 break; 756 } 757 } 758 759 if (bio) { 760 bio->bi_private = ctx; 761 bio->bi_end_io = xlog_discard_endio; 762 submit_bio(bio); 763 } else { 764 xlog_discard_endio_work(&ctx->discard_endio_work); 765 } 766 blk_finish_plug(&plug); 767 } 768 769 /* 770 * Mark all items committed and clear busy extents. We free the log vector 771 * chains in a separate pass so that we unpin the log items as quickly as 772 * possible. 773 */ 774 static void 775 xlog_cil_committed( 776 struct xfs_cil_ctx *ctx) 777 { 778 struct xfs_mount *mp = ctx->cil->xc_log->l_mp; 779 bool abort = xlog_is_shutdown(ctx->cil->xc_log); 780 781 /* 782 * If the I/O failed, we're aborting the commit and already shutdown. 783 * Wake any commit waiters before aborting the log items so we don't 784 * block async log pushers on callbacks. Async log pushers explicitly do 785 * not wait on log force completion because they may be holding locks 786 * required to unpin items. 787 */ 788 if (abort) { 789 spin_lock(&ctx->cil->xc_push_lock); 790 wake_up_all(&ctx->cil->xc_start_wait); 791 wake_up_all(&ctx->cil->xc_commit_wait); 792 spin_unlock(&ctx->cil->xc_push_lock); 793 } 794 795 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, &ctx->lv_chain, 796 ctx->start_lsn, abort); 797 798 xfs_extent_busy_sort(&ctx->busy_extents); 799 xfs_extent_busy_clear(mp, &ctx->busy_extents, 800 xfs_has_discard(mp) && !abort); 801 802 spin_lock(&ctx->cil->xc_push_lock); 803 list_del(&ctx->committing); 804 spin_unlock(&ctx->cil->xc_push_lock); 805 806 xlog_cil_free_logvec(&ctx->lv_chain); 807 808 if (!list_empty(&ctx->busy_extents)) 809 xlog_discard_busy_extents(mp, ctx); 810 else 811 kmem_free(ctx); 812 } 813 814 void 815 xlog_cil_process_committed( 816 struct list_head *list) 817 { 818 struct xfs_cil_ctx *ctx; 819 820 while ((ctx = list_first_entry_or_null(list, 821 struct xfs_cil_ctx, iclog_entry))) { 822 list_del(&ctx->iclog_entry); 823 xlog_cil_committed(ctx); 824 } 825 } 826 827 /* 828 * Record the LSN of the iclog we were just granted space to start writing into. 829 * If the context doesn't have a start_lsn recorded, then this iclog will 830 * contain the start record for the checkpoint. Otherwise this write contains 831 * the commit record for the checkpoint. 832 */ 833 void 834 xlog_cil_set_ctx_write_state( 835 struct xfs_cil_ctx *ctx, 836 struct xlog_in_core *iclog) 837 { 838 struct xfs_cil *cil = ctx->cil; 839 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 840 841 ASSERT(!ctx->commit_lsn); 842 if (!ctx->start_lsn) { 843 spin_lock(&cil->xc_push_lock); 844 /* 845 * The LSN we need to pass to the log items on transaction 846 * commit is the LSN reported by the first log vector write, not 847 * the commit lsn. If we use the commit record lsn then we can 848 * move the grant write head beyond the tail LSN and overwrite 849 * it. 850 */ 851 ctx->start_lsn = lsn; 852 wake_up_all(&cil->xc_start_wait); 853 spin_unlock(&cil->xc_push_lock); 854 855 /* 856 * Make sure the metadata we are about to overwrite in the log 857 * has been flushed to stable storage before this iclog is 858 * issued. 859 */ 860 spin_lock(&cil->xc_log->l_icloglock); 861 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 862 spin_unlock(&cil->xc_log->l_icloglock); 863 return; 864 } 865 866 /* 867 * Take a reference to the iclog for the context so that we still hold 868 * it when xlog_write is done and has released it. This means the 869 * context controls when the iclog is released for IO. 870 */ 871 atomic_inc(&iclog->ic_refcnt); 872 873 /* 874 * xlog_state_get_iclog_space() guarantees there is enough space in the 875 * iclog for an entire commit record, so we can attach the context 876 * callbacks now. This needs to be done before we make the commit_lsn 877 * visible to waiters so that checkpoints with commit records in the 878 * same iclog order their IO completion callbacks in the same order that 879 * the commit records appear in the iclog. 880 */ 881 spin_lock(&cil->xc_log->l_icloglock); 882 list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks); 883 spin_unlock(&cil->xc_log->l_icloglock); 884 885 /* 886 * Now we can record the commit LSN and wake anyone waiting for this 887 * sequence to have the ordered commit record assigned to a physical 888 * location in the log. 889 */ 890 spin_lock(&cil->xc_push_lock); 891 ctx->commit_iclog = iclog; 892 ctx->commit_lsn = lsn; 893 wake_up_all(&cil->xc_commit_wait); 894 spin_unlock(&cil->xc_push_lock); 895 } 896 897 898 /* 899 * Ensure that the order of log writes follows checkpoint sequence order. This 900 * relies on the context LSN being zero until the log write has guaranteed the 901 * LSN that the log write will start at via xlog_state_get_iclog_space(). 902 */ 903 enum _record_type { 904 _START_RECORD, 905 _COMMIT_RECORD, 906 }; 907 908 static int 909 xlog_cil_order_write( 910 struct xfs_cil *cil, 911 xfs_csn_t sequence, 912 enum _record_type record) 913 { 914 struct xfs_cil_ctx *ctx; 915 916 restart: 917 spin_lock(&cil->xc_push_lock); 918 list_for_each_entry(ctx, &cil->xc_committing, committing) { 919 /* 920 * Avoid getting stuck in this loop because we were woken by the 921 * shutdown, but then went back to sleep once already in the 922 * shutdown state. 923 */ 924 if (xlog_is_shutdown(cil->xc_log)) { 925 spin_unlock(&cil->xc_push_lock); 926 return -EIO; 927 } 928 929 /* 930 * Higher sequences will wait for this one so skip them. 931 * Don't wait for our own sequence, either. 932 */ 933 if (ctx->sequence >= sequence) 934 continue; 935 936 /* Wait until the LSN for the record has been recorded. */ 937 switch (record) { 938 case _START_RECORD: 939 if (!ctx->start_lsn) { 940 xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock); 941 goto restart; 942 } 943 break; 944 case _COMMIT_RECORD: 945 if (!ctx->commit_lsn) { 946 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 947 goto restart; 948 } 949 break; 950 } 951 } 952 spin_unlock(&cil->xc_push_lock); 953 return 0; 954 } 955 956 /* 957 * Write out the log vector change now attached to the CIL context. This will 958 * write a start record that needs to be strictly ordered in ascending CIL 959 * sequence order so that log recovery will always use in-order start LSNs when 960 * replaying checkpoints. 961 */ 962 static int 963 xlog_cil_write_chain( 964 struct xfs_cil_ctx *ctx, 965 uint32_t chain_len) 966 { 967 struct xlog *log = ctx->cil->xc_log; 968 int error; 969 970 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD); 971 if (error) 972 return error; 973 return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len); 974 } 975 976 /* 977 * Write out the commit record of a checkpoint transaction to close off a 978 * running log write. These commit records are strictly ordered in ascending CIL 979 * sequence order so that log recovery will always replay the checkpoints in the 980 * correct order. 981 */ 982 static int 983 xlog_cil_write_commit_record( 984 struct xfs_cil_ctx *ctx) 985 { 986 struct xlog *log = ctx->cil->xc_log; 987 struct xlog_op_header ophdr = { 988 .oh_clientid = XFS_TRANSACTION, 989 .oh_tid = cpu_to_be32(ctx->ticket->t_tid), 990 .oh_flags = XLOG_COMMIT_TRANS, 991 }; 992 struct xfs_log_iovec reg = { 993 .i_addr = &ophdr, 994 .i_len = sizeof(struct xlog_op_header), 995 .i_type = XLOG_REG_TYPE_COMMIT, 996 }; 997 struct xfs_log_vec vec = { 998 .lv_niovecs = 1, 999 .lv_iovecp = ®, 1000 }; 1001 int error; 1002 LIST_HEAD(lv_chain); 1003 list_add(&vec.lv_list, &lv_chain); 1004 1005 if (xlog_is_shutdown(log)) 1006 return -EIO; 1007 1008 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD); 1009 if (error) 1010 return error; 1011 1012 /* account for space used by record data */ 1013 ctx->ticket->t_curr_res -= reg.i_len; 1014 error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len); 1015 if (error) 1016 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1017 return error; 1018 } 1019 1020 struct xlog_cil_trans_hdr { 1021 struct xlog_op_header oph[2]; 1022 struct xfs_trans_header thdr; 1023 struct xfs_log_iovec lhdr[2]; 1024 }; 1025 1026 /* 1027 * Build a checkpoint transaction header to begin the journal transaction. We 1028 * need to account for the space used by the transaction header here as it is 1029 * not accounted for in xlog_write(). 1030 * 1031 * This is the only place we write a transaction header, so we also build the 1032 * log opheaders that indicate the start of a log transaction and wrap the 1033 * transaction header. We keep the start record in it's own log vector rather 1034 * than compacting them into a single region as this ends up making the logic 1035 * in xlog_write() for handling empty opheaders for start, commit and unmount 1036 * records much simpler. 1037 */ 1038 static void 1039 xlog_cil_build_trans_hdr( 1040 struct xfs_cil_ctx *ctx, 1041 struct xlog_cil_trans_hdr *hdr, 1042 struct xfs_log_vec *lvhdr, 1043 int num_iovecs) 1044 { 1045 struct xlog_ticket *tic = ctx->ticket; 1046 __be32 tid = cpu_to_be32(tic->t_tid); 1047 1048 memset(hdr, 0, sizeof(*hdr)); 1049 1050 /* Log start record */ 1051 hdr->oph[0].oh_tid = tid; 1052 hdr->oph[0].oh_clientid = XFS_TRANSACTION; 1053 hdr->oph[0].oh_flags = XLOG_START_TRANS; 1054 1055 /* log iovec region pointer */ 1056 hdr->lhdr[0].i_addr = &hdr->oph[0]; 1057 hdr->lhdr[0].i_len = sizeof(struct xlog_op_header); 1058 hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER; 1059 1060 /* log opheader */ 1061 hdr->oph[1].oh_tid = tid; 1062 hdr->oph[1].oh_clientid = XFS_TRANSACTION; 1063 hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header)); 1064 1065 /* transaction header in host byte order format */ 1066 hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC; 1067 hdr->thdr.th_type = XFS_TRANS_CHECKPOINT; 1068 hdr->thdr.th_tid = tic->t_tid; 1069 hdr->thdr.th_num_items = num_iovecs; 1070 1071 /* log iovec region pointer */ 1072 hdr->lhdr[1].i_addr = &hdr->oph[1]; 1073 hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) + 1074 sizeof(struct xfs_trans_header); 1075 hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR; 1076 1077 lvhdr->lv_niovecs = 2; 1078 lvhdr->lv_iovecp = &hdr->lhdr[0]; 1079 lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len; 1080 1081 tic->t_curr_res -= lvhdr->lv_bytes; 1082 } 1083 1084 /* 1085 * CIL item reordering compare function. We want to order in ascending ID order, 1086 * but we want to leave items with the same ID in the order they were added to 1087 * the list. This is important for operations like reflink where we log 4 order 1088 * dependent intents in a single transaction when we overwrite an existing 1089 * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop), 1090 * CUI (inc), BUI(remap)... 1091 */ 1092 static int 1093 xlog_cil_order_cmp( 1094 void *priv, 1095 const struct list_head *a, 1096 const struct list_head *b) 1097 { 1098 struct xfs_log_vec *l1 = container_of(a, struct xfs_log_vec, lv_list); 1099 struct xfs_log_vec *l2 = container_of(b, struct xfs_log_vec, lv_list); 1100 1101 return l1->lv_order_id > l2->lv_order_id; 1102 } 1103 1104 /* 1105 * Pull all the log vectors off the items in the CIL, and remove the items from 1106 * the CIL. We don't need the CIL lock here because it's only needed on the 1107 * transaction commit side which is currently locked out by the flush lock. 1108 * 1109 * If a log item is marked with a whiteout, we do not need to write it to the 1110 * journal and so we just move them to the whiteout list for the caller to 1111 * dispose of appropriately. 1112 */ 1113 static void 1114 xlog_cil_build_lv_chain( 1115 struct xfs_cil_ctx *ctx, 1116 struct list_head *whiteouts, 1117 uint32_t *num_iovecs, 1118 uint32_t *num_bytes) 1119 { 1120 while (!list_empty(&ctx->log_items)) { 1121 struct xfs_log_item *item; 1122 struct xfs_log_vec *lv; 1123 1124 item = list_first_entry(&ctx->log_items, 1125 struct xfs_log_item, li_cil); 1126 1127 if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) { 1128 list_move(&item->li_cil, whiteouts); 1129 trace_xfs_cil_whiteout_skip(item); 1130 continue; 1131 } 1132 1133 lv = item->li_lv; 1134 lv->lv_order_id = item->li_order_id; 1135 1136 /* we don't write ordered log vectors */ 1137 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) 1138 *num_bytes += lv->lv_bytes; 1139 *num_iovecs += lv->lv_niovecs; 1140 list_add_tail(&lv->lv_list, &ctx->lv_chain); 1141 1142 list_del_init(&item->li_cil); 1143 item->li_order_id = 0; 1144 item->li_lv = NULL; 1145 } 1146 } 1147 1148 static void 1149 xlog_cil_cleanup_whiteouts( 1150 struct list_head *whiteouts) 1151 { 1152 while (!list_empty(whiteouts)) { 1153 struct xfs_log_item *item = list_first_entry(whiteouts, 1154 struct xfs_log_item, li_cil); 1155 list_del_init(&item->li_cil); 1156 trace_xfs_cil_whiteout_unpin(item); 1157 item->li_ops->iop_unpin(item, 1); 1158 } 1159 } 1160 1161 /* 1162 * Push the Committed Item List to the log. 1163 * 1164 * If the current sequence is the same as xc_push_seq we need to do a flush. If 1165 * xc_push_seq is less than the current sequence, then it has already been 1166 * flushed and we don't need to do anything - the caller will wait for it to 1167 * complete if necessary. 1168 * 1169 * xc_push_seq is checked unlocked against the sequence number for a match. 1170 * Hence we can allow log forces to run racily and not issue pushes for the 1171 * same sequence twice. If we get a race between multiple pushes for the same 1172 * sequence they will block on the first one and then abort, hence avoiding 1173 * needless pushes. 1174 */ 1175 static void 1176 xlog_cil_push_work( 1177 struct work_struct *work) 1178 { 1179 struct xfs_cil_ctx *ctx = 1180 container_of(work, struct xfs_cil_ctx, push_work); 1181 struct xfs_cil *cil = ctx->cil; 1182 struct xlog *log = cil->xc_log; 1183 struct xfs_cil_ctx *new_ctx; 1184 int num_iovecs = 0; 1185 int num_bytes = 0; 1186 int error = 0; 1187 struct xlog_cil_trans_hdr thdr; 1188 struct xfs_log_vec lvhdr = {}; 1189 xfs_csn_t push_seq; 1190 bool push_commit_stable; 1191 LIST_HEAD (whiteouts); 1192 struct xlog_ticket *ticket; 1193 1194 new_ctx = xlog_cil_ctx_alloc(); 1195 new_ctx->ticket = xlog_cil_ticket_alloc(log); 1196 1197 down_write(&cil->xc_ctx_lock); 1198 1199 spin_lock(&cil->xc_push_lock); 1200 push_seq = cil->xc_push_seq; 1201 ASSERT(push_seq <= ctx->sequence); 1202 push_commit_stable = cil->xc_push_commit_stable; 1203 cil->xc_push_commit_stable = false; 1204 1205 /* 1206 * As we are about to switch to a new, empty CIL context, we no longer 1207 * need to throttle tasks on CIL space overruns. Wake any waiters that 1208 * the hard push throttle may have caught so they can start committing 1209 * to the new context. The ctx->xc_push_lock provides the serialisation 1210 * necessary for safely using the lockless waitqueue_active() check in 1211 * this context. 1212 */ 1213 if (waitqueue_active(&cil->xc_push_wait)) 1214 wake_up_all(&cil->xc_push_wait); 1215 1216 xlog_cil_push_pcp_aggregate(cil, ctx); 1217 1218 /* 1219 * Check if we've anything to push. If there is nothing, then we don't 1220 * move on to a new sequence number and so we have to be able to push 1221 * this sequence again later. 1222 */ 1223 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) { 1224 cil->xc_push_seq = 0; 1225 spin_unlock(&cil->xc_push_lock); 1226 goto out_skip; 1227 } 1228 1229 1230 /* check for a previously pushed sequence */ 1231 if (push_seq < ctx->sequence) { 1232 spin_unlock(&cil->xc_push_lock); 1233 goto out_skip; 1234 } 1235 1236 /* 1237 * We are now going to push this context, so add it to the committing 1238 * list before we do anything else. This ensures that anyone waiting on 1239 * this push can easily detect the difference between a "push in 1240 * progress" and "CIL is empty, nothing to do". 1241 * 1242 * IOWs, a wait loop can now check for: 1243 * the current sequence not being found on the committing list; 1244 * an empty CIL; and 1245 * an unchanged sequence number 1246 * to detect a push that had nothing to do and therefore does not need 1247 * waiting on. If the CIL is not empty, we get put on the committing 1248 * list before emptying the CIL and bumping the sequence number. Hence 1249 * an empty CIL and an unchanged sequence number means we jumped out 1250 * above after doing nothing. 1251 * 1252 * Hence the waiter will either find the commit sequence on the 1253 * committing list or the sequence number will be unchanged and the CIL 1254 * still dirty. In that latter case, the push has not yet started, and 1255 * so the waiter will have to continue trying to check the CIL 1256 * committing list until it is found. In extreme cases of delay, the 1257 * sequence may fully commit between the attempts the wait makes to wait 1258 * on the commit sequence. 1259 */ 1260 list_add(&ctx->committing, &cil->xc_committing); 1261 spin_unlock(&cil->xc_push_lock); 1262 1263 xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes); 1264 1265 /* 1266 * Switch the contexts so we can drop the context lock and move out 1267 * of a shared context. We can't just go straight to the commit record, 1268 * though - we need to synchronise with previous and future commits so 1269 * that the commit records are correctly ordered in the log to ensure 1270 * that we process items during log IO completion in the correct order. 1271 * 1272 * For example, if we get an EFI in one checkpoint and the EFD in the 1273 * next (e.g. due to log forces), we do not want the checkpoint with 1274 * the EFD to be committed before the checkpoint with the EFI. Hence 1275 * we must strictly order the commit records of the checkpoints so 1276 * that: a) the checkpoint callbacks are attached to the iclogs in the 1277 * correct order; and b) the checkpoints are replayed in correct order 1278 * in log recovery. 1279 * 1280 * Hence we need to add this context to the committing context list so 1281 * that higher sequences will wait for us to write out a commit record 1282 * before they do. 1283 * 1284 * xfs_log_force_seq requires us to mirror the new sequence into the cil 1285 * structure atomically with the addition of this sequence to the 1286 * committing list. This also ensures that we can do unlocked checks 1287 * against the current sequence in log forces without risking 1288 * deferencing a freed context pointer. 1289 */ 1290 spin_lock(&cil->xc_push_lock); 1291 xlog_cil_ctx_switch(cil, new_ctx); 1292 spin_unlock(&cil->xc_push_lock); 1293 up_write(&cil->xc_ctx_lock); 1294 1295 /* 1296 * Sort the log vector chain before we add the transaction headers. 1297 * This ensures we always have the transaction headers at the start 1298 * of the chain. 1299 */ 1300 list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp); 1301 1302 /* 1303 * Build a checkpoint transaction header and write it to the log to 1304 * begin the transaction. We need to account for the space used by the 1305 * transaction header here as it is not accounted for in xlog_write(). 1306 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so 1307 * it gets written into the iclog first. 1308 */ 1309 xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs); 1310 num_bytes += lvhdr.lv_bytes; 1311 list_add(&lvhdr.lv_list, &ctx->lv_chain); 1312 1313 /* 1314 * Take the lvhdr back off the lv_chain immediately after calling 1315 * xlog_cil_write_chain() as it should not be passed to log IO 1316 * completion. 1317 */ 1318 error = xlog_cil_write_chain(ctx, num_bytes); 1319 list_del(&lvhdr.lv_list); 1320 if (error) 1321 goto out_abort_free_ticket; 1322 1323 error = xlog_cil_write_commit_record(ctx); 1324 if (error) 1325 goto out_abort_free_ticket; 1326 1327 /* 1328 * Grab the ticket from the ctx so we can ungrant it after releasing the 1329 * commit_iclog. The ctx may be freed by the time we return from 1330 * releasing the commit_iclog (i.e. checkpoint has been completed and 1331 * callback run) so we can't reference the ctx after the call to 1332 * xlog_state_release_iclog(). 1333 */ 1334 ticket = ctx->ticket; 1335 1336 /* 1337 * If the checkpoint spans multiple iclogs, wait for all previous iclogs 1338 * to complete before we submit the commit_iclog. We can't use state 1339 * checks for this - ACTIVE can be either a past completed iclog or a 1340 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a 1341 * past or future iclog awaiting IO or ordered IO completion to be run. 1342 * In the latter case, if it's a future iclog and we wait on it, the we 1343 * will hang because it won't get processed through to ic_force_wait 1344 * wakeup until this commit_iclog is written to disk. Hence we use the 1345 * iclog header lsn and compare it to the commit lsn to determine if we 1346 * need to wait on iclogs or not. 1347 */ 1348 spin_lock(&log->l_icloglock); 1349 if (ctx->start_lsn != ctx->commit_lsn) { 1350 xfs_lsn_t plsn; 1351 1352 plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn); 1353 if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) { 1354 /* 1355 * Waiting on ic_force_wait orders the completion of 1356 * iclogs older than ic_prev. Hence we only need to wait 1357 * on the most recent older iclog here. 1358 */ 1359 xlog_wait_on_iclog(ctx->commit_iclog->ic_prev); 1360 spin_lock(&log->l_icloglock); 1361 } 1362 1363 /* 1364 * We need to issue a pre-flush so that the ordering for this 1365 * checkpoint is correctly preserved down to stable storage. 1366 */ 1367 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 1368 } 1369 1370 /* 1371 * The commit iclog must be written to stable storage to guarantee 1372 * journal IO vs metadata writeback IO is correctly ordered on stable 1373 * storage. 1374 * 1375 * If the push caller needs the commit to be immediately stable and the 1376 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it 1377 * will be written when released, switch it's state to WANT_SYNC right 1378 * now. 1379 */ 1380 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA; 1381 if (push_commit_stable && 1382 ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE) 1383 xlog_state_switch_iclogs(log, ctx->commit_iclog, 0); 1384 ticket = ctx->ticket; 1385 xlog_state_release_iclog(log, ctx->commit_iclog, ticket); 1386 1387 /* Not safe to reference ctx now! */ 1388 1389 spin_unlock(&log->l_icloglock); 1390 xlog_cil_cleanup_whiteouts(&whiteouts); 1391 xfs_log_ticket_ungrant(log, ticket); 1392 return; 1393 1394 out_skip: 1395 up_write(&cil->xc_ctx_lock); 1396 xfs_log_ticket_put(new_ctx->ticket); 1397 kmem_free(new_ctx); 1398 return; 1399 1400 out_abort_free_ticket: 1401 ASSERT(xlog_is_shutdown(log)); 1402 xlog_cil_cleanup_whiteouts(&whiteouts); 1403 if (!ctx->commit_iclog) { 1404 xfs_log_ticket_ungrant(log, ctx->ticket); 1405 xlog_cil_committed(ctx); 1406 return; 1407 } 1408 spin_lock(&log->l_icloglock); 1409 ticket = ctx->ticket; 1410 xlog_state_release_iclog(log, ctx->commit_iclog, ticket); 1411 /* Not safe to reference ctx now! */ 1412 spin_unlock(&log->l_icloglock); 1413 xfs_log_ticket_ungrant(log, ticket); 1414 } 1415 1416 /* 1417 * We need to push CIL every so often so we don't cache more than we can fit in 1418 * the log. The limit really is that a checkpoint can't be more than half the 1419 * log (the current checkpoint is not allowed to overwrite the previous 1420 * checkpoint), but commit latency and memory usage limit this to a smaller 1421 * size. 1422 */ 1423 static void 1424 xlog_cil_push_background( 1425 struct xlog *log) __releases(cil->xc_ctx_lock) 1426 { 1427 struct xfs_cil *cil = log->l_cilp; 1428 int space_used = atomic_read(&cil->xc_ctx->space_used); 1429 1430 /* 1431 * The cil won't be empty because we are called while holding the 1432 * context lock so whatever we added to the CIL will still be there. 1433 */ 1434 ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)); 1435 1436 /* 1437 * We are done if: 1438 * - we haven't used up all the space available yet; or 1439 * - we've already queued up a push; and 1440 * - we're not over the hard limit; and 1441 * - nothing has been over the hard limit. 1442 * 1443 * If so, we don't need to take the push lock as there's nothing to do. 1444 */ 1445 if (space_used < XLOG_CIL_SPACE_LIMIT(log) || 1446 (cil->xc_push_seq == cil->xc_current_sequence && 1447 space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) && 1448 !waitqueue_active(&cil->xc_push_wait))) { 1449 up_read(&cil->xc_ctx_lock); 1450 return; 1451 } 1452 1453 spin_lock(&cil->xc_push_lock); 1454 if (cil->xc_push_seq < cil->xc_current_sequence) { 1455 cil->xc_push_seq = cil->xc_current_sequence; 1456 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1457 } 1458 1459 /* 1460 * Drop the context lock now, we can't hold that if we need to sleep 1461 * because we are over the blocking threshold. The push_lock is still 1462 * held, so blocking threshold sleep/wakeup is still correctly 1463 * serialised here. 1464 */ 1465 up_read(&cil->xc_ctx_lock); 1466 1467 /* 1468 * If we are well over the space limit, throttle the work that is being 1469 * done until the push work on this context has begun. Enforce the hard 1470 * throttle on all transaction commits once it has been activated, even 1471 * if the committing transactions have resulted in the space usage 1472 * dipping back down under the hard limit. 1473 * 1474 * The ctx->xc_push_lock provides the serialisation necessary for safely 1475 * calling xlog_cil_over_hard_limit() in this context. 1476 */ 1477 if (xlog_cil_over_hard_limit(log, space_used)) { 1478 trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket); 1479 ASSERT(space_used < log->l_logsize); 1480 xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock); 1481 return; 1482 } 1483 1484 spin_unlock(&cil->xc_push_lock); 1485 1486 } 1487 1488 /* 1489 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence 1490 * number that is passed. When it returns, the work will be queued for 1491 * @push_seq, but it won't be completed. 1492 * 1493 * If the caller is performing a synchronous force, we will flush the workqueue 1494 * to get previously queued work moving to minimise the wait time they will 1495 * undergo waiting for all outstanding pushes to complete. The caller is 1496 * expected to do the required waiting for push_seq to complete. 1497 * 1498 * If the caller is performing an async push, we need to ensure that the 1499 * checkpoint is fully flushed out of the iclogs when we finish the push. If we 1500 * don't do this, then the commit record may remain sitting in memory in an 1501 * ACTIVE iclog. This then requires another full log force to push to disk, 1502 * which defeats the purpose of having an async, non-blocking CIL force 1503 * mechanism. Hence in this case we need to pass a flag to the push work to 1504 * indicate it needs to flush the commit record itself. 1505 */ 1506 static void 1507 xlog_cil_push_now( 1508 struct xlog *log, 1509 xfs_lsn_t push_seq, 1510 bool async) 1511 { 1512 struct xfs_cil *cil = log->l_cilp; 1513 1514 if (!cil) 1515 return; 1516 1517 ASSERT(push_seq && push_seq <= cil->xc_current_sequence); 1518 1519 /* start on any pending background push to minimise wait time on it */ 1520 if (!async) 1521 flush_workqueue(cil->xc_push_wq); 1522 1523 spin_lock(&cil->xc_push_lock); 1524 1525 /* 1526 * If this is an async flush request, we always need to set the 1527 * xc_push_commit_stable flag even if something else has already queued 1528 * a push. The flush caller is asking for the CIL to be on stable 1529 * storage when the next push completes, so regardless of who has queued 1530 * the push, the flush requires stable semantics from it. 1531 */ 1532 cil->xc_push_commit_stable = async; 1533 1534 /* 1535 * If the CIL is empty or we've already pushed the sequence then 1536 * there's no more work that we need to do. 1537 */ 1538 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) || 1539 push_seq <= cil->xc_push_seq) { 1540 spin_unlock(&cil->xc_push_lock); 1541 return; 1542 } 1543 1544 cil->xc_push_seq = push_seq; 1545 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1546 spin_unlock(&cil->xc_push_lock); 1547 } 1548 1549 bool 1550 xlog_cil_empty( 1551 struct xlog *log) 1552 { 1553 struct xfs_cil *cil = log->l_cilp; 1554 bool empty = false; 1555 1556 spin_lock(&cil->xc_push_lock); 1557 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 1558 empty = true; 1559 spin_unlock(&cil->xc_push_lock); 1560 return empty; 1561 } 1562 1563 /* 1564 * If there are intent done items in this transaction and the related intent was 1565 * committed in the current (same) CIL checkpoint, we don't need to write either 1566 * the intent or intent done item to the journal as the change will be 1567 * journalled atomically within this checkpoint. As we cannot remove items from 1568 * the CIL here, mark the related intent with a whiteout so that the CIL push 1569 * can remove it rather than writing it to the journal. Then remove the intent 1570 * done item from the current transaction and release it so it doesn't get put 1571 * into the CIL at all. 1572 */ 1573 static uint32_t 1574 xlog_cil_process_intents( 1575 struct xfs_cil *cil, 1576 struct xfs_trans *tp) 1577 { 1578 struct xfs_log_item *lip, *ilip, *next; 1579 uint32_t len = 0; 1580 1581 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1582 if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE)) 1583 continue; 1584 1585 ilip = lip->li_ops->iop_intent(lip); 1586 if (!ilip || !xlog_item_in_current_chkpt(cil, ilip)) 1587 continue; 1588 set_bit(XFS_LI_WHITEOUT, &ilip->li_flags); 1589 trace_xfs_cil_whiteout_mark(ilip); 1590 len += ilip->li_lv->lv_bytes; 1591 kmem_free(ilip->li_lv); 1592 ilip->li_lv = NULL; 1593 1594 xfs_trans_del_item(lip); 1595 lip->li_ops->iop_release(lip); 1596 } 1597 return len; 1598 } 1599 1600 /* 1601 * Commit a transaction with the given vector to the Committed Item List. 1602 * 1603 * To do this, we need to format the item, pin it in memory if required and 1604 * account for the space used by the transaction. Once we have done that we 1605 * need to release the unused reservation for the transaction, attach the 1606 * transaction to the checkpoint context so we carry the busy extents through 1607 * to checkpoint completion, and then unlock all the items in the transaction. 1608 * 1609 * Called with the context lock already held in read mode to lock out 1610 * background commit, returns without it held once background commits are 1611 * allowed again. 1612 */ 1613 void 1614 xlog_cil_commit( 1615 struct xlog *log, 1616 struct xfs_trans *tp, 1617 xfs_csn_t *commit_seq, 1618 bool regrant) 1619 { 1620 struct xfs_cil *cil = log->l_cilp; 1621 struct xfs_log_item *lip, *next; 1622 uint32_t released_space = 0; 1623 1624 /* 1625 * Do all necessary memory allocation before we lock the CIL. 1626 * This ensures the allocation does not deadlock with a CIL 1627 * push in memory reclaim (e.g. from kswapd). 1628 */ 1629 xlog_cil_alloc_shadow_bufs(log, tp); 1630 1631 /* lock out background commit */ 1632 down_read(&cil->xc_ctx_lock); 1633 1634 if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE) 1635 released_space = xlog_cil_process_intents(cil, tp); 1636 1637 xlog_cil_insert_items(log, tp, released_space); 1638 1639 if (regrant && !xlog_is_shutdown(log)) 1640 xfs_log_ticket_regrant(log, tp->t_ticket); 1641 else 1642 xfs_log_ticket_ungrant(log, tp->t_ticket); 1643 tp->t_ticket = NULL; 1644 xfs_trans_unreserve_and_mod_sb(tp); 1645 1646 /* 1647 * Once all the items of the transaction have been copied to the CIL, 1648 * the items can be unlocked and possibly freed. 1649 * 1650 * This needs to be done before we drop the CIL context lock because we 1651 * have to update state in the log items and unlock them before they go 1652 * to disk. If we don't, then the CIL checkpoint can race with us and 1653 * we can run checkpoint completion before we've updated and unlocked 1654 * the log items. This affects (at least) processing of stale buffers, 1655 * inodes and EFIs. 1656 */ 1657 trace_xfs_trans_commit_items(tp, _RET_IP_); 1658 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1659 xfs_trans_del_item(lip); 1660 if (lip->li_ops->iop_committing) 1661 lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence); 1662 } 1663 if (commit_seq) 1664 *commit_seq = cil->xc_ctx->sequence; 1665 1666 /* xlog_cil_push_background() releases cil->xc_ctx_lock */ 1667 xlog_cil_push_background(log); 1668 } 1669 1670 /* 1671 * Flush the CIL to stable storage but don't wait for it to complete. This 1672 * requires the CIL push to ensure the commit record for the push hits the disk, 1673 * but otherwise is no different to a push done from a log force. 1674 */ 1675 void 1676 xlog_cil_flush( 1677 struct xlog *log) 1678 { 1679 xfs_csn_t seq = log->l_cilp->xc_current_sequence; 1680 1681 trace_xfs_log_force(log->l_mp, seq, _RET_IP_); 1682 xlog_cil_push_now(log, seq, true); 1683 1684 /* 1685 * If the CIL is empty, make sure that any previous checkpoint that may 1686 * still be in an active iclog is pushed to stable storage. 1687 */ 1688 if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags)) 1689 xfs_log_force(log->l_mp, 0); 1690 } 1691 1692 /* 1693 * Conditionally push the CIL based on the sequence passed in. 1694 * 1695 * We only need to push if we haven't already pushed the sequence number given. 1696 * Hence the only time we will trigger a push here is if the push sequence is 1697 * the same as the current context. 1698 * 1699 * We return the current commit lsn to allow the callers to determine if a 1700 * iclog flush is necessary following this call. 1701 */ 1702 xfs_lsn_t 1703 xlog_cil_force_seq( 1704 struct xlog *log, 1705 xfs_csn_t sequence) 1706 { 1707 struct xfs_cil *cil = log->l_cilp; 1708 struct xfs_cil_ctx *ctx; 1709 xfs_lsn_t commit_lsn = NULLCOMMITLSN; 1710 1711 ASSERT(sequence <= cil->xc_current_sequence); 1712 1713 if (!sequence) 1714 sequence = cil->xc_current_sequence; 1715 trace_xfs_log_force(log->l_mp, sequence, _RET_IP_); 1716 1717 /* 1718 * check to see if we need to force out the current context. 1719 * xlog_cil_push() handles racing pushes for the same sequence, 1720 * so no need to deal with it here. 1721 */ 1722 restart: 1723 xlog_cil_push_now(log, sequence, false); 1724 1725 /* 1726 * See if we can find a previous sequence still committing. 1727 * We need to wait for all previous sequence commits to complete 1728 * before allowing the force of push_seq to go ahead. Hence block 1729 * on commits for those as well. 1730 */ 1731 spin_lock(&cil->xc_push_lock); 1732 list_for_each_entry(ctx, &cil->xc_committing, committing) { 1733 /* 1734 * Avoid getting stuck in this loop because we were woken by the 1735 * shutdown, but then went back to sleep once already in the 1736 * shutdown state. 1737 */ 1738 if (xlog_is_shutdown(log)) 1739 goto out_shutdown; 1740 if (ctx->sequence > sequence) 1741 continue; 1742 if (!ctx->commit_lsn) { 1743 /* 1744 * It is still being pushed! Wait for the push to 1745 * complete, then start again from the beginning. 1746 */ 1747 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 1748 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 1749 goto restart; 1750 } 1751 if (ctx->sequence != sequence) 1752 continue; 1753 /* found it! */ 1754 commit_lsn = ctx->commit_lsn; 1755 } 1756 1757 /* 1758 * The call to xlog_cil_push_now() executes the push in the background. 1759 * Hence by the time we have got here it our sequence may not have been 1760 * pushed yet. This is true if the current sequence still matches the 1761 * push sequence after the above wait loop and the CIL still contains 1762 * dirty objects. This is guaranteed by the push code first adding the 1763 * context to the committing list before emptying the CIL. 1764 * 1765 * Hence if we don't find the context in the committing list and the 1766 * current sequence number is unchanged then the CIL contents are 1767 * significant. If the CIL is empty, if means there was nothing to push 1768 * and that means there is nothing to wait for. If the CIL is not empty, 1769 * it means we haven't yet started the push, because if it had started 1770 * we would have found the context on the committing list. 1771 */ 1772 if (sequence == cil->xc_current_sequence && 1773 !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) { 1774 spin_unlock(&cil->xc_push_lock); 1775 goto restart; 1776 } 1777 1778 spin_unlock(&cil->xc_push_lock); 1779 return commit_lsn; 1780 1781 /* 1782 * We detected a shutdown in progress. We need to trigger the log force 1783 * to pass through it's iclog state machine error handling, even though 1784 * we are already in a shutdown state. Hence we can't return 1785 * NULLCOMMITLSN here as that has special meaning to log forces (i.e. 1786 * LSN is already stable), so we return a zero LSN instead. 1787 */ 1788 out_shutdown: 1789 spin_unlock(&cil->xc_push_lock); 1790 return 0; 1791 } 1792 1793 /* 1794 * Move dead percpu state to the relevant CIL context structures. 1795 * 1796 * We have to lock the CIL context here to ensure that nothing is modifying 1797 * the percpu state, either addition or removal. Both of these are done under 1798 * the CIL context lock, so grabbing that exclusively here will ensure we can 1799 * safely drain the cilpcp for the CPU that is dying. 1800 */ 1801 void 1802 xlog_cil_pcp_dead( 1803 struct xlog *log, 1804 unsigned int cpu) 1805 { 1806 struct xfs_cil *cil = log->l_cilp; 1807 struct xlog_cil_pcp *cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 1808 struct xfs_cil_ctx *ctx; 1809 1810 down_write(&cil->xc_ctx_lock); 1811 ctx = cil->xc_ctx; 1812 if (ctx->ticket) 1813 ctx->ticket->t_curr_res += cilpcp->space_reserved; 1814 cilpcp->space_reserved = 0; 1815 1816 if (!list_empty(&cilpcp->log_items)) 1817 list_splice_init(&cilpcp->log_items, &ctx->log_items); 1818 if (!list_empty(&cilpcp->busy_extents)) 1819 list_splice_init(&cilpcp->busy_extents, &ctx->busy_extents); 1820 atomic_add(cilpcp->space_used, &ctx->space_used); 1821 cilpcp->space_used = 0; 1822 up_write(&cil->xc_ctx_lock); 1823 } 1824 1825 /* 1826 * Perform initial CIL structure initialisation. 1827 */ 1828 int 1829 xlog_cil_init( 1830 struct xlog *log) 1831 { 1832 struct xfs_cil *cil; 1833 struct xfs_cil_ctx *ctx; 1834 struct xlog_cil_pcp *cilpcp; 1835 int cpu; 1836 1837 cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL); 1838 if (!cil) 1839 return -ENOMEM; 1840 /* 1841 * Limit the CIL pipeline depth to 4 concurrent works to bound the 1842 * concurrency the log spinlocks will be exposed to. 1843 */ 1844 cil->xc_push_wq = alloc_workqueue("xfs-cil/%s", 1845 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND), 1846 4, log->l_mp->m_super->s_id); 1847 if (!cil->xc_push_wq) 1848 goto out_destroy_cil; 1849 1850 cil->xc_log = log; 1851 cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp); 1852 if (!cil->xc_pcp) 1853 goto out_destroy_wq; 1854 1855 for_each_possible_cpu(cpu) { 1856 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 1857 INIT_LIST_HEAD(&cilpcp->busy_extents); 1858 INIT_LIST_HEAD(&cilpcp->log_items); 1859 } 1860 1861 INIT_LIST_HEAD(&cil->xc_committing); 1862 spin_lock_init(&cil->xc_push_lock); 1863 init_waitqueue_head(&cil->xc_push_wait); 1864 init_rwsem(&cil->xc_ctx_lock); 1865 init_waitqueue_head(&cil->xc_start_wait); 1866 init_waitqueue_head(&cil->xc_commit_wait); 1867 log->l_cilp = cil; 1868 1869 ctx = xlog_cil_ctx_alloc(); 1870 xlog_cil_ctx_switch(cil, ctx); 1871 return 0; 1872 1873 out_destroy_wq: 1874 destroy_workqueue(cil->xc_push_wq); 1875 out_destroy_cil: 1876 kmem_free(cil); 1877 return -ENOMEM; 1878 } 1879 1880 void 1881 xlog_cil_destroy( 1882 struct xlog *log) 1883 { 1884 struct xfs_cil *cil = log->l_cilp; 1885 1886 if (cil->xc_ctx) { 1887 if (cil->xc_ctx->ticket) 1888 xfs_log_ticket_put(cil->xc_ctx->ticket); 1889 kmem_free(cil->xc_ctx); 1890 } 1891 1892 ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)); 1893 free_percpu(cil->xc_pcp); 1894 destroy_workqueue(cil->xc_push_wq); 1895 kmem_free(cil); 1896 } 1897 1898