xref: /linux/fs/xfs/xfs_log.c (revision d0f482bb06f9447d44d2cae0386a0bd768c3cc16)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 kmem_zone_t	*xfs_log_ticket_zone;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 	struct xfs_mount	*mp,
30 	struct xfs_buftarg	*log_target,
31 	xfs_daddr_t		blk_offset,
32 	int			num_bblks);
33 STATIC int
34 xlog_space_left(
35 	struct xlog		*log,
36 	atomic64_t		*head);
37 STATIC void
38 xlog_dealloc_log(
39 	struct xlog		*log);
40 
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 	struct xlog_in_core	*iclog);
44 STATIC int
45 xlog_state_get_iclog_space(
46 	struct xlog		*log,
47 	int			len,
48 	struct xlog_in_core	**iclog,
49 	struct xlog_ticket	*ticket,
50 	int			*continued_write,
51 	int			*logoffsetp);
52 STATIC void
53 xlog_state_switch_iclogs(
54 	struct xlog		*log,
55 	struct xlog_in_core	*iclog,
56 	int			eventual_size);
57 STATIC void
58 xlog_grant_push_ail(
59 	struct xlog		*log,
60 	int			need_bytes);
61 STATIC void
62 xlog_sync(
63 	struct xlog		*log,
64 	struct xlog_in_core	*iclog);
65 #if defined(DEBUG)
66 STATIC void
67 xlog_verify_dest_ptr(
68 	struct xlog		*log,
69 	void			*ptr);
70 STATIC void
71 xlog_verify_grant_tail(
72 	struct xlog *log);
73 STATIC void
74 xlog_verify_iclog(
75 	struct xlog		*log,
76 	struct xlog_in_core	*iclog,
77 	int			count);
78 STATIC void
79 xlog_verify_tail_lsn(
80 	struct xlog		*log,
81 	struct xlog_in_core	*iclog,
82 	xfs_lsn_t		tail_lsn);
83 #else
84 #define xlog_verify_dest_ptr(a,b)
85 #define xlog_verify_grant_tail(a)
86 #define xlog_verify_iclog(a,b,c)
87 #define xlog_verify_tail_lsn(a,b,c)
88 #endif
89 
90 STATIC int
91 xlog_iclogs_empty(
92 	struct xlog		*log);
93 
94 static int
95 xfs_log_cover(struct xfs_mount *);
96 
97 static void
98 xlog_grant_sub_space(
99 	struct xlog		*log,
100 	atomic64_t		*head,
101 	int			bytes)
102 {
103 	int64_t	head_val = atomic64_read(head);
104 	int64_t new, old;
105 
106 	do {
107 		int	cycle, space;
108 
109 		xlog_crack_grant_head_val(head_val, &cycle, &space);
110 
111 		space -= bytes;
112 		if (space < 0) {
113 			space += log->l_logsize;
114 			cycle--;
115 		}
116 
117 		old = head_val;
118 		new = xlog_assign_grant_head_val(cycle, space);
119 		head_val = atomic64_cmpxchg(head, old, new);
120 	} while (head_val != old);
121 }
122 
123 static void
124 xlog_grant_add_space(
125 	struct xlog		*log,
126 	atomic64_t		*head,
127 	int			bytes)
128 {
129 	int64_t	head_val = atomic64_read(head);
130 	int64_t new, old;
131 
132 	do {
133 		int		tmp;
134 		int		cycle, space;
135 
136 		xlog_crack_grant_head_val(head_val, &cycle, &space);
137 
138 		tmp = log->l_logsize - space;
139 		if (tmp > bytes)
140 			space += bytes;
141 		else {
142 			space = bytes - tmp;
143 			cycle++;
144 		}
145 
146 		old = head_val;
147 		new = xlog_assign_grant_head_val(cycle, space);
148 		head_val = atomic64_cmpxchg(head, old, new);
149 	} while (head_val != old);
150 }
151 
152 STATIC void
153 xlog_grant_head_init(
154 	struct xlog_grant_head	*head)
155 {
156 	xlog_assign_grant_head(&head->grant, 1, 0);
157 	INIT_LIST_HEAD(&head->waiters);
158 	spin_lock_init(&head->lock);
159 }
160 
161 STATIC void
162 xlog_grant_head_wake_all(
163 	struct xlog_grant_head	*head)
164 {
165 	struct xlog_ticket	*tic;
166 
167 	spin_lock(&head->lock);
168 	list_for_each_entry(tic, &head->waiters, t_queue)
169 		wake_up_process(tic->t_task);
170 	spin_unlock(&head->lock);
171 }
172 
173 static inline int
174 xlog_ticket_reservation(
175 	struct xlog		*log,
176 	struct xlog_grant_head	*head,
177 	struct xlog_ticket	*tic)
178 {
179 	if (head == &log->l_write_head) {
180 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
181 		return tic->t_unit_res;
182 	} else {
183 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
184 			return tic->t_unit_res * tic->t_cnt;
185 		else
186 			return tic->t_unit_res;
187 	}
188 }
189 
190 STATIC bool
191 xlog_grant_head_wake(
192 	struct xlog		*log,
193 	struct xlog_grant_head	*head,
194 	int			*free_bytes)
195 {
196 	struct xlog_ticket	*tic;
197 	int			need_bytes;
198 	bool			woken_task = false;
199 
200 	list_for_each_entry(tic, &head->waiters, t_queue) {
201 
202 		/*
203 		 * There is a chance that the size of the CIL checkpoints in
204 		 * progress at the last AIL push target calculation resulted in
205 		 * limiting the target to the log head (l_last_sync_lsn) at the
206 		 * time. This may not reflect where the log head is now as the
207 		 * CIL checkpoints may have completed.
208 		 *
209 		 * Hence when we are woken here, it may be that the head of the
210 		 * log that has moved rather than the tail. As the tail didn't
211 		 * move, there still won't be space available for the
212 		 * reservation we require.  However, if the AIL has already
213 		 * pushed to the target defined by the old log head location, we
214 		 * will hang here waiting for something else to update the AIL
215 		 * push target.
216 		 *
217 		 * Therefore, if there isn't space to wake the first waiter on
218 		 * the grant head, we need to push the AIL again to ensure the
219 		 * target reflects both the current log tail and log head
220 		 * position before we wait for the tail to move again.
221 		 */
222 
223 		need_bytes = xlog_ticket_reservation(log, head, tic);
224 		if (*free_bytes < need_bytes) {
225 			if (!woken_task)
226 				xlog_grant_push_ail(log, need_bytes);
227 			return false;
228 		}
229 
230 		*free_bytes -= need_bytes;
231 		trace_xfs_log_grant_wake_up(log, tic);
232 		wake_up_process(tic->t_task);
233 		woken_task = true;
234 	}
235 
236 	return true;
237 }
238 
239 STATIC int
240 xlog_grant_head_wait(
241 	struct xlog		*log,
242 	struct xlog_grant_head	*head,
243 	struct xlog_ticket	*tic,
244 	int			need_bytes) __releases(&head->lock)
245 					    __acquires(&head->lock)
246 {
247 	list_add_tail(&tic->t_queue, &head->waiters);
248 
249 	do {
250 		if (XLOG_FORCED_SHUTDOWN(log))
251 			goto shutdown;
252 		xlog_grant_push_ail(log, need_bytes);
253 
254 		__set_current_state(TASK_UNINTERRUPTIBLE);
255 		spin_unlock(&head->lock);
256 
257 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
258 
259 		trace_xfs_log_grant_sleep(log, tic);
260 		schedule();
261 		trace_xfs_log_grant_wake(log, tic);
262 
263 		spin_lock(&head->lock);
264 		if (XLOG_FORCED_SHUTDOWN(log))
265 			goto shutdown;
266 	} while (xlog_space_left(log, &head->grant) < need_bytes);
267 
268 	list_del_init(&tic->t_queue);
269 	return 0;
270 shutdown:
271 	list_del_init(&tic->t_queue);
272 	return -EIO;
273 }
274 
275 /*
276  * Atomically get the log space required for a log ticket.
277  *
278  * Once a ticket gets put onto head->waiters, it will only return after the
279  * needed reservation is satisfied.
280  *
281  * This function is structured so that it has a lock free fast path. This is
282  * necessary because every new transaction reservation will come through this
283  * path. Hence any lock will be globally hot if we take it unconditionally on
284  * every pass.
285  *
286  * As tickets are only ever moved on and off head->waiters under head->lock, we
287  * only need to take that lock if we are going to add the ticket to the queue
288  * and sleep. We can avoid taking the lock if the ticket was never added to
289  * head->waiters because the t_queue list head will be empty and we hold the
290  * only reference to it so it can safely be checked unlocked.
291  */
292 STATIC int
293 xlog_grant_head_check(
294 	struct xlog		*log,
295 	struct xlog_grant_head	*head,
296 	struct xlog_ticket	*tic,
297 	int			*need_bytes)
298 {
299 	int			free_bytes;
300 	int			error = 0;
301 
302 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
303 
304 	/*
305 	 * If there are other waiters on the queue then give them a chance at
306 	 * logspace before us.  Wake up the first waiters, if we do not wake
307 	 * up all the waiters then go to sleep waiting for more free space,
308 	 * otherwise try to get some space for this transaction.
309 	 */
310 	*need_bytes = xlog_ticket_reservation(log, head, tic);
311 	free_bytes = xlog_space_left(log, &head->grant);
312 	if (!list_empty_careful(&head->waiters)) {
313 		spin_lock(&head->lock);
314 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
315 		    free_bytes < *need_bytes) {
316 			error = xlog_grant_head_wait(log, head, tic,
317 						     *need_bytes);
318 		}
319 		spin_unlock(&head->lock);
320 	} else if (free_bytes < *need_bytes) {
321 		spin_lock(&head->lock);
322 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
323 		spin_unlock(&head->lock);
324 	}
325 
326 	return error;
327 }
328 
329 static void
330 xlog_tic_reset_res(xlog_ticket_t *tic)
331 {
332 	tic->t_res_num = 0;
333 	tic->t_res_arr_sum = 0;
334 	tic->t_res_num_ophdrs = 0;
335 }
336 
337 static void
338 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
339 {
340 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
341 		/* add to overflow and start again */
342 		tic->t_res_o_flow += tic->t_res_arr_sum;
343 		tic->t_res_num = 0;
344 		tic->t_res_arr_sum = 0;
345 	}
346 
347 	tic->t_res_arr[tic->t_res_num].r_len = len;
348 	tic->t_res_arr[tic->t_res_num].r_type = type;
349 	tic->t_res_arr_sum += len;
350 	tic->t_res_num++;
351 }
352 
353 bool
354 xfs_log_writable(
355 	struct xfs_mount	*mp)
356 {
357 	/*
358 	 * Do not write to the log on norecovery mounts, if the data or log
359 	 * devices are read-only, or if the filesystem is shutdown. Read-only
360 	 * mounts allow internal writes for log recovery and unmount purposes,
361 	 * so don't restrict that case.
362 	 */
363 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
364 		return false;
365 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
366 		return false;
367 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
368 		return false;
369 	if (XFS_FORCED_SHUTDOWN(mp))
370 		return false;
371 	return true;
372 }
373 
374 /*
375  * Replenish the byte reservation required by moving the grant write head.
376  */
377 int
378 xfs_log_regrant(
379 	struct xfs_mount	*mp,
380 	struct xlog_ticket	*tic)
381 {
382 	struct xlog		*log = mp->m_log;
383 	int			need_bytes;
384 	int			error = 0;
385 
386 	if (XLOG_FORCED_SHUTDOWN(log))
387 		return -EIO;
388 
389 	XFS_STATS_INC(mp, xs_try_logspace);
390 
391 	/*
392 	 * This is a new transaction on the ticket, so we need to change the
393 	 * transaction ID so that the next transaction has a different TID in
394 	 * the log. Just add one to the existing tid so that we can see chains
395 	 * of rolling transactions in the log easily.
396 	 */
397 	tic->t_tid++;
398 
399 	xlog_grant_push_ail(log, tic->t_unit_res);
400 
401 	tic->t_curr_res = tic->t_unit_res;
402 	xlog_tic_reset_res(tic);
403 
404 	if (tic->t_cnt > 0)
405 		return 0;
406 
407 	trace_xfs_log_regrant(log, tic);
408 
409 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
410 				      &need_bytes);
411 	if (error)
412 		goto out_error;
413 
414 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
415 	trace_xfs_log_regrant_exit(log, tic);
416 	xlog_verify_grant_tail(log);
417 	return 0;
418 
419 out_error:
420 	/*
421 	 * If we are failing, make sure the ticket doesn't have any current
422 	 * reservations.  We don't want to add this back when the ticket/
423 	 * transaction gets cancelled.
424 	 */
425 	tic->t_curr_res = 0;
426 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
427 	return error;
428 }
429 
430 /*
431  * Reserve log space and return a ticket corresponding to the reservation.
432  *
433  * Each reservation is going to reserve extra space for a log record header.
434  * When writes happen to the on-disk log, we don't subtract the length of the
435  * log record header from any reservation.  By wasting space in each
436  * reservation, we prevent over allocation problems.
437  */
438 int
439 xfs_log_reserve(
440 	struct xfs_mount	*mp,
441 	int		 	unit_bytes,
442 	int		 	cnt,
443 	struct xlog_ticket	**ticp,
444 	uint8_t		 	client,
445 	bool			permanent)
446 {
447 	struct xlog		*log = mp->m_log;
448 	struct xlog_ticket	*tic;
449 	int			need_bytes;
450 	int			error = 0;
451 
452 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
453 
454 	if (XLOG_FORCED_SHUTDOWN(log))
455 		return -EIO;
456 
457 	XFS_STATS_INC(mp, xs_try_logspace);
458 
459 	ASSERT(*ticp == NULL);
460 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
461 	*ticp = tic;
462 
463 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
464 					    : tic->t_unit_res);
465 
466 	trace_xfs_log_reserve(log, tic);
467 
468 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
469 				      &need_bytes);
470 	if (error)
471 		goto out_error;
472 
473 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
474 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
475 	trace_xfs_log_reserve_exit(log, tic);
476 	xlog_verify_grant_tail(log);
477 	return 0;
478 
479 out_error:
480 	/*
481 	 * If we are failing, make sure the ticket doesn't have any current
482 	 * reservations.  We don't want to add this back when the ticket/
483 	 * transaction gets cancelled.
484 	 */
485 	tic->t_curr_res = 0;
486 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
487 	return error;
488 }
489 
490 static bool
491 __xlog_state_release_iclog(
492 	struct xlog		*log,
493 	struct xlog_in_core	*iclog)
494 {
495 	lockdep_assert_held(&log->l_icloglock);
496 
497 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
498 		/* update tail before writing to iclog */
499 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
500 
501 		iclog->ic_state = XLOG_STATE_SYNCING;
502 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
503 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
504 		/* cycle incremented when incrementing curr_block */
505 		return true;
506 	}
507 
508 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
509 	return false;
510 }
511 
512 /*
513  * Flush iclog to disk if this is the last reference to the given iclog and the
514  * it is in the WANT_SYNC state.
515  */
516 static int
517 xlog_state_release_iclog(
518 	struct xlog		*log,
519 	struct xlog_in_core	*iclog)
520 {
521 	lockdep_assert_held(&log->l_icloglock);
522 
523 	if (iclog->ic_state == XLOG_STATE_IOERROR)
524 		return -EIO;
525 
526 	if (atomic_dec_and_test(&iclog->ic_refcnt) &&
527 	    __xlog_state_release_iclog(log, iclog)) {
528 		spin_unlock(&log->l_icloglock);
529 		xlog_sync(log, iclog);
530 		spin_lock(&log->l_icloglock);
531 	}
532 
533 	return 0;
534 }
535 
536 void
537 xfs_log_release_iclog(
538 	struct xlog_in_core	*iclog)
539 {
540 	struct xlog		*log = iclog->ic_log;
541 	bool			sync = false;
542 
543 	if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
544 		if (iclog->ic_state != XLOG_STATE_IOERROR)
545 			sync = __xlog_state_release_iclog(log, iclog);
546 		spin_unlock(&log->l_icloglock);
547 	}
548 
549 	if (sync)
550 		xlog_sync(log, iclog);
551 }
552 
553 /*
554  * Mount a log filesystem
555  *
556  * mp		- ubiquitous xfs mount point structure
557  * log_target	- buftarg of on-disk log device
558  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
559  * num_bblocks	- Number of BBSIZE blocks in on-disk log
560  *
561  * Return error or zero.
562  */
563 int
564 xfs_log_mount(
565 	xfs_mount_t	*mp,
566 	xfs_buftarg_t	*log_target,
567 	xfs_daddr_t	blk_offset,
568 	int		num_bblks)
569 {
570 	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
571 	int		error = 0;
572 	int		min_logfsbs;
573 
574 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
575 		xfs_notice(mp, "Mounting V%d Filesystem",
576 			   XFS_SB_VERSION_NUM(&mp->m_sb));
577 	} else {
578 		xfs_notice(mp,
579 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
580 			   XFS_SB_VERSION_NUM(&mp->m_sb));
581 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
582 	}
583 
584 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
585 	if (IS_ERR(mp->m_log)) {
586 		error = PTR_ERR(mp->m_log);
587 		goto out;
588 	}
589 
590 	/*
591 	 * Validate the given log space and drop a critical message via syslog
592 	 * if the log size is too small that would lead to some unexpected
593 	 * situations in transaction log space reservation stage.
594 	 *
595 	 * Note: we can't just reject the mount if the validation fails.  This
596 	 * would mean that people would have to downgrade their kernel just to
597 	 * remedy the situation as there is no way to grow the log (short of
598 	 * black magic surgery with xfs_db).
599 	 *
600 	 * We can, however, reject mounts for CRC format filesystems, as the
601 	 * mkfs binary being used to make the filesystem should never create a
602 	 * filesystem with a log that is too small.
603 	 */
604 	min_logfsbs = xfs_log_calc_minimum_size(mp);
605 
606 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
607 		xfs_warn(mp,
608 		"Log size %d blocks too small, minimum size is %d blocks",
609 			 mp->m_sb.sb_logblocks, min_logfsbs);
610 		error = -EINVAL;
611 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
612 		xfs_warn(mp,
613 		"Log size %d blocks too large, maximum size is %lld blocks",
614 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
615 		error = -EINVAL;
616 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
617 		xfs_warn(mp,
618 		"log size %lld bytes too large, maximum size is %lld bytes",
619 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
620 			 XFS_MAX_LOG_BYTES);
621 		error = -EINVAL;
622 	} else if (mp->m_sb.sb_logsunit > 1 &&
623 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
624 		xfs_warn(mp,
625 		"log stripe unit %u bytes must be a multiple of block size",
626 			 mp->m_sb.sb_logsunit);
627 		error = -EINVAL;
628 		fatal = true;
629 	}
630 	if (error) {
631 		/*
632 		 * Log check errors are always fatal on v5; or whenever bad
633 		 * metadata leads to a crash.
634 		 */
635 		if (fatal) {
636 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
637 			ASSERT(0);
638 			goto out_free_log;
639 		}
640 		xfs_crit(mp, "Log size out of supported range.");
641 		xfs_crit(mp,
642 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
643 	}
644 
645 	/*
646 	 * Initialize the AIL now we have a log.
647 	 */
648 	error = xfs_trans_ail_init(mp);
649 	if (error) {
650 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
651 		goto out_free_log;
652 	}
653 	mp->m_log->l_ailp = mp->m_ail;
654 
655 	/*
656 	 * skip log recovery on a norecovery mount.  pretend it all
657 	 * just worked.
658 	 */
659 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
660 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
661 
662 		if (readonly)
663 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
664 
665 		error = xlog_recover(mp->m_log);
666 
667 		if (readonly)
668 			mp->m_flags |= XFS_MOUNT_RDONLY;
669 		if (error) {
670 			xfs_warn(mp, "log mount/recovery failed: error %d",
671 				error);
672 			xlog_recover_cancel(mp->m_log);
673 			goto out_destroy_ail;
674 		}
675 	}
676 
677 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
678 			       "log");
679 	if (error)
680 		goto out_destroy_ail;
681 
682 	/* Normal transactions can now occur */
683 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
684 
685 	/*
686 	 * Now the log has been fully initialised and we know were our
687 	 * space grant counters are, we can initialise the permanent ticket
688 	 * needed for delayed logging to work.
689 	 */
690 	xlog_cil_init_post_recovery(mp->m_log);
691 
692 	return 0;
693 
694 out_destroy_ail:
695 	xfs_trans_ail_destroy(mp);
696 out_free_log:
697 	xlog_dealloc_log(mp->m_log);
698 out:
699 	return error;
700 }
701 
702 /*
703  * Finish the recovery of the file system.  This is separate from the
704  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
705  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
706  * here.
707  *
708  * If we finish recovery successfully, start the background log work. If we are
709  * not doing recovery, then we have a RO filesystem and we don't need to start
710  * it.
711  */
712 int
713 xfs_log_mount_finish(
714 	struct xfs_mount	*mp)
715 {
716 	int	error = 0;
717 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
718 	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
719 
720 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
721 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
722 		return 0;
723 	} else if (readonly) {
724 		/* Allow unlinked processing to proceed */
725 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
726 	}
727 
728 	/*
729 	 * During the second phase of log recovery, we need iget and
730 	 * iput to behave like they do for an active filesystem.
731 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
732 	 * of inodes before we're done replaying log items on those
733 	 * inodes.  Turn it off immediately after recovery finishes
734 	 * so that we don't leak the quota inodes if subsequent mount
735 	 * activities fail.
736 	 *
737 	 * We let all inodes involved in redo item processing end up on
738 	 * the LRU instead of being evicted immediately so that if we do
739 	 * something to an unlinked inode, the irele won't cause
740 	 * premature truncation and freeing of the inode, which results
741 	 * in log recovery failure.  We have to evict the unreferenced
742 	 * lru inodes after clearing SB_ACTIVE because we don't
743 	 * otherwise clean up the lru if there's a subsequent failure in
744 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
745 	 * else (e.g. quotacheck) references the inodes before the
746 	 * mount failure occurs.
747 	 */
748 	mp->m_super->s_flags |= SB_ACTIVE;
749 	error = xlog_recover_finish(mp->m_log);
750 	if (!error)
751 		xfs_log_work_queue(mp);
752 	mp->m_super->s_flags &= ~SB_ACTIVE;
753 	evict_inodes(mp->m_super);
754 
755 	/*
756 	 * Drain the buffer LRU after log recovery. This is required for v4
757 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
758 	 * but we do it unconditionally to make sure we're always in a clean
759 	 * cache state after mount.
760 	 *
761 	 * Don't push in the error case because the AIL may have pending intents
762 	 * that aren't removed until recovery is cancelled.
763 	 */
764 	if (!error && recovered) {
765 		xfs_log_force(mp, XFS_LOG_SYNC);
766 		xfs_ail_push_all_sync(mp->m_ail);
767 	}
768 	xfs_buftarg_drain(mp->m_ddev_targp);
769 
770 	if (readonly)
771 		mp->m_flags |= XFS_MOUNT_RDONLY;
772 
773 	return error;
774 }
775 
776 /*
777  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
778  * the log.
779  */
780 void
781 xfs_log_mount_cancel(
782 	struct xfs_mount	*mp)
783 {
784 	xlog_recover_cancel(mp->m_log);
785 	xfs_log_unmount(mp);
786 }
787 
788 /*
789  * Wait for the iclog to be written disk, or return an error if the log has been
790  * shut down.
791  */
792 static int
793 xlog_wait_on_iclog(
794 	struct xlog_in_core	*iclog)
795 		__releases(iclog->ic_log->l_icloglock)
796 {
797 	struct xlog		*log = iclog->ic_log;
798 
799 	if (!XLOG_FORCED_SHUTDOWN(log) &&
800 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
801 	    iclog->ic_state != XLOG_STATE_DIRTY) {
802 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
803 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
804 	} else {
805 		spin_unlock(&log->l_icloglock);
806 	}
807 
808 	if (XLOG_FORCED_SHUTDOWN(log))
809 		return -EIO;
810 	return 0;
811 }
812 
813 /*
814  * Write out an unmount record using the ticket provided. We have to account for
815  * the data space used in the unmount ticket as this write is not done from a
816  * transaction context that has already done the accounting for us.
817  */
818 static int
819 xlog_write_unmount_record(
820 	struct xlog		*log,
821 	struct xlog_ticket	*ticket,
822 	xfs_lsn_t		*lsn,
823 	uint			flags)
824 {
825 	struct xfs_unmount_log_format ulf = {
826 		.magic = XLOG_UNMOUNT_TYPE,
827 	};
828 	struct xfs_log_iovec reg = {
829 		.i_addr = &ulf,
830 		.i_len = sizeof(ulf),
831 		.i_type = XLOG_REG_TYPE_UNMOUNT,
832 	};
833 	struct xfs_log_vec vec = {
834 		.lv_niovecs = 1,
835 		.lv_iovecp = &reg,
836 	};
837 
838 	/* account for space used by record data */
839 	ticket->t_curr_res -= sizeof(ulf);
840 	return xlog_write(log, &vec, ticket, lsn, NULL, flags, false);
841 }
842 
843 /*
844  * Mark the filesystem clean by writing an unmount record to the head of the
845  * log.
846  */
847 static void
848 xlog_unmount_write(
849 	struct xlog		*log)
850 {
851 	struct xfs_mount	*mp = log->l_mp;
852 	struct xlog_in_core	*iclog;
853 	struct xlog_ticket	*tic = NULL;
854 	xfs_lsn_t		lsn;
855 	uint			flags = XLOG_UNMOUNT_TRANS;
856 	int			error;
857 
858 	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
859 	if (error)
860 		goto out_err;
861 
862 	error = xlog_write_unmount_record(log, tic, &lsn, flags);
863 	/*
864 	 * At this point, we're umounting anyway, so there's no point in
865 	 * transitioning log state to IOERROR. Just continue...
866 	 */
867 out_err:
868 	if (error)
869 		xfs_alert(mp, "%s: unmount record failed", __func__);
870 
871 	spin_lock(&log->l_icloglock);
872 	iclog = log->l_iclog;
873 	atomic_inc(&iclog->ic_refcnt);
874 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
875 		xlog_state_switch_iclogs(log, iclog, 0);
876 	else
877 		ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
878 		       iclog->ic_state == XLOG_STATE_IOERROR);
879 	error = xlog_state_release_iclog(log, iclog);
880 	xlog_wait_on_iclog(iclog);
881 
882 	if (tic) {
883 		trace_xfs_log_umount_write(log, tic);
884 		xfs_log_ticket_ungrant(log, tic);
885 	}
886 }
887 
888 static void
889 xfs_log_unmount_verify_iclog(
890 	struct xlog		*log)
891 {
892 	struct xlog_in_core	*iclog = log->l_iclog;
893 
894 	do {
895 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
896 		ASSERT(iclog->ic_offset == 0);
897 	} while ((iclog = iclog->ic_next) != log->l_iclog);
898 }
899 
900 /*
901  * Unmount record used to have a string "Unmount filesystem--" in the
902  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
903  * We just write the magic number now since that particular field isn't
904  * currently architecture converted and "Unmount" is a bit foo.
905  * As far as I know, there weren't any dependencies on the old behaviour.
906  */
907 static void
908 xfs_log_unmount_write(
909 	struct xfs_mount	*mp)
910 {
911 	struct xlog		*log = mp->m_log;
912 
913 	if (!xfs_log_writable(mp))
914 		return;
915 
916 	xfs_log_force(mp, XFS_LOG_SYNC);
917 
918 	if (XLOG_FORCED_SHUTDOWN(log))
919 		return;
920 
921 	/*
922 	 * If we think the summary counters are bad, avoid writing the unmount
923 	 * record to force log recovery at next mount, after which the summary
924 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
925 	 * more details.
926 	 */
927 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
928 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
929 		xfs_alert(mp, "%s: will fix summary counters at next mount",
930 				__func__);
931 		return;
932 	}
933 
934 	xfs_log_unmount_verify_iclog(log);
935 	xlog_unmount_write(log);
936 }
937 
938 /*
939  * Empty the log for unmount/freeze.
940  *
941  * To do this, we first need to shut down the background log work so it is not
942  * trying to cover the log as we clean up. We then need to unpin all objects in
943  * the log so we can then flush them out. Once they have completed their IO and
944  * run the callbacks removing themselves from the AIL, we can cover the log.
945  */
946 int
947 xfs_log_quiesce(
948 	struct xfs_mount	*mp)
949 {
950 	cancel_delayed_work_sync(&mp->m_log->l_work);
951 	xfs_log_force(mp, XFS_LOG_SYNC);
952 
953 	/*
954 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
955 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
956 	 * xfs_buf_iowait() cannot be used because it was pushed with the
957 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
958 	 * the IO to complete.
959 	 */
960 	xfs_ail_push_all_sync(mp->m_ail);
961 	xfs_buftarg_wait(mp->m_ddev_targp);
962 	xfs_buf_lock(mp->m_sb_bp);
963 	xfs_buf_unlock(mp->m_sb_bp);
964 
965 	return xfs_log_cover(mp);
966 }
967 
968 void
969 xfs_log_clean(
970 	struct xfs_mount	*mp)
971 {
972 	xfs_log_quiesce(mp);
973 	xfs_log_unmount_write(mp);
974 }
975 
976 /*
977  * Shut down and release the AIL and Log.
978  *
979  * During unmount, we need to ensure we flush all the dirty metadata objects
980  * from the AIL so that the log is empty before we write the unmount record to
981  * the log. Once this is done, we can tear down the AIL and the log.
982  */
983 void
984 xfs_log_unmount(
985 	struct xfs_mount	*mp)
986 {
987 	xfs_log_clean(mp);
988 
989 	xfs_buftarg_drain(mp->m_ddev_targp);
990 
991 	xfs_trans_ail_destroy(mp);
992 
993 	xfs_sysfs_del(&mp->m_log->l_kobj);
994 
995 	xlog_dealloc_log(mp->m_log);
996 }
997 
998 void
999 xfs_log_item_init(
1000 	struct xfs_mount	*mp,
1001 	struct xfs_log_item	*item,
1002 	int			type,
1003 	const struct xfs_item_ops *ops)
1004 {
1005 	item->li_mountp = mp;
1006 	item->li_ailp = mp->m_ail;
1007 	item->li_type = type;
1008 	item->li_ops = ops;
1009 	item->li_lv = NULL;
1010 
1011 	INIT_LIST_HEAD(&item->li_ail);
1012 	INIT_LIST_HEAD(&item->li_cil);
1013 	INIT_LIST_HEAD(&item->li_bio_list);
1014 	INIT_LIST_HEAD(&item->li_trans);
1015 }
1016 
1017 /*
1018  * Wake up processes waiting for log space after we have moved the log tail.
1019  */
1020 void
1021 xfs_log_space_wake(
1022 	struct xfs_mount	*mp)
1023 {
1024 	struct xlog		*log = mp->m_log;
1025 	int			free_bytes;
1026 
1027 	if (XLOG_FORCED_SHUTDOWN(log))
1028 		return;
1029 
1030 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1031 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1032 
1033 		spin_lock(&log->l_write_head.lock);
1034 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1035 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1036 		spin_unlock(&log->l_write_head.lock);
1037 	}
1038 
1039 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1040 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1041 
1042 		spin_lock(&log->l_reserve_head.lock);
1043 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1044 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1045 		spin_unlock(&log->l_reserve_head.lock);
1046 	}
1047 }
1048 
1049 /*
1050  * Determine if we have a transaction that has gone to disk that needs to be
1051  * covered. To begin the transition to the idle state firstly the log needs to
1052  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1053  * we start attempting to cover the log.
1054  *
1055  * Only if we are then in a state where covering is needed, the caller is
1056  * informed that dummy transactions are required to move the log into the idle
1057  * state.
1058  *
1059  * If there are any items in the AIl or CIL, then we do not want to attempt to
1060  * cover the log as we may be in a situation where there isn't log space
1061  * available to run a dummy transaction and this can lead to deadlocks when the
1062  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1063  * there's no point in running a dummy transaction at this point because we
1064  * can't start trying to idle the log until both the CIL and AIL are empty.
1065  */
1066 static bool
1067 xfs_log_need_covered(
1068 	struct xfs_mount	*mp)
1069 {
1070 	struct xlog		*log = mp->m_log;
1071 	bool			needed = false;
1072 
1073 	if (!xlog_cil_empty(log))
1074 		return false;
1075 
1076 	spin_lock(&log->l_icloglock);
1077 	switch (log->l_covered_state) {
1078 	case XLOG_STATE_COVER_DONE:
1079 	case XLOG_STATE_COVER_DONE2:
1080 	case XLOG_STATE_COVER_IDLE:
1081 		break;
1082 	case XLOG_STATE_COVER_NEED:
1083 	case XLOG_STATE_COVER_NEED2:
1084 		if (xfs_ail_min_lsn(log->l_ailp))
1085 			break;
1086 		if (!xlog_iclogs_empty(log))
1087 			break;
1088 
1089 		needed = true;
1090 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1091 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1092 		else
1093 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1094 		break;
1095 	default:
1096 		needed = true;
1097 		break;
1098 	}
1099 	spin_unlock(&log->l_icloglock);
1100 	return needed;
1101 }
1102 
1103 /*
1104  * Explicitly cover the log. This is similar to background log covering but
1105  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1106  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1107  * must all be empty.
1108  */
1109 static int
1110 xfs_log_cover(
1111 	struct xfs_mount	*mp)
1112 {
1113 	int			error = 0;
1114 	bool			need_covered;
1115 
1116 	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1117 	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1118 	       XFS_FORCED_SHUTDOWN(mp));
1119 
1120 	if (!xfs_log_writable(mp))
1121 		return 0;
1122 
1123 	/*
1124 	 * xfs_log_need_covered() is not idempotent because it progresses the
1125 	 * state machine if the log requires covering. Therefore, we must call
1126 	 * this function once and use the result until we've issued an sb sync.
1127 	 * Do so first to make that abundantly clear.
1128 	 *
1129 	 * Fall into the covering sequence if the log needs covering or the
1130 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1131 	 * used for covering accumulates the in-core counters, so covering
1132 	 * handles this for us.
1133 	 */
1134 	need_covered = xfs_log_need_covered(mp);
1135 	if (!need_covered && !xfs_sb_version_haslazysbcount(&mp->m_sb))
1136 		return 0;
1137 
1138 	/*
1139 	 * To cover the log, commit the superblock twice (at most) in
1140 	 * independent checkpoints. The first serves as a reference for the
1141 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1142 	 * updates the in-core tail to the LSN of the first checkpoint. The
1143 	 * second commit updates the on-disk tail with the in-core LSN,
1144 	 * covering the log. Push the AIL one more time to leave it empty, as
1145 	 * we found it.
1146 	 */
1147 	do {
1148 		error = xfs_sync_sb(mp, true);
1149 		if (error)
1150 			break;
1151 		xfs_ail_push_all_sync(mp->m_ail);
1152 	} while (xfs_log_need_covered(mp));
1153 
1154 	return error;
1155 }
1156 
1157 /*
1158  * We may be holding the log iclog lock upon entering this routine.
1159  */
1160 xfs_lsn_t
1161 xlog_assign_tail_lsn_locked(
1162 	struct xfs_mount	*mp)
1163 {
1164 	struct xlog		*log = mp->m_log;
1165 	struct xfs_log_item	*lip;
1166 	xfs_lsn_t		tail_lsn;
1167 
1168 	assert_spin_locked(&mp->m_ail->ail_lock);
1169 
1170 	/*
1171 	 * To make sure we always have a valid LSN for the log tail we keep
1172 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1173 	 * and use that when the AIL was empty.
1174 	 */
1175 	lip = xfs_ail_min(mp->m_ail);
1176 	if (lip)
1177 		tail_lsn = lip->li_lsn;
1178 	else
1179 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1180 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1181 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1182 	return tail_lsn;
1183 }
1184 
1185 xfs_lsn_t
1186 xlog_assign_tail_lsn(
1187 	struct xfs_mount	*mp)
1188 {
1189 	xfs_lsn_t		tail_lsn;
1190 
1191 	spin_lock(&mp->m_ail->ail_lock);
1192 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1193 	spin_unlock(&mp->m_ail->ail_lock);
1194 
1195 	return tail_lsn;
1196 }
1197 
1198 /*
1199  * Return the space in the log between the tail and the head.  The head
1200  * is passed in the cycle/bytes formal parms.  In the special case where
1201  * the reserve head has wrapped passed the tail, this calculation is no
1202  * longer valid.  In this case, just return 0 which means there is no space
1203  * in the log.  This works for all places where this function is called
1204  * with the reserve head.  Of course, if the write head were to ever
1205  * wrap the tail, we should blow up.  Rather than catch this case here,
1206  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1207  *
1208  * This code also handles the case where the reservation head is behind
1209  * the tail.  The details of this case are described below, but the end
1210  * result is that we return the size of the log as the amount of space left.
1211  */
1212 STATIC int
1213 xlog_space_left(
1214 	struct xlog	*log,
1215 	atomic64_t	*head)
1216 {
1217 	int		free_bytes;
1218 	int		tail_bytes;
1219 	int		tail_cycle;
1220 	int		head_cycle;
1221 	int		head_bytes;
1222 
1223 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1224 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1225 	tail_bytes = BBTOB(tail_bytes);
1226 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1227 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1228 	else if (tail_cycle + 1 < head_cycle)
1229 		return 0;
1230 	else if (tail_cycle < head_cycle) {
1231 		ASSERT(tail_cycle == (head_cycle - 1));
1232 		free_bytes = tail_bytes - head_bytes;
1233 	} else {
1234 		/*
1235 		 * The reservation head is behind the tail.
1236 		 * In this case we just want to return the size of the
1237 		 * log as the amount of space left.
1238 		 */
1239 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1240 		xfs_alert(log->l_mp,
1241 			  "  tail_cycle = %d, tail_bytes = %d",
1242 			  tail_cycle, tail_bytes);
1243 		xfs_alert(log->l_mp,
1244 			  "  GH   cycle = %d, GH   bytes = %d",
1245 			  head_cycle, head_bytes);
1246 		ASSERT(0);
1247 		free_bytes = log->l_logsize;
1248 	}
1249 	return free_bytes;
1250 }
1251 
1252 
1253 static void
1254 xlog_ioend_work(
1255 	struct work_struct	*work)
1256 {
1257 	struct xlog_in_core     *iclog =
1258 		container_of(work, struct xlog_in_core, ic_end_io_work);
1259 	struct xlog		*log = iclog->ic_log;
1260 	int			error;
1261 
1262 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1263 #ifdef DEBUG
1264 	/* treat writes with injected CRC errors as failed */
1265 	if (iclog->ic_fail_crc)
1266 		error = -EIO;
1267 #endif
1268 
1269 	/*
1270 	 * Race to shutdown the filesystem if we see an error.
1271 	 */
1272 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1273 		xfs_alert(log->l_mp, "log I/O error %d", error);
1274 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1275 	}
1276 
1277 	xlog_state_done_syncing(iclog);
1278 	bio_uninit(&iclog->ic_bio);
1279 
1280 	/*
1281 	 * Drop the lock to signal that we are done. Nothing references the
1282 	 * iclog after this, so an unmount waiting on this lock can now tear it
1283 	 * down safely. As such, it is unsafe to reference the iclog after the
1284 	 * unlock as we could race with it being freed.
1285 	 */
1286 	up(&iclog->ic_sema);
1287 }
1288 
1289 /*
1290  * Return size of each in-core log record buffer.
1291  *
1292  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1293  *
1294  * If the filesystem blocksize is too large, we may need to choose a
1295  * larger size since the directory code currently logs entire blocks.
1296  */
1297 STATIC void
1298 xlog_get_iclog_buffer_size(
1299 	struct xfs_mount	*mp,
1300 	struct xlog		*log)
1301 {
1302 	if (mp->m_logbufs <= 0)
1303 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1304 	if (mp->m_logbsize <= 0)
1305 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1306 
1307 	log->l_iclog_bufs = mp->m_logbufs;
1308 	log->l_iclog_size = mp->m_logbsize;
1309 
1310 	/*
1311 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1312 	 */
1313 	log->l_iclog_heads =
1314 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1315 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1316 }
1317 
1318 void
1319 xfs_log_work_queue(
1320 	struct xfs_mount        *mp)
1321 {
1322 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1323 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1324 }
1325 
1326 /*
1327  * Every sync period we need to unpin all items in the AIL and push them to
1328  * disk. If there is nothing dirty, then we might need to cover the log to
1329  * indicate that the filesystem is idle.
1330  */
1331 static void
1332 xfs_log_worker(
1333 	struct work_struct	*work)
1334 {
1335 	struct xlog		*log = container_of(to_delayed_work(work),
1336 						struct xlog, l_work);
1337 	struct xfs_mount	*mp = log->l_mp;
1338 
1339 	/* dgc: errors ignored - not fatal and nowhere to report them */
1340 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1341 		/*
1342 		 * Dump a transaction into the log that contains no real change.
1343 		 * This is needed to stamp the current tail LSN into the log
1344 		 * during the covering operation.
1345 		 *
1346 		 * We cannot use an inode here for this - that will push dirty
1347 		 * state back up into the VFS and then periodic inode flushing
1348 		 * will prevent log covering from making progress. Hence we
1349 		 * synchronously log the superblock instead to ensure the
1350 		 * superblock is immediately unpinned and can be written back.
1351 		 */
1352 		xfs_sync_sb(mp, true);
1353 	} else
1354 		xfs_log_force(mp, 0);
1355 
1356 	/* start pushing all the metadata that is currently dirty */
1357 	xfs_ail_push_all(mp->m_ail);
1358 
1359 	/* queue us up again */
1360 	xfs_log_work_queue(mp);
1361 }
1362 
1363 /*
1364  * This routine initializes some of the log structure for a given mount point.
1365  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1366  * some other stuff may be filled in too.
1367  */
1368 STATIC struct xlog *
1369 xlog_alloc_log(
1370 	struct xfs_mount	*mp,
1371 	struct xfs_buftarg	*log_target,
1372 	xfs_daddr_t		blk_offset,
1373 	int			num_bblks)
1374 {
1375 	struct xlog		*log;
1376 	xlog_rec_header_t	*head;
1377 	xlog_in_core_t		**iclogp;
1378 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1379 	int			i;
1380 	int			error = -ENOMEM;
1381 	uint			log2_size = 0;
1382 
1383 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1384 	if (!log) {
1385 		xfs_warn(mp, "Log allocation failed: No memory!");
1386 		goto out;
1387 	}
1388 
1389 	log->l_mp	   = mp;
1390 	log->l_targ	   = log_target;
1391 	log->l_logsize     = BBTOB(num_bblks);
1392 	log->l_logBBstart  = blk_offset;
1393 	log->l_logBBsize   = num_bblks;
1394 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1395 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1396 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1397 
1398 	log->l_prev_block  = -1;
1399 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1400 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1401 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1402 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1403 
1404 	xlog_grant_head_init(&log->l_reserve_head);
1405 	xlog_grant_head_init(&log->l_write_head);
1406 
1407 	error = -EFSCORRUPTED;
1408 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1409 	        log2_size = mp->m_sb.sb_logsectlog;
1410 		if (log2_size < BBSHIFT) {
1411 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1412 				log2_size, BBSHIFT);
1413 			goto out_free_log;
1414 		}
1415 
1416 	        log2_size -= BBSHIFT;
1417 		if (log2_size > mp->m_sectbb_log) {
1418 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1419 				log2_size, mp->m_sectbb_log);
1420 			goto out_free_log;
1421 		}
1422 
1423 		/* for larger sector sizes, must have v2 or external log */
1424 		if (log2_size && log->l_logBBstart > 0 &&
1425 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1426 			xfs_warn(mp,
1427 		"log sector size (0x%x) invalid for configuration.",
1428 				log2_size);
1429 			goto out_free_log;
1430 		}
1431 	}
1432 	log->l_sectBBsize = 1 << log2_size;
1433 
1434 	xlog_get_iclog_buffer_size(mp, log);
1435 
1436 	spin_lock_init(&log->l_icloglock);
1437 	init_waitqueue_head(&log->l_flush_wait);
1438 
1439 	iclogp = &log->l_iclog;
1440 	/*
1441 	 * The amount of memory to allocate for the iclog structure is
1442 	 * rather funky due to the way the structure is defined.  It is
1443 	 * done this way so that we can use different sizes for machines
1444 	 * with different amounts of memory.  See the definition of
1445 	 * xlog_in_core_t in xfs_log_priv.h for details.
1446 	 */
1447 	ASSERT(log->l_iclog_size >= 4096);
1448 	for (i = 0; i < log->l_iclog_bufs; i++) {
1449 		int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1450 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1451 				sizeof(struct bio_vec);
1452 
1453 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1454 		if (!iclog)
1455 			goto out_free_iclog;
1456 
1457 		*iclogp = iclog;
1458 		iclog->ic_prev = prev_iclog;
1459 		prev_iclog = iclog;
1460 
1461 		iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1462 						KM_MAYFAIL | KM_ZERO);
1463 		if (!iclog->ic_data)
1464 			goto out_free_iclog;
1465 #ifdef DEBUG
1466 		log->l_iclog_bak[i] = &iclog->ic_header;
1467 #endif
1468 		head = &iclog->ic_header;
1469 		memset(head, 0, sizeof(xlog_rec_header_t));
1470 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1471 		head->h_version = cpu_to_be32(
1472 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1473 		head->h_size = cpu_to_be32(log->l_iclog_size);
1474 		/* new fields */
1475 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1476 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1477 
1478 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1479 		iclog->ic_state = XLOG_STATE_ACTIVE;
1480 		iclog->ic_log = log;
1481 		atomic_set(&iclog->ic_refcnt, 0);
1482 		spin_lock_init(&iclog->ic_callback_lock);
1483 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1484 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1485 
1486 		init_waitqueue_head(&iclog->ic_force_wait);
1487 		init_waitqueue_head(&iclog->ic_write_wait);
1488 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1489 		sema_init(&iclog->ic_sema, 1);
1490 
1491 		iclogp = &iclog->ic_next;
1492 	}
1493 	*iclogp = log->l_iclog;			/* complete ring */
1494 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1495 
1496 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1497 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1498 				    WQ_HIGHPRI),
1499 			0, mp->m_super->s_id);
1500 	if (!log->l_ioend_workqueue)
1501 		goto out_free_iclog;
1502 
1503 	error = xlog_cil_init(log);
1504 	if (error)
1505 		goto out_destroy_workqueue;
1506 	return log;
1507 
1508 out_destroy_workqueue:
1509 	destroy_workqueue(log->l_ioend_workqueue);
1510 out_free_iclog:
1511 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1512 		prev_iclog = iclog->ic_next;
1513 		kmem_free(iclog->ic_data);
1514 		kmem_free(iclog);
1515 		if (prev_iclog == log->l_iclog)
1516 			break;
1517 	}
1518 out_free_log:
1519 	kmem_free(log);
1520 out:
1521 	return ERR_PTR(error);
1522 }	/* xlog_alloc_log */
1523 
1524 /*
1525  * Write out the commit record of a transaction associated with the given
1526  * ticket to close off a running log write. Return the lsn of the commit record.
1527  */
1528 int
1529 xlog_commit_record(
1530 	struct xlog		*log,
1531 	struct xlog_ticket	*ticket,
1532 	struct xlog_in_core	**iclog,
1533 	xfs_lsn_t		*lsn)
1534 {
1535 	struct xfs_log_iovec reg = {
1536 		.i_addr = NULL,
1537 		.i_len = 0,
1538 		.i_type = XLOG_REG_TYPE_COMMIT,
1539 	};
1540 	struct xfs_log_vec vec = {
1541 		.lv_niovecs = 1,
1542 		.lv_iovecp = &reg,
1543 	};
1544 	int	error;
1545 
1546 	if (XLOG_FORCED_SHUTDOWN(log))
1547 		return -EIO;
1548 
1549 	error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS,
1550 			   false);
1551 	if (error)
1552 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1553 	return error;
1554 }
1555 
1556 /*
1557  * Compute the LSN that we'd need to push the log tail towards in order to have
1558  * (a) enough on-disk log space to log the number of bytes specified, (b) at
1559  * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1560  * log free space already meets all three thresholds, this function returns
1561  * NULLCOMMITLSN.
1562  */
1563 xfs_lsn_t
1564 xlog_grant_push_threshold(
1565 	struct xlog	*log,
1566 	int		need_bytes)
1567 {
1568 	xfs_lsn_t	threshold_lsn = 0;
1569 	xfs_lsn_t	last_sync_lsn;
1570 	int		free_blocks;
1571 	int		free_bytes;
1572 	int		threshold_block;
1573 	int		threshold_cycle;
1574 	int		free_threshold;
1575 
1576 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1577 
1578 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1579 	free_blocks = BTOBBT(free_bytes);
1580 
1581 	/*
1582 	 * Set the threshold for the minimum number of free blocks in the
1583 	 * log to the maximum of what the caller needs, one quarter of the
1584 	 * log, and 256 blocks.
1585 	 */
1586 	free_threshold = BTOBB(need_bytes);
1587 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1588 	free_threshold = max(free_threshold, 256);
1589 	if (free_blocks >= free_threshold)
1590 		return NULLCOMMITLSN;
1591 
1592 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1593 						&threshold_block);
1594 	threshold_block += free_threshold;
1595 	if (threshold_block >= log->l_logBBsize) {
1596 		threshold_block -= log->l_logBBsize;
1597 		threshold_cycle += 1;
1598 	}
1599 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1600 					threshold_block);
1601 	/*
1602 	 * Don't pass in an lsn greater than the lsn of the last
1603 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1604 	 * so that it doesn't change between the compare and the set.
1605 	 */
1606 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1607 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1608 		threshold_lsn = last_sync_lsn;
1609 
1610 	return threshold_lsn;
1611 }
1612 
1613 /*
1614  * Push the tail of the log if we need to do so to maintain the free log space
1615  * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1616  * policy which pushes on an lsn which is further along in the log once we
1617  * reach the high water mark.  In this manner, we would be creating a low water
1618  * mark.
1619  */
1620 STATIC void
1621 xlog_grant_push_ail(
1622 	struct xlog	*log,
1623 	int		need_bytes)
1624 {
1625 	xfs_lsn_t	threshold_lsn;
1626 
1627 	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1628 	if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log))
1629 		return;
1630 
1631 	/*
1632 	 * Get the transaction layer to kick the dirty buffers out to
1633 	 * disk asynchronously. No point in trying to do this if
1634 	 * the filesystem is shutting down.
1635 	 */
1636 	xfs_ail_push(log->l_ailp, threshold_lsn);
1637 }
1638 
1639 /*
1640  * Stamp cycle number in every block
1641  */
1642 STATIC void
1643 xlog_pack_data(
1644 	struct xlog		*log,
1645 	struct xlog_in_core	*iclog,
1646 	int			roundoff)
1647 {
1648 	int			i, j, k;
1649 	int			size = iclog->ic_offset + roundoff;
1650 	__be32			cycle_lsn;
1651 	char			*dp;
1652 
1653 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1654 
1655 	dp = iclog->ic_datap;
1656 	for (i = 0; i < BTOBB(size); i++) {
1657 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1658 			break;
1659 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1660 		*(__be32 *)dp = cycle_lsn;
1661 		dp += BBSIZE;
1662 	}
1663 
1664 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1665 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1666 
1667 		for ( ; i < BTOBB(size); i++) {
1668 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1669 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1670 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1671 			*(__be32 *)dp = cycle_lsn;
1672 			dp += BBSIZE;
1673 		}
1674 
1675 		for (i = 1; i < log->l_iclog_heads; i++)
1676 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1677 	}
1678 }
1679 
1680 /*
1681  * Calculate the checksum for a log buffer.
1682  *
1683  * This is a little more complicated than it should be because the various
1684  * headers and the actual data are non-contiguous.
1685  */
1686 __le32
1687 xlog_cksum(
1688 	struct xlog		*log,
1689 	struct xlog_rec_header	*rhead,
1690 	char			*dp,
1691 	int			size)
1692 {
1693 	uint32_t		crc;
1694 
1695 	/* first generate the crc for the record header ... */
1696 	crc = xfs_start_cksum_update((char *)rhead,
1697 			      sizeof(struct xlog_rec_header),
1698 			      offsetof(struct xlog_rec_header, h_crc));
1699 
1700 	/* ... then for additional cycle data for v2 logs ... */
1701 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1702 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1703 		int		i;
1704 		int		xheads;
1705 
1706 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1707 
1708 		for (i = 1; i < xheads; i++) {
1709 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1710 				     sizeof(struct xlog_rec_ext_header));
1711 		}
1712 	}
1713 
1714 	/* ... and finally for the payload */
1715 	crc = crc32c(crc, dp, size);
1716 
1717 	return xfs_end_cksum(crc);
1718 }
1719 
1720 static void
1721 xlog_bio_end_io(
1722 	struct bio		*bio)
1723 {
1724 	struct xlog_in_core	*iclog = bio->bi_private;
1725 
1726 	queue_work(iclog->ic_log->l_ioend_workqueue,
1727 		   &iclog->ic_end_io_work);
1728 }
1729 
1730 static int
1731 xlog_map_iclog_data(
1732 	struct bio		*bio,
1733 	void			*data,
1734 	size_t			count)
1735 {
1736 	do {
1737 		struct page	*page = kmem_to_page(data);
1738 		unsigned int	off = offset_in_page(data);
1739 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1740 
1741 		if (bio_add_page(bio, page, len, off) != len)
1742 			return -EIO;
1743 
1744 		data += len;
1745 		count -= len;
1746 	} while (count);
1747 
1748 	return 0;
1749 }
1750 
1751 STATIC void
1752 xlog_write_iclog(
1753 	struct xlog		*log,
1754 	struct xlog_in_core	*iclog,
1755 	uint64_t		bno,
1756 	unsigned int		count,
1757 	bool			need_flush)
1758 {
1759 	ASSERT(bno < log->l_logBBsize);
1760 
1761 	/*
1762 	 * We lock the iclogbufs here so that we can serialise against I/O
1763 	 * completion during unmount.  We might be processing a shutdown
1764 	 * triggered during unmount, and that can occur asynchronously to the
1765 	 * unmount thread, and hence we need to ensure that completes before
1766 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1767 	 * across the log IO to archieve that.
1768 	 */
1769 	down(&iclog->ic_sema);
1770 	if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1771 		/*
1772 		 * It would seem logical to return EIO here, but we rely on
1773 		 * the log state machine to propagate I/O errors instead of
1774 		 * doing it here.  We kick of the state machine and unlock
1775 		 * the buffer manually, the code needs to be kept in sync
1776 		 * with the I/O completion path.
1777 		 */
1778 		xlog_state_done_syncing(iclog);
1779 		up(&iclog->ic_sema);
1780 		return;
1781 	}
1782 
1783 	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1784 	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1785 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1786 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1787 	iclog->ic_bio.bi_private = iclog;
1788 
1789 	/*
1790 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1791 	 * IOs coming immediately after this one. This prevents the block layer
1792 	 * writeback throttle from throttling log writes behind background
1793 	 * metadata writeback and causing priority inversions.
1794 	 */
1795 	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC |
1796 				REQ_IDLE | REQ_FUA;
1797 	if (need_flush)
1798 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1799 
1800 	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1801 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1802 		return;
1803 	}
1804 	if (is_vmalloc_addr(iclog->ic_data))
1805 		flush_kernel_vmap_range(iclog->ic_data, count);
1806 
1807 	/*
1808 	 * If this log buffer would straddle the end of the log we will have
1809 	 * to split it up into two bios, so that we can continue at the start.
1810 	 */
1811 	if (bno + BTOBB(count) > log->l_logBBsize) {
1812 		struct bio *split;
1813 
1814 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1815 				  GFP_NOIO, &fs_bio_set);
1816 		bio_chain(split, &iclog->ic_bio);
1817 		submit_bio(split);
1818 
1819 		/* restart at logical offset zero for the remainder */
1820 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1821 	}
1822 
1823 	submit_bio(&iclog->ic_bio);
1824 }
1825 
1826 /*
1827  * We need to bump cycle number for the part of the iclog that is
1828  * written to the start of the log. Watch out for the header magic
1829  * number case, though.
1830  */
1831 static void
1832 xlog_split_iclog(
1833 	struct xlog		*log,
1834 	void			*data,
1835 	uint64_t		bno,
1836 	unsigned int		count)
1837 {
1838 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1839 	unsigned int		i;
1840 
1841 	for (i = split_offset; i < count; i += BBSIZE) {
1842 		uint32_t cycle = get_unaligned_be32(data + i);
1843 
1844 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1845 			cycle++;
1846 		put_unaligned_be32(cycle, data + i);
1847 	}
1848 }
1849 
1850 static int
1851 xlog_calc_iclog_size(
1852 	struct xlog		*log,
1853 	struct xlog_in_core	*iclog,
1854 	uint32_t		*roundoff)
1855 {
1856 	uint32_t		count_init, count;
1857 	bool			use_lsunit;
1858 
1859 	use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1860 			log->l_mp->m_sb.sb_logsunit > 1;
1861 
1862 	/* Add for LR header */
1863 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1864 
1865 	/* Round out the log write size */
1866 	if (use_lsunit) {
1867 		/* we have a v2 stripe unit to use */
1868 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1869 	} else {
1870 		count = BBTOB(BTOBB(count_init));
1871 	}
1872 
1873 	ASSERT(count >= count_init);
1874 	*roundoff = count - count_init;
1875 
1876 	if (use_lsunit)
1877 		ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1878 	else
1879 		ASSERT(*roundoff < BBTOB(1));
1880 	return count;
1881 }
1882 
1883 /*
1884  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1885  * fashion.  Previously, we should have moved the current iclog
1886  * ptr in the log to point to the next available iclog.  This allows further
1887  * write to continue while this code syncs out an iclog ready to go.
1888  * Before an in-core log can be written out, the data section must be scanned
1889  * to save away the 1st word of each BBSIZE block into the header.  We replace
1890  * it with the current cycle count.  Each BBSIZE block is tagged with the
1891  * cycle count because there in an implicit assumption that drives will
1892  * guarantee that entire 512 byte blocks get written at once.  In other words,
1893  * we can't have part of a 512 byte block written and part not written.  By
1894  * tagging each block, we will know which blocks are valid when recovering
1895  * after an unclean shutdown.
1896  *
1897  * This routine is single threaded on the iclog.  No other thread can be in
1898  * this routine with the same iclog.  Changing contents of iclog can there-
1899  * fore be done without grabbing the state machine lock.  Updating the global
1900  * log will require grabbing the lock though.
1901  *
1902  * The entire log manager uses a logical block numbering scheme.  Only
1903  * xlog_write_iclog knows about the fact that the log may not start with
1904  * block zero on a given device.
1905  */
1906 STATIC void
1907 xlog_sync(
1908 	struct xlog		*log,
1909 	struct xlog_in_core	*iclog)
1910 {
1911 	unsigned int		count;		/* byte count of bwrite */
1912 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1913 	uint64_t		bno;
1914 	unsigned int		size;
1915 	bool			need_flush = true, split = false;
1916 
1917 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1918 
1919 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1920 
1921 	/* move grant heads by roundoff in sync */
1922 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1923 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1924 
1925 	/* put cycle number in every block */
1926 	xlog_pack_data(log, iclog, roundoff);
1927 
1928 	/* real byte length */
1929 	size = iclog->ic_offset;
1930 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1931 		size += roundoff;
1932 	iclog->ic_header.h_len = cpu_to_be32(size);
1933 
1934 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1935 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1936 
1937 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1938 
1939 	/* Do we need to split this write into 2 parts? */
1940 	if (bno + BTOBB(count) > log->l_logBBsize) {
1941 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1942 		split = true;
1943 	}
1944 
1945 	/* calculcate the checksum */
1946 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1947 					    iclog->ic_datap, size);
1948 	/*
1949 	 * Intentionally corrupt the log record CRC based on the error injection
1950 	 * frequency, if defined. This facilitates testing log recovery in the
1951 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1952 	 * write on I/O completion and shutdown the fs. The subsequent mount
1953 	 * detects the bad CRC and attempts to recover.
1954 	 */
1955 #ifdef DEBUG
1956 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1957 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1958 		iclog->ic_fail_crc = true;
1959 		xfs_warn(log->l_mp,
1960 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1961 			 be64_to_cpu(iclog->ic_header.h_lsn));
1962 	}
1963 #endif
1964 
1965 	/*
1966 	 * Flush the data device before flushing the log to make sure all meta
1967 	 * data written back from the AIL actually made it to disk before
1968 	 * stamping the new log tail LSN into the log buffer.  For an external
1969 	 * log we need to issue the flush explicitly, and unfortunately
1970 	 * synchronously here; for an internal log we can simply use the block
1971 	 * layer state machine for preflushes.
1972 	 */
1973 	if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1974 		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1975 		need_flush = false;
1976 	}
1977 
1978 	xlog_verify_iclog(log, iclog, count);
1979 	xlog_write_iclog(log, iclog, bno, count, need_flush);
1980 }
1981 
1982 /*
1983  * Deallocate a log structure
1984  */
1985 STATIC void
1986 xlog_dealloc_log(
1987 	struct xlog	*log)
1988 {
1989 	xlog_in_core_t	*iclog, *next_iclog;
1990 	int		i;
1991 
1992 	xlog_cil_destroy(log);
1993 
1994 	/*
1995 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1996 	 * is done before we tear down these buffers.
1997 	 */
1998 	iclog = log->l_iclog;
1999 	for (i = 0; i < log->l_iclog_bufs; i++) {
2000 		down(&iclog->ic_sema);
2001 		up(&iclog->ic_sema);
2002 		iclog = iclog->ic_next;
2003 	}
2004 
2005 	iclog = log->l_iclog;
2006 	for (i = 0; i < log->l_iclog_bufs; i++) {
2007 		next_iclog = iclog->ic_next;
2008 		kmem_free(iclog->ic_data);
2009 		kmem_free(iclog);
2010 		iclog = next_iclog;
2011 	}
2012 
2013 	log->l_mp->m_log = NULL;
2014 	destroy_workqueue(log->l_ioend_workqueue);
2015 	kmem_free(log);
2016 }
2017 
2018 /*
2019  * Update counters atomically now that memcpy is done.
2020  */
2021 static inline void
2022 xlog_state_finish_copy(
2023 	struct xlog		*log,
2024 	struct xlog_in_core	*iclog,
2025 	int			record_cnt,
2026 	int			copy_bytes)
2027 {
2028 	lockdep_assert_held(&log->l_icloglock);
2029 
2030 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2031 	iclog->ic_offset += copy_bytes;
2032 }
2033 
2034 /*
2035  * print out info relating to regions written which consume
2036  * the reservation
2037  */
2038 void
2039 xlog_print_tic_res(
2040 	struct xfs_mount	*mp,
2041 	struct xlog_ticket	*ticket)
2042 {
2043 	uint i;
2044 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2045 
2046 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2047 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2048 	static char *res_type_str[] = {
2049 	    REG_TYPE_STR(BFORMAT, "bformat"),
2050 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2051 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2052 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2053 	    REG_TYPE_STR(IFORMAT, "iformat"),
2054 	    REG_TYPE_STR(ICORE, "icore"),
2055 	    REG_TYPE_STR(IEXT, "iext"),
2056 	    REG_TYPE_STR(IBROOT, "ibroot"),
2057 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2058 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2059 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2060 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2061 	    REG_TYPE_STR(QFORMAT, "qformat"),
2062 	    REG_TYPE_STR(DQUOT, "dquot"),
2063 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2064 	    REG_TYPE_STR(LRHEADER, "LR header"),
2065 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2066 	    REG_TYPE_STR(COMMIT, "commit"),
2067 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2068 	    REG_TYPE_STR(ICREATE, "inode create"),
2069 	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2070 	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2071 	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2072 	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2073 	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2074 	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2075 	};
2076 	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2077 #undef REG_TYPE_STR
2078 
2079 	xfs_warn(mp, "ticket reservation summary:");
2080 	xfs_warn(mp, "  unit res    = %d bytes",
2081 		 ticket->t_unit_res);
2082 	xfs_warn(mp, "  current res = %d bytes",
2083 		 ticket->t_curr_res);
2084 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2085 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2086 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2087 		 ticket->t_res_num_ophdrs, ophdr_spc);
2088 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2089 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2090 	xfs_warn(mp, "  num regions = %u",
2091 		 ticket->t_res_num);
2092 
2093 	for (i = 0; i < ticket->t_res_num; i++) {
2094 		uint r_type = ticket->t_res_arr[i].r_type;
2095 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2096 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2097 			    "bad-rtype" : res_type_str[r_type]),
2098 			    ticket->t_res_arr[i].r_len);
2099 	}
2100 }
2101 
2102 /*
2103  * Print a summary of the transaction.
2104  */
2105 void
2106 xlog_print_trans(
2107 	struct xfs_trans	*tp)
2108 {
2109 	struct xfs_mount	*mp = tp->t_mountp;
2110 	struct xfs_log_item	*lip;
2111 
2112 	/* dump core transaction and ticket info */
2113 	xfs_warn(mp, "transaction summary:");
2114 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2115 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2116 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2117 
2118 	xlog_print_tic_res(mp, tp->t_ticket);
2119 
2120 	/* dump each log item */
2121 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2122 		struct xfs_log_vec	*lv = lip->li_lv;
2123 		struct xfs_log_iovec	*vec;
2124 		int			i;
2125 
2126 		xfs_warn(mp, "log item: ");
2127 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2128 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2129 		if (!lv)
2130 			continue;
2131 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2132 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2133 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2134 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2135 
2136 		/* dump each iovec for the log item */
2137 		vec = lv->lv_iovecp;
2138 		for (i = 0; i < lv->lv_niovecs; i++) {
2139 			int dumplen = min(vec->i_len, 32);
2140 
2141 			xfs_warn(mp, "  iovec[%d]", i);
2142 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2143 			xfs_warn(mp, "    len	= %d", vec->i_len);
2144 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2145 			xfs_hex_dump(vec->i_addr, dumplen);
2146 
2147 			vec++;
2148 		}
2149 	}
2150 }
2151 
2152 /*
2153  * Calculate the potential space needed by the log vector.  We may need a start
2154  * record, and each region gets its own struct xlog_op_header and may need to be
2155  * double word aligned.
2156  */
2157 static int
2158 xlog_write_calc_vec_length(
2159 	struct xlog_ticket	*ticket,
2160 	struct xfs_log_vec	*log_vector,
2161 	bool			need_start_rec)
2162 {
2163 	struct xfs_log_vec	*lv;
2164 	int			headers = need_start_rec ? 1 : 0;
2165 	int			len = 0;
2166 	int			i;
2167 
2168 	for (lv = log_vector; lv; lv = lv->lv_next) {
2169 		/* we don't write ordered log vectors */
2170 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2171 			continue;
2172 
2173 		headers += lv->lv_niovecs;
2174 
2175 		for (i = 0; i < lv->lv_niovecs; i++) {
2176 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2177 
2178 			len += vecp->i_len;
2179 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2180 		}
2181 	}
2182 
2183 	ticket->t_res_num_ophdrs += headers;
2184 	len += headers * sizeof(struct xlog_op_header);
2185 
2186 	return len;
2187 }
2188 
2189 static void
2190 xlog_write_start_rec(
2191 	struct xlog_op_header	*ophdr,
2192 	struct xlog_ticket	*ticket)
2193 {
2194 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2195 	ophdr->oh_clientid = ticket->t_clientid;
2196 	ophdr->oh_len = 0;
2197 	ophdr->oh_flags = XLOG_START_TRANS;
2198 	ophdr->oh_res2 = 0;
2199 }
2200 
2201 static xlog_op_header_t *
2202 xlog_write_setup_ophdr(
2203 	struct xlog		*log,
2204 	struct xlog_op_header	*ophdr,
2205 	struct xlog_ticket	*ticket,
2206 	uint			flags)
2207 {
2208 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2209 	ophdr->oh_clientid = ticket->t_clientid;
2210 	ophdr->oh_res2 = 0;
2211 
2212 	/* are we copying a commit or unmount record? */
2213 	ophdr->oh_flags = flags;
2214 
2215 	/*
2216 	 * We've seen logs corrupted with bad transaction client ids.  This
2217 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2218 	 * and shut down the filesystem.
2219 	 */
2220 	switch (ophdr->oh_clientid)  {
2221 	case XFS_TRANSACTION:
2222 	case XFS_VOLUME:
2223 	case XFS_LOG:
2224 		break;
2225 	default:
2226 		xfs_warn(log->l_mp,
2227 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2228 			ophdr->oh_clientid, ticket);
2229 		return NULL;
2230 	}
2231 
2232 	return ophdr;
2233 }
2234 
2235 /*
2236  * Set up the parameters of the region copy into the log. This has
2237  * to handle region write split across multiple log buffers - this
2238  * state is kept external to this function so that this code can
2239  * be written in an obvious, self documenting manner.
2240  */
2241 static int
2242 xlog_write_setup_copy(
2243 	struct xlog_ticket	*ticket,
2244 	struct xlog_op_header	*ophdr,
2245 	int			space_available,
2246 	int			space_required,
2247 	int			*copy_off,
2248 	int			*copy_len,
2249 	int			*last_was_partial_copy,
2250 	int			*bytes_consumed)
2251 {
2252 	int			still_to_copy;
2253 
2254 	still_to_copy = space_required - *bytes_consumed;
2255 	*copy_off = *bytes_consumed;
2256 
2257 	if (still_to_copy <= space_available) {
2258 		/* write of region completes here */
2259 		*copy_len = still_to_copy;
2260 		ophdr->oh_len = cpu_to_be32(*copy_len);
2261 		if (*last_was_partial_copy)
2262 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2263 		*last_was_partial_copy = 0;
2264 		*bytes_consumed = 0;
2265 		return 0;
2266 	}
2267 
2268 	/* partial write of region, needs extra log op header reservation */
2269 	*copy_len = space_available;
2270 	ophdr->oh_len = cpu_to_be32(*copy_len);
2271 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2272 	if (*last_was_partial_copy)
2273 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2274 	*bytes_consumed += *copy_len;
2275 	(*last_was_partial_copy)++;
2276 
2277 	/* account for new log op header */
2278 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2279 	ticket->t_res_num_ophdrs++;
2280 
2281 	return sizeof(struct xlog_op_header);
2282 }
2283 
2284 static int
2285 xlog_write_copy_finish(
2286 	struct xlog		*log,
2287 	struct xlog_in_core	*iclog,
2288 	uint			flags,
2289 	int			*record_cnt,
2290 	int			*data_cnt,
2291 	int			*partial_copy,
2292 	int			*partial_copy_len,
2293 	int			log_offset,
2294 	struct xlog_in_core	**commit_iclog)
2295 {
2296 	int			error;
2297 
2298 	if (*partial_copy) {
2299 		/*
2300 		 * This iclog has already been marked WANT_SYNC by
2301 		 * xlog_state_get_iclog_space.
2302 		 */
2303 		spin_lock(&log->l_icloglock);
2304 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2305 		*record_cnt = 0;
2306 		*data_cnt = 0;
2307 		goto release_iclog;
2308 	}
2309 
2310 	*partial_copy = 0;
2311 	*partial_copy_len = 0;
2312 
2313 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2314 		/* no more space in this iclog - push it. */
2315 		spin_lock(&log->l_icloglock);
2316 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2317 		*record_cnt = 0;
2318 		*data_cnt = 0;
2319 
2320 		if (iclog->ic_state == XLOG_STATE_ACTIVE)
2321 			xlog_state_switch_iclogs(log, iclog, 0);
2322 		else
2323 			ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2324 			       iclog->ic_state == XLOG_STATE_IOERROR);
2325 		if (!commit_iclog)
2326 			goto release_iclog;
2327 		spin_unlock(&log->l_icloglock);
2328 		ASSERT(flags & XLOG_COMMIT_TRANS);
2329 		*commit_iclog = iclog;
2330 	}
2331 
2332 	return 0;
2333 
2334 release_iclog:
2335 	error = xlog_state_release_iclog(log, iclog);
2336 	spin_unlock(&log->l_icloglock);
2337 	return error;
2338 }
2339 
2340 /*
2341  * Write some region out to in-core log
2342  *
2343  * This will be called when writing externally provided regions or when
2344  * writing out a commit record for a given transaction.
2345  *
2346  * General algorithm:
2347  *	1. Find total length of this write.  This may include adding to the
2348  *		lengths passed in.
2349  *	2. Check whether we violate the tickets reservation.
2350  *	3. While writing to this iclog
2351  *	    A. Reserve as much space in this iclog as can get
2352  *	    B. If this is first write, save away start lsn
2353  *	    C. While writing this region:
2354  *		1. If first write of transaction, write start record
2355  *		2. Write log operation header (header per region)
2356  *		3. Find out if we can fit entire region into this iclog
2357  *		4. Potentially, verify destination memcpy ptr
2358  *		5. Memcpy (partial) region
2359  *		6. If partial copy, release iclog; otherwise, continue
2360  *			copying more regions into current iclog
2361  *	4. Mark want sync bit (in simulation mode)
2362  *	5. Release iclog for potential flush to on-disk log.
2363  *
2364  * ERRORS:
2365  * 1.	Panic if reservation is overrun.  This should never happen since
2366  *	reservation amounts are generated internal to the filesystem.
2367  * NOTES:
2368  * 1. Tickets are single threaded data structures.
2369  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2370  *	syncing routine.  When a single log_write region needs to span
2371  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2372  *	on all log operation writes which don't contain the end of the
2373  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2374  *	operation which contains the end of the continued log_write region.
2375  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2376  *	we don't really know exactly how much space will be used.  As a result,
2377  *	we don't update ic_offset until the end when we know exactly how many
2378  *	bytes have been written out.
2379  */
2380 int
2381 xlog_write(
2382 	struct xlog		*log,
2383 	struct xfs_log_vec	*log_vector,
2384 	struct xlog_ticket	*ticket,
2385 	xfs_lsn_t		*start_lsn,
2386 	struct xlog_in_core	**commit_iclog,
2387 	uint			flags,
2388 	bool			need_start_rec)
2389 {
2390 	struct xlog_in_core	*iclog = NULL;
2391 	struct xfs_log_vec	*lv = log_vector;
2392 	struct xfs_log_iovec	*vecp = lv->lv_iovecp;
2393 	int			index = 0;
2394 	int			len;
2395 	int			partial_copy = 0;
2396 	int			partial_copy_len = 0;
2397 	int			contwr = 0;
2398 	int			record_cnt = 0;
2399 	int			data_cnt = 0;
2400 	int			error = 0;
2401 
2402 	/*
2403 	 * If this is a commit or unmount transaction, we don't need a start
2404 	 * record to be written.  We do, however, have to account for the
2405 	 * commit or unmount header that gets written. Hence we always have
2406 	 * to account for an extra xlog_op_header here.
2407 	 */
2408 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2409 	if (ticket->t_curr_res < 0) {
2410 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2411 		     "ctx ticket reservation ran out. Need to up reservation");
2412 		xlog_print_tic_res(log->l_mp, ticket);
2413 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2414 	}
2415 
2416 	len = xlog_write_calc_vec_length(ticket, log_vector, need_start_rec);
2417 	*start_lsn = 0;
2418 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2419 		void		*ptr;
2420 		int		log_offset;
2421 
2422 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2423 						   &contwr, &log_offset);
2424 		if (error)
2425 			return error;
2426 
2427 		ASSERT(log_offset <= iclog->ic_size - 1);
2428 		ptr = iclog->ic_datap + log_offset;
2429 
2430 		/* start_lsn is the first lsn written to. That's all we need. */
2431 		if (!*start_lsn)
2432 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2433 
2434 		/*
2435 		 * This loop writes out as many regions as can fit in the amount
2436 		 * of space which was allocated by xlog_state_get_iclog_space().
2437 		 */
2438 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2439 			struct xfs_log_iovec	*reg;
2440 			struct xlog_op_header	*ophdr;
2441 			int			copy_len;
2442 			int			copy_off;
2443 			bool			ordered = false;
2444 
2445 			/* ordered log vectors have no regions to write */
2446 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2447 				ASSERT(lv->lv_niovecs == 0);
2448 				ordered = true;
2449 				goto next_lv;
2450 			}
2451 
2452 			reg = &vecp[index];
2453 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2454 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2455 
2456 			/*
2457 			 * Before we start formatting log vectors, we need to
2458 			 * write a start record. Only do this for the first
2459 			 * iclog we write to.
2460 			 */
2461 			if (need_start_rec) {
2462 				xlog_write_start_rec(ptr, ticket);
2463 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2464 						sizeof(struct xlog_op_header));
2465 			}
2466 
2467 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2468 			if (!ophdr)
2469 				return -EIO;
2470 
2471 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2472 					   sizeof(struct xlog_op_header));
2473 
2474 			len += xlog_write_setup_copy(ticket, ophdr,
2475 						     iclog->ic_size-log_offset,
2476 						     reg->i_len,
2477 						     &copy_off, &copy_len,
2478 						     &partial_copy,
2479 						     &partial_copy_len);
2480 			xlog_verify_dest_ptr(log, ptr);
2481 
2482 			/*
2483 			 * Copy region.
2484 			 *
2485 			 * Unmount records just log an opheader, so can have
2486 			 * empty payloads with no data region to copy. Hence we
2487 			 * only copy the payload if the vector says it has data
2488 			 * to copy.
2489 			 */
2490 			ASSERT(copy_len >= 0);
2491 			if (copy_len > 0) {
2492 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2493 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2494 						   copy_len);
2495 			}
2496 			copy_len += sizeof(struct xlog_op_header);
2497 			record_cnt++;
2498 			if (need_start_rec) {
2499 				copy_len += sizeof(struct xlog_op_header);
2500 				record_cnt++;
2501 				need_start_rec = false;
2502 			}
2503 			data_cnt += contwr ? copy_len : 0;
2504 
2505 			error = xlog_write_copy_finish(log, iclog, flags,
2506 						       &record_cnt, &data_cnt,
2507 						       &partial_copy,
2508 						       &partial_copy_len,
2509 						       log_offset,
2510 						       commit_iclog);
2511 			if (error)
2512 				return error;
2513 
2514 			/*
2515 			 * if we had a partial copy, we need to get more iclog
2516 			 * space but we don't want to increment the region
2517 			 * index because there is still more is this region to
2518 			 * write.
2519 			 *
2520 			 * If we completed writing this region, and we flushed
2521 			 * the iclog (indicated by resetting of the record
2522 			 * count), then we also need to get more log space. If
2523 			 * this was the last record, though, we are done and
2524 			 * can just return.
2525 			 */
2526 			if (partial_copy)
2527 				break;
2528 
2529 			if (++index == lv->lv_niovecs) {
2530 next_lv:
2531 				lv = lv->lv_next;
2532 				index = 0;
2533 				if (lv)
2534 					vecp = lv->lv_iovecp;
2535 			}
2536 			if (record_cnt == 0 && !ordered) {
2537 				if (!lv)
2538 					return 0;
2539 				break;
2540 			}
2541 		}
2542 	}
2543 
2544 	ASSERT(len == 0);
2545 
2546 	spin_lock(&log->l_icloglock);
2547 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2548 	if (commit_iclog) {
2549 		ASSERT(flags & XLOG_COMMIT_TRANS);
2550 		*commit_iclog = iclog;
2551 	} else {
2552 		error = xlog_state_release_iclog(log, iclog);
2553 	}
2554 	spin_unlock(&log->l_icloglock);
2555 
2556 	return error;
2557 }
2558 
2559 static void
2560 xlog_state_activate_iclog(
2561 	struct xlog_in_core	*iclog,
2562 	int			*iclogs_changed)
2563 {
2564 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2565 
2566 	/*
2567 	 * If the number of ops in this iclog indicate it just contains the
2568 	 * dummy transaction, we can change state into IDLE (the second time
2569 	 * around). Otherwise we should change the state into NEED a dummy.
2570 	 * We don't need to cover the dummy.
2571 	 */
2572 	if (*iclogs_changed == 0 &&
2573 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2574 		*iclogs_changed = 1;
2575 	} else {
2576 		/*
2577 		 * We have two dirty iclogs so start over.  This could also be
2578 		 * num of ops indicating this is not the dummy going out.
2579 		 */
2580 		*iclogs_changed = 2;
2581 	}
2582 
2583 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2584 	iclog->ic_offset = 0;
2585 	iclog->ic_header.h_num_logops = 0;
2586 	memset(iclog->ic_header.h_cycle_data, 0,
2587 		sizeof(iclog->ic_header.h_cycle_data));
2588 	iclog->ic_header.h_lsn = 0;
2589 }
2590 
2591 /*
2592  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2593  * ACTIVE after iclog I/O has completed.
2594  */
2595 static void
2596 xlog_state_activate_iclogs(
2597 	struct xlog		*log,
2598 	int			*iclogs_changed)
2599 {
2600 	struct xlog_in_core	*iclog = log->l_iclog;
2601 
2602 	do {
2603 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2604 			xlog_state_activate_iclog(iclog, iclogs_changed);
2605 		/*
2606 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2607 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2608 		 */
2609 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2610 			break;
2611 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2612 }
2613 
2614 static int
2615 xlog_covered_state(
2616 	int			prev_state,
2617 	int			iclogs_changed)
2618 {
2619 	/*
2620 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2621 	 * wrote the first covering record (DONE). We go to IDLE if we just
2622 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2623 	 * non-covering write occurs.
2624 	 */
2625 	switch (prev_state) {
2626 	case XLOG_STATE_COVER_IDLE:
2627 		if (iclogs_changed == 1)
2628 			return XLOG_STATE_COVER_IDLE;
2629 	case XLOG_STATE_COVER_NEED:
2630 	case XLOG_STATE_COVER_NEED2:
2631 		break;
2632 	case XLOG_STATE_COVER_DONE:
2633 		if (iclogs_changed == 1)
2634 			return XLOG_STATE_COVER_NEED2;
2635 		break;
2636 	case XLOG_STATE_COVER_DONE2:
2637 		if (iclogs_changed == 1)
2638 			return XLOG_STATE_COVER_IDLE;
2639 		break;
2640 	default:
2641 		ASSERT(0);
2642 	}
2643 
2644 	return XLOG_STATE_COVER_NEED;
2645 }
2646 
2647 STATIC void
2648 xlog_state_clean_iclog(
2649 	struct xlog		*log,
2650 	struct xlog_in_core	*dirty_iclog)
2651 {
2652 	int			iclogs_changed = 0;
2653 
2654 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2655 
2656 	xlog_state_activate_iclogs(log, &iclogs_changed);
2657 	wake_up_all(&dirty_iclog->ic_force_wait);
2658 
2659 	if (iclogs_changed) {
2660 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2661 				iclogs_changed);
2662 	}
2663 }
2664 
2665 STATIC xfs_lsn_t
2666 xlog_get_lowest_lsn(
2667 	struct xlog		*log)
2668 {
2669 	struct xlog_in_core	*iclog = log->l_iclog;
2670 	xfs_lsn_t		lowest_lsn = 0, lsn;
2671 
2672 	do {
2673 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2674 		    iclog->ic_state == XLOG_STATE_DIRTY)
2675 			continue;
2676 
2677 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2678 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2679 			lowest_lsn = lsn;
2680 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2681 
2682 	return lowest_lsn;
2683 }
2684 
2685 /*
2686  * Completion of a iclog IO does not imply that a transaction has completed, as
2687  * transactions can be large enough to span many iclogs. We cannot change the
2688  * tail of the log half way through a transaction as this may be the only
2689  * transaction in the log and moving the tail to point to the middle of it
2690  * will prevent recovery from finding the start of the transaction. Hence we
2691  * should only update the last_sync_lsn if this iclog contains transaction
2692  * completion callbacks on it.
2693  *
2694  * We have to do this before we drop the icloglock to ensure we are the only one
2695  * that can update it.
2696  *
2697  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2698  * the reservation grant head pushing. This is due to the fact that the push
2699  * target is bound by the current last_sync_lsn value. Hence if we have a large
2700  * amount of log space bound up in this committing transaction then the
2701  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2702  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2703  * should push the AIL to ensure the push target (and hence the grant head) is
2704  * no longer bound by the old log head location and can move forwards and make
2705  * progress again.
2706  */
2707 static void
2708 xlog_state_set_callback(
2709 	struct xlog		*log,
2710 	struct xlog_in_core	*iclog,
2711 	xfs_lsn_t		header_lsn)
2712 {
2713 	iclog->ic_state = XLOG_STATE_CALLBACK;
2714 
2715 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2716 			   header_lsn) <= 0);
2717 
2718 	if (list_empty_careful(&iclog->ic_callbacks))
2719 		return;
2720 
2721 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2722 	xlog_grant_push_ail(log, 0);
2723 }
2724 
2725 /*
2726  * Return true if we need to stop processing, false to continue to the next
2727  * iclog. The caller will need to run callbacks if the iclog is returned in the
2728  * XLOG_STATE_CALLBACK state.
2729  */
2730 static bool
2731 xlog_state_iodone_process_iclog(
2732 	struct xlog		*log,
2733 	struct xlog_in_core	*iclog,
2734 	bool			*ioerror)
2735 {
2736 	xfs_lsn_t		lowest_lsn;
2737 	xfs_lsn_t		header_lsn;
2738 
2739 	switch (iclog->ic_state) {
2740 	case XLOG_STATE_ACTIVE:
2741 	case XLOG_STATE_DIRTY:
2742 		/*
2743 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2744 		 */
2745 		return false;
2746 	case XLOG_STATE_IOERROR:
2747 		/*
2748 		 * Between marking a filesystem SHUTDOWN and stopping the log,
2749 		 * we do flush all iclogs to disk (if there wasn't a log I/O
2750 		 * error). So, we do want things to go smoothly in case of just
2751 		 * a SHUTDOWN w/o a LOG_IO_ERROR.
2752 		 */
2753 		*ioerror = true;
2754 		return false;
2755 	case XLOG_STATE_DONE_SYNC:
2756 		/*
2757 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2758 		 * one more check here to see if we have chased our tail around.
2759 		 * If this is not the lowest lsn iclog, then we will leave it
2760 		 * for another completion to process.
2761 		 */
2762 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2763 		lowest_lsn = xlog_get_lowest_lsn(log);
2764 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2765 			return false;
2766 		xlog_state_set_callback(log, iclog, header_lsn);
2767 		return false;
2768 	default:
2769 		/*
2770 		 * Can only perform callbacks in order.  Since this iclog is not
2771 		 * in the DONE_SYNC state, we skip the rest and just try to
2772 		 * clean up.
2773 		 */
2774 		return true;
2775 	}
2776 }
2777 
2778 /*
2779  * Keep processing entries in the iclog callback list until we come around and
2780  * it is empty.  We need to atomically see that the list is empty and change the
2781  * state to DIRTY so that we don't miss any more callbacks being added.
2782  *
2783  * This function is called with the icloglock held and returns with it held. We
2784  * drop it while running callbacks, however, as holding it over thousands of
2785  * callbacks is unnecessary and causes excessive contention if we do.
2786  */
2787 static void
2788 xlog_state_do_iclog_callbacks(
2789 	struct xlog		*log,
2790 	struct xlog_in_core	*iclog)
2791 		__releases(&log->l_icloglock)
2792 		__acquires(&log->l_icloglock)
2793 {
2794 	spin_unlock(&log->l_icloglock);
2795 	spin_lock(&iclog->ic_callback_lock);
2796 	while (!list_empty(&iclog->ic_callbacks)) {
2797 		LIST_HEAD(tmp);
2798 
2799 		list_splice_init(&iclog->ic_callbacks, &tmp);
2800 
2801 		spin_unlock(&iclog->ic_callback_lock);
2802 		xlog_cil_process_committed(&tmp);
2803 		spin_lock(&iclog->ic_callback_lock);
2804 	}
2805 
2806 	/*
2807 	 * Pick up the icloglock while still holding the callback lock so we
2808 	 * serialise against anyone trying to add more callbacks to this iclog
2809 	 * now we've finished processing.
2810 	 */
2811 	spin_lock(&log->l_icloglock);
2812 	spin_unlock(&iclog->ic_callback_lock);
2813 }
2814 
2815 STATIC void
2816 xlog_state_do_callback(
2817 	struct xlog		*log)
2818 {
2819 	struct xlog_in_core	*iclog;
2820 	struct xlog_in_core	*first_iclog;
2821 	bool			cycled_icloglock;
2822 	bool			ioerror;
2823 	int			flushcnt = 0;
2824 	int			repeats = 0;
2825 
2826 	spin_lock(&log->l_icloglock);
2827 	do {
2828 		/*
2829 		 * Scan all iclogs starting with the one pointed to by the
2830 		 * log.  Reset this starting point each time the log is
2831 		 * unlocked (during callbacks).
2832 		 *
2833 		 * Keep looping through iclogs until one full pass is made
2834 		 * without running any callbacks.
2835 		 */
2836 		first_iclog = log->l_iclog;
2837 		iclog = log->l_iclog;
2838 		cycled_icloglock = false;
2839 		ioerror = false;
2840 		repeats++;
2841 
2842 		do {
2843 			if (xlog_state_iodone_process_iclog(log, iclog,
2844 							&ioerror))
2845 				break;
2846 
2847 			if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2848 			    iclog->ic_state != XLOG_STATE_IOERROR) {
2849 				iclog = iclog->ic_next;
2850 				continue;
2851 			}
2852 
2853 			/*
2854 			 * Running callbacks will drop the icloglock which means
2855 			 * we'll have to run at least one more complete loop.
2856 			 */
2857 			cycled_icloglock = true;
2858 			xlog_state_do_iclog_callbacks(log, iclog);
2859 			if (XLOG_FORCED_SHUTDOWN(log))
2860 				wake_up_all(&iclog->ic_force_wait);
2861 			else
2862 				xlog_state_clean_iclog(log, iclog);
2863 			iclog = iclog->ic_next;
2864 		} while (first_iclog != iclog);
2865 
2866 		if (repeats > 5000) {
2867 			flushcnt += repeats;
2868 			repeats = 0;
2869 			xfs_warn(log->l_mp,
2870 				"%s: possible infinite loop (%d iterations)",
2871 				__func__, flushcnt);
2872 		}
2873 	} while (!ioerror && cycled_icloglock);
2874 
2875 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2876 	    log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2877 		wake_up_all(&log->l_flush_wait);
2878 
2879 	spin_unlock(&log->l_icloglock);
2880 }
2881 
2882 
2883 /*
2884  * Finish transitioning this iclog to the dirty state.
2885  *
2886  * Make sure that we completely execute this routine only when this is
2887  * the last call to the iclog.  There is a good chance that iclog flushes,
2888  * when we reach the end of the physical log, get turned into 2 separate
2889  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2890  * routine.  By using the reference count bwritecnt, we guarantee that only
2891  * the second completion goes through.
2892  *
2893  * Callbacks could take time, so they are done outside the scope of the
2894  * global state machine log lock.
2895  */
2896 STATIC void
2897 xlog_state_done_syncing(
2898 	struct xlog_in_core	*iclog)
2899 {
2900 	struct xlog		*log = iclog->ic_log;
2901 
2902 	spin_lock(&log->l_icloglock);
2903 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2904 
2905 	/*
2906 	 * If we got an error, either on the first buffer, or in the case of
2907 	 * split log writes, on the second, we shut down the file system and
2908 	 * no iclogs should ever be attempted to be written to disk again.
2909 	 */
2910 	if (!XLOG_FORCED_SHUTDOWN(log)) {
2911 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2912 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2913 	}
2914 
2915 	/*
2916 	 * Someone could be sleeping prior to writing out the next
2917 	 * iclog buffer, we wake them all, one will get to do the
2918 	 * I/O, the others get to wait for the result.
2919 	 */
2920 	wake_up_all(&iclog->ic_write_wait);
2921 	spin_unlock(&log->l_icloglock);
2922 	xlog_state_do_callback(log);
2923 }
2924 
2925 /*
2926  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2927  * sleep.  We wait on the flush queue on the head iclog as that should be
2928  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2929  * we will wait here and all new writes will sleep until a sync completes.
2930  *
2931  * The in-core logs are used in a circular fashion. They are not used
2932  * out-of-order even when an iclog past the head is free.
2933  *
2934  * return:
2935  *	* log_offset where xlog_write() can start writing into the in-core
2936  *		log's data space.
2937  *	* in-core log pointer to which xlog_write() should write.
2938  *	* boolean indicating this is a continued write to an in-core log.
2939  *		If this is the last write, then the in-core log's offset field
2940  *		needs to be incremented, depending on the amount of data which
2941  *		is copied.
2942  */
2943 STATIC int
2944 xlog_state_get_iclog_space(
2945 	struct xlog		*log,
2946 	int			len,
2947 	struct xlog_in_core	**iclogp,
2948 	struct xlog_ticket	*ticket,
2949 	int			*continued_write,
2950 	int			*logoffsetp)
2951 {
2952 	int		  log_offset;
2953 	xlog_rec_header_t *head;
2954 	xlog_in_core_t	  *iclog;
2955 
2956 restart:
2957 	spin_lock(&log->l_icloglock);
2958 	if (XLOG_FORCED_SHUTDOWN(log)) {
2959 		spin_unlock(&log->l_icloglock);
2960 		return -EIO;
2961 	}
2962 
2963 	iclog = log->l_iclog;
2964 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2965 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2966 
2967 		/* Wait for log writes to have flushed */
2968 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2969 		goto restart;
2970 	}
2971 
2972 	head = &iclog->ic_header;
2973 
2974 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2975 	log_offset = iclog->ic_offset;
2976 
2977 	/* On the 1st write to an iclog, figure out lsn.  This works
2978 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2979 	 * committing to.  If the offset is set, that's how many blocks
2980 	 * must be written.
2981 	 */
2982 	if (log_offset == 0) {
2983 		ticket->t_curr_res -= log->l_iclog_hsize;
2984 		xlog_tic_add_region(ticket,
2985 				    log->l_iclog_hsize,
2986 				    XLOG_REG_TYPE_LRHEADER);
2987 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2988 		head->h_lsn = cpu_to_be64(
2989 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2990 		ASSERT(log->l_curr_block >= 0);
2991 	}
2992 
2993 	/* If there is enough room to write everything, then do it.  Otherwise,
2994 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2995 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2996 	 * until you know exactly how many bytes get copied.  Therefore, wait
2997 	 * until later to update ic_offset.
2998 	 *
2999 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3000 	 * can fit into remaining data section.
3001 	 */
3002 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3003 		int		error = 0;
3004 
3005 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3006 
3007 		/*
3008 		 * If we are the only one writing to this iclog, sync it to
3009 		 * disk.  We need to do an atomic compare and decrement here to
3010 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
3011 		 * xlog_state_release_iclog() when there is more than one
3012 		 * reference to the iclog.
3013 		 */
3014 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3015 			error = xlog_state_release_iclog(log, iclog);
3016 		spin_unlock(&log->l_icloglock);
3017 		if (error)
3018 			return error;
3019 		goto restart;
3020 	}
3021 
3022 	/* Do we have enough room to write the full amount in the remainder
3023 	 * of this iclog?  Or must we continue a write on the next iclog and
3024 	 * mark this iclog as completely taken?  In the case where we switch
3025 	 * iclogs (to mark it taken), this particular iclog will release/sync
3026 	 * to disk in xlog_write().
3027 	 */
3028 	if (len <= iclog->ic_size - iclog->ic_offset) {
3029 		*continued_write = 0;
3030 		iclog->ic_offset += len;
3031 	} else {
3032 		*continued_write = 1;
3033 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3034 	}
3035 	*iclogp = iclog;
3036 
3037 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3038 	spin_unlock(&log->l_icloglock);
3039 
3040 	*logoffsetp = log_offset;
3041 	return 0;
3042 }
3043 
3044 /*
3045  * The first cnt-1 times a ticket goes through here we don't need to move the
3046  * grant write head because the permanent reservation has reserved cnt times the
3047  * unit amount.  Release part of current permanent unit reservation and reset
3048  * current reservation to be one units worth.  Also move grant reservation head
3049  * forward.
3050  */
3051 void
3052 xfs_log_ticket_regrant(
3053 	struct xlog		*log,
3054 	struct xlog_ticket	*ticket)
3055 {
3056 	trace_xfs_log_ticket_regrant(log, ticket);
3057 
3058 	if (ticket->t_cnt > 0)
3059 		ticket->t_cnt--;
3060 
3061 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3062 					ticket->t_curr_res);
3063 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3064 					ticket->t_curr_res);
3065 	ticket->t_curr_res = ticket->t_unit_res;
3066 	xlog_tic_reset_res(ticket);
3067 
3068 	trace_xfs_log_ticket_regrant_sub(log, ticket);
3069 
3070 	/* just return if we still have some of the pre-reserved space */
3071 	if (!ticket->t_cnt) {
3072 		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3073 				     ticket->t_unit_res);
3074 		trace_xfs_log_ticket_regrant_exit(log, ticket);
3075 
3076 		ticket->t_curr_res = ticket->t_unit_res;
3077 		xlog_tic_reset_res(ticket);
3078 	}
3079 
3080 	xfs_log_ticket_put(ticket);
3081 }
3082 
3083 /*
3084  * Give back the space left from a reservation.
3085  *
3086  * All the information we need to make a correct determination of space left
3087  * is present.  For non-permanent reservations, things are quite easy.  The
3088  * count should have been decremented to zero.  We only need to deal with the
3089  * space remaining in the current reservation part of the ticket.  If the
3090  * ticket contains a permanent reservation, there may be left over space which
3091  * needs to be released.  A count of N means that N-1 refills of the current
3092  * reservation can be done before we need to ask for more space.  The first
3093  * one goes to fill up the first current reservation.  Once we run out of
3094  * space, the count will stay at zero and the only space remaining will be
3095  * in the current reservation field.
3096  */
3097 void
3098 xfs_log_ticket_ungrant(
3099 	struct xlog		*log,
3100 	struct xlog_ticket	*ticket)
3101 {
3102 	int			bytes;
3103 
3104 	trace_xfs_log_ticket_ungrant(log, ticket);
3105 
3106 	if (ticket->t_cnt > 0)
3107 		ticket->t_cnt--;
3108 
3109 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3110 
3111 	/*
3112 	 * If this is a permanent reservation ticket, we may be able to free
3113 	 * up more space based on the remaining count.
3114 	 */
3115 	bytes = ticket->t_curr_res;
3116 	if (ticket->t_cnt > 0) {
3117 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3118 		bytes += ticket->t_unit_res*ticket->t_cnt;
3119 	}
3120 
3121 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3122 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3123 
3124 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3125 
3126 	xfs_log_space_wake(log->l_mp);
3127 	xfs_log_ticket_put(ticket);
3128 }
3129 
3130 /*
3131  * This routine will mark the current iclog in the ring as WANT_SYNC and move
3132  * the current iclog pointer to the next iclog in the ring.
3133  */
3134 STATIC void
3135 xlog_state_switch_iclogs(
3136 	struct xlog		*log,
3137 	struct xlog_in_core	*iclog,
3138 	int			eventual_size)
3139 {
3140 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3141 	assert_spin_locked(&log->l_icloglock);
3142 
3143 	if (!eventual_size)
3144 		eventual_size = iclog->ic_offset;
3145 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3146 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3147 	log->l_prev_block = log->l_curr_block;
3148 	log->l_prev_cycle = log->l_curr_cycle;
3149 
3150 	/* roll log?: ic_offset changed later */
3151 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3152 
3153 	/* Round up to next log-sunit */
3154 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3155 	    log->l_mp->m_sb.sb_logsunit > 1) {
3156 		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3157 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3158 	}
3159 
3160 	if (log->l_curr_block >= log->l_logBBsize) {
3161 		/*
3162 		 * Rewind the current block before the cycle is bumped to make
3163 		 * sure that the combined LSN never transiently moves forward
3164 		 * when the log wraps to the next cycle. This is to support the
3165 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3166 		 * other cases should acquire l_icloglock.
3167 		 */
3168 		log->l_curr_block -= log->l_logBBsize;
3169 		ASSERT(log->l_curr_block >= 0);
3170 		smp_wmb();
3171 		log->l_curr_cycle++;
3172 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3173 			log->l_curr_cycle++;
3174 	}
3175 	ASSERT(iclog == log->l_iclog);
3176 	log->l_iclog = iclog->ic_next;
3177 }
3178 
3179 /*
3180  * Write out all data in the in-core log as of this exact moment in time.
3181  *
3182  * Data may be written to the in-core log during this call.  However,
3183  * we don't guarantee this data will be written out.  A change from past
3184  * implementation means this routine will *not* write out zero length LRs.
3185  *
3186  * Basically, we try and perform an intelligent scan of the in-core logs.
3187  * If we determine there is no flushable data, we just return.  There is no
3188  * flushable data if:
3189  *
3190  *	1. the current iclog is active and has no data; the previous iclog
3191  *		is in the active or dirty state.
3192  *	2. the current iclog is drity, and the previous iclog is in the
3193  *		active or dirty state.
3194  *
3195  * We may sleep if:
3196  *
3197  *	1. the current iclog is not in the active nor dirty state.
3198  *	2. the current iclog dirty, and the previous iclog is not in the
3199  *		active nor dirty state.
3200  *	3. the current iclog is active, and there is another thread writing
3201  *		to this particular iclog.
3202  *	4. a) the current iclog is active and has no other writers
3203  *	   b) when we return from flushing out this iclog, it is still
3204  *		not in the active nor dirty state.
3205  */
3206 int
3207 xfs_log_force(
3208 	struct xfs_mount	*mp,
3209 	uint			flags)
3210 {
3211 	struct xlog		*log = mp->m_log;
3212 	struct xlog_in_core	*iclog;
3213 	xfs_lsn_t		lsn;
3214 
3215 	XFS_STATS_INC(mp, xs_log_force);
3216 	trace_xfs_log_force(mp, 0, _RET_IP_);
3217 
3218 	xlog_cil_force(log);
3219 
3220 	spin_lock(&log->l_icloglock);
3221 	iclog = log->l_iclog;
3222 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3223 		goto out_error;
3224 
3225 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3226 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3227 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3228 		/*
3229 		 * If the head is dirty or (active and empty), then we need to
3230 		 * look at the previous iclog.
3231 		 *
3232 		 * If the previous iclog is active or dirty we are done.  There
3233 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3234 		 * previous iclog and go to sleep.
3235 		 */
3236 		iclog = iclog->ic_prev;
3237 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3238 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3239 			/*
3240 			 * We are the only one with access to this iclog.
3241 			 *
3242 			 * Flush it out now.  There should be a roundoff of zero
3243 			 * to show that someone has already taken care of the
3244 			 * roundoff from the previous sync.
3245 			 */
3246 			atomic_inc(&iclog->ic_refcnt);
3247 			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3248 			xlog_state_switch_iclogs(log, iclog, 0);
3249 			if (xlog_state_release_iclog(log, iclog))
3250 				goto out_error;
3251 
3252 			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3253 				goto out_unlock;
3254 		} else {
3255 			/*
3256 			 * Someone else is writing to this iclog.
3257 			 *
3258 			 * Use its call to flush out the data.  However, the
3259 			 * other thread may not force out this LR, so we mark
3260 			 * it WANT_SYNC.
3261 			 */
3262 			xlog_state_switch_iclogs(log, iclog, 0);
3263 		}
3264 	} else {
3265 		/*
3266 		 * If the head iclog is not active nor dirty, we just attach
3267 		 * ourselves to the head and go to sleep if necessary.
3268 		 */
3269 		;
3270 	}
3271 
3272 	if (flags & XFS_LOG_SYNC)
3273 		return xlog_wait_on_iclog(iclog);
3274 out_unlock:
3275 	spin_unlock(&log->l_icloglock);
3276 	return 0;
3277 out_error:
3278 	spin_unlock(&log->l_icloglock);
3279 	return -EIO;
3280 }
3281 
3282 static int
3283 __xfs_log_force_lsn(
3284 	struct xfs_mount	*mp,
3285 	xfs_lsn_t		lsn,
3286 	uint			flags,
3287 	int			*log_flushed,
3288 	bool			already_slept)
3289 {
3290 	struct xlog		*log = mp->m_log;
3291 	struct xlog_in_core	*iclog;
3292 
3293 	spin_lock(&log->l_icloglock);
3294 	iclog = log->l_iclog;
3295 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3296 		goto out_error;
3297 
3298 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3299 		iclog = iclog->ic_next;
3300 		if (iclog == log->l_iclog)
3301 			goto out_unlock;
3302 	}
3303 
3304 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3305 		/*
3306 		 * We sleep here if we haven't already slept (e.g. this is the
3307 		 * first time we've looked at the correct iclog buf) and the
3308 		 * buffer before us is going to be sync'ed.  The reason for this
3309 		 * is that if we are doing sync transactions here, by waiting
3310 		 * for the previous I/O to complete, we can allow a few more
3311 		 * transactions into this iclog before we close it down.
3312 		 *
3313 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3314 		 * refcnt so we can release the log (which drops the ref count).
3315 		 * The state switch keeps new transaction commits from using
3316 		 * this buffer.  When the current commits finish writing into
3317 		 * the buffer, the refcount will drop to zero and the buffer
3318 		 * will go out then.
3319 		 */
3320 		if (!already_slept &&
3321 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3322 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3323 			XFS_STATS_INC(mp, xs_log_force_sleep);
3324 
3325 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3326 					&log->l_icloglock);
3327 			return -EAGAIN;
3328 		}
3329 		atomic_inc(&iclog->ic_refcnt);
3330 		xlog_state_switch_iclogs(log, iclog, 0);
3331 		if (xlog_state_release_iclog(log, iclog))
3332 			goto out_error;
3333 		if (log_flushed)
3334 			*log_flushed = 1;
3335 	}
3336 
3337 	if (flags & XFS_LOG_SYNC)
3338 		return xlog_wait_on_iclog(iclog);
3339 out_unlock:
3340 	spin_unlock(&log->l_icloglock);
3341 	return 0;
3342 out_error:
3343 	spin_unlock(&log->l_icloglock);
3344 	return -EIO;
3345 }
3346 
3347 /*
3348  * Force the in-core log to disk for a specific LSN.
3349  *
3350  * Find in-core log with lsn.
3351  *	If it is in the DIRTY state, just return.
3352  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3353  *		state and go to sleep or return.
3354  *	If it is in any other state, go to sleep or return.
3355  *
3356  * Synchronous forces are implemented with a wait queue.  All callers trying
3357  * to force a given lsn to disk must wait on the queue attached to the
3358  * specific in-core log.  When given in-core log finally completes its write
3359  * to disk, that thread will wake up all threads waiting on the queue.
3360  */
3361 int
3362 xfs_log_force_lsn(
3363 	struct xfs_mount	*mp,
3364 	xfs_lsn_t		lsn,
3365 	uint			flags,
3366 	int			*log_flushed)
3367 {
3368 	int			ret;
3369 	ASSERT(lsn != 0);
3370 
3371 	XFS_STATS_INC(mp, xs_log_force);
3372 	trace_xfs_log_force(mp, lsn, _RET_IP_);
3373 
3374 	lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3375 	if (lsn == NULLCOMMITLSN)
3376 		return 0;
3377 
3378 	ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3379 	if (ret == -EAGAIN)
3380 		ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3381 	return ret;
3382 }
3383 
3384 /*
3385  * Free a used ticket when its refcount falls to zero.
3386  */
3387 void
3388 xfs_log_ticket_put(
3389 	xlog_ticket_t	*ticket)
3390 {
3391 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3392 	if (atomic_dec_and_test(&ticket->t_ref))
3393 		kmem_cache_free(xfs_log_ticket_zone, ticket);
3394 }
3395 
3396 xlog_ticket_t *
3397 xfs_log_ticket_get(
3398 	xlog_ticket_t	*ticket)
3399 {
3400 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3401 	atomic_inc(&ticket->t_ref);
3402 	return ticket;
3403 }
3404 
3405 /*
3406  * Figure out the total log space unit (in bytes) that would be
3407  * required for a log ticket.
3408  */
3409 int
3410 xfs_log_calc_unit_res(
3411 	struct xfs_mount	*mp,
3412 	int			unit_bytes)
3413 {
3414 	struct xlog		*log = mp->m_log;
3415 	int			iclog_space;
3416 	uint			num_headers;
3417 
3418 	/*
3419 	 * Permanent reservations have up to 'cnt'-1 active log operations
3420 	 * in the log.  A unit in this case is the amount of space for one
3421 	 * of these log operations.  Normal reservations have a cnt of 1
3422 	 * and their unit amount is the total amount of space required.
3423 	 *
3424 	 * The following lines of code account for non-transaction data
3425 	 * which occupy space in the on-disk log.
3426 	 *
3427 	 * Normal form of a transaction is:
3428 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3429 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3430 	 *
3431 	 * We need to account for all the leadup data and trailer data
3432 	 * around the transaction data.
3433 	 * And then we need to account for the worst case in terms of using
3434 	 * more space.
3435 	 * The worst case will happen if:
3436 	 * - the placement of the transaction happens to be such that the
3437 	 *   roundoff is at its maximum
3438 	 * - the transaction data is synced before the commit record is synced
3439 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3440 	 *   Therefore the commit record is in its own Log Record.
3441 	 *   This can happen as the commit record is called with its
3442 	 *   own region to xlog_write().
3443 	 *   This then means that in the worst case, roundoff can happen for
3444 	 *   the commit-rec as well.
3445 	 *   The commit-rec is smaller than padding in this scenario and so it is
3446 	 *   not added separately.
3447 	 */
3448 
3449 	/* for trans header */
3450 	unit_bytes += sizeof(xlog_op_header_t);
3451 	unit_bytes += sizeof(xfs_trans_header_t);
3452 
3453 	/* for start-rec */
3454 	unit_bytes += sizeof(xlog_op_header_t);
3455 
3456 	/*
3457 	 * for LR headers - the space for data in an iclog is the size minus
3458 	 * the space used for the headers. If we use the iclog size, then we
3459 	 * undercalculate the number of headers required.
3460 	 *
3461 	 * Furthermore - the addition of op headers for split-recs might
3462 	 * increase the space required enough to require more log and op
3463 	 * headers, so take that into account too.
3464 	 *
3465 	 * IMPORTANT: This reservation makes the assumption that if this
3466 	 * transaction is the first in an iclog and hence has the LR headers
3467 	 * accounted to it, then the remaining space in the iclog is
3468 	 * exclusively for this transaction.  i.e. if the transaction is larger
3469 	 * than the iclog, it will be the only thing in that iclog.
3470 	 * Fundamentally, this means we must pass the entire log vector to
3471 	 * xlog_write to guarantee this.
3472 	 */
3473 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3474 	num_headers = howmany(unit_bytes, iclog_space);
3475 
3476 	/* for split-recs - ophdrs added when data split over LRs */
3477 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3478 
3479 	/* add extra header reservations if we overrun */
3480 	while (!num_headers ||
3481 	       howmany(unit_bytes, iclog_space) > num_headers) {
3482 		unit_bytes += sizeof(xlog_op_header_t);
3483 		num_headers++;
3484 	}
3485 	unit_bytes += log->l_iclog_hsize * num_headers;
3486 
3487 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3488 	unit_bytes += log->l_iclog_hsize;
3489 
3490 	/* for roundoff padding for transaction data and one for commit record */
3491 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3492 		/* log su roundoff */
3493 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3494 	} else {
3495 		/* BB roundoff */
3496 		unit_bytes += 2 * BBSIZE;
3497         }
3498 
3499 	return unit_bytes;
3500 }
3501 
3502 /*
3503  * Allocate and initialise a new log ticket.
3504  */
3505 struct xlog_ticket *
3506 xlog_ticket_alloc(
3507 	struct xlog		*log,
3508 	int			unit_bytes,
3509 	int			cnt,
3510 	char			client,
3511 	bool			permanent)
3512 {
3513 	struct xlog_ticket	*tic;
3514 	int			unit_res;
3515 
3516 	tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
3517 
3518 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3519 
3520 	atomic_set(&tic->t_ref, 1);
3521 	tic->t_task		= current;
3522 	INIT_LIST_HEAD(&tic->t_queue);
3523 	tic->t_unit_res		= unit_res;
3524 	tic->t_curr_res		= unit_res;
3525 	tic->t_cnt		= cnt;
3526 	tic->t_ocnt		= cnt;
3527 	tic->t_tid		= prandom_u32();
3528 	tic->t_clientid		= client;
3529 	if (permanent)
3530 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3531 
3532 	xlog_tic_reset_res(tic);
3533 
3534 	return tic;
3535 }
3536 
3537 #if defined(DEBUG)
3538 /*
3539  * Make sure that the destination ptr is within the valid data region of
3540  * one of the iclogs.  This uses backup pointers stored in a different
3541  * part of the log in case we trash the log structure.
3542  */
3543 STATIC void
3544 xlog_verify_dest_ptr(
3545 	struct xlog	*log,
3546 	void		*ptr)
3547 {
3548 	int i;
3549 	int good_ptr = 0;
3550 
3551 	for (i = 0; i < log->l_iclog_bufs; i++) {
3552 		if (ptr >= log->l_iclog_bak[i] &&
3553 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3554 			good_ptr++;
3555 	}
3556 
3557 	if (!good_ptr)
3558 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3559 }
3560 
3561 /*
3562  * Check to make sure the grant write head didn't just over lap the tail.  If
3563  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3564  * the cycles differ by exactly one and check the byte count.
3565  *
3566  * This check is run unlocked, so can give false positives. Rather than assert
3567  * on failures, use a warn-once flag and a panic tag to allow the admin to
3568  * determine if they want to panic the machine when such an error occurs. For
3569  * debug kernels this will have the same effect as using an assert but, unlinke
3570  * an assert, it can be turned off at runtime.
3571  */
3572 STATIC void
3573 xlog_verify_grant_tail(
3574 	struct xlog	*log)
3575 {
3576 	int		tail_cycle, tail_blocks;
3577 	int		cycle, space;
3578 
3579 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3580 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3581 	if (tail_cycle != cycle) {
3582 		if (cycle - 1 != tail_cycle &&
3583 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3584 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3585 				"%s: cycle - 1 != tail_cycle", __func__);
3586 			log->l_flags |= XLOG_TAIL_WARN;
3587 		}
3588 
3589 		if (space > BBTOB(tail_blocks) &&
3590 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3591 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3592 				"%s: space > BBTOB(tail_blocks)", __func__);
3593 			log->l_flags |= XLOG_TAIL_WARN;
3594 		}
3595 	}
3596 }
3597 
3598 /* check if it will fit */
3599 STATIC void
3600 xlog_verify_tail_lsn(
3601 	struct xlog		*log,
3602 	struct xlog_in_core	*iclog,
3603 	xfs_lsn_t		tail_lsn)
3604 {
3605     int blocks;
3606 
3607     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3608 	blocks =
3609 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3610 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3611 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3612     } else {
3613 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3614 
3615 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3616 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3617 
3618 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3619 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3620 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3621     }
3622 }
3623 
3624 /*
3625  * Perform a number of checks on the iclog before writing to disk.
3626  *
3627  * 1. Make sure the iclogs are still circular
3628  * 2. Make sure we have a good magic number
3629  * 3. Make sure we don't have magic numbers in the data
3630  * 4. Check fields of each log operation header for:
3631  *	A. Valid client identifier
3632  *	B. tid ptr value falls in valid ptr space (user space code)
3633  *	C. Length in log record header is correct according to the
3634  *		individual operation headers within record.
3635  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3636  *	log, check the preceding blocks of the physical log to make sure all
3637  *	the cycle numbers agree with the current cycle number.
3638  */
3639 STATIC void
3640 xlog_verify_iclog(
3641 	struct xlog		*log,
3642 	struct xlog_in_core	*iclog,
3643 	int			count)
3644 {
3645 	xlog_op_header_t	*ophead;
3646 	xlog_in_core_t		*icptr;
3647 	xlog_in_core_2_t	*xhdr;
3648 	void			*base_ptr, *ptr, *p;
3649 	ptrdiff_t		field_offset;
3650 	uint8_t			clientid;
3651 	int			len, i, j, k, op_len;
3652 	int			idx;
3653 
3654 	/* check validity of iclog pointers */
3655 	spin_lock(&log->l_icloglock);
3656 	icptr = log->l_iclog;
3657 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3658 		ASSERT(icptr);
3659 
3660 	if (icptr != log->l_iclog)
3661 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3662 	spin_unlock(&log->l_icloglock);
3663 
3664 	/* check log magic numbers */
3665 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3666 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3667 
3668 	base_ptr = ptr = &iclog->ic_header;
3669 	p = &iclog->ic_header;
3670 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3671 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3672 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3673 				__func__);
3674 	}
3675 
3676 	/* check fields */
3677 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3678 	base_ptr = ptr = iclog->ic_datap;
3679 	ophead = ptr;
3680 	xhdr = iclog->ic_data;
3681 	for (i = 0; i < len; i++) {
3682 		ophead = ptr;
3683 
3684 		/* clientid is only 1 byte */
3685 		p = &ophead->oh_clientid;
3686 		field_offset = p - base_ptr;
3687 		if (field_offset & 0x1ff) {
3688 			clientid = ophead->oh_clientid;
3689 		} else {
3690 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3691 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3692 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3693 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3694 				clientid = xlog_get_client_id(
3695 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3696 			} else {
3697 				clientid = xlog_get_client_id(
3698 					iclog->ic_header.h_cycle_data[idx]);
3699 			}
3700 		}
3701 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3702 			xfs_warn(log->l_mp,
3703 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3704 				__func__, clientid, ophead,
3705 				(unsigned long)field_offset);
3706 
3707 		/* check length */
3708 		p = &ophead->oh_len;
3709 		field_offset = p - base_ptr;
3710 		if (field_offset & 0x1ff) {
3711 			op_len = be32_to_cpu(ophead->oh_len);
3712 		} else {
3713 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3714 				    (uintptr_t)iclog->ic_datap);
3715 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3716 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3717 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3718 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3719 			} else {
3720 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3721 			}
3722 		}
3723 		ptr += sizeof(xlog_op_header_t) + op_len;
3724 	}
3725 }
3726 #endif
3727 
3728 /*
3729  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3730  */
3731 STATIC int
3732 xlog_state_ioerror(
3733 	struct xlog	*log)
3734 {
3735 	xlog_in_core_t	*iclog, *ic;
3736 
3737 	iclog = log->l_iclog;
3738 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
3739 		/*
3740 		 * Mark all the incore logs IOERROR.
3741 		 * From now on, no log flushes will result.
3742 		 */
3743 		ic = iclog;
3744 		do {
3745 			ic->ic_state = XLOG_STATE_IOERROR;
3746 			ic = ic->ic_next;
3747 		} while (ic != iclog);
3748 		return 0;
3749 	}
3750 	/*
3751 	 * Return non-zero, if state transition has already happened.
3752 	 */
3753 	return 1;
3754 }
3755 
3756 /*
3757  * This is called from xfs_force_shutdown, when we're forcibly
3758  * shutting down the filesystem, typically because of an IO error.
3759  * Our main objectives here are to make sure that:
3760  *	a. if !logerror, flush the logs to disk. Anything modified
3761  *	   after this is ignored.
3762  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3763  *	   parties to find out, 'atomically'.
3764  *	c. those who're sleeping on log reservations, pinned objects and
3765  *	    other resources get woken up, and be told the bad news.
3766  *	d. nothing new gets queued up after (b) and (c) are done.
3767  *
3768  * Note: for the !logerror case we need to flush the regions held in memory out
3769  * to disk first. This needs to be done before the log is marked as shutdown,
3770  * otherwise the iclog writes will fail.
3771  */
3772 int
3773 xfs_log_force_umount(
3774 	struct xfs_mount	*mp,
3775 	int			logerror)
3776 {
3777 	struct xlog	*log;
3778 	int		retval;
3779 
3780 	log = mp->m_log;
3781 
3782 	/*
3783 	 * If this happens during log recovery, don't worry about
3784 	 * locking; the log isn't open for business yet.
3785 	 */
3786 	if (!log ||
3787 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3788 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3789 		if (mp->m_sb_bp)
3790 			mp->m_sb_bp->b_flags |= XBF_DONE;
3791 		return 0;
3792 	}
3793 
3794 	/*
3795 	 * Somebody could've already done the hard work for us.
3796 	 * No need to get locks for this.
3797 	 */
3798 	if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3799 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3800 		return 1;
3801 	}
3802 
3803 	/*
3804 	 * Flush all the completed transactions to disk before marking the log
3805 	 * being shut down. We need to do it in this order to ensure that
3806 	 * completed operations are safely on disk before we shut down, and that
3807 	 * we don't have to issue any buffer IO after the shutdown flags are set
3808 	 * to guarantee this.
3809 	 */
3810 	if (!logerror)
3811 		xfs_log_force(mp, XFS_LOG_SYNC);
3812 
3813 	/*
3814 	 * mark the filesystem and the as in a shutdown state and wake
3815 	 * everybody up to tell them the bad news.
3816 	 */
3817 	spin_lock(&log->l_icloglock);
3818 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3819 	if (mp->m_sb_bp)
3820 		mp->m_sb_bp->b_flags |= XBF_DONE;
3821 
3822 	/*
3823 	 * Mark the log and the iclogs with IO error flags to prevent any
3824 	 * further log IO from being issued or completed.
3825 	 */
3826 	log->l_flags |= XLOG_IO_ERROR;
3827 	retval = xlog_state_ioerror(log);
3828 	spin_unlock(&log->l_icloglock);
3829 
3830 	/*
3831 	 * We don't want anybody waiting for log reservations after this. That
3832 	 * means we have to wake up everybody queued up on reserveq as well as
3833 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3834 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3835 	 * action is protected by the grant locks.
3836 	 */
3837 	xlog_grant_head_wake_all(&log->l_reserve_head);
3838 	xlog_grant_head_wake_all(&log->l_write_head);
3839 
3840 	/*
3841 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3842 	 * as if the log writes were completed. The abort handling in the log
3843 	 * item committed callback functions will do this again under lock to
3844 	 * avoid races.
3845 	 */
3846 	spin_lock(&log->l_cilp->xc_push_lock);
3847 	wake_up_all(&log->l_cilp->xc_commit_wait);
3848 	spin_unlock(&log->l_cilp->xc_push_lock);
3849 	xlog_state_do_callback(log);
3850 
3851 	/* return non-zero if log IOERROR transition had already happened */
3852 	return retval;
3853 }
3854 
3855 STATIC int
3856 xlog_iclogs_empty(
3857 	struct xlog	*log)
3858 {
3859 	xlog_in_core_t	*iclog;
3860 
3861 	iclog = log->l_iclog;
3862 	do {
3863 		/* endianness does not matter here, zero is zero in
3864 		 * any language.
3865 		 */
3866 		if (iclog->ic_header.h_num_logops)
3867 			return 0;
3868 		iclog = iclog->ic_next;
3869 	} while (iclog != log->l_iclog);
3870 	return 1;
3871 }
3872 
3873 /*
3874  * Verify that an LSN stamped into a piece of metadata is valid. This is
3875  * intended for use in read verifiers on v5 superblocks.
3876  */
3877 bool
3878 xfs_log_check_lsn(
3879 	struct xfs_mount	*mp,
3880 	xfs_lsn_t		lsn)
3881 {
3882 	struct xlog		*log = mp->m_log;
3883 	bool			valid;
3884 
3885 	/*
3886 	 * norecovery mode skips mount-time log processing and unconditionally
3887 	 * resets the in-core LSN. We can't validate in this mode, but
3888 	 * modifications are not allowed anyways so just return true.
3889 	 */
3890 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3891 		return true;
3892 
3893 	/*
3894 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3895 	 * handled by recovery and thus safe to ignore here.
3896 	 */
3897 	if (lsn == NULLCOMMITLSN)
3898 		return true;
3899 
3900 	valid = xlog_valid_lsn(mp->m_log, lsn);
3901 
3902 	/* warn the user about what's gone wrong before verifier failure */
3903 	if (!valid) {
3904 		spin_lock(&log->l_icloglock);
3905 		xfs_warn(mp,
3906 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3907 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3908 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3909 			 log->l_curr_cycle, log->l_curr_block);
3910 		spin_unlock(&log->l_icloglock);
3911 	}
3912 
3913 	return valid;
3914 }
3915 
3916 bool
3917 xfs_log_in_recovery(
3918 	struct xfs_mount	*mp)
3919 {
3920 	struct xlog		*log = mp->m_log;
3921 
3922 	return log->l_flags & XLOG_ACTIVE_RECOVERY;
3923 }
3924