xref: /linux/fs/xfs/xfs_log.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37 
38 kmem_zone_t	*xfs_log_ticket_zone;
39 
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 	struct xlog		*log,
44 	struct xlog_ticket	*ticket,
45 	struct xlog_in_core	**iclog,
46 	xfs_lsn_t		*commitlsnp);
47 
48 STATIC struct xlog *
49 xlog_alloc_log(
50 	struct xfs_mount	*mp,
51 	struct xfs_buftarg	*log_target,
52 	xfs_daddr_t		blk_offset,
53 	int			num_bblks);
54 STATIC int
55 xlog_space_left(
56 	struct xlog		*log,
57 	atomic64_t		*head);
58 STATIC int
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 STATIC void
63 xlog_dealloc_log(
64 	struct xlog		*log);
65 
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 	struct xlog		*log,
71 	int			aborted,
72 	struct xlog_in_core	*iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 	struct xlog		*log,
76 	int			len,
77 	struct xlog_in_core	**iclog,
78 	struct xlog_ticket	*ticket,
79 	int			*continued_write,
80 	int			*logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 	struct xlog		*log,
84 	struct xlog_in_core	*iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 	struct xlog		*log,
88 	struct xlog_in_core	*iclog,
89 	int			eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 	struct xlog		*log,
93 	struct xlog_in_core	*iclog);
94 
95 STATIC void
96 xlog_grant_push_ail(
97 	struct xlog		*log,
98 	int			need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 	struct xlog		*log,
102 	struct xlog_ticket	*ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 	struct xlog		*log,
106 	struct xlog_ticket	*ticket);
107 
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 	struct xlog		*log,
112 	void			*ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 	struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 	struct xlog		*log,
119 	struct xlog_in_core	*iclog,
120 	int			count,
121 	bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 	struct xlog		*log,
125 	struct xlog_in_core	*iclog,
126 	xfs_lsn_t		tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133 
134 STATIC int
135 xlog_iclogs_empty(
136 	struct xlog		*log);
137 
138 static void
139 xlog_grant_sub_space(
140 	struct xlog		*log,
141 	atomic64_t		*head,
142 	int			bytes)
143 {
144 	int64_t	head_val = atomic64_read(head);
145 	int64_t new, old;
146 
147 	do {
148 		int	cycle, space;
149 
150 		xlog_crack_grant_head_val(head_val, &cycle, &space);
151 
152 		space -= bytes;
153 		if (space < 0) {
154 			space += log->l_logsize;
155 			cycle--;
156 		}
157 
158 		old = head_val;
159 		new = xlog_assign_grant_head_val(cycle, space);
160 		head_val = atomic64_cmpxchg(head, old, new);
161 	} while (head_val != old);
162 }
163 
164 static void
165 xlog_grant_add_space(
166 	struct xlog		*log,
167 	atomic64_t		*head,
168 	int			bytes)
169 {
170 	int64_t	head_val = atomic64_read(head);
171 	int64_t new, old;
172 
173 	do {
174 		int		tmp;
175 		int		cycle, space;
176 
177 		xlog_crack_grant_head_val(head_val, &cycle, &space);
178 
179 		tmp = log->l_logsize - space;
180 		if (tmp > bytes)
181 			space += bytes;
182 		else {
183 			space = bytes - tmp;
184 			cycle++;
185 		}
186 
187 		old = head_val;
188 		new = xlog_assign_grant_head_val(cycle, space);
189 		head_val = atomic64_cmpxchg(head, old, new);
190 	} while (head_val != old);
191 }
192 
193 STATIC void
194 xlog_grant_head_init(
195 	struct xlog_grant_head	*head)
196 {
197 	xlog_assign_grant_head(&head->grant, 1, 0);
198 	INIT_LIST_HEAD(&head->waiters);
199 	spin_lock_init(&head->lock);
200 }
201 
202 STATIC void
203 xlog_grant_head_wake_all(
204 	struct xlog_grant_head	*head)
205 {
206 	struct xlog_ticket	*tic;
207 
208 	spin_lock(&head->lock);
209 	list_for_each_entry(tic, &head->waiters, t_queue)
210 		wake_up_process(tic->t_task);
211 	spin_unlock(&head->lock);
212 }
213 
214 static inline int
215 xlog_ticket_reservation(
216 	struct xlog		*log,
217 	struct xlog_grant_head	*head,
218 	struct xlog_ticket	*tic)
219 {
220 	if (head == &log->l_write_head) {
221 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 		return tic->t_unit_res;
223 	} else {
224 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 			return tic->t_unit_res * tic->t_cnt;
226 		else
227 			return tic->t_unit_res;
228 	}
229 }
230 
231 STATIC bool
232 xlog_grant_head_wake(
233 	struct xlog		*log,
234 	struct xlog_grant_head	*head,
235 	int			*free_bytes)
236 {
237 	struct xlog_ticket	*tic;
238 	int			need_bytes;
239 
240 	list_for_each_entry(tic, &head->waiters, t_queue) {
241 		need_bytes = xlog_ticket_reservation(log, head, tic);
242 		if (*free_bytes < need_bytes)
243 			return false;
244 
245 		*free_bytes -= need_bytes;
246 		trace_xfs_log_grant_wake_up(log, tic);
247 		wake_up_process(tic->t_task);
248 	}
249 
250 	return true;
251 }
252 
253 STATIC int
254 xlog_grant_head_wait(
255 	struct xlog		*log,
256 	struct xlog_grant_head	*head,
257 	struct xlog_ticket	*tic,
258 	int			need_bytes) __releases(&head->lock)
259 					    __acquires(&head->lock)
260 {
261 	list_add_tail(&tic->t_queue, &head->waiters);
262 
263 	do {
264 		if (XLOG_FORCED_SHUTDOWN(log))
265 			goto shutdown;
266 		xlog_grant_push_ail(log, need_bytes);
267 
268 		__set_current_state(TASK_UNINTERRUPTIBLE);
269 		spin_unlock(&head->lock);
270 
271 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272 
273 		trace_xfs_log_grant_sleep(log, tic);
274 		schedule();
275 		trace_xfs_log_grant_wake(log, tic);
276 
277 		spin_lock(&head->lock);
278 		if (XLOG_FORCED_SHUTDOWN(log))
279 			goto shutdown;
280 	} while (xlog_space_left(log, &head->grant) < need_bytes);
281 
282 	list_del_init(&tic->t_queue);
283 	return 0;
284 shutdown:
285 	list_del_init(&tic->t_queue);
286 	return -EIO;
287 }
288 
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308 	struct xlog		*log,
309 	struct xlog_grant_head	*head,
310 	struct xlog_ticket	*tic,
311 	int			*need_bytes)
312 {
313 	int			free_bytes;
314 	int			error = 0;
315 
316 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317 
318 	/*
319 	 * If there are other waiters on the queue then give them a chance at
320 	 * logspace before us.  Wake up the first waiters, if we do not wake
321 	 * up all the waiters then go to sleep waiting for more free space,
322 	 * otherwise try to get some space for this transaction.
323 	 */
324 	*need_bytes = xlog_ticket_reservation(log, head, tic);
325 	free_bytes = xlog_space_left(log, &head->grant);
326 	if (!list_empty_careful(&head->waiters)) {
327 		spin_lock(&head->lock);
328 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 		    free_bytes < *need_bytes) {
330 			error = xlog_grant_head_wait(log, head, tic,
331 						     *need_bytes);
332 		}
333 		spin_unlock(&head->lock);
334 	} else if (free_bytes < *need_bytes) {
335 		spin_lock(&head->lock);
336 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 		spin_unlock(&head->lock);
338 	}
339 
340 	return error;
341 }
342 
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 	tic->t_res_num = 0;
347 	tic->t_res_arr_sum = 0;
348 	tic->t_res_num_ophdrs = 0;
349 }
350 
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 		/* add to overflow and start again */
356 		tic->t_res_o_flow += tic->t_res_arr_sum;
357 		tic->t_res_num = 0;
358 		tic->t_res_arr_sum = 0;
359 	}
360 
361 	tic->t_res_arr[tic->t_res_num].r_len = len;
362 	tic->t_res_arr[tic->t_res_num].r_type = type;
363 	tic->t_res_arr_sum += len;
364 	tic->t_res_num++;
365 }
366 
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372 	struct xfs_mount	*mp,
373 	struct xlog_ticket	*tic)
374 {
375 	struct xlog		*log = mp->m_log;
376 	int			need_bytes;
377 	int			error = 0;
378 
379 	if (XLOG_FORCED_SHUTDOWN(log))
380 		return -EIO;
381 
382 	XFS_STATS_INC(mp, xs_try_logspace);
383 
384 	/*
385 	 * This is a new transaction on the ticket, so we need to change the
386 	 * transaction ID so that the next transaction has a different TID in
387 	 * the log. Just add one to the existing tid so that we can see chains
388 	 * of rolling transactions in the log easily.
389 	 */
390 	tic->t_tid++;
391 
392 	xlog_grant_push_ail(log, tic->t_unit_res);
393 
394 	tic->t_curr_res = tic->t_unit_res;
395 	xlog_tic_reset_res(tic);
396 
397 	if (tic->t_cnt > 0)
398 		return 0;
399 
400 	trace_xfs_log_regrant(log, tic);
401 
402 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 				      &need_bytes);
404 	if (error)
405 		goto out_error;
406 
407 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 	trace_xfs_log_regrant_exit(log, tic);
409 	xlog_verify_grant_tail(log);
410 	return 0;
411 
412 out_error:
413 	/*
414 	 * If we are failing, make sure the ticket doesn't have any current
415 	 * reservations.  We don't want to add this back when the ticket/
416 	 * transaction gets cancelled.
417 	 */
418 	tic->t_curr_res = 0;
419 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
420 	return error;
421 }
422 
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433 	struct xfs_mount	*mp,
434 	int		 	unit_bytes,
435 	int		 	cnt,
436 	struct xlog_ticket	**ticp,
437 	__uint8_t	 	client,
438 	bool			permanent)
439 {
440 	struct xlog		*log = mp->m_log;
441 	struct xlog_ticket	*tic;
442 	int			need_bytes;
443 	int			error = 0;
444 
445 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446 
447 	if (XLOG_FORCED_SHUTDOWN(log))
448 		return -EIO;
449 
450 	XFS_STATS_INC(mp, xs_try_logspace);
451 
452 	ASSERT(*ticp == NULL);
453 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454 				KM_SLEEP | KM_MAYFAIL);
455 	if (!tic)
456 		return -ENOMEM;
457 
458 	*ticp = tic;
459 
460 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461 					    : tic->t_unit_res);
462 
463 	trace_xfs_log_reserve(log, tic);
464 
465 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 				      &need_bytes);
467 	if (error)
468 		goto out_error;
469 
470 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 	trace_xfs_log_reserve_exit(log, tic);
473 	xlog_verify_grant_tail(log);
474 	return 0;
475 
476 out_error:
477 	/*
478 	 * If we are failing, make sure the ticket doesn't have any current
479 	 * reservations.  We don't want to add this back when the ticket/
480 	 * transaction gets cancelled.
481 	 */
482 	tic->t_curr_res = 0;
483 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
484 	return error;
485 }
486 
487 
488 /*
489  * NOTES:
490  *
491  *	1. currblock field gets updated at startup and after in-core logs
492  *		marked as with WANT_SYNC.
493  */
494 
495 /*
496  * This routine is called when a user of a log manager ticket is done with
497  * the reservation.  If the ticket was ever used, then a commit record for
498  * the associated transaction is written out as a log operation header with
499  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
500  * a given ticket.  If the ticket was one with a permanent reservation, then
501  * a few operations are done differently.  Permanent reservation tickets by
502  * default don't release the reservation.  They just commit the current
503  * transaction with the belief that the reservation is still needed.  A flag
504  * must be passed in before permanent reservations are actually released.
505  * When these type of tickets are not released, they need to be set into
506  * the inited state again.  By doing this, a start record will be written
507  * out when the next write occurs.
508  */
509 xfs_lsn_t
510 xfs_log_done(
511 	struct xfs_mount	*mp,
512 	struct xlog_ticket	*ticket,
513 	struct xlog_in_core	**iclog,
514 	bool			regrant)
515 {
516 	struct xlog		*log = mp->m_log;
517 	xfs_lsn_t		lsn = 0;
518 
519 	if (XLOG_FORCED_SHUTDOWN(log) ||
520 	    /*
521 	     * If nothing was ever written, don't write out commit record.
522 	     * If we get an error, just continue and give back the log ticket.
523 	     */
524 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 		lsn = (xfs_lsn_t) -1;
527 		regrant = false;
528 	}
529 
530 
531 	if (!regrant) {
532 		trace_xfs_log_done_nonperm(log, ticket);
533 
534 		/*
535 		 * Release ticket if not permanent reservation or a specific
536 		 * request has been made to release a permanent reservation.
537 		 */
538 		xlog_ungrant_log_space(log, ticket);
539 	} else {
540 		trace_xfs_log_done_perm(log, ticket);
541 
542 		xlog_regrant_reserve_log_space(log, ticket);
543 		/* If this ticket was a permanent reservation and we aren't
544 		 * trying to release it, reset the inited flags; so next time
545 		 * we write, a start record will be written out.
546 		 */
547 		ticket->t_flags |= XLOG_TIC_INITED;
548 	}
549 
550 	xfs_log_ticket_put(ticket);
551 	return lsn;
552 }
553 
554 /*
555  * Attaches a new iclog I/O completion callback routine during
556  * transaction commit.  If the log is in error state, a non-zero
557  * return code is handed back and the caller is responsible for
558  * executing the callback at an appropriate time.
559  */
560 int
561 xfs_log_notify(
562 	struct xfs_mount	*mp,
563 	struct xlog_in_core	*iclog,
564 	xfs_log_callback_t	*cb)
565 {
566 	int	abortflg;
567 
568 	spin_lock(&iclog->ic_callback_lock);
569 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570 	if (!abortflg) {
571 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573 		cb->cb_next = NULL;
574 		*(iclog->ic_callback_tail) = cb;
575 		iclog->ic_callback_tail = &(cb->cb_next);
576 	}
577 	spin_unlock(&iclog->ic_callback_lock);
578 	return abortflg;
579 }
580 
581 int
582 xfs_log_release_iclog(
583 	struct xfs_mount	*mp,
584 	struct xlog_in_core	*iclog)
585 {
586 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
587 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588 		return -EIO;
589 	}
590 
591 	return 0;
592 }
593 
594 /*
595  * Mount a log filesystem
596  *
597  * mp		- ubiquitous xfs mount point structure
598  * log_target	- buftarg of on-disk log device
599  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
600  * num_bblocks	- Number of BBSIZE blocks in on-disk log
601  *
602  * Return error or zero.
603  */
604 int
605 xfs_log_mount(
606 	xfs_mount_t	*mp,
607 	xfs_buftarg_t	*log_target,
608 	xfs_daddr_t	blk_offset,
609 	int		num_bblks)
610 {
611 	int		error = 0;
612 	int		min_logfsbs;
613 
614 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
615 		xfs_notice(mp, "Mounting V%d Filesystem",
616 			   XFS_SB_VERSION_NUM(&mp->m_sb));
617 	} else {
618 		xfs_notice(mp,
619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
620 			   XFS_SB_VERSION_NUM(&mp->m_sb));
621 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
622 	}
623 
624 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625 	if (IS_ERR(mp->m_log)) {
626 		error = PTR_ERR(mp->m_log);
627 		goto out;
628 	}
629 
630 	/*
631 	 * Validate the given log space and drop a critical message via syslog
632 	 * if the log size is too small that would lead to some unexpected
633 	 * situations in transaction log space reservation stage.
634 	 *
635 	 * Note: we can't just reject the mount if the validation fails.  This
636 	 * would mean that people would have to downgrade their kernel just to
637 	 * remedy the situation as there is no way to grow the log (short of
638 	 * black magic surgery with xfs_db).
639 	 *
640 	 * We can, however, reject mounts for CRC format filesystems, as the
641 	 * mkfs binary being used to make the filesystem should never create a
642 	 * filesystem with a log that is too small.
643 	 */
644 	min_logfsbs = xfs_log_calc_minimum_size(mp);
645 
646 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
647 		xfs_warn(mp,
648 		"Log size %d blocks too small, minimum size is %d blocks",
649 			 mp->m_sb.sb_logblocks, min_logfsbs);
650 		error = -EINVAL;
651 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
652 		xfs_warn(mp,
653 		"Log size %d blocks too large, maximum size is %lld blocks",
654 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
655 		error = -EINVAL;
656 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
657 		xfs_warn(mp,
658 		"log size %lld bytes too large, maximum size is %lld bytes",
659 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
660 			 XFS_MAX_LOG_BYTES);
661 		error = -EINVAL;
662 	}
663 	if (error) {
664 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
665 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
666 			ASSERT(0);
667 			goto out_free_log;
668 		}
669 		xfs_crit(mp, "Log size out of supported range.");
670 		xfs_crit(mp,
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
672 	}
673 
674 	/*
675 	 * Initialize the AIL now we have a log.
676 	 */
677 	error = xfs_trans_ail_init(mp);
678 	if (error) {
679 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
680 		goto out_free_log;
681 	}
682 	mp->m_log->l_ailp = mp->m_ail;
683 
684 	/*
685 	 * skip log recovery on a norecovery mount.  pretend it all
686 	 * just worked.
687 	 */
688 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
689 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
690 
691 		if (readonly)
692 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
693 
694 		error = xlog_recover(mp->m_log);
695 
696 		if (readonly)
697 			mp->m_flags |= XFS_MOUNT_RDONLY;
698 		if (error) {
699 			xfs_warn(mp, "log mount/recovery failed: error %d",
700 				error);
701 			xlog_recover_cancel(mp->m_log);
702 			goto out_destroy_ail;
703 		}
704 	}
705 
706 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
707 			       "log");
708 	if (error)
709 		goto out_destroy_ail;
710 
711 	/* Normal transactions can now occur */
712 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
713 
714 	/*
715 	 * Now the log has been fully initialised and we know were our
716 	 * space grant counters are, we can initialise the permanent ticket
717 	 * needed for delayed logging to work.
718 	 */
719 	xlog_cil_init_post_recovery(mp->m_log);
720 
721 	return 0;
722 
723 out_destroy_ail:
724 	xfs_trans_ail_destroy(mp);
725 out_free_log:
726 	xlog_dealloc_log(mp->m_log);
727 out:
728 	return error;
729 }
730 
731 /*
732  * Finish the recovery of the file system.  This is separate from the
733  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
735  * here.
736  *
737  * If we finish recovery successfully, start the background log work. If we are
738  * not doing recovery, then we have a RO filesystem and we don't need to start
739  * it.
740  */
741 int
742 xfs_log_mount_finish(
743 	struct xfs_mount	*mp)
744 {
745 	int	error = 0;
746 
747 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
748 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
749 		return 0;
750 	}
751 
752 	error = xlog_recover_finish(mp->m_log);
753 	if (!error)
754 		xfs_log_work_queue(mp);
755 
756 	return error;
757 }
758 
759 /*
760  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
761  * the log.
762  */
763 int
764 xfs_log_mount_cancel(
765 	struct xfs_mount	*mp)
766 {
767 	int			error;
768 
769 	error = xlog_recover_cancel(mp->m_log);
770 	xfs_log_unmount(mp);
771 
772 	return error;
773 }
774 
775 /*
776  * Final log writes as part of unmount.
777  *
778  * Mark the filesystem clean as unmount happens.  Note that during relocation
779  * this routine needs to be executed as part of source-bag while the
780  * deallocation must not be done until source-end.
781  */
782 
783 /*
784  * Unmount record used to have a string "Unmount filesystem--" in the
785  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
786  * We just write the magic number now since that particular field isn't
787  * currently architecture converted and "Unmount" is a bit foo.
788  * As far as I know, there weren't any dependencies on the old behaviour.
789  */
790 
791 static int
792 xfs_log_unmount_write(xfs_mount_t *mp)
793 {
794 	struct xlog	 *log = mp->m_log;
795 	xlog_in_core_t	 *iclog;
796 #ifdef DEBUG
797 	xlog_in_core_t	 *first_iclog;
798 #endif
799 	xlog_ticket_t	*tic = NULL;
800 	xfs_lsn_t	 lsn;
801 	int		 error;
802 
803 	/*
804 	 * Don't write out unmount record on read-only mounts.
805 	 * Or, if we are doing a forced umount (typically because of IO errors).
806 	 */
807 	if (mp->m_flags & XFS_MOUNT_RDONLY)
808 		return 0;
809 
810 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
811 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
812 
813 #ifdef DEBUG
814 	first_iclog = iclog = log->l_iclog;
815 	do {
816 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
817 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
818 			ASSERT(iclog->ic_offset == 0);
819 		}
820 		iclog = iclog->ic_next;
821 	} while (iclog != first_iclog);
822 #endif
823 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
824 		error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
825 		if (!error) {
826 			/* the data section must be 32 bit size aligned */
827 			struct {
828 			    __uint16_t magic;
829 			    __uint16_t pad1;
830 			    __uint32_t pad2; /* may as well make it 64 bits */
831 			} magic = {
832 				.magic = XLOG_UNMOUNT_TYPE,
833 			};
834 			struct xfs_log_iovec reg = {
835 				.i_addr = &magic,
836 				.i_len = sizeof(magic),
837 				.i_type = XLOG_REG_TYPE_UNMOUNT,
838 			};
839 			struct xfs_log_vec vec = {
840 				.lv_niovecs = 1,
841 				.lv_iovecp = &reg,
842 			};
843 
844 			/* remove inited flag, and account for space used */
845 			tic->t_flags = 0;
846 			tic->t_curr_res -= sizeof(magic);
847 			error = xlog_write(log, &vec, tic, &lsn,
848 					   NULL, XLOG_UNMOUNT_TRANS);
849 			/*
850 			 * At this point, we're umounting anyway,
851 			 * so there's no point in transitioning log state
852 			 * to IOERROR. Just continue...
853 			 */
854 		}
855 
856 		if (error)
857 			xfs_alert(mp, "%s: unmount record failed", __func__);
858 
859 
860 		spin_lock(&log->l_icloglock);
861 		iclog = log->l_iclog;
862 		atomic_inc(&iclog->ic_refcnt);
863 		xlog_state_want_sync(log, iclog);
864 		spin_unlock(&log->l_icloglock);
865 		error = xlog_state_release_iclog(log, iclog);
866 
867 		spin_lock(&log->l_icloglock);
868 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
869 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
870 			if (!XLOG_FORCED_SHUTDOWN(log)) {
871 				xlog_wait(&iclog->ic_force_wait,
872 							&log->l_icloglock);
873 			} else {
874 				spin_unlock(&log->l_icloglock);
875 			}
876 		} else {
877 			spin_unlock(&log->l_icloglock);
878 		}
879 		if (tic) {
880 			trace_xfs_log_umount_write(log, tic);
881 			xlog_ungrant_log_space(log, tic);
882 			xfs_log_ticket_put(tic);
883 		}
884 	} else {
885 		/*
886 		 * We're already in forced_shutdown mode, couldn't
887 		 * even attempt to write out the unmount transaction.
888 		 *
889 		 * Go through the motions of sync'ing and releasing
890 		 * the iclog, even though no I/O will actually happen,
891 		 * we need to wait for other log I/Os that may already
892 		 * be in progress.  Do this as a separate section of
893 		 * code so we'll know if we ever get stuck here that
894 		 * we're in this odd situation of trying to unmount
895 		 * a file system that went into forced_shutdown as
896 		 * the result of an unmount..
897 		 */
898 		spin_lock(&log->l_icloglock);
899 		iclog = log->l_iclog;
900 		atomic_inc(&iclog->ic_refcnt);
901 
902 		xlog_state_want_sync(log, iclog);
903 		spin_unlock(&log->l_icloglock);
904 		error =  xlog_state_release_iclog(log, iclog);
905 
906 		spin_lock(&log->l_icloglock);
907 
908 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
909 			|| iclog->ic_state == XLOG_STATE_DIRTY
910 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
911 
912 				xlog_wait(&iclog->ic_force_wait,
913 							&log->l_icloglock);
914 		} else {
915 			spin_unlock(&log->l_icloglock);
916 		}
917 	}
918 
919 	return error;
920 }	/* xfs_log_unmount_write */
921 
922 /*
923  * Empty the log for unmount/freeze.
924  *
925  * To do this, we first need to shut down the background log work so it is not
926  * trying to cover the log as we clean up. We then need to unpin all objects in
927  * the log so we can then flush them out. Once they have completed their IO and
928  * run the callbacks removing themselves from the AIL, we can write the unmount
929  * record.
930  */
931 void
932 xfs_log_quiesce(
933 	struct xfs_mount	*mp)
934 {
935 	cancel_delayed_work_sync(&mp->m_log->l_work);
936 	xfs_log_force(mp, XFS_LOG_SYNC);
937 
938 	/*
939 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
940 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
941 	 * xfs_buf_iowait() cannot be used because it was pushed with the
942 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
943 	 * the IO to complete.
944 	 */
945 	xfs_ail_push_all_sync(mp->m_ail);
946 	xfs_wait_buftarg(mp->m_ddev_targp);
947 	xfs_buf_lock(mp->m_sb_bp);
948 	xfs_buf_unlock(mp->m_sb_bp);
949 
950 	xfs_log_unmount_write(mp);
951 }
952 
953 /*
954  * Shut down and release the AIL and Log.
955  *
956  * During unmount, we need to ensure we flush all the dirty metadata objects
957  * from the AIL so that the log is empty before we write the unmount record to
958  * the log. Once this is done, we can tear down the AIL and the log.
959  */
960 void
961 xfs_log_unmount(
962 	struct xfs_mount	*mp)
963 {
964 	xfs_log_quiesce(mp);
965 
966 	xfs_trans_ail_destroy(mp);
967 
968 	xfs_sysfs_del(&mp->m_log->l_kobj);
969 
970 	xlog_dealloc_log(mp->m_log);
971 }
972 
973 void
974 xfs_log_item_init(
975 	struct xfs_mount	*mp,
976 	struct xfs_log_item	*item,
977 	int			type,
978 	const struct xfs_item_ops *ops)
979 {
980 	item->li_mountp = mp;
981 	item->li_ailp = mp->m_ail;
982 	item->li_type = type;
983 	item->li_ops = ops;
984 	item->li_lv = NULL;
985 
986 	INIT_LIST_HEAD(&item->li_ail);
987 	INIT_LIST_HEAD(&item->li_cil);
988 }
989 
990 /*
991  * Wake up processes waiting for log space after we have moved the log tail.
992  */
993 void
994 xfs_log_space_wake(
995 	struct xfs_mount	*mp)
996 {
997 	struct xlog		*log = mp->m_log;
998 	int			free_bytes;
999 
1000 	if (XLOG_FORCED_SHUTDOWN(log))
1001 		return;
1002 
1003 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1004 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1005 
1006 		spin_lock(&log->l_write_head.lock);
1007 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1008 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1009 		spin_unlock(&log->l_write_head.lock);
1010 	}
1011 
1012 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1013 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1014 
1015 		spin_lock(&log->l_reserve_head.lock);
1016 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1017 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1018 		spin_unlock(&log->l_reserve_head.lock);
1019 	}
1020 }
1021 
1022 /*
1023  * Determine if we have a transaction that has gone to disk that needs to be
1024  * covered. To begin the transition to the idle state firstly the log needs to
1025  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1026  * we start attempting to cover the log.
1027  *
1028  * Only if we are then in a state where covering is needed, the caller is
1029  * informed that dummy transactions are required to move the log into the idle
1030  * state.
1031  *
1032  * If there are any items in the AIl or CIL, then we do not want to attempt to
1033  * cover the log as we may be in a situation where there isn't log space
1034  * available to run a dummy transaction and this can lead to deadlocks when the
1035  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1036  * there's no point in running a dummy transaction at this point because we
1037  * can't start trying to idle the log until both the CIL and AIL are empty.
1038  */
1039 static int
1040 xfs_log_need_covered(xfs_mount_t *mp)
1041 {
1042 	struct xlog	*log = mp->m_log;
1043 	int		needed = 0;
1044 
1045 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1046 		return 0;
1047 
1048 	if (!xlog_cil_empty(log))
1049 		return 0;
1050 
1051 	spin_lock(&log->l_icloglock);
1052 	switch (log->l_covered_state) {
1053 	case XLOG_STATE_COVER_DONE:
1054 	case XLOG_STATE_COVER_DONE2:
1055 	case XLOG_STATE_COVER_IDLE:
1056 		break;
1057 	case XLOG_STATE_COVER_NEED:
1058 	case XLOG_STATE_COVER_NEED2:
1059 		if (xfs_ail_min_lsn(log->l_ailp))
1060 			break;
1061 		if (!xlog_iclogs_empty(log))
1062 			break;
1063 
1064 		needed = 1;
1065 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1066 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1067 		else
1068 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1069 		break;
1070 	default:
1071 		needed = 1;
1072 		break;
1073 	}
1074 	spin_unlock(&log->l_icloglock);
1075 	return needed;
1076 }
1077 
1078 /*
1079  * We may be holding the log iclog lock upon entering this routine.
1080  */
1081 xfs_lsn_t
1082 xlog_assign_tail_lsn_locked(
1083 	struct xfs_mount	*mp)
1084 {
1085 	struct xlog		*log = mp->m_log;
1086 	struct xfs_log_item	*lip;
1087 	xfs_lsn_t		tail_lsn;
1088 
1089 	assert_spin_locked(&mp->m_ail->xa_lock);
1090 
1091 	/*
1092 	 * To make sure we always have a valid LSN for the log tail we keep
1093 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1094 	 * and use that when the AIL was empty.
1095 	 */
1096 	lip = xfs_ail_min(mp->m_ail);
1097 	if (lip)
1098 		tail_lsn = lip->li_lsn;
1099 	else
1100 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1101 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1102 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1103 	return tail_lsn;
1104 }
1105 
1106 xfs_lsn_t
1107 xlog_assign_tail_lsn(
1108 	struct xfs_mount	*mp)
1109 {
1110 	xfs_lsn_t		tail_lsn;
1111 
1112 	spin_lock(&mp->m_ail->xa_lock);
1113 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1114 	spin_unlock(&mp->m_ail->xa_lock);
1115 
1116 	return tail_lsn;
1117 }
1118 
1119 /*
1120  * Return the space in the log between the tail and the head.  The head
1121  * is passed in the cycle/bytes formal parms.  In the special case where
1122  * the reserve head has wrapped passed the tail, this calculation is no
1123  * longer valid.  In this case, just return 0 which means there is no space
1124  * in the log.  This works for all places where this function is called
1125  * with the reserve head.  Of course, if the write head were to ever
1126  * wrap the tail, we should blow up.  Rather than catch this case here,
1127  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1128  *
1129  * This code also handles the case where the reservation head is behind
1130  * the tail.  The details of this case are described below, but the end
1131  * result is that we return the size of the log as the amount of space left.
1132  */
1133 STATIC int
1134 xlog_space_left(
1135 	struct xlog	*log,
1136 	atomic64_t	*head)
1137 {
1138 	int		free_bytes;
1139 	int		tail_bytes;
1140 	int		tail_cycle;
1141 	int		head_cycle;
1142 	int		head_bytes;
1143 
1144 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1145 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1146 	tail_bytes = BBTOB(tail_bytes);
1147 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1148 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1149 	else if (tail_cycle + 1 < head_cycle)
1150 		return 0;
1151 	else if (tail_cycle < head_cycle) {
1152 		ASSERT(tail_cycle == (head_cycle - 1));
1153 		free_bytes = tail_bytes - head_bytes;
1154 	} else {
1155 		/*
1156 		 * The reservation head is behind the tail.
1157 		 * In this case we just want to return the size of the
1158 		 * log as the amount of space left.
1159 		 */
1160 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1161 		xfs_alert(log->l_mp,
1162 			  "  tail_cycle = %d, tail_bytes = %d",
1163 			  tail_cycle, tail_bytes);
1164 		xfs_alert(log->l_mp,
1165 			  "  GH   cycle = %d, GH   bytes = %d",
1166 			  head_cycle, head_bytes);
1167 		ASSERT(0);
1168 		free_bytes = log->l_logsize;
1169 	}
1170 	return free_bytes;
1171 }
1172 
1173 
1174 /*
1175  * Log function which is called when an io completes.
1176  *
1177  * The log manager needs its own routine, in order to control what
1178  * happens with the buffer after the write completes.
1179  */
1180 static void
1181 xlog_iodone(xfs_buf_t *bp)
1182 {
1183 	struct xlog_in_core	*iclog = bp->b_fspriv;
1184 	struct xlog		*l = iclog->ic_log;
1185 	int			aborted = 0;
1186 
1187 	/*
1188 	 * Race to shutdown the filesystem if we see an error or the iclog is in
1189 	 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1190 	 * CRC errors into log recovery.
1191 	 */
1192 	if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1193 			   XFS_RANDOM_IODONE_IOERR) ||
1194 	    iclog->ic_state & XLOG_STATE_IOABORT) {
1195 		if (iclog->ic_state & XLOG_STATE_IOABORT)
1196 			iclog->ic_state &= ~XLOG_STATE_IOABORT;
1197 
1198 		xfs_buf_ioerror_alert(bp, __func__);
1199 		xfs_buf_stale(bp);
1200 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1201 		/*
1202 		 * This flag will be propagated to the trans-committed
1203 		 * callback routines to let them know that the log-commit
1204 		 * didn't succeed.
1205 		 */
1206 		aborted = XFS_LI_ABORTED;
1207 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1208 		aborted = XFS_LI_ABORTED;
1209 	}
1210 
1211 	/* log I/O is always issued ASYNC */
1212 	ASSERT(bp->b_flags & XBF_ASYNC);
1213 	xlog_state_done_syncing(iclog, aborted);
1214 
1215 	/*
1216 	 * drop the buffer lock now that we are done. Nothing references
1217 	 * the buffer after this, so an unmount waiting on this lock can now
1218 	 * tear it down safely. As such, it is unsafe to reference the buffer
1219 	 * (bp) after the unlock as we could race with it being freed.
1220 	 */
1221 	xfs_buf_unlock(bp);
1222 }
1223 
1224 /*
1225  * Return size of each in-core log record buffer.
1226  *
1227  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1228  *
1229  * If the filesystem blocksize is too large, we may need to choose a
1230  * larger size since the directory code currently logs entire blocks.
1231  */
1232 
1233 STATIC void
1234 xlog_get_iclog_buffer_size(
1235 	struct xfs_mount	*mp,
1236 	struct xlog		*log)
1237 {
1238 	int size;
1239 	int xhdrs;
1240 
1241 	if (mp->m_logbufs <= 0)
1242 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1243 	else
1244 		log->l_iclog_bufs = mp->m_logbufs;
1245 
1246 	/*
1247 	 * Buffer size passed in from mount system call.
1248 	 */
1249 	if (mp->m_logbsize > 0) {
1250 		size = log->l_iclog_size = mp->m_logbsize;
1251 		log->l_iclog_size_log = 0;
1252 		while (size != 1) {
1253 			log->l_iclog_size_log++;
1254 			size >>= 1;
1255 		}
1256 
1257 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1258 			/* # headers = size / 32k
1259 			 * one header holds cycles from 32k of data
1260 			 */
1261 
1262 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1263 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1264 				xhdrs++;
1265 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1266 			log->l_iclog_heads = xhdrs;
1267 		} else {
1268 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1269 			log->l_iclog_hsize = BBSIZE;
1270 			log->l_iclog_heads = 1;
1271 		}
1272 		goto done;
1273 	}
1274 
1275 	/* All machines use 32kB buffers by default. */
1276 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1277 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1278 
1279 	/* the default log size is 16k or 32k which is one header sector */
1280 	log->l_iclog_hsize = BBSIZE;
1281 	log->l_iclog_heads = 1;
1282 
1283 done:
1284 	/* are we being asked to make the sizes selected above visible? */
1285 	if (mp->m_logbufs == 0)
1286 		mp->m_logbufs = log->l_iclog_bufs;
1287 	if (mp->m_logbsize == 0)
1288 		mp->m_logbsize = log->l_iclog_size;
1289 }	/* xlog_get_iclog_buffer_size */
1290 
1291 
1292 void
1293 xfs_log_work_queue(
1294 	struct xfs_mount        *mp)
1295 {
1296 	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1297 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1298 }
1299 
1300 /*
1301  * Every sync period we need to unpin all items in the AIL and push them to
1302  * disk. If there is nothing dirty, then we might need to cover the log to
1303  * indicate that the filesystem is idle.
1304  */
1305 static void
1306 xfs_log_worker(
1307 	struct work_struct	*work)
1308 {
1309 	struct xlog		*log = container_of(to_delayed_work(work),
1310 						struct xlog, l_work);
1311 	struct xfs_mount	*mp = log->l_mp;
1312 
1313 	/* dgc: errors ignored - not fatal and nowhere to report them */
1314 	if (xfs_log_need_covered(mp)) {
1315 		/*
1316 		 * Dump a transaction into the log that contains no real change.
1317 		 * This is needed to stamp the current tail LSN into the log
1318 		 * during the covering operation.
1319 		 *
1320 		 * We cannot use an inode here for this - that will push dirty
1321 		 * state back up into the VFS and then periodic inode flushing
1322 		 * will prevent log covering from making progress. Hence we
1323 		 * synchronously log the superblock instead to ensure the
1324 		 * superblock is immediately unpinned and can be written back.
1325 		 */
1326 		xfs_sync_sb(mp, true);
1327 	} else
1328 		xfs_log_force(mp, 0);
1329 
1330 	/* start pushing all the metadata that is currently dirty */
1331 	xfs_ail_push_all(mp->m_ail);
1332 
1333 	/* queue us up again */
1334 	xfs_log_work_queue(mp);
1335 }
1336 
1337 /*
1338  * This routine initializes some of the log structure for a given mount point.
1339  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1340  * some other stuff may be filled in too.
1341  */
1342 STATIC struct xlog *
1343 xlog_alloc_log(
1344 	struct xfs_mount	*mp,
1345 	struct xfs_buftarg	*log_target,
1346 	xfs_daddr_t		blk_offset,
1347 	int			num_bblks)
1348 {
1349 	struct xlog		*log;
1350 	xlog_rec_header_t	*head;
1351 	xlog_in_core_t		**iclogp;
1352 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1353 	xfs_buf_t		*bp;
1354 	int			i;
1355 	int			error = -ENOMEM;
1356 	uint			log2_size = 0;
1357 
1358 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1359 	if (!log) {
1360 		xfs_warn(mp, "Log allocation failed: No memory!");
1361 		goto out;
1362 	}
1363 
1364 	log->l_mp	   = mp;
1365 	log->l_targ	   = log_target;
1366 	log->l_logsize     = BBTOB(num_bblks);
1367 	log->l_logBBstart  = blk_offset;
1368 	log->l_logBBsize   = num_bblks;
1369 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1370 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1371 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1372 
1373 	log->l_prev_block  = -1;
1374 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1375 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1376 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1377 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1378 
1379 	xlog_grant_head_init(&log->l_reserve_head);
1380 	xlog_grant_head_init(&log->l_write_head);
1381 
1382 	error = -EFSCORRUPTED;
1383 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1384 	        log2_size = mp->m_sb.sb_logsectlog;
1385 		if (log2_size < BBSHIFT) {
1386 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1387 				log2_size, BBSHIFT);
1388 			goto out_free_log;
1389 		}
1390 
1391 	        log2_size -= BBSHIFT;
1392 		if (log2_size > mp->m_sectbb_log) {
1393 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1394 				log2_size, mp->m_sectbb_log);
1395 			goto out_free_log;
1396 		}
1397 
1398 		/* for larger sector sizes, must have v2 or external log */
1399 		if (log2_size && log->l_logBBstart > 0 &&
1400 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1401 			xfs_warn(mp,
1402 		"log sector size (0x%x) invalid for configuration.",
1403 				log2_size);
1404 			goto out_free_log;
1405 		}
1406 	}
1407 	log->l_sectBBsize = 1 << log2_size;
1408 
1409 	xlog_get_iclog_buffer_size(mp, log);
1410 
1411 	/*
1412 	 * Use a NULL block for the extra log buffer used during splits so that
1413 	 * it will trigger errors if we ever try to do IO on it without first
1414 	 * having set it up properly.
1415 	 */
1416 	error = -ENOMEM;
1417 	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1418 			   BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1419 	if (!bp)
1420 		goto out_free_log;
1421 
1422 	/*
1423 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1424 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1425 	 * when appropriately.
1426 	 */
1427 	ASSERT(xfs_buf_islocked(bp));
1428 	xfs_buf_unlock(bp);
1429 
1430 	/* use high priority wq for log I/O completion */
1431 	bp->b_ioend_wq = mp->m_log_workqueue;
1432 	bp->b_iodone = xlog_iodone;
1433 	log->l_xbuf = bp;
1434 
1435 	spin_lock_init(&log->l_icloglock);
1436 	init_waitqueue_head(&log->l_flush_wait);
1437 
1438 	iclogp = &log->l_iclog;
1439 	/*
1440 	 * The amount of memory to allocate for the iclog structure is
1441 	 * rather funky due to the way the structure is defined.  It is
1442 	 * done this way so that we can use different sizes for machines
1443 	 * with different amounts of memory.  See the definition of
1444 	 * xlog_in_core_t in xfs_log_priv.h for details.
1445 	 */
1446 	ASSERT(log->l_iclog_size >= 4096);
1447 	for (i=0; i < log->l_iclog_bufs; i++) {
1448 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1449 		if (!*iclogp)
1450 			goto out_free_iclog;
1451 
1452 		iclog = *iclogp;
1453 		iclog->ic_prev = prev_iclog;
1454 		prev_iclog = iclog;
1455 
1456 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1457 					  BTOBB(log->l_iclog_size),
1458 					  XBF_NO_IOACCT);
1459 		if (!bp)
1460 			goto out_free_iclog;
1461 
1462 		ASSERT(xfs_buf_islocked(bp));
1463 		xfs_buf_unlock(bp);
1464 
1465 		/* use high priority wq for log I/O completion */
1466 		bp->b_ioend_wq = mp->m_log_workqueue;
1467 		bp->b_iodone = xlog_iodone;
1468 		iclog->ic_bp = bp;
1469 		iclog->ic_data = bp->b_addr;
1470 #ifdef DEBUG
1471 		log->l_iclog_bak[i] = &iclog->ic_header;
1472 #endif
1473 		head = &iclog->ic_header;
1474 		memset(head, 0, sizeof(xlog_rec_header_t));
1475 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1476 		head->h_version = cpu_to_be32(
1477 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1478 		head->h_size = cpu_to_be32(log->l_iclog_size);
1479 		/* new fields */
1480 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1481 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1482 
1483 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1484 		iclog->ic_state = XLOG_STATE_ACTIVE;
1485 		iclog->ic_log = log;
1486 		atomic_set(&iclog->ic_refcnt, 0);
1487 		spin_lock_init(&iclog->ic_callback_lock);
1488 		iclog->ic_callback_tail = &(iclog->ic_callback);
1489 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1490 
1491 		init_waitqueue_head(&iclog->ic_force_wait);
1492 		init_waitqueue_head(&iclog->ic_write_wait);
1493 
1494 		iclogp = &iclog->ic_next;
1495 	}
1496 	*iclogp = log->l_iclog;			/* complete ring */
1497 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1498 
1499 	error = xlog_cil_init(log);
1500 	if (error)
1501 		goto out_free_iclog;
1502 	return log;
1503 
1504 out_free_iclog:
1505 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1506 		prev_iclog = iclog->ic_next;
1507 		if (iclog->ic_bp)
1508 			xfs_buf_free(iclog->ic_bp);
1509 		kmem_free(iclog);
1510 	}
1511 	spinlock_destroy(&log->l_icloglock);
1512 	xfs_buf_free(log->l_xbuf);
1513 out_free_log:
1514 	kmem_free(log);
1515 out:
1516 	return ERR_PTR(error);
1517 }	/* xlog_alloc_log */
1518 
1519 
1520 /*
1521  * Write out the commit record of a transaction associated with the given
1522  * ticket.  Return the lsn of the commit record.
1523  */
1524 STATIC int
1525 xlog_commit_record(
1526 	struct xlog		*log,
1527 	struct xlog_ticket	*ticket,
1528 	struct xlog_in_core	**iclog,
1529 	xfs_lsn_t		*commitlsnp)
1530 {
1531 	struct xfs_mount *mp = log->l_mp;
1532 	int	error;
1533 	struct xfs_log_iovec reg = {
1534 		.i_addr = NULL,
1535 		.i_len = 0,
1536 		.i_type = XLOG_REG_TYPE_COMMIT,
1537 	};
1538 	struct xfs_log_vec vec = {
1539 		.lv_niovecs = 1,
1540 		.lv_iovecp = &reg,
1541 	};
1542 
1543 	ASSERT_ALWAYS(iclog);
1544 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1545 					XLOG_COMMIT_TRANS);
1546 	if (error)
1547 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1548 	return error;
1549 }
1550 
1551 /*
1552  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1553  * log space.  This code pushes on the lsn which would supposedly free up
1554  * the 25% which we want to leave free.  We may need to adopt a policy which
1555  * pushes on an lsn which is further along in the log once we reach the high
1556  * water mark.  In this manner, we would be creating a low water mark.
1557  */
1558 STATIC void
1559 xlog_grant_push_ail(
1560 	struct xlog	*log,
1561 	int		need_bytes)
1562 {
1563 	xfs_lsn_t	threshold_lsn = 0;
1564 	xfs_lsn_t	last_sync_lsn;
1565 	int		free_blocks;
1566 	int		free_bytes;
1567 	int		threshold_block;
1568 	int		threshold_cycle;
1569 	int		free_threshold;
1570 
1571 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1572 
1573 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1574 	free_blocks = BTOBBT(free_bytes);
1575 
1576 	/*
1577 	 * Set the threshold for the minimum number of free blocks in the
1578 	 * log to the maximum of what the caller needs, one quarter of the
1579 	 * log, and 256 blocks.
1580 	 */
1581 	free_threshold = BTOBB(need_bytes);
1582 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1583 	free_threshold = MAX(free_threshold, 256);
1584 	if (free_blocks >= free_threshold)
1585 		return;
1586 
1587 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1588 						&threshold_block);
1589 	threshold_block += free_threshold;
1590 	if (threshold_block >= log->l_logBBsize) {
1591 		threshold_block -= log->l_logBBsize;
1592 		threshold_cycle += 1;
1593 	}
1594 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1595 					threshold_block);
1596 	/*
1597 	 * Don't pass in an lsn greater than the lsn of the last
1598 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1599 	 * so that it doesn't change between the compare and the set.
1600 	 */
1601 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1602 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1603 		threshold_lsn = last_sync_lsn;
1604 
1605 	/*
1606 	 * Get the transaction layer to kick the dirty buffers out to
1607 	 * disk asynchronously. No point in trying to do this if
1608 	 * the filesystem is shutting down.
1609 	 */
1610 	if (!XLOG_FORCED_SHUTDOWN(log))
1611 		xfs_ail_push(log->l_ailp, threshold_lsn);
1612 }
1613 
1614 /*
1615  * Stamp cycle number in every block
1616  */
1617 STATIC void
1618 xlog_pack_data(
1619 	struct xlog		*log,
1620 	struct xlog_in_core	*iclog,
1621 	int			roundoff)
1622 {
1623 	int			i, j, k;
1624 	int			size = iclog->ic_offset + roundoff;
1625 	__be32			cycle_lsn;
1626 	char			*dp;
1627 
1628 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1629 
1630 	dp = iclog->ic_datap;
1631 	for (i = 0; i < BTOBB(size); i++) {
1632 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1633 			break;
1634 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1635 		*(__be32 *)dp = cycle_lsn;
1636 		dp += BBSIZE;
1637 	}
1638 
1639 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1640 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1641 
1642 		for ( ; i < BTOBB(size); i++) {
1643 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1644 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1645 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1646 			*(__be32 *)dp = cycle_lsn;
1647 			dp += BBSIZE;
1648 		}
1649 
1650 		for (i = 1; i < log->l_iclog_heads; i++)
1651 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1652 	}
1653 }
1654 
1655 /*
1656  * Calculate the checksum for a log buffer.
1657  *
1658  * This is a little more complicated than it should be because the various
1659  * headers and the actual data are non-contiguous.
1660  */
1661 __le32
1662 xlog_cksum(
1663 	struct xlog		*log,
1664 	struct xlog_rec_header	*rhead,
1665 	char			*dp,
1666 	int			size)
1667 {
1668 	__uint32_t		crc;
1669 
1670 	/* first generate the crc for the record header ... */
1671 	crc = xfs_start_cksum((char *)rhead,
1672 			      sizeof(struct xlog_rec_header),
1673 			      offsetof(struct xlog_rec_header, h_crc));
1674 
1675 	/* ... then for additional cycle data for v2 logs ... */
1676 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1677 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1678 		int		i;
1679 		int		xheads;
1680 
1681 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1682 		if (size % XLOG_HEADER_CYCLE_SIZE)
1683 			xheads++;
1684 
1685 		for (i = 1; i < xheads; i++) {
1686 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1687 				     sizeof(struct xlog_rec_ext_header));
1688 		}
1689 	}
1690 
1691 	/* ... and finally for the payload */
1692 	crc = crc32c(crc, dp, size);
1693 
1694 	return xfs_end_cksum(crc);
1695 }
1696 
1697 /*
1698  * The bdstrat callback function for log bufs. This gives us a central
1699  * place to trap bufs in case we get hit by a log I/O error and need to
1700  * shutdown. Actually, in practice, even when we didn't get a log error,
1701  * we transition the iclogs to IOERROR state *after* flushing all existing
1702  * iclogs to disk. This is because we don't want anymore new transactions to be
1703  * started or completed afterwards.
1704  *
1705  * We lock the iclogbufs here so that we can serialise against IO completion
1706  * during unmount. We might be processing a shutdown triggered during unmount,
1707  * and that can occur asynchronously to the unmount thread, and hence we need to
1708  * ensure that completes before tearing down the iclogbufs. Hence we need to
1709  * hold the buffer lock across the log IO to acheive that.
1710  */
1711 STATIC int
1712 xlog_bdstrat(
1713 	struct xfs_buf		*bp)
1714 {
1715 	struct xlog_in_core	*iclog = bp->b_fspriv;
1716 
1717 	xfs_buf_lock(bp);
1718 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1719 		xfs_buf_ioerror(bp, -EIO);
1720 		xfs_buf_stale(bp);
1721 		xfs_buf_ioend(bp);
1722 		/*
1723 		 * It would seem logical to return EIO here, but we rely on
1724 		 * the log state machine to propagate I/O errors instead of
1725 		 * doing it here. Similarly, IO completion will unlock the
1726 		 * buffer, so we don't do it here.
1727 		 */
1728 		return 0;
1729 	}
1730 
1731 	xfs_buf_submit(bp);
1732 	return 0;
1733 }
1734 
1735 /*
1736  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1737  * fashion.  Previously, we should have moved the current iclog
1738  * ptr in the log to point to the next available iclog.  This allows further
1739  * write to continue while this code syncs out an iclog ready to go.
1740  * Before an in-core log can be written out, the data section must be scanned
1741  * to save away the 1st word of each BBSIZE block into the header.  We replace
1742  * it with the current cycle count.  Each BBSIZE block is tagged with the
1743  * cycle count because there in an implicit assumption that drives will
1744  * guarantee that entire 512 byte blocks get written at once.  In other words,
1745  * we can't have part of a 512 byte block written and part not written.  By
1746  * tagging each block, we will know which blocks are valid when recovering
1747  * after an unclean shutdown.
1748  *
1749  * This routine is single threaded on the iclog.  No other thread can be in
1750  * this routine with the same iclog.  Changing contents of iclog can there-
1751  * fore be done without grabbing the state machine lock.  Updating the global
1752  * log will require grabbing the lock though.
1753  *
1754  * The entire log manager uses a logical block numbering scheme.  Only
1755  * log_sync (and then only bwrite()) know about the fact that the log may
1756  * not start with block zero on a given device.  The log block start offset
1757  * is added immediately before calling bwrite().
1758  */
1759 
1760 STATIC int
1761 xlog_sync(
1762 	struct xlog		*log,
1763 	struct xlog_in_core	*iclog)
1764 {
1765 	xfs_buf_t	*bp;
1766 	int		i;
1767 	uint		count;		/* byte count of bwrite */
1768 	uint		count_init;	/* initial count before roundup */
1769 	int		roundoff;       /* roundoff to BB or stripe */
1770 	int		split = 0;	/* split write into two regions */
1771 	int		error;
1772 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1773 	int		size;
1774 
1775 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1776 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1777 
1778 	/* Add for LR header */
1779 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1780 
1781 	/* Round out the log write size */
1782 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1783 		/* we have a v2 stripe unit to use */
1784 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1785 	} else {
1786 		count = BBTOB(BTOBB(count_init));
1787 	}
1788 	roundoff = count - count_init;
1789 	ASSERT(roundoff >= 0);
1790 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1791                 roundoff < log->l_mp->m_sb.sb_logsunit)
1792 		||
1793 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1794 		 roundoff < BBTOB(1)));
1795 
1796 	/* move grant heads by roundoff in sync */
1797 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1798 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1799 
1800 	/* put cycle number in every block */
1801 	xlog_pack_data(log, iclog, roundoff);
1802 
1803 	/* real byte length */
1804 	size = iclog->ic_offset;
1805 	if (v2)
1806 		size += roundoff;
1807 	iclog->ic_header.h_len = cpu_to_be32(size);
1808 
1809 	bp = iclog->ic_bp;
1810 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1811 
1812 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1813 
1814 	/* Do we need to split this write into 2 parts? */
1815 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1816 		char		*dptr;
1817 
1818 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1819 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1820 		iclog->ic_bwritecnt = 2;
1821 
1822 		/*
1823 		 * Bump the cycle numbers at the start of each block in the
1824 		 * part of the iclog that ends up in the buffer that gets
1825 		 * written to the start of the log.
1826 		 *
1827 		 * Watch out for the header magic number case, though.
1828 		 */
1829 		dptr = (char *)&iclog->ic_header + count;
1830 		for (i = 0; i < split; i += BBSIZE) {
1831 			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1832 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1833 				cycle++;
1834 			*(__be32 *)dptr = cpu_to_be32(cycle);
1835 
1836 			dptr += BBSIZE;
1837 		}
1838 	} else {
1839 		iclog->ic_bwritecnt = 1;
1840 	}
1841 
1842 	/* calculcate the checksum */
1843 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1844 					    iclog->ic_datap, size);
1845 #ifdef DEBUG
1846 	/*
1847 	 * Intentionally corrupt the log record CRC based on the error injection
1848 	 * frequency, if defined. This facilitates testing log recovery in the
1849 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1850 	 * write on I/O completion and shutdown the fs. The subsequent mount
1851 	 * detects the bad CRC and attempts to recover.
1852 	 */
1853 	if (log->l_badcrc_factor &&
1854 	    (prandom_u32() % log->l_badcrc_factor == 0)) {
1855 		iclog->ic_header.h_crc &= 0xAAAAAAAA;
1856 		iclog->ic_state |= XLOG_STATE_IOABORT;
1857 		xfs_warn(log->l_mp,
1858 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1859 			 be64_to_cpu(iclog->ic_header.h_lsn));
1860 	}
1861 #endif
1862 
1863 	bp->b_io_length = BTOBB(count);
1864 	bp->b_fspriv = iclog;
1865 	bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1866 	bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1867 
1868 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1869 		bp->b_flags |= XBF_FUA;
1870 
1871 		/*
1872 		 * Flush the data device before flushing the log to make
1873 		 * sure all meta data written back from the AIL actually made
1874 		 * it to disk before stamping the new log tail LSN into the
1875 		 * log buffer.  For an external log we need to issue the
1876 		 * flush explicitly, and unfortunately synchronously here;
1877 		 * for an internal log we can simply use the block layer
1878 		 * state machine for preflushes.
1879 		 */
1880 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1881 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1882 		else
1883 			bp->b_flags |= XBF_FLUSH;
1884 	}
1885 
1886 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1887 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1888 
1889 	xlog_verify_iclog(log, iclog, count, true);
1890 
1891 	/* account for log which doesn't start at block #0 */
1892 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1893 
1894 	/*
1895 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1896 	 * is shutting down.
1897 	 */
1898 	error = xlog_bdstrat(bp);
1899 	if (error) {
1900 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1901 		return error;
1902 	}
1903 	if (split) {
1904 		bp = iclog->ic_log->l_xbuf;
1905 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1906 		xfs_buf_associate_memory(bp,
1907 				(char *)&iclog->ic_header + count, split);
1908 		bp->b_fspriv = iclog;
1909 		bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1910 		bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1911 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1912 			bp->b_flags |= XBF_FUA;
1913 
1914 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1915 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1916 
1917 		/* account for internal log which doesn't start at block #0 */
1918 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1919 		error = xlog_bdstrat(bp);
1920 		if (error) {
1921 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1922 			return error;
1923 		}
1924 	}
1925 	return 0;
1926 }	/* xlog_sync */
1927 
1928 /*
1929  * Deallocate a log structure
1930  */
1931 STATIC void
1932 xlog_dealloc_log(
1933 	struct xlog	*log)
1934 {
1935 	xlog_in_core_t	*iclog, *next_iclog;
1936 	int		i;
1937 
1938 	xlog_cil_destroy(log);
1939 
1940 	/*
1941 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1942 	 * is done before we tear down these buffers.
1943 	 */
1944 	iclog = log->l_iclog;
1945 	for (i = 0; i < log->l_iclog_bufs; i++) {
1946 		xfs_buf_lock(iclog->ic_bp);
1947 		xfs_buf_unlock(iclog->ic_bp);
1948 		iclog = iclog->ic_next;
1949 	}
1950 
1951 	/*
1952 	 * Always need to ensure that the extra buffer does not point to memory
1953 	 * owned by another log buffer before we free it. Also, cycle the lock
1954 	 * first to ensure we've completed IO on it.
1955 	 */
1956 	xfs_buf_lock(log->l_xbuf);
1957 	xfs_buf_unlock(log->l_xbuf);
1958 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1959 	xfs_buf_free(log->l_xbuf);
1960 
1961 	iclog = log->l_iclog;
1962 	for (i = 0; i < log->l_iclog_bufs; i++) {
1963 		xfs_buf_free(iclog->ic_bp);
1964 		next_iclog = iclog->ic_next;
1965 		kmem_free(iclog);
1966 		iclog = next_iclog;
1967 	}
1968 	spinlock_destroy(&log->l_icloglock);
1969 
1970 	log->l_mp->m_log = NULL;
1971 	kmem_free(log);
1972 }	/* xlog_dealloc_log */
1973 
1974 /*
1975  * Update counters atomically now that memcpy is done.
1976  */
1977 /* ARGSUSED */
1978 static inline void
1979 xlog_state_finish_copy(
1980 	struct xlog		*log,
1981 	struct xlog_in_core	*iclog,
1982 	int			record_cnt,
1983 	int			copy_bytes)
1984 {
1985 	spin_lock(&log->l_icloglock);
1986 
1987 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1988 	iclog->ic_offset += copy_bytes;
1989 
1990 	spin_unlock(&log->l_icloglock);
1991 }	/* xlog_state_finish_copy */
1992 
1993 
1994 
1995 
1996 /*
1997  * print out info relating to regions written which consume
1998  * the reservation
1999  */
2000 void
2001 xlog_print_tic_res(
2002 	struct xfs_mount	*mp,
2003 	struct xlog_ticket	*ticket)
2004 {
2005 	uint i;
2006 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2007 
2008 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2009 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2010 	static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2011 	    REG_TYPE_STR(BFORMAT, "bformat"),
2012 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2013 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2014 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2015 	    REG_TYPE_STR(IFORMAT, "iformat"),
2016 	    REG_TYPE_STR(ICORE, "icore"),
2017 	    REG_TYPE_STR(IEXT, "iext"),
2018 	    REG_TYPE_STR(IBROOT, "ibroot"),
2019 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2020 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2021 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2022 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2023 	    REG_TYPE_STR(QFORMAT, "qformat"),
2024 	    REG_TYPE_STR(DQUOT, "dquot"),
2025 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2026 	    REG_TYPE_STR(LRHEADER, "LR header"),
2027 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2028 	    REG_TYPE_STR(COMMIT, "commit"),
2029 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2030 	    REG_TYPE_STR(ICREATE, "inode create")
2031 	};
2032 #undef REG_TYPE_STR
2033 
2034 	xfs_warn(mp, "xlog_write: reservation summary:");
2035 	xfs_warn(mp, "  unit res    = %d bytes",
2036 		 ticket->t_unit_res);
2037 	xfs_warn(mp, "  current res = %d bytes",
2038 		 ticket->t_curr_res);
2039 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2040 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2041 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2042 		 ticket->t_res_num_ophdrs, ophdr_spc);
2043 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2044 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2045 	xfs_warn(mp, "  num regions = %u",
2046 		 ticket->t_res_num);
2047 
2048 	for (i = 0; i < ticket->t_res_num; i++) {
2049 		uint r_type = ticket->t_res_arr[i].r_type;
2050 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2051 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2052 			    "bad-rtype" : res_type_str[r_type]),
2053 			    ticket->t_res_arr[i].r_len);
2054 	}
2055 
2056 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2057 		"xlog_write: reservation ran out. Need to up reservation");
2058 	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2059 }
2060 
2061 /*
2062  * Calculate the potential space needed by the log vector.  Each region gets
2063  * its own xlog_op_header_t and may need to be double word aligned.
2064  */
2065 static int
2066 xlog_write_calc_vec_length(
2067 	struct xlog_ticket	*ticket,
2068 	struct xfs_log_vec	*log_vector)
2069 {
2070 	struct xfs_log_vec	*lv;
2071 	int			headers = 0;
2072 	int			len = 0;
2073 	int			i;
2074 
2075 	/* acct for start rec of xact */
2076 	if (ticket->t_flags & XLOG_TIC_INITED)
2077 		headers++;
2078 
2079 	for (lv = log_vector; lv; lv = lv->lv_next) {
2080 		/* we don't write ordered log vectors */
2081 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2082 			continue;
2083 
2084 		headers += lv->lv_niovecs;
2085 
2086 		for (i = 0; i < lv->lv_niovecs; i++) {
2087 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2088 
2089 			len += vecp->i_len;
2090 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2091 		}
2092 	}
2093 
2094 	ticket->t_res_num_ophdrs += headers;
2095 	len += headers * sizeof(struct xlog_op_header);
2096 
2097 	return len;
2098 }
2099 
2100 /*
2101  * If first write for transaction, insert start record  We can't be trying to
2102  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2103  */
2104 static int
2105 xlog_write_start_rec(
2106 	struct xlog_op_header	*ophdr,
2107 	struct xlog_ticket	*ticket)
2108 {
2109 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2110 		return 0;
2111 
2112 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2113 	ophdr->oh_clientid = ticket->t_clientid;
2114 	ophdr->oh_len = 0;
2115 	ophdr->oh_flags = XLOG_START_TRANS;
2116 	ophdr->oh_res2 = 0;
2117 
2118 	ticket->t_flags &= ~XLOG_TIC_INITED;
2119 
2120 	return sizeof(struct xlog_op_header);
2121 }
2122 
2123 static xlog_op_header_t *
2124 xlog_write_setup_ophdr(
2125 	struct xlog		*log,
2126 	struct xlog_op_header	*ophdr,
2127 	struct xlog_ticket	*ticket,
2128 	uint			flags)
2129 {
2130 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2131 	ophdr->oh_clientid = ticket->t_clientid;
2132 	ophdr->oh_res2 = 0;
2133 
2134 	/* are we copying a commit or unmount record? */
2135 	ophdr->oh_flags = flags;
2136 
2137 	/*
2138 	 * We've seen logs corrupted with bad transaction client ids.  This
2139 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2140 	 * and shut down the filesystem.
2141 	 */
2142 	switch (ophdr->oh_clientid)  {
2143 	case XFS_TRANSACTION:
2144 	case XFS_VOLUME:
2145 	case XFS_LOG:
2146 		break;
2147 	default:
2148 		xfs_warn(log->l_mp,
2149 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2150 			ophdr->oh_clientid, ticket);
2151 		return NULL;
2152 	}
2153 
2154 	return ophdr;
2155 }
2156 
2157 /*
2158  * Set up the parameters of the region copy into the log. This has
2159  * to handle region write split across multiple log buffers - this
2160  * state is kept external to this function so that this code can
2161  * be written in an obvious, self documenting manner.
2162  */
2163 static int
2164 xlog_write_setup_copy(
2165 	struct xlog_ticket	*ticket,
2166 	struct xlog_op_header	*ophdr,
2167 	int			space_available,
2168 	int			space_required,
2169 	int			*copy_off,
2170 	int			*copy_len,
2171 	int			*last_was_partial_copy,
2172 	int			*bytes_consumed)
2173 {
2174 	int			still_to_copy;
2175 
2176 	still_to_copy = space_required - *bytes_consumed;
2177 	*copy_off = *bytes_consumed;
2178 
2179 	if (still_to_copy <= space_available) {
2180 		/* write of region completes here */
2181 		*copy_len = still_to_copy;
2182 		ophdr->oh_len = cpu_to_be32(*copy_len);
2183 		if (*last_was_partial_copy)
2184 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2185 		*last_was_partial_copy = 0;
2186 		*bytes_consumed = 0;
2187 		return 0;
2188 	}
2189 
2190 	/* partial write of region, needs extra log op header reservation */
2191 	*copy_len = space_available;
2192 	ophdr->oh_len = cpu_to_be32(*copy_len);
2193 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2194 	if (*last_was_partial_copy)
2195 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2196 	*bytes_consumed += *copy_len;
2197 	(*last_was_partial_copy)++;
2198 
2199 	/* account for new log op header */
2200 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2201 	ticket->t_res_num_ophdrs++;
2202 
2203 	return sizeof(struct xlog_op_header);
2204 }
2205 
2206 static int
2207 xlog_write_copy_finish(
2208 	struct xlog		*log,
2209 	struct xlog_in_core	*iclog,
2210 	uint			flags,
2211 	int			*record_cnt,
2212 	int			*data_cnt,
2213 	int			*partial_copy,
2214 	int			*partial_copy_len,
2215 	int			log_offset,
2216 	struct xlog_in_core	**commit_iclog)
2217 {
2218 	if (*partial_copy) {
2219 		/*
2220 		 * This iclog has already been marked WANT_SYNC by
2221 		 * xlog_state_get_iclog_space.
2222 		 */
2223 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2224 		*record_cnt = 0;
2225 		*data_cnt = 0;
2226 		return xlog_state_release_iclog(log, iclog);
2227 	}
2228 
2229 	*partial_copy = 0;
2230 	*partial_copy_len = 0;
2231 
2232 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2233 		/* no more space in this iclog - push it. */
2234 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2235 		*record_cnt = 0;
2236 		*data_cnt = 0;
2237 
2238 		spin_lock(&log->l_icloglock);
2239 		xlog_state_want_sync(log, iclog);
2240 		spin_unlock(&log->l_icloglock);
2241 
2242 		if (!commit_iclog)
2243 			return xlog_state_release_iclog(log, iclog);
2244 		ASSERT(flags & XLOG_COMMIT_TRANS);
2245 		*commit_iclog = iclog;
2246 	}
2247 
2248 	return 0;
2249 }
2250 
2251 /*
2252  * Write some region out to in-core log
2253  *
2254  * This will be called when writing externally provided regions or when
2255  * writing out a commit record for a given transaction.
2256  *
2257  * General algorithm:
2258  *	1. Find total length of this write.  This may include adding to the
2259  *		lengths passed in.
2260  *	2. Check whether we violate the tickets reservation.
2261  *	3. While writing to this iclog
2262  *	    A. Reserve as much space in this iclog as can get
2263  *	    B. If this is first write, save away start lsn
2264  *	    C. While writing this region:
2265  *		1. If first write of transaction, write start record
2266  *		2. Write log operation header (header per region)
2267  *		3. Find out if we can fit entire region into this iclog
2268  *		4. Potentially, verify destination memcpy ptr
2269  *		5. Memcpy (partial) region
2270  *		6. If partial copy, release iclog; otherwise, continue
2271  *			copying more regions into current iclog
2272  *	4. Mark want sync bit (in simulation mode)
2273  *	5. Release iclog for potential flush to on-disk log.
2274  *
2275  * ERRORS:
2276  * 1.	Panic if reservation is overrun.  This should never happen since
2277  *	reservation amounts are generated internal to the filesystem.
2278  * NOTES:
2279  * 1. Tickets are single threaded data structures.
2280  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2281  *	syncing routine.  When a single log_write region needs to span
2282  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2283  *	on all log operation writes which don't contain the end of the
2284  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2285  *	operation which contains the end of the continued log_write region.
2286  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2287  *	we don't really know exactly how much space will be used.  As a result,
2288  *	we don't update ic_offset until the end when we know exactly how many
2289  *	bytes have been written out.
2290  */
2291 int
2292 xlog_write(
2293 	struct xlog		*log,
2294 	struct xfs_log_vec	*log_vector,
2295 	struct xlog_ticket	*ticket,
2296 	xfs_lsn_t		*start_lsn,
2297 	struct xlog_in_core	**commit_iclog,
2298 	uint			flags)
2299 {
2300 	struct xlog_in_core	*iclog = NULL;
2301 	struct xfs_log_iovec	*vecp;
2302 	struct xfs_log_vec	*lv;
2303 	int			len;
2304 	int			index;
2305 	int			partial_copy = 0;
2306 	int			partial_copy_len = 0;
2307 	int			contwr = 0;
2308 	int			record_cnt = 0;
2309 	int			data_cnt = 0;
2310 	int			error;
2311 
2312 	*start_lsn = 0;
2313 
2314 	len = xlog_write_calc_vec_length(ticket, log_vector);
2315 
2316 	/*
2317 	 * Region headers and bytes are already accounted for.
2318 	 * We only need to take into account start records and
2319 	 * split regions in this function.
2320 	 */
2321 	if (ticket->t_flags & XLOG_TIC_INITED)
2322 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2323 
2324 	/*
2325 	 * Commit record headers need to be accounted for. These
2326 	 * come in as separate writes so are easy to detect.
2327 	 */
2328 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2329 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2330 
2331 	if (ticket->t_curr_res < 0)
2332 		xlog_print_tic_res(log->l_mp, ticket);
2333 
2334 	index = 0;
2335 	lv = log_vector;
2336 	vecp = lv->lv_iovecp;
2337 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2338 		void		*ptr;
2339 		int		log_offset;
2340 
2341 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2342 						   &contwr, &log_offset);
2343 		if (error)
2344 			return error;
2345 
2346 		ASSERT(log_offset <= iclog->ic_size - 1);
2347 		ptr = iclog->ic_datap + log_offset;
2348 
2349 		/* start_lsn is the first lsn written to. That's all we need. */
2350 		if (!*start_lsn)
2351 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2352 
2353 		/*
2354 		 * This loop writes out as many regions as can fit in the amount
2355 		 * of space which was allocated by xlog_state_get_iclog_space().
2356 		 */
2357 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2358 			struct xfs_log_iovec	*reg;
2359 			struct xlog_op_header	*ophdr;
2360 			int			start_rec_copy;
2361 			int			copy_len;
2362 			int			copy_off;
2363 			bool			ordered = false;
2364 
2365 			/* ordered log vectors have no regions to write */
2366 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2367 				ASSERT(lv->lv_niovecs == 0);
2368 				ordered = true;
2369 				goto next_lv;
2370 			}
2371 
2372 			reg = &vecp[index];
2373 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2374 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2375 
2376 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2377 			if (start_rec_copy) {
2378 				record_cnt++;
2379 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2380 						   start_rec_copy);
2381 			}
2382 
2383 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2384 			if (!ophdr)
2385 				return -EIO;
2386 
2387 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2388 					   sizeof(struct xlog_op_header));
2389 
2390 			len += xlog_write_setup_copy(ticket, ophdr,
2391 						     iclog->ic_size-log_offset,
2392 						     reg->i_len,
2393 						     &copy_off, &copy_len,
2394 						     &partial_copy,
2395 						     &partial_copy_len);
2396 			xlog_verify_dest_ptr(log, ptr);
2397 
2398 			/*
2399 			 * Copy region.
2400 			 *
2401 			 * Unmount records just log an opheader, so can have
2402 			 * empty payloads with no data region to copy. Hence we
2403 			 * only copy the payload if the vector says it has data
2404 			 * to copy.
2405 			 */
2406 			ASSERT(copy_len >= 0);
2407 			if (copy_len > 0) {
2408 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2409 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2410 						   copy_len);
2411 			}
2412 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2413 			record_cnt++;
2414 			data_cnt += contwr ? copy_len : 0;
2415 
2416 			error = xlog_write_copy_finish(log, iclog, flags,
2417 						       &record_cnt, &data_cnt,
2418 						       &partial_copy,
2419 						       &partial_copy_len,
2420 						       log_offset,
2421 						       commit_iclog);
2422 			if (error)
2423 				return error;
2424 
2425 			/*
2426 			 * if we had a partial copy, we need to get more iclog
2427 			 * space but we don't want to increment the region
2428 			 * index because there is still more is this region to
2429 			 * write.
2430 			 *
2431 			 * If we completed writing this region, and we flushed
2432 			 * the iclog (indicated by resetting of the record
2433 			 * count), then we also need to get more log space. If
2434 			 * this was the last record, though, we are done and
2435 			 * can just return.
2436 			 */
2437 			if (partial_copy)
2438 				break;
2439 
2440 			if (++index == lv->lv_niovecs) {
2441 next_lv:
2442 				lv = lv->lv_next;
2443 				index = 0;
2444 				if (lv)
2445 					vecp = lv->lv_iovecp;
2446 			}
2447 			if (record_cnt == 0 && ordered == false) {
2448 				if (!lv)
2449 					return 0;
2450 				break;
2451 			}
2452 		}
2453 	}
2454 
2455 	ASSERT(len == 0);
2456 
2457 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2458 	if (!commit_iclog)
2459 		return xlog_state_release_iclog(log, iclog);
2460 
2461 	ASSERT(flags & XLOG_COMMIT_TRANS);
2462 	*commit_iclog = iclog;
2463 	return 0;
2464 }
2465 
2466 
2467 /*****************************************************************************
2468  *
2469  *		State Machine functions
2470  *
2471  *****************************************************************************
2472  */
2473 
2474 /* Clean iclogs starting from the head.  This ordering must be
2475  * maintained, so an iclog doesn't become ACTIVE beyond one that
2476  * is SYNCING.  This is also required to maintain the notion that we use
2477  * a ordered wait queue to hold off would be writers to the log when every
2478  * iclog is trying to sync to disk.
2479  *
2480  * State Change: DIRTY -> ACTIVE
2481  */
2482 STATIC void
2483 xlog_state_clean_log(
2484 	struct xlog *log)
2485 {
2486 	xlog_in_core_t	*iclog;
2487 	int changed = 0;
2488 
2489 	iclog = log->l_iclog;
2490 	do {
2491 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2492 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2493 			iclog->ic_offset       = 0;
2494 			ASSERT(iclog->ic_callback == NULL);
2495 			/*
2496 			 * If the number of ops in this iclog indicate it just
2497 			 * contains the dummy transaction, we can
2498 			 * change state into IDLE (the second time around).
2499 			 * Otherwise we should change the state into
2500 			 * NEED a dummy.
2501 			 * We don't need to cover the dummy.
2502 			 */
2503 			if (!changed &&
2504 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2505 			   		XLOG_COVER_OPS)) {
2506 				changed = 1;
2507 			} else {
2508 				/*
2509 				 * We have two dirty iclogs so start over
2510 				 * This could also be num of ops indicates
2511 				 * this is not the dummy going out.
2512 				 */
2513 				changed = 2;
2514 			}
2515 			iclog->ic_header.h_num_logops = 0;
2516 			memset(iclog->ic_header.h_cycle_data, 0,
2517 			      sizeof(iclog->ic_header.h_cycle_data));
2518 			iclog->ic_header.h_lsn = 0;
2519 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2520 			/* do nothing */;
2521 		else
2522 			break;	/* stop cleaning */
2523 		iclog = iclog->ic_next;
2524 	} while (iclog != log->l_iclog);
2525 
2526 	/* log is locked when we are called */
2527 	/*
2528 	 * Change state for the dummy log recording.
2529 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2530 	 * we are done writing the dummy record.
2531 	 * If we are done with the second dummy recored (DONE2), then
2532 	 * we go to IDLE.
2533 	 */
2534 	if (changed) {
2535 		switch (log->l_covered_state) {
2536 		case XLOG_STATE_COVER_IDLE:
2537 		case XLOG_STATE_COVER_NEED:
2538 		case XLOG_STATE_COVER_NEED2:
2539 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2540 			break;
2541 
2542 		case XLOG_STATE_COVER_DONE:
2543 			if (changed == 1)
2544 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2545 			else
2546 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2547 			break;
2548 
2549 		case XLOG_STATE_COVER_DONE2:
2550 			if (changed == 1)
2551 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2552 			else
2553 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2554 			break;
2555 
2556 		default:
2557 			ASSERT(0);
2558 		}
2559 	}
2560 }	/* xlog_state_clean_log */
2561 
2562 STATIC xfs_lsn_t
2563 xlog_get_lowest_lsn(
2564 	struct xlog	*log)
2565 {
2566 	xlog_in_core_t  *lsn_log;
2567 	xfs_lsn_t	lowest_lsn, lsn;
2568 
2569 	lsn_log = log->l_iclog;
2570 	lowest_lsn = 0;
2571 	do {
2572 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2573 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2574 		if ((lsn && !lowest_lsn) ||
2575 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2576 			lowest_lsn = lsn;
2577 		}
2578 	    }
2579 	    lsn_log = lsn_log->ic_next;
2580 	} while (lsn_log != log->l_iclog);
2581 	return lowest_lsn;
2582 }
2583 
2584 
2585 STATIC void
2586 xlog_state_do_callback(
2587 	struct xlog		*log,
2588 	int			aborted,
2589 	struct xlog_in_core	*ciclog)
2590 {
2591 	xlog_in_core_t	   *iclog;
2592 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2593 						 * processed all iclogs once */
2594 	xfs_log_callback_t *cb, *cb_next;
2595 	int		   flushcnt = 0;
2596 	xfs_lsn_t	   lowest_lsn;
2597 	int		   ioerrors;	/* counter: iclogs with errors */
2598 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2599 	int		   funcdidcallbacks; /* flag: function did callbacks */
2600 	int		   repeats;	/* for issuing console warnings if
2601 					 * looping too many times */
2602 	int		   wake = 0;
2603 
2604 	spin_lock(&log->l_icloglock);
2605 	first_iclog = iclog = log->l_iclog;
2606 	ioerrors = 0;
2607 	funcdidcallbacks = 0;
2608 	repeats = 0;
2609 
2610 	do {
2611 		/*
2612 		 * Scan all iclogs starting with the one pointed to by the
2613 		 * log.  Reset this starting point each time the log is
2614 		 * unlocked (during callbacks).
2615 		 *
2616 		 * Keep looping through iclogs until one full pass is made
2617 		 * without running any callbacks.
2618 		 */
2619 		first_iclog = log->l_iclog;
2620 		iclog = log->l_iclog;
2621 		loopdidcallbacks = 0;
2622 		repeats++;
2623 
2624 		do {
2625 
2626 			/* skip all iclogs in the ACTIVE & DIRTY states */
2627 			if (iclog->ic_state &
2628 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2629 				iclog = iclog->ic_next;
2630 				continue;
2631 			}
2632 
2633 			/*
2634 			 * Between marking a filesystem SHUTDOWN and stopping
2635 			 * the log, we do flush all iclogs to disk (if there
2636 			 * wasn't a log I/O error). So, we do want things to
2637 			 * go smoothly in case of just a SHUTDOWN  w/o a
2638 			 * LOG_IO_ERROR.
2639 			 */
2640 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2641 				/*
2642 				 * Can only perform callbacks in order.  Since
2643 				 * this iclog is not in the DONE_SYNC/
2644 				 * DO_CALLBACK state, we skip the rest and
2645 				 * just try to clean up.  If we set our iclog
2646 				 * to DO_CALLBACK, we will not process it when
2647 				 * we retry since a previous iclog is in the
2648 				 * CALLBACK and the state cannot change since
2649 				 * we are holding the l_icloglock.
2650 				 */
2651 				if (!(iclog->ic_state &
2652 					(XLOG_STATE_DONE_SYNC |
2653 						 XLOG_STATE_DO_CALLBACK))) {
2654 					if (ciclog && (ciclog->ic_state ==
2655 							XLOG_STATE_DONE_SYNC)) {
2656 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2657 					}
2658 					break;
2659 				}
2660 				/*
2661 				 * We now have an iclog that is in either the
2662 				 * DO_CALLBACK or DONE_SYNC states. The other
2663 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2664 				 * caught by the above if and are going to
2665 				 * clean (i.e. we aren't doing their callbacks)
2666 				 * see the above if.
2667 				 */
2668 
2669 				/*
2670 				 * We will do one more check here to see if we
2671 				 * have chased our tail around.
2672 				 */
2673 
2674 				lowest_lsn = xlog_get_lowest_lsn(log);
2675 				if (lowest_lsn &&
2676 				    XFS_LSN_CMP(lowest_lsn,
2677 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2678 					iclog = iclog->ic_next;
2679 					continue; /* Leave this iclog for
2680 						   * another thread */
2681 				}
2682 
2683 				iclog->ic_state = XLOG_STATE_CALLBACK;
2684 
2685 
2686 				/*
2687 				 * Completion of a iclog IO does not imply that
2688 				 * a transaction has completed, as transactions
2689 				 * can be large enough to span many iclogs. We
2690 				 * cannot change the tail of the log half way
2691 				 * through a transaction as this may be the only
2692 				 * transaction in the log and moving th etail to
2693 				 * point to the middle of it will prevent
2694 				 * recovery from finding the start of the
2695 				 * transaction. Hence we should only update the
2696 				 * last_sync_lsn if this iclog contains
2697 				 * transaction completion callbacks on it.
2698 				 *
2699 				 * We have to do this before we drop the
2700 				 * icloglock to ensure we are the only one that
2701 				 * can update it.
2702 				 */
2703 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2704 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2705 				if (iclog->ic_callback)
2706 					atomic64_set(&log->l_last_sync_lsn,
2707 						be64_to_cpu(iclog->ic_header.h_lsn));
2708 
2709 			} else
2710 				ioerrors++;
2711 
2712 			spin_unlock(&log->l_icloglock);
2713 
2714 			/*
2715 			 * Keep processing entries in the callback list until
2716 			 * we come around and it is empty.  We need to
2717 			 * atomically see that the list is empty and change the
2718 			 * state to DIRTY so that we don't miss any more
2719 			 * callbacks being added.
2720 			 */
2721 			spin_lock(&iclog->ic_callback_lock);
2722 			cb = iclog->ic_callback;
2723 			while (cb) {
2724 				iclog->ic_callback_tail = &(iclog->ic_callback);
2725 				iclog->ic_callback = NULL;
2726 				spin_unlock(&iclog->ic_callback_lock);
2727 
2728 				/* perform callbacks in the order given */
2729 				for (; cb; cb = cb_next) {
2730 					cb_next = cb->cb_next;
2731 					cb->cb_func(cb->cb_arg, aborted);
2732 				}
2733 				spin_lock(&iclog->ic_callback_lock);
2734 				cb = iclog->ic_callback;
2735 			}
2736 
2737 			loopdidcallbacks++;
2738 			funcdidcallbacks++;
2739 
2740 			spin_lock(&log->l_icloglock);
2741 			ASSERT(iclog->ic_callback == NULL);
2742 			spin_unlock(&iclog->ic_callback_lock);
2743 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2744 				iclog->ic_state = XLOG_STATE_DIRTY;
2745 
2746 			/*
2747 			 * Transition from DIRTY to ACTIVE if applicable.
2748 			 * NOP if STATE_IOERROR.
2749 			 */
2750 			xlog_state_clean_log(log);
2751 
2752 			/* wake up threads waiting in xfs_log_force() */
2753 			wake_up_all(&iclog->ic_force_wait);
2754 
2755 			iclog = iclog->ic_next;
2756 		} while (first_iclog != iclog);
2757 
2758 		if (repeats > 5000) {
2759 			flushcnt += repeats;
2760 			repeats = 0;
2761 			xfs_warn(log->l_mp,
2762 				"%s: possible infinite loop (%d iterations)",
2763 				__func__, flushcnt);
2764 		}
2765 	} while (!ioerrors && loopdidcallbacks);
2766 
2767 #ifdef DEBUG
2768 	/*
2769 	 * Make one last gasp attempt to see if iclogs are being left in limbo.
2770 	 * If the above loop finds an iclog earlier than the current iclog and
2771 	 * in one of the syncing states, the current iclog is put into
2772 	 * DO_CALLBACK and the callbacks are deferred to the completion of the
2773 	 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2774 	 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2775 	 * states.
2776 	 *
2777 	 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2778 	 * for ic_state == SYNCING.
2779 	 */
2780 	if (funcdidcallbacks) {
2781 		first_iclog = iclog = log->l_iclog;
2782 		do {
2783 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2784 			/*
2785 			 * Terminate the loop if iclogs are found in states
2786 			 * which will cause other threads to clean up iclogs.
2787 			 *
2788 			 * SYNCING - i/o completion will go through logs
2789 			 * DONE_SYNC - interrupt thread should be waiting for
2790 			 *              l_icloglock
2791 			 * IOERROR - give up hope all ye who enter here
2792 			 */
2793 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2794 			    iclog->ic_state & XLOG_STATE_SYNCING ||
2795 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2796 			    iclog->ic_state == XLOG_STATE_IOERROR )
2797 				break;
2798 			iclog = iclog->ic_next;
2799 		} while (first_iclog != iclog);
2800 	}
2801 #endif
2802 
2803 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2804 		wake = 1;
2805 	spin_unlock(&log->l_icloglock);
2806 
2807 	if (wake)
2808 		wake_up_all(&log->l_flush_wait);
2809 }
2810 
2811 
2812 /*
2813  * Finish transitioning this iclog to the dirty state.
2814  *
2815  * Make sure that we completely execute this routine only when this is
2816  * the last call to the iclog.  There is a good chance that iclog flushes,
2817  * when we reach the end of the physical log, get turned into 2 separate
2818  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2819  * routine.  By using the reference count bwritecnt, we guarantee that only
2820  * the second completion goes through.
2821  *
2822  * Callbacks could take time, so they are done outside the scope of the
2823  * global state machine log lock.
2824  */
2825 STATIC void
2826 xlog_state_done_syncing(
2827 	xlog_in_core_t	*iclog,
2828 	int		aborted)
2829 {
2830 	struct xlog	   *log = iclog->ic_log;
2831 
2832 	spin_lock(&log->l_icloglock);
2833 
2834 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2835 	       iclog->ic_state == XLOG_STATE_IOERROR);
2836 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2837 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2838 
2839 
2840 	/*
2841 	 * If we got an error, either on the first buffer, or in the case of
2842 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2843 	 * and none should ever be attempted to be written to disk
2844 	 * again.
2845 	 */
2846 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2847 		if (--iclog->ic_bwritecnt == 1) {
2848 			spin_unlock(&log->l_icloglock);
2849 			return;
2850 		}
2851 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2852 	}
2853 
2854 	/*
2855 	 * Someone could be sleeping prior to writing out the next
2856 	 * iclog buffer, we wake them all, one will get to do the
2857 	 * I/O, the others get to wait for the result.
2858 	 */
2859 	wake_up_all(&iclog->ic_write_wait);
2860 	spin_unlock(&log->l_icloglock);
2861 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2862 }	/* xlog_state_done_syncing */
2863 
2864 
2865 /*
2866  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2867  * sleep.  We wait on the flush queue on the head iclog as that should be
2868  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2869  * we will wait here and all new writes will sleep until a sync completes.
2870  *
2871  * The in-core logs are used in a circular fashion. They are not used
2872  * out-of-order even when an iclog past the head is free.
2873  *
2874  * return:
2875  *	* log_offset where xlog_write() can start writing into the in-core
2876  *		log's data space.
2877  *	* in-core log pointer to which xlog_write() should write.
2878  *	* boolean indicating this is a continued write to an in-core log.
2879  *		If this is the last write, then the in-core log's offset field
2880  *		needs to be incremented, depending on the amount of data which
2881  *		is copied.
2882  */
2883 STATIC int
2884 xlog_state_get_iclog_space(
2885 	struct xlog		*log,
2886 	int			len,
2887 	struct xlog_in_core	**iclogp,
2888 	struct xlog_ticket	*ticket,
2889 	int			*continued_write,
2890 	int			*logoffsetp)
2891 {
2892 	int		  log_offset;
2893 	xlog_rec_header_t *head;
2894 	xlog_in_core_t	  *iclog;
2895 	int		  error;
2896 
2897 restart:
2898 	spin_lock(&log->l_icloglock);
2899 	if (XLOG_FORCED_SHUTDOWN(log)) {
2900 		spin_unlock(&log->l_icloglock);
2901 		return -EIO;
2902 	}
2903 
2904 	iclog = log->l_iclog;
2905 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2906 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2907 
2908 		/* Wait for log writes to have flushed */
2909 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2910 		goto restart;
2911 	}
2912 
2913 	head = &iclog->ic_header;
2914 
2915 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2916 	log_offset = iclog->ic_offset;
2917 
2918 	/* On the 1st write to an iclog, figure out lsn.  This works
2919 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2920 	 * committing to.  If the offset is set, that's how many blocks
2921 	 * must be written.
2922 	 */
2923 	if (log_offset == 0) {
2924 		ticket->t_curr_res -= log->l_iclog_hsize;
2925 		xlog_tic_add_region(ticket,
2926 				    log->l_iclog_hsize,
2927 				    XLOG_REG_TYPE_LRHEADER);
2928 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2929 		head->h_lsn = cpu_to_be64(
2930 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2931 		ASSERT(log->l_curr_block >= 0);
2932 	}
2933 
2934 	/* If there is enough room to write everything, then do it.  Otherwise,
2935 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2936 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2937 	 * until you know exactly how many bytes get copied.  Therefore, wait
2938 	 * until later to update ic_offset.
2939 	 *
2940 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2941 	 * can fit into remaining data section.
2942 	 */
2943 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2944 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2945 
2946 		/*
2947 		 * If I'm the only one writing to this iclog, sync it to disk.
2948 		 * We need to do an atomic compare and decrement here to avoid
2949 		 * racing with concurrent atomic_dec_and_lock() calls in
2950 		 * xlog_state_release_iclog() when there is more than one
2951 		 * reference to the iclog.
2952 		 */
2953 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2954 			/* we are the only one */
2955 			spin_unlock(&log->l_icloglock);
2956 			error = xlog_state_release_iclog(log, iclog);
2957 			if (error)
2958 				return error;
2959 		} else {
2960 			spin_unlock(&log->l_icloglock);
2961 		}
2962 		goto restart;
2963 	}
2964 
2965 	/* Do we have enough room to write the full amount in the remainder
2966 	 * of this iclog?  Or must we continue a write on the next iclog and
2967 	 * mark this iclog as completely taken?  In the case where we switch
2968 	 * iclogs (to mark it taken), this particular iclog will release/sync
2969 	 * to disk in xlog_write().
2970 	 */
2971 	if (len <= iclog->ic_size - iclog->ic_offset) {
2972 		*continued_write = 0;
2973 		iclog->ic_offset += len;
2974 	} else {
2975 		*continued_write = 1;
2976 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2977 	}
2978 	*iclogp = iclog;
2979 
2980 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2981 	spin_unlock(&log->l_icloglock);
2982 
2983 	*logoffsetp = log_offset;
2984 	return 0;
2985 }	/* xlog_state_get_iclog_space */
2986 
2987 /* The first cnt-1 times through here we don't need to
2988  * move the grant write head because the permanent
2989  * reservation has reserved cnt times the unit amount.
2990  * Release part of current permanent unit reservation and
2991  * reset current reservation to be one units worth.  Also
2992  * move grant reservation head forward.
2993  */
2994 STATIC void
2995 xlog_regrant_reserve_log_space(
2996 	struct xlog		*log,
2997 	struct xlog_ticket	*ticket)
2998 {
2999 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3000 
3001 	if (ticket->t_cnt > 0)
3002 		ticket->t_cnt--;
3003 
3004 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3005 					ticket->t_curr_res);
3006 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3007 					ticket->t_curr_res);
3008 	ticket->t_curr_res = ticket->t_unit_res;
3009 	xlog_tic_reset_res(ticket);
3010 
3011 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3012 
3013 	/* just return if we still have some of the pre-reserved space */
3014 	if (ticket->t_cnt > 0)
3015 		return;
3016 
3017 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3018 					ticket->t_unit_res);
3019 
3020 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3021 
3022 	ticket->t_curr_res = ticket->t_unit_res;
3023 	xlog_tic_reset_res(ticket);
3024 }	/* xlog_regrant_reserve_log_space */
3025 
3026 
3027 /*
3028  * Give back the space left from a reservation.
3029  *
3030  * All the information we need to make a correct determination of space left
3031  * is present.  For non-permanent reservations, things are quite easy.  The
3032  * count should have been decremented to zero.  We only need to deal with the
3033  * space remaining in the current reservation part of the ticket.  If the
3034  * ticket contains a permanent reservation, there may be left over space which
3035  * needs to be released.  A count of N means that N-1 refills of the current
3036  * reservation can be done before we need to ask for more space.  The first
3037  * one goes to fill up the first current reservation.  Once we run out of
3038  * space, the count will stay at zero and the only space remaining will be
3039  * in the current reservation field.
3040  */
3041 STATIC void
3042 xlog_ungrant_log_space(
3043 	struct xlog		*log,
3044 	struct xlog_ticket	*ticket)
3045 {
3046 	int	bytes;
3047 
3048 	if (ticket->t_cnt > 0)
3049 		ticket->t_cnt--;
3050 
3051 	trace_xfs_log_ungrant_enter(log, ticket);
3052 	trace_xfs_log_ungrant_sub(log, ticket);
3053 
3054 	/*
3055 	 * If this is a permanent reservation ticket, we may be able to free
3056 	 * up more space based on the remaining count.
3057 	 */
3058 	bytes = ticket->t_curr_res;
3059 	if (ticket->t_cnt > 0) {
3060 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3061 		bytes += ticket->t_unit_res*ticket->t_cnt;
3062 	}
3063 
3064 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3065 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3066 
3067 	trace_xfs_log_ungrant_exit(log, ticket);
3068 
3069 	xfs_log_space_wake(log->l_mp);
3070 }
3071 
3072 /*
3073  * Flush iclog to disk if this is the last reference to the given iclog and
3074  * the WANT_SYNC bit is set.
3075  *
3076  * When this function is entered, the iclog is not necessarily in the
3077  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3078  *
3079  *
3080  */
3081 STATIC int
3082 xlog_state_release_iclog(
3083 	struct xlog		*log,
3084 	struct xlog_in_core	*iclog)
3085 {
3086 	int		sync = 0;	/* do we sync? */
3087 
3088 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3089 		return -EIO;
3090 
3091 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3092 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3093 		return 0;
3094 
3095 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3096 		spin_unlock(&log->l_icloglock);
3097 		return -EIO;
3098 	}
3099 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3100 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3101 
3102 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3103 		/* update tail before writing to iclog */
3104 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3105 		sync++;
3106 		iclog->ic_state = XLOG_STATE_SYNCING;
3107 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3108 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3109 		/* cycle incremented when incrementing curr_block */
3110 	}
3111 	spin_unlock(&log->l_icloglock);
3112 
3113 	/*
3114 	 * We let the log lock go, so it's possible that we hit a log I/O
3115 	 * error or some other SHUTDOWN condition that marks the iclog
3116 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3117 	 * this iclog has consistent data, so we ignore IOERROR
3118 	 * flags after this point.
3119 	 */
3120 	if (sync)
3121 		return xlog_sync(log, iclog);
3122 	return 0;
3123 }	/* xlog_state_release_iclog */
3124 
3125 
3126 /*
3127  * This routine will mark the current iclog in the ring as WANT_SYNC
3128  * and move the current iclog pointer to the next iclog in the ring.
3129  * When this routine is called from xlog_state_get_iclog_space(), the
3130  * exact size of the iclog has not yet been determined.  All we know is
3131  * that every data block.  We have run out of space in this log record.
3132  */
3133 STATIC void
3134 xlog_state_switch_iclogs(
3135 	struct xlog		*log,
3136 	struct xlog_in_core	*iclog,
3137 	int			eventual_size)
3138 {
3139 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3140 	if (!eventual_size)
3141 		eventual_size = iclog->ic_offset;
3142 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3143 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3144 	log->l_prev_block = log->l_curr_block;
3145 	log->l_prev_cycle = log->l_curr_cycle;
3146 
3147 	/* roll log?: ic_offset changed later */
3148 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3149 
3150 	/* Round up to next log-sunit */
3151 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3152 	    log->l_mp->m_sb.sb_logsunit > 1) {
3153 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3154 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3155 	}
3156 
3157 	if (log->l_curr_block >= log->l_logBBsize) {
3158 		/*
3159 		 * Rewind the current block before the cycle is bumped to make
3160 		 * sure that the combined LSN never transiently moves forward
3161 		 * when the log wraps to the next cycle. This is to support the
3162 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3163 		 * other cases should acquire l_icloglock.
3164 		 */
3165 		log->l_curr_block -= log->l_logBBsize;
3166 		ASSERT(log->l_curr_block >= 0);
3167 		smp_wmb();
3168 		log->l_curr_cycle++;
3169 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3170 			log->l_curr_cycle++;
3171 	}
3172 	ASSERT(iclog == log->l_iclog);
3173 	log->l_iclog = iclog->ic_next;
3174 }	/* xlog_state_switch_iclogs */
3175 
3176 /*
3177  * Write out all data in the in-core log as of this exact moment in time.
3178  *
3179  * Data may be written to the in-core log during this call.  However,
3180  * we don't guarantee this data will be written out.  A change from past
3181  * implementation means this routine will *not* write out zero length LRs.
3182  *
3183  * Basically, we try and perform an intelligent scan of the in-core logs.
3184  * If we determine there is no flushable data, we just return.  There is no
3185  * flushable data if:
3186  *
3187  *	1. the current iclog is active and has no data; the previous iclog
3188  *		is in the active or dirty state.
3189  *	2. the current iclog is drity, and the previous iclog is in the
3190  *		active or dirty state.
3191  *
3192  * We may sleep if:
3193  *
3194  *	1. the current iclog is not in the active nor dirty state.
3195  *	2. the current iclog dirty, and the previous iclog is not in the
3196  *		active nor dirty state.
3197  *	3. the current iclog is active, and there is another thread writing
3198  *		to this particular iclog.
3199  *	4. a) the current iclog is active and has no other writers
3200  *	   b) when we return from flushing out this iclog, it is still
3201  *		not in the active nor dirty state.
3202  */
3203 int
3204 _xfs_log_force(
3205 	struct xfs_mount	*mp,
3206 	uint			flags,
3207 	int			*log_flushed)
3208 {
3209 	struct xlog		*log = mp->m_log;
3210 	struct xlog_in_core	*iclog;
3211 	xfs_lsn_t		lsn;
3212 
3213 	XFS_STATS_INC(mp, xs_log_force);
3214 
3215 	xlog_cil_force(log);
3216 
3217 	spin_lock(&log->l_icloglock);
3218 
3219 	iclog = log->l_iclog;
3220 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3221 		spin_unlock(&log->l_icloglock);
3222 		return -EIO;
3223 	}
3224 
3225 	/* If the head iclog is not active nor dirty, we just attach
3226 	 * ourselves to the head and go to sleep.
3227 	 */
3228 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3229 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3230 		/*
3231 		 * If the head is dirty or (active and empty), then
3232 		 * we need to look at the previous iclog.  If the previous
3233 		 * iclog is active or dirty we are done.  There is nothing
3234 		 * to sync out.  Otherwise, we attach ourselves to the
3235 		 * previous iclog and go to sleep.
3236 		 */
3237 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3238 		    (atomic_read(&iclog->ic_refcnt) == 0
3239 		     && iclog->ic_offset == 0)) {
3240 			iclog = iclog->ic_prev;
3241 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3242 			    iclog->ic_state == XLOG_STATE_DIRTY)
3243 				goto no_sleep;
3244 			else
3245 				goto maybe_sleep;
3246 		} else {
3247 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3248 				/* We are the only one with access to this
3249 				 * iclog.  Flush it out now.  There should
3250 				 * be a roundoff of zero to show that someone
3251 				 * has already taken care of the roundoff from
3252 				 * the previous sync.
3253 				 */
3254 				atomic_inc(&iclog->ic_refcnt);
3255 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3256 				xlog_state_switch_iclogs(log, iclog, 0);
3257 				spin_unlock(&log->l_icloglock);
3258 
3259 				if (xlog_state_release_iclog(log, iclog))
3260 					return -EIO;
3261 
3262 				if (log_flushed)
3263 					*log_flushed = 1;
3264 				spin_lock(&log->l_icloglock);
3265 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3266 				    iclog->ic_state != XLOG_STATE_DIRTY)
3267 					goto maybe_sleep;
3268 				else
3269 					goto no_sleep;
3270 			} else {
3271 				/* Someone else is writing to this iclog.
3272 				 * Use its call to flush out the data.  However,
3273 				 * the other thread may not force out this LR,
3274 				 * so we mark it WANT_SYNC.
3275 				 */
3276 				xlog_state_switch_iclogs(log, iclog, 0);
3277 				goto maybe_sleep;
3278 			}
3279 		}
3280 	}
3281 
3282 	/* By the time we come around again, the iclog could've been filled
3283 	 * which would give it another lsn.  If we have a new lsn, just
3284 	 * return because the relevant data has been flushed.
3285 	 */
3286 maybe_sleep:
3287 	if (flags & XFS_LOG_SYNC) {
3288 		/*
3289 		 * We must check if we're shutting down here, before
3290 		 * we wait, while we're holding the l_icloglock.
3291 		 * Then we check again after waking up, in case our
3292 		 * sleep was disturbed by a bad news.
3293 		 */
3294 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3295 			spin_unlock(&log->l_icloglock);
3296 			return -EIO;
3297 		}
3298 		XFS_STATS_INC(mp, xs_log_force_sleep);
3299 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3300 		/*
3301 		 * No need to grab the log lock here since we're
3302 		 * only deciding whether or not to return EIO
3303 		 * and the memory read should be atomic.
3304 		 */
3305 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3306 			return -EIO;
3307 		if (log_flushed)
3308 			*log_flushed = 1;
3309 	} else {
3310 
3311 no_sleep:
3312 		spin_unlock(&log->l_icloglock);
3313 	}
3314 	return 0;
3315 }
3316 
3317 /*
3318  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3319  * about errors or whether the log was flushed or not. This is the normal
3320  * interface to use when trying to unpin items or move the log forward.
3321  */
3322 void
3323 xfs_log_force(
3324 	xfs_mount_t	*mp,
3325 	uint		flags)
3326 {
3327 	int	error;
3328 
3329 	trace_xfs_log_force(mp, 0, _RET_IP_);
3330 	error = _xfs_log_force(mp, flags, NULL);
3331 	if (error)
3332 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3333 }
3334 
3335 /*
3336  * Force the in-core log to disk for a specific LSN.
3337  *
3338  * Find in-core log with lsn.
3339  *	If it is in the DIRTY state, just return.
3340  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3341  *		state and go to sleep or return.
3342  *	If it is in any other state, go to sleep or return.
3343  *
3344  * Synchronous forces are implemented with a signal variable. All callers
3345  * to force a given lsn to disk will wait on a the sv attached to the
3346  * specific in-core log.  When given in-core log finally completes its
3347  * write to disk, that thread will wake up all threads waiting on the
3348  * sv.
3349  */
3350 int
3351 _xfs_log_force_lsn(
3352 	struct xfs_mount	*mp,
3353 	xfs_lsn_t		lsn,
3354 	uint			flags,
3355 	int			*log_flushed)
3356 {
3357 	struct xlog		*log = mp->m_log;
3358 	struct xlog_in_core	*iclog;
3359 	int			already_slept = 0;
3360 
3361 	ASSERT(lsn != 0);
3362 
3363 	XFS_STATS_INC(mp, xs_log_force);
3364 
3365 	lsn = xlog_cil_force_lsn(log, lsn);
3366 	if (lsn == NULLCOMMITLSN)
3367 		return 0;
3368 
3369 try_again:
3370 	spin_lock(&log->l_icloglock);
3371 	iclog = log->l_iclog;
3372 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3373 		spin_unlock(&log->l_icloglock);
3374 		return -EIO;
3375 	}
3376 
3377 	do {
3378 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3379 			iclog = iclog->ic_next;
3380 			continue;
3381 		}
3382 
3383 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3384 			spin_unlock(&log->l_icloglock);
3385 			return 0;
3386 		}
3387 
3388 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3389 			/*
3390 			 * We sleep here if we haven't already slept (e.g.
3391 			 * this is the first time we've looked at the correct
3392 			 * iclog buf) and the buffer before us is going to
3393 			 * be sync'ed. The reason for this is that if we
3394 			 * are doing sync transactions here, by waiting for
3395 			 * the previous I/O to complete, we can allow a few
3396 			 * more transactions into this iclog before we close
3397 			 * it down.
3398 			 *
3399 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3400 			 * up the refcnt so we can release the log (which
3401 			 * drops the ref count).  The state switch keeps new
3402 			 * transaction commits from using this buffer.  When
3403 			 * the current commits finish writing into the buffer,
3404 			 * the refcount will drop to zero and the buffer will
3405 			 * go out then.
3406 			 */
3407 			if (!already_slept &&
3408 			    (iclog->ic_prev->ic_state &
3409 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3410 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3411 
3412 				XFS_STATS_INC(mp, xs_log_force_sleep);
3413 
3414 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3415 							&log->l_icloglock);
3416 				if (log_flushed)
3417 					*log_flushed = 1;
3418 				already_slept = 1;
3419 				goto try_again;
3420 			}
3421 			atomic_inc(&iclog->ic_refcnt);
3422 			xlog_state_switch_iclogs(log, iclog, 0);
3423 			spin_unlock(&log->l_icloglock);
3424 			if (xlog_state_release_iclog(log, iclog))
3425 				return -EIO;
3426 			if (log_flushed)
3427 				*log_flushed = 1;
3428 			spin_lock(&log->l_icloglock);
3429 		}
3430 
3431 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3432 		    !(iclog->ic_state &
3433 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3434 			/*
3435 			 * Don't wait on completion if we know that we've
3436 			 * gotten a log write error.
3437 			 */
3438 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3439 				spin_unlock(&log->l_icloglock);
3440 				return -EIO;
3441 			}
3442 			XFS_STATS_INC(mp, xs_log_force_sleep);
3443 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3444 			/*
3445 			 * No need to grab the log lock here since we're
3446 			 * only deciding whether or not to return EIO
3447 			 * and the memory read should be atomic.
3448 			 */
3449 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3450 				return -EIO;
3451 
3452 			if (log_flushed)
3453 				*log_flushed = 1;
3454 		} else {		/* just return */
3455 			spin_unlock(&log->l_icloglock);
3456 		}
3457 
3458 		return 0;
3459 	} while (iclog != log->l_iclog);
3460 
3461 	spin_unlock(&log->l_icloglock);
3462 	return 0;
3463 }
3464 
3465 /*
3466  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3467  * about errors or whether the log was flushed or not. This is the normal
3468  * interface to use when trying to unpin items or move the log forward.
3469  */
3470 void
3471 xfs_log_force_lsn(
3472 	xfs_mount_t	*mp,
3473 	xfs_lsn_t	lsn,
3474 	uint		flags)
3475 {
3476 	int	error;
3477 
3478 	trace_xfs_log_force(mp, lsn, _RET_IP_);
3479 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3480 	if (error)
3481 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3482 }
3483 
3484 /*
3485  * Called when we want to mark the current iclog as being ready to sync to
3486  * disk.
3487  */
3488 STATIC void
3489 xlog_state_want_sync(
3490 	struct xlog		*log,
3491 	struct xlog_in_core	*iclog)
3492 {
3493 	assert_spin_locked(&log->l_icloglock);
3494 
3495 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3496 		xlog_state_switch_iclogs(log, iclog, 0);
3497 	} else {
3498 		ASSERT(iclog->ic_state &
3499 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3500 	}
3501 }
3502 
3503 
3504 /*****************************************************************************
3505  *
3506  *		TICKET functions
3507  *
3508  *****************************************************************************
3509  */
3510 
3511 /*
3512  * Free a used ticket when its refcount falls to zero.
3513  */
3514 void
3515 xfs_log_ticket_put(
3516 	xlog_ticket_t	*ticket)
3517 {
3518 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3519 	if (atomic_dec_and_test(&ticket->t_ref))
3520 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3521 }
3522 
3523 xlog_ticket_t *
3524 xfs_log_ticket_get(
3525 	xlog_ticket_t	*ticket)
3526 {
3527 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3528 	atomic_inc(&ticket->t_ref);
3529 	return ticket;
3530 }
3531 
3532 /*
3533  * Figure out the total log space unit (in bytes) that would be
3534  * required for a log ticket.
3535  */
3536 int
3537 xfs_log_calc_unit_res(
3538 	struct xfs_mount	*mp,
3539 	int			unit_bytes)
3540 {
3541 	struct xlog		*log = mp->m_log;
3542 	int			iclog_space;
3543 	uint			num_headers;
3544 
3545 	/*
3546 	 * Permanent reservations have up to 'cnt'-1 active log operations
3547 	 * in the log.  A unit in this case is the amount of space for one
3548 	 * of these log operations.  Normal reservations have a cnt of 1
3549 	 * and their unit amount is the total amount of space required.
3550 	 *
3551 	 * The following lines of code account for non-transaction data
3552 	 * which occupy space in the on-disk log.
3553 	 *
3554 	 * Normal form of a transaction is:
3555 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3556 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3557 	 *
3558 	 * We need to account for all the leadup data and trailer data
3559 	 * around the transaction data.
3560 	 * And then we need to account for the worst case in terms of using
3561 	 * more space.
3562 	 * The worst case will happen if:
3563 	 * - the placement of the transaction happens to be such that the
3564 	 *   roundoff is at its maximum
3565 	 * - the transaction data is synced before the commit record is synced
3566 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3567 	 *   Therefore the commit record is in its own Log Record.
3568 	 *   This can happen as the commit record is called with its
3569 	 *   own region to xlog_write().
3570 	 *   This then means that in the worst case, roundoff can happen for
3571 	 *   the commit-rec as well.
3572 	 *   The commit-rec is smaller than padding in this scenario and so it is
3573 	 *   not added separately.
3574 	 */
3575 
3576 	/* for trans header */
3577 	unit_bytes += sizeof(xlog_op_header_t);
3578 	unit_bytes += sizeof(xfs_trans_header_t);
3579 
3580 	/* for start-rec */
3581 	unit_bytes += sizeof(xlog_op_header_t);
3582 
3583 	/*
3584 	 * for LR headers - the space for data in an iclog is the size minus
3585 	 * the space used for the headers. If we use the iclog size, then we
3586 	 * undercalculate the number of headers required.
3587 	 *
3588 	 * Furthermore - the addition of op headers for split-recs might
3589 	 * increase the space required enough to require more log and op
3590 	 * headers, so take that into account too.
3591 	 *
3592 	 * IMPORTANT: This reservation makes the assumption that if this
3593 	 * transaction is the first in an iclog and hence has the LR headers
3594 	 * accounted to it, then the remaining space in the iclog is
3595 	 * exclusively for this transaction.  i.e. if the transaction is larger
3596 	 * than the iclog, it will be the only thing in that iclog.
3597 	 * Fundamentally, this means we must pass the entire log vector to
3598 	 * xlog_write to guarantee this.
3599 	 */
3600 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3601 	num_headers = howmany(unit_bytes, iclog_space);
3602 
3603 	/* for split-recs - ophdrs added when data split over LRs */
3604 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3605 
3606 	/* add extra header reservations if we overrun */
3607 	while (!num_headers ||
3608 	       howmany(unit_bytes, iclog_space) > num_headers) {
3609 		unit_bytes += sizeof(xlog_op_header_t);
3610 		num_headers++;
3611 	}
3612 	unit_bytes += log->l_iclog_hsize * num_headers;
3613 
3614 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3615 	unit_bytes += log->l_iclog_hsize;
3616 
3617 	/* for roundoff padding for transaction data and one for commit record */
3618 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3619 		/* log su roundoff */
3620 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3621 	} else {
3622 		/* BB roundoff */
3623 		unit_bytes += 2 * BBSIZE;
3624         }
3625 
3626 	return unit_bytes;
3627 }
3628 
3629 /*
3630  * Allocate and initialise a new log ticket.
3631  */
3632 struct xlog_ticket *
3633 xlog_ticket_alloc(
3634 	struct xlog		*log,
3635 	int			unit_bytes,
3636 	int			cnt,
3637 	char			client,
3638 	bool			permanent,
3639 	xfs_km_flags_t		alloc_flags)
3640 {
3641 	struct xlog_ticket	*tic;
3642 	int			unit_res;
3643 
3644 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3645 	if (!tic)
3646 		return NULL;
3647 
3648 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3649 
3650 	atomic_set(&tic->t_ref, 1);
3651 	tic->t_task		= current;
3652 	INIT_LIST_HEAD(&tic->t_queue);
3653 	tic->t_unit_res		= unit_res;
3654 	tic->t_curr_res		= unit_res;
3655 	tic->t_cnt		= cnt;
3656 	tic->t_ocnt		= cnt;
3657 	tic->t_tid		= prandom_u32();
3658 	tic->t_clientid		= client;
3659 	tic->t_flags		= XLOG_TIC_INITED;
3660 	if (permanent)
3661 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3662 
3663 	xlog_tic_reset_res(tic);
3664 
3665 	return tic;
3666 }
3667 
3668 
3669 /******************************************************************************
3670  *
3671  *		Log debug routines
3672  *
3673  ******************************************************************************
3674  */
3675 #if defined(DEBUG)
3676 /*
3677  * Make sure that the destination ptr is within the valid data region of
3678  * one of the iclogs.  This uses backup pointers stored in a different
3679  * part of the log in case we trash the log structure.
3680  */
3681 void
3682 xlog_verify_dest_ptr(
3683 	struct xlog	*log,
3684 	void		*ptr)
3685 {
3686 	int i;
3687 	int good_ptr = 0;
3688 
3689 	for (i = 0; i < log->l_iclog_bufs; i++) {
3690 		if (ptr >= log->l_iclog_bak[i] &&
3691 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3692 			good_ptr++;
3693 	}
3694 
3695 	if (!good_ptr)
3696 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3697 }
3698 
3699 /*
3700  * Check to make sure the grant write head didn't just over lap the tail.  If
3701  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3702  * the cycles differ by exactly one and check the byte count.
3703  *
3704  * This check is run unlocked, so can give false positives. Rather than assert
3705  * on failures, use a warn-once flag and a panic tag to allow the admin to
3706  * determine if they want to panic the machine when such an error occurs. For
3707  * debug kernels this will have the same effect as using an assert but, unlinke
3708  * an assert, it can be turned off at runtime.
3709  */
3710 STATIC void
3711 xlog_verify_grant_tail(
3712 	struct xlog	*log)
3713 {
3714 	int		tail_cycle, tail_blocks;
3715 	int		cycle, space;
3716 
3717 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3718 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3719 	if (tail_cycle != cycle) {
3720 		if (cycle - 1 != tail_cycle &&
3721 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3722 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3723 				"%s: cycle - 1 != tail_cycle", __func__);
3724 			log->l_flags |= XLOG_TAIL_WARN;
3725 		}
3726 
3727 		if (space > BBTOB(tail_blocks) &&
3728 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3729 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3730 				"%s: space > BBTOB(tail_blocks)", __func__);
3731 			log->l_flags |= XLOG_TAIL_WARN;
3732 		}
3733 	}
3734 }
3735 
3736 /* check if it will fit */
3737 STATIC void
3738 xlog_verify_tail_lsn(
3739 	struct xlog		*log,
3740 	struct xlog_in_core	*iclog,
3741 	xfs_lsn_t		tail_lsn)
3742 {
3743     int blocks;
3744 
3745     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3746 	blocks =
3747 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3748 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3749 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3750     } else {
3751 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3752 
3753 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3754 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3755 
3756 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3757 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3758 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3759     }
3760 }	/* xlog_verify_tail_lsn */
3761 
3762 /*
3763  * Perform a number of checks on the iclog before writing to disk.
3764  *
3765  * 1. Make sure the iclogs are still circular
3766  * 2. Make sure we have a good magic number
3767  * 3. Make sure we don't have magic numbers in the data
3768  * 4. Check fields of each log operation header for:
3769  *	A. Valid client identifier
3770  *	B. tid ptr value falls in valid ptr space (user space code)
3771  *	C. Length in log record header is correct according to the
3772  *		individual operation headers within record.
3773  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3774  *	log, check the preceding blocks of the physical log to make sure all
3775  *	the cycle numbers agree with the current cycle number.
3776  */
3777 STATIC void
3778 xlog_verify_iclog(
3779 	struct xlog		*log,
3780 	struct xlog_in_core	*iclog,
3781 	int			count,
3782 	bool                    syncing)
3783 {
3784 	xlog_op_header_t	*ophead;
3785 	xlog_in_core_t		*icptr;
3786 	xlog_in_core_2_t	*xhdr;
3787 	void			*base_ptr, *ptr, *p;
3788 	ptrdiff_t		field_offset;
3789 	__uint8_t		clientid;
3790 	int			len, i, j, k, op_len;
3791 	int			idx;
3792 
3793 	/* check validity of iclog pointers */
3794 	spin_lock(&log->l_icloglock);
3795 	icptr = log->l_iclog;
3796 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3797 		ASSERT(icptr);
3798 
3799 	if (icptr != log->l_iclog)
3800 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3801 	spin_unlock(&log->l_icloglock);
3802 
3803 	/* check log magic numbers */
3804 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3805 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3806 
3807 	base_ptr = ptr = &iclog->ic_header;
3808 	p = &iclog->ic_header;
3809 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3810 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3811 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3812 				__func__);
3813 	}
3814 
3815 	/* check fields */
3816 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3817 	base_ptr = ptr = iclog->ic_datap;
3818 	ophead = ptr;
3819 	xhdr = iclog->ic_data;
3820 	for (i = 0; i < len; i++) {
3821 		ophead = ptr;
3822 
3823 		/* clientid is only 1 byte */
3824 		p = &ophead->oh_clientid;
3825 		field_offset = p - base_ptr;
3826 		if (!syncing || (field_offset & 0x1ff)) {
3827 			clientid = ophead->oh_clientid;
3828 		} else {
3829 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3830 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3831 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3832 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3833 				clientid = xlog_get_client_id(
3834 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3835 			} else {
3836 				clientid = xlog_get_client_id(
3837 					iclog->ic_header.h_cycle_data[idx]);
3838 			}
3839 		}
3840 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3841 			xfs_warn(log->l_mp,
3842 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3843 				__func__, clientid, ophead,
3844 				(unsigned long)field_offset);
3845 
3846 		/* check length */
3847 		p = &ophead->oh_len;
3848 		field_offset = p - base_ptr;
3849 		if (!syncing || (field_offset & 0x1ff)) {
3850 			op_len = be32_to_cpu(ophead->oh_len);
3851 		} else {
3852 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3853 				    (uintptr_t)iclog->ic_datap);
3854 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3855 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3856 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3857 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3858 			} else {
3859 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3860 			}
3861 		}
3862 		ptr += sizeof(xlog_op_header_t) + op_len;
3863 	}
3864 }	/* xlog_verify_iclog */
3865 #endif
3866 
3867 /*
3868  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3869  */
3870 STATIC int
3871 xlog_state_ioerror(
3872 	struct xlog	*log)
3873 {
3874 	xlog_in_core_t	*iclog, *ic;
3875 
3876 	iclog = log->l_iclog;
3877 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3878 		/*
3879 		 * Mark all the incore logs IOERROR.
3880 		 * From now on, no log flushes will result.
3881 		 */
3882 		ic = iclog;
3883 		do {
3884 			ic->ic_state = XLOG_STATE_IOERROR;
3885 			ic = ic->ic_next;
3886 		} while (ic != iclog);
3887 		return 0;
3888 	}
3889 	/*
3890 	 * Return non-zero, if state transition has already happened.
3891 	 */
3892 	return 1;
3893 }
3894 
3895 /*
3896  * This is called from xfs_force_shutdown, when we're forcibly
3897  * shutting down the filesystem, typically because of an IO error.
3898  * Our main objectives here are to make sure that:
3899  *	a. if !logerror, flush the logs to disk. Anything modified
3900  *	   after this is ignored.
3901  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3902  *	   parties to find out, 'atomically'.
3903  *	c. those who're sleeping on log reservations, pinned objects and
3904  *	    other resources get woken up, and be told the bad news.
3905  *	d. nothing new gets queued up after (b) and (c) are done.
3906  *
3907  * Note: for the !logerror case we need to flush the regions held in memory out
3908  * to disk first. This needs to be done before the log is marked as shutdown,
3909  * otherwise the iclog writes will fail.
3910  */
3911 int
3912 xfs_log_force_umount(
3913 	struct xfs_mount	*mp,
3914 	int			logerror)
3915 {
3916 	struct xlog	*log;
3917 	int		retval;
3918 
3919 	log = mp->m_log;
3920 
3921 	/*
3922 	 * If this happens during log recovery, don't worry about
3923 	 * locking; the log isn't open for business yet.
3924 	 */
3925 	if (!log ||
3926 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3927 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3928 		if (mp->m_sb_bp)
3929 			mp->m_sb_bp->b_flags |= XBF_DONE;
3930 		return 0;
3931 	}
3932 
3933 	/*
3934 	 * Somebody could've already done the hard work for us.
3935 	 * No need to get locks for this.
3936 	 */
3937 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3938 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3939 		return 1;
3940 	}
3941 
3942 	/*
3943 	 * Flush all the completed transactions to disk before marking the log
3944 	 * being shut down. We need to do it in this order to ensure that
3945 	 * completed operations are safely on disk before we shut down, and that
3946 	 * we don't have to issue any buffer IO after the shutdown flags are set
3947 	 * to guarantee this.
3948 	 */
3949 	if (!logerror)
3950 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3951 
3952 	/*
3953 	 * mark the filesystem and the as in a shutdown state and wake
3954 	 * everybody up to tell them the bad news.
3955 	 */
3956 	spin_lock(&log->l_icloglock);
3957 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3958 	if (mp->m_sb_bp)
3959 		mp->m_sb_bp->b_flags |= XBF_DONE;
3960 
3961 	/*
3962 	 * Mark the log and the iclogs with IO error flags to prevent any
3963 	 * further log IO from being issued or completed.
3964 	 */
3965 	log->l_flags |= XLOG_IO_ERROR;
3966 	retval = xlog_state_ioerror(log);
3967 	spin_unlock(&log->l_icloglock);
3968 
3969 	/*
3970 	 * We don't want anybody waiting for log reservations after this. That
3971 	 * means we have to wake up everybody queued up on reserveq as well as
3972 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3973 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3974 	 * action is protected by the grant locks.
3975 	 */
3976 	xlog_grant_head_wake_all(&log->l_reserve_head);
3977 	xlog_grant_head_wake_all(&log->l_write_head);
3978 
3979 	/*
3980 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3981 	 * as if the log writes were completed. The abort handling in the log
3982 	 * item committed callback functions will do this again under lock to
3983 	 * avoid races.
3984 	 */
3985 	wake_up_all(&log->l_cilp->xc_commit_wait);
3986 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3987 
3988 #ifdef XFSERRORDEBUG
3989 	{
3990 		xlog_in_core_t	*iclog;
3991 
3992 		spin_lock(&log->l_icloglock);
3993 		iclog = log->l_iclog;
3994 		do {
3995 			ASSERT(iclog->ic_callback == 0);
3996 			iclog = iclog->ic_next;
3997 		} while (iclog != log->l_iclog);
3998 		spin_unlock(&log->l_icloglock);
3999 	}
4000 #endif
4001 	/* return non-zero if log IOERROR transition had already happened */
4002 	return retval;
4003 }
4004 
4005 STATIC int
4006 xlog_iclogs_empty(
4007 	struct xlog	*log)
4008 {
4009 	xlog_in_core_t	*iclog;
4010 
4011 	iclog = log->l_iclog;
4012 	do {
4013 		/* endianness does not matter here, zero is zero in
4014 		 * any language.
4015 		 */
4016 		if (iclog->ic_header.h_num_logops)
4017 			return 0;
4018 		iclog = iclog->ic_next;
4019 	} while (iclog != log->l_iclog);
4020 	return 1;
4021 }
4022 
4023 /*
4024  * Verify that an LSN stamped into a piece of metadata is valid. This is
4025  * intended for use in read verifiers on v5 superblocks.
4026  */
4027 bool
4028 xfs_log_check_lsn(
4029 	struct xfs_mount	*mp,
4030 	xfs_lsn_t		lsn)
4031 {
4032 	struct xlog		*log = mp->m_log;
4033 	bool			valid;
4034 
4035 	/*
4036 	 * norecovery mode skips mount-time log processing and unconditionally
4037 	 * resets the in-core LSN. We can't validate in this mode, but
4038 	 * modifications are not allowed anyways so just return true.
4039 	 */
4040 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4041 		return true;
4042 
4043 	/*
4044 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4045 	 * handled by recovery and thus safe to ignore here.
4046 	 */
4047 	if (lsn == NULLCOMMITLSN)
4048 		return true;
4049 
4050 	valid = xlog_valid_lsn(mp->m_log, lsn);
4051 
4052 	/* warn the user about what's gone wrong before verifier failure */
4053 	if (!valid) {
4054 		spin_lock(&log->l_icloglock);
4055 		xfs_warn(mp,
4056 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4057 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4058 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4059 			 log->l_curr_cycle, log->l_curr_block);
4060 		spin_unlock(&log->l_icloglock);
4061 	}
4062 
4063 	return valid;
4064 }
4065