xref: /linux/fs/xfs/xfs_log_cil.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4  */
5 
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_extent_busy.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_log.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trace.h"
19 #include "xfs_discard.h"
20 
21 /*
22  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
23  * recover, so we don't allow failure here. Also, we allocate in a context that
24  * we don't want to be issuing transactions from, so we need to tell the
25  * allocation code this as well.
26  *
27  * We don't reserve any space for the ticket - we are going to steal whatever
28  * space we require from transactions as they commit. To ensure we reserve all
29  * the space required, we need to set the current reservation of the ticket to
30  * zero so that we know to steal the initial transaction overhead from the
31  * first transaction commit.
32  */
33 static struct xlog_ticket *
34 xlog_cil_ticket_alloc(
35 	struct xlog	*log)
36 {
37 	struct xlog_ticket *tic;
38 
39 	tic = xlog_ticket_alloc(log, 0, 1, 0);
40 
41 	/*
42 	 * set the current reservation to zero so we know to steal the basic
43 	 * transaction overhead reservation from the first transaction commit.
44 	 */
45 	tic->t_curr_res = 0;
46 	tic->t_iclog_hdrs = 0;
47 	return tic;
48 }
49 
50 static inline void
51 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil)
52 {
53 	struct xlog	*log = cil->xc_log;
54 
55 	atomic_set(&cil->xc_iclog_hdrs,
56 		   (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) /
57 			(log->l_iclog_size - log->l_iclog_hsize)));
58 }
59 
60 /*
61  * Check if the current log item was first committed in this sequence.
62  * We can't rely on just the log item being in the CIL, we have to check
63  * the recorded commit sequence number.
64  *
65  * Note: for this to be used in a non-racy manner, it has to be called with
66  * CIL flushing locked out. As a result, it should only be used during the
67  * transaction commit process when deciding what to format into the item.
68  */
69 static bool
70 xlog_item_in_current_chkpt(
71 	struct xfs_cil		*cil,
72 	struct xfs_log_item	*lip)
73 {
74 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
75 		return false;
76 
77 	/*
78 	 * li_seq is written on the first commit of a log item to record the
79 	 * first checkpoint it is written to. Hence if it is different to the
80 	 * current sequence, we're in a new checkpoint.
81 	 */
82 	return lip->li_seq == READ_ONCE(cil->xc_current_sequence);
83 }
84 
85 bool
86 xfs_log_item_in_current_chkpt(
87 	struct xfs_log_item *lip)
88 {
89 	return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip);
90 }
91 
92 /*
93  * Unavoidable forward declaration - xlog_cil_push_work() calls
94  * xlog_cil_ctx_alloc() itself.
95  */
96 static void xlog_cil_push_work(struct work_struct *work);
97 
98 static struct xfs_cil_ctx *
99 xlog_cil_ctx_alloc(void)
100 {
101 	struct xfs_cil_ctx	*ctx;
102 
103 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL);
104 	INIT_LIST_HEAD(&ctx->committing);
105 	INIT_LIST_HEAD(&ctx->busy_extents.extent_list);
106 	INIT_LIST_HEAD(&ctx->log_items);
107 	INIT_LIST_HEAD(&ctx->lv_chain);
108 	INIT_WORK(&ctx->push_work, xlog_cil_push_work);
109 	return ctx;
110 }
111 
112 /*
113  * Aggregate the CIL per cpu structures into global counts, lists, etc and
114  * clear the percpu state ready for the next context to use. This is called
115  * from the push code with the context lock held exclusively, hence nothing else
116  * will be accessing or modifying the per-cpu counters.
117  */
118 static void
119 xlog_cil_push_pcp_aggregate(
120 	struct xfs_cil		*cil,
121 	struct xfs_cil_ctx	*ctx)
122 {
123 	struct xlog_cil_pcp	*cilpcp;
124 	int			cpu;
125 
126 	for_each_cpu(cpu, &ctx->cil_pcpmask) {
127 		cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
128 
129 		ctx->ticket->t_curr_res += cilpcp->space_reserved;
130 		cilpcp->space_reserved = 0;
131 
132 		if (!list_empty(&cilpcp->busy_extents)) {
133 			list_splice_init(&cilpcp->busy_extents,
134 					&ctx->busy_extents.extent_list);
135 		}
136 		if (!list_empty(&cilpcp->log_items))
137 			list_splice_init(&cilpcp->log_items, &ctx->log_items);
138 
139 		/*
140 		 * We're in the middle of switching cil contexts.  Reset the
141 		 * counter we use to detect when the current context is nearing
142 		 * full.
143 		 */
144 		cilpcp->space_used = 0;
145 	}
146 }
147 
148 /*
149  * Aggregate the CIL per-cpu space used counters into the global atomic value.
150  * This is called when the per-cpu counter aggregation will first pass the soft
151  * limit threshold so we can switch to atomic counter aggregation for accurate
152  * detection of hard limit traversal.
153  */
154 static void
155 xlog_cil_insert_pcp_aggregate(
156 	struct xfs_cil		*cil,
157 	struct xfs_cil_ctx	*ctx)
158 {
159 	struct xlog_cil_pcp	*cilpcp;
160 	int			cpu;
161 	int			count = 0;
162 
163 	/* Trigger atomic updates then aggregate only for the first caller */
164 	if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags))
165 		return;
166 
167 	/*
168 	 * We can race with other cpus setting cil_pcpmask.  However, we've
169 	 * atomically cleared PCP_SPACE which forces other threads to add to
170 	 * the global space used count.  cil_pcpmask is a superset of cilpcp
171 	 * structures that could have a nonzero space_used.
172 	 */
173 	for_each_cpu(cpu, &ctx->cil_pcpmask) {
174 		int	old, prev;
175 
176 		cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
177 		do {
178 			old = cilpcp->space_used;
179 			prev = cmpxchg(&cilpcp->space_used, old, 0);
180 		} while (old != prev);
181 		count += old;
182 	}
183 	atomic_add(count, &ctx->space_used);
184 }
185 
186 static void
187 xlog_cil_ctx_switch(
188 	struct xfs_cil		*cil,
189 	struct xfs_cil_ctx	*ctx)
190 {
191 	xlog_cil_set_iclog_hdr_count(cil);
192 	set_bit(XLOG_CIL_EMPTY, &cil->xc_flags);
193 	set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags);
194 	ctx->sequence = ++cil->xc_current_sequence;
195 	ctx->cil = cil;
196 	cil->xc_ctx = ctx;
197 }
198 
199 /*
200  * After the first stage of log recovery is done, we know where the head and
201  * tail of the log are. We need this log initialisation done before we can
202  * initialise the first CIL checkpoint context.
203  *
204  * Here we allocate a log ticket to track space usage during a CIL push.  This
205  * ticket is passed to xlog_write() directly so that we don't slowly leak log
206  * space by failing to account for space used by log headers and additional
207  * region headers for split regions.
208  */
209 void
210 xlog_cil_init_post_recovery(
211 	struct xlog	*log)
212 {
213 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
214 	log->l_cilp->xc_ctx->sequence = 1;
215 	xlog_cil_set_iclog_hdr_count(log->l_cilp);
216 }
217 
218 static inline int
219 xlog_cil_iovec_space(
220 	uint	niovecs)
221 {
222 	return round_up((sizeof(struct xfs_log_vec) +
223 					niovecs * sizeof(struct xfs_log_iovec)),
224 			sizeof(uint64_t));
225 }
226 
227 /*
228  * Allocate or pin log vector buffers for CIL insertion.
229  *
230  * The CIL currently uses disposable buffers for copying a snapshot of the
231  * modified items into the log during a push. The biggest problem with this is
232  * the requirement to allocate the disposable buffer during the commit if:
233  *	a) does not exist; or
234  *	b) it is too small
235  *
236  * If we do this allocation within xlog_cil_insert_format_items(), it is done
237  * under the xc_ctx_lock, which means that a CIL push cannot occur during
238  * the memory allocation. This means that we have a potential deadlock situation
239  * under low memory conditions when we have lots of dirty metadata pinned in
240  * the CIL and we need a CIL commit to occur to free memory.
241  *
242  * To avoid this, we need to move the memory allocation outside the
243  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
244  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
245  * vector buffers between the check and the formatting of the item into the
246  * log vector buffer within the xc_ctx_lock.
247  *
248  * Because the log vector buffer needs to be unchanged during the CIL push
249  * process, we cannot share the buffer between the transaction commit (which
250  * modifies the buffer) and the CIL push context that is writing the changes
251  * into the log. This means skipping preallocation of buffer space is
252  * unreliable, but we most definitely do not want to be allocating and freeing
253  * buffers unnecessarily during commits when overwrites can be done safely.
254  *
255  * The simplest solution to this problem is to allocate a shadow buffer when a
256  * log item is committed for the second time, and then to only use this buffer
257  * if necessary. The buffer can remain attached to the log item until such time
258  * it is needed, and this is the buffer that is reallocated to match the size of
259  * the incoming modification. Then during the formatting of the item we can swap
260  * the active buffer with the new one if we can't reuse the existing buffer. We
261  * don't free the old buffer as it may be reused on the next modification if
262  * it's size is right, otherwise we'll free and reallocate it at that point.
263  *
264  * This function builds a vector for the changes in each log item in the
265  * transaction. It then works out the length of the buffer needed for each log
266  * item, allocates them and attaches the vector to the log item in preparation
267  * for the formatting step which occurs under the xc_ctx_lock.
268  *
269  * While this means the memory footprint goes up, it avoids the repeated
270  * alloc/free pattern that repeated modifications of an item would otherwise
271  * cause, and hence minimises the CPU overhead of such behaviour.
272  */
273 static void
274 xlog_cil_alloc_shadow_bufs(
275 	struct xlog		*log,
276 	struct xfs_trans	*tp)
277 {
278 	struct xfs_log_item	*lip;
279 
280 	list_for_each_entry(lip, &tp->t_items, li_trans) {
281 		struct xfs_log_vec *lv;
282 		int	niovecs = 0;
283 		int	nbytes = 0;
284 		int	buf_size;
285 		bool	ordered = false;
286 
287 		/* Skip items which aren't dirty in this transaction. */
288 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
289 			continue;
290 
291 		/* get number of vecs and size of data to be stored */
292 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
293 
294 		/*
295 		 * Ordered items need to be tracked but we do not wish to write
296 		 * them. We need a logvec to track the object, but we do not
297 		 * need an iovec or buffer to be allocated for copying data.
298 		 */
299 		if (niovecs == XFS_LOG_VEC_ORDERED) {
300 			ordered = true;
301 			niovecs = 0;
302 			nbytes = 0;
303 		}
304 
305 		/*
306 		 * We 64-bit align the length of each iovec so that the start of
307 		 * the next one is naturally aligned.  We'll need to account for
308 		 * that slack space here.
309 		 *
310 		 * We also add the xlog_op_header to each region when
311 		 * formatting, but that's not accounted to the size of the item
312 		 * at this point. Hence we'll need an addition number of bytes
313 		 * for each vector to hold an opheader.
314 		 *
315 		 * Then round nbytes up to 64-bit alignment so that the initial
316 		 * buffer alignment is easy to calculate and verify.
317 		 */
318 		nbytes += niovecs *
319 			(sizeof(uint64_t) + sizeof(struct xlog_op_header));
320 		nbytes = round_up(nbytes, sizeof(uint64_t));
321 
322 		/*
323 		 * The data buffer needs to start 64-bit aligned, so round up
324 		 * that space to ensure we can align it appropriately and not
325 		 * overrun the buffer.
326 		 */
327 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
328 
329 		/*
330 		 * if we have no shadow buffer, or it is too small, we need to
331 		 * reallocate it.
332 		 */
333 		if (!lip->li_lv_shadow ||
334 		    buf_size > lip->li_lv_shadow->lv_size) {
335 			/*
336 			 * We free and allocate here as a realloc would copy
337 			 * unnecessary data. We don't use kvzalloc() for the
338 			 * same reason - we don't need to zero the data area in
339 			 * the buffer, only the log vector header and the iovec
340 			 * storage.
341 			 */
342 			kvfree(lip->li_lv_shadow);
343 			lv = xlog_kvmalloc(buf_size);
344 
345 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
346 
347 			INIT_LIST_HEAD(&lv->lv_list);
348 			lv->lv_item = lip;
349 			lv->lv_size = buf_size;
350 			if (ordered)
351 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
352 			else
353 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
354 			lip->li_lv_shadow = lv;
355 		} else {
356 			/* same or smaller, optimise common overwrite case */
357 			lv = lip->li_lv_shadow;
358 			if (ordered)
359 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
360 			else
361 				lv->lv_buf_len = 0;
362 			lv->lv_bytes = 0;
363 		}
364 
365 		/* Ensure the lv is set up according to ->iop_size */
366 		lv->lv_niovecs = niovecs;
367 
368 		/* The allocated data region lies beyond the iovec region */
369 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
370 	}
371 
372 }
373 
374 /*
375  * Prepare the log item for insertion into the CIL. Calculate the difference in
376  * log space it will consume, and if it is a new item pin it as well.
377  */
378 STATIC void
379 xfs_cil_prepare_item(
380 	struct xlog		*log,
381 	struct xfs_log_vec	*lv,
382 	struct xfs_log_vec	*old_lv,
383 	int			*diff_len)
384 {
385 	/* Account for the new LV being passed in */
386 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
387 		*diff_len += lv->lv_bytes;
388 
389 	/*
390 	 * If there is no old LV, this is the first time we've seen the item in
391 	 * this CIL context and so we need to pin it. If we are replacing the
392 	 * old_lv, then remove the space it accounts for and make it the shadow
393 	 * buffer for later freeing. In both cases we are now switching to the
394 	 * shadow buffer, so update the pointer to it appropriately.
395 	 */
396 	if (!old_lv) {
397 		if (lv->lv_item->li_ops->iop_pin)
398 			lv->lv_item->li_ops->iop_pin(lv->lv_item);
399 		lv->lv_item->li_lv_shadow = NULL;
400 	} else if (old_lv != lv) {
401 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
402 
403 		*diff_len -= old_lv->lv_bytes;
404 		lv->lv_item->li_lv_shadow = old_lv;
405 	}
406 
407 	/* attach new log vector to log item */
408 	lv->lv_item->li_lv = lv;
409 
410 	/*
411 	 * If this is the first time the item is being committed to the
412 	 * CIL, store the sequence number on the log item so we can
413 	 * tell in future commits whether this is the first checkpoint
414 	 * the item is being committed into.
415 	 */
416 	if (!lv->lv_item->li_seq)
417 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
418 }
419 
420 /*
421  * Format log item into a flat buffers
422  *
423  * For delayed logging, we need to hold a formatted buffer containing all the
424  * changes on the log item. This enables us to relog the item in memory and
425  * write it out asynchronously without needing to relock the object that was
426  * modified at the time it gets written into the iclog.
427  *
428  * This function takes the prepared log vectors attached to each log item, and
429  * formats the changes into the log vector buffer. The buffer it uses is
430  * dependent on the current state of the vector in the CIL - the shadow lv is
431  * guaranteed to be large enough for the current modification, but we will only
432  * use that if we can't reuse the existing lv. If we can't reuse the existing
433  * lv, then simple swap it out for the shadow lv. We don't free it - that is
434  * done lazily either by th enext modification or the freeing of the log item.
435  *
436  * We don't set up region headers during this process; we simply copy the
437  * regions into the flat buffer. We can do this because we still have to do a
438  * formatting step to write the regions into the iclog buffer.  Writing the
439  * ophdrs during the iclog write means that we can support splitting large
440  * regions across iclog boundares without needing a change in the format of the
441  * item/region encapsulation.
442  *
443  * Hence what we need to do now is change the rewrite the vector array to point
444  * to the copied region inside the buffer we just allocated. This allows us to
445  * format the regions into the iclog as though they are being formatted
446  * directly out of the objects themselves.
447  */
448 static void
449 xlog_cil_insert_format_items(
450 	struct xlog		*log,
451 	struct xfs_trans	*tp,
452 	int			*diff_len)
453 {
454 	struct xfs_log_item	*lip;
455 
456 	/* Bail out if we didn't find a log item.  */
457 	if (list_empty(&tp->t_items)) {
458 		ASSERT(0);
459 		return;
460 	}
461 
462 	list_for_each_entry(lip, &tp->t_items, li_trans) {
463 		struct xfs_log_vec *lv;
464 		struct xfs_log_vec *old_lv = NULL;
465 		struct xfs_log_vec *shadow;
466 		bool	ordered = false;
467 
468 		/* Skip items which aren't dirty in this transaction. */
469 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
470 			continue;
471 
472 		/*
473 		 * The formatting size information is already attached to
474 		 * the shadow lv on the log item.
475 		 */
476 		shadow = lip->li_lv_shadow;
477 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
478 			ordered = true;
479 
480 		/* Skip items that do not have any vectors for writing */
481 		if (!shadow->lv_niovecs && !ordered)
482 			continue;
483 
484 		/* compare to existing item size */
485 		old_lv = lip->li_lv;
486 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
487 			/* same or smaller, optimise common overwrite case */
488 			lv = lip->li_lv;
489 
490 			if (ordered)
491 				goto insert;
492 
493 			/*
494 			 * set the item up as though it is a new insertion so
495 			 * that the space reservation accounting is correct.
496 			 */
497 			*diff_len -= lv->lv_bytes;
498 
499 			/* Ensure the lv is set up according to ->iop_size */
500 			lv->lv_niovecs = shadow->lv_niovecs;
501 
502 			/* reset the lv buffer information for new formatting */
503 			lv->lv_buf_len = 0;
504 			lv->lv_bytes = 0;
505 			lv->lv_buf = (char *)lv +
506 					xlog_cil_iovec_space(lv->lv_niovecs);
507 		} else {
508 			/* switch to shadow buffer! */
509 			lv = shadow;
510 			lv->lv_item = lip;
511 			if (ordered) {
512 				/* track as an ordered logvec */
513 				ASSERT(lip->li_lv == NULL);
514 				goto insert;
515 			}
516 		}
517 
518 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
519 		lip->li_ops->iop_format(lip, lv);
520 insert:
521 		xfs_cil_prepare_item(log, lv, old_lv, diff_len);
522 	}
523 }
524 
525 /*
526  * The use of lockless waitqueue_active() requires that the caller has
527  * serialised itself against the wakeup call in xlog_cil_push_work(). That
528  * can be done by either holding the push lock or the context lock.
529  */
530 static inline bool
531 xlog_cil_over_hard_limit(
532 	struct xlog	*log,
533 	int32_t		space_used)
534 {
535 	if (waitqueue_active(&log->l_cilp->xc_push_wait))
536 		return true;
537 	if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log))
538 		return true;
539 	return false;
540 }
541 
542 /*
543  * Insert the log items into the CIL and calculate the difference in space
544  * consumed by the item. Add the space to the checkpoint ticket and calculate
545  * if the change requires additional log metadata. If it does, take that space
546  * as well. Remove the amount of space we added to the checkpoint ticket from
547  * the current transaction ticket so that the accounting works out correctly.
548  */
549 static void
550 xlog_cil_insert_items(
551 	struct xlog		*log,
552 	struct xfs_trans	*tp,
553 	uint32_t		released_space)
554 {
555 	struct xfs_cil		*cil = log->l_cilp;
556 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
557 	struct xfs_log_item	*lip;
558 	int			len = 0;
559 	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
560 	int			space_used;
561 	int			order;
562 	unsigned int		cpu_nr;
563 	struct xlog_cil_pcp	*cilpcp;
564 
565 	ASSERT(tp);
566 
567 	/*
568 	 * We can do this safely because the context can't checkpoint until we
569 	 * are done so it doesn't matter exactly how we update the CIL.
570 	 */
571 	xlog_cil_insert_format_items(log, tp, &len);
572 
573 	/*
574 	 * Subtract the space released by intent cancelation from the space we
575 	 * consumed so that we remove it from the CIL space and add it back to
576 	 * the current transaction reservation context.
577 	 */
578 	len -= released_space;
579 
580 	/*
581 	 * Grab the per-cpu pointer for the CIL before we start any accounting.
582 	 * That ensures that we are running with pre-emption disabled and so we
583 	 * can't be scheduled away between split sample/update operations that
584 	 * are done without outside locking to serialise them.
585 	 */
586 	cpu_nr = get_cpu();
587 	cilpcp = this_cpu_ptr(cil->xc_pcp);
588 
589 	/* Tell the future push that there was work added by this CPU. */
590 	if (!cpumask_test_cpu(cpu_nr, &ctx->cil_pcpmask))
591 		cpumask_test_and_set_cpu(cpu_nr, &ctx->cil_pcpmask);
592 
593 	/*
594 	 * We need to take the CIL checkpoint unit reservation on the first
595 	 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't
596 	 * unnecessarily do an atomic op in the fast path here. We can clear the
597 	 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that
598 	 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit.
599 	 */
600 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) &&
601 	    test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
602 		ctx_res = ctx->ticket->t_unit_res;
603 
604 	/*
605 	 * Check if we need to steal iclog headers. atomic_read() is not a
606 	 * locked atomic operation, so we can check the value before we do any
607 	 * real atomic ops in the fast path. If we've already taken the CIL unit
608 	 * reservation from this commit, we've already got one iclog header
609 	 * space reserved so we have to account for that otherwise we risk
610 	 * overrunning the reservation on this ticket.
611 	 *
612 	 * If the CIL is already at the hard limit, we might need more header
613 	 * space that originally reserved. So steal more header space from every
614 	 * commit that occurs once we are over the hard limit to ensure the CIL
615 	 * push won't run out of reservation space.
616 	 *
617 	 * This can steal more than we need, but that's OK.
618 	 *
619 	 * The cil->xc_ctx_lock provides the serialisation necessary for safely
620 	 * calling xlog_cil_over_hard_limit() in this context.
621 	 */
622 	space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len;
623 	if (atomic_read(&cil->xc_iclog_hdrs) > 0 ||
624 	    xlog_cil_over_hard_limit(log, space_used)) {
625 		split_res = log->l_iclog_hsize +
626 					sizeof(struct xlog_op_header);
627 		if (ctx_res)
628 			ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1);
629 		else
630 			ctx_res = split_res * tp->t_ticket->t_iclog_hdrs;
631 		atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs);
632 	}
633 	cilpcp->space_reserved += ctx_res;
634 
635 	/*
636 	 * Accurately account when over the soft limit, otherwise fold the
637 	 * percpu count into the global count if over the per-cpu threshold.
638 	 */
639 	if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) {
640 		atomic_add(len, &ctx->space_used);
641 	} else if (cilpcp->space_used + len >
642 			(XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) {
643 		space_used = atomic_add_return(cilpcp->space_used + len,
644 						&ctx->space_used);
645 		cilpcp->space_used = 0;
646 
647 		/*
648 		 * If we just transitioned over the soft limit, we need to
649 		 * transition to the global atomic counter.
650 		 */
651 		if (space_used >= XLOG_CIL_SPACE_LIMIT(log))
652 			xlog_cil_insert_pcp_aggregate(cil, ctx);
653 	} else {
654 		cilpcp->space_used += len;
655 	}
656 	/* attach the transaction to the CIL if it has any busy extents */
657 	if (!list_empty(&tp->t_busy))
658 		list_splice_init(&tp->t_busy, &cilpcp->busy_extents);
659 
660 	/*
661 	 * Now update the order of everything modified in the transaction
662 	 * and insert items into the CIL if they aren't already there.
663 	 * We do this here so we only need to take the CIL lock once during
664 	 * the transaction commit.
665 	 */
666 	order = atomic_inc_return(&ctx->order_id);
667 	list_for_each_entry(lip, &tp->t_items, li_trans) {
668 		/* Skip items which aren't dirty in this transaction. */
669 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
670 			continue;
671 
672 		lip->li_order_id = order;
673 		if (!list_empty(&lip->li_cil))
674 			continue;
675 		list_add_tail(&lip->li_cil, &cilpcp->log_items);
676 	}
677 	put_cpu();
678 
679 	/*
680 	 * If we've overrun the reservation, dump the tx details before we move
681 	 * the log items. Shutdown is imminent...
682 	 */
683 	tp->t_ticket->t_curr_res -= ctx_res + len;
684 	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
685 		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
686 		xfs_warn(log->l_mp,
687 			 "  log items: %d bytes (iov hdrs: %d bytes)",
688 			 len, iovhdr_res);
689 		xfs_warn(log->l_mp, "  split region headers: %d bytes",
690 			 split_res);
691 		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
692 		xlog_print_trans(tp);
693 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
694 	}
695 }
696 
697 static void
698 xlog_cil_free_logvec(
699 	struct list_head	*lv_chain)
700 {
701 	struct xfs_log_vec	*lv;
702 
703 	while (!list_empty(lv_chain)) {
704 		lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list);
705 		list_del_init(&lv->lv_list);
706 		kvfree(lv);
707 	}
708 }
709 
710 /*
711  * Mark all items committed and clear busy extents. We free the log vector
712  * chains in a separate pass so that we unpin the log items as quickly as
713  * possible.
714  */
715 static void
716 xlog_cil_committed(
717 	struct xfs_cil_ctx	*ctx)
718 {
719 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
720 	bool			abort = xlog_is_shutdown(ctx->cil->xc_log);
721 
722 	/*
723 	 * If the I/O failed, we're aborting the commit and already shutdown.
724 	 * Wake any commit waiters before aborting the log items so we don't
725 	 * block async log pushers on callbacks. Async log pushers explicitly do
726 	 * not wait on log force completion because they may be holding locks
727 	 * required to unpin items.
728 	 */
729 	if (abort) {
730 		spin_lock(&ctx->cil->xc_push_lock);
731 		wake_up_all(&ctx->cil->xc_start_wait);
732 		wake_up_all(&ctx->cil->xc_commit_wait);
733 		spin_unlock(&ctx->cil->xc_push_lock);
734 	}
735 
736 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, &ctx->lv_chain,
737 					ctx->start_lsn, abort);
738 
739 	xfs_extent_busy_sort(&ctx->busy_extents.extent_list);
740 	xfs_extent_busy_clear(mp, &ctx->busy_extents.extent_list,
741 			      xfs_has_discard(mp) && !abort);
742 
743 	spin_lock(&ctx->cil->xc_push_lock);
744 	list_del(&ctx->committing);
745 	spin_unlock(&ctx->cil->xc_push_lock);
746 
747 	xlog_cil_free_logvec(&ctx->lv_chain);
748 
749 	if (!list_empty(&ctx->busy_extents.extent_list)) {
750 		ctx->busy_extents.mount = mp;
751 		ctx->busy_extents.owner = ctx;
752 		xfs_discard_extents(mp, &ctx->busy_extents);
753 		return;
754 	}
755 
756 	kfree(ctx);
757 }
758 
759 void
760 xlog_cil_process_committed(
761 	struct list_head	*list)
762 {
763 	struct xfs_cil_ctx	*ctx;
764 
765 	while ((ctx = list_first_entry_or_null(list,
766 			struct xfs_cil_ctx, iclog_entry))) {
767 		list_del(&ctx->iclog_entry);
768 		xlog_cil_committed(ctx);
769 	}
770 }
771 
772 /*
773 * Record the LSN of the iclog we were just granted space to start writing into.
774 * If the context doesn't have a start_lsn recorded, then this iclog will
775 * contain the start record for the checkpoint. Otherwise this write contains
776 * the commit record for the checkpoint.
777 */
778 void
779 xlog_cil_set_ctx_write_state(
780 	struct xfs_cil_ctx	*ctx,
781 	struct xlog_in_core	*iclog)
782 {
783 	struct xfs_cil		*cil = ctx->cil;
784 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
785 
786 	ASSERT(!ctx->commit_lsn);
787 	if (!ctx->start_lsn) {
788 		spin_lock(&cil->xc_push_lock);
789 		/*
790 		 * The LSN we need to pass to the log items on transaction
791 		 * commit is the LSN reported by the first log vector write, not
792 		 * the commit lsn. If we use the commit record lsn then we can
793 		 * move the grant write head beyond the tail LSN and overwrite
794 		 * it.
795 		 */
796 		ctx->start_lsn = lsn;
797 		wake_up_all(&cil->xc_start_wait);
798 		spin_unlock(&cil->xc_push_lock);
799 
800 		/*
801 		 * Make sure the metadata we are about to overwrite in the log
802 		 * has been flushed to stable storage before this iclog is
803 		 * issued.
804 		 */
805 		spin_lock(&cil->xc_log->l_icloglock);
806 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
807 		spin_unlock(&cil->xc_log->l_icloglock);
808 		return;
809 	}
810 
811 	/*
812 	 * Take a reference to the iclog for the context so that we still hold
813 	 * it when xlog_write is done and has released it. This means the
814 	 * context controls when the iclog is released for IO.
815 	 */
816 	atomic_inc(&iclog->ic_refcnt);
817 
818 	/*
819 	 * xlog_state_get_iclog_space() guarantees there is enough space in the
820 	 * iclog for an entire commit record, so we can attach the context
821 	 * callbacks now.  This needs to be done before we make the commit_lsn
822 	 * visible to waiters so that checkpoints with commit records in the
823 	 * same iclog order their IO completion callbacks in the same order that
824 	 * the commit records appear in the iclog.
825 	 */
826 	spin_lock(&cil->xc_log->l_icloglock);
827 	list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks);
828 	spin_unlock(&cil->xc_log->l_icloglock);
829 
830 	/*
831 	 * Now we can record the commit LSN and wake anyone waiting for this
832 	 * sequence to have the ordered commit record assigned to a physical
833 	 * location in the log.
834 	 */
835 	spin_lock(&cil->xc_push_lock);
836 	ctx->commit_iclog = iclog;
837 	ctx->commit_lsn = lsn;
838 	wake_up_all(&cil->xc_commit_wait);
839 	spin_unlock(&cil->xc_push_lock);
840 }
841 
842 
843 /*
844  * Ensure that the order of log writes follows checkpoint sequence order. This
845  * relies on the context LSN being zero until the log write has guaranteed the
846  * LSN that the log write will start at via xlog_state_get_iclog_space().
847  */
848 enum _record_type {
849 	_START_RECORD,
850 	_COMMIT_RECORD,
851 };
852 
853 static int
854 xlog_cil_order_write(
855 	struct xfs_cil		*cil,
856 	xfs_csn_t		sequence,
857 	enum _record_type	record)
858 {
859 	struct xfs_cil_ctx	*ctx;
860 
861 restart:
862 	spin_lock(&cil->xc_push_lock);
863 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
864 		/*
865 		 * Avoid getting stuck in this loop because we were woken by the
866 		 * shutdown, but then went back to sleep once already in the
867 		 * shutdown state.
868 		 */
869 		if (xlog_is_shutdown(cil->xc_log)) {
870 			spin_unlock(&cil->xc_push_lock);
871 			return -EIO;
872 		}
873 
874 		/*
875 		 * Higher sequences will wait for this one so skip them.
876 		 * Don't wait for our own sequence, either.
877 		 */
878 		if (ctx->sequence >= sequence)
879 			continue;
880 
881 		/* Wait until the LSN for the record has been recorded. */
882 		switch (record) {
883 		case _START_RECORD:
884 			if (!ctx->start_lsn) {
885 				xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock);
886 				goto restart;
887 			}
888 			break;
889 		case _COMMIT_RECORD:
890 			if (!ctx->commit_lsn) {
891 				xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
892 				goto restart;
893 			}
894 			break;
895 		}
896 	}
897 	spin_unlock(&cil->xc_push_lock);
898 	return 0;
899 }
900 
901 /*
902  * Write out the log vector change now attached to the CIL context. This will
903  * write a start record that needs to be strictly ordered in ascending CIL
904  * sequence order so that log recovery will always use in-order start LSNs when
905  * replaying checkpoints.
906  */
907 static int
908 xlog_cil_write_chain(
909 	struct xfs_cil_ctx	*ctx,
910 	uint32_t		chain_len)
911 {
912 	struct xlog		*log = ctx->cil->xc_log;
913 	int			error;
914 
915 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD);
916 	if (error)
917 		return error;
918 	return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len);
919 }
920 
921 /*
922  * Write out the commit record of a checkpoint transaction to close off a
923  * running log write. These commit records are strictly ordered in ascending CIL
924  * sequence order so that log recovery will always replay the checkpoints in the
925  * correct order.
926  */
927 static int
928 xlog_cil_write_commit_record(
929 	struct xfs_cil_ctx	*ctx)
930 {
931 	struct xlog		*log = ctx->cil->xc_log;
932 	struct xlog_op_header	ophdr = {
933 		.oh_clientid = XFS_TRANSACTION,
934 		.oh_tid = cpu_to_be32(ctx->ticket->t_tid),
935 		.oh_flags = XLOG_COMMIT_TRANS,
936 	};
937 	struct xfs_log_iovec	reg = {
938 		.i_addr = &ophdr,
939 		.i_len = sizeof(struct xlog_op_header),
940 		.i_type = XLOG_REG_TYPE_COMMIT,
941 	};
942 	struct xfs_log_vec	vec = {
943 		.lv_niovecs = 1,
944 		.lv_iovecp = &reg,
945 	};
946 	int			error;
947 	LIST_HEAD(lv_chain);
948 	list_add(&vec.lv_list, &lv_chain);
949 
950 	if (xlog_is_shutdown(log))
951 		return -EIO;
952 
953 	error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD);
954 	if (error)
955 		return error;
956 
957 	/* account for space used by record data */
958 	ctx->ticket->t_curr_res -= reg.i_len;
959 	error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len);
960 	if (error)
961 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
962 	return error;
963 }
964 
965 struct xlog_cil_trans_hdr {
966 	struct xlog_op_header	oph[2];
967 	struct xfs_trans_header	thdr;
968 	struct xfs_log_iovec	lhdr[2];
969 };
970 
971 /*
972  * Build a checkpoint transaction header to begin the journal transaction.  We
973  * need to account for the space used by the transaction header here as it is
974  * not accounted for in xlog_write().
975  *
976  * This is the only place we write a transaction header, so we also build the
977  * log opheaders that indicate the start of a log transaction and wrap the
978  * transaction header. We keep the start record in it's own log vector rather
979  * than compacting them into a single region as this ends up making the logic
980  * in xlog_write() for handling empty opheaders for start, commit and unmount
981  * records much simpler.
982  */
983 static void
984 xlog_cil_build_trans_hdr(
985 	struct xfs_cil_ctx	*ctx,
986 	struct xlog_cil_trans_hdr *hdr,
987 	struct xfs_log_vec	*lvhdr,
988 	int			num_iovecs)
989 {
990 	struct xlog_ticket	*tic = ctx->ticket;
991 	__be32			tid = cpu_to_be32(tic->t_tid);
992 
993 	memset(hdr, 0, sizeof(*hdr));
994 
995 	/* Log start record */
996 	hdr->oph[0].oh_tid = tid;
997 	hdr->oph[0].oh_clientid = XFS_TRANSACTION;
998 	hdr->oph[0].oh_flags = XLOG_START_TRANS;
999 
1000 	/* log iovec region pointer */
1001 	hdr->lhdr[0].i_addr = &hdr->oph[0];
1002 	hdr->lhdr[0].i_len = sizeof(struct xlog_op_header);
1003 	hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER;
1004 
1005 	/* log opheader */
1006 	hdr->oph[1].oh_tid = tid;
1007 	hdr->oph[1].oh_clientid = XFS_TRANSACTION;
1008 	hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header));
1009 
1010 	/* transaction header in host byte order format */
1011 	hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
1012 	hdr->thdr.th_type = XFS_TRANS_CHECKPOINT;
1013 	hdr->thdr.th_tid = tic->t_tid;
1014 	hdr->thdr.th_num_items = num_iovecs;
1015 
1016 	/* log iovec region pointer */
1017 	hdr->lhdr[1].i_addr = &hdr->oph[1];
1018 	hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) +
1019 				sizeof(struct xfs_trans_header);
1020 	hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR;
1021 
1022 	lvhdr->lv_niovecs = 2;
1023 	lvhdr->lv_iovecp = &hdr->lhdr[0];
1024 	lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len;
1025 
1026 	tic->t_curr_res -= lvhdr->lv_bytes;
1027 }
1028 
1029 /*
1030  * CIL item reordering compare function. We want to order in ascending ID order,
1031  * but we want to leave items with the same ID in the order they were added to
1032  * the list. This is important for operations like reflink where we log 4 order
1033  * dependent intents in a single transaction when we overwrite an existing
1034  * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop),
1035  * CUI (inc), BUI(remap)...
1036  */
1037 static int
1038 xlog_cil_order_cmp(
1039 	void			*priv,
1040 	const struct list_head	*a,
1041 	const struct list_head	*b)
1042 {
1043 	struct xfs_log_vec	*l1 = container_of(a, struct xfs_log_vec, lv_list);
1044 	struct xfs_log_vec	*l2 = container_of(b, struct xfs_log_vec, lv_list);
1045 
1046 	return l1->lv_order_id > l2->lv_order_id;
1047 }
1048 
1049 /*
1050  * Pull all the log vectors off the items in the CIL, and remove the items from
1051  * the CIL. We don't need the CIL lock here because it's only needed on the
1052  * transaction commit side which is currently locked out by the flush lock.
1053  *
1054  * If a log item is marked with a whiteout, we do not need to write it to the
1055  * journal and so we just move them to the whiteout list for the caller to
1056  * dispose of appropriately.
1057  */
1058 static void
1059 xlog_cil_build_lv_chain(
1060 	struct xfs_cil_ctx	*ctx,
1061 	struct list_head	*whiteouts,
1062 	uint32_t		*num_iovecs,
1063 	uint32_t		*num_bytes)
1064 {
1065 	while (!list_empty(&ctx->log_items)) {
1066 		struct xfs_log_item	*item;
1067 		struct xfs_log_vec	*lv;
1068 
1069 		item = list_first_entry(&ctx->log_items,
1070 					struct xfs_log_item, li_cil);
1071 
1072 		if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) {
1073 			list_move(&item->li_cil, whiteouts);
1074 			trace_xfs_cil_whiteout_skip(item);
1075 			continue;
1076 		}
1077 
1078 		lv = item->li_lv;
1079 		lv->lv_order_id = item->li_order_id;
1080 
1081 		/* we don't write ordered log vectors */
1082 		if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
1083 			*num_bytes += lv->lv_bytes;
1084 		*num_iovecs += lv->lv_niovecs;
1085 		list_add_tail(&lv->lv_list, &ctx->lv_chain);
1086 
1087 		list_del_init(&item->li_cil);
1088 		item->li_order_id = 0;
1089 		item->li_lv = NULL;
1090 	}
1091 }
1092 
1093 static void
1094 xlog_cil_cleanup_whiteouts(
1095 	struct list_head	*whiteouts)
1096 {
1097 	while (!list_empty(whiteouts)) {
1098 		struct xfs_log_item *item = list_first_entry(whiteouts,
1099 						struct xfs_log_item, li_cil);
1100 		list_del_init(&item->li_cil);
1101 		trace_xfs_cil_whiteout_unpin(item);
1102 		item->li_ops->iop_unpin(item, 1);
1103 	}
1104 }
1105 
1106 /*
1107  * Push the Committed Item List to the log.
1108  *
1109  * If the current sequence is the same as xc_push_seq we need to do a flush. If
1110  * xc_push_seq is less than the current sequence, then it has already been
1111  * flushed and we don't need to do anything - the caller will wait for it to
1112  * complete if necessary.
1113  *
1114  * xc_push_seq is checked unlocked against the sequence number for a match.
1115  * Hence we can allow log forces to run racily and not issue pushes for the
1116  * same sequence twice.  If we get a race between multiple pushes for the same
1117  * sequence they will block on the first one and then abort, hence avoiding
1118  * needless pushes.
1119  *
1120  * This runs from a workqueue so it does not inherent any specific memory
1121  * allocation context. However, we do not want to block on memory reclaim
1122  * recursing back into the filesystem because this push may have been triggered
1123  * by memory reclaim itself. Hence we really need to run under full GFP_NOFS
1124  * contraints here.
1125  */
1126 static void
1127 xlog_cil_push_work(
1128 	struct work_struct	*work)
1129 {
1130 	unsigned int		nofs_flags = memalloc_nofs_save();
1131 	struct xfs_cil_ctx	*ctx =
1132 		container_of(work, struct xfs_cil_ctx, push_work);
1133 	struct xfs_cil		*cil = ctx->cil;
1134 	struct xlog		*log = cil->xc_log;
1135 	struct xfs_cil_ctx	*new_ctx;
1136 	int			num_iovecs = 0;
1137 	int			num_bytes = 0;
1138 	int			error = 0;
1139 	struct xlog_cil_trans_hdr thdr;
1140 	struct xfs_log_vec	lvhdr = {};
1141 	xfs_csn_t		push_seq;
1142 	bool			push_commit_stable;
1143 	LIST_HEAD		(whiteouts);
1144 	struct xlog_ticket	*ticket;
1145 
1146 	new_ctx = xlog_cil_ctx_alloc();
1147 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
1148 
1149 	down_write(&cil->xc_ctx_lock);
1150 
1151 	spin_lock(&cil->xc_push_lock);
1152 	push_seq = cil->xc_push_seq;
1153 	ASSERT(push_seq <= ctx->sequence);
1154 	push_commit_stable = cil->xc_push_commit_stable;
1155 	cil->xc_push_commit_stable = false;
1156 
1157 	/*
1158 	 * As we are about to switch to a new, empty CIL context, we no longer
1159 	 * need to throttle tasks on CIL space overruns. Wake any waiters that
1160 	 * the hard push throttle may have caught so they can start committing
1161 	 * to the new context. The ctx->xc_push_lock provides the serialisation
1162 	 * necessary for safely using the lockless waitqueue_active() check in
1163 	 * this context.
1164 	 */
1165 	if (waitqueue_active(&cil->xc_push_wait))
1166 		wake_up_all(&cil->xc_push_wait);
1167 
1168 	xlog_cil_push_pcp_aggregate(cil, ctx);
1169 
1170 	/*
1171 	 * Check if we've anything to push. If there is nothing, then we don't
1172 	 * move on to a new sequence number and so we have to be able to push
1173 	 * this sequence again later.
1174 	 */
1175 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1176 		cil->xc_push_seq = 0;
1177 		spin_unlock(&cil->xc_push_lock);
1178 		goto out_skip;
1179 	}
1180 
1181 
1182 	/* check for a previously pushed sequence */
1183 	if (push_seq < ctx->sequence) {
1184 		spin_unlock(&cil->xc_push_lock);
1185 		goto out_skip;
1186 	}
1187 
1188 	/*
1189 	 * We are now going to push this context, so add it to the committing
1190 	 * list before we do anything else. This ensures that anyone waiting on
1191 	 * this push can easily detect the difference between a "push in
1192 	 * progress" and "CIL is empty, nothing to do".
1193 	 *
1194 	 * IOWs, a wait loop can now check for:
1195 	 *	the current sequence not being found on the committing list;
1196 	 *	an empty CIL; and
1197 	 *	an unchanged sequence number
1198 	 * to detect a push that had nothing to do and therefore does not need
1199 	 * waiting on. If the CIL is not empty, we get put on the committing
1200 	 * list before emptying the CIL and bumping the sequence number. Hence
1201 	 * an empty CIL and an unchanged sequence number means we jumped out
1202 	 * above after doing nothing.
1203 	 *
1204 	 * Hence the waiter will either find the commit sequence on the
1205 	 * committing list or the sequence number will be unchanged and the CIL
1206 	 * still dirty. In that latter case, the push has not yet started, and
1207 	 * so the waiter will have to continue trying to check the CIL
1208 	 * committing list until it is found. In extreme cases of delay, the
1209 	 * sequence may fully commit between the attempts the wait makes to wait
1210 	 * on the commit sequence.
1211 	 */
1212 	list_add(&ctx->committing, &cil->xc_committing);
1213 	spin_unlock(&cil->xc_push_lock);
1214 
1215 	xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes);
1216 
1217 	/*
1218 	 * Switch the contexts so we can drop the context lock and move out
1219 	 * of a shared context. We can't just go straight to the commit record,
1220 	 * though - we need to synchronise with previous and future commits so
1221 	 * that the commit records are correctly ordered in the log to ensure
1222 	 * that we process items during log IO completion in the correct order.
1223 	 *
1224 	 * For example, if we get an EFI in one checkpoint and the EFD in the
1225 	 * next (e.g. due to log forces), we do not want the checkpoint with
1226 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
1227 	 * we must strictly order the commit records of the checkpoints so
1228 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
1229 	 * correct order; and b) the checkpoints are replayed in correct order
1230 	 * in log recovery.
1231 	 *
1232 	 * Hence we need to add this context to the committing context list so
1233 	 * that higher sequences will wait for us to write out a commit record
1234 	 * before they do.
1235 	 *
1236 	 * xfs_log_force_seq requires us to mirror the new sequence into the cil
1237 	 * structure atomically with the addition of this sequence to the
1238 	 * committing list. This also ensures that we can do unlocked checks
1239 	 * against the current sequence in log forces without risking
1240 	 * deferencing a freed context pointer.
1241 	 */
1242 	spin_lock(&cil->xc_push_lock);
1243 	xlog_cil_ctx_switch(cil, new_ctx);
1244 	spin_unlock(&cil->xc_push_lock);
1245 	up_write(&cil->xc_ctx_lock);
1246 
1247 	/*
1248 	 * Sort the log vector chain before we add the transaction headers.
1249 	 * This ensures we always have the transaction headers at the start
1250 	 * of the chain.
1251 	 */
1252 	list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp);
1253 
1254 	/*
1255 	 * Build a checkpoint transaction header and write it to the log to
1256 	 * begin the transaction. We need to account for the space used by the
1257 	 * transaction header here as it is not accounted for in xlog_write().
1258 	 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so
1259 	 * it gets written into the iclog first.
1260 	 */
1261 	xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs);
1262 	num_bytes += lvhdr.lv_bytes;
1263 	list_add(&lvhdr.lv_list, &ctx->lv_chain);
1264 
1265 	/*
1266 	 * Take the lvhdr back off the lv_chain immediately after calling
1267 	 * xlog_cil_write_chain() as it should not be passed to log IO
1268 	 * completion.
1269 	 */
1270 	error = xlog_cil_write_chain(ctx, num_bytes);
1271 	list_del(&lvhdr.lv_list);
1272 	if (error)
1273 		goto out_abort_free_ticket;
1274 
1275 	error = xlog_cil_write_commit_record(ctx);
1276 	if (error)
1277 		goto out_abort_free_ticket;
1278 
1279 	/*
1280 	 * Grab the ticket from the ctx so we can ungrant it after releasing the
1281 	 * commit_iclog. The ctx may be freed by the time we return from
1282 	 * releasing the commit_iclog (i.e. checkpoint has been completed and
1283 	 * callback run) so we can't reference the ctx after the call to
1284 	 * xlog_state_release_iclog().
1285 	 */
1286 	ticket = ctx->ticket;
1287 
1288 	/*
1289 	 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
1290 	 * to complete before we submit the commit_iclog. We can't use state
1291 	 * checks for this - ACTIVE can be either a past completed iclog or a
1292 	 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
1293 	 * past or future iclog awaiting IO or ordered IO completion to be run.
1294 	 * In the latter case, if it's a future iclog and we wait on it, the we
1295 	 * will hang because it won't get processed through to ic_force_wait
1296 	 * wakeup until this commit_iclog is written to disk.  Hence we use the
1297 	 * iclog header lsn and compare it to the commit lsn to determine if we
1298 	 * need to wait on iclogs or not.
1299 	 */
1300 	spin_lock(&log->l_icloglock);
1301 	if (ctx->start_lsn != ctx->commit_lsn) {
1302 		xfs_lsn_t	plsn;
1303 
1304 		plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn);
1305 		if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) {
1306 			/*
1307 			 * Waiting on ic_force_wait orders the completion of
1308 			 * iclogs older than ic_prev. Hence we only need to wait
1309 			 * on the most recent older iclog here.
1310 			 */
1311 			xlog_wait_on_iclog(ctx->commit_iclog->ic_prev);
1312 			spin_lock(&log->l_icloglock);
1313 		}
1314 
1315 		/*
1316 		 * We need to issue a pre-flush so that the ordering for this
1317 		 * checkpoint is correctly preserved down to stable storage.
1318 		 */
1319 		ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
1320 	}
1321 
1322 	/*
1323 	 * The commit iclog must be written to stable storage to guarantee
1324 	 * journal IO vs metadata writeback IO is correctly ordered on stable
1325 	 * storage.
1326 	 *
1327 	 * If the push caller needs the commit to be immediately stable and the
1328 	 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it
1329 	 * will be written when released, switch it's state to WANT_SYNC right
1330 	 * now.
1331 	 */
1332 	ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
1333 	if (push_commit_stable &&
1334 	    ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE)
1335 		xlog_state_switch_iclogs(log, ctx->commit_iclog, 0);
1336 	ticket = ctx->ticket;
1337 	xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1338 
1339 	/* Not safe to reference ctx now! */
1340 
1341 	spin_unlock(&log->l_icloglock);
1342 	xlog_cil_cleanup_whiteouts(&whiteouts);
1343 	xfs_log_ticket_ungrant(log, ticket);
1344 	memalloc_nofs_restore(nofs_flags);
1345 	return;
1346 
1347 out_skip:
1348 	up_write(&cil->xc_ctx_lock);
1349 	xfs_log_ticket_put(new_ctx->ticket);
1350 	kfree(new_ctx);
1351 	memalloc_nofs_restore(nofs_flags);
1352 	return;
1353 
1354 out_abort_free_ticket:
1355 	ASSERT(xlog_is_shutdown(log));
1356 	xlog_cil_cleanup_whiteouts(&whiteouts);
1357 	if (!ctx->commit_iclog) {
1358 		xfs_log_ticket_ungrant(log, ctx->ticket);
1359 		xlog_cil_committed(ctx);
1360 		memalloc_nofs_restore(nofs_flags);
1361 		return;
1362 	}
1363 	spin_lock(&log->l_icloglock);
1364 	ticket = ctx->ticket;
1365 	xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1366 	/* Not safe to reference ctx now! */
1367 	spin_unlock(&log->l_icloglock);
1368 	xfs_log_ticket_ungrant(log, ticket);
1369 	memalloc_nofs_restore(nofs_flags);
1370 }
1371 
1372 /*
1373  * We need to push CIL every so often so we don't cache more than we can fit in
1374  * the log. The limit really is that a checkpoint can't be more than half the
1375  * log (the current checkpoint is not allowed to overwrite the previous
1376  * checkpoint), but commit latency and memory usage limit this to a smaller
1377  * size.
1378  */
1379 static void
1380 xlog_cil_push_background(
1381 	struct xlog	*log)
1382 {
1383 	struct xfs_cil	*cil = log->l_cilp;
1384 	int		space_used = atomic_read(&cil->xc_ctx->space_used);
1385 
1386 	/*
1387 	 * The cil won't be empty because we are called while holding the
1388 	 * context lock so whatever we added to the CIL will still be there.
1389 	 */
1390 	ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1391 
1392 	/*
1393 	 * We are done if:
1394 	 * - we haven't used up all the space available yet; or
1395 	 * - we've already queued up a push; and
1396 	 * - we're not over the hard limit; and
1397 	 * - nothing has been over the hard limit.
1398 	 *
1399 	 * If so, we don't need to take the push lock as there's nothing to do.
1400 	 */
1401 	if (space_used < XLOG_CIL_SPACE_LIMIT(log) ||
1402 	    (cil->xc_push_seq == cil->xc_current_sequence &&
1403 	     space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) &&
1404 	     !waitqueue_active(&cil->xc_push_wait))) {
1405 		up_read(&cil->xc_ctx_lock);
1406 		return;
1407 	}
1408 
1409 	spin_lock(&cil->xc_push_lock);
1410 	if (cil->xc_push_seq < cil->xc_current_sequence) {
1411 		cil->xc_push_seq = cil->xc_current_sequence;
1412 		queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1413 	}
1414 
1415 	/*
1416 	 * Drop the context lock now, we can't hold that if we need to sleep
1417 	 * because we are over the blocking threshold. The push_lock is still
1418 	 * held, so blocking threshold sleep/wakeup is still correctly
1419 	 * serialised here.
1420 	 */
1421 	up_read(&cil->xc_ctx_lock);
1422 
1423 	/*
1424 	 * If we are well over the space limit, throttle the work that is being
1425 	 * done until the push work on this context has begun. Enforce the hard
1426 	 * throttle on all transaction commits once it has been activated, even
1427 	 * if the committing transactions have resulted in the space usage
1428 	 * dipping back down under the hard limit.
1429 	 *
1430 	 * The ctx->xc_push_lock provides the serialisation necessary for safely
1431 	 * calling xlog_cil_over_hard_limit() in this context.
1432 	 */
1433 	if (xlog_cil_over_hard_limit(log, space_used)) {
1434 		trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1435 		ASSERT(space_used < log->l_logsize);
1436 		xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1437 		return;
1438 	}
1439 
1440 	spin_unlock(&cil->xc_push_lock);
1441 
1442 }
1443 
1444 /*
1445  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1446  * number that is passed. When it returns, the work will be queued for
1447  * @push_seq, but it won't be completed.
1448  *
1449  * If the caller is performing a synchronous force, we will flush the workqueue
1450  * to get previously queued work moving to minimise the wait time they will
1451  * undergo waiting for all outstanding pushes to complete. The caller is
1452  * expected to do the required waiting for push_seq to complete.
1453  *
1454  * If the caller is performing an async push, we need to ensure that the
1455  * checkpoint is fully flushed out of the iclogs when we finish the push. If we
1456  * don't do this, then the commit record may remain sitting in memory in an
1457  * ACTIVE iclog. This then requires another full log force to push to disk,
1458  * which defeats the purpose of having an async, non-blocking CIL force
1459  * mechanism. Hence in this case we need to pass a flag to the push work to
1460  * indicate it needs to flush the commit record itself.
1461  */
1462 static void
1463 xlog_cil_push_now(
1464 	struct xlog	*log,
1465 	xfs_lsn_t	push_seq,
1466 	bool		async)
1467 {
1468 	struct xfs_cil	*cil = log->l_cilp;
1469 
1470 	if (!cil)
1471 		return;
1472 
1473 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1474 
1475 	/* start on any pending background push to minimise wait time on it */
1476 	if (!async)
1477 		flush_workqueue(cil->xc_push_wq);
1478 
1479 	spin_lock(&cil->xc_push_lock);
1480 
1481 	/*
1482 	 * If this is an async flush request, we always need to set the
1483 	 * xc_push_commit_stable flag even if something else has already queued
1484 	 * a push. The flush caller is asking for the CIL to be on stable
1485 	 * storage when the next push completes, so regardless of who has queued
1486 	 * the push, the flush requires stable semantics from it.
1487 	 */
1488 	cil->xc_push_commit_stable = async;
1489 
1490 	/*
1491 	 * If the CIL is empty or we've already pushed the sequence then
1492 	 * there's no more work that we need to do.
1493 	 */
1494 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) ||
1495 	    push_seq <= cil->xc_push_seq) {
1496 		spin_unlock(&cil->xc_push_lock);
1497 		return;
1498 	}
1499 
1500 	cil->xc_push_seq = push_seq;
1501 	queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1502 	spin_unlock(&cil->xc_push_lock);
1503 }
1504 
1505 bool
1506 xlog_cil_empty(
1507 	struct xlog	*log)
1508 {
1509 	struct xfs_cil	*cil = log->l_cilp;
1510 	bool		empty = false;
1511 
1512 	spin_lock(&cil->xc_push_lock);
1513 	if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
1514 		empty = true;
1515 	spin_unlock(&cil->xc_push_lock);
1516 	return empty;
1517 }
1518 
1519 /*
1520  * If there are intent done items in this transaction and the related intent was
1521  * committed in the current (same) CIL checkpoint, we don't need to write either
1522  * the intent or intent done item to the journal as the change will be
1523  * journalled atomically within this checkpoint. As we cannot remove items from
1524  * the CIL here, mark the related intent with a whiteout so that the CIL push
1525  * can remove it rather than writing it to the journal. Then remove the intent
1526  * done item from the current transaction and release it so it doesn't get put
1527  * into the CIL at all.
1528  */
1529 static uint32_t
1530 xlog_cil_process_intents(
1531 	struct xfs_cil		*cil,
1532 	struct xfs_trans	*tp)
1533 {
1534 	struct xfs_log_item	*lip, *ilip, *next;
1535 	uint32_t		len = 0;
1536 
1537 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1538 		if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE))
1539 			continue;
1540 
1541 		ilip = lip->li_ops->iop_intent(lip);
1542 		if (!ilip || !xlog_item_in_current_chkpt(cil, ilip))
1543 			continue;
1544 		set_bit(XFS_LI_WHITEOUT, &ilip->li_flags);
1545 		trace_xfs_cil_whiteout_mark(ilip);
1546 		len += ilip->li_lv->lv_bytes;
1547 		kvfree(ilip->li_lv);
1548 		ilip->li_lv = NULL;
1549 
1550 		xfs_trans_del_item(lip);
1551 		lip->li_ops->iop_release(lip);
1552 	}
1553 	return len;
1554 }
1555 
1556 /*
1557  * Commit a transaction with the given vector to the Committed Item List.
1558  *
1559  * To do this, we need to format the item, pin it in memory if required and
1560  * account for the space used by the transaction. Once we have done that we
1561  * need to release the unused reservation for the transaction, attach the
1562  * transaction to the checkpoint context so we carry the busy extents through
1563  * to checkpoint completion, and then unlock all the items in the transaction.
1564  *
1565  * Called with the context lock already held in read mode to lock out
1566  * background commit, returns without it held once background commits are
1567  * allowed again.
1568  */
1569 void
1570 xlog_cil_commit(
1571 	struct xlog		*log,
1572 	struct xfs_trans	*tp,
1573 	xfs_csn_t		*commit_seq,
1574 	bool			regrant)
1575 {
1576 	struct xfs_cil		*cil = log->l_cilp;
1577 	struct xfs_log_item	*lip, *next;
1578 	uint32_t		released_space = 0;
1579 
1580 	/*
1581 	 * Do all necessary memory allocation before we lock the CIL.
1582 	 * This ensures the allocation does not deadlock with a CIL
1583 	 * push in memory reclaim (e.g. from kswapd).
1584 	 */
1585 	xlog_cil_alloc_shadow_bufs(log, tp);
1586 
1587 	/* lock out background commit */
1588 	down_read(&cil->xc_ctx_lock);
1589 
1590 	if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE)
1591 		released_space = xlog_cil_process_intents(cil, tp);
1592 
1593 	xlog_cil_insert_items(log, tp, released_space);
1594 
1595 	if (regrant && !xlog_is_shutdown(log))
1596 		xfs_log_ticket_regrant(log, tp->t_ticket);
1597 	else
1598 		xfs_log_ticket_ungrant(log, tp->t_ticket);
1599 	tp->t_ticket = NULL;
1600 	xfs_trans_unreserve_and_mod_sb(tp);
1601 
1602 	/*
1603 	 * Once all the items of the transaction have been copied to the CIL,
1604 	 * the items can be unlocked and possibly freed.
1605 	 *
1606 	 * This needs to be done before we drop the CIL context lock because we
1607 	 * have to update state in the log items and unlock them before they go
1608 	 * to disk. If we don't, then the CIL checkpoint can race with us and
1609 	 * we can run checkpoint completion before we've updated and unlocked
1610 	 * the log items. This affects (at least) processing of stale buffers,
1611 	 * inodes and EFIs.
1612 	 */
1613 	trace_xfs_trans_commit_items(tp, _RET_IP_);
1614 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1615 		xfs_trans_del_item(lip);
1616 		if (lip->li_ops->iop_committing)
1617 			lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1618 	}
1619 	if (commit_seq)
1620 		*commit_seq = cil->xc_ctx->sequence;
1621 
1622 	/* xlog_cil_push_background() releases cil->xc_ctx_lock */
1623 	xlog_cil_push_background(log);
1624 }
1625 
1626 /*
1627  * Flush the CIL to stable storage but don't wait for it to complete. This
1628  * requires the CIL push to ensure the commit record for the push hits the disk,
1629  * but otherwise is no different to a push done from a log force.
1630  */
1631 void
1632 xlog_cil_flush(
1633 	struct xlog	*log)
1634 {
1635 	xfs_csn_t	seq = log->l_cilp->xc_current_sequence;
1636 
1637 	trace_xfs_log_force(log->l_mp, seq, _RET_IP_);
1638 	xlog_cil_push_now(log, seq, true);
1639 
1640 	/*
1641 	 * If the CIL is empty, make sure that any previous checkpoint that may
1642 	 * still be in an active iclog is pushed to stable storage.
1643 	 */
1644 	if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags))
1645 		xfs_log_force(log->l_mp, 0);
1646 }
1647 
1648 /*
1649  * Conditionally push the CIL based on the sequence passed in.
1650  *
1651  * We only need to push if we haven't already pushed the sequence number given.
1652  * Hence the only time we will trigger a push here is if the push sequence is
1653  * the same as the current context.
1654  *
1655  * We return the current commit lsn to allow the callers to determine if a
1656  * iclog flush is necessary following this call.
1657  */
1658 xfs_lsn_t
1659 xlog_cil_force_seq(
1660 	struct xlog	*log,
1661 	xfs_csn_t	sequence)
1662 {
1663 	struct xfs_cil		*cil = log->l_cilp;
1664 	struct xfs_cil_ctx	*ctx;
1665 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1666 
1667 	ASSERT(sequence <= cil->xc_current_sequence);
1668 
1669 	if (!sequence)
1670 		sequence = cil->xc_current_sequence;
1671 	trace_xfs_log_force(log->l_mp, sequence, _RET_IP_);
1672 
1673 	/*
1674 	 * check to see if we need to force out the current context.
1675 	 * xlog_cil_push() handles racing pushes for the same sequence,
1676 	 * so no need to deal with it here.
1677 	 */
1678 restart:
1679 	xlog_cil_push_now(log, sequence, false);
1680 
1681 	/*
1682 	 * See if we can find a previous sequence still committing.
1683 	 * We need to wait for all previous sequence commits to complete
1684 	 * before allowing the force of push_seq to go ahead. Hence block
1685 	 * on commits for those as well.
1686 	 */
1687 	spin_lock(&cil->xc_push_lock);
1688 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1689 		/*
1690 		 * Avoid getting stuck in this loop because we were woken by the
1691 		 * shutdown, but then went back to sleep once already in the
1692 		 * shutdown state.
1693 		 */
1694 		if (xlog_is_shutdown(log))
1695 			goto out_shutdown;
1696 		if (ctx->sequence > sequence)
1697 			continue;
1698 		if (!ctx->commit_lsn) {
1699 			/*
1700 			 * It is still being pushed! Wait for the push to
1701 			 * complete, then start again from the beginning.
1702 			 */
1703 			XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
1704 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1705 			goto restart;
1706 		}
1707 		if (ctx->sequence != sequence)
1708 			continue;
1709 		/* found it! */
1710 		commit_lsn = ctx->commit_lsn;
1711 	}
1712 
1713 	/*
1714 	 * The call to xlog_cil_push_now() executes the push in the background.
1715 	 * Hence by the time we have got here it our sequence may not have been
1716 	 * pushed yet. This is true if the current sequence still matches the
1717 	 * push sequence after the above wait loop and the CIL still contains
1718 	 * dirty objects. This is guaranteed by the push code first adding the
1719 	 * context to the committing list before emptying the CIL.
1720 	 *
1721 	 * Hence if we don't find the context in the committing list and the
1722 	 * current sequence number is unchanged then the CIL contents are
1723 	 * significant.  If the CIL is empty, if means there was nothing to push
1724 	 * and that means there is nothing to wait for. If the CIL is not empty,
1725 	 * it means we haven't yet started the push, because if it had started
1726 	 * we would have found the context on the committing list.
1727 	 */
1728 	if (sequence == cil->xc_current_sequence &&
1729 	    !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1730 		spin_unlock(&cil->xc_push_lock);
1731 		goto restart;
1732 	}
1733 
1734 	spin_unlock(&cil->xc_push_lock);
1735 	return commit_lsn;
1736 
1737 	/*
1738 	 * We detected a shutdown in progress. We need to trigger the log force
1739 	 * to pass through it's iclog state machine error handling, even though
1740 	 * we are already in a shutdown state. Hence we can't return
1741 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1742 	 * LSN is already stable), so we return a zero LSN instead.
1743 	 */
1744 out_shutdown:
1745 	spin_unlock(&cil->xc_push_lock);
1746 	return 0;
1747 }
1748 
1749 /*
1750  * Perform initial CIL structure initialisation.
1751  */
1752 int
1753 xlog_cil_init(
1754 	struct xlog		*log)
1755 {
1756 	struct xfs_cil		*cil;
1757 	struct xfs_cil_ctx	*ctx;
1758 	struct xlog_cil_pcp	*cilpcp;
1759 	int			cpu;
1760 
1761 	cil = kzalloc(sizeof(*cil), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1762 	if (!cil)
1763 		return -ENOMEM;
1764 	/*
1765 	 * Limit the CIL pipeline depth to 4 concurrent works to bound the
1766 	 * concurrency the log spinlocks will be exposed to.
1767 	 */
1768 	cil->xc_push_wq = alloc_workqueue("xfs-cil/%s",
1769 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND),
1770 			4, log->l_mp->m_super->s_id);
1771 	if (!cil->xc_push_wq)
1772 		goto out_destroy_cil;
1773 
1774 	cil->xc_log = log;
1775 	cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp);
1776 	if (!cil->xc_pcp)
1777 		goto out_destroy_wq;
1778 
1779 	for_each_possible_cpu(cpu) {
1780 		cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
1781 		INIT_LIST_HEAD(&cilpcp->busy_extents);
1782 		INIT_LIST_HEAD(&cilpcp->log_items);
1783 	}
1784 
1785 	INIT_LIST_HEAD(&cil->xc_committing);
1786 	spin_lock_init(&cil->xc_push_lock);
1787 	init_waitqueue_head(&cil->xc_push_wait);
1788 	init_rwsem(&cil->xc_ctx_lock);
1789 	init_waitqueue_head(&cil->xc_start_wait);
1790 	init_waitqueue_head(&cil->xc_commit_wait);
1791 	log->l_cilp = cil;
1792 
1793 	ctx = xlog_cil_ctx_alloc();
1794 	xlog_cil_ctx_switch(cil, ctx);
1795 	return 0;
1796 
1797 out_destroy_wq:
1798 	destroy_workqueue(cil->xc_push_wq);
1799 out_destroy_cil:
1800 	kfree(cil);
1801 	return -ENOMEM;
1802 }
1803 
1804 void
1805 xlog_cil_destroy(
1806 	struct xlog	*log)
1807 {
1808 	struct xfs_cil	*cil = log->l_cilp;
1809 
1810 	if (cil->xc_ctx) {
1811 		if (cil->xc_ctx->ticket)
1812 			xfs_log_ticket_put(cil->xc_ctx->ticket);
1813 		kfree(cil->xc_ctx);
1814 	}
1815 
1816 	ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1817 	free_percpu(cil->xc_pcp);
1818 	destroy_workqueue(cil->xc_push_wq);
1819 	kfree(cil);
1820 }
1821 
1822