1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_error.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_log.h" 29 #include "xfs_log_priv.h" 30 #include "xfs_log_recover.h" 31 #include "xfs_inode.h" 32 #include "xfs_trace.h" 33 #include "xfs_fsops.h" 34 #include "xfs_cksum.h" 35 #include "xfs_sysfs.h" 36 #include "xfs_sb.h" 37 38 kmem_zone_t *xfs_log_ticket_zone; 39 40 /* Local miscellaneous function prototypes */ 41 STATIC int 42 xlog_commit_record( 43 struct xlog *log, 44 struct xlog_ticket *ticket, 45 struct xlog_in_core **iclog, 46 xfs_lsn_t *commitlsnp); 47 48 STATIC struct xlog * 49 xlog_alloc_log( 50 struct xfs_mount *mp, 51 struct xfs_buftarg *log_target, 52 xfs_daddr_t blk_offset, 53 int num_bblks); 54 STATIC int 55 xlog_space_left( 56 struct xlog *log, 57 atomic64_t *head); 58 STATIC int 59 xlog_sync( 60 struct xlog *log, 61 struct xlog_in_core *iclog); 62 STATIC void 63 xlog_dealloc_log( 64 struct xlog *log); 65 66 /* local state machine functions */ 67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 68 STATIC void 69 xlog_state_do_callback( 70 struct xlog *log, 71 int aborted, 72 struct xlog_in_core *iclog); 73 STATIC int 74 xlog_state_get_iclog_space( 75 struct xlog *log, 76 int len, 77 struct xlog_in_core **iclog, 78 struct xlog_ticket *ticket, 79 int *continued_write, 80 int *logoffsetp); 81 STATIC int 82 xlog_state_release_iclog( 83 struct xlog *log, 84 struct xlog_in_core *iclog); 85 STATIC void 86 xlog_state_switch_iclogs( 87 struct xlog *log, 88 struct xlog_in_core *iclog, 89 int eventual_size); 90 STATIC void 91 xlog_state_want_sync( 92 struct xlog *log, 93 struct xlog_in_core *iclog); 94 95 STATIC void 96 xlog_grant_push_ail( 97 struct xlog *log, 98 int need_bytes); 99 STATIC void 100 xlog_regrant_reserve_log_space( 101 struct xlog *log, 102 struct xlog_ticket *ticket); 103 STATIC void 104 xlog_ungrant_log_space( 105 struct xlog *log, 106 struct xlog_ticket *ticket); 107 108 #if defined(DEBUG) 109 STATIC void 110 xlog_verify_dest_ptr( 111 struct xlog *log, 112 void *ptr); 113 STATIC void 114 xlog_verify_grant_tail( 115 struct xlog *log); 116 STATIC void 117 xlog_verify_iclog( 118 struct xlog *log, 119 struct xlog_in_core *iclog, 120 int count, 121 bool syncing); 122 STATIC void 123 xlog_verify_tail_lsn( 124 struct xlog *log, 125 struct xlog_in_core *iclog, 126 xfs_lsn_t tail_lsn); 127 #else 128 #define xlog_verify_dest_ptr(a,b) 129 #define xlog_verify_grant_tail(a) 130 #define xlog_verify_iclog(a,b,c,d) 131 #define xlog_verify_tail_lsn(a,b,c) 132 #endif 133 134 STATIC int 135 xlog_iclogs_empty( 136 struct xlog *log); 137 138 static void 139 xlog_grant_sub_space( 140 struct xlog *log, 141 atomic64_t *head, 142 int bytes) 143 { 144 int64_t head_val = atomic64_read(head); 145 int64_t new, old; 146 147 do { 148 int cycle, space; 149 150 xlog_crack_grant_head_val(head_val, &cycle, &space); 151 152 space -= bytes; 153 if (space < 0) { 154 space += log->l_logsize; 155 cycle--; 156 } 157 158 old = head_val; 159 new = xlog_assign_grant_head_val(cycle, space); 160 head_val = atomic64_cmpxchg(head, old, new); 161 } while (head_val != old); 162 } 163 164 static void 165 xlog_grant_add_space( 166 struct xlog *log, 167 atomic64_t *head, 168 int bytes) 169 { 170 int64_t head_val = atomic64_read(head); 171 int64_t new, old; 172 173 do { 174 int tmp; 175 int cycle, space; 176 177 xlog_crack_grant_head_val(head_val, &cycle, &space); 178 179 tmp = log->l_logsize - space; 180 if (tmp > bytes) 181 space += bytes; 182 else { 183 space = bytes - tmp; 184 cycle++; 185 } 186 187 old = head_val; 188 new = xlog_assign_grant_head_val(cycle, space); 189 head_val = atomic64_cmpxchg(head, old, new); 190 } while (head_val != old); 191 } 192 193 STATIC void 194 xlog_grant_head_init( 195 struct xlog_grant_head *head) 196 { 197 xlog_assign_grant_head(&head->grant, 1, 0); 198 INIT_LIST_HEAD(&head->waiters); 199 spin_lock_init(&head->lock); 200 } 201 202 STATIC void 203 xlog_grant_head_wake_all( 204 struct xlog_grant_head *head) 205 { 206 struct xlog_ticket *tic; 207 208 spin_lock(&head->lock); 209 list_for_each_entry(tic, &head->waiters, t_queue) 210 wake_up_process(tic->t_task); 211 spin_unlock(&head->lock); 212 } 213 214 static inline int 215 xlog_ticket_reservation( 216 struct xlog *log, 217 struct xlog_grant_head *head, 218 struct xlog_ticket *tic) 219 { 220 if (head == &log->l_write_head) { 221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 222 return tic->t_unit_res; 223 } else { 224 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 225 return tic->t_unit_res * tic->t_cnt; 226 else 227 return tic->t_unit_res; 228 } 229 } 230 231 STATIC bool 232 xlog_grant_head_wake( 233 struct xlog *log, 234 struct xlog_grant_head *head, 235 int *free_bytes) 236 { 237 struct xlog_ticket *tic; 238 int need_bytes; 239 240 list_for_each_entry(tic, &head->waiters, t_queue) { 241 need_bytes = xlog_ticket_reservation(log, head, tic); 242 if (*free_bytes < need_bytes) 243 return false; 244 245 *free_bytes -= need_bytes; 246 trace_xfs_log_grant_wake_up(log, tic); 247 wake_up_process(tic->t_task); 248 } 249 250 return true; 251 } 252 253 STATIC int 254 xlog_grant_head_wait( 255 struct xlog *log, 256 struct xlog_grant_head *head, 257 struct xlog_ticket *tic, 258 int need_bytes) __releases(&head->lock) 259 __acquires(&head->lock) 260 { 261 list_add_tail(&tic->t_queue, &head->waiters); 262 263 do { 264 if (XLOG_FORCED_SHUTDOWN(log)) 265 goto shutdown; 266 xlog_grant_push_ail(log, need_bytes); 267 268 __set_current_state(TASK_UNINTERRUPTIBLE); 269 spin_unlock(&head->lock); 270 271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 272 273 trace_xfs_log_grant_sleep(log, tic); 274 schedule(); 275 trace_xfs_log_grant_wake(log, tic); 276 277 spin_lock(&head->lock); 278 if (XLOG_FORCED_SHUTDOWN(log)) 279 goto shutdown; 280 } while (xlog_space_left(log, &head->grant) < need_bytes); 281 282 list_del_init(&tic->t_queue); 283 return 0; 284 shutdown: 285 list_del_init(&tic->t_queue); 286 return -EIO; 287 } 288 289 /* 290 * Atomically get the log space required for a log ticket. 291 * 292 * Once a ticket gets put onto head->waiters, it will only return after the 293 * needed reservation is satisfied. 294 * 295 * This function is structured so that it has a lock free fast path. This is 296 * necessary because every new transaction reservation will come through this 297 * path. Hence any lock will be globally hot if we take it unconditionally on 298 * every pass. 299 * 300 * As tickets are only ever moved on and off head->waiters under head->lock, we 301 * only need to take that lock if we are going to add the ticket to the queue 302 * and sleep. We can avoid taking the lock if the ticket was never added to 303 * head->waiters because the t_queue list head will be empty and we hold the 304 * only reference to it so it can safely be checked unlocked. 305 */ 306 STATIC int 307 xlog_grant_head_check( 308 struct xlog *log, 309 struct xlog_grant_head *head, 310 struct xlog_ticket *tic, 311 int *need_bytes) 312 { 313 int free_bytes; 314 int error = 0; 315 316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 317 318 /* 319 * If there are other waiters on the queue then give them a chance at 320 * logspace before us. Wake up the first waiters, if we do not wake 321 * up all the waiters then go to sleep waiting for more free space, 322 * otherwise try to get some space for this transaction. 323 */ 324 *need_bytes = xlog_ticket_reservation(log, head, tic); 325 free_bytes = xlog_space_left(log, &head->grant); 326 if (!list_empty_careful(&head->waiters)) { 327 spin_lock(&head->lock); 328 if (!xlog_grant_head_wake(log, head, &free_bytes) || 329 free_bytes < *need_bytes) { 330 error = xlog_grant_head_wait(log, head, tic, 331 *need_bytes); 332 } 333 spin_unlock(&head->lock); 334 } else if (free_bytes < *need_bytes) { 335 spin_lock(&head->lock); 336 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 337 spin_unlock(&head->lock); 338 } 339 340 return error; 341 } 342 343 static void 344 xlog_tic_reset_res(xlog_ticket_t *tic) 345 { 346 tic->t_res_num = 0; 347 tic->t_res_arr_sum = 0; 348 tic->t_res_num_ophdrs = 0; 349 } 350 351 static void 352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 353 { 354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 355 /* add to overflow and start again */ 356 tic->t_res_o_flow += tic->t_res_arr_sum; 357 tic->t_res_num = 0; 358 tic->t_res_arr_sum = 0; 359 } 360 361 tic->t_res_arr[tic->t_res_num].r_len = len; 362 tic->t_res_arr[tic->t_res_num].r_type = type; 363 tic->t_res_arr_sum += len; 364 tic->t_res_num++; 365 } 366 367 /* 368 * Replenish the byte reservation required by moving the grant write head. 369 */ 370 int 371 xfs_log_regrant( 372 struct xfs_mount *mp, 373 struct xlog_ticket *tic) 374 { 375 struct xlog *log = mp->m_log; 376 int need_bytes; 377 int error = 0; 378 379 if (XLOG_FORCED_SHUTDOWN(log)) 380 return -EIO; 381 382 XFS_STATS_INC(mp, xs_try_logspace); 383 384 /* 385 * This is a new transaction on the ticket, so we need to change the 386 * transaction ID so that the next transaction has a different TID in 387 * the log. Just add one to the existing tid so that we can see chains 388 * of rolling transactions in the log easily. 389 */ 390 tic->t_tid++; 391 392 xlog_grant_push_ail(log, tic->t_unit_res); 393 394 tic->t_curr_res = tic->t_unit_res; 395 xlog_tic_reset_res(tic); 396 397 if (tic->t_cnt > 0) 398 return 0; 399 400 trace_xfs_log_regrant(log, tic); 401 402 error = xlog_grant_head_check(log, &log->l_write_head, tic, 403 &need_bytes); 404 if (error) 405 goto out_error; 406 407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 408 trace_xfs_log_regrant_exit(log, tic); 409 xlog_verify_grant_tail(log); 410 return 0; 411 412 out_error: 413 /* 414 * If we are failing, make sure the ticket doesn't have any current 415 * reservations. We don't want to add this back when the ticket/ 416 * transaction gets cancelled. 417 */ 418 tic->t_curr_res = 0; 419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 420 return error; 421 } 422 423 /* 424 * Reserve log space and return a ticket corresponding the reservation. 425 * 426 * Each reservation is going to reserve extra space for a log record header. 427 * When writes happen to the on-disk log, we don't subtract the length of the 428 * log record header from any reservation. By wasting space in each 429 * reservation, we prevent over allocation problems. 430 */ 431 int 432 xfs_log_reserve( 433 struct xfs_mount *mp, 434 int unit_bytes, 435 int cnt, 436 struct xlog_ticket **ticp, 437 uint8_t client, 438 bool permanent) 439 { 440 struct xlog *log = mp->m_log; 441 struct xlog_ticket *tic; 442 int need_bytes; 443 int error = 0; 444 445 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 446 447 if (XLOG_FORCED_SHUTDOWN(log)) 448 return -EIO; 449 450 XFS_STATS_INC(mp, xs_try_logspace); 451 452 ASSERT(*ticp == NULL); 453 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 454 KM_SLEEP | KM_MAYFAIL); 455 if (!tic) 456 return -ENOMEM; 457 458 *ticp = tic; 459 460 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 461 : tic->t_unit_res); 462 463 trace_xfs_log_reserve(log, tic); 464 465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 466 &need_bytes); 467 if (error) 468 goto out_error; 469 470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 472 trace_xfs_log_reserve_exit(log, tic); 473 xlog_verify_grant_tail(log); 474 return 0; 475 476 out_error: 477 /* 478 * If we are failing, make sure the ticket doesn't have any current 479 * reservations. We don't want to add this back when the ticket/ 480 * transaction gets cancelled. 481 */ 482 tic->t_curr_res = 0; 483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 484 return error; 485 } 486 487 488 /* 489 * NOTES: 490 * 491 * 1. currblock field gets updated at startup and after in-core logs 492 * marked as with WANT_SYNC. 493 */ 494 495 /* 496 * This routine is called when a user of a log manager ticket is done with 497 * the reservation. If the ticket was ever used, then a commit record for 498 * the associated transaction is written out as a log operation header with 499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 500 * a given ticket. If the ticket was one with a permanent reservation, then 501 * a few operations are done differently. Permanent reservation tickets by 502 * default don't release the reservation. They just commit the current 503 * transaction with the belief that the reservation is still needed. A flag 504 * must be passed in before permanent reservations are actually released. 505 * When these type of tickets are not released, they need to be set into 506 * the inited state again. By doing this, a start record will be written 507 * out when the next write occurs. 508 */ 509 xfs_lsn_t 510 xfs_log_done( 511 struct xfs_mount *mp, 512 struct xlog_ticket *ticket, 513 struct xlog_in_core **iclog, 514 bool regrant) 515 { 516 struct xlog *log = mp->m_log; 517 xfs_lsn_t lsn = 0; 518 519 if (XLOG_FORCED_SHUTDOWN(log) || 520 /* 521 * If nothing was ever written, don't write out commit record. 522 * If we get an error, just continue and give back the log ticket. 523 */ 524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 525 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 526 lsn = (xfs_lsn_t) -1; 527 regrant = false; 528 } 529 530 531 if (!regrant) { 532 trace_xfs_log_done_nonperm(log, ticket); 533 534 /* 535 * Release ticket if not permanent reservation or a specific 536 * request has been made to release a permanent reservation. 537 */ 538 xlog_ungrant_log_space(log, ticket); 539 } else { 540 trace_xfs_log_done_perm(log, ticket); 541 542 xlog_regrant_reserve_log_space(log, ticket); 543 /* If this ticket was a permanent reservation and we aren't 544 * trying to release it, reset the inited flags; so next time 545 * we write, a start record will be written out. 546 */ 547 ticket->t_flags |= XLOG_TIC_INITED; 548 } 549 550 xfs_log_ticket_put(ticket); 551 return lsn; 552 } 553 554 /* 555 * Attaches a new iclog I/O completion callback routine during 556 * transaction commit. If the log is in error state, a non-zero 557 * return code is handed back and the caller is responsible for 558 * executing the callback at an appropriate time. 559 */ 560 int 561 xfs_log_notify( 562 struct xfs_mount *mp, 563 struct xlog_in_core *iclog, 564 xfs_log_callback_t *cb) 565 { 566 int abortflg; 567 568 spin_lock(&iclog->ic_callback_lock); 569 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 570 if (!abortflg) { 571 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 572 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 573 cb->cb_next = NULL; 574 *(iclog->ic_callback_tail) = cb; 575 iclog->ic_callback_tail = &(cb->cb_next); 576 } 577 spin_unlock(&iclog->ic_callback_lock); 578 return abortflg; 579 } 580 581 int 582 xfs_log_release_iclog( 583 struct xfs_mount *mp, 584 struct xlog_in_core *iclog) 585 { 586 if (xlog_state_release_iclog(mp->m_log, iclog)) { 587 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 588 return -EIO; 589 } 590 591 return 0; 592 } 593 594 /* 595 * Mount a log filesystem 596 * 597 * mp - ubiquitous xfs mount point structure 598 * log_target - buftarg of on-disk log device 599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 600 * num_bblocks - Number of BBSIZE blocks in on-disk log 601 * 602 * Return error or zero. 603 */ 604 int 605 xfs_log_mount( 606 xfs_mount_t *mp, 607 xfs_buftarg_t *log_target, 608 xfs_daddr_t blk_offset, 609 int num_bblks) 610 { 611 int error = 0; 612 int min_logfsbs; 613 614 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 615 xfs_notice(mp, "Mounting V%d Filesystem", 616 XFS_SB_VERSION_NUM(&mp->m_sb)); 617 } else { 618 xfs_notice(mp, 619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 620 XFS_SB_VERSION_NUM(&mp->m_sb)); 621 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 622 } 623 624 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 625 if (IS_ERR(mp->m_log)) { 626 error = PTR_ERR(mp->m_log); 627 goto out; 628 } 629 630 /* 631 * Validate the given log space and drop a critical message via syslog 632 * if the log size is too small that would lead to some unexpected 633 * situations in transaction log space reservation stage. 634 * 635 * Note: we can't just reject the mount if the validation fails. This 636 * would mean that people would have to downgrade their kernel just to 637 * remedy the situation as there is no way to grow the log (short of 638 * black magic surgery with xfs_db). 639 * 640 * We can, however, reject mounts for CRC format filesystems, as the 641 * mkfs binary being used to make the filesystem should never create a 642 * filesystem with a log that is too small. 643 */ 644 min_logfsbs = xfs_log_calc_minimum_size(mp); 645 646 if (mp->m_sb.sb_logblocks < min_logfsbs) { 647 xfs_warn(mp, 648 "Log size %d blocks too small, minimum size is %d blocks", 649 mp->m_sb.sb_logblocks, min_logfsbs); 650 error = -EINVAL; 651 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 652 xfs_warn(mp, 653 "Log size %d blocks too large, maximum size is %lld blocks", 654 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 655 error = -EINVAL; 656 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 657 xfs_warn(mp, 658 "log size %lld bytes too large, maximum size is %lld bytes", 659 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 660 XFS_MAX_LOG_BYTES); 661 error = -EINVAL; 662 } 663 if (error) { 664 if (xfs_sb_version_hascrc(&mp->m_sb)) { 665 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 666 ASSERT(0); 667 goto out_free_log; 668 } 669 xfs_crit(mp, "Log size out of supported range."); 670 xfs_crit(mp, 671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 672 } 673 674 /* 675 * Initialize the AIL now we have a log. 676 */ 677 error = xfs_trans_ail_init(mp); 678 if (error) { 679 xfs_warn(mp, "AIL initialisation failed: error %d", error); 680 goto out_free_log; 681 } 682 mp->m_log->l_ailp = mp->m_ail; 683 684 /* 685 * skip log recovery on a norecovery mount. pretend it all 686 * just worked. 687 */ 688 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 689 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 690 691 if (readonly) 692 mp->m_flags &= ~XFS_MOUNT_RDONLY; 693 694 error = xlog_recover(mp->m_log); 695 696 if (readonly) 697 mp->m_flags |= XFS_MOUNT_RDONLY; 698 if (error) { 699 xfs_warn(mp, "log mount/recovery failed: error %d", 700 error); 701 xlog_recover_cancel(mp->m_log); 702 goto out_destroy_ail; 703 } 704 } 705 706 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 707 "log"); 708 if (error) 709 goto out_destroy_ail; 710 711 /* Normal transactions can now occur */ 712 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 713 714 /* 715 * Now the log has been fully initialised and we know were our 716 * space grant counters are, we can initialise the permanent ticket 717 * needed for delayed logging to work. 718 */ 719 xlog_cil_init_post_recovery(mp->m_log); 720 721 return 0; 722 723 out_destroy_ail: 724 xfs_trans_ail_destroy(mp); 725 out_free_log: 726 xlog_dealloc_log(mp->m_log); 727 out: 728 return error; 729 } 730 731 /* 732 * Finish the recovery of the file system. This is separate from the 733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 735 * here. 736 * 737 * If we finish recovery successfully, start the background log work. If we are 738 * not doing recovery, then we have a RO filesystem and we don't need to start 739 * it. 740 */ 741 int 742 xfs_log_mount_finish( 743 struct xfs_mount *mp) 744 { 745 int error = 0; 746 747 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 748 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 749 return 0; 750 } 751 752 /* 753 * During the second phase of log recovery, we need iget and 754 * iput to behave like they do for an active filesystem. 755 * xfs_fs_drop_inode needs to be able to prevent the deletion 756 * of inodes before we're done replaying log items on those 757 * inodes. Turn it off immediately after recovery finishes 758 * so that we don't leak the quota inodes if subsequent mount 759 * activities fail. 760 */ 761 mp->m_super->s_flags |= MS_ACTIVE; 762 error = xlog_recover_finish(mp->m_log); 763 if (!error) 764 xfs_log_work_queue(mp); 765 mp->m_super->s_flags &= ~MS_ACTIVE; 766 767 return error; 768 } 769 770 /* 771 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 772 * the log. 773 */ 774 int 775 xfs_log_mount_cancel( 776 struct xfs_mount *mp) 777 { 778 int error; 779 780 error = xlog_recover_cancel(mp->m_log); 781 xfs_log_unmount(mp); 782 783 return error; 784 } 785 786 /* 787 * Final log writes as part of unmount. 788 * 789 * Mark the filesystem clean as unmount happens. Note that during relocation 790 * this routine needs to be executed as part of source-bag while the 791 * deallocation must not be done until source-end. 792 */ 793 794 /* 795 * Unmount record used to have a string "Unmount filesystem--" in the 796 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 797 * We just write the magic number now since that particular field isn't 798 * currently architecture converted and "Unmount" is a bit foo. 799 * As far as I know, there weren't any dependencies on the old behaviour. 800 */ 801 802 static int 803 xfs_log_unmount_write(xfs_mount_t *mp) 804 { 805 struct xlog *log = mp->m_log; 806 xlog_in_core_t *iclog; 807 #ifdef DEBUG 808 xlog_in_core_t *first_iclog; 809 #endif 810 xlog_ticket_t *tic = NULL; 811 xfs_lsn_t lsn; 812 int error; 813 814 /* 815 * Don't write out unmount record on read-only mounts. 816 * Or, if we are doing a forced umount (typically because of IO errors). 817 */ 818 if (mp->m_flags & XFS_MOUNT_RDONLY) 819 return 0; 820 821 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 822 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 823 824 #ifdef DEBUG 825 first_iclog = iclog = log->l_iclog; 826 do { 827 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 828 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 829 ASSERT(iclog->ic_offset == 0); 830 } 831 iclog = iclog->ic_next; 832 } while (iclog != first_iclog); 833 #endif 834 if (! (XLOG_FORCED_SHUTDOWN(log))) { 835 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0); 836 if (!error) { 837 /* the data section must be 32 bit size aligned */ 838 struct { 839 uint16_t magic; 840 uint16_t pad1; 841 uint32_t pad2; /* may as well make it 64 bits */ 842 } magic = { 843 .magic = XLOG_UNMOUNT_TYPE, 844 }; 845 struct xfs_log_iovec reg = { 846 .i_addr = &magic, 847 .i_len = sizeof(magic), 848 .i_type = XLOG_REG_TYPE_UNMOUNT, 849 }; 850 struct xfs_log_vec vec = { 851 .lv_niovecs = 1, 852 .lv_iovecp = ®, 853 }; 854 855 /* remove inited flag, and account for space used */ 856 tic->t_flags = 0; 857 tic->t_curr_res -= sizeof(magic); 858 error = xlog_write(log, &vec, tic, &lsn, 859 NULL, XLOG_UNMOUNT_TRANS); 860 /* 861 * At this point, we're umounting anyway, 862 * so there's no point in transitioning log state 863 * to IOERROR. Just continue... 864 */ 865 } 866 867 if (error) 868 xfs_alert(mp, "%s: unmount record failed", __func__); 869 870 871 spin_lock(&log->l_icloglock); 872 iclog = log->l_iclog; 873 atomic_inc(&iclog->ic_refcnt); 874 xlog_state_want_sync(log, iclog); 875 spin_unlock(&log->l_icloglock); 876 error = xlog_state_release_iclog(log, iclog); 877 878 spin_lock(&log->l_icloglock); 879 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 880 iclog->ic_state == XLOG_STATE_DIRTY)) { 881 if (!XLOG_FORCED_SHUTDOWN(log)) { 882 xlog_wait(&iclog->ic_force_wait, 883 &log->l_icloglock); 884 } else { 885 spin_unlock(&log->l_icloglock); 886 } 887 } else { 888 spin_unlock(&log->l_icloglock); 889 } 890 if (tic) { 891 trace_xfs_log_umount_write(log, tic); 892 xlog_ungrant_log_space(log, tic); 893 xfs_log_ticket_put(tic); 894 } 895 } else { 896 /* 897 * We're already in forced_shutdown mode, couldn't 898 * even attempt to write out the unmount transaction. 899 * 900 * Go through the motions of sync'ing and releasing 901 * the iclog, even though no I/O will actually happen, 902 * we need to wait for other log I/Os that may already 903 * be in progress. Do this as a separate section of 904 * code so we'll know if we ever get stuck here that 905 * we're in this odd situation of trying to unmount 906 * a file system that went into forced_shutdown as 907 * the result of an unmount.. 908 */ 909 spin_lock(&log->l_icloglock); 910 iclog = log->l_iclog; 911 atomic_inc(&iclog->ic_refcnt); 912 913 xlog_state_want_sync(log, iclog); 914 spin_unlock(&log->l_icloglock); 915 error = xlog_state_release_iclog(log, iclog); 916 917 spin_lock(&log->l_icloglock); 918 919 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 920 || iclog->ic_state == XLOG_STATE_DIRTY 921 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 922 923 xlog_wait(&iclog->ic_force_wait, 924 &log->l_icloglock); 925 } else { 926 spin_unlock(&log->l_icloglock); 927 } 928 } 929 930 return error; 931 } /* xfs_log_unmount_write */ 932 933 /* 934 * Empty the log for unmount/freeze. 935 * 936 * To do this, we first need to shut down the background log work so it is not 937 * trying to cover the log as we clean up. We then need to unpin all objects in 938 * the log so we can then flush them out. Once they have completed their IO and 939 * run the callbacks removing themselves from the AIL, we can write the unmount 940 * record. 941 */ 942 void 943 xfs_log_quiesce( 944 struct xfs_mount *mp) 945 { 946 cancel_delayed_work_sync(&mp->m_log->l_work); 947 xfs_log_force(mp, XFS_LOG_SYNC); 948 949 /* 950 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 951 * will push it, xfs_wait_buftarg() will not wait for it. Further, 952 * xfs_buf_iowait() cannot be used because it was pushed with the 953 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 954 * the IO to complete. 955 */ 956 xfs_ail_push_all_sync(mp->m_ail); 957 xfs_wait_buftarg(mp->m_ddev_targp); 958 xfs_buf_lock(mp->m_sb_bp); 959 xfs_buf_unlock(mp->m_sb_bp); 960 961 xfs_log_unmount_write(mp); 962 } 963 964 /* 965 * Shut down and release the AIL and Log. 966 * 967 * During unmount, we need to ensure we flush all the dirty metadata objects 968 * from the AIL so that the log is empty before we write the unmount record to 969 * the log. Once this is done, we can tear down the AIL and the log. 970 */ 971 void 972 xfs_log_unmount( 973 struct xfs_mount *mp) 974 { 975 xfs_log_quiesce(mp); 976 977 xfs_trans_ail_destroy(mp); 978 979 xfs_sysfs_del(&mp->m_log->l_kobj); 980 981 xlog_dealloc_log(mp->m_log); 982 } 983 984 void 985 xfs_log_item_init( 986 struct xfs_mount *mp, 987 struct xfs_log_item *item, 988 int type, 989 const struct xfs_item_ops *ops) 990 { 991 item->li_mountp = mp; 992 item->li_ailp = mp->m_ail; 993 item->li_type = type; 994 item->li_ops = ops; 995 item->li_lv = NULL; 996 997 INIT_LIST_HEAD(&item->li_ail); 998 INIT_LIST_HEAD(&item->li_cil); 999 } 1000 1001 /* 1002 * Wake up processes waiting for log space after we have moved the log tail. 1003 */ 1004 void 1005 xfs_log_space_wake( 1006 struct xfs_mount *mp) 1007 { 1008 struct xlog *log = mp->m_log; 1009 int free_bytes; 1010 1011 if (XLOG_FORCED_SHUTDOWN(log)) 1012 return; 1013 1014 if (!list_empty_careful(&log->l_write_head.waiters)) { 1015 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1016 1017 spin_lock(&log->l_write_head.lock); 1018 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1019 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1020 spin_unlock(&log->l_write_head.lock); 1021 } 1022 1023 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1024 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1025 1026 spin_lock(&log->l_reserve_head.lock); 1027 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1028 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1029 spin_unlock(&log->l_reserve_head.lock); 1030 } 1031 } 1032 1033 /* 1034 * Determine if we have a transaction that has gone to disk that needs to be 1035 * covered. To begin the transition to the idle state firstly the log needs to 1036 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1037 * we start attempting to cover the log. 1038 * 1039 * Only if we are then in a state where covering is needed, the caller is 1040 * informed that dummy transactions are required to move the log into the idle 1041 * state. 1042 * 1043 * If there are any items in the AIl or CIL, then we do not want to attempt to 1044 * cover the log as we may be in a situation where there isn't log space 1045 * available to run a dummy transaction and this can lead to deadlocks when the 1046 * tail of the log is pinned by an item that is modified in the CIL. Hence 1047 * there's no point in running a dummy transaction at this point because we 1048 * can't start trying to idle the log until both the CIL and AIL are empty. 1049 */ 1050 static int 1051 xfs_log_need_covered(xfs_mount_t *mp) 1052 { 1053 struct xlog *log = mp->m_log; 1054 int needed = 0; 1055 1056 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 1057 return 0; 1058 1059 if (!xlog_cil_empty(log)) 1060 return 0; 1061 1062 spin_lock(&log->l_icloglock); 1063 switch (log->l_covered_state) { 1064 case XLOG_STATE_COVER_DONE: 1065 case XLOG_STATE_COVER_DONE2: 1066 case XLOG_STATE_COVER_IDLE: 1067 break; 1068 case XLOG_STATE_COVER_NEED: 1069 case XLOG_STATE_COVER_NEED2: 1070 if (xfs_ail_min_lsn(log->l_ailp)) 1071 break; 1072 if (!xlog_iclogs_empty(log)) 1073 break; 1074 1075 needed = 1; 1076 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1077 log->l_covered_state = XLOG_STATE_COVER_DONE; 1078 else 1079 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1080 break; 1081 default: 1082 needed = 1; 1083 break; 1084 } 1085 spin_unlock(&log->l_icloglock); 1086 return needed; 1087 } 1088 1089 /* 1090 * We may be holding the log iclog lock upon entering this routine. 1091 */ 1092 xfs_lsn_t 1093 xlog_assign_tail_lsn_locked( 1094 struct xfs_mount *mp) 1095 { 1096 struct xlog *log = mp->m_log; 1097 struct xfs_log_item *lip; 1098 xfs_lsn_t tail_lsn; 1099 1100 assert_spin_locked(&mp->m_ail->xa_lock); 1101 1102 /* 1103 * To make sure we always have a valid LSN for the log tail we keep 1104 * track of the last LSN which was committed in log->l_last_sync_lsn, 1105 * and use that when the AIL was empty. 1106 */ 1107 lip = xfs_ail_min(mp->m_ail); 1108 if (lip) 1109 tail_lsn = lip->li_lsn; 1110 else 1111 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1112 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1113 atomic64_set(&log->l_tail_lsn, tail_lsn); 1114 return tail_lsn; 1115 } 1116 1117 xfs_lsn_t 1118 xlog_assign_tail_lsn( 1119 struct xfs_mount *mp) 1120 { 1121 xfs_lsn_t tail_lsn; 1122 1123 spin_lock(&mp->m_ail->xa_lock); 1124 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1125 spin_unlock(&mp->m_ail->xa_lock); 1126 1127 return tail_lsn; 1128 } 1129 1130 /* 1131 * Return the space in the log between the tail and the head. The head 1132 * is passed in the cycle/bytes formal parms. In the special case where 1133 * the reserve head has wrapped passed the tail, this calculation is no 1134 * longer valid. In this case, just return 0 which means there is no space 1135 * in the log. This works for all places where this function is called 1136 * with the reserve head. Of course, if the write head were to ever 1137 * wrap the tail, we should blow up. Rather than catch this case here, 1138 * we depend on other ASSERTions in other parts of the code. XXXmiken 1139 * 1140 * This code also handles the case where the reservation head is behind 1141 * the tail. The details of this case are described below, but the end 1142 * result is that we return the size of the log as the amount of space left. 1143 */ 1144 STATIC int 1145 xlog_space_left( 1146 struct xlog *log, 1147 atomic64_t *head) 1148 { 1149 int free_bytes; 1150 int tail_bytes; 1151 int tail_cycle; 1152 int head_cycle; 1153 int head_bytes; 1154 1155 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1156 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1157 tail_bytes = BBTOB(tail_bytes); 1158 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1159 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1160 else if (tail_cycle + 1 < head_cycle) 1161 return 0; 1162 else if (tail_cycle < head_cycle) { 1163 ASSERT(tail_cycle == (head_cycle - 1)); 1164 free_bytes = tail_bytes - head_bytes; 1165 } else { 1166 /* 1167 * The reservation head is behind the tail. 1168 * In this case we just want to return the size of the 1169 * log as the amount of space left. 1170 */ 1171 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1172 xfs_alert(log->l_mp, 1173 " tail_cycle = %d, tail_bytes = %d", 1174 tail_cycle, tail_bytes); 1175 xfs_alert(log->l_mp, 1176 " GH cycle = %d, GH bytes = %d", 1177 head_cycle, head_bytes); 1178 ASSERT(0); 1179 free_bytes = log->l_logsize; 1180 } 1181 return free_bytes; 1182 } 1183 1184 1185 /* 1186 * Log function which is called when an io completes. 1187 * 1188 * The log manager needs its own routine, in order to control what 1189 * happens with the buffer after the write completes. 1190 */ 1191 static void 1192 xlog_iodone(xfs_buf_t *bp) 1193 { 1194 struct xlog_in_core *iclog = bp->b_fspriv; 1195 struct xlog *l = iclog->ic_log; 1196 int aborted = 0; 1197 1198 /* 1199 * Race to shutdown the filesystem if we see an error or the iclog is in 1200 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject 1201 * CRC errors into log recovery. 1202 */ 1203 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) || 1204 iclog->ic_state & XLOG_STATE_IOABORT) { 1205 if (iclog->ic_state & XLOG_STATE_IOABORT) 1206 iclog->ic_state &= ~XLOG_STATE_IOABORT; 1207 1208 xfs_buf_ioerror_alert(bp, __func__); 1209 xfs_buf_stale(bp); 1210 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1211 /* 1212 * This flag will be propagated to the trans-committed 1213 * callback routines to let them know that the log-commit 1214 * didn't succeed. 1215 */ 1216 aborted = XFS_LI_ABORTED; 1217 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1218 aborted = XFS_LI_ABORTED; 1219 } 1220 1221 /* log I/O is always issued ASYNC */ 1222 ASSERT(bp->b_flags & XBF_ASYNC); 1223 xlog_state_done_syncing(iclog, aborted); 1224 1225 /* 1226 * drop the buffer lock now that we are done. Nothing references 1227 * the buffer after this, so an unmount waiting on this lock can now 1228 * tear it down safely. As such, it is unsafe to reference the buffer 1229 * (bp) after the unlock as we could race with it being freed. 1230 */ 1231 xfs_buf_unlock(bp); 1232 } 1233 1234 /* 1235 * Return size of each in-core log record buffer. 1236 * 1237 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1238 * 1239 * If the filesystem blocksize is too large, we may need to choose a 1240 * larger size since the directory code currently logs entire blocks. 1241 */ 1242 1243 STATIC void 1244 xlog_get_iclog_buffer_size( 1245 struct xfs_mount *mp, 1246 struct xlog *log) 1247 { 1248 int size; 1249 int xhdrs; 1250 1251 if (mp->m_logbufs <= 0) 1252 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1253 else 1254 log->l_iclog_bufs = mp->m_logbufs; 1255 1256 /* 1257 * Buffer size passed in from mount system call. 1258 */ 1259 if (mp->m_logbsize > 0) { 1260 size = log->l_iclog_size = mp->m_logbsize; 1261 log->l_iclog_size_log = 0; 1262 while (size != 1) { 1263 log->l_iclog_size_log++; 1264 size >>= 1; 1265 } 1266 1267 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1268 /* # headers = size / 32k 1269 * one header holds cycles from 32k of data 1270 */ 1271 1272 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1273 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1274 xhdrs++; 1275 log->l_iclog_hsize = xhdrs << BBSHIFT; 1276 log->l_iclog_heads = xhdrs; 1277 } else { 1278 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1279 log->l_iclog_hsize = BBSIZE; 1280 log->l_iclog_heads = 1; 1281 } 1282 goto done; 1283 } 1284 1285 /* All machines use 32kB buffers by default. */ 1286 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1287 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1288 1289 /* the default log size is 16k or 32k which is one header sector */ 1290 log->l_iclog_hsize = BBSIZE; 1291 log->l_iclog_heads = 1; 1292 1293 done: 1294 /* are we being asked to make the sizes selected above visible? */ 1295 if (mp->m_logbufs == 0) 1296 mp->m_logbufs = log->l_iclog_bufs; 1297 if (mp->m_logbsize == 0) 1298 mp->m_logbsize = log->l_iclog_size; 1299 } /* xlog_get_iclog_buffer_size */ 1300 1301 1302 void 1303 xfs_log_work_queue( 1304 struct xfs_mount *mp) 1305 { 1306 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1307 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1308 } 1309 1310 /* 1311 * Every sync period we need to unpin all items in the AIL and push them to 1312 * disk. If there is nothing dirty, then we might need to cover the log to 1313 * indicate that the filesystem is idle. 1314 */ 1315 static void 1316 xfs_log_worker( 1317 struct work_struct *work) 1318 { 1319 struct xlog *log = container_of(to_delayed_work(work), 1320 struct xlog, l_work); 1321 struct xfs_mount *mp = log->l_mp; 1322 1323 /* dgc: errors ignored - not fatal and nowhere to report them */ 1324 if (xfs_log_need_covered(mp)) { 1325 /* 1326 * Dump a transaction into the log that contains no real change. 1327 * This is needed to stamp the current tail LSN into the log 1328 * during the covering operation. 1329 * 1330 * We cannot use an inode here for this - that will push dirty 1331 * state back up into the VFS and then periodic inode flushing 1332 * will prevent log covering from making progress. Hence we 1333 * synchronously log the superblock instead to ensure the 1334 * superblock is immediately unpinned and can be written back. 1335 */ 1336 xfs_sync_sb(mp, true); 1337 } else 1338 xfs_log_force(mp, 0); 1339 1340 /* start pushing all the metadata that is currently dirty */ 1341 xfs_ail_push_all(mp->m_ail); 1342 1343 /* queue us up again */ 1344 xfs_log_work_queue(mp); 1345 } 1346 1347 /* 1348 * This routine initializes some of the log structure for a given mount point. 1349 * Its primary purpose is to fill in enough, so recovery can occur. However, 1350 * some other stuff may be filled in too. 1351 */ 1352 STATIC struct xlog * 1353 xlog_alloc_log( 1354 struct xfs_mount *mp, 1355 struct xfs_buftarg *log_target, 1356 xfs_daddr_t blk_offset, 1357 int num_bblks) 1358 { 1359 struct xlog *log; 1360 xlog_rec_header_t *head; 1361 xlog_in_core_t **iclogp; 1362 xlog_in_core_t *iclog, *prev_iclog=NULL; 1363 xfs_buf_t *bp; 1364 int i; 1365 int error = -ENOMEM; 1366 uint log2_size = 0; 1367 1368 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1369 if (!log) { 1370 xfs_warn(mp, "Log allocation failed: No memory!"); 1371 goto out; 1372 } 1373 1374 log->l_mp = mp; 1375 log->l_targ = log_target; 1376 log->l_logsize = BBTOB(num_bblks); 1377 log->l_logBBstart = blk_offset; 1378 log->l_logBBsize = num_bblks; 1379 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1380 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1381 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1382 1383 log->l_prev_block = -1; 1384 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1385 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1386 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1387 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1388 1389 xlog_grant_head_init(&log->l_reserve_head); 1390 xlog_grant_head_init(&log->l_write_head); 1391 1392 error = -EFSCORRUPTED; 1393 if (xfs_sb_version_hassector(&mp->m_sb)) { 1394 log2_size = mp->m_sb.sb_logsectlog; 1395 if (log2_size < BBSHIFT) { 1396 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1397 log2_size, BBSHIFT); 1398 goto out_free_log; 1399 } 1400 1401 log2_size -= BBSHIFT; 1402 if (log2_size > mp->m_sectbb_log) { 1403 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1404 log2_size, mp->m_sectbb_log); 1405 goto out_free_log; 1406 } 1407 1408 /* for larger sector sizes, must have v2 or external log */ 1409 if (log2_size && log->l_logBBstart > 0 && 1410 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1411 xfs_warn(mp, 1412 "log sector size (0x%x) invalid for configuration.", 1413 log2_size); 1414 goto out_free_log; 1415 } 1416 } 1417 log->l_sectBBsize = 1 << log2_size; 1418 1419 xlog_get_iclog_buffer_size(mp, log); 1420 1421 /* 1422 * Use a NULL block for the extra log buffer used during splits so that 1423 * it will trigger errors if we ever try to do IO on it without first 1424 * having set it up properly. 1425 */ 1426 error = -ENOMEM; 1427 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL, 1428 BTOBB(log->l_iclog_size), XBF_NO_IOACCT); 1429 if (!bp) 1430 goto out_free_log; 1431 1432 /* 1433 * The iclogbuf buffer locks are held over IO but we are not going to do 1434 * IO yet. Hence unlock the buffer so that the log IO path can grab it 1435 * when appropriately. 1436 */ 1437 ASSERT(xfs_buf_islocked(bp)); 1438 xfs_buf_unlock(bp); 1439 1440 /* use high priority wq for log I/O completion */ 1441 bp->b_ioend_wq = mp->m_log_workqueue; 1442 bp->b_iodone = xlog_iodone; 1443 log->l_xbuf = bp; 1444 1445 spin_lock_init(&log->l_icloglock); 1446 init_waitqueue_head(&log->l_flush_wait); 1447 1448 iclogp = &log->l_iclog; 1449 /* 1450 * The amount of memory to allocate for the iclog structure is 1451 * rather funky due to the way the structure is defined. It is 1452 * done this way so that we can use different sizes for machines 1453 * with different amounts of memory. See the definition of 1454 * xlog_in_core_t in xfs_log_priv.h for details. 1455 */ 1456 ASSERT(log->l_iclog_size >= 4096); 1457 for (i=0; i < log->l_iclog_bufs; i++) { 1458 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1459 if (!*iclogp) 1460 goto out_free_iclog; 1461 1462 iclog = *iclogp; 1463 iclog->ic_prev = prev_iclog; 1464 prev_iclog = iclog; 1465 1466 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1467 BTOBB(log->l_iclog_size), 1468 XBF_NO_IOACCT); 1469 if (!bp) 1470 goto out_free_iclog; 1471 1472 ASSERT(xfs_buf_islocked(bp)); 1473 xfs_buf_unlock(bp); 1474 1475 /* use high priority wq for log I/O completion */ 1476 bp->b_ioend_wq = mp->m_log_workqueue; 1477 bp->b_iodone = xlog_iodone; 1478 iclog->ic_bp = bp; 1479 iclog->ic_data = bp->b_addr; 1480 #ifdef DEBUG 1481 log->l_iclog_bak[i] = &iclog->ic_header; 1482 #endif 1483 head = &iclog->ic_header; 1484 memset(head, 0, sizeof(xlog_rec_header_t)); 1485 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1486 head->h_version = cpu_to_be32( 1487 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1488 head->h_size = cpu_to_be32(log->l_iclog_size); 1489 /* new fields */ 1490 head->h_fmt = cpu_to_be32(XLOG_FMT); 1491 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1492 1493 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1494 iclog->ic_state = XLOG_STATE_ACTIVE; 1495 iclog->ic_log = log; 1496 atomic_set(&iclog->ic_refcnt, 0); 1497 spin_lock_init(&iclog->ic_callback_lock); 1498 iclog->ic_callback_tail = &(iclog->ic_callback); 1499 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1500 1501 init_waitqueue_head(&iclog->ic_force_wait); 1502 init_waitqueue_head(&iclog->ic_write_wait); 1503 1504 iclogp = &iclog->ic_next; 1505 } 1506 *iclogp = log->l_iclog; /* complete ring */ 1507 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1508 1509 error = xlog_cil_init(log); 1510 if (error) 1511 goto out_free_iclog; 1512 return log; 1513 1514 out_free_iclog: 1515 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1516 prev_iclog = iclog->ic_next; 1517 if (iclog->ic_bp) 1518 xfs_buf_free(iclog->ic_bp); 1519 kmem_free(iclog); 1520 } 1521 spinlock_destroy(&log->l_icloglock); 1522 xfs_buf_free(log->l_xbuf); 1523 out_free_log: 1524 kmem_free(log); 1525 out: 1526 return ERR_PTR(error); 1527 } /* xlog_alloc_log */ 1528 1529 1530 /* 1531 * Write out the commit record of a transaction associated with the given 1532 * ticket. Return the lsn of the commit record. 1533 */ 1534 STATIC int 1535 xlog_commit_record( 1536 struct xlog *log, 1537 struct xlog_ticket *ticket, 1538 struct xlog_in_core **iclog, 1539 xfs_lsn_t *commitlsnp) 1540 { 1541 struct xfs_mount *mp = log->l_mp; 1542 int error; 1543 struct xfs_log_iovec reg = { 1544 .i_addr = NULL, 1545 .i_len = 0, 1546 .i_type = XLOG_REG_TYPE_COMMIT, 1547 }; 1548 struct xfs_log_vec vec = { 1549 .lv_niovecs = 1, 1550 .lv_iovecp = ®, 1551 }; 1552 1553 ASSERT_ALWAYS(iclog); 1554 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1555 XLOG_COMMIT_TRANS); 1556 if (error) 1557 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1558 return error; 1559 } 1560 1561 /* 1562 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1563 * log space. This code pushes on the lsn which would supposedly free up 1564 * the 25% which we want to leave free. We may need to adopt a policy which 1565 * pushes on an lsn which is further along in the log once we reach the high 1566 * water mark. In this manner, we would be creating a low water mark. 1567 */ 1568 STATIC void 1569 xlog_grant_push_ail( 1570 struct xlog *log, 1571 int need_bytes) 1572 { 1573 xfs_lsn_t threshold_lsn = 0; 1574 xfs_lsn_t last_sync_lsn; 1575 int free_blocks; 1576 int free_bytes; 1577 int threshold_block; 1578 int threshold_cycle; 1579 int free_threshold; 1580 1581 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1582 1583 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1584 free_blocks = BTOBBT(free_bytes); 1585 1586 /* 1587 * Set the threshold for the minimum number of free blocks in the 1588 * log to the maximum of what the caller needs, one quarter of the 1589 * log, and 256 blocks. 1590 */ 1591 free_threshold = BTOBB(need_bytes); 1592 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1593 free_threshold = MAX(free_threshold, 256); 1594 if (free_blocks >= free_threshold) 1595 return; 1596 1597 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1598 &threshold_block); 1599 threshold_block += free_threshold; 1600 if (threshold_block >= log->l_logBBsize) { 1601 threshold_block -= log->l_logBBsize; 1602 threshold_cycle += 1; 1603 } 1604 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1605 threshold_block); 1606 /* 1607 * Don't pass in an lsn greater than the lsn of the last 1608 * log record known to be on disk. Use a snapshot of the last sync lsn 1609 * so that it doesn't change between the compare and the set. 1610 */ 1611 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1612 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1613 threshold_lsn = last_sync_lsn; 1614 1615 /* 1616 * Get the transaction layer to kick the dirty buffers out to 1617 * disk asynchronously. No point in trying to do this if 1618 * the filesystem is shutting down. 1619 */ 1620 if (!XLOG_FORCED_SHUTDOWN(log)) 1621 xfs_ail_push(log->l_ailp, threshold_lsn); 1622 } 1623 1624 /* 1625 * Stamp cycle number in every block 1626 */ 1627 STATIC void 1628 xlog_pack_data( 1629 struct xlog *log, 1630 struct xlog_in_core *iclog, 1631 int roundoff) 1632 { 1633 int i, j, k; 1634 int size = iclog->ic_offset + roundoff; 1635 __be32 cycle_lsn; 1636 char *dp; 1637 1638 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1639 1640 dp = iclog->ic_datap; 1641 for (i = 0; i < BTOBB(size); i++) { 1642 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1643 break; 1644 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1645 *(__be32 *)dp = cycle_lsn; 1646 dp += BBSIZE; 1647 } 1648 1649 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1650 xlog_in_core_2_t *xhdr = iclog->ic_data; 1651 1652 for ( ; i < BTOBB(size); i++) { 1653 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1654 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1655 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1656 *(__be32 *)dp = cycle_lsn; 1657 dp += BBSIZE; 1658 } 1659 1660 for (i = 1; i < log->l_iclog_heads; i++) 1661 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1662 } 1663 } 1664 1665 /* 1666 * Calculate the checksum for a log buffer. 1667 * 1668 * This is a little more complicated than it should be because the various 1669 * headers and the actual data are non-contiguous. 1670 */ 1671 __le32 1672 xlog_cksum( 1673 struct xlog *log, 1674 struct xlog_rec_header *rhead, 1675 char *dp, 1676 int size) 1677 { 1678 uint32_t crc; 1679 1680 /* first generate the crc for the record header ... */ 1681 crc = xfs_start_cksum_update((char *)rhead, 1682 sizeof(struct xlog_rec_header), 1683 offsetof(struct xlog_rec_header, h_crc)); 1684 1685 /* ... then for additional cycle data for v2 logs ... */ 1686 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1687 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1688 int i; 1689 int xheads; 1690 1691 xheads = size / XLOG_HEADER_CYCLE_SIZE; 1692 if (size % XLOG_HEADER_CYCLE_SIZE) 1693 xheads++; 1694 1695 for (i = 1; i < xheads; i++) { 1696 crc = crc32c(crc, &xhdr[i].hic_xheader, 1697 sizeof(struct xlog_rec_ext_header)); 1698 } 1699 } 1700 1701 /* ... and finally for the payload */ 1702 crc = crc32c(crc, dp, size); 1703 1704 return xfs_end_cksum(crc); 1705 } 1706 1707 /* 1708 * The bdstrat callback function for log bufs. This gives us a central 1709 * place to trap bufs in case we get hit by a log I/O error and need to 1710 * shutdown. Actually, in practice, even when we didn't get a log error, 1711 * we transition the iclogs to IOERROR state *after* flushing all existing 1712 * iclogs to disk. This is because we don't want anymore new transactions to be 1713 * started or completed afterwards. 1714 * 1715 * We lock the iclogbufs here so that we can serialise against IO completion 1716 * during unmount. We might be processing a shutdown triggered during unmount, 1717 * and that can occur asynchronously to the unmount thread, and hence we need to 1718 * ensure that completes before tearing down the iclogbufs. Hence we need to 1719 * hold the buffer lock across the log IO to acheive that. 1720 */ 1721 STATIC int 1722 xlog_bdstrat( 1723 struct xfs_buf *bp) 1724 { 1725 struct xlog_in_core *iclog = bp->b_fspriv; 1726 1727 xfs_buf_lock(bp); 1728 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1729 xfs_buf_ioerror(bp, -EIO); 1730 xfs_buf_stale(bp); 1731 xfs_buf_ioend(bp); 1732 /* 1733 * It would seem logical to return EIO here, but we rely on 1734 * the log state machine to propagate I/O errors instead of 1735 * doing it here. Similarly, IO completion will unlock the 1736 * buffer, so we don't do it here. 1737 */ 1738 return 0; 1739 } 1740 1741 xfs_buf_submit(bp); 1742 return 0; 1743 } 1744 1745 /* 1746 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1747 * fashion. Previously, we should have moved the current iclog 1748 * ptr in the log to point to the next available iclog. This allows further 1749 * write to continue while this code syncs out an iclog ready to go. 1750 * Before an in-core log can be written out, the data section must be scanned 1751 * to save away the 1st word of each BBSIZE block into the header. We replace 1752 * it with the current cycle count. Each BBSIZE block is tagged with the 1753 * cycle count because there in an implicit assumption that drives will 1754 * guarantee that entire 512 byte blocks get written at once. In other words, 1755 * we can't have part of a 512 byte block written and part not written. By 1756 * tagging each block, we will know which blocks are valid when recovering 1757 * after an unclean shutdown. 1758 * 1759 * This routine is single threaded on the iclog. No other thread can be in 1760 * this routine with the same iclog. Changing contents of iclog can there- 1761 * fore be done without grabbing the state machine lock. Updating the global 1762 * log will require grabbing the lock though. 1763 * 1764 * The entire log manager uses a logical block numbering scheme. Only 1765 * log_sync (and then only bwrite()) know about the fact that the log may 1766 * not start with block zero on a given device. The log block start offset 1767 * is added immediately before calling bwrite(). 1768 */ 1769 1770 STATIC int 1771 xlog_sync( 1772 struct xlog *log, 1773 struct xlog_in_core *iclog) 1774 { 1775 xfs_buf_t *bp; 1776 int i; 1777 uint count; /* byte count of bwrite */ 1778 uint count_init; /* initial count before roundup */ 1779 int roundoff; /* roundoff to BB or stripe */ 1780 int split = 0; /* split write into two regions */ 1781 int error; 1782 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1783 int size; 1784 1785 XFS_STATS_INC(log->l_mp, xs_log_writes); 1786 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1787 1788 /* Add for LR header */ 1789 count_init = log->l_iclog_hsize + iclog->ic_offset; 1790 1791 /* Round out the log write size */ 1792 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1793 /* we have a v2 stripe unit to use */ 1794 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1795 } else { 1796 count = BBTOB(BTOBB(count_init)); 1797 } 1798 roundoff = count - count_init; 1799 ASSERT(roundoff >= 0); 1800 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1801 roundoff < log->l_mp->m_sb.sb_logsunit) 1802 || 1803 (log->l_mp->m_sb.sb_logsunit <= 1 && 1804 roundoff < BBTOB(1))); 1805 1806 /* move grant heads by roundoff in sync */ 1807 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1808 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1809 1810 /* put cycle number in every block */ 1811 xlog_pack_data(log, iclog, roundoff); 1812 1813 /* real byte length */ 1814 size = iclog->ic_offset; 1815 if (v2) 1816 size += roundoff; 1817 iclog->ic_header.h_len = cpu_to_be32(size); 1818 1819 bp = iclog->ic_bp; 1820 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1821 1822 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1823 1824 /* Do we need to split this write into 2 parts? */ 1825 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1826 char *dptr; 1827 1828 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1829 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1830 iclog->ic_bwritecnt = 2; 1831 1832 /* 1833 * Bump the cycle numbers at the start of each block in the 1834 * part of the iclog that ends up in the buffer that gets 1835 * written to the start of the log. 1836 * 1837 * Watch out for the header magic number case, though. 1838 */ 1839 dptr = (char *)&iclog->ic_header + count; 1840 for (i = 0; i < split; i += BBSIZE) { 1841 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1842 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1843 cycle++; 1844 *(__be32 *)dptr = cpu_to_be32(cycle); 1845 1846 dptr += BBSIZE; 1847 } 1848 } else { 1849 iclog->ic_bwritecnt = 1; 1850 } 1851 1852 /* calculcate the checksum */ 1853 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1854 iclog->ic_datap, size); 1855 /* 1856 * Intentionally corrupt the log record CRC based on the error injection 1857 * frequency, if defined. This facilitates testing log recovery in the 1858 * event of torn writes. Hence, set the IOABORT state to abort the log 1859 * write on I/O completion and shutdown the fs. The subsequent mount 1860 * detects the bad CRC and attempts to recover. 1861 */ 1862 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 1863 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 1864 iclog->ic_state |= XLOG_STATE_IOABORT; 1865 xfs_warn(log->l_mp, 1866 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1867 be64_to_cpu(iclog->ic_header.h_lsn)); 1868 } 1869 1870 bp->b_io_length = BTOBB(count); 1871 bp->b_fspriv = iclog; 1872 bp->b_flags &= ~XBF_FLUSH; 1873 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA); 1874 1875 /* 1876 * Flush the data device before flushing the log to make sure all meta 1877 * data written back from the AIL actually made it to disk before 1878 * stamping the new log tail LSN into the log buffer. For an external 1879 * log we need to issue the flush explicitly, and unfortunately 1880 * synchronously here; for an internal log we can simply use the block 1881 * layer state machine for preflushes. 1882 */ 1883 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1884 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1885 else 1886 bp->b_flags |= XBF_FLUSH; 1887 1888 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1889 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1890 1891 xlog_verify_iclog(log, iclog, count, true); 1892 1893 /* account for log which doesn't start at block #0 */ 1894 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1895 1896 /* 1897 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1898 * is shutting down. 1899 */ 1900 error = xlog_bdstrat(bp); 1901 if (error) { 1902 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1903 return error; 1904 } 1905 if (split) { 1906 bp = iclog->ic_log->l_xbuf; 1907 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1908 xfs_buf_associate_memory(bp, 1909 (char *)&iclog->ic_header + count, split); 1910 bp->b_fspriv = iclog; 1911 bp->b_flags &= ~XBF_FLUSH; 1912 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA); 1913 1914 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1915 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1916 1917 /* account for internal log which doesn't start at block #0 */ 1918 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1919 error = xlog_bdstrat(bp); 1920 if (error) { 1921 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1922 return error; 1923 } 1924 } 1925 return 0; 1926 } /* xlog_sync */ 1927 1928 /* 1929 * Deallocate a log structure 1930 */ 1931 STATIC void 1932 xlog_dealloc_log( 1933 struct xlog *log) 1934 { 1935 xlog_in_core_t *iclog, *next_iclog; 1936 int i; 1937 1938 xlog_cil_destroy(log); 1939 1940 /* 1941 * Cycle all the iclogbuf locks to make sure all log IO completion 1942 * is done before we tear down these buffers. 1943 */ 1944 iclog = log->l_iclog; 1945 for (i = 0; i < log->l_iclog_bufs; i++) { 1946 xfs_buf_lock(iclog->ic_bp); 1947 xfs_buf_unlock(iclog->ic_bp); 1948 iclog = iclog->ic_next; 1949 } 1950 1951 /* 1952 * Always need to ensure that the extra buffer does not point to memory 1953 * owned by another log buffer before we free it. Also, cycle the lock 1954 * first to ensure we've completed IO on it. 1955 */ 1956 xfs_buf_lock(log->l_xbuf); 1957 xfs_buf_unlock(log->l_xbuf); 1958 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1959 xfs_buf_free(log->l_xbuf); 1960 1961 iclog = log->l_iclog; 1962 for (i = 0; i < log->l_iclog_bufs; i++) { 1963 xfs_buf_free(iclog->ic_bp); 1964 next_iclog = iclog->ic_next; 1965 kmem_free(iclog); 1966 iclog = next_iclog; 1967 } 1968 spinlock_destroy(&log->l_icloglock); 1969 1970 log->l_mp->m_log = NULL; 1971 kmem_free(log); 1972 } /* xlog_dealloc_log */ 1973 1974 /* 1975 * Update counters atomically now that memcpy is done. 1976 */ 1977 /* ARGSUSED */ 1978 static inline void 1979 xlog_state_finish_copy( 1980 struct xlog *log, 1981 struct xlog_in_core *iclog, 1982 int record_cnt, 1983 int copy_bytes) 1984 { 1985 spin_lock(&log->l_icloglock); 1986 1987 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1988 iclog->ic_offset += copy_bytes; 1989 1990 spin_unlock(&log->l_icloglock); 1991 } /* xlog_state_finish_copy */ 1992 1993 1994 1995 1996 /* 1997 * print out info relating to regions written which consume 1998 * the reservation 1999 */ 2000 void 2001 xlog_print_tic_res( 2002 struct xfs_mount *mp, 2003 struct xlog_ticket *ticket) 2004 { 2005 uint i; 2006 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 2007 2008 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 2009 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str 2010 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = { 2011 REG_TYPE_STR(BFORMAT, "bformat"), 2012 REG_TYPE_STR(BCHUNK, "bchunk"), 2013 REG_TYPE_STR(EFI_FORMAT, "efi_format"), 2014 REG_TYPE_STR(EFD_FORMAT, "efd_format"), 2015 REG_TYPE_STR(IFORMAT, "iformat"), 2016 REG_TYPE_STR(ICORE, "icore"), 2017 REG_TYPE_STR(IEXT, "iext"), 2018 REG_TYPE_STR(IBROOT, "ibroot"), 2019 REG_TYPE_STR(ILOCAL, "ilocal"), 2020 REG_TYPE_STR(IATTR_EXT, "iattr_ext"), 2021 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"), 2022 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"), 2023 REG_TYPE_STR(QFORMAT, "qformat"), 2024 REG_TYPE_STR(DQUOT, "dquot"), 2025 REG_TYPE_STR(QUOTAOFF, "quotaoff"), 2026 REG_TYPE_STR(LRHEADER, "LR header"), 2027 REG_TYPE_STR(UNMOUNT, "unmount"), 2028 REG_TYPE_STR(COMMIT, "commit"), 2029 REG_TYPE_STR(TRANSHDR, "trans header"), 2030 REG_TYPE_STR(ICREATE, "inode create") 2031 }; 2032 #undef REG_TYPE_STR 2033 2034 xfs_warn(mp, "ticket reservation summary:"); 2035 xfs_warn(mp, " unit res = %d bytes", 2036 ticket->t_unit_res); 2037 xfs_warn(mp, " current res = %d bytes", 2038 ticket->t_curr_res); 2039 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2040 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2041 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2042 ticket->t_res_num_ophdrs, ophdr_spc); 2043 xfs_warn(mp, " ophdr + reg = %u bytes", 2044 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2045 xfs_warn(mp, " num regions = %u", 2046 ticket->t_res_num); 2047 2048 for (i = 0; i < ticket->t_res_num; i++) { 2049 uint r_type = ticket->t_res_arr[i].r_type; 2050 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2051 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2052 "bad-rtype" : res_type_str[r_type]), 2053 ticket->t_res_arr[i].r_len); 2054 } 2055 } 2056 2057 /* 2058 * Print a summary of the transaction. 2059 */ 2060 void 2061 xlog_print_trans( 2062 struct xfs_trans *tp) 2063 { 2064 struct xfs_mount *mp = tp->t_mountp; 2065 struct xfs_log_item_desc *lidp; 2066 2067 /* dump core transaction and ticket info */ 2068 xfs_warn(mp, "transaction summary:"); 2069 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2070 2071 xlog_print_tic_res(mp, tp->t_ticket); 2072 2073 /* dump each log item */ 2074 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 2075 struct xfs_log_item *lip = lidp->lid_item; 2076 struct xfs_log_vec *lv = lip->li_lv; 2077 struct xfs_log_iovec *vec; 2078 int i; 2079 2080 xfs_warn(mp, "log item: "); 2081 xfs_warn(mp, " type = 0x%x", lip->li_type); 2082 xfs_warn(mp, " flags = 0x%x", lip->li_flags); 2083 if (!lv) 2084 continue; 2085 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2086 xfs_warn(mp, " size = %d", lv->lv_size); 2087 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2088 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2089 2090 /* dump each iovec for the log item */ 2091 vec = lv->lv_iovecp; 2092 for (i = 0; i < lv->lv_niovecs; i++) { 2093 int dumplen = min(vec->i_len, 32); 2094 2095 xfs_warn(mp, " iovec[%d]", i); 2096 xfs_warn(mp, " type = 0x%x", vec->i_type); 2097 xfs_warn(mp, " len = %d", vec->i_len); 2098 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2099 xfs_hex_dump(vec->i_addr, dumplen); 2100 2101 vec++; 2102 } 2103 } 2104 } 2105 2106 /* 2107 * Calculate the potential space needed by the log vector. Each region gets 2108 * its own xlog_op_header_t and may need to be double word aligned. 2109 */ 2110 static int 2111 xlog_write_calc_vec_length( 2112 struct xlog_ticket *ticket, 2113 struct xfs_log_vec *log_vector) 2114 { 2115 struct xfs_log_vec *lv; 2116 int headers = 0; 2117 int len = 0; 2118 int i; 2119 2120 /* acct for start rec of xact */ 2121 if (ticket->t_flags & XLOG_TIC_INITED) 2122 headers++; 2123 2124 for (lv = log_vector; lv; lv = lv->lv_next) { 2125 /* we don't write ordered log vectors */ 2126 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2127 continue; 2128 2129 headers += lv->lv_niovecs; 2130 2131 for (i = 0; i < lv->lv_niovecs; i++) { 2132 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2133 2134 len += vecp->i_len; 2135 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2136 } 2137 } 2138 2139 ticket->t_res_num_ophdrs += headers; 2140 len += headers * sizeof(struct xlog_op_header); 2141 2142 return len; 2143 } 2144 2145 /* 2146 * If first write for transaction, insert start record We can't be trying to 2147 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2148 */ 2149 static int 2150 xlog_write_start_rec( 2151 struct xlog_op_header *ophdr, 2152 struct xlog_ticket *ticket) 2153 { 2154 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2155 return 0; 2156 2157 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2158 ophdr->oh_clientid = ticket->t_clientid; 2159 ophdr->oh_len = 0; 2160 ophdr->oh_flags = XLOG_START_TRANS; 2161 ophdr->oh_res2 = 0; 2162 2163 ticket->t_flags &= ~XLOG_TIC_INITED; 2164 2165 return sizeof(struct xlog_op_header); 2166 } 2167 2168 static xlog_op_header_t * 2169 xlog_write_setup_ophdr( 2170 struct xlog *log, 2171 struct xlog_op_header *ophdr, 2172 struct xlog_ticket *ticket, 2173 uint flags) 2174 { 2175 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2176 ophdr->oh_clientid = ticket->t_clientid; 2177 ophdr->oh_res2 = 0; 2178 2179 /* are we copying a commit or unmount record? */ 2180 ophdr->oh_flags = flags; 2181 2182 /* 2183 * We've seen logs corrupted with bad transaction client ids. This 2184 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2185 * and shut down the filesystem. 2186 */ 2187 switch (ophdr->oh_clientid) { 2188 case XFS_TRANSACTION: 2189 case XFS_VOLUME: 2190 case XFS_LOG: 2191 break; 2192 default: 2193 xfs_warn(log->l_mp, 2194 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 2195 ophdr->oh_clientid, ticket); 2196 return NULL; 2197 } 2198 2199 return ophdr; 2200 } 2201 2202 /* 2203 * Set up the parameters of the region copy into the log. This has 2204 * to handle region write split across multiple log buffers - this 2205 * state is kept external to this function so that this code can 2206 * be written in an obvious, self documenting manner. 2207 */ 2208 static int 2209 xlog_write_setup_copy( 2210 struct xlog_ticket *ticket, 2211 struct xlog_op_header *ophdr, 2212 int space_available, 2213 int space_required, 2214 int *copy_off, 2215 int *copy_len, 2216 int *last_was_partial_copy, 2217 int *bytes_consumed) 2218 { 2219 int still_to_copy; 2220 2221 still_to_copy = space_required - *bytes_consumed; 2222 *copy_off = *bytes_consumed; 2223 2224 if (still_to_copy <= space_available) { 2225 /* write of region completes here */ 2226 *copy_len = still_to_copy; 2227 ophdr->oh_len = cpu_to_be32(*copy_len); 2228 if (*last_was_partial_copy) 2229 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2230 *last_was_partial_copy = 0; 2231 *bytes_consumed = 0; 2232 return 0; 2233 } 2234 2235 /* partial write of region, needs extra log op header reservation */ 2236 *copy_len = space_available; 2237 ophdr->oh_len = cpu_to_be32(*copy_len); 2238 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2239 if (*last_was_partial_copy) 2240 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2241 *bytes_consumed += *copy_len; 2242 (*last_was_partial_copy)++; 2243 2244 /* account for new log op header */ 2245 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2246 ticket->t_res_num_ophdrs++; 2247 2248 return sizeof(struct xlog_op_header); 2249 } 2250 2251 static int 2252 xlog_write_copy_finish( 2253 struct xlog *log, 2254 struct xlog_in_core *iclog, 2255 uint flags, 2256 int *record_cnt, 2257 int *data_cnt, 2258 int *partial_copy, 2259 int *partial_copy_len, 2260 int log_offset, 2261 struct xlog_in_core **commit_iclog) 2262 { 2263 if (*partial_copy) { 2264 /* 2265 * This iclog has already been marked WANT_SYNC by 2266 * xlog_state_get_iclog_space. 2267 */ 2268 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2269 *record_cnt = 0; 2270 *data_cnt = 0; 2271 return xlog_state_release_iclog(log, iclog); 2272 } 2273 2274 *partial_copy = 0; 2275 *partial_copy_len = 0; 2276 2277 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2278 /* no more space in this iclog - push it. */ 2279 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2280 *record_cnt = 0; 2281 *data_cnt = 0; 2282 2283 spin_lock(&log->l_icloglock); 2284 xlog_state_want_sync(log, iclog); 2285 spin_unlock(&log->l_icloglock); 2286 2287 if (!commit_iclog) 2288 return xlog_state_release_iclog(log, iclog); 2289 ASSERT(flags & XLOG_COMMIT_TRANS); 2290 *commit_iclog = iclog; 2291 } 2292 2293 return 0; 2294 } 2295 2296 /* 2297 * Write some region out to in-core log 2298 * 2299 * This will be called when writing externally provided regions or when 2300 * writing out a commit record for a given transaction. 2301 * 2302 * General algorithm: 2303 * 1. Find total length of this write. This may include adding to the 2304 * lengths passed in. 2305 * 2. Check whether we violate the tickets reservation. 2306 * 3. While writing to this iclog 2307 * A. Reserve as much space in this iclog as can get 2308 * B. If this is first write, save away start lsn 2309 * C. While writing this region: 2310 * 1. If first write of transaction, write start record 2311 * 2. Write log operation header (header per region) 2312 * 3. Find out if we can fit entire region into this iclog 2313 * 4. Potentially, verify destination memcpy ptr 2314 * 5. Memcpy (partial) region 2315 * 6. If partial copy, release iclog; otherwise, continue 2316 * copying more regions into current iclog 2317 * 4. Mark want sync bit (in simulation mode) 2318 * 5. Release iclog for potential flush to on-disk log. 2319 * 2320 * ERRORS: 2321 * 1. Panic if reservation is overrun. This should never happen since 2322 * reservation amounts are generated internal to the filesystem. 2323 * NOTES: 2324 * 1. Tickets are single threaded data structures. 2325 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2326 * syncing routine. When a single log_write region needs to span 2327 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2328 * on all log operation writes which don't contain the end of the 2329 * region. The XLOG_END_TRANS bit is used for the in-core log 2330 * operation which contains the end of the continued log_write region. 2331 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2332 * we don't really know exactly how much space will be used. As a result, 2333 * we don't update ic_offset until the end when we know exactly how many 2334 * bytes have been written out. 2335 */ 2336 int 2337 xlog_write( 2338 struct xlog *log, 2339 struct xfs_log_vec *log_vector, 2340 struct xlog_ticket *ticket, 2341 xfs_lsn_t *start_lsn, 2342 struct xlog_in_core **commit_iclog, 2343 uint flags) 2344 { 2345 struct xlog_in_core *iclog = NULL; 2346 struct xfs_log_iovec *vecp; 2347 struct xfs_log_vec *lv; 2348 int len; 2349 int index; 2350 int partial_copy = 0; 2351 int partial_copy_len = 0; 2352 int contwr = 0; 2353 int record_cnt = 0; 2354 int data_cnt = 0; 2355 int error; 2356 2357 *start_lsn = 0; 2358 2359 len = xlog_write_calc_vec_length(ticket, log_vector); 2360 2361 /* 2362 * Region headers and bytes are already accounted for. 2363 * We only need to take into account start records and 2364 * split regions in this function. 2365 */ 2366 if (ticket->t_flags & XLOG_TIC_INITED) 2367 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2368 2369 /* 2370 * Commit record headers need to be accounted for. These 2371 * come in as separate writes so are easy to detect. 2372 */ 2373 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2374 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2375 2376 if (ticket->t_curr_res < 0) { 2377 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2378 "ctx ticket reservation ran out. Need to up reservation"); 2379 xlog_print_tic_res(log->l_mp, ticket); 2380 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 2381 } 2382 2383 index = 0; 2384 lv = log_vector; 2385 vecp = lv->lv_iovecp; 2386 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2387 void *ptr; 2388 int log_offset; 2389 2390 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2391 &contwr, &log_offset); 2392 if (error) 2393 return error; 2394 2395 ASSERT(log_offset <= iclog->ic_size - 1); 2396 ptr = iclog->ic_datap + log_offset; 2397 2398 /* start_lsn is the first lsn written to. That's all we need. */ 2399 if (!*start_lsn) 2400 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2401 2402 /* 2403 * This loop writes out as many regions as can fit in the amount 2404 * of space which was allocated by xlog_state_get_iclog_space(). 2405 */ 2406 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2407 struct xfs_log_iovec *reg; 2408 struct xlog_op_header *ophdr; 2409 int start_rec_copy; 2410 int copy_len; 2411 int copy_off; 2412 bool ordered = false; 2413 2414 /* ordered log vectors have no regions to write */ 2415 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2416 ASSERT(lv->lv_niovecs == 0); 2417 ordered = true; 2418 goto next_lv; 2419 } 2420 2421 reg = &vecp[index]; 2422 ASSERT(reg->i_len % sizeof(int32_t) == 0); 2423 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0); 2424 2425 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2426 if (start_rec_copy) { 2427 record_cnt++; 2428 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2429 start_rec_copy); 2430 } 2431 2432 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2433 if (!ophdr) 2434 return -EIO; 2435 2436 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2437 sizeof(struct xlog_op_header)); 2438 2439 len += xlog_write_setup_copy(ticket, ophdr, 2440 iclog->ic_size-log_offset, 2441 reg->i_len, 2442 ©_off, ©_len, 2443 &partial_copy, 2444 &partial_copy_len); 2445 xlog_verify_dest_ptr(log, ptr); 2446 2447 /* 2448 * Copy region. 2449 * 2450 * Unmount records just log an opheader, so can have 2451 * empty payloads with no data region to copy. Hence we 2452 * only copy the payload if the vector says it has data 2453 * to copy. 2454 */ 2455 ASSERT(copy_len >= 0); 2456 if (copy_len > 0) { 2457 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2458 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2459 copy_len); 2460 } 2461 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2462 record_cnt++; 2463 data_cnt += contwr ? copy_len : 0; 2464 2465 error = xlog_write_copy_finish(log, iclog, flags, 2466 &record_cnt, &data_cnt, 2467 &partial_copy, 2468 &partial_copy_len, 2469 log_offset, 2470 commit_iclog); 2471 if (error) 2472 return error; 2473 2474 /* 2475 * if we had a partial copy, we need to get more iclog 2476 * space but we don't want to increment the region 2477 * index because there is still more is this region to 2478 * write. 2479 * 2480 * If we completed writing this region, and we flushed 2481 * the iclog (indicated by resetting of the record 2482 * count), then we also need to get more log space. If 2483 * this was the last record, though, we are done and 2484 * can just return. 2485 */ 2486 if (partial_copy) 2487 break; 2488 2489 if (++index == lv->lv_niovecs) { 2490 next_lv: 2491 lv = lv->lv_next; 2492 index = 0; 2493 if (lv) 2494 vecp = lv->lv_iovecp; 2495 } 2496 if (record_cnt == 0 && ordered == false) { 2497 if (!lv) 2498 return 0; 2499 break; 2500 } 2501 } 2502 } 2503 2504 ASSERT(len == 0); 2505 2506 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2507 if (!commit_iclog) 2508 return xlog_state_release_iclog(log, iclog); 2509 2510 ASSERT(flags & XLOG_COMMIT_TRANS); 2511 *commit_iclog = iclog; 2512 return 0; 2513 } 2514 2515 2516 /***************************************************************************** 2517 * 2518 * State Machine functions 2519 * 2520 ***************************************************************************** 2521 */ 2522 2523 /* Clean iclogs starting from the head. This ordering must be 2524 * maintained, so an iclog doesn't become ACTIVE beyond one that 2525 * is SYNCING. This is also required to maintain the notion that we use 2526 * a ordered wait queue to hold off would be writers to the log when every 2527 * iclog is trying to sync to disk. 2528 * 2529 * State Change: DIRTY -> ACTIVE 2530 */ 2531 STATIC void 2532 xlog_state_clean_log( 2533 struct xlog *log) 2534 { 2535 xlog_in_core_t *iclog; 2536 int changed = 0; 2537 2538 iclog = log->l_iclog; 2539 do { 2540 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2541 iclog->ic_state = XLOG_STATE_ACTIVE; 2542 iclog->ic_offset = 0; 2543 ASSERT(iclog->ic_callback == NULL); 2544 /* 2545 * If the number of ops in this iclog indicate it just 2546 * contains the dummy transaction, we can 2547 * change state into IDLE (the second time around). 2548 * Otherwise we should change the state into 2549 * NEED a dummy. 2550 * We don't need to cover the dummy. 2551 */ 2552 if (!changed && 2553 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2554 XLOG_COVER_OPS)) { 2555 changed = 1; 2556 } else { 2557 /* 2558 * We have two dirty iclogs so start over 2559 * This could also be num of ops indicates 2560 * this is not the dummy going out. 2561 */ 2562 changed = 2; 2563 } 2564 iclog->ic_header.h_num_logops = 0; 2565 memset(iclog->ic_header.h_cycle_data, 0, 2566 sizeof(iclog->ic_header.h_cycle_data)); 2567 iclog->ic_header.h_lsn = 0; 2568 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2569 /* do nothing */; 2570 else 2571 break; /* stop cleaning */ 2572 iclog = iclog->ic_next; 2573 } while (iclog != log->l_iclog); 2574 2575 /* log is locked when we are called */ 2576 /* 2577 * Change state for the dummy log recording. 2578 * We usually go to NEED. But we go to NEED2 if the changed indicates 2579 * we are done writing the dummy record. 2580 * If we are done with the second dummy recored (DONE2), then 2581 * we go to IDLE. 2582 */ 2583 if (changed) { 2584 switch (log->l_covered_state) { 2585 case XLOG_STATE_COVER_IDLE: 2586 case XLOG_STATE_COVER_NEED: 2587 case XLOG_STATE_COVER_NEED2: 2588 log->l_covered_state = XLOG_STATE_COVER_NEED; 2589 break; 2590 2591 case XLOG_STATE_COVER_DONE: 2592 if (changed == 1) 2593 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2594 else 2595 log->l_covered_state = XLOG_STATE_COVER_NEED; 2596 break; 2597 2598 case XLOG_STATE_COVER_DONE2: 2599 if (changed == 1) 2600 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2601 else 2602 log->l_covered_state = XLOG_STATE_COVER_NEED; 2603 break; 2604 2605 default: 2606 ASSERT(0); 2607 } 2608 } 2609 } /* xlog_state_clean_log */ 2610 2611 STATIC xfs_lsn_t 2612 xlog_get_lowest_lsn( 2613 struct xlog *log) 2614 { 2615 xlog_in_core_t *lsn_log; 2616 xfs_lsn_t lowest_lsn, lsn; 2617 2618 lsn_log = log->l_iclog; 2619 lowest_lsn = 0; 2620 do { 2621 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2622 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2623 if ((lsn && !lowest_lsn) || 2624 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2625 lowest_lsn = lsn; 2626 } 2627 } 2628 lsn_log = lsn_log->ic_next; 2629 } while (lsn_log != log->l_iclog); 2630 return lowest_lsn; 2631 } 2632 2633 2634 STATIC void 2635 xlog_state_do_callback( 2636 struct xlog *log, 2637 int aborted, 2638 struct xlog_in_core *ciclog) 2639 { 2640 xlog_in_core_t *iclog; 2641 xlog_in_core_t *first_iclog; /* used to know when we've 2642 * processed all iclogs once */ 2643 xfs_log_callback_t *cb, *cb_next; 2644 int flushcnt = 0; 2645 xfs_lsn_t lowest_lsn; 2646 int ioerrors; /* counter: iclogs with errors */ 2647 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2648 int funcdidcallbacks; /* flag: function did callbacks */ 2649 int repeats; /* for issuing console warnings if 2650 * looping too many times */ 2651 int wake = 0; 2652 2653 spin_lock(&log->l_icloglock); 2654 first_iclog = iclog = log->l_iclog; 2655 ioerrors = 0; 2656 funcdidcallbacks = 0; 2657 repeats = 0; 2658 2659 do { 2660 /* 2661 * Scan all iclogs starting with the one pointed to by the 2662 * log. Reset this starting point each time the log is 2663 * unlocked (during callbacks). 2664 * 2665 * Keep looping through iclogs until one full pass is made 2666 * without running any callbacks. 2667 */ 2668 first_iclog = log->l_iclog; 2669 iclog = log->l_iclog; 2670 loopdidcallbacks = 0; 2671 repeats++; 2672 2673 do { 2674 2675 /* skip all iclogs in the ACTIVE & DIRTY states */ 2676 if (iclog->ic_state & 2677 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2678 iclog = iclog->ic_next; 2679 continue; 2680 } 2681 2682 /* 2683 * Between marking a filesystem SHUTDOWN and stopping 2684 * the log, we do flush all iclogs to disk (if there 2685 * wasn't a log I/O error). So, we do want things to 2686 * go smoothly in case of just a SHUTDOWN w/o a 2687 * LOG_IO_ERROR. 2688 */ 2689 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2690 /* 2691 * Can only perform callbacks in order. Since 2692 * this iclog is not in the DONE_SYNC/ 2693 * DO_CALLBACK state, we skip the rest and 2694 * just try to clean up. If we set our iclog 2695 * to DO_CALLBACK, we will not process it when 2696 * we retry since a previous iclog is in the 2697 * CALLBACK and the state cannot change since 2698 * we are holding the l_icloglock. 2699 */ 2700 if (!(iclog->ic_state & 2701 (XLOG_STATE_DONE_SYNC | 2702 XLOG_STATE_DO_CALLBACK))) { 2703 if (ciclog && (ciclog->ic_state == 2704 XLOG_STATE_DONE_SYNC)) { 2705 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2706 } 2707 break; 2708 } 2709 /* 2710 * We now have an iclog that is in either the 2711 * DO_CALLBACK or DONE_SYNC states. The other 2712 * states (WANT_SYNC, SYNCING, or CALLBACK were 2713 * caught by the above if and are going to 2714 * clean (i.e. we aren't doing their callbacks) 2715 * see the above if. 2716 */ 2717 2718 /* 2719 * We will do one more check here to see if we 2720 * have chased our tail around. 2721 */ 2722 2723 lowest_lsn = xlog_get_lowest_lsn(log); 2724 if (lowest_lsn && 2725 XFS_LSN_CMP(lowest_lsn, 2726 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2727 iclog = iclog->ic_next; 2728 continue; /* Leave this iclog for 2729 * another thread */ 2730 } 2731 2732 iclog->ic_state = XLOG_STATE_CALLBACK; 2733 2734 2735 /* 2736 * Completion of a iclog IO does not imply that 2737 * a transaction has completed, as transactions 2738 * can be large enough to span many iclogs. We 2739 * cannot change the tail of the log half way 2740 * through a transaction as this may be the only 2741 * transaction in the log and moving th etail to 2742 * point to the middle of it will prevent 2743 * recovery from finding the start of the 2744 * transaction. Hence we should only update the 2745 * last_sync_lsn if this iclog contains 2746 * transaction completion callbacks on it. 2747 * 2748 * We have to do this before we drop the 2749 * icloglock to ensure we are the only one that 2750 * can update it. 2751 */ 2752 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2753 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2754 if (iclog->ic_callback) 2755 atomic64_set(&log->l_last_sync_lsn, 2756 be64_to_cpu(iclog->ic_header.h_lsn)); 2757 2758 } else 2759 ioerrors++; 2760 2761 spin_unlock(&log->l_icloglock); 2762 2763 /* 2764 * Keep processing entries in the callback list until 2765 * we come around and it is empty. We need to 2766 * atomically see that the list is empty and change the 2767 * state to DIRTY so that we don't miss any more 2768 * callbacks being added. 2769 */ 2770 spin_lock(&iclog->ic_callback_lock); 2771 cb = iclog->ic_callback; 2772 while (cb) { 2773 iclog->ic_callback_tail = &(iclog->ic_callback); 2774 iclog->ic_callback = NULL; 2775 spin_unlock(&iclog->ic_callback_lock); 2776 2777 /* perform callbacks in the order given */ 2778 for (; cb; cb = cb_next) { 2779 cb_next = cb->cb_next; 2780 cb->cb_func(cb->cb_arg, aborted); 2781 } 2782 spin_lock(&iclog->ic_callback_lock); 2783 cb = iclog->ic_callback; 2784 } 2785 2786 loopdidcallbacks++; 2787 funcdidcallbacks++; 2788 2789 spin_lock(&log->l_icloglock); 2790 ASSERT(iclog->ic_callback == NULL); 2791 spin_unlock(&iclog->ic_callback_lock); 2792 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2793 iclog->ic_state = XLOG_STATE_DIRTY; 2794 2795 /* 2796 * Transition from DIRTY to ACTIVE if applicable. 2797 * NOP if STATE_IOERROR. 2798 */ 2799 xlog_state_clean_log(log); 2800 2801 /* wake up threads waiting in xfs_log_force() */ 2802 wake_up_all(&iclog->ic_force_wait); 2803 2804 iclog = iclog->ic_next; 2805 } while (first_iclog != iclog); 2806 2807 if (repeats > 5000) { 2808 flushcnt += repeats; 2809 repeats = 0; 2810 xfs_warn(log->l_mp, 2811 "%s: possible infinite loop (%d iterations)", 2812 __func__, flushcnt); 2813 } 2814 } while (!ioerrors && loopdidcallbacks); 2815 2816 #ifdef DEBUG 2817 /* 2818 * Make one last gasp attempt to see if iclogs are being left in limbo. 2819 * If the above loop finds an iclog earlier than the current iclog and 2820 * in one of the syncing states, the current iclog is put into 2821 * DO_CALLBACK and the callbacks are deferred to the completion of the 2822 * earlier iclog. Walk the iclogs in order and make sure that no iclog 2823 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing 2824 * states. 2825 * 2826 * Note that SYNCING|IOABORT is a valid state so we cannot just check 2827 * for ic_state == SYNCING. 2828 */ 2829 if (funcdidcallbacks) { 2830 first_iclog = iclog = log->l_iclog; 2831 do { 2832 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2833 /* 2834 * Terminate the loop if iclogs are found in states 2835 * which will cause other threads to clean up iclogs. 2836 * 2837 * SYNCING - i/o completion will go through logs 2838 * DONE_SYNC - interrupt thread should be waiting for 2839 * l_icloglock 2840 * IOERROR - give up hope all ye who enter here 2841 */ 2842 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2843 iclog->ic_state & XLOG_STATE_SYNCING || 2844 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2845 iclog->ic_state == XLOG_STATE_IOERROR ) 2846 break; 2847 iclog = iclog->ic_next; 2848 } while (first_iclog != iclog); 2849 } 2850 #endif 2851 2852 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2853 wake = 1; 2854 spin_unlock(&log->l_icloglock); 2855 2856 if (wake) 2857 wake_up_all(&log->l_flush_wait); 2858 } 2859 2860 2861 /* 2862 * Finish transitioning this iclog to the dirty state. 2863 * 2864 * Make sure that we completely execute this routine only when this is 2865 * the last call to the iclog. There is a good chance that iclog flushes, 2866 * when we reach the end of the physical log, get turned into 2 separate 2867 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2868 * routine. By using the reference count bwritecnt, we guarantee that only 2869 * the second completion goes through. 2870 * 2871 * Callbacks could take time, so they are done outside the scope of the 2872 * global state machine log lock. 2873 */ 2874 STATIC void 2875 xlog_state_done_syncing( 2876 xlog_in_core_t *iclog, 2877 int aborted) 2878 { 2879 struct xlog *log = iclog->ic_log; 2880 2881 spin_lock(&log->l_icloglock); 2882 2883 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2884 iclog->ic_state == XLOG_STATE_IOERROR); 2885 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2886 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2887 2888 2889 /* 2890 * If we got an error, either on the first buffer, or in the case of 2891 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2892 * and none should ever be attempted to be written to disk 2893 * again. 2894 */ 2895 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2896 if (--iclog->ic_bwritecnt == 1) { 2897 spin_unlock(&log->l_icloglock); 2898 return; 2899 } 2900 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2901 } 2902 2903 /* 2904 * Someone could be sleeping prior to writing out the next 2905 * iclog buffer, we wake them all, one will get to do the 2906 * I/O, the others get to wait for the result. 2907 */ 2908 wake_up_all(&iclog->ic_write_wait); 2909 spin_unlock(&log->l_icloglock); 2910 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2911 } /* xlog_state_done_syncing */ 2912 2913 2914 /* 2915 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2916 * sleep. We wait on the flush queue on the head iclog as that should be 2917 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2918 * we will wait here and all new writes will sleep until a sync completes. 2919 * 2920 * The in-core logs are used in a circular fashion. They are not used 2921 * out-of-order even when an iclog past the head is free. 2922 * 2923 * return: 2924 * * log_offset where xlog_write() can start writing into the in-core 2925 * log's data space. 2926 * * in-core log pointer to which xlog_write() should write. 2927 * * boolean indicating this is a continued write to an in-core log. 2928 * If this is the last write, then the in-core log's offset field 2929 * needs to be incremented, depending on the amount of data which 2930 * is copied. 2931 */ 2932 STATIC int 2933 xlog_state_get_iclog_space( 2934 struct xlog *log, 2935 int len, 2936 struct xlog_in_core **iclogp, 2937 struct xlog_ticket *ticket, 2938 int *continued_write, 2939 int *logoffsetp) 2940 { 2941 int log_offset; 2942 xlog_rec_header_t *head; 2943 xlog_in_core_t *iclog; 2944 int error; 2945 2946 restart: 2947 spin_lock(&log->l_icloglock); 2948 if (XLOG_FORCED_SHUTDOWN(log)) { 2949 spin_unlock(&log->l_icloglock); 2950 return -EIO; 2951 } 2952 2953 iclog = log->l_iclog; 2954 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2955 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2956 2957 /* Wait for log writes to have flushed */ 2958 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2959 goto restart; 2960 } 2961 2962 head = &iclog->ic_header; 2963 2964 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2965 log_offset = iclog->ic_offset; 2966 2967 /* On the 1st write to an iclog, figure out lsn. This works 2968 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2969 * committing to. If the offset is set, that's how many blocks 2970 * must be written. 2971 */ 2972 if (log_offset == 0) { 2973 ticket->t_curr_res -= log->l_iclog_hsize; 2974 xlog_tic_add_region(ticket, 2975 log->l_iclog_hsize, 2976 XLOG_REG_TYPE_LRHEADER); 2977 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2978 head->h_lsn = cpu_to_be64( 2979 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2980 ASSERT(log->l_curr_block >= 0); 2981 } 2982 2983 /* If there is enough room to write everything, then do it. Otherwise, 2984 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2985 * bit is on, so this will get flushed out. Don't update ic_offset 2986 * until you know exactly how many bytes get copied. Therefore, wait 2987 * until later to update ic_offset. 2988 * 2989 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2990 * can fit into remaining data section. 2991 */ 2992 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2993 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2994 2995 /* 2996 * If I'm the only one writing to this iclog, sync it to disk. 2997 * We need to do an atomic compare and decrement here to avoid 2998 * racing with concurrent atomic_dec_and_lock() calls in 2999 * xlog_state_release_iclog() when there is more than one 3000 * reference to the iclog. 3001 */ 3002 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 3003 /* we are the only one */ 3004 spin_unlock(&log->l_icloglock); 3005 error = xlog_state_release_iclog(log, iclog); 3006 if (error) 3007 return error; 3008 } else { 3009 spin_unlock(&log->l_icloglock); 3010 } 3011 goto restart; 3012 } 3013 3014 /* Do we have enough room to write the full amount in the remainder 3015 * of this iclog? Or must we continue a write on the next iclog and 3016 * mark this iclog as completely taken? In the case where we switch 3017 * iclogs (to mark it taken), this particular iclog will release/sync 3018 * to disk in xlog_write(). 3019 */ 3020 if (len <= iclog->ic_size - iclog->ic_offset) { 3021 *continued_write = 0; 3022 iclog->ic_offset += len; 3023 } else { 3024 *continued_write = 1; 3025 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3026 } 3027 *iclogp = iclog; 3028 3029 ASSERT(iclog->ic_offset <= iclog->ic_size); 3030 spin_unlock(&log->l_icloglock); 3031 3032 *logoffsetp = log_offset; 3033 return 0; 3034 } /* xlog_state_get_iclog_space */ 3035 3036 /* The first cnt-1 times through here we don't need to 3037 * move the grant write head because the permanent 3038 * reservation has reserved cnt times the unit amount. 3039 * Release part of current permanent unit reservation and 3040 * reset current reservation to be one units worth. Also 3041 * move grant reservation head forward. 3042 */ 3043 STATIC void 3044 xlog_regrant_reserve_log_space( 3045 struct xlog *log, 3046 struct xlog_ticket *ticket) 3047 { 3048 trace_xfs_log_regrant_reserve_enter(log, ticket); 3049 3050 if (ticket->t_cnt > 0) 3051 ticket->t_cnt--; 3052 3053 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3054 ticket->t_curr_res); 3055 xlog_grant_sub_space(log, &log->l_write_head.grant, 3056 ticket->t_curr_res); 3057 ticket->t_curr_res = ticket->t_unit_res; 3058 xlog_tic_reset_res(ticket); 3059 3060 trace_xfs_log_regrant_reserve_sub(log, ticket); 3061 3062 /* just return if we still have some of the pre-reserved space */ 3063 if (ticket->t_cnt > 0) 3064 return; 3065 3066 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3067 ticket->t_unit_res); 3068 3069 trace_xfs_log_regrant_reserve_exit(log, ticket); 3070 3071 ticket->t_curr_res = ticket->t_unit_res; 3072 xlog_tic_reset_res(ticket); 3073 } /* xlog_regrant_reserve_log_space */ 3074 3075 3076 /* 3077 * Give back the space left from a reservation. 3078 * 3079 * All the information we need to make a correct determination of space left 3080 * is present. For non-permanent reservations, things are quite easy. The 3081 * count should have been decremented to zero. We only need to deal with the 3082 * space remaining in the current reservation part of the ticket. If the 3083 * ticket contains a permanent reservation, there may be left over space which 3084 * needs to be released. A count of N means that N-1 refills of the current 3085 * reservation can be done before we need to ask for more space. The first 3086 * one goes to fill up the first current reservation. Once we run out of 3087 * space, the count will stay at zero and the only space remaining will be 3088 * in the current reservation field. 3089 */ 3090 STATIC void 3091 xlog_ungrant_log_space( 3092 struct xlog *log, 3093 struct xlog_ticket *ticket) 3094 { 3095 int bytes; 3096 3097 if (ticket->t_cnt > 0) 3098 ticket->t_cnt--; 3099 3100 trace_xfs_log_ungrant_enter(log, ticket); 3101 trace_xfs_log_ungrant_sub(log, ticket); 3102 3103 /* 3104 * If this is a permanent reservation ticket, we may be able to free 3105 * up more space based on the remaining count. 3106 */ 3107 bytes = ticket->t_curr_res; 3108 if (ticket->t_cnt > 0) { 3109 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3110 bytes += ticket->t_unit_res*ticket->t_cnt; 3111 } 3112 3113 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3114 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3115 3116 trace_xfs_log_ungrant_exit(log, ticket); 3117 3118 xfs_log_space_wake(log->l_mp); 3119 } 3120 3121 /* 3122 * Flush iclog to disk if this is the last reference to the given iclog and 3123 * the WANT_SYNC bit is set. 3124 * 3125 * When this function is entered, the iclog is not necessarily in the 3126 * WANT_SYNC state. It may be sitting around waiting to get filled. 3127 * 3128 * 3129 */ 3130 STATIC int 3131 xlog_state_release_iclog( 3132 struct xlog *log, 3133 struct xlog_in_core *iclog) 3134 { 3135 int sync = 0; /* do we sync? */ 3136 3137 if (iclog->ic_state & XLOG_STATE_IOERROR) 3138 return -EIO; 3139 3140 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3141 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3142 return 0; 3143 3144 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3145 spin_unlock(&log->l_icloglock); 3146 return -EIO; 3147 } 3148 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3149 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3150 3151 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3152 /* update tail before writing to iclog */ 3153 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3154 sync++; 3155 iclog->ic_state = XLOG_STATE_SYNCING; 3156 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3157 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3158 /* cycle incremented when incrementing curr_block */ 3159 } 3160 spin_unlock(&log->l_icloglock); 3161 3162 /* 3163 * We let the log lock go, so it's possible that we hit a log I/O 3164 * error or some other SHUTDOWN condition that marks the iclog 3165 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3166 * this iclog has consistent data, so we ignore IOERROR 3167 * flags after this point. 3168 */ 3169 if (sync) 3170 return xlog_sync(log, iclog); 3171 return 0; 3172 } /* xlog_state_release_iclog */ 3173 3174 3175 /* 3176 * This routine will mark the current iclog in the ring as WANT_SYNC 3177 * and move the current iclog pointer to the next iclog in the ring. 3178 * When this routine is called from xlog_state_get_iclog_space(), the 3179 * exact size of the iclog has not yet been determined. All we know is 3180 * that every data block. We have run out of space in this log record. 3181 */ 3182 STATIC void 3183 xlog_state_switch_iclogs( 3184 struct xlog *log, 3185 struct xlog_in_core *iclog, 3186 int eventual_size) 3187 { 3188 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3189 if (!eventual_size) 3190 eventual_size = iclog->ic_offset; 3191 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3192 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3193 log->l_prev_block = log->l_curr_block; 3194 log->l_prev_cycle = log->l_curr_cycle; 3195 3196 /* roll log?: ic_offset changed later */ 3197 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3198 3199 /* Round up to next log-sunit */ 3200 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3201 log->l_mp->m_sb.sb_logsunit > 1) { 3202 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3203 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3204 } 3205 3206 if (log->l_curr_block >= log->l_logBBsize) { 3207 /* 3208 * Rewind the current block before the cycle is bumped to make 3209 * sure that the combined LSN never transiently moves forward 3210 * when the log wraps to the next cycle. This is to support the 3211 * unlocked sample of these fields from xlog_valid_lsn(). Most 3212 * other cases should acquire l_icloglock. 3213 */ 3214 log->l_curr_block -= log->l_logBBsize; 3215 ASSERT(log->l_curr_block >= 0); 3216 smp_wmb(); 3217 log->l_curr_cycle++; 3218 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3219 log->l_curr_cycle++; 3220 } 3221 ASSERT(iclog == log->l_iclog); 3222 log->l_iclog = iclog->ic_next; 3223 } /* xlog_state_switch_iclogs */ 3224 3225 /* 3226 * Write out all data in the in-core log as of this exact moment in time. 3227 * 3228 * Data may be written to the in-core log during this call. However, 3229 * we don't guarantee this data will be written out. A change from past 3230 * implementation means this routine will *not* write out zero length LRs. 3231 * 3232 * Basically, we try and perform an intelligent scan of the in-core logs. 3233 * If we determine there is no flushable data, we just return. There is no 3234 * flushable data if: 3235 * 3236 * 1. the current iclog is active and has no data; the previous iclog 3237 * is in the active or dirty state. 3238 * 2. the current iclog is drity, and the previous iclog is in the 3239 * active or dirty state. 3240 * 3241 * We may sleep if: 3242 * 3243 * 1. the current iclog is not in the active nor dirty state. 3244 * 2. the current iclog dirty, and the previous iclog is not in the 3245 * active nor dirty state. 3246 * 3. the current iclog is active, and there is another thread writing 3247 * to this particular iclog. 3248 * 4. a) the current iclog is active and has no other writers 3249 * b) when we return from flushing out this iclog, it is still 3250 * not in the active nor dirty state. 3251 */ 3252 int 3253 _xfs_log_force( 3254 struct xfs_mount *mp, 3255 uint flags, 3256 int *log_flushed) 3257 { 3258 struct xlog *log = mp->m_log; 3259 struct xlog_in_core *iclog; 3260 xfs_lsn_t lsn; 3261 3262 XFS_STATS_INC(mp, xs_log_force); 3263 3264 xlog_cil_force(log); 3265 3266 spin_lock(&log->l_icloglock); 3267 3268 iclog = log->l_iclog; 3269 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3270 spin_unlock(&log->l_icloglock); 3271 return -EIO; 3272 } 3273 3274 /* If the head iclog is not active nor dirty, we just attach 3275 * ourselves to the head and go to sleep. 3276 */ 3277 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3278 iclog->ic_state == XLOG_STATE_DIRTY) { 3279 /* 3280 * If the head is dirty or (active and empty), then 3281 * we need to look at the previous iclog. If the previous 3282 * iclog is active or dirty we are done. There is nothing 3283 * to sync out. Otherwise, we attach ourselves to the 3284 * previous iclog and go to sleep. 3285 */ 3286 if (iclog->ic_state == XLOG_STATE_DIRTY || 3287 (atomic_read(&iclog->ic_refcnt) == 0 3288 && iclog->ic_offset == 0)) { 3289 iclog = iclog->ic_prev; 3290 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3291 iclog->ic_state == XLOG_STATE_DIRTY) 3292 goto no_sleep; 3293 else 3294 goto maybe_sleep; 3295 } else { 3296 if (atomic_read(&iclog->ic_refcnt) == 0) { 3297 /* We are the only one with access to this 3298 * iclog. Flush it out now. There should 3299 * be a roundoff of zero to show that someone 3300 * has already taken care of the roundoff from 3301 * the previous sync. 3302 */ 3303 atomic_inc(&iclog->ic_refcnt); 3304 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3305 xlog_state_switch_iclogs(log, iclog, 0); 3306 spin_unlock(&log->l_icloglock); 3307 3308 if (xlog_state_release_iclog(log, iclog)) 3309 return -EIO; 3310 3311 if (log_flushed) 3312 *log_flushed = 1; 3313 spin_lock(&log->l_icloglock); 3314 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3315 iclog->ic_state != XLOG_STATE_DIRTY) 3316 goto maybe_sleep; 3317 else 3318 goto no_sleep; 3319 } else { 3320 /* Someone else is writing to this iclog. 3321 * Use its call to flush out the data. However, 3322 * the other thread may not force out this LR, 3323 * so we mark it WANT_SYNC. 3324 */ 3325 xlog_state_switch_iclogs(log, iclog, 0); 3326 goto maybe_sleep; 3327 } 3328 } 3329 } 3330 3331 /* By the time we come around again, the iclog could've been filled 3332 * which would give it another lsn. If we have a new lsn, just 3333 * return because the relevant data has been flushed. 3334 */ 3335 maybe_sleep: 3336 if (flags & XFS_LOG_SYNC) { 3337 /* 3338 * We must check if we're shutting down here, before 3339 * we wait, while we're holding the l_icloglock. 3340 * Then we check again after waking up, in case our 3341 * sleep was disturbed by a bad news. 3342 */ 3343 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3344 spin_unlock(&log->l_icloglock); 3345 return -EIO; 3346 } 3347 XFS_STATS_INC(mp, xs_log_force_sleep); 3348 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3349 /* 3350 * No need to grab the log lock here since we're 3351 * only deciding whether or not to return EIO 3352 * and the memory read should be atomic. 3353 */ 3354 if (iclog->ic_state & XLOG_STATE_IOERROR) 3355 return -EIO; 3356 if (log_flushed) 3357 *log_flushed = 1; 3358 } else { 3359 3360 no_sleep: 3361 spin_unlock(&log->l_icloglock); 3362 } 3363 return 0; 3364 } 3365 3366 /* 3367 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3368 * about errors or whether the log was flushed or not. This is the normal 3369 * interface to use when trying to unpin items or move the log forward. 3370 */ 3371 void 3372 xfs_log_force( 3373 xfs_mount_t *mp, 3374 uint flags) 3375 { 3376 trace_xfs_log_force(mp, 0, _RET_IP_); 3377 _xfs_log_force(mp, flags, NULL); 3378 } 3379 3380 /* 3381 * Force the in-core log to disk for a specific LSN. 3382 * 3383 * Find in-core log with lsn. 3384 * If it is in the DIRTY state, just return. 3385 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3386 * state and go to sleep or return. 3387 * If it is in any other state, go to sleep or return. 3388 * 3389 * Synchronous forces are implemented with a signal variable. All callers 3390 * to force a given lsn to disk will wait on a the sv attached to the 3391 * specific in-core log. When given in-core log finally completes its 3392 * write to disk, that thread will wake up all threads waiting on the 3393 * sv. 3394 */ 3395 int 3396 _xfs_log_force_lsn( 3397 struct xfs_mount *mp, 3398 xfs_lsn_t lsn, 3399 uint flags, 3400 int *log_flushed) 3401 { 3402 struct xlog *log = mp->m_log; 3403 struct xlog_in_core *iclog; 3404 int already_slept = 0; 3405 3406 ASSERT(lsn != 0); 3407 3408 XFS_STATS_INC(mp, xs_log_force); 3409 3410 lsn = xlog_cil_force_lsn(log, lsn); 3411 if (lsn == NULLCOMMITLSN) 3412 return 0; 3413 3414 try_again: 3415 spin_lock(&log->l_icloglock); 3416 iclog = log->l_iclog; 3417 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3418 spin_unlock(&log->l_icloglock); 3419 return -EIO; 3420 } 3421 3422 do { 3423 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3424 iclog = iclog->ic_next; 3425 continue; 3426 } 3427 3428 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3429 spin_unlock(&log->l_icloglock); 3430 return 0; 3431 } 3432 3433 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3434 /* 3435 * We sleep here if we haven't already slept (e.g. 3436 * this is the first time we've looked at the correct 3437 * iclog buf) and the buffer before us is going to 3438 * be sync'ed. The reason for this is that if we 3439 * are doing sync transactions here, by waiting for 3440 * the previous I/O to complete, we can allow a few 3441 * more transactions into this iclog before we close 3442 * it down. 3443 * 3444 * Otherwise, we mark the buffer WANT_SYNC, and bump 3445 * up the refcnt so we can release the log (which 3446 * drops the ref count). The state switch keeps new 3447 * transaction commits from using this buffer. When 3448 * the current commits finish writing into the buffer, 3449 * the refcount will drop to zero and the buffer will 3450 * go out then. 3451 */ 3452 if (!already_slept && 3453 (iclog->ic_prev->ic_state & 3454 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3455 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3456 3457 XFS_STATS_INC(mp, xs_log_force_sleep); 3458 3459 xlog_wait(&iclog->ic_prev->ic_write_wait, 3460 &log->l_icloglock); 3461 if (log_flushed) 3462 *log_flushed = 1; 3463 already_slept = 1; 3464 goto try_again; 3465 } 3466 atomic_inc(&iclog->ic_refcnt); 3467 xlog_state_switch_iclogs(log, iclog, 0); 3468 spin_unlock(&log->l_icloglock); 3469 if (xlog_state_release_iclog(log, iclog)) 3470 return -EIO; 3471 if (log_flushed) 3472 *log_flushed = 1; 3473 spin_lock(&log->l_icloglock); 3474 } 3475 3476 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3477 !(iclog->ic_state & 3478 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3479 /* 3480 * Don't wait on completion if we know that we've 3481 * gotten a log write error. 3482 */ 3483 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3484 spin_unlock(&log->l_icloglock); 3485 return -EIO; 3486 } 3487 XFS_STATS_INC(mp, xs_log_force_sleep); 3488 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3489 /* 3490 * No need to grab the log lock here since we're 3491 * only deciding whether or not to return EIO 3492 * and the memory read should be atomic. 3493 */ 3494 if (iclog->ic_state & XLOG_STATE_IOERROR) 3495 return -EIO; 3496 3497 if (log_flushed) 3498 *log_flushed = 1; 3499 } else { /* just return */ 3500 spin_unlock(&log->l_icloglock); 3501 } 3502 3503 return 0; 3504 } while (iclog != log->l_iclog); 3505 3506 spin_unlock(&log->l_icloglock); 3507 return 0; 3508 } 3509 3510 /* 3511 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3512 * about errors or whether the log was flushed or not. This is the normal 3513 * interface to use when trying to unpin items or move the log forward. 3514 */ 3515 void 3516 xfs_log_force_lsn( 3517 xfs_mount_t *mp, 3518 xfs_lsn_t lsn, 3519 uint flags) 3520 { 3521 trace_xfs_log_force(mp, lsn, _RET_IP_); 3522 _xfs_log_force_lsn(mp, lsn, flags, NULL); 3523 } 3524 3525 /* 3526 * Called when we want to mark the current iclog as being ready to sync to 3527 * disk. 3528 */ 3529 STATIC void 3530 xlog_state_want_sync( 3531 struct xlog *log, 3532 struct xlog_in_core *iclog) 3533 { 3534 assert_spin_locked(&log->l_icloglock); 3535 3536 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3537 xlog_state_switch_iclogs(log, iclog, 0); 3538 } else { 3539 ASSERT(iclog->ic_state & 3540 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3541 } 3542 } 3543 3544 3545 /***************************************************************************** 3546 * 3547 * TICKET functions 3548 * 3549 ***************************************************************************** 3550 */ 3551 3552 /* 3553 * Free a used ticket when its refcount falls to zero. 3554 */ 3555 void 3556 xfs_log_ticket_put( 3557 xlog_ticket_t *ticket) 3558 { 3559 ASSERT(atomic_read(&ticket->t_ref) > 0); 3560 if (atomic_dec_and_test(&ticket->t_ref)) 3561 kmem_zone_free(xfs_log_ticket_zone, ticket); 3562 } 3563 3564 xlog_ticket_t * 3565 xfs_log_ticket_get( 3566 xlog_ticket_t *ticket) 3567 { 3568 ASSERT(atomic_read(&ticket->t_ref) > 0); 3569 atomic_inc(&ticket->t_ref); 3570 return ticket; 3571 } 3572 3573 /* 3574 * Figure out the total log space unit (in bytes) that would be 3575 * required for a log ticket. 3576 */ 3577 int 3578 xfs_log_calc_unit_res( 3579 struct xfs_mount *mp, 3580 int unit_bytes) 3581 { 3582 struct xlog *log = mp->m_log; 3583 int iclog_space; 3584 uint num_headers; 3585 3586 /* 3587 * Permanent reservations have up to 'cnt'-1 active log operations 3588 * in the log. A unit in this case is the amount of space for one 3589 * of these log operations. Normal reservations have a cnt of 1 3590 * and their unit amount is the total amount of space required. 3591 * 3592 * The following lines of code account for non-transaction data 3593 * which occupy space in the on-disk log. 3594 * 3595 * Normal form of a transaction is: 3596 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3597 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3598 * 3599 * We need to account for all the leadup data and trailer data 3600 * around the transaction data. 3601 * And then we need to account for the worst case in terms of using 3602 * more space. 3603 * The worst case will happen if: 3604 * - the placement of the transaction happens to be such that the 3605 * roundoff is at its maximum 3606 * - the transaction data is synced before the commit record is synced 3607 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3608 * Therefore the commit record is in its own Log Record. 3609 * This can happen as the commit record is called with its 3610 * own region to xlog_write(). 3611 * This then means that in the worst case, roundoff can happen for 3612 * the commit-rec as well. 3613 * The commit-rec is smaller than padding in this scenario and so it is 3614 * not added separately. 3615 */ 3616 3617 /* for trans header */ 3618 unit_bytes += sizeof(xlog_op_header_t); 3619 unit_bytes += sizeof(xfs_trans_header_t); 3620 3621 /* for start-rec */ 3622 unit_bytes += sizeof(xlog_op_header_t); 3623 3624 /* 3625 * for LR headers - the space for data in an iclog is the size minus 3626 * the space used for the headers. If we use the iclog size, then we 3627 * undercalculate the number of headers required. 3628 * 3629 * Furthermore - the addition of op headers for split-recs might 3630 * increase the space required enough to require more log and op 3631 * headers, so take that into account too. 3632 * 3633 * IMPORTANT: This reservation makes the assumption that if this 3634 * transaction is the first in an iclog and hence has the LR headers 3635 * accounted to it, then the remaining space in the iclog is 3636 * exclusively for this transaction. i.e. if the transaction is larger 3637 * than the iclog, it will be the only thing in that iclog. 3638 * Fundamentally, this means we must pass the entire log vector to 3639 * xlog_write to guarantee this. 3640 */ 3641 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3642 num_headers = howmany(unit_bytes, iclog_space); 3643 3644 /* for split-recs - ophdrs added when data split over LRs */ 3645 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3646 3647 /* add extra header reservations if we overrun */ 3648 while (!num_headers || 3649 howmany(unit_bytes, iclog_space) > num_headers) { 3650 unit_bytes += sizeof(xlog_op_header_t); 3651 num_headers++; 3652 } 3653 unit_bytes += log->l_iclog_hsize * num_headers; 3654 3655 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3656 unit_bytes += log->l_iclog_hsize; 3657 3658 /* for roundoff padding for transaction data and one for commit record */ 3659 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3660 /* log su roundoff */ 3661 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3662 } else { 3663 /* BB roundoff */ 3664 unit_bytes += 2 * BBSIZE; 3665 } 3666 3667 return unit_bytes; 3668 } 3669 3670 /* 3671 * Allocate and initialise a new log ticket. 3672 */ 3673 struct xlog_ticket * 3674 xlog_ticket_alloc( 3675 struct xlog *log, 3676 int unit_bytes, 3677 int cnt, 3678 char client, 3679 bool permanent, 3680 xfs_km_flags_t alloc_flags) 3681 { 3682 struct xlog_ticket *tic; 3683 int unit_res; 3684 3685 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3686 if (!tic) 3687 return NULL; 3688 3689 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3690 3691 atomic_set(&tic->t_ref, 1); 3692 tic->t_task = current; 3693 INIT_LIST_HEAD(&tic->t_queue); 3694 tic->t_unit_res = unit_res; 3695 tic->t_curr_res = unit_res; 3696 tic->t_cnt = cnt; 3697 tic->t_ocnt = cnt; 3698 tic->t_tid = prandom_u32(); 3699 tic->t_clientid = client; 3700 tic->t_flags = XLOG_TIC_INITED; 3701 if (permanent) 3702 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3703 3704 xlog_tic_reset_res(tic); 3705 3706 return tic; 3707 } 3708 3709 3710 /****************************************************************************** 3711 * 3712 * Log debug routines 3713 * 3714 ****************************************************************************** 3715 */ 3716 #if defined(DEBUG) 3717 /* 3718 * Make sure that the destination ptr is within the valid data region of 3719 * one of the iclogs. This uses backup pointers stored in a different 3720 * part of the log in case we trash the log structure. 3721 */ 3722 void 3723 xlog_verify_dest_ptr( 3724 struct xlog *log, 3725 void *ptr) 3726 { 3727 int i; 3728 int good_ptr = 0; 3729 3730 for (i = 0; i < log->l_iclog_bufs; i++) { 3731 if (ptr >= log->l_iclog_bak[i] && 3732 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3733 good_ptr++; 3734 } 3735 3736 if (!good_ptr) 3737 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3738 } 3739 3740 /* 3741 * Check to make sure the grant write head didn't just over lap the tail. If 3742 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3743 * the cycles differ by exactly one and check the byte count. 3744 * 3745 * This check is run unlocked, so can give false positives. Rather than assert 3746 * on failures, use a warn-once flag and a panic tag to allow the admin to 3747 * determine if they want to panic the machine when such an error occurs. For 3748 * debug kernels this will have the same effect as using an assert but, unlinke 3749 * an assert, it can be turned off at runtime. 3750 */ 3751 STATIC void 3752 xlog_verify_grant_tail( 3753 struct xlog *log) 3754 { 3755 int tail_cycle, tail_blocks; 3756 int cycle, space; 3757 3758 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3759 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3760 if (tail_cycle != cycle) { 3761 if (cycle - 1 != tail_cycle && 3762 !(log->l_flags & XLOG_TAIL_WARN)) { 3763 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3764 "%s: cycle - 1 != tail_cycle", __func__); 3765 log->l_flags |= XLOG_TAIL_WARN; 3766 } 3767 3768 if (space > BBTOB(tail_blocks) && 3769 !(log->l_flags & XLOG_TAIL_WARN)) { 3770 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3771 "%s: space > BBTOB(tail_blocks)", __func__); 3772 log->l_flags |= XLOG_TAIL_WARN; 3773 } 3774 } 3775 } 3776 3777 /* check if it will fit */ 3778 STATIC void 3779 xlog_verify_tail_lsn( 3780 struct xlog *log, 3781 struct xlog_in_core *iclog, 3782 xfs_lsn_t tail_lsn) 3783 { 3784 int blocks; 3785 3786 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3787 blocks = 3788 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3789 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3790 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3791 } else { 3792 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3793 3794 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3795 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3796 3797 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3798 if (blocks < BTOBB(iclog->ic_offset) + 1) 3799 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3800 } 3801 } /* xlog_verify_tail_lsn */ 3802 3803 /* 3804 * Perform a number of checks on the iclog before writing to disk. 3805 * 3806 * 1. Make sure the iclogs are still circular 3807 * 2. Make sure we have a good magic number 3808 * 3. Make sure we don't have magic numbers in the data 3809 * 4. Check fields of each log operation header for: 3810 * A. Valid client identifier 3811 * B. tid ptr value falls in valid ptr space (user space code) 3812 * C. Length in log record header is correct according to the 3813 * individual operation headers within record. 3814 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3815 * log, check the preceding blocks of the physical log to make sure all 3816 * the cycle numbers agree with the current cycle number. 3817 */ 3818 STATIC void 3819 xlog_verify_iclog( 3820 struct xlog *log, 3821 struct xlog_in_core *iclog, 3822 int count, 3823 bool syncing) 3824 { 3825 xlog_op_header_t *ophead; 3826 xlog_in_core_t *icptr; 3827 xlog_in_core_2_t *xhdr; 3828 void *base_ptr, *ptr, *p; 3829 ptrdiff_t field_offset; 3830 uint8_t clientid; 3831 int len, i, j, k, op_len; 3832 int idx; 3833 3834 /* check validity of iclog pointers */ 3835 spin_lock(&log->l_icloglock); 3836 icptr = log->l_iclog; 3837 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3838 ASSERT(icptr); 3839 3840 if (icptr != log->l_iclog) 3841 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3842 spin_unlock(&log->l_icloglock); 3843 3844 /* check log magic numbers */ 3845 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3846 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3847 3848 base_ptr = ptr = &iclog->ic_header; 3849 p = &iclog->ic_header; 3850 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3851 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3852 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3853 __func__); 3854 } 3855 3856 /* check fields */ 3857 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3858 base_ptr = ptr = iclog->ic_datap; 3859 ophead = ptr; 3860 xhdr = iclog->ic_data; 3861 for (i = 0; i < len; i++) { 3862 ophead = ptr; 3863 3864 /* clientid is only 1 byte */ 3865 p = &ophead->oh_clientid; 3866 field_offset = p - base_ptr; 3867 if (!syncing || (field_offset & 0x1ff)) { 3868 clientid = ophead->oh_clientid; 3869 } else { 3870 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3871 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3872 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3873 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3874 clientid = xlog_get_client_id( 3875 xhdr[j].hic_xheader.xh_cycle_data[k]); 3876 } else { 3877 clientid = xlog_get_client_id( 3878 iclog->ic_header.h_cycle_data[idx]); 3879 } 3880 } 3881 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3882 xfs_warn(log->l_mp, 3883 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3884 __func__, clientid, ophead, 3885 (unsigned long)field_offset); 3886 3887 /* check length */ 3888 p = &ophead->oh_len; 3889 field_offset = p - base_ptr; 3890 if (!syncing || (field_offset & 0x1ff)) { 3891 op_len = be32_to_cpu(ophead->oh_len); 3892 } else { 3893 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3894 (uintptr_t)iclog->ic_datap); 3895 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3896 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3897 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3898 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3899 } else { 3900 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3901 } 3902 } 3903 ptr += sizeof(xlog_op_header_t) + op_len; 3904 } 3905 } /* xlog_verify_iclog */ 3906 #endif 3907 3908 /* 3909 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3910 */ 3911 STATIC int 3912 xlog_state_ioerror( 3913 struct xlog *log) 3914 { 3915 xlog_in_core_t *iclog, *ic; 3916 3917 iclog = log->l_iclog; 3918 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3919 /* 3920 * Mark all the incore logs IOERROR. 3921 * From now on, no log flushes will result. 3922 */ 3923 ic = iclog; 3924 do { 3925 ic->ic_state = XLOG_STATE_IOERROR; 3926 ic = ic->ic_next; 3927 } while (ic != iclog); 3928 return 0; 3929 } 3930 /* 3931 * Return non-zero, if state transition has already happened. 3932 */ 3933 return 1; 3934 } 3935 3936 /* 3937 * This is called from xfs_force_shutdown, when we're forcibly 3938 * shutting down the filesystem, typically because of an IO error. 3939 * Our main objectives here are to make sure that: 3940 * a. if !logerror, flush the logs to disk. Anything modified 3941 * after this is ignored. 3942 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3943 * parties to find out, 'atomically'. 3944 * c. those who're sleeping on log reservations, pinned objects and 3945 * other resources get woken up, and be told the bad news. 3946 * d. nothing new gets queued up after (b) and (c) are done. 3947 * 3948 * Note: for the !logerror case we need to flush the regions held in memory out 3949 * to disk first. This needs to be done before the log is marked as shutdown, 3950 * otherwise the iclog writes will fail. 3951 */ 3952 int 3953 xfs_log_force_umount( 3954 struct xfs_mount *mp, 3955 int logerror) 3956 { 3957 struct xlog *log; 3958 int retval; 3959 3960 log = mp->m_log; 3961 3962 /* 3963 * If this happens during log recovery, don't worry about 3964 * locking; the log isn't open for business yet. 3965 */ 3966 if (!log || 3967 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3968 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3969 if (mp->m_sb_bp) 3970 mp->m_sb_bp->b_flags |= XBF_DONE; 3971 return 0; 3972 } 3973 3974 /* 3975 * Somebody could've already done the hard work for us. 3976 * No need to get locks for this. 3977 */ 3978 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3979 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3980 return 1; 3981 } 3982 3983 /* 3984 * Flush all the completed transactions to disk before marking the log 3985 * being shut down. We need to do it in this order to ensure that 3986 * completed operations are safely on disk before we shut down, and that 3987 * we don't have to issue any buffer IO after the shutdown flags are set 3988 * to guarantee this. 3989 */ 3990 if (!logerror) 3991 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3992 3993 /* 3994 * mark the filesystem and the as in a shutdown state and wake 3995 * everybody up to tell them the bad news. 3996 */ 3997 spin_lock(&log->l_icloglock); 3998 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3999 if (mp->m_sb_bp) 4000 mp->m_sb_bp->b_flags |= XBF_DONE; 4001 4002 /* 4003 * Mark the log and the iclogs with IO error flags to prevent any 4004 * further log IO from being issued or completed. 4005 */ 4006 log->l_flags |= XLOG_IO_ERROR; 4007 retval = xlog_state_ioerror(log); 4008 spin_unlock(&log->l_icloglock); 4009 4010 /* 4011 * We don't want anybody waiting for log reservations after this. That 4012 * means we have to wake up everybody queued up on reserveq as well as 4013 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 4014 * we don't enqueue anything once the SHUTDOWN flag is set, and this 4015 * action is protected by the grant locks. 4016 */ 4017 xlog_grant_head_wake_all(&log->l_reserve_head); 4018 xlog_grant_head_wake_all(&log->l_write_head); 4019 4020 /* 4021 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 4022 * as if the log writes were completed. The abort handling in the log 4023 * item committed callback functions will do this again under lock to 4024 * avoid races. 4025 */ 4026 wake_up_all(&log->l_cilp->xc_commit_wait); 4027 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 4028 4029 #ifdef XFSERRORDEBUG 4030 { 4031 xlog_in_core_t *iclog; 4032 4033 spin_lock(&log->l_icloglock); 4034 iclog = log->l_iclog; 4035 do { 4036 ASSERT(iclog->ic_callback == 0); 4037 iclog = iclog->ic_next; 4038 } while (iclog != log->l_iclog); 4039 spin_unlock(&log->l_icloglock); 4040 } 4041 #endif 4042 /* return non-zero if log IOERROR transition had already happened */ 4043 return retval; 4044 } 4045 4046 STATIC int 4047 xlog_iclogs_empty( 4048 struct xlog *log) 4049 { 4050 xlog_in_core_t *iclog; 4051 4052 iclog = log->l_iclog; 4053 do { 4054 /* endianness does not matter here, zero is zero in 4055 * any language. 4056 */ 4057 if (iclog->ic_header.h_num_logops) 4058 return 0; 4059 iclog = iclog->ic_next; 4060 } while (iclog != log->l_iclog); 4061 return 1; 4062 } 4063 4064 /* 4065 * Verify that an LSN stamped into a piece of metadata is valid. This is 4066 * intended for use in read verifiers on v5 superblocks. 4067 */ 4068 bool 4069 xfs_log_check_lsn( 4070 struct xfs_mount *mp, 4071 xfs_lsn_t lsn) 4072 { 4073 struct xlog *log = mp->m_log; 4074 bool valid; 4075 4076 /* 4077 * norecovery mode skips mount-time log processing and unconditionally 4078 * resets the in-core LSN. We can't validate in this mode, but 4079 * modifications are not allowed anyways so just return true. 4080 */ 4081 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 4082 return true; 4083 4084 /* 4085 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 4086 * handled by recovery and thus safe to ignore here. 4087 */ 4088 if (lsn == NULLCOMMITLSN) 4089 return true; 4090 4091 valid = xlog_valid_lsn(mp->m_log, lsn); 4092 4093 /* warn the user about what's gone wrong before verifier failure */ 4094 if (!valid) { 4095 spin_lock(&log->l_icloglock); 4096 xfs_warn(mp, 4097 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 4098 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 4099 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 4100 log->l_curr_cycle, log->l_curr_block); 4101 spin_unlock(&log->l_icloglock); 4102 } 4103 4104 return valid; 4105 } 4106