xref: /linux/fs/xfs/xfs_log_cil.c (revision 06bd48b6cd97ef3889b68c8e09014d81dbc463f1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4  */
5 
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_extent_busy.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_log.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trace.h"
19 
20 struct workqueue_struct *xfs_discard_wq;
21 
22 /*
23  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
24  * recover, so we don't allow failure here. Also, we allocate in a context that
25  * we don't want to be issuing transactions from, so we need to tell the
26  * allocation code this as well.
27  *
28  * We don't reserve any space for the ticket - we are going to steal whatever
29  * space we require from transactions as they commit. To ensure we reserve all
30  * the space required, we need to set the current reservation of the ticket to
31  * zero so that we know to steal the initial transaction overhead from the
32  * first transaction commit.
33  */
34 static struct xlog_ticket *
35 xlog_cil_ticket_alloc(
36 	struct xlog	*log)
37 {
38 	struct xlog_ticket *tic;
39 
40 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
41 				KM_NOFS);
42 
43 	/*
44 	 * set the current reservation to zero so we know to steal the basic
45 	 * transaction overhead reservation from the first transaction commit.
46 	 */
47 	tic->t_curr_res = 0;
48 	return tic;
49 }
50 
51 /*
52  * After the first stage of log recovery is done, we know where the head and
53  * tail of the log are. We need this log initialisation done before we can
54  * initialise the first CIL checkpoint context.
55  *
56  * Here we allocate a log ticket to track space usage during a CIL push.  This
57  * ticket is passed to xlog_write() directly so that we don't slowly leak log
58  * space by failing to account for space used by log headers and additional
59  * region headers for split regions.
60  */
61 void
62 xlog_cil_init_post_recovery(
63 	struct xlog	*log)
64 {
65 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
66 	log->l_cilp->xc_ctx->sequence = 1;
67 }
68 
69 static inline int
70 xlog_cil_iovec_space(
71 	uint	niovecs)
72 {
73 	return round_up((sizeof(struct xfs_log_vec) +
74 					niovecs * sizeof(struct xfs_log_iovec)),
75 			sizeof(uint64_t));
76 }
77 
78 /*
79  * Allocate or pin log vector buffers for CIL insertion.
80  *
81  * The CIL currently uses disposable buffers for copying a snapshot of the
82  * modified items into the log during a push. The biggest problem with this is
83  * the requirement to allocate the disposable buffer during the commit if:
84  *	a) does not exist; or
85  *	b) it is too small
86  *
87  * If we do this allocation within xlog_cil_insert_format_items(), it is done
88  * under the xc_ctx_lock, which means that a CIL push cannot occur during
89  * the memory allocation. This means that we have a potential deadlock situation
90  * under low memory conditions when we have lots of dirty metadata pinned in
91  * the CIL and we need a CIL commit to occur to free memory.
92  *
93  * To avoid this, we need to move the memory allocation outside the
94  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
95  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
96  * vector buffers between the check and the formatting of the item into the
97  * log vector buffer within the xc_ctx_lock.
98  *
99  * Because the log vector buffer needs to be unchanged during the CIL push
100  * process, we cannot share the buffer between the transaction commit (which
101  * modifies the buffer) and the CIL push context that is writing the changes
102  * into the log. This means skipping preallocation of buffer space is
103  * unreliable, but we most definitely do not want to be allocating and freeing
104  * buffers unnecessarily during commits when overwrites can be done safely.
105  *
106  * The simplest solution to this problem is to allocate a shadow buffer when a
107  * log item is committed for the second time, and then to only use this buffer
108  * if necessary. The buffer can remain attached to the log item until such time
109  * it is needed, and this is the buffer that is reallocated to match the size of
110  * the incoming modification. Then during the formatting of the item we can swap
111  * the active buffer with the new one if we can't reuse the existing buffer. We
112  * don't free the old buffer as it may be reused on the next modification if
113  * it's size is right, otherwise we'll free and reallocate it at that point.
114  *
115  * This function builds a vector for the changes in each log item in the
116  * transaction. It then works out the length of the buffer needed for each log
117  * item, allocates them and attaches the vector to the log item in preparation
118  * for the formatting step which occurs under the xc_ctx_lock.
119  *
120  * While this means the memory footprint goes up, it avoids the repeated
121  * alloc/free pattern that repeated modifications of an item would otherwise
122  * cause, and hence minimises the CPU overhead of such behaviour.
123  */
124 static void
125 xlog_cil_alloc_shadow_bufs(
126 	struct xlog		*log,
127 	struct xfs_trans	*tp)
128 {
129 	struct xfs_log_item	*lip;
130 
131 	list_for_each_entry(lip, &tp->t_items, li_trans) {
132 		struct xfs_log_vec *lv;
133 		int	niovecs = 0;
134 		int	nbytes = 0;
135 		int	buf_size;
136 		bool	ordered = false;
137 
138 		/* Skip items which aren't dirty in this transaction. */
139 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
140 			continue;
141 
142 		/* get number of vecs and size of data to be stored */
143 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
144 
145 		/*
146 		 * Ordered items need to be tracked but we do not wish to write
147 		 * them. We need a logvec to track the object, but we do not
148 		 * need an iovec or buffer to be allocated for copying data.
149 		 */
150 		if (niovecs == XFS_LOG_VEC_ORDERED) {
151 			ordered = true;
152 			niovecs = 0;
153 			nbytes = 0;
154 		}
155 
156 		/*
157 		 * We 64-bit align the length of each iovec so that the start
158 		 * of the next one is naturally aligned.  We'll need to
159 		 * account for that slack space here. Then round nbytes up
160 		 * to 64-bit alignment so that the initial buffer alignment is
161 		 * easy to calculate and verify.
162 		 */
163 		nbytes += niovecs * sizeof(uint64_t);
164 		nbytes = round_up(nbytes, sizeof(uint64_t));
165 
166 		/*
167 		 * The data buffer needs to start 64-bit aligned, so round up
168 		 * that space to ensure we can align it appropriately and not
169 		 * overrun the buffer.
170 		 */
171 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
172 
173 		/*
174 		 * if we have no shadow buffer, or it is too small, we need to
175 		 * reallocate it.
176 		 */
177 		if (!lip->li_lv_shadow ||
178 		    buf_size > lip->li_lv_shadow->lv_size) {
179 
180 			/*
181 			 * We free and allocate here as a realloc would copy
182 			 * unnecessary data. We don't use kmem_zalloc() for the
183 			 * same reason - we don't need to zero the data area in
184 			 * the buffer, only the log vector header and the iovec
185 			 * storage.
186 			 */
187 			kmem_free(lip->li_lv_shadow);
188 
189 			lv = kmem_alloc_large(buf_size, KM_NOFS);
190 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
191 
192 			lv->lv_item = lip;
193 			lv->lv_size = buf_size;
194 			if (ordered)
195 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
196 			else
197 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
198 			lip->li_lv_shadow = lv;
199 		} else {
200 			/* same or smaller, optimise common overwrite case */
201 			lv = lip->li_lv_shadow;
202 			if (ordered)
203 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
204 			else
205 				lv->lv_buf_len = 0;
206 			lv->lv_bytes = 0;
207 			lv->lv_next = NULL;
208 		}
209 
210 		/* Ensure the lv is set up according to ->iop_size */
211 		lv->lv_niovecs = niovecs;
212 
213 		/* The allocated data region lies beyond the iovec region */
214 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
215 	}
216 
217 }
218 
219 /*
220  * Prepare the log item for insertion into the CIL. Calculate the difference in
221  * log space and vectors it will consume, and if it is a new item pin it as
222  * well.
223  */
224 STATIC void
225 xfs_cil_prepare_item(
226 	struct xlog		*log,
227 	struct xfs_log_vec	*lv,
228 	struct xfs_log_vec	*old_lv,
229 	int			*diff_len,
230 	int			*diff_iovecs)
231 {
232 	/* Account for the new LV being passed in */
233 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
234 		*diff_len += lv->lv_bytes;
235 		*diff_iovecs += lv->lv_niovecs;
236 	}
237 
238 	/*
239 	 * If there is no old LV, this is the first time we've seen the item in
240 	 * this CIL context and so we need to pin it. If we are replacing the
241 	 * old_lv, then remove the space it accounts for and make it the shadow
242 	 * buffer for later freeing. In both cases we are now switching to the
243 	 * shadow buffer, so update the the pointer to it appropriately.
244 	 */
245 	if (!old_lv) {
246 		if (lv->lv_item->li_ops->iop_pin)
247 			lv->lv_item->li_ops->iop_pin(lv->lv_item);
248 		lv->lv_item->li_lv_shadow = NULL;
249 	} else if (old_lv != lv) {
250 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
251 
252 		*diff_len -= old_lv->lv_bytes;
253 		*diff_iovecs -= old_lv->lv_niovecs;
254 		lv->lv_item->li_lv_shadow = old_lv;
255 	}
256 
257 	/* attach new log vector to log item */
258 	lv->lv_item->li_lv = lv;
259 
260 	/*
261 	 * If this is the first time the item is being committed to the
262 	 * CIL, store the sequence number on the log item so we can
263 	 * tell in future commits whether this is the first checkpoint
264 	 * the item is being committed into.
265 	 */
266 	if (!lv->lv_item->li_seq)
267 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
268 }
269 
270 /*
271  * Format log item into a flat buffers
272  *
273  * For delayed logging, we need to hold a formatted buffer containing all the
274  * changes on the log item. This enables us to relog the item in memory and
275  * write it out asynchronously without needing to relock the object that was
276  * modified at the time it gets written into the iclog.
277  *
278  * This function takes the prepared log vectors attached to each log item, and
279  * formats the changes into the log vector buffer. The buffer it uses is
280  * dependent on the current state of the vector in the CIL - the shadow lv is
281  * guaranteed to be large enough for the current modification, but we will only
282  * use that if we can't reuse the existing lv. If we can't reuse the existing
283  * lv, then simple swap it out for the shadow lv. We don't free it - that is
284  * done lazily either by th enext modification or the freeing of the log item.
285  *
286  * We don't set up region headers during this process; we simply copy the
287  * regions into the flat buffer. We can do this because we still have to do a
288  * formatting step to write the regions into the iclog buffer.  Writing the
289  * ophdrs during the iclog write means that we can support splitting large
290  * regions across iclog boundares without needing a change in the format of the
291  * item/region encapsulation.
292  *
293  * Hence what we need to do now is change the rewrite the vector array to point
294  * to the copied region inside the buffer we just allocated. This allows us to
295  * format the regions into the iclog as though they are being formatted
296  * directly out of the objects themselves.
297  */
298 static void
299 xlog_cil_insert_format_items(
300 	struct xlog		*log,
301 	struct xfs_trans	*tp,
302 	int			*diff_len,
303 	int			*diff_iovecs)
304 {
305 	struct xfs_log_item	*lip;
306 
307 
308 	/* Bail out if we didn't find a log item.  */
309 	if (list_empty(&tp->t_items)) {
310 		ASSERT(0);
311 		return;
312 	}
313 
314 	list_for_each_entry(lip, &tp->t_items, li_trans) {
315 		struct xfs_log_vec *lv;
316 		struct xfs_log_vec *old_lv = NULL;
317 		struct xfs_log_vec *shadow;
318 		bool	ordered = false;
319 
320 		/* Skip items which aren't dirty in this transaction. */
321 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
322 			continue;
323 
324 		/*
325 		 * The formatting size information is already attached to
326 		 * the shadow lv on the log item.
327 		 */
328 		shadow = lip->li_lv_shadow;
329 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
330 			ordered = true;
331 
332 		/* Skip items that do not have any vectors for writing */
333 		if (!shadow->lv_niovecs && !ordered)
334 			continue;
335 
336 		/* compare to existing item size */
337 		old_lv = lip->li_lv;
338 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
339 			/* same or smaller, optimise common overwrite case */
340 			lv = lip->li_lv;
341 			lv->lv_next = NULL;
342 
343 			if (ordered)
344 				goto insert;
345 
346 			/*
347 			 * set the item up as though it is a new insertion so
348 			 * that the space reservation accounting is correct.
349 			 */
350 			*diff_iovecs -= lv->lv_niovecs;
351 			*diff_len -= lv->lv_bytes;
352 
353 			/* Ensure the lv is set up according to ->iop_size */
354 			lv->lv_niovecs = shadow->lv_niovecs;
355 
356 			/* reset the lv buffer information for new formatting */
357 			lv->lv_buf_len = 0;
358 			lv->lv_bytes = 0;
359 			lv->lv_buf = (char *)lv +
360 					xlog_cil_iovec_space(lv->lv_niovecs);
361 		} else {
362 			/* switch to shadow buffer! */
363 			lv = shadow;
364 			lv->lv_item = lip;
365 			if (ordered) {
366 				/* track as an ordered logvec */
367 				ASSERT(lip->li_lv == NULL);
368 				goto insert;
369 			}
370 		}
371 
372 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
373 		lip->li_ops->iop_format(lip, lv);
374 insert:
375 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
376 	}
377 }
378 
379 /*
380  * Insert the log items into the CIL and calculate the difference in space
381  * consumed by the item. Add the space to the checkpoint ticket and calculate
382  * if the change requires additional log metadata. If it does, take that space
383  * as well. Remove the amount of space we added to the checkpoint ticket from
384  * the current transaction ticket so that the accounting works out correctly.
385  */
386 static void
387 xlog_cil_insert_items(
388 	struct xlog		*log,
389 	struct xfs_trans	*tp)
390 {
391 	struct xfs_cil		*cil = log->l_cilp;
392 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
393 	struct xfs_log_item	*lip;
394 	int			len = 0;
395 	int			diff_iovecs = 0;
396 	int			iclog_space;
397 	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
398 
399 	ASSERT(tp);
400 
401 	/*
402 	 * We can do this safely because the context can't checkpoint until we
403 	 * are done so it doesn't matter exactly how we update the CIL.
404 	 */
405 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
406 
407 	spin_lock(&cil->xc_cil_lock);
408 
409 	/* account for space used by new iovec headers  */
410 	iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t);
411 	len += iovhdr_res;
412 	ctx->nvecs += diff_iovecs;
413 
414 	/* attach the transaction to the CIL if it has any busy extents */
415 	if (!list_empty(&tp->t_busy))
416 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
417 
418 	/*
419 	 * Now transfer enough transaction reservation to the context ticket
420 	 * for the checkpoint. The context ticket is special - the unit
421 	 * reservation has to grow as well as the current reservation as we
422 	 * steal from tickets so we can correctly determine the space used
423 	 * during the transaction commit.
424 	 */
425 	if (ctx->ticket->t_curr_res == 0) {
426 		ctx_res = ctx->ticket->t_unit_res;
427 		ctx->ticket->t_curr_res = ctx_res;
428 		tp->t_ticket->t_curr_res -= ctx_res;
429 	}
430 
431 	/* do we need space for more log record headers? */
432 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
433 	if (len > 0 && (ctx->space_used / iclog_space !=
434 				(ctx->space_used + len) / iclog_space)) {
435 		split_res = (len + iclog_space - 1) / iclog_space;
436 		/* need to take into account split region headers, too */
437 		split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
438 		ctx->ticket->t_unit_res += split_res;
439 		ctx->ticket->t_curr_res += split_res;
440 		tp->t_ticket->t_curr_res -= split_res;
441 		ASSERT(tp->t_ticket->t_curr_res >= len);
442 	}
443 	tp->t_ticket->t_curr_res -= len;
444 	ctx->space_used += len;
445 
446 	/*
447 	 * If we've overrun the reservation, dump the tx details before we move
448 	 * the log items. Shutdown is imminent...
449 	 */
450 	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
451 		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
452 		xfs_warn(log->l_mp,
453 			 "  log items: %d bytes (iov hdrs: %d bytes)",
454 			 len, iovhdr_res);
455 		xfs_warn(log->l_mp, "  split region headers: %d bytes",
456 			 split_res);
457 		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
458 		xlog_print_trans(tp);
459 	}
460 
461 	/*
462 	 * Now (re-)position everything modified at the tail of the CIL.
463 	 * We do this here so we only need to take the CIL lock once during
464 	 * the transaction commit.
465 	 */
466 	list_for_each_entry(lip, &tp->t_items, li_trans) {
467 
468 		/* Skip items which aren't dirty in this transaction. */
469 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
470 			continue;
471 
472 		/*
473 		 * Only move the item if it isn't already at the tail. This is
474 		 * to prevent a transient list_empty() state when reinserting
475 		 * an item that is already the only item in the CIL.
476 		 */
477 		if (!list_is_last(&lip->li_cil, &cil->xc_cil))
478 			list_move_tail(&lip->li_cil, &cil->xc_cil);
479 	}
480 
481 	spin_unlock(&cil->xc_cil_lock);
482 
483 	if (tp->t_ticket->t_curr_res < 0)
484 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
485 }
486 
487 static void
488 xlog_cil_free_logvec(
489 	struct xfs_log_vec	*log_vector)
490 {
491 	struct xfs_log_vec	*lv;
492 
493 	for (lv = log_vector; lv; ) {
494 		struct xfs_log_vec *next = lv->lv_next;
495 		kmem_free(lv);
496 		lv = next;
497 	}
498 }
499 
500 static void
501 xlog_discard_endio_work(
502 	struct work_struct	*work)
503 {
504 	struct xfs_cil_ctx	*ctx =
505 		container_of(work, struct xfs_cil_ctx, discard_endio_work);
506 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
507 
508 	xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
509 	kmem_free(ctx);
510 }
511 
512 /*
513  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
514  * pagb_lock.  Note that we need a unbounded workqueue, otherwise we might
515  * get the execution delayed up to 30 seconds for weird reasons.
516  */
517 static void
518 xlog_discard_endio(
519 	struct bio		*bio)
520 {
521 	struct xfs_cil_ctx	*ctx = bio->bi_private;
522 
523 	INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
524 	queue_work(xfs_discard_wq, &ctx->discard_endio_work);
525 	bio_put(bio);
526 }
527 
528 static void
529 xlog_discard_busy_extents(
530 	struct xfs_mount	*mp,
531 	struct xfs_cil_ctx	*ctx)
532 {
533 	struct list_head	*list = &ctx->busy_extents;
534 	struct xfs_extent_busy	*busyp;
535 	struct bio		*bio = NULL;
536 	struct blk_plug		plug;
537 	int			error = 0;
538 
539 	ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
540 
541 	blk_start_plug(&plug);
542 	list_for_each_entry(busyp, list, list) {
543 		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
544 					 busyp->length);
545 
546 		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
547 				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
548 				XFS_FSB_TO_BB(mp, busyp->length),
549 				GFP_NOFS, 0, &bio);
550 		if (error && error != -EOPNOTSUPP) {
551 			xfs_info(mp,
552 	 "discard failed for extent [0x%llx,%u], error %d",
553 				 (unsigned long long)busyp->bno,
554 				 busyp->length,
555 				 error);
556 			break;
557 		}
558 	}
559 
560 	if (bio) {
561 		bio->bi_private = ctx;
562 		bio->bi_end_io = xlog_discard_endio;
563 		submit_bio(bio);
564 	} else {
565 		xlog_discard_endio_work(&ctx->discard_endio_work);
566 	}
567 	blk_finish_plug(&plug);
568 }
569 
570 /*
571  * Mark all items committed and clear busy extents. We free the log vector
572  * chains in a separate pass so that we unpin the log items as quickly as
573  * possible.
574  */
575 static void
576 xlog_cil_committed(
577 	struct xfs_cil_ctx	*ctx)
578 {
579 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
580 	bool			abort = XLOG_FORCED_SHUTDOWN(ctx->cil->xc_log);
581 
582 	/*
583 	 * If the I/O failed, we're aborting the commit and already shutdown.
584 	 * Wake any commit waiters before aborting the log items so we don't
585 	 * block async log pushers on callbacks. Async log pushers explicitly do
586 	 * not wait on log force completion because they may be holding locks
587 	 * required to unpin items.
588 	 */
589 	if (abort) {
590 		spin_lock(&ctx->cil->xc_push_lock);
591 		wake_up_all(&ctx->cil->xc_commit_wait);
592 		spin_unlock(&ctx->cil->xc_push_lock);
593 	}
594 
595 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
596 					ctx->start_lsn, abort);
597 
598 	xfs_extent_busy_sort(&ctx->busy_extents);
599 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
600 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
601 
602 	spin_lock(&ctx->cil->xc_push_lock);
603 	list_del(&ctx->committing);
604 	spin_unlock(&ctx->cil->xc_push_lock);
605 
606 	xlog_cil_free_logvec(ctx->lv_chain);
607 
608 	if (!list_empty(&ctx->busy_extents))
609 		xlog_discard_busy_extents(mp, ctx);
610 	else
611 		kmem_free(ctx);
612 }
613 
614 void
615 xlog_cil_process_committed(
616 	struct list_head	*list)
617 {
618 	struct xfs_cil_ctx	*ctx;
619 
620 	while ((ctx = list_first_entry_or_null(list,
621 			struct xfs_cil_ctx, iclog_entry))) {
622 		list_del(&ctx->iclog_entry);
623 		xlog_cil_committed(ctx);
624 	}
625 }
626 
627 /*
628  * Push the Committed Item List to the log.
629  *
630  * If the current sequence is the same as xc_push_seq we need to do a flush. If
631  * xc_push_seq is less than the current sequence, then it has already been
632  * flushed and we don't need to do anything - the caller will wait for it to
633  * complete if necessary.
634  *
635  * xc_push_seq is checked unlocked against the sequence number for a match.
636  * Hence we can allow log forces to run racily and not issue pushes for the
637  * same sequence twice.  If we get a race between multiple pushes for the same
638  * sequence they will block on the first one and then abort, hence avoiding
639  * needless pushes.
640  */
641 static void
642 xlog_cil_push_work(
643 	struct work_struct	*work)
644 {
645 	struct xfs_cil		*cil =
646 		container_of(work, struct xfs_cil, xc_push_work);
647 	struct xlog		*log = cil->xc_log;
648 	struct xfs_log_vec	*lv;
649 	struct xfs_cil_ctx	*ctx;
650 	struct xfs_cil_ctx	*new_ctx;
651 	struct xlog_in_core	*commit_iclog;
652 	struct xlog_ticket	*tic;
653 	int			num_iovecs;
654 	int			error = 0;
655 	struct xfs_trans_header thdr;
656 	struct xfs_log_iovec	lhdr;
657 	struct xfs_log_vec	lvhdr = { NULL };
658 	xfs_lsn_t		commit_lsn;
659 	xfs_lsn_t		push_seq;
660 
661 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_NOFS);
662 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
663 
664 	down_write(&cil->xc_ctx_lock);
665 	ctx = cil->xc_ctx;
666 
667 	spin_lock(&cil->xc_push_lock);
668 	push_seq = cil->xc_push_seq;
669 	ASSERT(push_seq <= ctx->sequence);
670 
671 	/*
672 	 * Check if we've anything to push. If there is nothing, then we don't
673 	 * move on to a new sequence number and so we have to be able to push
674 	 * this sequence again later.
675 	 */
676 	if (list_empty(&cil->xc_cil)) {
677 		cil->xc_push_seq = 0;
678 		spin_unlock(&cil->xc_push_lock);
679 		goto out_skip;
680 	}
681 
682 
683 	/* check for a previously pushed sequence */
684 	if (push_seq < cil->xc_ctx->sequence) {
685 		spin_unlock(&cil->xc_push_lock);
686 		goto out_skip;
687 	}
688 
689 	/*
690 	 * We are now going to push this context, so add it to the committing
691 	 * list before we do anything else. This ensures that anyone waiting on
692 	 * this push can easily detect the difference between a "push in
693 	 * progress" and "CIL is empty, nothing to do".
694 	 *
695 	 * IOWs, a wait loop can now check for:
696 	 *	the current sequence not being found on the committing list;
697 	 *	an empty CIL; and
698 	 *	an unchanged sequence number
699 	 * to detect a push that had nothing to do and therefore does not need
700 	 * waiting on. If the CIL is not empty, we get put on the committing
701 	 * list before emptying the CIL and bumping the sequence number. Hence
702 	 * an empty CIL and an unchanged sequence number means we jumped out
703 	 * above after doing nothing.
704 	 *
705 	 * Hence the waiter will either find the commit sequence on the
706 	 * committing list or the sequence number will be unchanged and the CIL
707 	 * still dirty. In that latter case, the push has not yet started, and
708 	 * so the waiter will have to continue trying to check the CIL
709 	 * committing list until it is found. In extreme cases of delay, the
710 	 * sequence may fully commit between the attempts the wait makes to wait
711 	 * on the commit sequence.
712 	 */
713 	list_add(&ctx->committing, &cil->xc_committing);
714 	spin_unlock(&cil->xc_push_lock);
715 
716 	/*
717 	 * pull all the log vectors off the items in the CIL, and
718 	 * remove the items from the CIL. We don't need the CIL lock
719 	 * here because it's only needed on the transaction commit
720 	 * side which is currently locked out by the flush lock.
721 	 */
722 	lv = NULL;
723 	num_iovecs = 0;
724 	while (!list_empty(&cil->xc_cil)) {
725 		struct xfs_log_item	*item;
726 
727 		item = list_first_entry(&cil->xc_cil,
728 					struct xfs_log_item, li_cil);
729 		list_del_init(&item->li_cil);
730 		if (!ctx->lv_chain)
731 			ctx->lv_chain = item->li_lv;
732 		else
733 			lv->lv_next = item->li_lv;
734 		lv = item->li_lv;
735 		item->li_lv = NULL;
736 		num_iovecs += lv->lv_niovecs;
737 	}
738 
739 	/*
740 	 * initialise the new context and attach it to the CIL. Then attach
741 	 * the current context to the CIL committing lsit so it can be found
742 	 * during log forces to extract the commit lsn of the sequence that
743 	 * needs to be forced.
744 	 */
745 	INIT_LIST_HEAD(&new_ctx->committing);
746 	INIT_LIST_HEAD(&new_ctx->busy_extents);
747 	new_ctx->sequence = ctx->sequence + 1;
748 	new_ctx->cil = cil;
749 	cil->xc_ctx = new_ctx;
750 
751 	/*
752 	 * The switch is now done, so we can drop the context lock and move out
753 	 * of a shared context. We can't just go straight to the commit record,
754 	 * though - we need to synchronise with previous and future commits so
755 	 * that the commit records are correctly ordered in the log to ensure
756 	 * that we process items during log IO completion in the correct order.
757 	 *
758 	 * For example, if we get an EFI in one checkpoint and the EFD in the
759 	 * next (e.g. due to log forces), we do not want the checkpoint with
760 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
761 	 * we must strictly order the commit records of the checkpoints so
762 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
763 	 * correct order; and b) the checkpoints are replayed in correct order
764 	 * in log recovery.
765 	 *
766 	 * Hence we need to add this context to the committing context list so
767 	 * that higher sequences will wait for us to write out a commit record
768 	 * before they do.
769 	 *
770 	 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
771 	 * structure atomically with the addition of this sequence to the
772 	 * committing list. This also ensures that we can do unlocked checks
773 	 * against the current sequence in log forces without risking
774 	 * deferencing a freed context pointer.
775 	 */
776 	spin_lock(&cil->xc_push_lock);
777 	cil->xc_current_sequence = new_ctx->sequence;
778 	spin_unlock(&cil->xc_push_lock);
779 	up_write(&cil->xc_ctx_lock);
780 
781 	/*
782 	 * Build a checkpoint transaction header and write it to the log to
783 	 * begin the transaction. We need to account for the space used by the
784 	 * transaction header here as it is not accounted for in xlog_write().
785 	 *
786 	 * The LSN we need to pass to the log items on transaction commit is
787 	 * the LSN reported by the first log vector write. If we use the commit
788 	 * record lsn then we can move the tail beyond the grant write head.
789 	 */
790 	tic = ctx->ticket;
791 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
792 	thdr.th_type = XFS_TRANS_CHECKPOINT;
793 	thdr.th_tid = tic->t_tid;
794 	thdr.th_num_items = num_iovecs;
795 	lhdr.i_addr = &thdr;
796 	lhdr.i_len = sizeof(xfs_trans_header_t);
797 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
798 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
799 
800 	lvhdr.lv_niovecs = 1;
801 	lvhdr.lv_iovecp = &lhdr;
802 	lvhdr.lv_next = ctx->lv_chain;
803 
804 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
805 	if (error)
806 		goto out_abort_free_ticket;
807 
808 	/*
809 	 * now that we've written the checkpoint into the log, strictly
810 	 * order the commit records so replay will get them in the right order.
811 	 */
812 restart:
813 	spin_lock(&cil->xc_push_lock);
814 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
815 		/*
816 		 * Avoid getting stuck in this loop because we were woken by the
817 		 * shutdown, but then went back to sleep once already in the
818 		 * shutdown state.
819 		 */
820 		if (XLOG_FORCED_SHUTDOWN(log)) {
821 			spin_unlock(&cil->xc_push_lock);
822 			goto out_abort_free_ticket;
823 		}
824 
825 		/*
826 		 * Higher sequences will wait for this one so skip them.
827 		 * Don't wait for our own sequence, either.
828 		 */
829 		if (new_ctx->sequence >= ctx->sequence)
830 			continue;
831 		if (!new_ctx->commit_lsn) {
832 			/*
833 			 * It is still being pushed! Wait for the push to
834 			 * complete, then start again from the beginning.
835 			 */
836 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
837 			goto restart;
838 		}
839 	}
840 	spin_unlock(&cil->xc_push_lock);
841 
842 	/* xfs_log_done always frees the ticket on error. */
843 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, false);
844 	if (commit_lsn == -1)
845 		goto out_abort;
846 
847 	spin_lock(&commit_iclog->ic_callback_lock);
848 	if (commit_iclog->ic_state == XLOG_STATE_IOERROR) {
849 		spin_unlock(&commit_iclog->ic_callback_lock);
850 		goto out_abort;
851 	}
852 	ASSERT_ALWAYS(commit_iclog->ic_state == XLOG_STATE_ACTIVE ||
853 		      commit_iclog->ic_state == XLOG_STATE_WANT_SYNC);
854 	list_add_tail(&ctx->iclog_entry, &commit_iclog->ic_callbacks);
855 	spin_unlock(&commit_iclog->ic_callback_lock);
856 
857 	/*
858 	 * now the checkpoint commit is complete and we've attached the
859 	 * callbacks to the iclog we can assign the commit LSN to the context
860 	 * and wake up anyone who is waiting for the commit to complete.
861 	 */
862 	spin_lock(&cil->xc_push_lock);
863 	ctx->commit_lsn = commit_lsn;
864 	wake_up_all(&cil->xc_commit_wait);
865 	spin_unlock(&cil->xc_push_lock);
866 
867 	/* release the hounds! */
868 	xfs_log_release_iclog(commit_iclog);
869 	return;
870 
871 out_skip:
872 	up_write(&cil->xc_ctx_lock);
873 	xfs_log_ticket_put(new_ctx->ticket);
874 	kmem_free(new_ctx);
875 	return;
876 
877 out_abort_free_ticket:
878 	xfs_log_ticket_put(tic);
879 out_abort:
880 	ASSERT(XLOG_FORCED_SHUTDOWN(log));
881 	xlog_cil_committed(ctx);
882 }
883 
884 /*
885  * We need to push CIL every so often so we don't cache more than we can fit in
886  * the log. The limit really is that a checkpoint can't be more than half the
887  * log (the current checkpoint is not allowed to overwrite the previous
888  * checkpoint), but commit latency and memory usage limit this to a smaller
889  * size.
890  */
891 static void
892 xlog_cil_push_background(
893 	struct xlog	*log)
894 {
895 	struct xfs_cil	*cil = log->l_cilp;
896 
897 	/*
898 	 * The cil won't be empty because we are called while holding the
899 	 * context lock so whatever we added to the CIL will still be there
900 	 */
901 	ASSERT(!list_empty(&cil->xc_cil));
902 
903 	/*
904 	 * don't do a background push if we haven't used up all the
905 	 * space available yet.
906 	 */
907 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
908 		return;
909 
910 	spin_lock(&cil->xc_push_lock);
911 	if (cil->xc_push_seq < cil->xc_current_sequence) {
912 		cil->xc_push_seq = cil->xc_current_sequence;
913 		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
914 	}
915 	spin_unlock(&cil->xc_push_lock);
916 
917 }
918 
919 /*
920  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
921  * number that is passed. When it returns, the work will be queued for
922  * @push_seq, but it won't be completed. The caller is expected to do any
923  * waiting for push_seq to complete if it is required.
924  */
925 static void
926 xlog_cil_push_now(
927 	struct xlog	*log,
928 	xfs_lsn_t	push_seq)
929 {
930 	struct xfs_cil	*cil = log->l_cilp;
931 
932 	if (!cil)
933 		return;
934 
935 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
936 
937 	/* start on any pending background push to minimise wait time on it */
938 	flush_work(&cil->xc_push_work);
939 
940 	/*
941 	 * If the CIL is empty or we've already pushed the sequence then
942 	 * there's no work we need to do.
943 	 */
944 	spin_lock(&cil->xc_push_lock);
945 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
946 		spin_unlock(&cil->xc_push_lock);
947 		return;
948 	}
949 
950 	cil->xc_push_seq = push_seq;
951 	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
952 	spin_unlock(&cil->xc_push_lock);
953 }
954 
955 bool
956 xlog_cil_empty(
957 	struct xlog	*log)
958 {
959 	struct xfs_cil	*cil = log->l_cilp;
960 	bool		empty = false;
961 
962 	spin_lock(&cil->xc_push_lock);
963 	if (list_empty(&cil->xc_cil))
964 		empty = true;
965 	spin_unlock(&cil->xc_push_lock);
966 	return empty;
967 }
968 
969 /*
970  * Commit a transaction with the given vector to the Committed Item List.
971  *
972  * To do this, we need to format the item, pin it in memory if required and
973  * account for the space used by the transaction. Once we have done that we
974  * need to release the unused reservation for the transaction, attach the
975  * transaction to the checkpoint context so we carry the busy extents through
976  * to checkpoint completion, and then unlock all the items in the transaction.
977  *
978  * Called with the context lock already held in read mode to lock out
979  * background commit, returns without it held once background commits are
980  * allowed again.
981  */
982 void
983 xfs_log_commit_cil(
984 	struct xfs_mount	*mp,
985 	struct xfs_trans	*tp,
986 	xfs_lsn_t		*commit_lsn,
987 	bool			regrant)
988 {
989 	struct xlog		*log = mp->m_log;
990 	struct xfs_cil		*cil = log->l_cilp;
991 	struct xfs_log_item	*lip, *next;
992 	xfs_lsn_t		xc_commit_lsn;
993 
994 	/*
995 	 * Do all necessary memory allocation before we lock the CIL.
996 	 * This ensures the allocation does not deadlock with a CIL
997 	 * push in memory reclaim (e.g. from kswapd).
998 	 */
999 	xlog_cil_alloc_shadow_bufs(log, tp);
1000 
1001 	/* lock out background commit */
1002 	down_read(&cil->xc_ctx_lock);
1003 
1004 	xlog_cil_insert_items(log, tp);
1005 
1006 	xc_commit_lsn = cil->xc_ctx->sequence;
1007 	if (commit_lsn)
1008 		*commit_lsn = xc_commit_lsn;
1009 
1010 	xfs_log_done(mp, tp->t_ticket, NULL, regrant);
1011 	tp->t_ticket = NULL;
1012 	xfs_trans_unreserve_and_mod_sb(tp);
1013 
1014 	/*
1015 	 * Once all the items of the transaction have been copied to the CIL,
1016 	 * the items can be unlocked and possibly freed.
1017 	 *
1018 	 * This needs to be done before we drop the CIL context lock because we
1019 	 * have to update state in the log items and unlock them before they go
1020 	 * to disk. If we don't, then the CIL checkpoint can race with us and
1021 	 * we can run checkpoint completion before we've updated and unlocked
1022 	 * the log items. This affects (at least) processing of stale buffers,
1023 	 * inodes and EFIs.
1024 	 */
1025 	trace_xfs_trans_commit_items(tp, _RET_IP_);
1026 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1027 		xfs_trans_del_item(lip);
1028 		if (lip->li_ops->iop_committing)
1029 			lip->li_ops->iop_committing(lip, xc_commit_lsn);
1030 	}
1031 	xlog_cil_push_background(log);
1032 
1033 	up_read(&cil->xc_ctx_lock);
1034 }
1035 
1036 /*
1037  * Conditionally push the CIL based on the sequence passed in.
1038  *
1039  * We only need to push if we haven't already pushed the sequence
1040  * number given. Hence the only time we will trigger a push here is
1041  * if the push sequence is the same as the current context.
1042  *
1043  * We return the current commit lsn to allow the callers to determine if a
1044  * iclog flush is necessary following this call.
1045  */
1046 xfs_lsn_t
1047 xlog_cil_force_lsn(
1048 	struct xlog	*log,
1049 	xfs_lsn_t	sequence)
1050 {
1051 	struct xfs_cil		*cil = log->l_cilp;
1052 	struct xfs_cil_ctx	*ctx;
1053 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1054 
1055 	ASSERT(sequence <= cil->xc_current_sequence);
1056 
1057 	/*
1058 	 * check to see if we need to force out the current context.
1059 	 * xlog_cil_push() handles racing pushes for the same sequence,
1060 	 * so no need to deal with it here.
1061 	 */
1062 restart:
1063 	xlog_cil_push_now(log, sequence);
1064 
1065 	/*
1066 	 * See if we can find a previous sequence still committing.
1067 	 * We need to wait for all previous sequence commits to complete
1068 	 * before allowing the force of push_seq to go ahead. Hence block
1069 	 * on commits for those as well.
1070 	 */
1071 	spin_lock(&cil->xc_push_lock);
1072 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1073 		/*
1074 		 * Avoid getting stuck in this loop because we were woken by the
1075 		 * shutdown, but then went back to sleep once already in the
1076 		 * shutdown state.
1077 		 */
1078 		if (XLOG_FORCED_SHUTDOWN(log))
1079 			goto out_shutdown;
1080 		if (ctx->sequence > sequence)
1081 			continue;
1082 		if (!ctx->commit_lsn) {
1083 			/*
1084 			 * It is still being pushed! Wait for the push to
1085 			 * complete, then start again from the beginning.
1086 			 */
1087 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1088 			goto restart;
1089 		}
1090 		if (ctx->sequence != sequence)
1091 			continue;
1092 		/* found it! */
1093 		commit_lsn = ctx->commit_lsn;
1094 	}
1095 
1096 	/*
1097 	 * The call to xlog_cil_push_now() executes the push in the background.
1098 	 * Hence by the time we have got here it our sequence may not have been
1099 	 * pushed yet. This is true if the current sequence still matches the
1100 	 * push sequence after the above wait loop and the CIL still contains
1101 	 * dirty objects. This is guaranteed by the push code first adding the
1102 	 * context to the committing list before emptying the CIL.
1103 	 *
1104 	 * Hence if we don't find the context in the committing list and the
1105 	 * current sequence number is unchanged then the CIL contents are
1106 	 * significant.  If the CIL is empty, if means there was nothing to push
1107 	 * and that means there is nothing to wait for. If the CIL is not empty,
1108 	 * it means we haven't yet started the push, because if it had started
1109 	 * we would have found the context on the committing list.
1110 	 */
1111 	if (sequence == cil->xc_current_sequence &&
1112 	    !list_empty(&cil->xc_cil)) {
1113 		spin_unlock(&cil->xc_push_lock);
1114 		goto restart;
1115 	}
1116 
1117 	spin_unlock(&cil->xc_push_lock);
1118 	return commit_lsn;
1119 
1120 	/*
1121 	 * We detected a shutdown in progress. We need to trigger the log force
1122 	 * to pass through it's iclog state machine error handling, even though
1123 	 * we are already in a shutdown state. Hence we can't return
1124 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1125 	 * LSN is already stable), so we return a zero LSN instead.
1126 	 */
1127 out_shutdown:
1128 	spin_unlock(&cil->xc_push_lock);
1129 	return 0;
1130 }
1131 
1132 /*
1133  * Check if the current log item was first committed in this sequence.
1134  * We can't rely on just the log item being in the CIL, we have to check
1135  * the recorded commit sequence number.
1136  *
1137  * Note: for this to be used in a non-racy manner, it has to be called with
1138  * CIL flushing locked out. As a result, it should only be used during the
1139  * transaction commit process when deciding what to format into the item.
1140  */
1141 bool
1142 xfs_log_item_in_current_chkpt(
1143 	struct xfs_log_item *lip)
1144 {
1145 	struct xfs_cil_ctx *ctx;
1146 
1147 	if (list_empty(&lip->li_cil))
1148 		return false;
1149 
1150 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
1151 
1152 	/*
1153 	 * li_seq is written on the first commit of a log item to record the
1154 	 * first checkpoint it is written to. Hence if it is different to the
1155 	 * current sequence, we're in a new checkpoint.
1156 	 */
1157 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
1158 		return false;
1159 	return true;
1160 }
1161 
1162 /*
1163  * Perform initial CIL structure initialisation.
1164  */
1165 int
1166 xlog_cil_init(
1167 	struct xlog	*log)
1168 {
1169 	struct xfs_cil	*cil;
1170 	struct xfs_cil_ctx *ctx;
1171 
1172 	cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL);
1173 	if (!cil)
1174 		return -ENOMEM;
1175 
1176 	ctx = kmem_zalloc(sizeof(*ctx), KM_MAYFAIL);
1177 	if (!ctx) {
1178 		kmem_free(cil);
1179 		return -ENOMEM;
1180 	}
1181 
1182 	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
1183 	INIT_LIST_HEAD(&cil->xc_cil);
1184 	INIT_LIST_HEAD(&cil->xc_committing);
1185 	spin_lock_init(&cil->xc_cil_lock);
1186 	spin_lock_init(&cil->xc_push_lock);
1187 	init_rwsem(&cil->xc_ctx_lock);
1188 	init_waitqueue_head(&cil->xc_commit_wait);
1189 
1190 	INIT_LIST_HEAD(&ctx->committing);
1191 	INIT_LIST_HEAD(&ctx->busy_extents);
1192 	ctx->sequence = 1;
1193 	ctx->cil = cil;
1194 	cil->xc_ctx = ctx;
1195 	cil->xc_current_sequence = ctx->sequence;
1196 
1197 	cil->xc_log = log;
1198 	log->l_cilp = cil;
1199 	return 0;
1200 }
1201 
1202 void
1203 xlog_cil_destroy(
1204 	struct xlog	*log)
1205 {
1206 	if (log->l_cilp->xc_ctx) {
1207 		if (log->l_cilp->xc_ctx->ticket)
1208 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1209 		kmem_free(log->l_cilp->xc_ctx);
1210 	}
1211 
1212 	ASSERT(list_empty(&log->l_cilp->xc_cil));
1213 	kmem_free(log->l_cilp);
1214 }
1215 
1216