1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_error.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_log.h" 29 #include "xfs_log_priv.h" 30 #include "xfs_log_recover.h" 31 #include "xfs_inode.h" 32 #include "xfs_trace.h" 33 #include "xfs_fsops.h" 34 #include "xfs_cksum.h" 35 #include "xfs_sysfs.h" 36 #include "xfs_sb.h" 37 38 kmem_zone_t *xfs_log_ticket_zone; 39 40 /* Local miscellaneous function prototypes */ 41 STATIC int 42 xlog_commit_record( 43 struct xlog *log, 44 struct xlog_ticket *ticket, 45 struct xlog_in_core **iclog, 46 xfs_lsn_t *commitlsnp); 47 48 STATIC struct xlog * 49 xlog_alloc_log( 50 struct xfs_mount *mp, 51 struct xfs_buftarg *log_target, 52 xfs_daddr_t blk_offset, 53 int num_bblks); 54 STATIC int 55 xlog_space_left( 56 struct xlog *log, 57 atomic64_t *head); 58 STATIC int 59 xlog_sync( 60 struct xlog *log, 61 struct xlog_in_core *iclog); 62 STATIC void 63 xlog_dealloc_log( 64 struct xlog *log); 65 66 /* local state machine functions */ 67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 68 STATIC void 69 xlog_state_do_callback( 70 struct xlog *log, 71 int aborted, 72 struct xlog_in_core *iclog); 73 STATIC int 74 xlog_state_get_iclog_space( 75 struct xlog *log, 76 int len, 77 struct xlog_in_core **iclog, 78 struct xlog_ticket *ticket, 79 int *continued_write, 80 int *logoffsetp); 81 STATIC int 82 xlog_state_release_iclog( 83 struct xlog *log, 84 struct xlog_in_core *iclog); 85 STATIC void 86 xlog_state_switch_iclogs( 87 struct xlog *log, 88 struct xlog_in_core *iclog, 89 int eventual_size); 90 STATIC void 91 xlog_state_want_sync( 92 struct xlog *log, 93 struct xlog_in_core *iclog); 94 95 STATIC void 96 xlog_grant_push_ail( 97 struct xlog *log, 98 int need_bytes); 99 STATIC void 100 xlog_regrant_reserve_log_space( 101 struct xlog *log, 102 struct xlog_ticket *ticket); 103 STATIC void 104 xlog_ungrant_log_space( 105 struct xlog *log, 106 struct xlog_ticket *ticket); 107 108 #if defined(DEBUG) 109 STATIC void 110 xlog_verify_dest_ptr( 111 struct xlog *log, 112 void *ptr); 113 STATIC void 114 xlog_verify_grant_tail( 115 struct xlog *log); 116 STATIC void 117 xlog_verify_iclog( 118 struct xlog *log, 119 struct xlog_in_core *iclog, 120 int count, 121 bool syncing); 122 STATIC void 123 xlog_verify_tail_lsn( 124 struct xlog *log, 125 struct xlog_in_core *iclog, 126 xfs_lsn_t tail_lsn); 127 #else 128 #define xlog_verify_dest_ptr(a,b) 129 #define xlog_verify_grant_tail(a) 130 #define xlog_verify_iclog(a,b,c,d) 131 #define xlog_verify_tail_lsn(a,b,c) 132 #endif 133 134 STATIC int 135 xlog_iclogs_empty( 136 struct xlog *log); 137 138 static void 139 xlog_grant_sub_space( 140 struct xlog *log, 141 atomic64_t *head, 142 int bytes) 143 { 144 int64_t head_val = atomic64_read(head); 145 int64_t new, old; 146 147 do { 148 int cycle, space; 149 150 xlog_crack_grant_head_val(head_val, &cycle, &space); 151 152 space -= bytes; 153 if (space < 0) { 154 space += log->l_logsize; 155 cycle--; 156 } 157 158 old = head_val; 159 new = xlog_assign_grant_head_val(cycle, space); 160 head_val = atomic64_cmpxchg(head, old, new); 161 } while (head_val != old); 162 } 163 164 static void 165 xlog_grant_add_space( 166 struct xlog *log, 167 atomic64_t *head, 168 int bytes) 169 { 170 int64_t head_val = atomic64_read(head); 171 int64_t new, old; 172 173 do { 174 int tmp; 175 int cycle, space; 176 177 xlog_crack_grant_head_val(head_val, &cycle, &space); 178 179 tmp = log->l_logsize - space; 180 if (tmp > bytes) 181 space += bytes; 182 else { 183 space = bytes - tmp; 184 cycle++; 185 } 186 187 old = head_val; 188 new = xlog_assign_grant_head_val(cycle, space); 189 head_val = atomic64_cmpxchg(head, old, new); 190 } while (head_val != old); 191 } 192 193 STATIC void 194 xlog_grant_head_init( 195 struct xlog_grant_head *head) 196 { 197 xlog_assign_grant_head(&head->grant, 1, 0); 198 INIT_LIST_HEAD(&head->waiters); 199 spin_lock_init(&head->lock); 200 } 201 202 STATIC void 203 xlog_grant_head_wake_all( 204 struct xlog_grant_head *head) 205 { 206 struct xlog_ticket *tic; 207 208 spin_lock(&head->lock); 209 list_for_each_entry(tic, &head->waiters, t_queue) 210 wake_up_process(tic->t_task); 211 spin_unlock(&head->lock); 212 } 213 214 static inline int 215 xlog_ticket_reservation( 216 struct xlog *log, 217 struct xlog_grant_head *head, 218 struct xlog_ticket *tic) 219 { 220 if (head == &log->l_write_head) { 221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 222 return tic->t_unit_res; 223 } else { 224 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 225 return tic->t_unit_res * tic->t_cnt; 226 else 227 return tic->t_unit_res; 228 } 229 } 230 231 STATIC bool 232 xlog_grant_head_wake( 233 struct xlog *log, 234 struct xlog_grant_head *head, 235 int *free_bytes) 236 { 237 struct xlog_ticket *tic; 238 int need_bytes; 239 240 list_for_each_entry(tic, &head->waiters, t_queue) { 241 need_bytes = xlog_ticket_reservation(log, head, tic); 242 if (*free_bytes < need_bytes) 243 return false; 244 245 *free_bytes -= need_bytes; 246 trace_xfs_log_grant_wake_up(log, tic); 247 wake_up_process(tic->t_task); 248 } 249 250 return true; 251 } 252 253 STATIC int 254 xlog_grant_head_wait( 255 struct xlog *log, 256 struct xlog_grant_head *head, 257 struct xlog_ticket *tic, 258 int need_bytes) __releases(&head->lock) 259 __acquires(&head->lock) 260 { 261 list_add_tail(&tic->t_queue, &head->waiters); 262 263 do { 264 if (XLOG_FORCED_SHUTDOWN(log)) 265 goto shutdown; 266 xlog_grant_push_ail(log, need_bytes); 267 268 __set_current_state(TASK_UNINTERRUPTIBLE); 269 spin_unlock(&head->lock); 270 271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 272 273 trace_xfs_log_grant_sleep(log, tic); 274 schedule(); 275 trace_xfs_log_grant_wake(log, tic); 276 277 spin_lock(&head->lock); 278 if (XLOG_FORCED_SHUTDOWN(log)) 279 goto shutdown; 280 } while (xlog_space_left(log, &head->grant) < need_bytes); 281 282 list_del_init(&tic->t_queue); 283 return 0; 284 shutdown: 285 list_del_init(&tic->t_queue); 286 return -EIO; 287 } 288 289 /* 290 * Atomically get the log space required for a log ticket. 291 * 292 * Once a ticket gets put onto head->waiters, it will only return after the 293 * needed reservation is satisfied. 294 * 295 * This function is structured so that it has a lock free fast path. This is 296 * necessary because every new transaction reservation will come through this 297 * path. Hence any lock will be globally hot if we take it unconditionally on 298 * every pass. 299 * 300 * As tickets are only ever moved on and off head->waiters under head->lock, we 301 * only need to take that lock if we are going to add the ticket to the queue 302 * and sleep. We can avoid taking the lock if the ticket was never added to 303 * head->waiters because the t_queue list head will be empty and we hold the 304 * only reference to it so it can safely be checked unlocked. 305 */ 306 STATIC int 307 xlog_grant_head_check( 308 struct xlog *log, 309 struct xlog_grant_head *head, 310 struct xlog_ticket *tic, 311 int *need_bytes) 312 { 313 int free_bytes; 314 int error = 0; 315 316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 317 318 /* 319 * If there are other waiters on the queue then give them a chance at 320 * logspace before us. Wake up the first waiters, if we do not wake 321 * up all the waiters then go to sleep waiting for more free space, 322 * otherwise try to get some space for this transaction. 323 */ 324 *need_bytes = xlog_ticket_reservation(log, head, tic); 325 free_bytes = xlog_space_left(log, &head->grant); 326 if (!list_empty_careful(&head->waiters)) { 327 spin_lock(&head->lock); 328 if (!xlog_grant_head_wake(log, head, &free_bytes) || 329 free_bytes < *need_bytes) { 330 error = xlog_grant_head_wait(log, head, tic, 331 *need_bytes); 332 } 333 spin_unlock(&head->lock); 334 } else if (free_bytes < *need_bytes) { 335 spin_lock(&head->lock); 336 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 337 spin_unlock(&head->lock); 338 } 339 340 return error; 341 } 342 343 static void 344 xlog_tic_reset_res(xlog_ticket_t *tic) 345 { 346 tic->t_res_num = 0; 347 tic->t_res_arr_sum = 0; 348 tic->t_res_num_ophdrs = 0; 349 } 350 351 static void 352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 353 { 354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 355 /* add to overflow and start again */ 356 tic->t_res_o_flow += tic->t_res_arr_sum; 357 tic->t_res_num = 0; 358 tic->t_res_arr_sum = 0; 359 } 360 361 tic->t_res_arr[tic->t_res_num].r_len = len; 362 tic->t_res_arr[tic->t_res_num].r_type = type; 363 tic->t_res_arr_sum += len; 364 tic->t_res_num++; 365 } 366 367 /* 368 * Replenish the byte reservation required by moving the grant write head. 369 */ 370 int 371 xfs_log_regrant( 372 struct xfs_mount *mp, 373 struct xlog_ticket *tic) 374 { 375 struct xlog *log = mp->m_log; 376 int need_bytes; 377 int error = 0; 378 379 if (XLOG_FORCED_SHUTDOWN(log)) 380 return -EIO; 381 382 XFS_STATS_INC(mp, xs_try_logspace); 383 384 /* 385 * This is a new transaction on the ticket, so we need to change the 386 * transaction ID so that the next transaction has a different TID in 387 * the log. Just add one to the existing tid so that we can see chains 388 * of rolling transactions in the log easily. 389 */ 390 tic->t_tid++; 391 392 xlog_grant_push_ail(log, tic->t_unit_res); 393 394 tic->t_curr_res = tic->t_unit_res; 395 xlog_tic_reset_res(tic); 396 397 if (tic->t_cnt > 0) 398 return 0; 399 400 trace_xfs_log_regrant(log, tic); 401 402 error = xlog_grant_head_check(log, &log->l_write_head, tic, 403 &need_bytes); 404 if (error) 405 goto out_error; 406 407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 408 trace_xfs_log_regrant_exit(log, tic); 409 xlog_verify_grant_tail(log); 410 return 0; 411 412 out_error: 413 /* 414 * If we are failing, make sure the ticket doesn't have any current 415 * reservations. We don't want to add this back when the ticket/ 416 * transaction gets cancelled. 417 */ 418 tic->t_curr_res = 0; 419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 420 return error; 421 } 422 423 /* 424 * Reserve log space and return a ticket corresponding the reservation. 425 * 426 * Each reservation is going to reserve extra space for a log record header. 427 * When writes happen to the on-disk log, we don't subtract the length of the 428 * log record header from any reservation. By wasting space in each 429 * reservation, we prevent over allocation problems. 430 */ 431 int 432 xfs_log_reserve( 433 struct xfs_mount *mp, 434 int unit_bytes, 435 int cnt, 436 struct xlog_ticket **ticp, 437 __uint8_t client, 438 bool permanent) 439 { 440 struct xlog *log = mp->m_log; 441 struct xlog_ticket *tic; 442 int need_bytes; 443 int error = 0; 444 445 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 446 447 if (XLOG_FORCED_SHUTDOWN(log)) 448 return -EIO; 449 450 XFS_STATS_INC(mp, xs_try_logspace); 451 452 ASSERT(*ticp == NULL); 453 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 454 KM_SLEEP | KM_MAYFAIL); 455 if (!tic) 456 return -ENOMEM; 457 458 *ticp = tic; 459 460 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 461 : tic->t_unit_res); 462 463 trace_xfs_log_reserve(log, tic); 464 465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 466 &need_bytes); 467 if (error) 468 goto out_error; 469 470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 472 trace_xfs_log_reserve_exit(log, tic); 473 xlog_verify_grant_tail(log); 474 return 0; 475 476 out_error: 477 /* 478 * If we are failing, make sure the ticket doesn't have any current 479 * reservations. We don't want to add this back when the ticket/ 480 * transaction gets cancelled. 481 */ 482 tic->t_curr_res = 0; 483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 484 return error; 485 } 486 487 488 /* 489 * NOTES: 490 * 491 * 1. currblock field gets updated at startup and after in-core logs 492 * marked as with WANT_SYNC. 493 */ 494 495 /* 496 * This routine is called when a user of a log manager ticket is done with 497 * the reservation. If the ticket was ever used, then a commit record for 498 * the associated transaction is written out as a log operation header with 499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 500 * a given ticket. If the ticket was one with a permanent reservation, then 501 * a few operations are done differently. Permanent reservation tickets by 502 * default don't release the reservation. They just commit the current 503 * transaction with the belief that the reservation is still needed. A flag 504 * must be passed in before permanent reservations are actually released. 505 * When these type of tickets are not released, they need to be set into 506 * the inited state again. By doing this, a start record will be written 507 * out when the next write occurs. 508 */ 509 xfs_lsn_t 510 xfs_log_done( 511 struct xfs_mount *mp, 512 struct xlog_ticket *ticket, 513 struct xlog_in_core **iclog, 514 bool regrant) 515 { 516 struct xlog *log = mp->m_log; 517 xfs_lsn_t lsn = 0; 518 519 if (XLOG_FORCED_SHUTDOWN(log) || 520 /* 521 * If nothing was ever written, don't write out commit record. 522 * If we get an error, just continue and give back the log ticket. 523 */ 524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 525 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 526 lsn = (xfs_lsn_t) -1; 527 regrant = false; 528 } 529 530 531 if (!regrant) { 532 trace_xfs_log_done_nonperm(log, ticket); 533 534 /* 535 * Release ticket if not permanent reservation or a specific 536 * request has been made to release a permanent reservation. 537 */ 538 xlog_ungrant_log_space(log, ticket); 539 } else { 540 trace_xfs_log_done_perm(log, ticket); 541 542 xlog_regrant_reserve_log_space(log, ticket); 543 /* If this ticket was a permanent reservation and we aren't 544 * trying to release it, reset the inited flags; so next time 545 * we write, a start record will be written out. 546 */ 547 ticket->t_flags |= XLOG_TIC_INITED; 548 } 549 550 xfs_log_ticket_put(ticket); 551 return lsn; 552 } 553 554 /* 555 * Attaches a new iclog I/O completion callback routine during 556 * transaction commit. If the log is in error state, a non-zero 557 * return code is handed back and the caller is responsible for 558 * executing the callback at an appropriate time. 559 */ 560 int 561 xfs_log_notify( 562 struct xfs_mount *mp, 563 struct xlog_in_core *iclog, 564 xfs_log_callback_t *cb) 565 { 566 int abortflg; 567 568 spin_lock(&iclog->ic_callback_lock); 569 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 570 if (!abortflg) { 571 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 572 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 573 cb->cb_next = NULL; 574 *(iclog->ic_callback_tail) = cb; 575 iclog->ic_callback_tail = &(cb->cb_next); 576 } 577 spin_unlock(&iclog->ic_callback_lock); 578 return abortflg; 579 } 580 581 int 582 xfs_log_release_iclog( 583 struct xfs_mount *mp, 584 struct xlog_in_core *iclog) 585 { 586 if (xlog_state_release_iclog(mp->m_log, iclog)) { 587 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 588 return -EIO; 589 } 590 591 return 0; 592 } 593 594 /* 595 * Mount a log filesystem 596 * 597 * mp - ubiquitous xfs mount point structure 598 * log_target - buftarg of on-disk log device 599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 600 * num_bblocks - Number of BBSIZE blocks in on-disk log 601 * 602 * Return error or zero. 603 */ 604 int 605 xfs_log_mount( 606 xfs_mount_t *mp, 607 xfs_buftarg_t *log_target, 608 xfs_daddr_t blk_offset, 609 int num_bblks) 610 { 611 int error = 0; 612 int min_logfsbs; 613 614 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 615 xfs_notice(mp, "Mounting V%d Filesystem", 616 XFS_SB_VERSION_NUM(&mp->m_sb)); 617 } else { 618 xfs_notice(mp, 619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 620 XFS_SB_VERSION_NUM(&mp->m_sb)); 621 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 622 } 623 624 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 625 if (IS_ERR(mp->m_log)) { 626 error = PTR_ERR(mp->m_log); 627 goto out; 628 } 629 630 /* 631 * Validate the given log space and drop a critical message via syslog 632 * if the log size is too small that would lead to some unexpected 633 * situations in transaction log space reservation stage. 634 * 635 * Note: we can't just reject the mount if the validation fails. This 636 * would mean that people would have to downgrade their kernel just to 637 * remedy the situation as there is no way to grow the log (short of 638 * black magic surgery with xfs_db). 639 * 640 * We can, however, reject mounts for CRC format filesystems, as the 641 * mkfs binary being used to make the filesystem should never create a 642 * filesystem with a log that is too small. 643 */ 644 min_logfsbs = xfs_log_calc_minimum_size(mp); 645 646 if (mp->m_sb.sb_logblocks < min_logfsbs) { 647 xfs_warn(mp, 648 "Log size %d blocks too small, minimum size is %d blocks", 649 mp->m_sb.sb_logblocks, min_logfsbs); 650 error = -EINVAL; 651 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 652 xfs_warn(mp, 653 "Log size %d blocks too large, maximum size is %lld blocks", 654 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 655 error = -EINVAL; 656 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 657 xfs_warn(mp, 658 "log size %lld bytes too large, maximum size is %lld bytes", 659 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 660 XFS_MAX_LOG_BYTES); 661 error = -EINVAL; 662 } 663 if (error) { 664 if (xfs_sb_version_hascrc(&mp->m_sb)) { 665 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 666 ASSERT(0); 667 goto out_free_log; 668 } 669 xfs_crit(mp, "Log size out of supported range."); 670 xfs_crit(mp, 671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 672 } 673 674 /* 675 * Initialize the AIL now we have a log. 676 */ 677 error = xfs_trans_ail_init(mp); 678 if (error) { 679 xfs_warn(mp, "AIL initialisation failed: error %d", error); 680 goto out_free_log; 681 } 682 mp->m_log->l_ailp = mp->m_ail; 683 684 /* 685 * skip log recovery on a norecovery mount. pretend it all 686 * just worked. 687 */ 688 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 689 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 690 691 if (readonly) 692 mp->m_flags &= ~XFS_MOUNT_RDONLY; 693 694 error = xlog_recover(mp->m_log); 695 696 if (readonly) 697 mp->m_flags |= XFS_MOUNT_RDONLY; 698 if (error) { 699 xfs_warn(mp, "log mount/recovery failed: error %d", 700 error); 701 xlog_recover_cancel(mp->m_log); 702 goto out_destroy_ail; 703 } 704 } 705 706 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 707 "log"); 708 if (error) 709 goto out_destroy_ail; 710 711 /* Normal transactions can now occur */ 712 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 713 714 /* 715 * Now the log has been fully initialised and we know were our 716 * space grant counters are, we can initialise the permanent ticket 717 * needed for delayed logging to work. 718 */ 719 xlog_cil_init_post_recovery(mp->m_log); 720 721 return 0; 722 723 out_destroy_ail: 724 xfs_trans_ail_destroy(mp); 725 out_free_log: 726 xlog_dealloc_log(mp->m_log); 727 out: 728 return error; 729 } 730 731 /* 732 * Finish the recovery of the file system. This is separate from the 733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 735 * here. 736 * 737 * If we finish recovery successfully, start the background log work. If we are 738 * not doing recovery, then we have a RO filesystem and we don't need to start 739 * it. 740 */ 741 int 742 xfs_log_mount_finish( 743 struct xfs_mount *mp) 744 { 745 int error = 0; 746 747 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 748 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 749 return 0; 750 } 751 752 error = xlog_recover_finish(mp->m_log); 753 if (!error) 754 xfs_log_work_queue(mp); 755 756 return error; 757 } 758 759 /* 760 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 761 * the log. 762 */ 763 int 764 xfs_log_mount_cancel( 765 struct xfs_mount *mp) 766 { 767 int error; 768 769 error = xlog_recover_cancel(mp->m_log); 770 xfs_log_unmount(mp); 771 772 return error; 773 } 774 775 /* 776 * Final log writes as part of unmount. 777 * 778 * Mark the filesystem clean as unmount happens. Note that during relocation 779 * this routine needs to be executed as part of source-bag while the 780 * deallocation must not be done until source-end. 781 */ 782 783 /* 784 * Unmount record used to have a string "Unmount filesystem--" in the 785 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 786 * We just write the magic number now since that particular field isn't 787 * currently architecture converted and "Unmount" is a bit foo. 788 * As far as I know, there weren't any dependencies on the old behaviour. 789 */ 790 791 static int 792 xfs_log_unmount_write(xfs_mount_t *mp) 793 { 794 struct xlog *log = mp->m_log; 795 xlog_in_core_t *iclog; 796 #ifdef DEBUG 797 xlog_in_core_t *first_iclog; 798 #endif 799 xlog_ticket_t *tic = NULL; 800 xfs_lsn_t lsn; 801 int error; 802 803 /* 804 * Don't write out unmount record on read-only mounts. 805 * Or, if we are doing a forced umount (typically because of IO errors). 806 */ 807 if (mp->m_flags & XFS_MOUNT_RDONLY) 808 return 0; 809 810 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 811 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 812 813 #ifdef DEBUG 814 first_iclog = iclog = log->l_iclog; 815 do { 816 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 817 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 818 ASSERT(iclog->ic_offset == 0); 819 } 820 iclog = iclog->ic_next; 821 } while (iclog != first_iclog); 822 #endif 823 if (! (XLOG_FORCED_SHUTDOWN(log))) { 824 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0); 825 if (!error) { 826 /* the data section must be 32 bit size aligned */ 827 struct { 828 __uint16_t magic; 829 __uint16_t pad1; 830 __uint32_t pad2; /* may as well make it 64 bits */ 831 } magic = { 832 .magic = XLOG_UNMOUNT_TYPE, 833 }; 834 struct xfs_log_iovec reg = { 835 .i_addr = &magic, 836 .i_len = sizeof(magic), 837 .i_type = XLOG_REG_TYPE_UNMOUNT, 838 }; 839 struct xfs_log_vec vec = { 840 .lv_niovecs = 1, 841 .lv_iovecp = ®, 842 }; 843 844 /* remove inited flag, and account for space used */ 845 tic->t_flags = 0; 846 tic->t_curr_res -= sizeof(magic); 847 error = xlog_write(log, &vec, tic, &lsn, 848 NULL, XLOG_UNMOUNT_TRANS); 849 /* 850 * At this point, we're umounting anyway, 851 * so there's no point in transitioning log state 852 * to IOERROR. Just continue... 853 */ 854 } 855 856 if (error) 857 xfs_alert(mp, "%s: unmount record failed", __func__); 858 859 860 spin_lock(&log->l_icloglock); 861 iclog = log->l_iclog; 862 atomic_inc(&iclog->ic_refcnt); 863 xlog_state_want_sync(log, iclog); 864 spin_unlock(&log->l_icloglock); 865 error = xlog_state_release_iclog(log, iclog); 866 867 spin_lock(&log->l_icloglock); 868 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 869 iclog->ic_state == XLOG_STATE_DIRTY)) { 870 if (!XLOG_FORCED_SHUTDOWN(log)) { 871 xlog_wait(&iclog->ic_force_wait, 872 &log->l_icloglock); 873 } else { 874 spin_unlock(&log->l_icloglock); 875 } 876 } else { 877 spin_unlock(&log->l_icloglock); 878 } 879 if (tic) { 880 trace_xfs_log_umount_write(log, tic); 881 xlog_ungrant_log_space(log, tic); 882 xfs_log_ticket_put(tic); 883 } 884 } else { 885 /* 886 * We're already in forced_shutdown mode, couldn't 887 * even attempt to write out the unmount transaction. 888 * 889 * Go through the motions of sync'ing and releasing 890 * the iclog, even though no I/O will actually happen, 891 * we need to wait for other log I/Os that may already 892 * be in progress. Do this as a separate section of 893 * code so we'll know if we ever get stuck here that 894 * we're in this odd situation of trying to unmount 895 * a file system that went into forced_shutdown as 896 * the result of an unmount.. 897 */ 898 spin_lock(&log->l_icloglock); 899 iclog = log->l_iclog; 900 atomic_inc(&iclog->ic_refcnt); 901 902 xlog_state_want_sync(log, iclog); 903 spin_unlock(&log->l_icloglock); 904 error = xlog_state_release_iclog(log, iclog); 905 906 spin_lock(&log->l_icloglock); 907 908 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 909 || iclog->ic_state == XLOG_STATE_DIRTY 910 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 911 912 xlog_wait(&iclog->ic_force_wait, 913 &log->l_icloglock); 914 } else { 915 spin_unlock(&log->l_icloglock); 916 } 917 } 918 919 return error; 920 } /* xfs_log_unmount_write */ 921 922 /* 923 * Empty the log for unmount/freeze. 924 * 925 * To do this, we first need to shut down the background log work so it is not 926 * trying to cover the log as we clean up. We then need to unpin all objects in 927 * the log so we can then flush them out. Once they have completed their IO and 928 * run the callbacks removing themselves from the AIL, we can write the unmount 929 * record. 930 */ 931 void 932 xfs_log_quiesce( 933 struct xfs_mount *mp) 934 { 935 cancel_delayed_work_sync(&mp->m_log->l_work); 936 xfs_log_force(mp, XFS_LOG_SYNC); 937 938 /* 939 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 940 * will push it, xfs_wait_buftarg() will not wait for it. Further, 941 * xfs_buf_iowait() cannot be used because it was pushed with the 942 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 943 * the IO to complete. 944 */ 945 xfs_ail_push_all_sync(mp->m_ail); 946 xfs_wait_buftarg(mp->m_ddev_targp); 947 xfs_buf_lock(mp->m_sb_bp); 948 xfs_buf_unlock(mp->m_sb_bp); 949 950 xfs_log_unmount_write(mp); 951 } 952 953 /* 954 * Shut down and release the AIL and Log. 955 * 956 * During unmount, we need to ensure we flush all the dirty metadata objects 957 * from the AIL so that the log is empty before we write the unmount record to 958 * the log. Once this is done, we can tear down the AIL and the log. 959 */ 960 void 961 xfs_log_unmount( 962 struct xfs_mount *mp) 963 { 964 xfs_log_quiesce(mp); 965 966 xfs_trans_ail_destroy(mp); 967 968 xfs_sysfs_del(&mp->m_log->l_kobj); 969 970 xlog_dealloc_log(mp->m_log); 971 } 972 973 void 974 xfs_log_item_init( 975 struct xfs_mount *mp, 976 struct xfs_log_item *item, 977 int type, 978 const struct xfs_item_ops *ops) 979 { 980 item->li_mountp = mp; 981 item->li_ailp = mp->m_ail; 982 item->li_type = type; 983 item->li_ops = ops; 984 item->li_lv = NULL; 985 986 INIT_LIST_HEAD(&item->li_ail); 987 INIT_LIST_HEAD(&item->li_cil); 988 } 989 990 /* 991 * Wake up processes waiting for log space after we have moved the log tail. 992 */ 993 void 994 xfs_log_space_wake( 995 struct xfs_mount *mp) 996 { 997 struct xlog *log = mp->m_log; 998 int free_bytes; 999 1000 if (XLOG_FORCED_SHUTDOWN(log)) 1001 return; 1002 1003 if (!list_empty_careful(&log->l_write_head.waiters)) { 1004 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1005 1006 spin_lock(&log->l_write_head.lock); 1007 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1008 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1009 spin_unlock(&log->l_write_head.lock); 1010 } 1011 1012 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1013 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1014 1015 spin_lock(&log->l_reserve_head.lock); 1016 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1017 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1018 spin_unlock(&log->l_reserve_head.lock); 1019 } 1020 } 1021 1022 /* 1023 * Determine if we have a transaction that has gone to disk that needs to be 1024 * covered. To begin the transition to the idle state firstly the log needs to 1025 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1026 * we start attempting to cover the log. 1027 * 1028 * Only if we are then in a state where covering is needed, the caller is 1029 * informed that dummy transactions are required to move the log into the idle 1030 * state. 1031 * 1032 * If there are any items in the AIl or CIL, then we do not want to attempt to 1033 * cover the log as we may be in a situation where there isn't log space 1034 * available to run a dummy transaction and this can lead to deadlocks when the 1035 * tail of the log is pinned by an item that is modified in the CIL. Hence 1036 * there's no point in running a dummy transaction at this point because we 1037 * can't start trying to idle the log until both the CIL and AIL are empty. 1038 */ 1039 static int 1040 xfs_log_need_covered(xfs_mount_t *mp) 1041 { 1042 struct xlog *log = mp->m_log; 1043 int needed = 0; 1044 1045 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 1046 return 0; 1047 1048 if (!xlog_cil_empty(log)) 1049 return 0; 1050 1051 spin_lock(&log->l_icloglock); 1052 switch (log->l_covered_state) { 1053 case XLOG_STATE_COVER_DONE: 1054 case XLOG_STATE_COVER_DONE2: 1055 case XLOG_STATE_COVER_IDLE: 1056 break; 1057 case XLOG_STATE_COVER_NEED: 1058 case XLOG_STATE_COVER_NEED2: 1059 if (xfs_ail_min_lsn(log->l_ailp)) 1060 break; 1061 if (!xlog_iclogs_empty(log)) 1062 break; 1063 1064 needed = 1; 1065 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1066 log->l_covered_state = XLOG_STATE_COVER_DONE; 1067 else 1068 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1069 break; 1070 default: 1071 needed = 1; 1072 break; 1073 } 1074 spin_unlock(&log->l_icloglock); 1075 return needed; 1076 } 1077 1078 /* 1079 * We may be holding the log iclog lock upon entering this routine. 1080 */ 1081 xfs_lsn_t 1082 xlog_assign_tail_lsn_locked( 1083 struct xfs_mount *mp) 1084 { 1085 struct xlog *log = mp->m_log; 1086 struct xfs_log_item *lip; 1087 xfs_lsn_t tail_lsn; 1088 1089 assert_spin_locked(&mp->m_ail->xa_lock); 1090 1091 /* 1092 * To make sure we always have a valid LSN for the log tail we keep 1093 * track of the last LSN which was committed in log->l_last_sync_lsn, 1094 * and use that when the AIL was empty. 1095 */ 1096 lip = xfs_ail_min(mp->m_ail); 1097 if (lip) 1098 tail_lsn = lip->li_lsn; 1099 else 1100 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1101 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1102 atomic64_set(&log->l_tail_lsn, tail_lsn); 1103 return tail_lsn; 1104 } 1105 1106 xfs_lsn_t 1107 xlog_assign_tail_lsn( 1108 struct xfs_mount *mp) 1109 { 1110 xfs_lsn_t tail_lsn; 1111 1112 spin_lock(&mp->m_ail->xa_lock); 1113 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1114 spin_unlock(&mp->m_ail->xa_lock); 1115 1116 return tail_lsn; 1117 } 1118 1119 /* 1120 * Return the space in the log between the tail and the head. The head 1121 * is passed in the cycle/bytes formal parms. In the special case where 1122 * the reserve head has wrapped passed the tail, this calculation is no 1123 * longer valid. In this case, just return 0 which means there is no space 1124 * in the log. This works for all places where this function is called 1125 * with the reserve head. Of course, if the write head were to ever 1126 * wrap the tail, we should blow up. Rather than catch this case here, 1127 * we depend on other ASSERTions in other parts of the code. XXXmiken 1128 * 1129 * This code also handles the case where the reservation head is behind 1130 * the tail. The details of this case are described below, but the end 1131 * result is that we return the size of the log as the amount of space left. 1132 */ 1133 STATIC int 1134 xlog_space_left( 1135 struct xlog *log, 1136 atomic64_t *head) 1137 { 1138 int free_bytes; 1139 int tail_bytes; 1140 int tail_cycle; 1141 int head_cycle; 1142 int head_bytes; 1143 1144 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1145 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1146 tail_bytes = BBTOB(tail_bytes); 1147 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1148 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1149 else if (tail_cycle + 1 < head_cycle) 1150 return 0; 1151 else if (tail_cycle < head_cycle) { 1152 ASSERT(tail_cycle == (head_cycle - 1)); 1153 free_bytes = tail_bytes - head_bytes; 1154 } else { 1155 /* 1156 * The reservation head is behind the tail. 1157 * In this case we just want to return the size of the 1158 * log as the amount of space left. 1159 */ 1160 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1161 xfs_alert(log->l_mp, 1162 " tail_cycle = %d, tail_bytes = %d", 1163 tail_cycle, tail_bytes); 1164 xfs_alert(log->l_mp, 1165 " GH cycle = %d, GH bytes = %d", 1166 head_cycle, head_bytes); 1167 ASSERT(0); 1168 free_bytes = log->l_logsize; 1169 } 1170 return free_bytes; 1171 } 1172 1173 1174 /* 1175 * Log function which is called when an io completes. 1176 * 1177 * The log manager needs its own routine, in order to control what 1178 * happens with the buffer after the write completes. 1179 */ 1180 static void 1181 xlog_iodone(xfs_buf_t *bp) 1182 { 1183 struct xlog_in_core *iclog = bp->b_fspriv; 1184 struct xlog *l = iclog->ic_log; 1185 int aborted = 0; 1186 1187 /* 1188 * Race to shutdown the filesystem if we see an error or the iclog is in 1189 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject 1190 * CRC errors into log recovery. 1191 */ 1192 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR, 1193 XFS_RANDOM_IODONE_IOERR) || 1194 iclog->ic_state & XLOG_STATE_IOABORT) { 1195 if (iclog->ic_state & XLOG_STATE_IOABORT) 1196 iclog->ic_state &= ~XLOG_STATE_IOABORT; 1197 1198 xfs_buf_ioerror_alert(bp, __func__); 1199 xfs_buf_stale(bp); 1200 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1201 /* 1202 * This flag will be propagated to the trans-committed 1203 * callback routines to let them know that the log-commit 1204 * didn't succeed. 1205 */ 1206 aborted = XFS_LI_ABORTED; 1207 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1208 aborted = XFS_LI_ABORTED; 1209 } 1210 1211 /* log I/O is always issued ASYNC */ 1212 ASSERT(bp->b_flags & XBF_ASYNC); 1213 xlog_state_done_syncing(iclog, aborted); 1214 1215 /* 1216 * drop the buffer lock now that we are done. Nothing references 1217 * the buffer after this, so an unmount waiting on this lock can now 1218 * tear it down safely. As such, it is unsafe to reference the buffer 1219 * (bp) after the unlock as we could race with it being freed. 1220 */ 1221 xfs_buf_unlock(bp); 1222 } 1223 1224 /* 1225 * Return size of each in-core log record buffer. 1226 * 1227 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1228 * 1229 * If the filesystem blocksize is too large, we may need to choose a 1230 * larger size since the directory code currently logs entire blocks. 1231 */ 1232 1233 STATIC void 1234 xlog_get_iclog_buffer_size( 1235 struct xfs_mount *mp, 1236 struct xlog *log) 1237 { 1238 int size; 1239 int xhdrs; 1240 1241 if (mp->m_logbufs <= 0) 1242 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1243 else 1244 log->l_iclog_bufs = mp->m_logbufs; 1245 1246 /* 1247 * Buffer size passed in from mount system call. 1248 */ 1249 if (mp->m_logbsize > 0) { 1250 size = log->l_iclog_size = mp->m_logbsize; 1251 log->l_iclog_size_log = 0; 1252 while (size != 1) { 1253 log->l_iclog_size_log++; 1254 size >>= 1; 1255 } 1256 1257 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1258 /* # headers = size / 32k 1259 * one header holds cycles from 32k of data 1260 */ 1261 1262 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1263 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1264 xhdrs++; 1265 log->l_iclog_hsize = xhdrs << BBSHIFT; 1266 log->l_iclog_heads = xhdrs; 1267 } else { 1268 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1269 log->l_iclog_hsize = BBSIZE; 1270 log->l_iclog_heads = 1; 1271 } 1272 goto done; 1273 } 1274 1275 /* All machines use 32kB buffers by default. */ 1276 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1277 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1278 1279 /* the default log size is 16k or 32k which is one header sector */ 1280 log->l_iclog_hsize = BBSIZE; 1281 log->l_iclog_heads = 1; 1282 1283 done: 1284 /* are we being asked to make the sizes selected above visible? */ 1285 if (mp->m_logbufs == 0) 1286 mp->m_logbufs = log->l_iclog_bufs; 1287 if (mp->m_logbsize == 0) 1288 mp->m_logbsize = log->l_iclog_size; 1289 } /* xlog_get_iclog_buffer_size */ 1290 1291 1292 void 1293 xfs_log_work_queue( 1294 struct xfs_mount *mp) 1295 { 1296 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work, 1297 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1298 } 1299 1300 /* 1301 * Every sync period we need to unpin all items in the AIL and push them to 1302 * disk. If there is nothing dirty, then we might need to cover the log to 1303 * indicate that the filesystem is idle. 1304 */ 1305 static void 1306 xfs_log_worker( 1307 struct work_struct *work) 1308 { 1309 struct xlog *log = container_of(to_delayed_work(work), 1310 struct xlog, l_work); 1311 struct xfs_mount *mp = log->l_mp; 1312 1313 /* dgc: errors ignored - not fatal and nowhere to report them */ 1314 if (xfs_log_need_covered(mp)) { 1315 /* 1316 * Dump a transaction into the log that contains no real change. 1317 * This is needed to stamp the current tail LSN into the log 1318 * during the covering operation. 1319 * 1320 * We cannot use an inode here for this - that will push dirty 1321 * state back up into the VFS and then periodic inode flushing 1322 * will prevent log covering from making progress. Hence we 1323 * synchronously log the superblock instead to ensure the 1324 * superblock is immediately unpinned and can be written back. 1325 */ 1326 xfs_sync_sb(mp, true); 1327 } else 1328 xfs_log_force(mp, 0); 1329 1330 /* start pushing all the metadata that is currently dirty */ 1331 xfs_ail_push_all(mp->m_ail); 1332 1333 /* queue us up again */ 1334 xfs_log_work_queue(mp); 1335 } 1336 1337 /* 1338 * This routine initializes some of the log structure for a given mount point. 1339 * Its primary purpose is to fill in enough, so recovery can occur. However, 1340 * some other stuff may be filled in too. 1341 */ 1342 STATIC struct xlog * 1343 xlog_alloc_log( 1344 struct xfs_mount *mp, 1345 struct xfs_buftarg *log_target, 1346 xfs_daddr_t blk_offset, 1347 int num_bblks) 1348 { 1349 struct xlog *log; 1350 xlog_rec_header_t *head; 1351 xlog_in_core_t **iclogp; 1352 xlog_in_core_t *iclog, *prev_iclog=NULL; 1353 xfs_buf_t *bp; 1354 int i; 1355 int error = -ENOMEM; 1356 uint log2_size = 0; 1357 1358 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1359 if (!log) { 1360 xfs_warn(mp, "Log allocation failed: No memory!"); 1361 goto out; 1362 } 1363 1364 log->l_mp = mp; 1365 log->l_targ = log_target; 1366 log->l_logsize = BBTOB(num_bblks); 1367 log->l_logBBstart = blk_offset; 1368 log->l_logBBsize = num_bblks; 1369 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1370 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1371 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1372 1373 log->l_prev_block = -1; 1374 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1375 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1376 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1377 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1378 1379 xlog_grant_head_init(&log->l_reserve_head); 1380 xlog_grant_head_init(&log->l_write_head); 1381 1382 error = -EFSCORRUPTED; 1383 if (xfs_sb_version_hassector(&mp->m_sb)) { 1384 log2_size = mp->m_sb.sb_logsectlog; 1385 if (log2_size < BBSHIFT) { 1386 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1387 log2_size, BBSHIFT); 1388 goto out_free_log; 1389 } 1390 1391 log2_size -= BBSHIFT; 1392 if (log2_size > mp->m_sectbb_log) { 1393 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1394 log2_size, mp->m_sectbb_log); 1395 goto out_free_log; 1396 } 1397 1398 /* for larger sector sizes, must have v2 or external log */ 1399 if (log2_size && log->l_logBBstart > 0 && 1400 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1401 xfs_warn(mp, 1402 "log sector size (0x%x) invalid for configuration.", 1403 log2_size); 1404 goto out_free_log; 1405 } 1406 } 1407 log->l_sectBBsize = 1 << log2_size; 1408 1409 xlog_get_iclog_buffer_size(mp, log); 1410 1411 /* 1412 * Use a NULL block for the extra log buffer used during splits so that 1413 * it will trigger errors if we ever try to do IO on it without first 1414 * having set it up properly. 1415 */ 1416 error = -ENOMEM; 1417 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL, 1418 BTOBB(log->l_iclog_size), XBF_NO_IOACCT); 1419 if (!bp) 1420 goto out_free_log; 1421 1422 /* 1423 * The iclogbuf buffer locks are held over IO but we are not going to do 1424 * IO yet. Hence unlock the buffer so that the log IO path can grab it 1425 * when appropriately. 1426 */ 1427 ASSERT(xfs_buf_islocked(bp)); 1428 xfs_buf_unlock(bp); 1429 1430 /* use high priority wq for log I/O completion */ 1431 bp->b_ioend_wq = mp->m_log_workqueue; 1432 bp->b_iodone = xlog_iodone; 1433 log->l_xbuf = bp; 1434 1435 spin_lock_init(&log->l_icloglock); 1436 init_waitqueue_head(&log->l_flush_wait); 1437 1438 iclogp = &log->l_iclog; 1439 /* 1440 * The amount of memory to allocate for the iclog structure is 1441 * rather funky due to the way the structure is defined. It is 1442 * done this way so that we can use different sizes for machines 1443 * with different amounts of memory. See the definition of 1444 * xlog_in_core_t in xfs_log_priv.h for details. 1445 */ 1446 ASSERT(log->l_iclog_size >= 4096); 1447 for (i=0; i < log->l_iclog_bufs; i++) { 1448 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1449 if (!*iclogp) 1450 goto out_free_iclog; 1451 1452 iclog = *iclogp; 1453 iclog->ic_prev = prev_iclog; 1454 prev_iclog = iclog; 1455 1456 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1457 BTOBB(log->l_iclog_size), 1458 XBF_NO_IOACCT); 1459 if (!bp) 1460 goto out_free_iclog; 1461 1462 ASSERT(xfs_buf_islocked(bp)); 1463 xfs_buf_unlock(bp); 1464 1465 /* use high priority wq for log I/O completion */ 1466 bp->b_ioend_wq = mp->m_log_workqueue; 1467 bp->b_iodone = xlog_iodone; 1468 iclog->ic_bp = bp; 1469 iclog->ic_data = bp->b_addr; 1470 #ifdef DEBUG 1471 log->l_iclog_bak[i] = &iclog->ic_header; 1472 #endif 1473 head = &iclog->ic_header; 1474 memset(head, 0, sizeof(xlog_rec_header_t)); 1475 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1476 head->h_version = cpu_to_be32( 1477 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1478 head->h_size = cpu_to_be32(log->l_iclog_size); 1479 /* new fields */ 1480 head->h_fmt = cpu_to_be32(XLOG_FMT); 1481 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1482 1483 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1484 iclog->ic_state = XLOG_STATE_ACTIVE; 1485 iclog->ic_log = log; 1486 atomic_set(&iclog->ic_refcnt, 0); 1487 spin_lock_init(&iclog->ic_callback_lock); 1488 iclog->ic_callback_tail = &(iclog->ic_callback); 1489 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1490 1491 init_waitqueue_head(&iclog->ic_force_wait); 1492 init_waitqueue_head(&iclog->ic_write_wait); 1493 1494 iclogp = &iclog->ic_next; 1495 } 1496 *iclogp = log->l_iclog; /* complete ring */ 1497 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1498 1499 error = xlog_cil_init(log); 1500 if (error) 1501 goto out_free_iclog; 1502 return log; 1503 1504 out_free_iclog: 1505 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1506 prev_iclog = iclog->ic_next; 1507 if (iclog->ic_bp) 1508 xfs_buf_free(iclog->ic_bp); 1509 kmem_free(iclog); 1510 } 1511 spinlock_destroy(&log->l_icloglock); 1512 xfs_buf_free(log->l_xbuf); 1513 out_free_log: 1514 kmem_free(log); 1515 out: 1516 return ERR_PTR(error); 1517 } /* xlog_alloc_log */ 1518 1519 1520 /* 1521 * Write out the commit record of a transaction associated with the given 1522 * ticket. Return the lsn of the commit record. 1523 */ 1524 STATIC int 1525 xlog_commit_record( 1526 struct xlog *log, 1527 struct xlog_ticket *ticket, 1528 struct xlog_in_core **iclog, 1529 xfs_lsn_t *commitlsnp) 1530 { 1531 struct xfs_mount *mp = log->l_mp; 1532 int error; 1533 struct xfs_log_iovec reg = { 1534 .i_addr = NULL, 1535 .i_len = 0, 1536 .i_type = XLOG_REG_TYPE_COMMIT, 1537 }; 1538 struct xfs_log_vec vec = { 1539 .lv_niovecs = 1, 1540 .lv_iovecp = ®, 1541 }; 1542 1543 ASSERT_ALWAYS(iclog); 1544 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1545 XLOG_COMMIT_TRANS); 1546 if (error) 1547 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1548 return error; 1549 } 1550 1551 /* 1552 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1553 * log space. This code pushes on the lsn which would supposedly free up 1554 * the 25% which we want to leave free. We may need to adopt a policy which 1555 * pushes on an lsn which is further along in the log once we reach the high 1556 * water mark. In this manner, we would be creating a low water mark. 1557 */ 1558 STATIC void 1559 xlog_grant_push_ail( 1560 struct xlog *log, 1561 int need_bytes) 1562 { 1563 xfs_lsn_t threshold_lsn = 0; 1564 xfs_lsn_t last_sync_lsn; 1565 int free_blocks; 1566 int free_bytes; 1567 int threshold_block; 1568 int threshold_cycle; 1569 int free_threshold; 1570 1571 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1572 1573 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1574 free_blocks = BTOBBT(free_bytes); 1575 1576 /* 1577 * Set the threshold for the minimum number of free blocks in the 1578 * log to the maximum of what the caller needs, one quarter of the 1579 * log, and 256 blocks. 1580 */ 1581 free_threshold = BTOBB(need_bytes); 1582 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1583 free_threshold = MAX(free_threshold, 256); 1584 if (free_blocks >= free_threshold) 1585 return; 1586 1587 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1588 &threshold_block); 1589 threshold_block += free_threshold; 1590 if (threshold_block >= log->l_logBBsize) { 1591 threshold_block -= log->l_logBBsize; 1592 threshold_cycle += 1; 1593 } 1594 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1595 threshold_block); 1596 /* 1597 * Don't pass in an lsn greater than the lsn of the last 1598 * log record known to be on disk. Use a snapshot of the last sync lsn 1599 * so that it doesn't change between the compare and the set. 1600 */ 1601 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1602 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1603 threshold_lsn = last_sync_lsn; 1604 1605 /* 1606 * Get the transaction layer to kick the dirty buffers out to 1607 * disk asynchronously. No point in trying to do this if 1608 * the filesystem is shutting down. 1609 */ 1610 if (!XLOG_FORCED_SHUTDOWN(log)) 1611 xfs_ail_push(log->l_ailp, threshold_lsn); 1612 } 1613 1614 /* 1615 * Stamp cycle number in every block 1616 */ 1617 STATIC void 1618 xlog_pack_data( 1619 struct xlog *log, 1620 struct xlog_in_core *iclog, 1621 int roundoff) 1622 { 1623 int i, j, k; 1624 int size = iclog->ic_offset + roundoff; 1625 __be32 cycle_lsn; 1626 char *dp; 1627 1628 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1629 1630 dp = iclog->ic_datap; 1631 for (i = 0; i < BTOBB(size); i++) { 1632 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1633 break; 1634 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1635 *(__be32 *)dp = cycle_lsn; 1636 dp += BBSIZE; 1637 } 1638 1639 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1640 xlog_in_core_2_t *xhdr = iclog->ic_data; 1641 1642 for ( ; i < BTOBB(size); i++) { 1643 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1644 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1645 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1646 *(__be32 *)dp = cycle_lsn; 1647 dp += BBSIZE; 1648 } 1649 1650 for (i = 1; i < log->l_iclog_heads; i++) 1651 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1652 } 1653 } 1654 1655 /* 1656 * Calculate the checksum for a log buffer. 1657 * 1658 * This is a little more complicated than it should be because the various 1659 * headers and the actual data are non-contiguous. 1660 */ 1661 __le32 1662 xlog_cksum( 1663 struct xlog *log, 1664 struct xlog_rec_header *rhead, 1665 char *dp, 1666 int size) 1667 { 1668 __uint32_t crc; 1669 1670 /* first generate the crc for the record header ... */ 1671 crc = xfs_start_cksum((char *)rhead, 1672 sizeof(struct xlog_rec_header), 1673 offsetof(struct xlog_rec_header, h_crc)); 1674 1675 /* ... then for additional cycle data for v2 logs ... */ 1676 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1677 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1678 int i; 1679 int xheads; 1680 1681 xheads = size / XLOG_HEADER_CYCLE_SIZE; 1682 if (size % XLOG_HEADER_CYCLE_SIZE) 1683 xheads++; 1684 1685 for (i = 1; i < xheads; i++) { 1686 crc = crc32c(crc, &xhdr[i].hic_xheader, 1687 sizeof(struct xlog_rec_ext_header)); 1688 } 1689 } 1690 1691 /* ... and finally for the payload */ 1692 crc = crc32c(crc, dp, size); 1693 1694 return xfs_end_cksum(crc); 1695 } 1696 1697 /* 1698 * The bdstrat callback function for log bufs. This gives us a central 1699 * place to trap bufs in case we get hit by a log I/O error and need to 1700 * shutdown. Actually, in practice, even when we didn't get a log error, 1701 * we transition the iclogs to IOERROR state *after* flushing all existing 1702 * iclogs to disk. This is because we don't want anymore new transactions to be 1703 * started or completed afterwards. 1704 * 1705 * We lock the iclogbufs here so that we can serialise against IO completion 1706 * during unmount. We might be processing a shutdown triggered during unmount, 1707 * and that can occur asynchronously to the unmount thread, and hence we need to 1708 * ensure that completes before tearing down the iclogbufs. Hence we need to 1709 * hold the buffer lock across the log IO to acheive that. 1710 */ 1711 STATIC int 1712 xlog_bdstrat( 1713 struct xfs_buf *bp) 1714 { 1715 struct xlog_in_core *iclog = bp->b_fspriv; 1716 1717 xfs_buf_lock(bp); 1718 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1719 xfs_buf_ioerror(bp, -EIO); 1720 xfs_buf_stale(bp); 1721 xfs_buf_ioend(bp); 1722 /* 1723 * It would seem logical to return EIO here, but we rely on 1724 * the log state machine to propagate I/O errors instead of 1725 * doing it here. Similarly, IO completion will unlock the 1726 * buffer, so we don't do it here. 1727 */ 1728 return 0; 1729 } 1730 1731 xfs_buf_submit(bp); 1732 return 0; 1733 } 1734 1735 /* 1736 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1737 * fashion. Previously, we should have moved the current iclog 1738 * ptr in the log to point to the next available iclog. This allows further 1739 * write to continue while this code syncs out an iclog ready to go. 1740 * Before an in-core log can be written out, the data section must be scanned 1741 * to save away the 1st word of each BBSIZE block into the header. We replace 1742 * it with the current cycle count. Each BBSIZE block is tagged with the 1743 * cycle count because there in an implicit assumption that drives will 1744 * guarantee that entire 512 byte blocks get written at once. In other words, 1745 * we can't have part of a 512 byte block written and part not written. By 1746 * tagging each block, we will know which blocks are valid when recovering 1747 * after an unclean shutdown. 1748 * 1749 * This routine is single threaded on the iclog. No other thread can be in 1750 * this routine with the same iclog. Changing contents of iclog can there- 1751 * fore be done without grabbing the state machine lock. Updating the global 1752 * log will require grabbing the lock though. 1753 * 1754 * The entire log manager uses a logical block numbering scheme. Only 1755 * log_sync (and then only bwrite()) know about the fact that the log may 1756 * not start with block zero on a given device. The log block start offset 1757 * is added immediately before calling bwrite(). 1758 */ 1759 1760 STATIC int 1761 xlog_sync( 1762 struct xlog *log, 1763 struct xlog_in_core *iclog) 1764 { 1765 xfs_buf_t *bp; 1766 int i; 1767 uint count; /* byte count of bwrite */ 1768 uint count_init; /* initial count before roundup */ 1769 int roundoff; /* roundoff to BB or stripe */ 1770 int split = 0; /* split write into two regions */ 1771 int error; 1772 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1773 int size; 1774 1775 XFS_STATS_INC(log->l_mp, xs_log_writes); 1776 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1777 1778 /* Add for LR header */ 1779 count_init = log->l_iclog_hsize + iclog->ic_offset; 1780 1781 /* Round out the log write size */ 1782 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1783 /* we have a v2 stripe unit to use */ 1784 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1785 } else { 1786 count = BBTOB(BTOBB(count_init)); 1787 } 1788 roundoff = count - count_init; 1789 ASSERT(roundoff >= 0); 1790 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1791 roundoff < log->l_mp->m_sb.sb_logsunit) 1792 || 1793 (log->l_mp->m_sb.sb_logsunit <= 1 && 1794 roundoff < BBTOB(1))); 1795 1796 /* move grant heads by roundoff in sync */ 1797 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1798 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1799 1800 /* put cycle number in every block */ 1801 xlog_pack_data(log, iclog, roundoff); 1802 1803 /* real byte length */ 1804 size = iclog->ic_offset; 1805 if (v2) 1806 size += roundoff; 1807 iclog->ic_header.h_len = cpu_to_be32(size); 1808 1809 bp = iclog->ic_bp; 1810 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1811 1812 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1813 1814 /* Do we need to split this write into 2 parts? */ 1815 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1816 char *dptr; 1817 1818 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1819 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1820 iclog->ic_bwritecnt = 2; 1821 1822 /* 1823 * Bump the cycle numbers at the start of each block in the 1824 * part of the iclog that ends up in the buffer that gets 1825 * written to the start of the log. 1826 * 1827 * Watch out for the header magic number case, though. 1828 */ 1829 dptr = (char *)&iclog->ic_header + count; 1830 for (i = 0; i < split; i += BBSIZE) { 1831 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1832 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1833 cycle++; 1834 *(__be32 *)dptr = cpu_to_be32(cycle); 1835 1836 dptr += BBSIZE; 1837 } 1838 } else { 1839 iclog->ic_bwritecnt = 1; 1840 } 1841 1842 /* calculcate the checksum */ 1843 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1844 iclog->ic_datap, size); 1845 #ifdef DEBUG 1846 /* 1847 * Intentionally corrupt the log record CRC based on the error injection 1848 * frequency, if defined. This facilitates testing log recovery in the 1849 * event of torn writes. Hence, set the IOABORT state to abort the log 1850 * write on I/O completion and shutdown the fs. The subsequent mount 1851 * detects the bad CRC and attempts to recover. 1852 */ 1853 if (log->l_badcrc_factor && 1854 (prandom_u32() % log->l_badcrc_factor == 0)) { 1855 iclog->ic_header.h_crc &= 0xAAAAAAAA; 1856 iclog->ic_state |= XLOG_STATE_IOABORT; 1857 xfs_warn(log->l_mp, 1858 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1859 be64_to_cpu(iclog->ic_header.h_lsn)); 1860 } 1861 #endif 1862 1863 bp->b_io_length = BTOBB(count); 1864 bp->b_fspriv = iclog; 1865 bp->b_flags &= ~(XBF_FUA | XBF_FLUSH); 1866 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE); 1867 1868 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) { 1869 bp->b_flags |= XBF_FUA; 1870 1871 /* 1872 * Flush the data device before flushing the log to make 1873 * sure all meta data written back from the AIL actually made 1874 * it to disk before stamping the new log tail LSN into the 1875 * log buffer. For an external log we need to issue the 1876 * flush explicitly, and unfortunately synchronously here; 1877 * for an internal log we can simply use the block layer 1878 * state machine for preflushes. 1879 */ 1880 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1881 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1882 else 1883 bp->b_flags |= XBF_FLUSH; 1884 } 1885 1886 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1887 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1888 1889 xlog_verify_iclog(log, iclog, count, true); 1890 1891 /* account for log which doesn't start at block #0 */ 1892 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1893 1894 /* 1895 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1896 * is shutting down. 1897 */ 1898 error = xlog_bdstrat(bp); 1899 if (error) { 1900 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1901 return error; 1902 } 1903 if (split) { 1904 bp = iclog->ic_log->l_xbuf; 1905 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1906 xfs_buf_associate_memory(bp, 1907 (char *)&iclog->ic_header + count, split); 1908 bp->b_fspriv = iclog; 1909 bp->b_flags &= ~(XBF_FUA | XBF_FLUSH); 1910 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE); 1911 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1912 bp->b_flags |= XBF_FUA; 1913 1914 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1915 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1916 1917 /* account for internal log which doesn't start at block #0 */ 1918 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1919 error = xlog_bdstrat(bp); 1920 if (error) { 1921 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1922 return error; 1923 } 1924 } 1925 return 0; 1926 } /* xlog_sync */ 1927 1928 /* 1929 * Deallocate a log structure 1930 */ 1931 STATIC void 1932 xlog_dealloc_log( 1933 struct xlog *log) 1934 { 1935 xlog_in_core_t *iclog, *next_iclog; 1936 int i; 1937 1938 xlog_cil_destroy(log); 1939 1940 /* 1941 * Cycle all the iclogbuf locks to make sure all log IO completion 1942 * is done before we tear down these buffers. 1943 */ 1944 iclog = log->l_iclog; 1945 for (i = 0; i < log->l_iclog_bufs; i++) { 1946 xfs_buf_lock(iclog->ic_bp); 1947 xfs_buf_unlock(iclog->ic_bp); 1948 iclog = iclog->ic_next; 1949 } 1950 1951 /* 1952 * Always need to ensure that the extra buffer does not point to memory 1953 * owned by another log buffer before we free it. Also, cycle the lock 1954 * first to ensure we've completed IO on it. 1955 */ 1956 xfs_buf_lock(log->l_xbuf); 1957 xfs_buf_unlock(log->l_xbuf); 1958 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1959 xfs_buf_free(log->l_xbuf); 1960 1961 iclog = log->l_iclog; 1962 for (i = 0; i < log->l_iclog_bufs; i++) { 1963 xfs_buf_free(iclog->ic_bp); 1964 next_iclog = iclog->ic_next; 1965 kmem_free(iclog); 1966 iclog = next_iclog; 1967 } 1968 spinlock_destroy(&log->l_icloglock); 1969 1970 log->l_mp->m_log = NULL; 1971 kmem_free(log); 1972 } /* xlog_dealloc_log */ 1973 1974 /* 1975 * Update counters atomically now that memcpy is done. 1976 */ 1977 /* ARGSUSED */ 1978 static inline void 1979 xlog_state_finish_copy( 1980 struct xlog *log, 1981 struct xlog_in_core *iclog, 1982 int record_cnt, 1983 int copy_bytes) 1984 { 1985 spin_lock(&log->l_icloglock); 1986 1987 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1988 iclog->ic_offset += copy_bytes; 1989 1990 spin_unlock(&log->l_icloglock); 1991 } /* xlog_state_finish_copy */ 1992 1993 1994 1995 1996 /* 1997 * print out info relating to regions written which consume 1998 * the reservation 1999 */ 2000 void 2001 xlog_print_tic_res( 2002 struct xfs_mount *mp, 2003 struct xlog_ticket *ticket) 2004 { 2005 uint i; 2006 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 2007 2008 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 2009 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str 2010 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = { 2011 REG_TYPE_STR(BFORMAT, "bformat"), 2012 REG_TYPE_STR(BCHUNK, "bchunk"), 2013 REG_TYPE_STR(EFI_FORMAT, "efi_format"), 2014 REG_TYPE_STR(EFD_FORMAT, "efd_format"), 2015 REG_TYPE_STR(IFORMAT, "iformat"), 2016 REG_TYPE_STR(ICORE, "icore"), 2017 REG_TYPE_STR(IEXT, "iext"), 2018 REG_TYPE_STR(IBROOT, "ibroot"), 2019 REG_TYPE_STR(ILOCAL, "ilocal"), 2020 REG_TYPE_STR(IATTR_EXT, "iattr_ext"), 2021 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"), 2022 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"), 2023 REG_TYPE_STR(QFORMAT, "qformat"), 2024 REG_TYPE_STR(DQUOT, "dquot"), 2025 REG_TYPE_STR(QUOTAOFF, "quotaoff"), 2026 REG_TYPE_STR(LRHEADER, "LR header"), 2027 REG_TYPE_STR(UNMOUNT, "unmount"), 2028 REG_TYPE_STR(COMMIT, "commit"), 2029 REG_TYPE_STR(TRANSHDR, "trans header"), 2030 REG_TYPE_STR(ICREATE, "inode create") 2031 }; 2032 #undef REG_TYPE_STR 2033 2034 xfs_warn(mp, "xlog_write: reservation summary:"); 2035 xfs_warn(mp, " unit res = %d bytes", 2036 ticket->t_unit_res); 2037 xfs_warn(mp, " current res = %d bytes", 2038 ticket->t_curr_res); 2039 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2040 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2041 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2042 ticket->t_res_num_ophdrs, ophdr_spc); 2043 xfs_warn(mp, " ophdr + reg = %u bytes", 2044 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2045 xfs_warn(mp, " num regions = %u", 2046 ticket->t_res_num); 2047 2048 for (i = 0; i < ticket->t_res_num; i++) { 2049 uint r_type = ticket->t_res_arr[i].r_type; 2050 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2051 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2052 "bad-rtype" : res_type_str[r_type]), 2053 ticket->t_res_arr[i].r_len); 2054 } 2055 2056 xfs_alert_tag(mp, XFS_PTAG_LOGRES, 2057 "xlog_write: reservation ran out. Need to up reservation"); 2058 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 2059 } 2060 2061 /* 2062 * Calculate the potential space needed by the log vector. Each region gets 2063 * its own xlog_op_header_t and may need to be double word aligned. 2064 */ 2065 static int 2066 xlog_write_calc_vec_length( 2067 struct xlog_ticket *ticket, 2068 struct xfs_log_vec *log_vector) 2069 { 2070 struct xfs_log_vec *lv; 2071 int headers = 0; 2072 int len = 0; 2073 int i; 2074 2075 /* acct for start rec of xact */ 2076 if (ticket->t_flags & XLOG_TIC_INITED) 2077 headers++; 2078 2079 for (lv = log_vector; lv; lv = lv->lv_next) { 2080 /* we don't write ordered log vectors */ 2081 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2082 continue; 2083 2084 headers += lv->lv_niovecs; 2085 2086 for (i = 0; i < lv->lv_niovecs; i++) { 2087 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2088 2089 len += vecp->i_len; 2090 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2091 } 2092 } 2093 2094 ticket->t_res_num_ophdrs += headers; 2095 len += headers * sizeof(struct xlog_op_header); 2096 2097 return len; 2098 } 2099 2100 /* 2101 * If first write for transaction, insert start record We can't be trying to 2102 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2103 */ 2104 static int 2105 xlog_write_start_rec( 2106 struct xlog_op_header *ophdr, 2107 struct xlog_ticket *ticket) 2108 { 2109 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2110 return 0; 2111 2112 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2113 ophdr->oh_clientid = ticket->t_clientid; 2114 ophdr->oh_len = 0; 2115 ophdr->oh_flags = XLOG_START_TRANS; 2116 ophdr->oh_res2 = 0; 2117 2118 ticket->t_flags &= ~XLOG_TIC_INITED; 2119 2120 return sizeof(struct xlog_op_header); 2121 } 2122 2123 static xlog_op_header_t * 2124 xlog_write_setup_ophdr( 2125 struct xlog *log, 2126 struct xlog_op_header *ophdr, 2127 struct xlog_ticket *ticket, 2128 uint flags) 2129 { 2130 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2131 ophdr->oh_clientid = ticket->t_clientid; 2132 ophdr->oh_res2 = 0; 2133 2134 /* are we copying a commit or unmount record? */ 2135 ophdr->oh_flags = flags; 2136 2137 /* 2138 * We've seen logs corrupted with bad transaction client ids. This 2139 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2140 * and shut down the filesystem. 2141 */ 2142 switch (ophdr->oh_clientid) { 2143 case XFS_TRANSACTION: 2144 case XFS_VOLUME: 2145 case XFS_LOG: 2146 break; 2147 default: 2148 xfs_warn(log->l_mp, 2149 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 2150 ophdr->oh_clientid, ticket); 2151 return NULL; 2152 } 2153 2154 return ophdr; 2155 } 2156 2157 /* 2158 * Set up the parameters of the region copy into the log. This has 2159 * to handle region write split across multiple log buffers - this 2160 * state is kept external to this function so that this code can 2161 * be written in an obvious, self documenting manner. 2162 */ 2163 static int 2164 xlog_write_setup_copy( 2165 struct xlog_ticket *ticket, 2166 struct xlog_op_header *ophdr, 2167 int space_available, 2168 int space_required, 2169 int *copy_off, 2170 int *copy_len, 2171 int *last_was_partial_copy, 2172 int *bytes_consumed) 2173 { 2174 int still_to_copy; 2175 2176 still_to_copy = space_required - *bytes_consumed; 2177 *copy_off = *bytes_consumed; 2178 2179 if (still_to_copy <= space_available) { 2180 /* write of region completes here */ 2181 *copy_len = still_to_copy; 2182 ophdr->oh_len = cpu_to_be32(*copy_len); 2183 if (*last_was_partial_copy) 2184 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2185 *last_was_partial_copy = 0; 2186 *bytes_consumed = 0; 2187 return 0; 2188 } 2189 2190 /* partial write of region, needs extra log op header reservation */ 2191 *copy_len = space_available; 2192 ophdr->oh_len = cpu_to_be32(*copy_len); 2193 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2194 if (*last_was_partial_copy) 2195 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2196 *bytes_consumed += *copy_len; 2197 (*last_was_partial_copy)++; 2198 2199 /* account for new log op header */ 2200 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2201 ticket->t_res_num_ophdrs++; 2202 2203 return sizeof(struct xlog_op_header); 2204 } 2205 2206 static int 2207 xlog_write_copy_finish( 2208 struct xlog *log, 2209 struct xlog_in_core *iclog, 2210 uint flags, 2211 int *record_cnt, 2212 int *data_cnt, 2213 int *partial_copy, 2214 int *partial_copy_len, 2215 int log_offset, 2216 struct xlog_in_core **commit_iclog) 2217 { 2218 if (*partial_copy) { 2219 /* 2220 * This iclog has already been marked WANT_SYNC by 2221 * xlog_state_get_iclog_space. 2222 */ 2223 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2224 *record_cnt = 0; 2225 *data_cnt = 0; 2226 return xlog_state_release_iclog(log, iclog); 2227 } 2228 2229 *partial_copy = 0; 2230 *partial_copy_len = 0; 2231 2232 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2233 /* no more space in this iclog - push it. */ 2234 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2235 *record_cnt = 0; 2236 *data_cnt = 0; 2237 2238 spin_lock(&log->l_icloglock); 2239 xlog_state_want_sync(log, iclog); 2240 spin_unlock(&log->l_icloglock); 2241 2242 if (!commit_iclog) 2243 return xlog_state_release_iclog(log, iclog); 2244 ASSERT(flags & XLOG_COMMIT_TRANS); 2245 *commit_iclog = iclog; 2246 } 2247 2248 return 0; 2249 } 2250 2251 /* 2252 * Write some region out to in-core log 2253 * 2254 * This will be called when writing externally provided regions or when 2255 * writing out a commit record for a given transaction. 2256 * 2257 * General algorithm: 2258 * 1. Find total length of this write. This may include adding to the 2259 * lengths passed in. 2260 * 2. Check whether we violate the tickets reservation. 2261 * 3. While writing to this iclog 2262 * A. Reserve as much space in this iclog as can get 2263 * B. If this is first write, save away start lsn 2264 * C. While writing this region: 2265 * 1. If first write of transaction, write start record 2266 * 2. Write log operation header (header per region) 2267 * 3. Find out if we can fit entire region into this iclog 2268 * 4. Potentially, verify destination memcpy ptr 2269 * 5. Memcpy (partial) region 2270 * 6. If partial copy, release iclog; otherwise, continue 2271 * copying more regions into current iclog 2272 * 4. Mark want sync bit (in simulation mode) 2273 * 5. Release iclog for potential flush to on-disk log. 2274 * 2275 * ERRORS: 2276 * 1. Panic if reservation is overrun. This should never happen since 2277 * reservation amounts are generated internal to the filesystem. 2278 * NOTES: 2279 * 1. Tickets are single threaded data structures. 2280 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2281 * syncing routine. When a single log_write region needs to span 2282 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2283 * on all log operation writes which don't contain the end of the 2284 * region. The XLOG_END_TRANS bit is used for the in-core log 2285 * operation which contains the end of the continued log_write region. 2286 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2287 * we don't really know exactly how much space will be used. As a result, 2288 * we don't update ic_offset until the end when we know exactly how many 2289 * bytes have been written out. 2290 */ 2291 int 2292 xlog_write( 2293 struct xlog *log, 2294 struct xfs_log_vec *log_vector, 2295 struct xlog_ticket *ticket, 2296 xfs_lsn_t *start_lsn, 2297 struct xlog_in_core **commit_iclog, 2298 uint flags) 2299 { 2300 struct xlog_in_core *iclog = NULL; 2301 struct xfs_log_iovec *vecp; 2302 struct xfs_log_vec *lv; 2303 int len; 2304 int index; 2305 int partial_copy = 0; 2306 int partial_copy_len = 0; 2307 int contwr = 0; 2308 int record_cnt = 0; 2309 int data_cnt = 0; 2310 int error; 2311 2312 *start_lsn = 0; 2313 2314 len = xlog_write_calc_vec_length(ticket, log_vector); 2315 2316 /* 2317 * Region headers and bytes are already accounted for. 2318 * We only need to take into account start records and 2319 * split regions in this function. 2320 */ 2321 if (ticket->t_flags & XLOG_TIC_INITED) 2322 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2323 2324 /* 2325 * Commit record headers need to be accounted for. These 2326 * come in as separate writes so are easy to detect. 2327 */ 2328 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2329 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2330 2331 if (ticket->t_curr_res < 0) 2332 xlog_print_tic_res(log->l_mp, ticket); 2333 2334 index = 0; 2335 lv = log_vector; 2336 vecp = lv->lv_iovecp; 2337 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2338 void *ptr; 2339 int log_offset; 2340 2341 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2342 &contwr, &log_offset); 2343 if (error) 2344 return error; 2345 2346 ASSERT(log_offset <= iclog->ic_size - 1); 2347 ptr = iclog->ic_datap + log_offset; 2348 2349 /* start_lsn is the first lsn written to. That's all we need. */ 2350 if (!*start_lsn) 2351 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2352 2353 /* 2354 * This loop writes out as many regions as can fit in the amount 2355 * of space which was allocated by xlog_state_get_iclog_space(). 2356 */ 2357 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2358 struct xfs_log_iovec *reg; 2359 struct xlog_op_header *ophdr; 2360 int start_rec_copy; 2361 int copy_len; 2362 int copy_off; 2363 bool ordered = false; 2364 2365 /* ordered log vectors have no regions to write */ 2366 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2367 ASSERT(lv->lv_niovecs == 0); 2368 ordered = true; 2369 goto next_lv; 2370 } 2371 2372 reg = &vecp[index]; 2373 ASSERT(reg->i_len % sizeof(__int32_t) == 0); 2374 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); 2375 2376 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2377 if (start_rec_copy) { 2378 record_cnt++; 2379 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2380 start_rec_copy); 2381 } 2382 2383 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2384 if (!ophdr) 2385 return -EIO; 2386 2387 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2388 sizeof(struct xlog_op_header)); 2389 2390 len += xlog_write_setup_copy(ticket, ophdr, 2391 iclog->ic_size-log_offset, 2392 reg->i_len, 2393 ©_off, ©_len, 2394 &partial_copy, 2395 &partial_copy_len); 2396 xlog_verify_dest_ptr(log, ptr); 2397 2398 /* 2399 * Copy region. 2400 * 2401 * Unmount records just log an opheader, so can have 2402 * empty payloads with no data region to copy. Hence we 2403 * only copy the payload if the vector says it has data 2404 * to copy. 2405 */ 2406 ASSERT(copy_len >= 0); 2407 if (copy_len > 0) { 2408 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2409 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2410 copy_len); 2411 } 2412 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2413 record_cnt++; 2414 data_cnt += contwr ? copy_len : 0; 2415 2416 error = xlog_write_copy_finish(log, iclog, flags, 2417 &record_cnt, &data_cnt, 2418 &partial_copy, 2419 &partial_copy_len, 2420 log_offset, 2421 commit_iclog); 2422 if (error) 2423 return error; 2424 2425 /* 2426 * if we had a partial copy, we need to get more iclog 2427 * space but we don't want to increment the region 2428 * index because there is still more is this region to 2429 * write. 2430 * 2431 * If we completed writing this region, and we flushed 2432 * the iclog (indicated by resetting of the record 2433 * count), then we also need to get more log space. If 2434 * this was the last record, though, we are done and 2435 * can just return. 2436 */ 2437 if (partial_copy) 2438 break; 2439 2440 if (++index == lv->lv_niovecs) { 2441 next_lv: 2442 lv = lv->lv_next; 2443 index = 0; 2444 if (lv) 2445 vecp = lv->lv_iovecp; 2446 } 2447 if (record_cnt == 0 && ordered == false) { 2448 if (!lv) 2449 return 0; 2450 break; 2451 } 2452 } 2453 } 2454 2455 ASSERT(len == 0); 2456 2457 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2458 if (!commit_iclog) 2459 return xlog_state_release_iclog(log, iclog); 2460 2461 ASSERT(flags & XLOG_COMMIT_TRANS); 2462 *commit_iclog = iclog; 2463 return 0; 2464 } 2465 2466 2467 /***************************************************************************** 2468 * 2469 * State Machine functions 2470 * 2471 ***************************************************************************** 2472 */ 2473 2474 /* Clean iclogs starting from the head. This ordering must be 2475 * maintained, so an iclog doesn't become ACTIVE beyond one that 2476 * is SYNCING. This is also required to maintain the notion that we use 2477 * a ordered wait queue to hold off would be writers to the log when every 2478 * iclog is trying to sync to disk. 2479 * 2480 * State Change: DIRTY -> ACTIVE 2481 */ 2482 STATIC void 2483 xlog_state_clean_log( 2484 struct xlog *log) 2485 { 2486 xlog_in_core_t *iclog; 2487 int changed = 0; 2488 2489 iclog = log->l_iclog; 2490 do { 2491 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2492 iclog->ic_state = XLOG_STATE_ACTIVE; 2493 iclog->ic_offset = 0; 2494 ASSERT(iclog->ic_callback == NULL); 2495 /* 2496 * If the number of ops in this iclog indicate it just 2497 * contains the dummy transaction, we can 2498 * change state into IDLE (the second time around). 2499 * Otherwise we should change the state into 2500 * NEED a dummy. 2501 * We don't need to cover the dummy. 2502 */ 2503 if (!changed && 2504 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2505 XLOG_COVER_OPS)) { 2506 changed = 1; 2507 } else { 2508 /* 2509 * We have two dirty iclogs so start over 2510 * This could also be num of ops indicates 2511 * this is not the dummy going out. 2512 */ 2513 changed = 2; 2514 } 2515 iclog->ic_header.h_num_logops = 0; 2516 memset(iclog->ic_header.h_cycle_data, 0, 2517 sizeof(iclog->ic_header.h_cycle_data)); 2518 iclog->ic_header.h_lsn = 0; 2519 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2520 /* do nothing */; 2521 else 2522 break; /* stop cleaning */ 2523 iclog = iclog->ic_next; 2524 } while (iclog != log->l_iclog); 2525 2526 /* log is locked when we are called */ 2527 /* 2528 * Change state for the dummy log recording. 2529 * We usually go to NEED. But we go to NEED2 if the changed indicates 2530 * we are done writing the dummy record. 2531 * If we are done with the second dummy recored (DONE2), then 2532 * we go to IDLE. 2533 */ 2534 if (changed) { 2535 switch (log->l_covered_state) { 2536 case XLOG_STATE_COVER_IDLE: 2537 case XLOG_STATE_COVER_NEED: 2538 case XLOG_STATE_COVER_NEED2: 2539 log->l_covered_state = XLOG_STATE_COVER_NEED; 2540 break; 2541 2542 case XLOG_STATE_COVER_DONE: 2543 if (changed == 1) 2544 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2545 else 2546 log->l_covered_state = XLOG_STATE_COVER_NEED; 2547 break; 2548 2549 case XLOG_STATE_COVER_DONE2: 2550 if (changed == 1) 2551 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2552 else 2553 log->l_covered_state = XLOG_STATE_COVER_NEED; 2554 break; 2555 2556 default: 2557 ASSERT(0); 2558 } 2559 } 2560 } /* xlog_state_clean_log */ 2561 2562 STATIC xfs_lsn_t 2563 xlog_get_lowest_lsn( 2564 struct xlog *log) 2565 { 2566 xlog_in_core_t *lsn_log; 2567 xfs_lsn_t lowest_lsn, lsn; 2568 2569 lsn_log = log->l_iclog; 2570 lowest_lsn = 0; 2571 do { 2572 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2573 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2574 if ((lsn && !lowest_lsn) || 2575 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2576 lowest_lsn = lsn; 2577 } 2578 } 2579 lsn_log = lsn_log->ic_next; 2580 } while (lsn_log != log->l_iclog); 2581 return lowest_lsn; 2582 } 2583 2584 2585 STATIC void 2586 xlog_state_do_callback( 2587 struct xlog *log, 2588 int aborted, 2589 struct xlog_in_core *ciclog) 2590 { 2591 xlog_in_core_t *iclog; 2592 xlog_in_core_t *first_iclog; /* used to know when we've 2593 * processed all iclogs once */ 2594 xfs_log_callback_t *cb, *cb_next; 2595 int flushcnt = 0; 2596 xfs_lsn_t lowest_lsn; 2597 int ioerrors; /* counter: iclogs with errors */ 2598 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2599 int funcdidcallbacks; /* flag: function did callbacks */ 2600 int repeats; /* for issuing console warnings if 2601 * looping too many times */ 2602 int wake = 0; 2603 2604 spin_lock(&log->l_icloglock); 2605 first_iclog = iclog = log->l_iclog; 2606 ioerrors = 0; 2607 funcdidcallbacks = 0; 2608 repeats = 0; 2609 2610 do { 2611 /* 2612 * Scan all iclogs starting with the one pointed to by the 2613 * log. Reset this starting point each time the log is 2614 * unlocked (during callbacks). 2615 * 2616 * Keep looping through iclogs until one full pass is made 2617 * without running any callbacks. 2618 */ 2619 first_iclog = log->l_iclog; 2620 iclog = log->l_iclog; 2621 loopdidcallbacks = 0; 2622 repeats++; 2623 2624 do { 2625 2626 /* skip all iclogs in the ACTIVE & DIRTY states */ 2627 if (iclog->ic_state & 2628 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2629 iclog = iclog->ic_next; 2630 continue; 2631 } 2632 2633 /* 2634 * Between marking a filesystem SHUTDOWN and stopping 2635 * the log, we do flush all iclogs to disk (if there 2636 * wasn't a log I/O error). So, we do want things to 2637 * go smoothly in case of just a SHUTDOWN w/o a 2638 * LOG_IO_ERROR. 2639 */ 2640 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2641 /* 2642 * Can only perform callbacks in order. Since 2643 * this iclog is not in the DONE_SYNC/ 2644 * DO_CALLBACK state, we skip the rest and 2645 * just try to clean up. If we set our iclog 2646 * to DO_CALLBACK, we will not process it when 2647 * we retry since a previous iclog is in the 2648 * CALLBACK and the state cannot change since 2649 * we are holding the l_icloglock. 2650 */ 2651 if (!(iclog->ic_state & 2652 (XLOG_STATE_DONE_SYNC | 2653 XLOG_STATE_DO_CALLBACK))) { 2654 if (ciclog && (ciclog->ic_state == 2655 XLOG_STATE_DONE_SYNC)) { 2656 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2657 } 2658 break; 2659 } 2660 /* 2661 * We now have an iclog that is in either the 2662 * DO_CALLBACK or DONE_SYNC states. The other 2663 * states (WANT_SYNC, SYNCING, or CALLBACK were 2664 * caught by the above if and are going to 2665 * clean (i.e. we aren't doing their callbacks) 2666 * see the above if. 2667 */ 2668 2669 /* 2670 * We will do one more check here to see if we 2671 * have chased our tail around. 2672 */ 2673 2674 lowest_lsn = xlog_get_lowest_lsn(log); 2675 if (lowest_lsn && 2676 XFS_LSN_CMP(lowest_lsn, 2677 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2678 iclog = iclog->ic_next; 2679 continue; /* Leave this iclog for 2680 * another thread */ 2681 } 2682 2683 iclog->ic_state = XLOG_STATE_CALLBACK; 2684 2685 2686 /* 2687 * Completion of a iclog IO does not imply that 2688 * a transaction has completed, as transactions 2689 * can be large enough to span many iclogs. We 2690 * cannot change the tail of the log half way 2691 * through a transaction as this may be the only 2692 * transaction in the log and moving th etail to 2693 * point to the middle of it will prevent 2694 * recovery from finding the start of the 2695 * transaction. Hence we should only update the 2696 * last_sync_lsn if this iclog contains 2697 * transaction completion callbacks on it. 2698 * 2699 * We have to do this before we drop the 2700 * icloglock to ensure we are the only one that 2701 * can update it. 2702 */ 2703 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2704 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2705 if (iclog->ic_callback) 2706 atomic64_set(&log->l_last_sync_lsn, 2707 be64_to_cpu(iclog->ic_header.h_lsn)); 2708 2709 } else 2710 ioerrors++; 2711 2712 spin_unlock(&log->l_icloglock); 2713 2714 /* 2715 * Keep processing entries in the callback list until 2716 * we come around and it is empty. We need to 2717 * atomically see that the list is empty and change the 2718 * state to DIRTY so that we don't miss any more 2719 * callbacks being added. 2720 */ 2721 spin_lock(&iclog->ic_callback_lock); 2722 cb = iclog->ic_callback; 2723 while (cb) { 2724 iclog->ic_callback_tail = &(iclog->ic_callback); 2725 iclog->ic_callback = NULL; 2726 spin_unlock(&iclog->ic_callback_lock); 2727 2728 /* perform callbacks in the order given */ 2729 for (; cb; cb = cb_next) { 2730 cb_next = cb->cb_next; 2731 cb->cb_func(cb->cb_arg, aborted); 2732 } 2733 spin_lock(&iclog->ic_callback_lock); 2734 cb = iclog->ic_callback; 2735 } 2736 2737 loopdidcallbacks++; 2738 funcdidcallbacks++; 2739 2740 spin_lock(&log->l_icloglock); 2741 ASSERT(iclog->ic_callback == NULL); 2742 spin_unlock(&iclog->ic_callback_lock); 2743 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2744 iclog->ic_state = XLOG_STATE_DIRTY; 2745 2746 /* 2747 * Transition from DIRTY to ACTIVE if applicable. 2748 * NOP if STATE_IOERROR. 2749 */ 2750 xlog_state_clean_log(log); 2751 2752 /* wake up threads waiting in xfs_log_force() */ 2753 wake_up_all(&iclog->ic_force_wait); 2754 2755 iclog = iclog->ic_next; 2756 } while (first_iclog != iclog); 2757 2758 if (repeats > 5000) { 2759 flushcnt += repeats; 2760 repeats = 0; 2761 xfs_warn(log->l_mp, 2762 "%s: possible infinite loop (%d iterations)", 2763 __func__, flushcnt); 2764 } 2765 } while (!ioerrors && loopdidcallbacks); 2766 2767 #ifdef DEBUG 2768 /* 2769 * Make one last gasp attempt to see if iclogs are being left in limbo. 2770 * If the above loop finds an iclog earlier than the current iclog and 2771 * in one of the syncing states, the current iclog is put into 2772 * DO_CALLBACK and the callbacks are deferred to the completion of the 2773 * earlier iclog. Walk the iclogs in order and make sure that no iclog 2774 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing 2775 * states. 2776 * 2777 * Note that SYNCING|IOABORT is a valid state so we cannot just check 2778 * for ic_state == SYNCING. 2779 */ 2780 if (funcdidcallbacks) { 2781 first_iclog = iclog = log->l_iclog; 2782 do { 2783 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2784 /* 2785 * Terminate the loop if iclogs are found in states 2786 * which will cause other threads to clean up iclogs. 2787 * 2788 * SYNCING - i/o completion will go through logs 2789 * DONE_SYNC - interrupt thread should be waiting for 2790 * l_icloglock 2791 * IOERROR - give up hope all ye who enter here 2792 */ 2793 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2794 iclog->ic_state & XLOG_STATE_SYNCING || 2795 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2796 iclog->ic_state == XLOG_STATE_IOERROR ) 2797 break; 2798 iclog = iclog->ic_next; 2799 } while (first_iclog != iclog); 2800 } 2801 #endif 2802 2803 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2804 wake = 1; 2805 spin_unlock(&log->l_icloglock); 2806 2807 if (wake) 2808 wake_up_all(&log->l_flush_wait); 2809 } 2810 2811 2812 /* 2813 * Finish transitioning this iclog to the dirty state. 2814 * 2815 * Make sure that we completely execute this routine only when this is 2816 * the last call to the iclog. There is a good chance that iclog flushes, 2817 * when we reach the end of the physical log, get turned into 2 separate 2818 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2819 * routine. By using the reference count bwritecnt, we guarantee that only 2820 * the second completion goes through. 2821 * 2822 * Callbacks could take time, so they are done outside the scope of the 2823 * global state machine log lock. 2824 */ 2825 STATIC void 2826 xlog_state_done_syncing( 2827 xlog_in_core_t *iclog, 2828 int aborted) 2829 { 2830 struct xlog *log = iclog->ic_log; 2831 2832 spin_lock(&log->l_icloglock); 2833 2834 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2835 iclog->ic_state == XLOG_STATE_IOERROR); 2836 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2837 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2838 2839 2840 /* 2841 * If we got an error, either on the first buffer, or in the case of 2842 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2843 * and none should ever be attempted to be written to disk 2844 * again. 2845 */ 2846 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2847 if (--iclog->ic_bwritecnt == 1) { 2848 spin_unlock(&log->l_icloglock); 2849 return; 2850 } 2851 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2852 } 2853 2854 /* 2855 * Someone could be sleeping prior to writing out the next 2856 * iclog buffer, we wake them all, one will get to do the 2857 * I/O, the others get to wait for the result. 2858 */ 2859 wake_up_all(&iclog->ic_write_wait); 2860 spin_unlock(&log->l_icloglock); 2861 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2862 } /* xlog_state_done_syncing */ 2863 2864 2865 /* 2866 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2867 * sleep. We wait on the flush queue on the head iclog as that should be 2868 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2869 * we will wait here and all new writes will sleep until a sync completes. 2870 * 2871 * The in-core logs are used in a circular fashion. They are not used 2872 * out-of-order even when an iclog past the head is free. 2873 * 2874 * return: 2875 * * log_offset where xlog_write() can start writing into the in-core 2876 * log's data space. 2877 * * in-core log pointer to which xlog_write() should write. 2878 * * boolean indicating this is a continued write to an in-core log. 2879 * If this is the last write, then the in-core log's offset field 2880 * needs to be incremented, depending on the amount of data which 2881 * is copied. 2882 */ 2883 STATIC int 2884 xlog_state_get_iclog_space( 2885 struct xlog *log, 2886 int len, 2887 struct xlog_in_core **iclogp, 2888 struct xlog_ticket *ticket, 2889 int *continued_write, 2890 int *logoffsetp) 2891 { 2892 int log_offset; 2893 xlog_rec_header_t *head; 2894 xlog_in_core_t *iclog; 2895 int error; 2896 2897 restart: 2898 spin_lock(&log->l_icloglock); 2899 if (XLOG_FORCED_SHUTDOWN(log)) { 2900 spin_unlock(&log->l_icloglock); 2901 return -EIO; 2902 } 2903 2904 iclog = log->l_iclog; 2905 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2906 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2907 2908 /* Wait for log writes to have flushed */ 2909 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2910 goto restart; 2911 } 2912 2913 head = &iclog->ic_header; 2914 2915 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2916 log_offset = iclog->ic_offset; 2917 2918 /* On the 1st write to an iclog, figure out lsn. This works 2919 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2920 * committing to. If the offset is set, that's how many blocks 2921 * must be written. 2922 */ 2923 if (log_offset == 0) { 2924 ticket->t_curr_res -= log->l_iclog_hsize; 2925 xlog_tic_add_region(ticket, 2926 log->l_iclog_hsize, 2927 XLOG_REG_TYPE_LRHEADER); 2928 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2929 head->h_lsn = cpu_to_be64( 2930 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2931 ASSERT(log->l_curr_block >= 0); 2932 } 2933 2934 /* If there is enough room to write everything, then do it. Otherwise, 2935 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2936 * bit is on, so this will get flushed out. Don't update ic_offset 2937 * until you know exactly how many bytes get copied. Therefore, wait 2938 * until later to update ic_offset. 2939 * 2940 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2941 * can fit into remaining data section. 2942 */ 2943 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2944 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2945 2946 /* 2947 * If I'm the only one writing to this iclog, sync it to disk. 2948 * We need to do an atomic compare and decrement here to avoid 2949 * racing with concurrent atomic_dec_and_lock() calls in 2950 * xlog_state_release_iclog() when there is more than one 2951 * reference to the iclog. 2952 */ 2953 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2954 /* we are the only one */ 2955 spin_unlock(&log->l_icloglock); 2956 error = xlog_state_release_iclog(log, iclog); 2957 if (error) 2958 return error; 2959 } else { 2960 spin_unlock(&log->l_icloglock); 2961 } 2962 goto restart; 2963 } 2964 2965 /* Do we have enough room to write the full amount in the remainder 2966 * of this iclog? Or must we continue a write on the next iclog and 2967 * mark this iclog as completely taken? In the case where we switch 2968 * iclogs (to mark it taken), this particular iclog will release/sync 2969 * to disk in xlog_write(). 2970 */ 2971 if (len <= iclog->ic_size - iclog->ic_offset) { 2972 *continued_write = 0; 2973 iclog->ic_offset += len; 2974 } else { 2975 *continued_write = 1; 2976 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2977 } 2978 *iclogp = iclog; 2979 2980 ASSERT(iclog->ic_offset <= iclog->ic_size); 2981 spin_unlock(&log->l_icloglock); 2982 2983 *logoffsetp = log_offset; 2984 return 0; 2985 } /* xlog_state_get_iclog_space */ 2986 2987 /* The first cnt-1 times through here we don't need to 2988 * move the grant write head because the permanent 2989 * reservation has reserved cnt times the unit amount. 2990 * Release part of current permanent unit reservation and 2991 * reset current reservation to be one units worth. Also 2992 * move grant reservation head forward. 2993 */ 2994 STATIC void 2995 xlog_regrant_reserve_log_space( 2996 struct xlog *log, 2997 struct xlog_ticket *ticket) 2998 { 2999 trace_xfs_log_regrant_reserve_enter(log, ticket); 3000 3001 if (ticket->t_cnt > 0) 3002 ticket->t_cnt--; 3003 3004 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3005 ticket->t_curr_res); 3006 xlog_grant_sub_space(log, &log->l_write_head.grant, 3007 ticket->t_curr_res); 3008 ticket->t_curr_res = ticket->t_unit_res; 3009 xlog_tic_reset_res(ticket); 3010 3011 trace_xfs_log_regrant_reserve_sub(log, ticket); 3012 3013 /* just return if we still have some of the pre-reserved space */ 3014 if (ticket->t_cnt > 0) 3015 return; 3016 3017 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3018 ticket->t_unit_res); 3019 3020 trace_xfs_log_regrant_reserve_exit(log, ticket); 3021 3022 ticket->t_curr_res = ticket->t_unit_res; 3023 xlog_tic_reset_res(ticket); 3024 } /* xlog_regrant_reserve_log_space */ 3025 3026 3027 /* 3028 * Give back the space left from a reservation. 3029 * 3030 * All the information we need to make a correct determination of space left 3031 * is present. For non-permanent reservations, things are quite easy. The 3032 * count should have been decremented to zero. We only need to deal with the 3033 * space remaining in the current reservation part of the ticket. If the 3034 * ticket contains a permanent reservation, there may be left over space which 3035 * needs to be released. A count of N means that N-1 refills of the current 3036 * reservation can be done before we need to ask for more space. The first 3037 * one goes to fill up the first current reservation. Once we run out of 3038 * space, the count will stay at zero and the only space remaining will be 3039 * in the current reservation field. 3040 */ 3041 STATIC void 3042 xlog_ungrant_log_space( 3043 struct xlog *log, 3044 struct xlog_ticket *ticket) 3045 { 3046 int bytes; 3047 3048 if (ticket->t_cnt > 0) 3049 ticket->t_cnt--; 3050 3051 trace_xfs_log_ungrant_enter(log, ticket); 3052 trace_xfs_log_ungrant_sub(log, ticket); 3053 3054 /* 3055 * If this is a permanent reservation ticket, we may be able to free 3056 * up more space based on the remaining count. 3057 */ 3058 bytes = ticket->t_curr_res; 3059 if (ticket->t_cnt > 0) { 3060 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3061 bytes += ticket->t_unit_res*ticket->t_cnt; 3062 } 3063 3064 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3065 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3066 3067 trace_xfs_log_ungrant_exit(log, ticket); 3068 3069 xfs_log_space_wake(log->l_mp); 3070 } 3071 3072 /* 3073 * Flush iclog to disk if this is the last reference to the given iclog and 3074 * the WANT_SYNC bit is set. 3075 * 3076 * When this function is entered, the iclog is not necessarily in the 3077 * WANT_SYNC state. It may be sitting around waiting to get filled. 3078 * 3079 * 3080 */ 3081 STATIC int 3082 xlog_state_release_iclog( 3083 struct xlog *log, 3084 struct xlog_in_core *iclog) 3085 { 3086 int sync = 0; /* do we sync? */ 3087 3088 if (iclog->ic_state & XLOG_STATE_IOERROR) 3089 return -EIO; 3090 3091 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3092 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3093 return 0; 3094 3095 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3096 spin_unlock(&log->l_icloglock); 3097 return -EIO; 3098 } 3099 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3100 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3101 3102 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3103 /* update tail before writing to iclog */ 3104 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3105 sync++; 3106 iclog->ic_state = XLOG_STATE_SYNCING; 3107 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3108 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3109 /* cycle incremented when incrementing curr_block */ 3110 } 3111 spin_unlock(&log->l_icloglock); 3112 3113 /* 3114 * We let the log lock go, so it's possible that we hit a log I/O 3115 * error or some other SHUTDOWN condition that marks the iclog 3116 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3117 * this iclog has consistent data, so we ignore IOERROR 3118 * flags after this point. 3119 */ 3120 if (sync) 3121 return xlog_sync(log, iclog); 3122 return 0; 3123 } /* xlog_state_release_iclog */ 3124 3125 3126 /* 3127 * This routine will mark the current iclog in the ring as WANT_SYNC 3128 * and move the current iclog pointer to the next iclog in the ring. 3129 * When this routine is called from xlog_state_get_iclog_space(), the 3130 * exact size of the iclog has not yet been determined. All we know is 3131 * that every data block. We have run out of space in this log record. 3132 */ 3133 STATIC void 3134 xlog_state_switch_iclogs( 3135 struct xlog *log, 3136 struct xlog_in_core *iclog, 3137 int eventual_size) 3138 { 3139 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3140 if (!eventual_size) 3141 eventual_size = iclog->ic_offset; 3142 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3143 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3144 log->l_prev_block = log->l_curr_block; 3145 log->l_prev_cycle = log->l_curr_cycle; 3146 3147 /* roll log?: ic_offset changed later */ 3148 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3149 3150 /* Round up to next log-sunit */ 3151 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3152 log->l_mp->m_sb.sb_logsunit > 1) { 3153 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3154 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3155 } 3156 3157 if (log->l_curr_block >= log->l_logBBsize) { 3158 /* 3159 * Rewind the current block before the cycle is bumped to make 3160 * sure that the combined LSN never transiently moves forward 3161 * when the log wraps to the next cycle. This is to support the 3162 * unlocked sample of these fields from xlog_valid_lsn(). Most 3163 * other cases should acquire l_icloglock. 3164 */ 3165 log->l_curr_block -= log->l_logBBsize; 3166 ASSERT(log->l_curr_block >= 0); 3167 smp_wmb(); 3168 log->l_curr_cycle++; 3169 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3170 log->l_curr_cycle++; 3171 } 3172 ASSERT(iclog == log->l_iclog); 3173 log->l_iclog = iclog->ic_next; 3174 } /* xlog_state_switch_iclogs */ 3175 3176 /* 3177 * Write out all data in the in-core log as of this exact moment in time. 3178 * 3179 * Data may be written to the in-core log during this call. However, 3180 * we don't guarantee this data will be written out. A change from past 3181 * implementation means this routine will *not* write out zero length LRs. 3182 * 3183 * Basically, we try and perform an intelligent scan of the in-core logs. 3184 * If we determine there is no flushable data, we just return. There is no 3185 * flushable data if: 3186 * 3187 * 1. the current iclog is active and has no data; the previous iclog 3188 * is in the active or dirty state. 3189 * 2. the current iclog is drity, and the previous iclog is in the 3190 * active or dirty state. 3191 * 3192 * We may sleep if: 3193 * 3194 * 1. the current iclog is not in the active nor dirty state. 3195 * 2. the current iclog dirty, and the previous iclog is not in the 3196 * active nor dirty state. 3197 * 3. the current iclog is active, and there is another thread writing 3198 * to this particular iclog. 3199 * 4. a) the current iclog is active and has no other writers 3200 * b) when we return from flushing out this iclog, it is still 3201 * not in the active nor dirty state. 3202 */ 3203 int 3204 _xfs_log_force( 3205 struct xfs_mount *mp, 3206 uint flags, 3207 int *log_flushed) 3208 { 3209 struct xlog *log = mp->m_log; 3210 struct xlog_in_core *iclog; 3211 xfs_lsn_t lsn; 3212 3213 XFS_STATS_INC(mp, xs_log_force); 3214 3215 xlog_cil_force(log); 3216 3217 spin_lock(&log->l_icloglock); 3218 3219 iclog = log->l_iclog; 3220 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3221 spin_unlock(&log->l_icloglock); 3222 return -EIO; 3223 } 3224 3225 /* If the head iclog is not active nor dirty, we just attach 3226 * ourselves to the head and go to sleep. 3227 */ 3228 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3229 iclog->ic_state == XLOG_STATE_DIRTY) { 3230 /* 3231 * If the head is dirty or (active and empty), then 3232 * we need to look at the previous iclog. If the previous 3233 * iclog is active or dirty we are done. There is nothing 3234 * to sync out. Otherwise, we attach ourselves to the 3235 * previous iclog and go to sleep. 3236 */ 3237 if (iclog->ic_state == XLOG_STATE_DIRTY || 3238 (atomic_read(&iclog->ic_refcnt) == 0 3239 && iclog->ic_offset == 0)) { 3240 iclog = iclog->ic_prev; 3241 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3242 iclog->ic_state == XLOG_STATE_DIRTY) 3243 goto no_sleep; 3244 else 3245 goto maybe_sleep; 3246 } else { 3247 if (atomic_read(&iclog->ic_refcnt) == 0) { 3248 /* We are the only one with access to this 3249 * iclog. Flush it out now. There should 3250 * be a roundoff of zero to show that someone 3251 * has already taken care of the roundoff from 3252 * the previous sync. 3253 */ 3254 atomic_inc(&iclog->ic_refcnt); 3255 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3256 xlog_state_switch_iclogs(log, iclog, 0); 3257 spin_unlock(&log->l_icloglock); 3258 3259 if (xlog_state_release_iclog(log, iclog)) 3260 return -EIO; 3261 3262 if (log_flushed) 3263 *log_flushed = 1; 3264 spin_lock(&log->l_icloglock); 3265 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3266 iclog->ic_state != XLOG_STATE_DIRTY) 3267 goto maybe_sleep; 3268 else 3269 goto no_sleep; 3270 } else { 3271 /* Someone else is writing to this iclog. 3272 * Use its call to flush out the data. However, 3273 * the other thread may not force out this LR, 3274 * so we mark it WANT_SYNC. 3275 */ 3276 xlog_state_switch_iclogs(log, iclog, 0); 3277 goto maybe_sleep; 3278 } 3279 } 3280 } 3281 3282 /* By the time we come around again, the iclog could've been filled 3283 * which would give it another lsn. If we have a new lsn, just 3284 * return because the relevant data has been flushed. 3285 */ 3286 maybe_sleep: 3287 if (flags & XFS_LOG_SYNC) { 3288 /* 3289 * We must check if we're shutting down here, before 3290 * we wait, while we're holding the l_icloglock. 3291 * Then we check again after waking up, in case our 3292 * sleep was disturbed by a bad news. 3293 */ 3294 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3295 spin_unlock(&log->l_icloglock); 3296 return -EIO; 3297 } 3298 XFS_STATS_INC(mp, xs_log_force_sleep); 3299 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3300 /* 3301 * No need to grab the log lock here since we're 3302 * only deciding whether or not to return EIO 3303 * and the memory read should be atomic. 3304 */ 3305 if (iclog->ic_state & XLOG_STATE_IOERROR) 3306 return -EIO; 3307 if (log_flushed) 3308 *log_flushed = 1; 3309 } else { 3310 3311 no_sleep: 3312 spin_unlock(&log->l_icloglock); 3313 } 3314 return 0; 3315 } 3316 3317 /* 3318 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3319 * about errors or whether the log was flushed or not. This is the normal 3320 * interface to use when trying to unpin items or move the log forward. 3321 */ 3322 void 3323 xfs_log_force( 3324 xfs_mount_t *mp, 3325 uint flags) 3326 { 3327 int error; 3328 3329 trace_xfs_log_force(mp, 0, _RET_IP_); 3330 error = _xfs_log_force(mp, flags, NULL); 3331 if (error) 3332 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3333 } 3334 3335 /* 3336 * Force the in-core log to disk for a specific LSN. 3337 * 3338 * Find in-core log with lsn. 3339 * If it is in the DIRTY state, just return. 3340 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3341 * state and go to sleep or return. 3342 * If it is in any other state, go to sleep or return. 3343 * 3344 * Synchronous forces are implemented with a signal variable. All callers 3345 * to force a given lsn to disk will wait on a the sv attached to the 3346 * specific in-core log. When given in-core log finally completes its 3347 * write to disk, that thread will wake up all threads waiting on the 3348 * sv. 3349 */ 3350 int 3351 _xfs_log_force_lsn( 3352 struct xfs_mount *mp, 3353 xfs_lsn_t lsn, 3354 uint flags, 3355 int *log_flushed) 3356 { 3357 struct xlog *log = mp->m_log; 3358 struct xlog_in_core *iclog; 3359 int already_slept = 0; 3360 3361 ASSERT(lsn != 0); 3362 3363 XFS_STATS_INC(mp, xs_log_force); 3364 3365 lsn = xlog_cil_force_lsn(log, lsn); 3366 if (lsn == NULLCOMMITLSN) 3367 return 0; 3368 3369 try_again: 3370 spin_lock(&log->l_icloglock); 3371 iclog = log->l_iclog; 3372 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3373 spin_unlock(&log->l_icloglock); 3374 return -EIO; 3375 } 3376 3377 do { 3378 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3379 iclog = iclog->ic_next; 3380 continue; 3381 } 3382 3383 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3384 spin_unlock(&log->l_icloglock); 3385 return 0; 3386 } 3387 3388 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3389 /* 3390 * We sleep here if we haven't already slept (e.g. 3391 * this is the first time we've looked at the correct 3392 * iclog buf) and the buffer before us is going to 3393 * be sync'ed. The reason for this is that if we 3394 * are doing sync transactions here, by waiting for 3395 * the previous I/O to complete, we can allow a few 3396 * more transactions into this iclog before we close 3397 * it down. 3398 * 3399 * Otherwise, we mark the buffer WANT_SYNC, and bump 3400 * up the refcnt so we can release the log (which 3401 * drops the ref count). The state switch keeps new 3402 * transaction commits from using this buffer. When 3403 * the current commits finish writing into the buffer, 3404 * the refcount will drop to zero and the buffer will 3405 * go out then. 3406 */ 3407 if (!already_slept && 3408 (iclog->ic_prev->ic_state & 3409 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3410 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3411 3412 XFS_STATS_INC(mp, xs_log_force_sleep); 3413 3414 xlog_wait(&iclog->ic_prev->ic_write_wait, 3415 &log->l_icloglock); 3416 if (log_flushed) 3417 *log_flushed = 1; 3418 already_slept = 1; 3419 goto try_again; 3420 } 3421 atomic_inc(&iclog->ic_refcnt); 3422 xlog_state_switch_iclogs(log, iclog, 0); 3423 spin_unlock(&log->l_icloglock); 3424 if (xlog_state_release_iclog(log, iclog)) 3425 return -EIO; 3426 if (log_flushed) 3427 *log_flushed = 1; 3428 spin_lock(&log->l_icloglock); 3429 } 3430 3431 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3432 !(iclog->ic_state & 3433 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3434 /* 3435 * Don't wait on completion if we know that we've 3436 * gotten a log write error. 3437 */ 3438 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3439 spin_unlock(&log->l_icloglock); 3440 return -EIO; 3441 } 3442 XFS_STATS_INC(mp, xs_log_force_sleep); 3443 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3444 /* 3445 * No need to grab the log lock here since we're 3446 * only deciding whether or not to return EIO 3447 * and the memory read should be atomic. 3448 */ 3449 if (iclog->ic_state & XLOG_STATE_IOERROR) 3450 return -EIO; 3451 3452 if (log_flushed) 3453 *log_flushed = 1; 3454 } else { /* just return */ 3455 spin_unlock(&log->l_icloglock); 3456 } 3457 3458 return 0; 3459 } while (iclog != log->l_iclog); 3460 3461 spin_unlock(&log->l_icloglock); 3462 return 0; 3463 } 3464 3465 /* 3466 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3467 * about errors or whether the log was flushed or not. This is the normal 3468 * interface to use when trying to unpin items or move the log forward. 3469 */ 3470 void 3471 xfs_log_force_lsn( 3472 xfs_mount_t *mp, 3473 xfs_lsn_t lsn, 3474 uint flags) 3475 { 3476 int error; 3477 3478 trace_xfs_log_force(mp, lsn, _RET_IP_); 3479 error = _xfs_log_force_lsn(mp, lsn, flags, NULL); 3480 if (error) 3481 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3482 } 3483 3484 /* 3485 * Called when we want to mark the current iclog as being ready to sync to 3486 * disk. 3487 */ 3488 STATIC void 3489 xlog_state_want_sync( 3490 struct xlog *log, 3491 struct xlog_in_core *iclog) 3492 { 3493 assert_spin_locked(&log->l_icloglock); 3494 3495 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3496 xlog_state_switch_iclogs(log, iclog, 0); 3497 } else { 3498 ASSERT(iclog->ic_state & 3499 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3500 } 3501 } 3502 3503 3504 /***************************************************************************** 3505 * 3506 * TICKET functions 3507 * 3508 ***************************************************************************** 3509 */ 3510 3511 /* 3512 * Free a used ticket when its refcount falls to zero. 3513 */ 3514 void 3515 xfs_log_ticket_put( 3516 xlog_ticket_t *ticket) 3517 { 3518 ASSERT(atomic_read(&ticket->t_ref) > 0); 3519 if (atomic_dec_and_test(&ticket->t_ref)) 3520 kmem_zone_free(xfs_log_ticket_zone, ticket); 3521 } 3522 3523 xlog_ticket_t * 3524 xfs_log_ticket_get( 3525 xlog_ticket_t *ticket) 3526 { 3527 ASSERT(atomic_read(&ticket->t_ref) > 0); 3528 atomic_inc(&ticket->t_ref); 3529 return ticket; 3530 } 3531 3532 /* 3533 * Figure out the total log space unit (in bytes) that would be 3534 * required for a log ticket. 3535 */ 3536 int 3537 xfs_log_calc_unit_res( 3538 struct xfs_mount *mp, 3539 int unit_bytes) 3540 { 3541 struct xlog *log = mp->m_log; 3542 int iclog_space; 3543 uint num_headers; 3544 3545 /* 3546 * Permanent reservations have up to 'cnt'-1 active log operations 3547 * in the log. A unit in this case is the amount of space for one 3548 * of these log operations. Normal reservations have a cnt of 1 3549 * and their unit amount is the total amount of space required. 3550 * 3551 * The following lines of code account for non-transaction data 3552 * which occupy space in the on-disk log. 3553 * 3554 * Normal form of a transaction is: 3555 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3556 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3557 * 3558 * We need to account for all the leadup data and trailer data 3559 * around the transaction data. 3560 * And then we need to account for the worst case in terms of using 3561 * more space. 3562 * The worst case will happen if: 3563 * - the placement of the transaction happens to be such that the 3564 * roundoff is at its maximum 3565 * - the transaction data is synced before the commit record is synced 3566 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3567 * Therefore the commit record is in its own Log Record. 3568 * This can happen as the commit record is called with its 3569 * own region to xlog_write(). 3570 * This then means that in the worst case, roundoff can happen for 3571 * the commit-rec as well. 3572 * The commit-rec is smaller than padding in this scenario and so it is 3573 * not added separately. 3574 */ 3575 3576 /* for trans header */ 3577 unit_bytes += sizeof(xlog_op_header_t); 3578 unit_bytes += sizeof(xfs_trans_header_t); 3579 3580 /* for start-rec */ 3581 unit_bytes += sizeof(xlog_op_header_t); 3582 3583 /* 3584 * for LR headers - the space for data in an iclog is the size minus 3585 * the space used for the headers. If we use the iclog size, then we 3586 * undercalculate the number of headers required. 3587 * 3588 * Furthermore - the addition of op headers for split-recs might 3589 * increase the space required enough to require more log and op 3590 * headers, so take that into account too. 3591 * 3592 * IMPORTANT: This reservation makes the assumption that if this 3593 * transaction is the first in an iclog and hence has the LR headers 3594 * accounted to it, then the remaining space in the iclog is 3595 * exclusively for this transaction. i.e. if the transaction is larger 3596 * than the iclog, it will be the only thing in that iclog. 3597 * Fundamentally, this means we must pass the entire log vector to 3598 * xlog_write to guarantee this. 3599 */ 3600 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3601 num_headers = howmany(unit_bytes, iclog_space); 3602 3603 /* for split-recs - ophdrs added when data split over LRs */ 3604 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3605 3606 /* add extra header reservations if we overrun */ 3607 while (!num_headers || 3608 howmany(unit_bytes, iclog_space) > num_headers) { 3609 unit_bytes += sizeof(xlog_op_header_t); 3610 num_headers++; 3611 } 3612 unit_bytes += log->l_iclog_hsize * num_headers; 3613 3614 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3615 unit_bytes += log->l_iclog_hsize; 3616 3617 /* for roundoff padding for transaction data and one for commit record */ 3618 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3619 /* log su roundoff */ 3620 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3621 } else { 3622 /* BB roundoff */ 3623 unit_bytes += 2 * BBSIZE; 3624 } 3625 3626 return unit_bytes; 3627 } 3628 3629 /* 3630 * Allocate and initialise a new log ticket. 3631 */ 3632 struct xlog_ticket * 3633 xlog_ticket_alloc( 3634 struct xlog *log, 3635 int unit_bytes, 3636 int cnt, 3637 char client, 3638 bool permanent, 3639 xfs_km_flags_t alloc_flags) 3640 { 3641 struct xlog_ticket *tic; 3642 int unit_res; 3643 3644 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3645 if (!tic) 3646 return NULL; 3647 3648 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3649 3650 atomic_set(&tic->t_ref, 1); 3651 tic->t_task = current; 3652 INIT_LIST_HEAD(&tic->t_queue); 3653 tic->t_unit_res = unit_res; 3654 tic->t_curr_res = unit_res; 3655 tic->t_cnt = cnt; 3656 tic->t_ocnt = cnt; 3657 tic->t_tid = prandom_u32(); 3658 tic->t_clientid = client; 3659 tic->t_flags = XLOG_TIC_INITED; 3660 if (permanent) 3661 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3662 3663 xlog_tic_reset_res(tic); 3664 3665 return tic; 3666 } 3667 3668 3669 /****************************************************************************** 3670 * 3671 * Log debug routines 3672 * 3673 ****************************************************************************** 3674 */ 3675 #if defined(DEBUG) 3676 /* 3677 * Make sure that the destination ptr is within the valid data region of 3678 * one of the iclogs. This uses backup pointers stored in a different 3679 * part of the log in case we trash the log structure. 3680 */ 3681 void 3682 xlog_verify_dest_ptr( 3683 struct xlog *log, 3684 void *ptr) 3685 { 3686 int i; 3687 int good_ptr = 0; 3688 3689 for (i = 0; i < log->l_iclog_bufs; i++) { 3690 if (ptr >= log->l_iclog_bak[i] && 3691 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3692 good_ptr++; 3693 } 3694 3695 if (!good_ptr) 3696 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3697 } 3698 3699 /* 3700 * Check to make sure the grant write head didn't just over lap the tail. If 3701 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3702 * the cycles differ by exactly one and check the byte count. 3703 * 3704 * This check is run unlocked, so can give false positives. Rather than assert 3705 * on failures, use a warn-once flag and a panic tag to allow the admin to 3706 * determine if they want to panic the machine when such an error occurs. For 3707 * debug kernels this will have the same effect as using an assert but, unlinke 3708 * an assert, it can be turned off at runtime. 3709 */ 3710 STATIC void 3711 xlog_verify_grant_tail( 3712 struct xlog *log) 3713 { 3714 int tail_cycle, tail_blocks; 3715 int cycle, space; 3716 3717 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3718 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3719 if (tail_cycle != cycle) { 3720 if (cycle - 1 != tail_cycle && 3721 !(log->l_flags & XLOG_TAIL_WARN)) { 3722 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3723 "%s: cycle - 1 != tail_cycle", __func__); 3724 log->l_flags |= XLOG_TAIL_WARN; 3725 } 3726 3727 if (space > BBTOB(tail_blocks) && 3728 !(log->l_flags & XLOG_TAIL_WARN)) { 3729 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3730 "%s: space > BBTOB(tail_blocks)", __func__); 3731 log->l_flags |= XLOG_TAIL_WARN; 3732 } 3733 } 3734 } 3735 3736 /* check if it will fit */ 3737 STATIC void 3738 xlog_verify_tail_lsn( 3739 struct xlog *log, 3740 struct xlog_in_core *iclog, 3741 xfs_lsn_t tail_lsn) 3742 { 3743 int blocks; 3744 3745 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3746 blocks = 3747 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3748 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3749 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3750 } else { 3751 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3752 3753 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3754 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3755 3756 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3757 if (blocks < BTOBB(iclog->ic_offset) + 1) 3758 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3759 } 3760 } /* xlog_verify_tail_lsn */ 3761 3762 /* 3763 * Perform a number of checks on the iclog before writing to disk. 3764 * 3765 * 1. Make sure the iclogs are still circular 3766 * 2. Make sure we have a good magic number 3767 * 3. Make sure we don't have magic numbers in the data 3768 * 4. Check fields of each log operation header for: 3769 * A. Valid client identifier 3770 * B. tid ptr value falls in valid ptr space (user space code) 3771 * C. Length in log record header is correct according to the 3772 * individual operation headers within record. 3773 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3774 * log, check the preceding blocks of the physical log to make sure all 3775 * the cycle numbers agree with the current cycle number. 3776 */ 3777 STATIC void 3778 xlog_verify_iclog( 3779 struct xlog *log, 3780 struct xlog_in_core *iclog, 3781 int count, 3782 bool syncing) 3783 { 3784 xlog_op_header_t *ophead; 3785 xlog_in_core_t *icptr; 3786 xlog_in_core_2_t *xhdr; 3787 void *base_ptr, *ptr, *p; 3788 ptrdiff_t field_offset; 3789 __uint8_t clientid; 3790 int len, i, j, k, op_len; 3791 int idx; 3792 3793 /* check validity of iclog pointers */ 3794 spin_lock(&log->l_icloglock); 3795 icptr = log->l_iclog; 3796 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3797 ASSERT(icptr); 3798 3799 if (icptr != log->l_iclog) 3800 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3801 spin_unlock(&log->l_icloglock); 3802 3803 /* check log magic numbers */ 3804 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3805 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3806 3807 base_ptr = ptr = &iclog->ic_header; 3808 p = &iclog->ic_header; 3809 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3810 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3811 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3812 __func__); 3813 } 3814 3815 /* check fields */ 3816 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3817 base_ptr = ptr = iclog->ic_datap; 3818 ophead = ptr; 3819 xhdr = iclog->ic_data; 3820 for (i = 0; i < len; i++) { 3821 ophead = ptr; 3822 3823 /* clientid is only 1 byte */ 3824 p = &ophead->oh_clientid; 3825 field_offset = p - base_ptr; 3826 if (!syncing || (field_offset & 0x1ff)) { 3827 clientid = ophead->oh_clientid; 3828 } else { 3829 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3830 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3831 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3832 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3833 clientid = xlog_get_client_id( 3834 xhdr[j].hic_xheader.xh_cycle_data[k]); 3835 } else { 3836 clientid = xlog_get_client_id( 3837 iclog->ic_header.h_cycle_data[idx]); 3838 } 3839 } 3840 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3841 xfs_warn(log->l_mp, 3842 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3843 __func__, clientid, ophead, 3844 (unsigned long)field_offset); 3845 3846 /* check length */ 3847 p = &ophead->oh_len; 3848 field_offset = p - base_ptr; 3849 if (!syncing || (field_offset & 0x1ff)) { 3850 op_len = be32_to_cpu(ophead->oh_len); 3851 } else { 3852 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3853 (uintptr_t)iclog->ic_datap); 3854 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3855 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3856 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3857 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3858 } else { 3859 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3860 } 3861 } 3862 ptr += sizeof(xlog_op_header_t) + op_len; 3863 } 3864 } /* xlog_verify_iclog */ 3865 #endif 3866 3867 /* 3868 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3869 */ 3870 STATIC int 3871 xlog_state_ioerror( 3872 struct xlog *log) 3873 { 3874 xlog_in_core_t *iclog, *ic; 3875 3876 iclog = log->l_iclog; 3877 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3878 /* 3879 * Mark all the incore logs IOERROR. 3880 * From now on, no log flushes will result. 3881 */ 3882 ic = iclog; 3883 do { 3884 ic->ic_state = XLOG_STATE_IOERROR; 3885 ic = ic->ic_next; 3886 } while (ic != iclog); 3887 return 0; 3888 } 3889 /* 3890 * Return non-zero, if state transition has already happened. 3891 */ 3892 return 1; 3893 } 3894 3895 /* 3896 * This is called from xfs_force_shutdown, when we're forcibly 3897 * shutting down the filesystem, typically because of an IO error. 3898 * Our main objectives here are to make sure that: 3899 * a. if !logerror, flush the logs to disk. Anything modified 3900 * after this is ignored. 3901 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3902 * parties to find out, 'atomically'. 3903 * c. those who're sleeping on log reservations, pinned objects and 3904 * other resources get woken up, and be told the bad news. 3905 * d. nothing new gets queued up after (b) and (c) are done. 3906 * 3907 * Note: for the !logerror case we need to flush the regions held in memory out 3908 * to disk first. This needs to be done before the log is marked as shutdown, 3909 * otherwise the iclog writes will fail. 3910 */ 3911 int 3912 xfs_log_force_umount( 3913 struct xfs_mount *mp, 3914 int logerror) 3915 { 3916 struct xlog *log; 3917 int retval; 3918 3919 log = mp->m_log; 3920 3921 /* 3922 * If this happens during log recovery, don't worry about 3923 * locking; the log isn't open for business yet. 3924 */ 3925 if (!log || 3926 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3927 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3928 if (mp->m_sb_bp) 3929 mp->m_sb_bp->b_flags |= XBF_DONE; 3930 return 0; 3931 } 3932 3933 /* 3934 * Somebody could've already done the hard work for us. 3935 * No need to get locks for this. 3936 */ 3937 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3938 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3939 return 1; 3940 } 3941 3942 /* 3943 * Flush all the completed transactions to disk before marking the log 3944 * being shut down. We need to do it in this order to ensure that 3945 * completed operations are safely on disk before we shut down, and that 3946 * we don't have to issue any buffer IO after the shutdown flags are set 3947 * to guarantee this. 3948 */ 3949 if (!logerror) 3950 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3951 3952 /* 3953 * mark the filesystem and the as in a shutdown state and wake 3954 * everybody up to tell them the bad news. 3955 */ 3956 spin_lock(&log->l_icloglock); 3957 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3958 if (mp->m_sb_bp) 3959 mp->m_sb_bp->b_flags |= XBF_DONE; 3960 3961 /* 3962 * Mark the log and the iclogs with IO error flags to prevent any 3963 * further log IO from being issued or completed. 3964 */ 3965 log->l_flags |= XLOG_IO_ERROR; 3966 retval = xlog_state_ioerror(log); 3967 spin_unlock(&log->l_icloglock); 3968 3969 /* 3970 * We don't want anybody waiting for log reservations after this. That 3971 * means we have to wake up everybody queued up on reserveq as well as 3972 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3973 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3974 * action is protected by the grant locks. 3975 */ 3976 xlog_grant_head_wake_all(&log->l_reserve_head); 3977 xlog_grant_head_wake_all(&log->l_write_head); 3978 3979 /* 3980 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3981 * as if the log writes were completed. The abort handling in the log 3982 * item committed callback functions will do this again under lock to 3983 * avoid races. 3984 */ 3985 wake_up_all(&log->l_cilp->xc_commit_wait); 3986 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 3987 3988 #ifdef XFSERRORDEBUG 3989 { 3990 xlog_in_core_t *iclog; 3991 3992 spin_lock(&log->l_icloglock); 3993 iclog = log->l_iclog; 3994 do { 3995 ASSERT(iclog->ic_callback == 0); 3996 iclog = iclog->ic_next; 3997 } while (iclog != log->l_iclog); 3998 spin_unlock(&log->l_icloglock); 3999 } 4000 #endif 4001 /* return non-zero if log IOERROR transition had already happened */ 4002 return retval; 4003 } 4004 4005 STATIC int 4006 xlog_iclogs_empty( 4007 struct xlog *log) 4008 { 4009 xlog_in_core_t *iclog; 4010 4011 iclog = log->l_iclog; 4012 do { 4013 /* endianness does not matter here, zero is zero in 4014 * any language. 4015 */ 4016 if (iclog->ic_header.h_num_logops) 4017 return 0; 4018 iclog = iclog->ic_next; 4019 } while (iclog != log->l_iclog); 4020 return 1; 4021 } 4022 4023 /* 4024 * Verify that an LSN stamped into a piece of metadata is valid. This is 4025 * intended for use in read verifiers on v5 superblocks. 4026 */ 4027 bool 4028 xfs_log_check_lsn( 4029 struct xfs_mount *mp, 4030 xfs_lsn_t lsn) 4031 { 4032 struct xlog *log = mp->m_log; 4033 bool valid; 4034 4035 /* 4036 * norecovery mode skips mount-time log processing and unconditionally 4037 * resets the in-core LSN. We can't validate in this mode, but 4038 * modifications are not allowed anyways so just return true. 4039 */ 4040 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 4041 return true; 4042 4043 /* 4044 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 4045 * handled by recovery and thus safe to ignore here. 4046 */ 4047 if (lsn == NULLCOMMITLSN) 4048 return true; 4049 4050 valid = xlog_valid_lsn(mp->m_log, lsn); 4051 4052 /* warn the user about what's gone wrong before verifier failure */ 4053 if (!valid) { 4054 spin_lock(&log->l_icloglock); 4055 xfs_warn(mp, 4056 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 4057 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 4058 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 4059 log->l_curr_cycle, log->l_curr_block); 4060 spin_unlock(&log->l_icloglock); 4061 } 4062 4063 return valid; 4064 } 4065