xref: /linux/fs/xfs/xfs_log.c (revision c411ed854584a71b0e86ac3019b60e4789d88086)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37 
38 kmem_zone_t	*xfs_log_ticket_zone;
39 
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 	struct xlog		*log,
44 	struct xlog_ticket	*ticket,
45 	struct xlog_in_core	**iclog,
46 	xfs_lsn_t		*commitlsnp);
47 
48 STATIC struct xlog *
49 xlog_alloc_log(
50 	struct xfs_mount	*mp,
51 	struct xfs_buftarg	*log_target,
52 	xfs_daddr_t		blk_offset,
53 	int			num_bblks);
54 STATIC int
55 xlog_space_left(
56 	struct xlog		*log,
57 	atomic64_t		*head);
58 STATIC int
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 STATIC void
63 xlog_dealloc_log(
64 	struct xlog		*log);
65 
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 	struct xlog		*log,
71 	int			aborted,
72 	struct xlog_in_core	*iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 	struct xlog		*log,
76 	int			len,
77 	struct xlog_in_core	**iclog,
78 	struct xlog_ticket	*ticket,
79 	int			*continued_write,
80 	int			*logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 	struct xlog		*log,
84 	struct xlog_in_core	*iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 	struct xlog		*log,
88 	struct xlog_in_core	*iclog,
89 	int			eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 	struct xlog		*log,
93 	struct xlog_in_core	*iclog);
94 
95 STATIC void
96 xlog_grant_push_ail(
97 	struct xlog		*log,
98 	int			need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 	struct xlog		*log,
102 	struct xlog_ticket	*ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 	struct xlog		*log,
106 	struct xlog_ticket	*ticket);
107 
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 	struct xlog		*log,
112 	void			*ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 	struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 	struct xlog		*log,
119 	struct xlog_in_core	*iclog,
120 	int			count,
121 	bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 	struct xlog		*log,
125 	struct xlog_in_core	*iclog,
126 	xfs_lsn_t		tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133 
134 STATIC int
135 xlog_iclogs_empty(
136 	struct xlog		*log);
137 
138 static void
139 xlog_grant_sub_space(
140 	struct xlog		*log,
141 	atomic64_t		*head,
142 	int			bytes)
143 {
144 	int64_t	head_val = atomic64_read(head);
145 	int64_t new, old;
146 
147 	do {
148 		int	cycle, space;
149 
150 		xlog_crack_grant_head_val(head_val, &cycle, &space);
151 
152 		space -= bytes;
153 		if (space < 0) {
154 			space += log->l_logsize;
155 			cycle--;
156 		}
157 
158 		old = head_val;
159 		new = xlog_assign_grant_head_val(cycle, space);
160 		head_val = atomic64_cmpxchg(head, old, new);
161 	} while (head_val != old);
162 }
163 
164 static void
165 xlog_grant_add_space(
166 	struct xlog		*log,
167 	atomic64_t		*head,
168 	int			bytes)
169 {
170 	int64_t	head_val = atomic64_read(head);
171 	int64_t new, old;
172 
173 	do {
174 		int		tmp;
175 		int		cycle, space;
176 
177 		xlog_crack_grant_head_val(head_val, &cycle, &space);
178 
179 		tmp = log->l_logsize - space;
180 		if (tmp > bytes)
181 			space += bytes;
182 		else {
183 			space = bytes - tmp;
184 			cycle++;
185 		}
186 
187 		old = head_val;
188 		new = xlog_assign_grant_head_val(cycle, space);
189 		head_val = atomic64_cmpxchg(head, old, new);
190 	} while (head_val != old);
191 }
192 
193 STATIC void
194 xlog_grant_head_init(
195 	struct xlog_grant_head	*head)
196 {
197 	xlog_assign_grant_head(&head->grant, 1, 0);
198 	INIT_LIST_HEAD(&head->waiters);
199 	spin_lock_init(&head->lock);
200 }
201 
202 STATIC void
203 xlog_grant_head_wake_all(
204 	struct xlog_grant_head	*head)
205 {
206 	struct xlog_ticket	*tic;
207 
208 	spin_lock(&head->lock);
209 	list_for_each_entry(tic, &head->waiters, t_queue)
210 		wake_up_process(tic->t_task);
211 	spin_unlock(&head->lock);
212 }
213 
214 static inline int
215 xlog_ticket_reservation(
216 	struct xlog		*log,
217 	struct xlog_grant_head	*head,
218 	struct xlog_ticket	*tic)
219 {
220 	if (head == &log->l_write_head) {
221 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 		return tic->t_unit_res;
223 	} else {
224 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 			return tic->t_unit_res * tic->t_cnt;
226 		else
227 			return tic->t_unit_res;
228 	}
229 }
230 
231 STATIC bool
232 xlog_grant_head_wake(
233 	struct xlog		*log,
234 	struct xlog_grant_head	*head,
235 	int			*free_bytes)
236 {
237 	struct xlog_ticket	*tic;
238 	int			need_bytes;
239 
240 	list_for_each_entry(tic, &head->waiters, t_queue) {
241 		need_bytes = xlog_ticket_reservation(log, head, tic);
242 		if (*free_bytes < need_bytes)
243 			return false;
244 
245 		*free_bytes -= need_bytes;
246 		trace_xfs_log_grant_wake_up(log, tic);
247 		wake_up_process(tic->t_task);
248 	}
249 
250 	return true;
251 }
252 
253 STATIC int
254 xlog_grant_head_wait(
255 	struct xlog		*log,
256 	struct xlog_grant_head	*head,
257 	struct xlog_ticket	*tic,
258 	int			need_bytes) __releases(&head->lock)
259 					    __acquires(&head->lock)
260 {
261 	list_add_tail(&tic->t_queue, &head->waiters);
262 
263 	do {
264 		if (XLOG_FORCED_SHUTDOWN(log))
265 			goto shutdown;
266 		xlog_grant_push_ail(log, need_bytes);
267 
268 		__set_current_state(TASK_UNINTERRUPTIBLE);
269 		spin_unlock(&head->lock);
270 
271 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272 
273 		trace_xfs_log_grant_sleep(log, tic);
274 		schedule();
275 		trace_xfs_log_grant_wake(log, tic);
276 
277 		spin_lock(&head->lock);
278 		if (XLOG_FORCED_SHUTDOWN(log))
279 			goto shutdown;
280 	} while (xlog_space_left(log, &head->grant) < need_bytes);
281 
282 	list_del_init(&tic->t_queue);
283 	return 0;
284 shutdown:
285 	list_del_init(&tic->t_queue);
286 	return -EIO;
287 }
288 
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308 	struct xlog		*log,
309 	struct xlog_grant_head	*head,
310 	struct xlog_ticket	*tic,
311 	int			*need_bytes)
312 {
313 	int			free_bytes;
314 	int			error = 0;
315 
316 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317 
318 	/*
319 	 * If there are other waiters on the queue then give them a chance at
320 	 * logspace before us.  Wake up the first waiters, if we do not wake
321 	 * up all the waiters then go to sleep waiting for more free space,
322 	 * otherwise try to get some space for this transaction.
323 	 */
324 	*need_bytes = xlog_ticket_reservation(log, head, tic);
325 	free_bytes = xlog_space_left(log, &head->grant);
326 	if (!list_empty_careful(&head->waiters)) {
327 		spin_lock(&head->lock);
328 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 		    free_bytes < *need_bytes) {
330 			error = xlog_grant_head_wait(log, head, tic,
331 						     *need_bytes);
332 		}
333 		spin_unlock(&head->lock);
334 	} else if (free_bytes < *need_bytes) {
335 		spin_lock(&head->lock);
336 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 		spin_unlock(&head->lock);
338 	}
339 
340 	return error;
341 }
342 
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 	tic->t_res_num = 0;
347 	tic->t_res_arr_sum = 0;
348 	tic->t_res_num_ophdrs = 0;
349 }
350 
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 		/* add to overflow and start again */
356 		tic->t_res_o_flow += tic->t_res_arr_sum;
357 		tic->t_res_num = 0;
358 		tic->t_res_arr_sum = 0;
359 	}
360 
361 	tic->t_res_arr[tic->t_res_num].r_len = len;
362 	tic->t_res_arr[tic->t_res_num].r_type = type;
363 	tic->t_res_arr_sum += len;
364 	tic->t_res_num++;
365 }
366 
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372 	struct xfs_mount	*mp,
373 	struct xlog_ticket	*tic)
374 {
375 	struct xlog		*log = mp->m_log;
376 	int			need_bytes;
377 	int			error = 0;
378 
379 	if (XLOG_FORCED_SHUTDOWN(log))
380 		return -EIO;
381 
382 	XFS_STATS_INC(mp, xs_try_logspace);
383 
384 	/*
385 	 * This is a new transaction on the ticket, so we need to change the
386 	 * transaction ID so that the next transaction has a different TID in
387 	 * the log. Just add one to the existing tid so that we can see chains
388 	 * of rolling transactions in the log easily.
389 	 */
390 	tic->t_tid++;
391 
392 	xlog_grant_push_ail(log, tic->t_unit_res);
393 
394 	tic->t_curr_res = tic->t_unit_res;
395 	xlog_tic_reset_res(tic);
396 
397 	if (tic->t_cnt > 0)
398 		return 0;
399 
400 	trace_xfs_log_regrant(log, tic);
401 
402 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 				      &need_bytes);
404 	if (error)
405 		goto out_error;
406 
407 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 	trace_xfs_log_regrant_exit(log, tic);
409 	xlog_verify_grant_tail(log);
410 	return 0;
411 
412 out_error:
413 	/*
414 	 * If we are failing, make sure the ticket doesn't have any current
415 	 * reservations.  We don't want to add this back when the ticket/
416 	 * transaction gets cancelled.
417 	 */
418 	tic->t_curr_res = 0;
419 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
420 	return error;
421 }
422 
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433 	struct xfs_mount	*mp,
434 	int		 	unit_bytes,
435 	int		 	cnt,
436 	struct xlog_ticket	**ticp,
437 	uint8_t		 	client,
438 	bool			permanent)
439 {
440 	struct xlog		*log = mp->m_log;
441 	struct xlog_ticket	*tic;
442 	int			need_bytes;
443 	int			error = 0;
444 
445 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446 
447 	if (XLOG_FORCED_SHUTDOWN(log))
448 		return -EIO;
449 
450 	XFS_STATS_INC(mp, xs_try_logspace);
451 
452 	ASSERT(*ticp == NULL);
453 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454 				KM_SLEEP | KM_MAYFAIL);
455 	if (!tic)
456 		return -ENOMEM;
457 
458 	*ticp = tic;
459 
460 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461 					    : tic->t_unit_res);
462 
463 	trace_xfs_log_reserve(log, tic);
464 
465 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 				      &need_bytes);
467 	if (error)
468 		goto out_error;
469 
470 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 	trace_xfs_log_reserve_exit(log, tic);
473 	xlog_verify_grant_tail(log);
474 	return 0;
475 
476 out_error:
477 	/*
478 	 * If we are failing, make sure the ticket doesn't have any current
479 	 * reservations.  We don't want to add this back when the ticket/
480 	 * transaction gets cancelled.
481 	 */
482 	tic->t_curr_res = 0;
483 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
484 	return error;
485 }
486 
487 
488 /*
489  * NOTES:
490  *
491  *	1. currblock field gets updated at startup and after in-core logs
492  *		marked as with WANT_SYNC.
493  */
494 
495 /*
496  * This routine is called when a user of a log manager ticket is done with
497  * the reservation.  If the ticket was ever used, then a commit record for
498  * the associated transaction is written out as a log operation header with
499  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
500  * a given ticket.  If the ticket was one with a permanent reservation, then
501  * a few operations are done differently.  Permanent reservation tickets by
502  * default don't release the reservation.  They just commit the current
503  * transaction with the belief that the reservation is still needed.  A flag
504  * must be passed in before permanent reservations are actually released.
505  * When these type of tickets are not released, they need to be set into
506  * the inited state again.  By doing this, a start record will be written
507  * out when the next write occurs.
508  */
509 xfs_lsn_t
510 xfs_log_done(
511 	struct xfs_mount	*mp,
512 	struct xlog_ticket	*ticket,
513 	struct xlog_in_core	**iclog,
514 	bool			regrant)
515 {
516 	struct xlog		*log = mp->m_log;
517 	xfs_lsn_t		lsn = 0;
518 
519 	if (XLOG_FORCED_SHUTDOWN(log) ||
520 	    /*
521 	     * If nothing was ever written, don't write out commit record.
522 	     * If we get an error, just continue and give back the log ticket.
523 	     */
524 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 		lsn = (xfs_lsn_t) -1;
527 		regrant = false;
528 	}
529 
530 
531 	if (!regrant) {
532 		trace_xfs_log_done_nonperm(log, ticket);
533 
534 		/*
535 		 * Release ticket if not permanent reservation or a specific
536 		 * request has been made to release a permanent reservation.
537 		 */
538 		xlog_ungrant_log_space(log, ticket);
539 	} else {
540 		trace_xfs_log_done_perm(log, ticket);
541 
542 		xlog_regrant_reserve_log_space(log, ticket);
543 		/* If this ticket was a permanent reservation and we aren't
544 		 * trying to release it, reset the inited flags; so next time
545 		 * we write, a start record will be written out.
546 		 */
547 		ticket->t_flags |= XLOG_TIC_INITED;
548 	}
549 
550 	xfs_log_ticket_put(ticket);
551 	return lsn;
552 }
553 
554 /*
555  * Attaches a new iclog I/O completion callback routine during
556  * transaction commit.  If the log is in error state, a non-zero
557  * return code is handed back and the caller is responsible for
558  * executing the callback at an appropriate time.
559  */
560 int
561 xfs_log_notify(
562 	struct xfs_mount	*mp,
563 	struct xlog_in_core	*iclog,
564 	xfs_log_callback_t	*cb)
565 {
566 	int	abortflg;
567 
568 	spin_lock(&iclog->ic_callback_lock);
569 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570 	if (!abortflg) {
571 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573 		cb->cb_next = NULL;
574 		*(iclog->ic_callback_tail) = cb;
575 		iclog->ic_callback_tail = &(cb->cb_next);
576 	}
577 	spin_unlock(&iclog->ic_callback_lock);
578 	return abortflg;
579 }
580 
581 int
582 xfs_log_release_iclog(
583 	struct xfs_mount	*mp,
584 	struct xlog_in_core	*iclog)
585 {
586 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
587 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588 		return -EIO;
589 	}
590 
591 	return 0;
592 }
593 
594 /*
595  * Mount a log filesystem
596  *
597  * mp		- ubiquitous xfs mount point structure
598  * log_target	- buftarg of on-disk log device
599  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
600  * num_bblocks	- Number of BBSIZE blocks in on-disk log
601  *
602  * Return error or zero.
603  */
604 int
605 xfs_log_mount(
606 	xfs_mount_t	*mp,
607 	xfs_buftarg_t	*log_target,
608 	xfs_daddr_t	blk_offset,
609 	int		num_bblks)
610 {
611 	int		error = 0;
612 	int		min_logfsbs;
613 
614 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
615 		xfs_notice(mp, "Mounting V%d Filesystem",
616 			   XFS_SB_VERSION_NUM(&mp->m_sb));
617 	} else {
618 		xfs_notice(mp,
619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
620 			   XFS_SB_VERSION_NUM(&mp->m_sb));
621 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
622 	}
623 
624 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625 	if (IS_ERR(mp->m_log)) {
626 		error = PTR_ERR(mp->m_log);
627 		goto out;
628 	}
629 
630 	/*
631 	 * Validate the given log space and drop a critical message via syslog
632 	 * if the log size is too small that would lead to some unexpected
633 	 * situations in transaction log space reservation stage.
634 	 *
635 	 * Note: we can't just reject the mount if the validation fails.  This
636 	 * would mean that people would have to downgrade their kernel just to
637 	 * remedy the situation as there is no way to grow the log (short of
638 	 * black magic surgery with xfs_db).
639 	 *
640 	 * We can, however, reject mounts for CRC format filesystems, as the
641 	 * mkfs binary being used to make the filesystem should never create a
642 	 * filesystem with a log that is too small.
643 	 */
644 	min_logfsbs = xfs_log_calc_minimum_size(mp);
645 
646 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
647 		xfs_warn(mp,
648 		"Log size %d blocks too small, minimum size is %d blocks",
649 			 mp->m_sb.sb_logblocks, min_logfsbs);
650 		error = -EINVAL;
651 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
652 		xfs_warn(mp,
653 		"Log size %d blocks too large, maximum size is %lld blocks",
654 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
655 		error = -EINVAL;
656 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
657 		xfs_warn(mp,
658 		"log size %lld bytes too large, maximum size is %lld bytes",
659 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
660 			 XFS_MAX_LOG_BYTES);
661 		error = -EINVAL;
662 	}
663 	if (error) {
664 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
665 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
666 			ASSERT(0);
667 			goto out_free_log;
668 		}
669 		xfs_crit(mp, "Log size out of supported range.");
670 		xfs_crit(mp,
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
672 	}
673 
674 	/*
675 	 * Initialize the AIL now we have a log.
676 	 */
677 	error = xfs_trans_ail_init(mp);
678 	if (error) {
679 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
680 		goto out_free_log;
681 	}
682 	mp->m_log->l_ailp = mp->m_ail;
683 
684 	/*
685 	 * skip log recovery on a norecovery mount.  pretend it all
686 	 * just worked.
687 	 */
688 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
689 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
690 
691 		if (readonly)
692 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
693 
694 		error = xlog_recover(mp->m_log);
695 
696 		if (readonly)
697 			mp->m_flags |= XFS_MOUNT_RDONLY;
698 		if (error) {
699 			xfs_warn(mp, "log mount/recovery failed: error %d",
700 				error);
701 			xlog_recover_cancel(mp->m_log);
702 			goto out_destroy_ail;
703 		}
704 	}
705 
706 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
707 			       "log");
708 	if (error)
709 		goto out_destroy_ail;
710 
711 	/* Normal transactions can now occur */
712 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
713 
714 	/*
715 	 * Now the log has been fully initialised and we know were our
716 	 * space grant counters are, we can initialise the permanent ticket
717 	 * needed for delayed logging to work.
718 	 */
719 	xlog_cil_init_post_recovery(mp->m_log);
720 
721 	return 0;
722 
723 out_destroy_ail:
724 	xfs_trans_ail_destroy(mp);
725 out_free_log:
726 	xlog_dealloc_log(mp->m_log);
727 out:
728 	return error;
729 }
730 
731 /*
732  * Finish the recovery of the file system.  This is separate from the
733  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
735  * here.
736  *
737  * If we finish recovery successfully, start the background log work. If we are
738  * not doing recovery, then we have a RO filesystem and we don't need to start
739  * it.
740  */
741 int
742 xfs_log_mount_finish(
743 	struct xfs_mount	*mp)
744 {
745 	int	error = 0;
746 
747 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
748 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
749 		return 0;
750 	}
751 
752 	/*
753 	 * During the second phase of log recovery, we need iget and
754 	 * iput to behave like they do for an active filesystem.
755 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
756 	 * of inodes before we're done replaying log items on those
757 	 * inodes.  Turn it off immediately after recovery finishes
758 	 * so that we don't leak the quota inodes if subsequent mount
759 	 * activities fail.
760 	 */
761 	mp->m_super->s_flags |= MS_ACTIVE;
762 	error = xlog_recover_finish(mp->m_log);
763 	if (!error)
764 		xfs_log_work_queue(mp);
765 	mp->m_super->s_flags &= ~MS_ACTIVE;
766 
767 	return error;
768 }
769 
770 /*
771  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
772  * the log.
773  */
774 int
775 xfs_log_mount_cancel(
776 	struct xfs_mount	*mp)
777 {
778 	int			error;
779 
780 	error = xlog_recover_cancel(mp->m_log);
781 	xfs_log_unmount(mp);
782 
783 	return error;
784 }
785 
786 /*
787  * Final log writes as part of unmount.
788  *
789  * Mark the filesystem clean as unmount happens.  Note that during relocation
790  * this routine needs to be executed as part of source-bag while the
791  * deallocation must not be done until source-end.
792  */
793 
794 /*
795  * Unmount record used to have a string "Unmount filesystem--" in the
796  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
797  * We just write the magic number now since that particular field isn't
798  * currently architecture converted and "Unmount" is a bit foo.
799  * As far as I know, there weren't any dependencies on the old behaviour.
800  */
801 
802 static int
803 xfs_log_unmount_write(xfs_mount_t *mp)
804 {
805 	struct xlog	 *log = mp->m_log;
806 	xlog_in_core_t	 *iclog;
807 #ifdef DEBUG
808 	xlog_in_core_t	 *first_iclog;
809 #endif
810 	xlog_ticket_t	*tic = NULL;
811 	xfs_lsn_t	 lsn;
812 	int		 error;
813 
814 	/*
815 	 * Don't write out unmount record on read-only mounts.
816 	 * Or, if we are doing a forced umount (typically because of IO errors).
817 	 */
818 	if (mp->m_flags & XFS_MOUNT_RDONLY)
819 		return 0;
820 
821 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
822 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
823 
824 #ifdef DEBUG
825 	first_iclog = iclog = log->l_iclog;
826 	do {
827 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
828 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
829 			ASSERT(iclog->ic_offset == 0);
830 		}
831 		iclog = iclog->ic_next;
832 	} while (iclog != first_iclog);
833 #endif
834 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
835 		error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
836 		if (!error) {
837 			/* the data section must be 32 bit size aligned */
838 			struct {
839 			    uint16_t magic;
840 			    uint16_t pad1;
841 			    uint32_t pad2; /* may as well make it 64 bits */
842 			} magic = {
843 				.magic = XLOG_UNMOUNT_TYPE,
844 			};
845 			struct xfs_log_iovec reg = {
846 				.i_addr = &magic,
847 				.i_len = sizeof(magic),
848 				.i_type = XLOG_REG_TYPE_UNMOUNT,
849 			};
850 			struct xfs_log_vec vec = {
851 				.lv_niovecs = 1,
852 				.lv_iovecp = &reg,
853 			};
854 
855 			/* remove inited flag, and account for space used */
856 			tic->t_flags = 0;
857 			tic->t_curr_res -= sizeof(magic);
858 			error = xlog_write(log, &vec, tic, &lsn,
859 					   NULL, XLOG_UNMOUNT_TRANS);
860 			/*
861 			 * At this point, we're umounting anyway,
862 			 * so there's no point in transitioning log state
863 			 * to IOERROR. Just continue...
864 			 */
865 		}
866 
867 		if (error)
868 			xfs_alert(mp, "%s: unmount record failed", __func__);
869 
870 
871 		spin_lock(&log->l_icloglock);
872 		iclog = log->l_iclog;
873 		atomic_inc(&iclog->ic_refcnt);
874 		xlog_state_want_sync(log, iclog);
875 		spin_unlock(&log->l_icloglock);
876 		error = xlog_state_release_iclog(log, iclog);
877 
878 		spin_lock(&log->l_icloglock);
879 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
880 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
881 			if (!XLOG_FORCED_SHUTDOWN(log)) {
882 				xlog_wait(&iclog->ic_force_wait,
883 							&log->l_icloglock);
884 			} else {
885 				spin_unlock(&log->l_icloglock);
886 			}
887 		} else {
888 			spin_unlock(&log->l_icloglock);
889 		}
890 		if (tic) {
891 			trace_xfs_log_umount_write(log, tic);
892 			xlog_ungrant_log_space(log, tic);
893 			xfs_log_ticket_put(tic);
894 		}
895 	} else {
896 		/*
897 		 * We're already in forced_shutdown mode, couldn't
898 		 * even attempt to write out the unmount transaction.
899 		 *
900 		 * Go through the motions of sync'ing and releasing
901 		 * the iclog, even though no I/O will actually happen,
902 		 * we need to wait for other log I/Os that may already
903 		 * be in progress.  Do this as a separate section of
904 		 * code so we'll know if we ever get stuck here that
905 		 * we're in this odd situation of trying to unmount
906 		 * a file system that went into forced_shutdown as
907 		 * the result of an unmount..
908 		 */
909 		spin_lock(&log->l_icloglock);
910 		iclog = log->l_iclog;
911 		atomic_inc(&iclog->ic_refcnt);
912 
913 		xlog_state_want_sync(log, iclog);
914 		spin_unlock(&log->l_icloglock);
915 		error =  xlog_state_release_iclog(log, iclog);
916 
917 		spin_lock(&log->l_icloglock);
918 
919 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
920 			|| iclog->ic_state == XLOG_STATE_DIRTY
921 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
922 
923 				xlog_wait(&iclog->ic_force_wait,
924 							&log->l_icloglock);
925 		} else {
926 			spin_unlock(&log->l_icloglock);
927 		}
928 	}
929 
930 	return error;
931 }	/* xfs_log_unmount_write */
932 
933 /*
934  * Empty the log for unmount/freeze.
935  *
936  * To do this, we first need to shut down the background log work so it is not
937  * trying to cover the log as we clean up. We then need to unpin all objects in
938  * the log so we can then flush them out. Once they have completed their IO and
939  * run the callbacks removing themselves from the AIL, we can write the unmount
940  * record.
941  */
942 void
943 xfs_log_quiesce(
944 	struct xfs_mount	*mp)
945 {
946 	cancel_delayed_work_sync(&mp->m_log->l_work);
947 	xfs_log_force(mp, XFS_LOG_SYNC);
948 
949 	/*
950 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
951 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
952 	 * xfs_buf_iowait() cannot be used because it was pushed with the
953 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
954 	 * the IO to complete.
955 	 */
956 	xfs_ail_push_all_sync(mp->m_ail);
957 	xfs_wait_buftarg(mp->m_ddev_targp);
958 	xfs_buf_lock(mp->m_sb_bp);
959 	xfs_buf_unlock(mp->m_sb_bp);
960 
961 	xfs_log_unmount_write(mp);
962 }
963 
964 /*
965  * Shut down and release the AIL and Log.
966  *
967  * During unmount, we need to ensure we flush all the dirty metadata objects
968  * from the AIL so that the log is empty before we write the unmount record to
969  * the log. Once this is done, we can tear down the AIL and the log.
970  */
971 void
972 xfs_log_unmount(
973 	struct xfs_mount	*mp)
974 {
975 	xfs_log_quiesce(mp);
976 
977 	xfs_trans_ail_destroy(mp);
978 
979 	xfs_sysfs_del(&mp->m_log->l_kobj);
980 
981 	xlog_dealloc_log(mp->m_log);
982 }
983 
984 void
985 xfs_log_item_init(
986 	struct xfs_mount	*mp,
987 	struct xfs_log_item	*item,
988 	int			type,
989 	const struct xfs_item_ops *ops)
990 {
991 	item->li_mountp = mp;
992 	item->li_ailp = mp->m_ail;
993 	item->li_type = type;
994 	item->li_ops = ops;
995 	item->li_lv = NULL;
996 
997 	INIT_LIST_HEAD(&item->li_ail);
998 	INIT_LIST_HEAD(&item->li_cil);
999 }
1000 
1001 /*
1002  * Wake up processes waiting for log space after we have moved the log tail.
1003  */
1004 void
1005 xfs_log_space_wake(
1006 	struct xfs_mount	*mp)
1007 {
1008 	struct xlog		*log = mp->m_log;
1009 	int			free_bytes;
1010 
1011 	if (XLOG_FORCED_SHUTDOWN(log))
1012 		return;
1013 
1014 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1015 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1016 
1017 		spin_lock(&log->l_write_head.lock);
1018 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1019 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1020 		spin_unlock(&log->l_write_head.lock);
1021 	}
1022 
1023 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1024 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1025 
1026 		spin_lock(&log->l_reserve_head.lock);
1027 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1028 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1029 		spin_unlock(&log->l_reserve_head.lock);
1030 	}
1031 }
1032 
1033 /*
1034  * Determine if we have a transaction that has gone to disk that needs to be
1035  * covered. To begin the transition to the idle state firstly the log needs to
1036  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1037  * we start attempting to cover the log.
1038  *
1039  * Only if we are then in a state where covering is needed, the caller is
1040  * informed that dummy transactions are required to move the log into the idle
1041  * state.
1042  *
1043  * If there are any items in the AIl or CIL, then we do not want to attempt to
1044  * cover the log as we may be in a situation where there isn't log space
1045  * available to run a dummy transaction and this can lead to deadlocks when the
1046  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1047  * there's no point in running a dummy transaction at this point because we
1048  * can't start trying to idle the log until both the CIL and AIL are empty.
1049  */
1050 static int
1051 xfs_log_need_covered(xfs_mount_t *mp)
1052 {
1053 	struct xlog	*log = mp->m_log;
1054 	int		needed = 0;
1055 
1056 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1057 		return 0;
1058 
1059 	if (!xlog_cil_empty(log))
1060 		return 0;
1061 
1062 	spin_lock(&log->l_icloglock);
1063 	switch (log->l_covered_state) {
1064 	case XLOG_STATE_COVER_DONE:
1065 	case XLOG_STATE_COVER_DONE2:
1066 	case XLOG_STATE_COVER_IDLE:
1067 		break;
1068 	case XLOG_STATE_COVER_NEED:
1069 	case XLOG_STATE_COVER_NEED2:
1070 		if (xfs_ail_min_lsn(log->l_ailp))
1071 			break;
1072 		if (!xlog_iclogs_empty(log))
1073 			break;
1074 
1075 		needed = 1;
1076 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1077 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1078 		else
1079 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1080 		break;
1081 	default:
1082 		needed = 1;
1083 		break;
1084 	}
1085 	spin_unlock(&log->l_icloglock);
1086 	return needed;
1087 }
1088 
1089 /*
1090  * We may be holding the log iclog lock upon entering this routine.
1091  */
1092 xfs_lsn_t
1093 xlog_assign_tail_lsn_locked(
1094 	struct xfs_mount	*mp)
1095 {
1096 	struct xlog		*log = mp->m_log;
1097 	struct xfs_log_item	*lip;
1098 	xfs_lsn_t		tail_lsn;
1099 
1100 	assert_spin_locked(&mp->m_ail->xa_lock);
1101 
1102 	/*
1103 	 * To make sure we always have a valid LSN for the log tail we keep
1104 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1105 	 * and use that when the AIL was empty.
1106 	 */
1107 	lip = xfs_ail_min(mp->m_ail);
1108 	if (lip)
1109 		tail_lsn = lip->li_lsn;
1110 	else
1111 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1112 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1113 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1114 	return tail_lsn;
1115 }
1116 
1117 xfs_lsn_t
1118 xlog_assign_tail_lsn(
1119 	struct xfs_mount	*mp)
1120 {
1121 	xfs_lsn_t		tail_lsn;
1122 
1123 	spin_lock(&mp->m_ail->xa_lock);
1124 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1125 	spin_unlock(&mp->m_ail->xa_lock);
1126 
1127 	return tail_lsn;
1128 }
1129 
1130 /*
1131  * Return the space in the log between the tail and the head.  The head
1132  * is passed in the cycle/bytes formal parms.  In the special case where
1133  * the reserve head has wrapped passed the tail, this calculation is no
1134  * longer valid.  In this case, just return 0 which means there is no space
1135  * in the log.  This works for all places where this function is called
1136  * with the reserve head.  Of course, if the write head were to ever
1137  * wrap the tail, we should blow up.  Rather than catch this case here,
1138  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1139  *
1140  * This code also handles the case where the reservation head is behind
1141  * the tail.  The details of this case are described below, but the end
1142  * result is that we return the size of the log as the amount of space left.
1143  */
1144 STATIC int
1145 xlog_space_left(
1146 	struct xlog	*log,
1147 	atomic64_t	*head)
1148 {
1149 	int		free_bytes;
1150 	int		tail_bytes;
1151 	int		tail_cycle;
1152 	int		head_cycle;
1153 	int		head_bytes;
1154 
1155 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1156 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1157 	tail_bytes = BBTOB(tail_bytes);
1158 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1159 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1160 	else if (tail_cycle + 1 < head_cycle)
1161 		return 0;
1162 	else if (tail_cycle < head_cycle) {
1163 		ASSERT(tail_cycle == (head_cycle - 1));
1164 		free_bytes = tail_bytes - head_bytes;
1165 	} else {
1166 		/*
1167 		 * The reservation head is behind the tail.
1168 		 * In this case we just want to return the size of the
1169 		 * log as the amount of space left.
1170 		 */
1171 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1172 		xfs_alert(log->l_mp,
1173 			  "  tail_cycle = %d, tail_bytes = %d",
1174 			  tail_cycle, tail_bytes);
1175 		xfs_alert(log->l_mp,
1176 			  "  GH   cycle = %d, GH   bytes = %d",
1177 			  head_cycle, head_bytes);
1178 		ASSERT(0);
1179 		free_bytes = log->l_logsize;
1180 	}
1181 	return free_bytes;
1182 }
1183 
1184 
1185 /*
1186  * Log function which is called when an io completes.
1187  *
1188  * The log manager needs its own routine, in order to control what
1189  * happens with the buffer after the write completes.
1190  */
1191 static void
1192 xlog_iodone(xfs_buf_t *bp)
1193 {
1194 	struct xlog_in_core	*iclog = bp->b_fspriv;
1195 	struct xlog		*l = iclog->ic_log;
1196 	int			aborted = 0;
1197 
1198 	/*
1199 	 * Race to shutdown the filesystem if we see an error or the iclog is in
1200 	 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1201 	 * CRC errors into log recovery.
1202 	 */
1203 	if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1204 	    iclog->ic_state & XLOG_STATE_IOABORT) {
1205 		if (iclog->ic_state & XLOG_STATE_IOABORT)
1206 			iclog->ic_state &= ~XLOG_STATE_IOABORT;
1207 
1208 		xfs_buf_ioerror_alert(bp, __func__);
1209 		xfs_buf_stale(bp);
1210 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1211 		/*
1212 		 * This flag will be propagated to the trans-committed
1213 		 * callback routines to let them know that the log-commit
1214 		 * didn't succeed.
1215 		 */
1216 		aborted = XFS_LI_ABORTED;
1217 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1218 		aborted = XFS_LI_ABORTED;
1219 	}
1220 
1221 	/* log I/O is always issued ASYNC */
1222 	ASSERT(bp->b_flags & XBF_ASYNC);
1223 	xlog_state_done_syncing(iclog, aborted);
1224 
1225 	/*
1226 	 * drop the buffer lock now that we are done. Nothing references
1227 	 * the buffer after this, so an unmount waiting on this lock can now
1228 	 * tear it down safely. As such, it is unsafe to reference the buffer
1229 	 * (bp) after the unlock as we could race with it being freed.
1230 	 */
1231 	xfs_buf_unlock(bp);
1232 }
1233 
1234 /*
1235  * Return size of each in-core log record buffer.
1236  *
1237  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1238  *
1239  * If the filesystem blocksize is too large, we may need to choose a
1240  * larger size since the directory code currently logs entire blocks.
1241  */
1242 
1243 STATIC void
1244 xlog_get_iclog_buffer_size(
1245 	struct xfs_mount	*mp,
1246 	struct xlog		*log)
1247 {
1248 	int size;
1249 	int xhdrs;
1250 
1251 	if (mp->m_logbufs <= 0)
1252 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1253 	else
1254 		log->l_iclog_bufs = mp->m_logbufs;
1255 
1256 	/*
1257 	 * Buffer size passed in from mount system call.
1258 	 */
1259 	if (mp->m_logbsize > 0) {
1260 		size = log->l_iclog_size = mp->m_logbsize;
1261 		log->l_iclog_size_log = 0;
1262 		while (size != 1) {
1263 			log->l_iclog_size_log++;
1264 			size >>= 1;
1265 		}
1266 
1267 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1268 			/* # headers = size / 32k
1269 			 * one header holds cycles from 32k of data
1270 			 */
1271 
1272 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1273 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1274 				xhdrs++;
1275 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1276 			log->l_iclog_heads = xhdrs;
1277 		} else {
1278 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1279 			log->l_iclog_hsize = BBSIZE;
1280 			log->l_iclog_heads = 1;
1281 		}
1282 		goto done;
1283 	}
1284 
1285 	/* All machines use 32kB buffers by default. */
1286 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1287 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1288 
1289 	/* the default log size is 16k or 32k which is one header sector */
1290 	log->l_iclog_hsize = BBSIZE;
1291 	log->l_iclog_heads = 1;
1292 
1293 done:
1294 	/* are we being asked to make the sizes selected above visible? */
1295 	if (mp->m_logbufs == 0)
1296 		mp->m_logbufs = log->l_iclog_bufs;
1297 	if (mp->m_logbsize == 0)
1298 		mp->m_logbsize = log->l_iclog_size;
1299 }	/* xlog_get_iclog_buffer_size */
1300 
1301 
1302 void
1303 xfs_log_work_queue(
1304 	struct xfs_mount        *mp)
1305 {
1306 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1307 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1308 }
1309 
1310 /*
1311  * Every sync period we need to unpin all items in the AIL and push them to
1312  * disk. If there is nothing dirty, then we might need to cover the log to
1313  * indicate that the filesystem is idle.
1314  */
1315 static void
1316 xfs_log_worker(
1317 	struct work_struct	*work)
1318 {
1319 	struct xlog		*log = container_of(to_delayed_work(work),
1320 						struct xlog, l_work);
1321 	struct xfs_mount	*mp = log->l_mp;
1322 
1323 	/* dgc: errors ignored - not fatal and nowhere to report them */
1324 	if (xfs_log_need_covered(mp)) {
1325 		/*
1326 		 * Dump a transaction into the log that contains no real change.
1327 		 * This is needed to stamp the current tail LSN into the log
1328 		 * during the covering operation.
1329 		 *
1330 		 * We cannot use an inode here for this - that will push dirty
1331 		 * state back up into the VFS and then periodic inode flushing
1332 		 * will prevent log covering from making progress. Hence we
1333 		 * synchronously log the superblock instead to ensure the
1334 		 * superblock is immediately unpinned and can be written back.
1335 		 */
1336 		xfs_sync_sb(mp, true);
1337 	} else
1338 		xfs_log_force(mp, 0);
1339 
1340 	/* start pushing all the metadata that is currently dirty */
1341 	xfs_ail_push_all(mp->m_ail);
1342 
1343 	/* queue us up again */
1344 	xfs_log_work_queue(mp);
1345 }
1346 
1347 /*
1348  * This routine initializes some of the log structure for a given mount point.
1349  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1350  * some other stuff may be filled in too.
1351  */
1352 STATIC struct xlog *
1353 xlog_alloc_log(
1354 	struct xfs_mount	*mp,
1355 	struct xfs_buftarg	*log_target,
1356 	xfs_daddr_t		blk_offset,
1357 	int			num_bblks)
1358 {
1359 	struct xlog		*log;
1360 	xlog_rec_header_t	*head;
1361 	xlog_in_core_t		**iclogp;
1362 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1363 	xfs_buf_t		*bp;
1364 	int			i;
1365 	int			error = -ENOMEM;
1366 	uint			log2_size = 0;
1367 
1368 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1369 	if (!log) {
1370 		xfs_warn(mp, "Log allocation failed: No memory!");
1371 		goto out;
1372 	}
1373 
1374 	log->l_mp	   = mp;
1375 	log->l_targ	   = log_target;
1376 	log->l_logsize     = BBTOB(num_bblks);
1377 	log->l_logBBstart  = blk_offset;
1378 	log->l_logBBsize   = num_bblks;
1379 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1380 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1381 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1382 
1383 	log->l_prev_block  = -1;
1384 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1385 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1386 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1387 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1388 
1389 	xlog_grant_head_init(&log->l_reserve_head);
1390 	xlog_grant_head_init(&log->l_write_head);
1391 
1392 	error = -EFSCORRUPTED;
1393 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1394 	        log2_size = mp->m_sb.sb_logsectlog;
1395 		if (log2_size < BBSHIFT) {
1396 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1397 				log2_size, BBSHIFT);
1398 			goto out_free_log;
1399 		}
1400 
1401 	        log2_size -= BBSHIFT;
1402 		if (log2_size > mp->m_sectbb_log) {
1403 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1404 				log2_size, mp->m_sectbb_log);
1405 			goto out_free_log;
1406 		}
1407 
1408 		/* for larger sector sizes, must have v2 or external log */
1409 		if (log2_size && log->l_logBBstart > 0 &&
1410 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1411 			xfs_warn(mp,
1412 		"log sector size (0x%x) invalid for configuration.",
1413 				log2_size);
1414 			goto out_free_log;
1415 		}
1416 	}
1417 	log->l_sectBBsize = 1 << log2_size;
1418 
1419 	xlog_get_iclog_buffer_size(mp, log);
1420 
1421 	/*
1422 	 * Use a NULL block for the extra log buffer used during splits so that
1423 	 * it will trigger errors if we ever try to do IO on it without first
1424 	 * having set it up properly.
1425 	 */
1426 	error = -ENOMEM;
1427 	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1428 			   BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1429 	if (!bp)
1430 		goto out_free_log;
1431 
1432 	/*
1433 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1434 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1435 	 * when appropriately.
1436 	 */
1437 	ASSERT(xfs_buf_islocked(bp));
1438 	xfs_buf_unlock(bp);
1439 
1440 	/* use high priority wq for log I/O completion */
1441 	bp->b_ioend_wq = mp->m_log_workqueue;
1442 	bp->b_iodone = xlog_iodone;
1443 	log->l_xbuf = bp;
1444 
1445 	spin_lock_init(&log->l_icloglock);
1446 	init_waitqueue_head(&log->l_flush_wait);
1447 
1448 	iclogp = &log->l_iclog;
1449 	/*
1450 	 * The amount of memory to allocate for the iclog structure is
1451 	 * rather funky due to the way the structure is defined.  It is
1452 	 * done this way so that we can use different sizes for machines
1453 	 * with different amounts of memory.  See the definition of
1454 	 * xlog_in_core_t in xfs_log_priv.h for details.
1455 	 */
1456 	ASSERT(log->l_iclog_size >= 4096);
1457 	for (i=0; i < log->l_iclog_bufs; i++) {
1458 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1459 		if (!*iclogp)
1460 			goto out_free_iclog;
1461 
1462 		iclog = *iclogp;
1463 		iclog->ic_prev = prev_iclog;
1464 		prev_iclog = iclog;
1465 
1466 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1467 					  BTOBB(log->l_iclog_size),
1468 					  XBF_NO_IOACCT);
1469 		if (!bp)
1470 			goto out_free_iclog;
1471 
1472 		ASSERT(xfs_buf_islocked(bp));
1473 		xfs_buf_unlock(bp);
1474 
1475 		/* use high priority wq for log I/O completion */
1476 		bp->b_ioend_wq = mp->m_log_workqueue;
1477 		bp->b_iodone = xlog_iodone;
1478 		iclog->ic_bp = bp;
1479 		iclog->ic_data = bp->b_addr;
1480 #ifdef DEBUG
1481 		log->l_iclog_bak[i] = &iclog->ic_header;
1482 #endif
1483 		head = &iclog->ic_header;
1484 		memset(head, 0, sizeof(xlog_rec_header_t));
1485 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1486 		head->h_version = cpu_to_be32(
1487 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1488 		head->h_size = cpu_to_be32(log->l_iclog_size);
1489 		/* new fields */
1490 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1491 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1492 
1493 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1494 		iclog->ic_state = XLOG_STATE_ACTIVE;
1495 		iclog->ic_log = log;
1496 		atomic_set(&iclog->ic_refcnt, 0);
1497 		spin_lock_init(&iclog->ic_callback_lock);
1498 		iclog->ic_callback_tail = &(iclog->ic_callback);
1499 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1500 
1501 		init_waitqueue_head(&iclog->ic_force_wait);
1502 		init_waitqueue_head(&iclog->ic_write_wait);
1503 
1504 		iclogp = &iclog->ic_next;
1505 	}
1506 	*iclogp = log->l_iclog;			/* complete ring */
1507 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1508 
1509 	error = xlog_cil_init(log);
1510 	if (error)
1511 		goto out_free_iclog;
1512 	return log;
1513 
1514 out_free_iclog:
1515 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1516 		prev_iclog = iclog->ic_next;
1517 		if (iclog->ic_bp)
1518 			xfs_buf_free(iclog->ic_bp);
1519 		kmem_free(iclog);
1520 	}
1521 	spinlock_destroy(&log->l_icloglock);
1522 	xfs_buf_free(log->l_xbuf);
1523 out_free_log:
1524 	kmem_free(log);
1525 out:
1526 	return ERR_PTR(error);
1527 }	/* xlog_alloc_log */
1528 
1529 
1530 /*
1531  * Write out the commit record of a transaction associated with the given
1532  * ticket.  Return the lsn of the commit record.
1533  */
1534 STATIC int
1535 xlog_commit_record(
1536 	struct xlog		*log,
1537 	struct xlog_ticket	*ticket,
1538 	struct xlog_in_core	**iclog,
1539 	xfs_lsn_t		*commitlsnp)
1540 {
1541 	struct xfs_mount *mp = log->l_mp;
1542 	int	error;
1543 	struct xfs_log_iovec reg = {
1544 		.i_addr = NULL,
1545 		.i_len = 0,
1546 		.i_type = XLOG_REG_TYPE_COMMIT,
1547 	};
1548 	struct xfs_log_vec vec = {
1549 		.lv_niovecs = 1,
1550 		.lv_iovecp = &reg,
1551 	};
1552 
1553 	ASSERT_ALWAYS(iclog);
1554 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1555 					XLOG_COMMIT_TRANS);
1556 	if (error)
1557 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1558 	return error;
1559 }
1560 
1561 /*
1562  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1563  * log space.  This code pushes on the lsn which would supposedly free up
1564  * the 25% which we want to leave free.  We may need to adopt a policy which
1565  * pushes on an lsn which is further along in the log once we reach the high
1566  * water mark.  In this manner, we would be creating a low water mark.
1567  */
1568 STATIC void
1569 xlog_grant_push_ail(
1570 	struct xlog	*log,
1571 	int		need_bytes)
1572 {
1573 	xfs_lsn_t	threshold_lsn = 0;
1574 	xfs_lsn_t	last_sync_lsn;
1575 	int		free_blocks;
1576 	int		free_bytes;
1577 	int		threshold_block;
1578 	int		threshold_cycle;
1579 	int		free_threshold;
1580 
1581 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1582 
1583 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1584 	free_blocks = BTOBBT(free_bytes);
1585 
1586 	/*
1587 	 * Set the threshold for the minimum number of free blocks in the
1588 	 * log to the maximum of what the caller needs, one quarter of the
1589 	 * log, and 256 blocks.
1590 	 */
1591 	free_threshold = BTOBB(need_bytes);
1592 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1593 	free_threshold = MAX(free_threshold, 256);
1594 	if (free_blocks >= free_threshold)
1595 		return;
1596 
1597 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1598 						&threshold_block);
1599 	threshold_block += free_threshold;
1600 	if (threshold_block >= log->l_logBBsize) {
1601 		threshold_block -= log->l_logBBsize;
1602 		threshold_cycle += 1;
1603 	}
1604 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1605 					threshold_block);
1606 	/*
1607 	 * Don't pass in an lsn greater than the lsn of the last
1608 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1609 	 * so that it doesn't change between the compare and the set.
1610 	 */
1611 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1612 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1613 		threshold_lsn = last_sync_lsn;
1614 
1615 	/*
1616 	 * Get the transaction layer to kick the dirty buffers out to
1617 	 * disk asynchronously. No point in trying to do this if
1618 	 * the filesystem is shutting down.
1619 	 */
1620 	if (!XLOG_FORCED_SHUTDOWN(log))
1621 		xfs_ail_push(log->l_ailp, threshold_lsn);
1622 }
1623 
1624 /*
1625  * Stamp cycle number in every block
1626  */
1627 STATIC void
1628 xlog_pack_data(
1629 	struct xlog		*log,
1630 	struct xlog_in_core	*iclog,
1631 	int			roundoff)
1632 {
1633 	int			i, j, k;
1634 	int			size = iclog->ic_offset + roundoff;
1635 	__be32			cycle_lsn;
1636 	char			*dp;
1637 
1638 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1639 
1640 	dp = iclog->ic_datap;
1641 	for (i = 0; i < BTOBB(size); i++) {
1642 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1643 			break;
1644 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1645 		*(__be32 *)dp = cycle_lsn;
1646 		dp += BBSIZE;
1647 	}
1648 
1649 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1650 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1651 
1652 		for ( ; i < BTOBB(size); i++) {
1653 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1654 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1655 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1656 			*(__be32 *)dp = cycle_lsn;
1657 			dp += BBSIZE;
1658 		}
1659 
1660 		for (i = 1; i < log->l_iclog_heads; i++)
1661 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1662 	}
1663 }
1664 
1665 /*
1666  * Calculate the checksum for a log buffer.
1667  *
1668  * This is a little more complicated than it should be because the various
1669  * headers and the actual data are non-contiguous.
1670  */
1671 __le32
1672 xlog_cksum(
1673 	struct xlog		*log,
1674 	struct xlog_rec_header	*rhead,
1675 	char			*dp,
1676 	int			size)
1677 {
1678 	uint32_t		crc;
1679 
1680 	/* first generate the crc for the record header ... */
1681 	crc = xfs_start_cksum_update((char *)rhead,
1682 			      sizeof(struct xlog_rec_header),
1683 			      offsetof(struct xlog_rec_header, h_crc));
1684 
1685 	/* ... then for additional cycle data for v2 logs ... */
1686 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1687 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1688 		int		i;
1689 		int		xheads;
1690 
1691 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1692 		if (size % XLOG_HEADER_CYCLE_SIZE)
1693 			xheads++;
1694 
1695 		for (i = 1; i < xheads; i++) {
1696 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1697 				     sizeof(struct xlog_rec_ext_header));
1698 		}
1699 	}
1700 
1701 	/* ... and finally for the payload */
1702 	crc = crc32c(crc, dp, size);
1703 
1704 	return xfs_end_cksum(crc);
1705 }
1706 
1707 /*
1708  * The bdstrat callback function for log bufs. This gives us a central
1709  * place to trap bufs in case we get hit by a log I/O error and need to
1710  * shutdown. Actually, in practice, even when we didn't get a log error,
1711  * we transition the iclogs to IOERROR state *after* flushing all existing
1712  * iclogs to disk. This is because we don't want anymore new transactions to be
1713  * started or completed afterwards.
1714  *
1715  * We lock the iclogbufs here so that we can serialise against IO completion
1716  * during unmount. We might be processing a shutdown triggered during unmount,
1717  * and that can occur asynchronously to the unmount thread, and hence we need to
1718  * ensure that completes before tearing down the iclogbufs. Hence we need to
1719  * hold the buffer lock across the log IO to acheive that.
1720  */
1721 STATIC int
1722 xlog_bdstrat(
1723 	struct xfs_buf		*bp)
1724 {
1725 	struct xlog_in_core	*iclog = bp->b_fspriv;
1726 
1727 	xfs_buf_lock(bp);
1728 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1729 		xfs_buf_ioerror(bp, -EIO);
1730 		xfs_buf_stale(bp);
1731 		xfs_buf_ioend(bp);
1732 		/*
1733 		 * It would seem logical to return EIO here, but we rely on
1734 		 * the log state machine to propagate I/O errors instead of
1735 		 * doing it here. Similarly, IO completion will unlock the
1736 		 * buffer, so we don't do it here.
1737 		 */
1738 		return 0;
1739 	}
1740 
1741 	xfs_buf_submit(bp);
1742 	return 0;
1743 }
1744 
1745 /*
1746  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1747  * fashion.  Previously, we should have moved the current iclog
1748  * ptr in the log to point to the next available iclog.  This allows further
1749  * write to continue while this code syncs out an iclog ready to go.
1750  * Before an in-core log can be written out, the data section must be scanned
1751  * to save away the 1st word of each BBSIZE block into the header.  We replace
1752  * it with the current cycle count.  Each BBSIZE block is tagged with the
1753  * cycle count because there in an implicit assumption that drives will
1754  * guarantee that entire 512 byte blocks get written at once.  In other words,
1755  * we can't have part of a 512 byte block written and part not written.  By
1756  * tagging each block, we will know which blocks are valid when recovering
1757  * after an unclean shutdown.
1758  *
1759  * This routine is single threaded on the iclog.  No other thread can be in
1760  * this routine with the same iclog.  Changing contents of iclog can there-
1761  * fore be done without grabbing the state machine lock.  Updating the global
1762  * log will require grabbing the lock though.
1763  *
1764  * The entire log manager uses a logical block numbering scheme.  Only
1765  * log_sync (and then only bwrite()) know about the fact that the log may
1766  * not start with block zero on a given device.  The log block start offset
1767  * is added immediately before calling bwrite().
1768  */
1769 
1770 STATIC int
1771 xlog_sync(
1772 	struct xlog		*log,
1773 	struct xlog_in_core	*iclog)
1774 {
1775 	xfs_buf_t	*bp;
1776 	int		i;
1777 	uint		count;		/* byte count of bwrite */
1778 	uint		count_init;	/* initial count before roundup */
1779 	int		roundoff;       /* roundoff to BB or stripe */
1780 	int		split = 0;	/* split write into two regions */
1781 	int		error;
1782 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1783 	int		size;
1784 
1785 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1786 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1787 
1788 	/* Add for LR header */
1789 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1790 
1791 	/* Round out the log write size */
1792 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1793 		/* we have a v2 stripe unit to use */
1794 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1795 	} else {
1796 		count = BBTOB(BTOBB(count_init));
1797 	}
1798 	roundoff = count - count_init;
1799 	ASSERT(roundoff >= 0);
1800 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1801                 roundoff < log->l_mp->m_sb.sb_logsunit)
1802 		||
1803 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1804 		 roundoff < BBTOB(1)));
1805 
1806 	/* move grant heads by roundoff in sync */
1807 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1808 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1809 
1810 	/* put cycle number in every block */
1811 	xlog_pack_data(log, iclog, roundoff);
1812 
1813 	/* real byte length */
1814 	size = iclog->ic_offset;
1815 	if (v2)
1816 		size += roundoff;
1817 	iclog->ic_header.h_len = cpu_to_be32(size);
1818 
1819 	bp = iclog->ic_bp;
1820 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1821 
1822 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1823 
1824 	/* Do we need to split this write into 2 parts? */
1825 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1826 		char		*dptr;
1827 
1828 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1829 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1830 		iclog->ic_bwritecnt = 2;
1831 
1832 		/*
1833 		 * Bump the cycle numbers at the start of each block in the
1834 		 * part of the iclog that ends up in the buffer that gets
1835 		 * written to the start of the log.
1836 		 *
1837 		 * Watch out for the header magic number case, though.
1838 		 */
1839 		dptr = (char *)&iclog->ic_header + count;
1840 		for (i = 0; i < split; i += BBSIZE) {
1841 			uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1842 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1843 				cycle++;
1844 			*(__be32 *)dptr = cpu_to_be32(cycle);
1845 
1846 			dptr += BBSIZE;
1847 		}
1848 	} else {
1849 		iclog->ic_bwritecnt = 1;
1850 	}
1851 
1852 	/* calculcate the checksum */
1853 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1854 					    iclog->ic_datap, size);
1855 	/*
1856 	 * Intentionally corrupt the log record CRC based on the error injection
1857 	 * frequency, if defined. This facilitates testing log recovery in the
1858 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1859 	 * write on I/O completion and shutdown the fs. The subsequent mount
1860 	 * detects the bad CRC and attempts to recover.
1861 	 */
1862 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1863 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1864 		iclog->ic_state |= XLOG_STATE_IOABORT;
1865 		xfs_warn(log->l_mp,
1866 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1867 			 be64_to_cpu(iclog->ic_header.h_lsn));
1868 	}
1869 
1870 	bp->b_io_length = BTOBB(count);
1871 	bp->b_fspriv = iclog;
1872 	bp->b_flags &= ~XBF_FLUSH;
1873 	bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1874 
1875 	/*
1876 	 * Flush the data device before flushing the log to make sure all meta
1877 	 * data written back from the AIL actually made it to disk before
1878 	 * stamping the new log tail LSN into the log buffer.  For an external
1879 	 * log we need to issue the flush explicitly, and unfortunately
1880 	 * synchronously here; for an internal log we can simply use the block
1881 	 * layer state machine for preflushes.
1882 	 */
1883 	if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1884 		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1885 	else
1886 		bp->b_flags |= XBF_FLUSH;
1887 
1888 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1889 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1890 
1891 	xlog_verify_iclog(log, iclog, count, true);
1892 
1893 	/* account for log which doesn't start at block #0 */
1894 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1895 
1896 	/*
1897 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1898 	 * is shutting down.
1899 	 */
1900 	error = xlog_bdstrat(bp);
1901 	if (error) {
1902 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1903 		return error;
1904 	}
1905 	if (split) {
1906 		bp = iclog->ic_log->l_xbuf;
1907 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1908 		xfs_buf_associate_memory(bp,
1909 				(char *)&iclog->ic_header + count, split);
1910 		bp->b_fspriv = iclog;
1911 		bp->b_flags &= ~XBF_FLUSH;
1912 		bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1913 
1914 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1915 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1916 
1917 		/* account for internal log which doesn't start at block #0 */
1918 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1919 		error = xlog_bdstrat(bp);
1920 		if (error) {
1921 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1922 			return error;
1923 		}
1924 	}
1925 	return 0;
1926 }	/* xlog_sync */
1927 
1928 /*
1929  * Deallocate a log structure
1930  */
1931 STATIC void
1932 xlog_dealloc_log(
1933 	struct xlog	*log)
1934 {
1935 	xlog_in_core_t	*iclog, *next_iclog;
1936 	int		i;
1937 
1938 	xlog_cil_destroy(log);
1939 
1940 	/*
1941 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1942 	 * is done before we tear down these buffers.
1943 	 */
1944 	iclog = log->l_iclog;
1945 	for (i = 0; i < log->l_iclog_bufs; i++) {
1946 		xfs_buf_lock(iclog->ic_bp);
1947 		xfs_buf_unlock(iclog->ic_bp);
1948 		iclog = iclog->ic_next;
1949 	}
1950 
1951 	/*
1952 	 * Always need to ensure that the extra buffer does not point to memory
1953 	 * owned by another log buffer before we free it. Also, cycle the lock
1954 	 * first to ensure we've completed IO on it.
1955 	 */
1956 	xfs_buf_lock(log->l_xbuf);
1957 	xfs_buf_unlock(log->l_xbuf);
1958 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1959 	xfs_buf_free(log->l_xbuf);
1960 
1961 	iclog = log->l_iclog;
1962 	for (i = 0; i < log->l_iclog_bufs; i++) {
1963 		xfs_buf_free(iclog->ic_bp);
1964 		next_iclog = iclog->ic_next;
1965 		kmem_free(iclog);
1966 		iclog = next_iclog;
1967 	}
1968 	spinlock_destroy(&log->l_icloglock);
1969 
1970 	log->l_mp->m_log = NULL;
1971 	kmem_free(log);
1972 }	/* xlog_dealloc_log */
1973 
1974 /*
1975  * Update counters atomically now that memcpy is done.
1976  */
1977 /* ARGSUSED */
1978 static inline void
1979 xlog_state_finish_copy(
1980 	struct xlog		*log,
1981 	struct xlog_in_core	*iclog,
1982 	int			record_cnt,
1983 	int			copy_bytes)
1984 {
1985 	spin_lock(&log->l_icloglock);
1986 
1987 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1988 	iclog->ic_offset += copy_bytes;
1989 
1990 	spin_unlock(&log->l_icloglock);
1991 }	/* xlog_state_finish_copy */
1992 
1993 
1994 
1995 
1996 /*
1997  * print out info relating to regions written which consume
1998  * the reservation
1999  */
2000 void
2001 xlog_print_tic_res(
2002 	struct xfs_mount	*mp,
2003 	struct xlog_ticket	*ticket)
2004 {
2005 	uint i;
2006 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2007 
2008 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2009 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2010 	static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2011 	    REG_TYPE_STR(BFORMAT, "bformat"),
2012 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2013 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2014 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2015 	    REG_TYPE_STR(IFORMAT, "iformat"),
2016 	    REG_TYPE_STR(ICORE, "icore"),
2017 	    REG_TYPE_STR(IEXT, "iext"),
2018 	    REG_TYPE_STR(IBROOT, "ibroot"),
2019 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2020 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2021 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2022 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2023 	    REG_TYPE_STR(QFORMAT, "qformat"),
2024 	    REG_TYPE_STR(DQUOT, "dquot"),
2025 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2026 	    REG_TYPE_STR(LRHEADER, "LR header"),
2027 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2028 	    REG_TYPE_STR(COMMIT, "commit"),
2029 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2030 	    REG_TYPE_STR(ICREATE, "inode create")
2031 	};
2032 #undef REG_TYPE_STR
2033 
2034 	xfs_warn(mp, "ticket reservation summary:");
2035 	xfs_warn(mp, "  unit res    = %d bytes",
2036 		 ticket->t_unit_res);
2037 	xfs_warn(mp, "  current res = %d bytes",
2038 		 ticket->t_curr_res);
2039 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2040 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2041 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2042 		 ticket->t_res_num_ophdrs, ophdr_spc);
2043 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2044 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2045 	xfs_warn(mp, "  num regions = %u",
2046 		 ticket->t_res_num);
2047 
2048 	for (i = 0; i < ticket->t_res_num; i++) {
2049 		uint r_type = ticket->t_res_arr[i].r_type;
2050 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2051 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2052 			    "bad-rtype" : res_type_str[r_type]),
2053 			    ticket->t_res_arr[i].r_len);
2054 	}
2055 }
2056 
2057 /*
2058  * Print a summary of the transaction.
2059  */
2060 void
2061 xlog_print_trans(
2062 	struct xfs_trans		*tp)
2063 {
2064 	struct xfs_mount		*mp = tp->t_mountp;
2065 	struct xfs_log_item_desc	*lidp;
2066 
2067 	/* dump core transaction and ticket info */
2068 	xfs_warn(mp, "transaction summary:");
2069 	xfs_warn(mp, "  flags	= 0x%x", tp->t_flags);
2070 
2071 	xlog_print_tic_res(mp, tp->t_ticket);
2072 
2073 	/* dump each log item */
2074 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2075 		struct xfs_log_item	*lip = lidp->lid_item;
2076 		struct xfs_log_vec	*lv = lip->li_lv;
2077 		struct xfs_log_iovec	*vec;
2078 		int			i;
2079 
2080 		xfs_warn(mp, "log item: ");
2081 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2082 		xfs_warn(mp, "  flags	= 0x%x", lip->li_flags);
2083 		if (!lv)
2084 			continue;
2085 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2086 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2087 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2088 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2089 
2090 		/* dump each iovec for the log item */
2091 		vec = lv->lv_iovecp;
2092 		for (i = 0; i < lv->lv_niovecs; i++) {
2093 			int dumplen = min(vec->i_len, 32);
2094 
2095 			xfs_warn(mp, "  iovec[%d]", i);
2096 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2097 			xfs_warn(mp, "    len	= %d", vec->i_len);
2098 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2099 			xfs_hex_dump(vec->i_addr, dumplen);
2100 
2101 			vec++;
2102 		}
2103 	}
2104 }
2105 
2106 /*
2107  * Calculate the potential space needed by the log vector.  Each region gets
2108  * its own xlog_op_header_t and may need to be double word aligned.
2109  */
2110 static int
2111 xlog_write_calc_vec_length(
2112 	struct xlog_ticket	*ticket,
2113 	struct xfs_log_vec	*log_vector)
2114 {
2115 	struct xfs_log_vec	*lv;
2116 	int			headers = 0;
2117 	int			len = 0;
2118 	int			i;
2119 
2120 	/* acct for start rec of xact */
2121 	if (ticket->t_flags & XLOG_TIC_INITED)
2122 		headers++;
2123 
2124 	for (lv = log_vector; lv; lv = lv->lv_next) {
2125 		/* we don't write ordered log vectors */
2126 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2127 			continue;
2128 
2129 		headers += lv->lv_niovecs;
2130 
2131 		for (i = 0; i < lv->lv_niovecs; i++) {
2132 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2133 
2134 			len += vecp->i_len;
2135 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2136 		}
2137 	}
2138 
2139 	ticket->t_res_num_ophdrs += headers;
2140 	len += headers * sizeof(struct xlog_op_header);
2141 
2142 	return len;
2143 }
2144 
2145 /*
2146  * If first write for transaction, insert start record  We can't be trying to
2147  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2148  */
2149 static int
2150 xlog_write_start_rec(
2151 	struct xlog_op_header	*ophdr,
2152 	struct xlog_ticket	*ticket)
2153 {
2154 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2155 		return 0;
2156 
2157 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2158 	ophdr->oh_clientid = ticket->t_clientid;
2159 	ophdr->oh_len = 0;
2160 	ophdr->oh_flags = XLOG_START_TRANS;
2161 	ophdr->oh_res2 = 0;
2162 
2163 	ticket->t_flags &= ~XLOG_TIC_INITED;
2164 
2165 	return sizeof(struct xlog_op_header);
2166 }
2167 
2168 static xlog_op_header_t *
2169 xlog_write_setup_ophdr(
2170 	struct xlog		*log,
2171 	struct xlog_op_header	*ophdr,
2172 	struct xlog_ticket	*ticket,
2173 	uint			flags)
2174 {
2175 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2176 	ophdr->oh_clientid = ticket->t_clientid;
2177 	ophdr->oh_res2 = 0;
2178 
2179 	/* are we copying a commit or unmount record? */
2180 	ophdr->oh_flags = flags;
2181 
2182 	/*
2183 	 * We've seen logs corrupted with bad transaction client ids.  This
2184 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2185 	 * and shut down the filesystem.
2186 	 */
2187 	switch (ophdr->oh_clientid)  {
2188 	case XFS_TRANSACTION:
2189 	case XFS_VOLUME:
2190 	case XFS_LOG:
2191 		break;
2192 	default:
2193 		xfs_warn(log->l_mp,
2194 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2195 			ophdr->oh_clientid, ticket);
2196 		return NULL;
2197 	}
2198 
2199 	return ophdr;
2200 }
2201 
2202 /*
2203  * Set up the parameters of the region copy into the log. This has
2204  * to handle region write split across multiple log buffers - this
2205  * state is kept external to this function so that this code can
2206  * be written in an obvious, self documenting manner.
2207  */
2208 static int
2209 xlog_write_setup_copy(
2210 	struct xlog_ticket	*ticket,
2211 	struct xlog_op_header	*ophdr,
2212 	int			space_available,
2213 	int			space_required,
2214 	int			*copy_off,
2215 	int			*copy_len,
2216 	int			*last_was_partial_copy,
2217 	int			*bytes_consumed)
2218 {
2219 	int			still_to_copy;
2220 
2221 	still_to_copy = space_required - *bytes_consumed;
2222 	*copy_off = *bytes_consumed;
2223 
2224 	if (still_to_copy <= space_available) {
2225 		/* write of region completes here */
2226 		*copy_len = still_to_copy;
2227 		ophdr->oh_len = cpu_to_be32(*copy_len);
2228 		if (*last_was_partial_copy)
2229 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2230 		*last_was_partial_copy = 0;
2231 		*bytes_consumed = 0;
2232 		return 0;
2233 	}
2234 
2235 	/* partial write of region, needs extra log op header reservation */
2236 	*copy_len = space_available;
2237 	ophdr->oh_len = cpu_to_be32(*copy_len);
2238 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2239 	if (*last_was_partial_copy)
2240 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2241 	*bytes_consumed += *copy_len;
2242 	(*last_was_partial_copy)++;
2243 
2244 	/* account for new log op header */
2245 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2246 	ticket->t_res_num_ophdrs++;
2247 
2248 	return sizeof(struct xlog_op_header);
2249 }
2250 
2251 static int
2252 xlog_write_copy_finish(
2253 	struct xlog		*log,
2254 	struct xlog_in_core	*iclog,
2255 	uint			flags,
2256 	int			*record_cnt,
2257 	int			*data_cnt,
2258 	int			*partial_copy,
2259 	int			*partial_copy_len,
2260 	int			log_offset,
2261 	struct xlog_in_core	**commit_iclog)
2262 {
2263 	if (*partial_copy) {
2264 		/*
2265 		 * This iclog has already been marked WANT_SYNC by
2266 		 * xlog_state_get_iclog_space.
2267 		 */
2268 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2269 		*record_cnt = 0;
2270 		*data_cnt = 0;
2271 		return xlog_state_release_iclog(log, iclog);
2272 	}
2273 
2274 	*partial_copy = 0;
2275 	*partial_copy_len = 0;
2276 
2277 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2278 		/* no more space in this iclog - push it. */
2279 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2280 		*record_cnt = 0;
2281 		*data_cnt = 0;
2282 
2283 		spin_lock(&log->l_icloglock);
2284 		xlog_state_want_sync(log, iclog);
2285 		spin_unlock(&log->l_icloglock);
2286 
2287 		if (!commit_iclog)
2288 			return xlog_state_release_iclog(log, iclog);
2289 		ASSERT(flags & XLOG_COMMIT_TRANS);
2290 		*commit_iclog = iclog;
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 /*
2297  * Write some region out to in-core log
2298  *
2299  * This will be called when writing externally provided regions or when
2300  * writing out a commit record for a given transaction.
2301  *
2302  * General algorithm:
2303  *	1. Find total length of this write.  This may include adding to the
2304  *		lengths passed in.
2305  *	2. Check whether we violate the tickets reservation.
2306  *	3. While writing to this iclog
2307  *	    A. Reserve as much space in this iclog as can get
2308  *	    B. If this is first write, save away start lsn
2309  *	    C. While writing this region:
2310  *		1. If first write of transaction, write start record
2311  *		2. Write log operation header (header per region)
2312  *		3. Find out if we can fit entire region into this iclog
2313  *		4. Potentially, verify destination memcpy ptr
2314  *		5. Memcpy (partial) region
2315  *		6. If partial copy, release iclog; otherwise, continue
2316  *			copying more regions into current iclog
2317  *	4. Mark want sync bit (in simulation mode)
2318  *	5. Release iclog for potential flush to on-disk log.
2319  *
2320  * ERRORS:
2321  * 1.	Panic if reservation is overrun.  This should never happen since
2322  *	reservation amounts are generated internal to the filesystem.
2323  * NOTES:
2324  * 1. Tickets are single threaded data structures.
2325  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2326  *	syncing routine.  When a single log_write region needs to span
2327  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2328  *	on all log operation writes which don't contain the end of the
2329  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2330  *	operation which contains the end of the continued log_write region.
2331  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2332  *	we don't really know exactly how much space will be used.  As a result,
2333  *	we don't update ic_offset until the end when we know exactly how many
2334  *	bytes have been written out.
2335  */
2336 int
2337 xlog_write(
2338 	struct xlog		*log,
2339 	struct xfs_log_vec	*log_vector,
2340 	struct xlog_ticket	*ticket,
2341 	xfs_lsn_t		*start_lsn,
2342 	struct xlog_in_core	**commit_iclog,
2343 	uint			flags)
2344 {
2345 	struct xlog_in_core	*iclog = NULL;
2346 	struct xfs_log_iovec	*vecp;
2347 	struct xfs_log_vec	*lv;
2348 	int			len;
2349 	int			index;
2350 	int			partial_copy = 0;
2351 	int			partial_copy_len = 0;
2352 	int			contwr = 0;
2353 	int			record_cnt = 0;
2354 	int			data_cnt = 0;
2355 	int			error;
2356 
2357 	*start_lsn = 0;
2358 
2359 	len = xlog_write_calc_vec_length(ticket, log_vector);
2360 
2361 	/*
2362 	 * Region headers and bytes are already accounted for.
2363 	 * We only need to take into account start records and
2364 	 * split regions in this function.
2365 	 */
2366 	if (ticket->t_flags & XLOG_TIC_INITED)
2367 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2368 
2369 	/*
2370 	 * Commit record headers need to be accounted for. These
2371 	 * come in as separate writes so are easy to detect.
2372 	 */
2373 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2374 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2375 
2376 	if (ticket->t_curr_res < 0) {
2377 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2378 		     "ctx ticket reservation ran out. Need to up reservation");
2379 		xlog_print_tic_res(log->l_mp, ticket);
2380 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2381 	}
2382 
2383 	index = 0;
2384 	lv = log_vector;
2385 	vecp = lv->lv_iovecp;
2386 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2387 		void		*ptr;
2388 		int		log_offset;
2389 
2390 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2391 						   &contwr, &log_offset);
2392 		if (error)
2393 			return error;
2394 
2395 		ASSERT(log_offset <= iclog->ic_size - 1);
2396 		ptr = iclog->ic_datap + log_offset;
2397 
2398 		/* start_lsn is the first lsn written to. That's all we need. */
2399 		if (!*start_lsn)
2400 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2401 
2402 		/*
2403 		 * This loop writes out as many regions as can fit in the amount
2404 		 * of space which was allocated by xlog_state_get_iclog_space().
2405 		 */
2406 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2407 			struct xfs_log_iovec	*reg;
2408 			struct xlog_op_header	*ophdr;
2409 			int			start_rec_copy;
2410 			int			copy_len;
2411 			int			copy_off;
2412 			bool			ordered = false;
2413 
2414 			/* ordered log vectors have no regions to write */
2415 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2416 				ASSERT(lv->lv_niovecs == 0);
2417 				ordered = true;
2418 				goto next_lv;
2419 			}
2420 
2421 			reg = &vecp[index];
2422 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2423 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2424 
2425 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2426 			if (start_rec_copy) {
2427 				record_cnt++;
2428 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2429 						   start_rec_copy);
2430 			}
2431 
2432 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2433 			if (!ophdr)
2434 				return -EIO;
2435 
2436 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2437 					   sizeof(struct xlog_op_header));
2438 
2439 			len += xlog_write_setup_copy(ticket, ophdr,
2440 						     iclog->ic_size-log_offset,
2441 						     reg->i_len,
2442 						     &copy_off, &copy_len,
2443 						     &partial_copy,
2444 						     &partial_copy_len);
2445 			xlog_verify_dest_ptr(log, ptr);
2446 
2447 			/*
2448 			 * Copy region.
2449 			 *
2450 			 * Unmount records just log an opheader, so can have
2451 			 * empty payloads with no data region to copy. Hence we
2452 			 * only copy the payload if the vector says it has data
2453 			 * to copy.
2454 			 */
2455 			ASSERT(copy_len >= 0);
2456 			if (copy_len > 0) {
2457 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2458 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2459 						   copy_len);
2460 			}
2461 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2462 			record_cnt++;
2463 			data_cnt += contwr ? copy_len : 0;
2464 
2465 			error = xlog_write_copy_finish(log, iclog, flags,
2466 						       &record_cnt, &data_cnt,
2467 						       &partial_copy,
2468 						       &partial_copy_len,
2469 						       log_offset,
2470 						       commit_iclog);
2471 			if (error)
2472 				return error;
2473 
2474 			/*
2475 			 * if we had a partial copy, we need to get more iclog
2476 			 * space but we don't want to increment the region
2477 			 * index because there is still more is this region to
2478 			 * write.
2479 			 *
2480 			 * If we completed writing this region, and we flushed
2481 			 * the iclog (indicated by resetting of the record
2482 			 * count), then we also need to get more log space. If
2483 			 * this was the last record, though, we are done and
2484 			 * can just return.
2485 			 */
2486 			if (partial_copy)
2487 				break;
2488 
2489 			if (++index == lv->lv_niovecs) {
2490 next_lv:
2491 				lv = lv->lv_next;
2492 				index = 0;
2493 				if (lv)
2494 					vecp = lv->lv_iovecp;
2495 			}
2496 			if (record_cnt == 0 && ordered == false) {
2497 				if (!lv)
2498 					return 0;
2499 				break;
2500 			}
2501 		}
2502 	}
2503 
2504 	ASSERT(len == 0);
2505 
2506 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2507 	if (!commit_iclog)
2508 		return xlog_state_release_iclog(log, iclog);
2509 
2510 	ASSERT(flags & XLOG_COMMIT_TRANS);
2511 	*commit_iclog = iclog;
2512 	return 0;
2513 }
2514 
2515 
2516 /*****************************************************************************
2517  *
2518  *		State Machine functions
2519  *
2520  *****************************************************************************
2521  */
2522 
2523 /* Clean iclogs starting from the head.  This ordering must be
2524  * maintained, so an iclog doesn't become ACTIVE beyond one that
2525  * is SYNCING.  This is also required to maintain the notion that we use
2526  * a ordered wait queue to hold off would be writers to the log when every
2527  * iclog is trying to sync to disk.
2528  *
2529  * State Change: DIRTY -> ACTIVE
2530  */
2531 STATIC void
2532 xlog_state_clean_log(
2533 	struct xlog *log)
2534 {
2535 	xlog_in_core_t	*iclog;
2536 	int changed = 0;
2537 
2538 	iclog = log->l_iclog;
2539 	do {
2540 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2541 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2542 			iclog->ic_offset       = 0;
2543 			ASSERT(iclog->ic_callback == NULL);
2544 			/*
2545 			 * If the number of ops in this iclog indicate it just
2546 			 * contains the dummy transaction, we can
2547 			 * change state into IDLE (the second time around).
2548 			 * Otherwise we should change the state into
2549 			 * NEED a dummy.
2550 			 * We don't need to cover the dummy.
2551 			 */
2552 			if (!changed &&
2553 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2554 			   		XLOG_COVER_OPS)) {
2555 				changed = 1;
2556 			} else {
2557 				/*
2558 				 * We have two dirty iclogs so start over
2559 				 * This could also be num of ops indicates
2560 				 * this is not the dummy going out.
2561 				 */
2562 				changed = 2;
2563 			}
2564 			iclog->ic_header.h_num_logops = 0;
2565 			memset(iclog->ic_header.h_cycle_data, 0,
2566 			      sizeof(iclog->ic_header.h_cycle_data));
2567 			iclog->ic_header.h_lsn = 0;
2568 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2569 			/* do nothing */;
2570 		else
2571 			break;	/* stop cleaning */
2572 		iclog = iclog->ic_next;
2573 	} while (iclog != log->l_iclog);
2574 
2575 	/* log is locked when we are called */
2576 	/*
2577 	 * Change state for the dummy log recording.
2578 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2579 	 * we are done writing the dummy record.
2580 	 * If we are done with the second dummy recored (DONE2), then
2581 	 * we go to IDLE.
2582 	 */
2583 	if (changed) {
2584 		switch (log->l_covered_state) {
2585 		case XLOG_STATE_COVER_IDLE:
2586 		case XLOG_STATE_COVER_NEED:
2587 		case XLOG_STATE_COVER_NEED2:
2588 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2589 			break;
2590 
2591 		case XLOG_STATE_COVER_DONE:
2592 			if (changed == 1)
2593 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2594 			else
2595 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2596 			break;
2597 
2598 		case XLOG_STATE_COVER_DONE2:
2599 			if (changed == 1)
2600 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2601 			else
2602 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2603 			break;
2604 
2605 		default:
2606 			ASSERT(0);
2607 		}
2608 	}
2609 }	/* xlog_state_clean_log */
2610 
2611 STATIC xfs_lsn_t
2612 xlog_get_lowest_lsn(
2613 	struct xlog	*log)
2614 {
2615 	xlog_in_core_t  *lsn_log;
2616 	xfs_lsn_t	lowest_lsn, lsn;
2617 
2618 	lsn_log = log->l_iclog;
2619 	lowest_lsn = 0;
2620 	do {
2621 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2622 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2623 		if ((lsn && !lowest_lsn) ||
2624 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2625 			lowest_lsn = lsn;
2626 		}
2627 	    }
2628 	    lsn_log = lsn_log->ic_next;
2629 	} while (lsn_log != log->l_iclog);
2630 	return lowest_lsn;
2631 }
2632 
2633 
2634 STATIC void
2635 xlog_state_do_callback(
2636 	struct xlog		*log,
2637 	int			aborted,
2638 	struct xlog_in_core	*ciclog)
2639 {
2640 	xlog_in_core_t	   *iclog;
2641 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2642 						 * processed all iclogs once */
2643 	xfs_log_callback_t *cb, *cb_next;
2644 	int		   flushcnt = 0;
2645 	xfs_lsn_t	   lowest_lsn;
2646 	int		   ioerrors;	/* counter: iclogs with errors */
2647 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2648 	int		   funcdidcallbacks; /* flag: function did callbacks */
2649 	int		   repeats;	/* for issuing console warnings if
2650 					 * looping too many times */
2651 	int		   wake = 0;
2652 
2653 	spin_lock(&log->l_icloglock);
2654 	first_iclog = iclog = log->l_iclog;
2655 	ioerrors = 0;
2656 	funcdidcallbacks = 0;
2657 	repeats = 0;
2658 
2659 	do {
2660 		/*
2661 		 * Scan all iclogs starting with the one pointed to by the
2662 		 * log.  Reset this starting point each time the log is
2663 		 * unlocked (during callbacks).
2664 		 *
2665 		 * Keep looping through iclogs until one full pass is made
2666 		 * without running any callbacks.
2667 		 */
2668 		first_iclog = log->l_iclog;
2669 		iclog = log->l_iclog;
2670 		loopdidcallbacks = 0;
2671 		repeats++;
2672 
2673 		do {
2674 
2675 			/* skip all iclogs in the ACTIVE & DIRTY states */
2676 			if (iclog->ic_state &
2677 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2678 				iclog = iclog->ic_next;
2679 				continue;
2680 			}
2681 
2682 			/*
2683 			 * Between marking a filesystem SHUTDOWN and stopping
2684 			 * the log, we do flush all iclogs to disk (if there
2685 			 * wasn't a log I/O error). So, we do want things to
2686 			 * go smoothly in case of just a SHUTDOWN  w/o a
2687 			 * LOG_IO_ERROR.
2688 			 */
2689 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2690 				/*
2691 				 * Can only perform callbacks in order.  Since
2692 				 * this iclog is not in the DONE_SYNC/
2693 				 * DO_CALLBACK state, we skip the rest and
2694 				 * just try to clean up.  If we set our iclog
2695 				 * to DO_CALLBACK, we will not process it when
2696 				 * we retry since a previous iclog is in the
2697 				 * CALLBACK and the state cannot change since
2698 				 * we are holding the l_icloglock.
2699 				 */
2700 				if (!(iclog->ic_state &
2701 					(XLOG_STATE_DONE_SYNC |
2702 						 XLOG_STATE_DO_CALLBACK))) {
2703 					if (ciclog && (ciclog->ic_state ==
2704 							XLOG_STATE_DONE_SYNC)) {
2705 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2706 					}
2707 					break;
2708 				}
2709 				/*
2710 				 * We now have an iclog that is in either the
2711 				 * DO_CALLBACK or DONE_SYNC states. The other
2712 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2713 				 * caught by the above if and are going to
2714 				 * clean (i.e. we aren't doing their callbacks)
2715 				 * see the above if.
2716 				 */
2717 
2718 				/*
2719 				 * We will do one more check here to see if we
2720 				 * have chased our tail around.
2721 				 */
2722 
2723 				lowest_lsn = xlog_get_lowest_lsn(log);
2724 				if (lowest_lsn &&
2725 				    XFS_LSN_CMP(lowest_lsn,
2726 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2727 					iclog = iclog->ic_next;
2728 					continue; /* Leave this iclog for
2729 						   * another thread */
2730 				}
2731 
2732 				iclog->ic_state = XLOG_STATE_CALLBACK;
2733 
2734 
2735 				/*
2736 				 * Completion of a iclog IO does not imply that
2737 				 * a transaction has completed, as transactions
2738 				 * can be large enough to span many iclogs. We
2739 				 * cannot change the tail of the log half way
2740 				 * through a transaction as this may be the only
2741 				 * transaction in the log and moving th etail to
2742 				 * point to the middle of it will prevent
2743 				 * recovery from finding the start of the
2744 				 * transaction. Hence we should only update the
2745 				 * last_sync_lsn if this iclog contains
2746 				 * transaction completion callbacks on it.
2747 				 *
2748 				 * We have to do this before we drop the
2749 				 * icloglock to ensure we are the only one that
2750 				 * can update it.
2751 				 */
2752 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2753 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2754 				if (iclog->ic_callback)
2755 					atomic64_set(&log->l_last_sync_lsn,
2756 						be64_to_cpu(iclog->ic_header.h_lsn));
2757 
2758 			} else
2759 				ioerrors++;
2760 
2761 			spin_unlock(&log->l_icloglock);
2762 
2763 			/*
2764 			 * Keep processing entries in the callback list until
2765 			 * we come around and it is empty.  We need to
2766 			 * atomically see that the list is empty and change the
2767 			 * state to DIRTY so that we don't miss any more
2768 			 * callbacks being added.
2769 			 */
2770 			spin_lock(&iclog->ic_callback_lock);
2771 			cb = iclog->ic_callback;
2772 			while (cb) {
2773 				iclog->ic_callback_tail = &(iclog->ic_callback);
2774 				iclog->ic_callback = NULL;
2775 				spin_unlock(&iclog->ic_callback_lock);
2776 
2777 				/* perform callbacks in the order given */
2778 				for (; cb; cb = cb_next) {
2779 					cb_next = cb->cb_next;
2780 					cb->cb_func(cb->cb_arg, aborted);
2781 				}
2782 				spin_lock(&iclog->ic_callback_lock);
2783 				cb = iclog->ic_callback;
2784 			}
2785 
2786 			loopdidcallbacks++;
2787 			funcdidcallbacks++;
2788 
2789 			spin_lock(&log->l_icloglock);
2790 			ASSERT(iclog->ic_callback == NULL);
2791 			spin_unlock(&iclog->ic_callback_lock);
2792 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2793 				iclog->ic_state = XLOG_STATE_DIRTY;
2794 
2795 			/*
2796 			 * Transition from DIRTY to ACTIVE if applicable.
2797 			 * NOP if STATE_IOERROR.
2798 			 */
2799 			xlog_state_clean_log(log);
2800 
2801 			/* wake up threads waiting in xfs_log_force() */
2802 			wake_up_all(&iclog->ic_force_wait);
2803 
2804 			iclog = iclog->ic_next;
2805 		} while (first_iclog != iclog);
2806 
2807 		if (repeats > 5000) {
2808 			flushcnt += repeats;
2809 			repeats = 0;
2810 			xfs_warn(log->l_mp,
2811 				"%s: possible infinite loop (%d iterations)",
2812 				__func__, flushcnt);
2813 		}
2814 	} while (!ioerrors && loopdidcallbacks);
2815 
2816 #ifdef DEBUG
2817 	/*
2818 	 * Make one last gasp attempt to see if iclogs are being left in limbo.
2819 	 * If the above loop finds an iclog earlier than the current iclog and
2820 	 * in one of the syncing states, the current iclog is put into
2821 	 * DO_CALLBACK and the callbacks are deferred to the completion of the
2822 	 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2823 	 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2824 	 * states.
2825 	 *
2826 	 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2827 	 * for ic_state == SYNCING.
2828 	 */
2829 	if (funcdidcallbacks) {
2830 		first_iclog = iclog = log->l_iclog;
2831 		do {
2832 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2833 			/*
2834 			 * Terminate the loop if iclogs are found in states
2835 			 * which will cause other threads to clean up iclogs.
2836 			 *
2837 			 * SYNCING - i/o completion will go through logs
2838 			 * DONE_SYNC - interrupt thread should be waiting for
2839 			 *              l_icloglock
2840 			 * IOERROR - give up hope all ye who enter here
2841 			 */
2842 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2843 			    iclog->ic_state & XLOG_STATE_SYNCING ||
2844 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2845 			    iclog->ic_state == XLOG_STATE_IOERROR )
2846 				break;
2847 			iclog = iclog->ic_next;
2848 		} while (first_iclog != iclog);
2849 	}
2850 #endif
2851 
2852 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2853 		wake = 1;
2854 	spin_unlock(&log->l_icloglock);
2855 
2856 	if (wake)
2857 		wake_up_all(&log->l_flush_wait);
2858 }
2859 
2860 
2861 /*
2862  * Finish transitioning this iclog to the dirty state.
2863  *
2864  * Make sure that we completely execute this routine only when this is
2865  * the last call to the iclog.  There is a good chance that iclog flushes,
2866  * when we reach the end of the physical log, get turned into 2 separate
2867  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2868  * routine.  By using the reference count bwritecnt, we guarantee that only
2869  * the second completion goes through.
2870  *
2871  * Callbacks could take time, so they are done outside the scope of the
2872  * global state machine log lock.
2873  */
2874 STATIC void
2875 xlog_state_done_syncing(
2876 	xlog_in_core_t	*iclog,
2877 	int		aborted)
2878 {
2879 	struct xlog	   *log = iclog->ic_log;
2880 
2881 	spin_lock(&log->l_icloglock);
2882 
2883 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2884 	       iclog->ic_state == XLOG_STATE_IOERROR);
2885 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2886 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2887 
2888 
2889 	/*
2890 	 * If we got an error, either on the first buffer, or in the case of
2891 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2892 	 * and none should ever be attempted to be written to disk
2893 	 * again.
2894 	 */
2895 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2896 		if (--iclog->ic_bwritecnt == 1) {
2897 			spin_unlock(&log->l_icloglock);
2898 			return;
2899 		}
2900 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2901 	}
2902 
2903 	/*
2904 	 * Someone could be sleeping prior to writing out the next
2905 	 * iclog buffer, we wake them all, one will get to do the
2906 	 * I/O, the others get to wait for the result.
2907 	 */
2908 	wake_up_all(&iclog->ic_write_wait);
2909 	spin_unlock(&log->l_icloglock);
2910 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2911 }	/* xlog_state_done_syncing */
2912 
2913 
2914 /*
2915  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2916  * sleep.  We wait on the flush queue on the head iclog as that should be
2917  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2918  * we will wait here and all new writes will sleep until a sync completes.
2919  *
2920  * The in-core logs are used in a circular fashion. They are not used
2921  * out-of-order even when an iclog past the head is free.
2922  *
2923  * return:
2924  *	* log_offset where xlog_write() can start writing into the in-core
2925  *		log's data space.
2926  *	* in-core log pointer to which xlog_write() should write.
2927  *	* boolean indicating this is a continued write to an in-core log.
2928  *		If this is the last write, then the in-core log's offset field
2929  *		needs to be incremented, depending on the amount of data which
2930  *		is copied.
2931  */
2932 STATIC int
2933 xlog_state_get_iclog_space(
2934 	struct xlog		*log,
2935 	int			len,
2936 	struct xlog_in_core	**iclogp,
2937 	struct xlog_ticket	*ticket,
2938 	int			*continued_write,
2939 	int			*logoffsetp)
2940 {
2941 	int		  log_offset;
2942 	xlog_rec_header_t *head;
2943 	xlog_in_core_t	  *iclog;
2944 	int		  error;
2945 
2946 restart:
2947 	spin_lock(&log->l_icloglock);
2948 	if (XLOG_FORCED_SHUTDOWN(log)) {
2949 		spin_unlock(&log->l_icloglock);
2950 		return -EIO;
2951 	}
2952 
2953 	iclog = log->l_iclog;
2954 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2955 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2956 
2957 		/* Wait for log writes to have flushed */
2958 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2959 		goto restart;
2960 	}
2961 
2962 	head = &iclog->ic_header;
2963 
2964 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2965 	log_offset = iclog->ic_offset;
2966 
2967 	/* On the 1st write to an iclog, figure out lsn.  This works
2968 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2969 	 * committing to.  If the offset is set, that's how many blocks
2970 	 * must be written.
2971 	 */
2972 	if (log_offset == 0) {
2973 		ticket->t_curr_res -= log->l_iclog_hsize;
2974 		xlog_tic_add_region(ticket,
2975 				    log->l_iclog_hsize,
2976 				    XLOG_REG_TYPE_LRHEADER);
2977 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2978 		head->h_lsn = cpu_to_be64(
2979 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2980 		ASSERT(log->l_curr_block >= 0);
2981 	}
2982 
2983 	/* If there is enough room to write everything, then do it.  Otherwise,
2984 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2985 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2986 	 * until you know exactly how many bytes get copied.  Therefore, wait
2987 	 * until later to update ic_offset.
2988 	 *
2989 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2990 	 * can fit into remaining data section.
2991 	 */
2992 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2993 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2994 
2995 		/*
2996 		 * If I'm the only one writing to this iclog, sync it to disk.
2997 		 * We need to do an atomic compare and decrement here to avoid
2998 		 * racing with concurrent atomic_dec_and_lock() calls in
2999 		 * xlog_state_release_iclog() when there is more than one
3000 		 * reference to the iclog.
3001 		 */
3002 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3003 			/* we are the only one */
3004 			spin_unlock(&log->l_icloglock);
3005 			error = xlog_state_release_iclog(log, iclog);
3006 			if (error)
3007 				return error;
3008 		} else {
3009 			spin_unlock(&log->l_icloglock);
3010 		}
3011 		goto restart;
3012 	}
3013 
3014 	/* Do we have enough room to write the full amount in the remainder
3015 	 * of this iclog?  Or must we continue a write on the next iclog and
3016 	 * mark this iclog as completely taken?  In the case where we switch
3017 	 * iclogs (to mark it taken), this particular iclog will release/sync
3018 	 * to disk in xlog_write().
3019 	 */
3020 	if (len <= iclog->ic_size - iclog->ic_offset) {
3021 		*continued_write = 0;
3022 		iclog->ic_offset += len;
3023 	} else {
3024 		*continued_write = 1;
3025 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3026 	}
3027 	*iclogp = iclog;
3028 
3029 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3030 	spin_unlock(&log->l_icloglock);
3031 
3032 	*logoffsetp = log_offset;
3033 	return 0;
3034 }	/* xlog_state_get_iclog_space */
3035 
3036 /* The first cnt-1 times through here we don't need to
3037  * move the grant write head because the permanent
3038  * reservation has reserved cnt times the unit amount.
3039  * Release part of current permanent unit reservation and
3040  * reset current reservation to be one units worth.  Also
3041  * move grant reservation head forward.
3042  */
3043 STATIC void
3044 xlog_regrant_reserve_log_space(
3045 	struct xlog		*log,
3046 	struct xlog_ticket	*ticket)
3047 {
3048 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3049 
3050 	if (ticket->t_cnt > 0)
3051 		ticket->t_cnt--;
3052 
3053 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3054 					ticket->t_curr_res);
3055 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3056 					ticket->t_curr_res);
3057 	ticket->t_curr_res = ticket->t_unit_res;
3058 	xlog_tic_reset_res(ticket);
3059 
3060 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3061 
3062 	/* just return if we still have some of the pre-reserved space */
3063 	if (ticket->t_cnt > 0)
3064 		return;
3065 
3066 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3067 					ticket->t_unit_res);
3068 
3069 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3070 
3071 	ticket->t_curr_res = ticket->t_unit_res;
3072 	xlog_tic_reset_res(ticket);
3073 }	/* xlog_regrant_reserve_log_space */
3074 
3075 
3076 /*
3077  * Give back the space left from a reservation.
3078  *
3079  * All the information we need to make a correct determination of space left
3080  * is present.  For non-permanent reservations, things are quite easy.  The
3081  * count should have been decremented to zero.  We only need to deal with the
3082  * space remaining in the current reservation part of the ticket.  If the
3083  * ticket contains a permanent reservation, there may be left over space which
3084  * needs to be released.  A count of N means that N-1 refills of the current
3085  * reservation can be done before we need to ask for more space.  The first
3086  * one goes to fill up the first current reservation.  Once we run out of
3087  * space, the count will stay at zero and the only space remaining will be
3088  * in the current reservation field.
3089  */
3090 STATIC void
3091 xlog_ungrant_log_space(
3092 	struct xlog		*log,
3093 	struct xlog_ticket	*ticket)
3094 {
3095 	int	bytes;
3096 
3097 	if (ticket->t_cnt > 0)
3098 		ticket->t_cnt--;
3099 
3100 	trace_xfs_log_ungrant_enter(log, ticket);
3101 	trace_xfs_log_ungrant_sub(log, ticket);
3102 
3103 	/*
3104 	 * If this is a permanent reservation ticket, we may be able to free
3105 	 * up more space based on the remaining count.
3106 	 */
3107 	bytes = ticket->t_curr_res;
3108 	if (ticket->t_cnt > 0) {
3109 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3110 		bytes += ticket->t_unit_res*ticket->t_cnt;
3111 	}
3112 
3113 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3114 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3115 
3116 	trace_xfs_log_ungrant_exit(log, ticket);
3117 
3118 	xfs_log_space_wake(log->l_mp);
3119 }
3120 
3121 /*
3122  * Flush iclog to disk if this is the last reference to the given iclog and
3123  * the WANT_SYNC bit is set.
3124  *
3125  * When this function is entered, the iclog is not necessarily in the
3126  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3127  *
3128  *
3129  */
3130 STATIC int
3131 xlog_state_release_iclog(
3132 	struct xlog		*log,
3133 	struct xlog_in_core	*iclog)
3134 {
3135 	int		sync = 0;	/* do we sync? */
3136 
3137 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3138 		return -EIO;
3139 
3140 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3141 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3142 		return 0;
3143 
3144 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3145 		spin_unlock(&log->l_icloglock);
3146 		return -EIO;
3147 	}
3148 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3149 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3150 
3151 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3152 		/* update tail before writing to iclog */
3153 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3154 		sync++;
3155 		iclog->ic_state = XLOG_STATE_SYNCING;
3156 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3157 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3158 		/* cycle incremented when incrementing curr_block */
3159 	}
3160 	spin_unlock(&log->l_icloglock);
3161 
3162 	/*
3163 	 * We let the log lock go, so it's possible that we hit a log I/O
3164 	 * error or some other SHUTDOWN condition that marks the iclog
3165 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3166 	 * this iclog has consistent data, so we ignore IOERROR
3167 	 * flags after this point.
3168 	 */
3169 	if (sync)
3170 		return xlog_sync(log, iclog);
3171 	return 0;
3172 }	/* xlog_state_release_iclog */
3173 
3174 
3175 /*
3176  * This routine will mark the current iclog in the ring as WANT_SYNC
3177  * and move the current iclog pointer to the next iclog in the ring.
3178  * When this routine is called from xlog_state_get_iclog_space(), the
3179  * exact size of the iclog has not yet been determined.  All we know is
3180  * that every data block.  We have run out of space in this log record.
3181  */
3182 STATIC void
3183 xlog_state_switch_iclogs(
3184 	struct xlog		*log,
3185 	struct xlog_in_core	*iclog,
3186 	int			eventual_size)
3187 {
3188 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3189 	if (!eventual_size)
3190 		eventual_size = iclog->ic_offset;
3191 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3192 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3193 	log->l_prev_block = log->l_curr_block;
3194 	log->l_prev_cycle = log->l_curr_cycle;
3195 
3196 	/* roll log?: ic_offset changed later */
3197 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3198 
3199 	/* Round up to next log-sunit */
3200 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3201 	    log->l_mp->m_sb.sb_logsunit > 1) {
3202 		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3203 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3204 	}
3205 
3206 	if (log->l_curr_block >= log->l_logBBsize) {
3207 		/*
3208 		 * Rewind the current block before the cycle is bumped to make
3209 		 * sure that the combined LSN never transiently moves forward
3210 		 * when the log wraps to the next cycle. This is to support the
3211 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3212 		 * other cases should acquire l_icloglock.
3213 		 */
3214 		log->l_curr_block -= log->l_logBBsize;
3215 		ASSERT(log->l_curr_block >= 0);
3216 		smp_wmb();
3217 		log->l_curr_cycle++;
3218 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3219 			log->l_curr_cycle++;
3220 	}
3221 	ASSERT(iclog == log->l_iclog);
3222 	log->l_iclog = iclog->ic_next;
3223 }	/* xlog_state_switch_iclogs */
3224 
3225 /*
3226  * Write out all data in the in-core log as of this exact moment in time.
3227  *
3228  * Data may be written to the in-core log during this call.  However,
3229  * we don't guarantee this data will be written out.  A change from past
3230  * implementation means this routine will *not* write out zero length LRs.
3231  *
3232  * Basically, we try and perform an intelligent scan of the in-core logs.
3233  * If we determine there is no flushable data, we just return.  There is no
3234  * flushable data if:
3235  *
3236  *	1. the current iclog is active and has no data; the previous iclog
3237  *		is in the active or dirty state.
3238  *	2. the current iclog is drity, and the previous iclog is in the
3239  *		active or dirty state.
3240  *
3241  * We may sleep if:
3242  *
3243  *	1. the current iclog is not in the active nor dirty state.
3244  *	2. the current iclog dirty, and the previous iclog is not in the
3245  *		active nor dirty state.
3246  *	3. the current iclog is active, and there is another thread writing
3247  *		to this particular iclog.
3248  *	4. a) the current iclog is active and has no other writers
3249  *	   b) when we return from flushing out this iclog, it is still
3250  *		not in the active nor dirty state.
3251  */
3252 int
3253 _xfs_log_force(
3254 	struct xfs_mount	*mp,
3255 	uint			flags,
3256 	int			*log_flushed)
3257 {
3258 	struct xlog		*log = mp->m_log;
3259 	struct xlog_in_core	*iclog;
3260 	xfs_lsn_t		lsn;
3261 
3262 	XFS_STATS_INC(mp, xs_log_force);
3263 
3264 	xlog_cil_force(log);
3265 
3266 	spin_lock(&log->l_icloglock);
3267 
3268 	iclog = log->l_iclog;
3269 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3270 		spin_unlock(&log->l_icloglock);
3271 		return -EIO;
3272 	}
3273 
3274 	/* If the head iclog is not active nor dirty, we just attach
3275 	 * ourselves to the head and go to sleep.
3276 	 */
3277 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3278 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3279 		/*
3280 		 * If the head is dirty or (active and empty), then
3281 		 * we need to look at the previous iclog.  If the previous
3282 		 * iclog is active or dirty we are done.  There is nothing
3283 		 * to sync out.  Otherwise, we attach ourselves to the
3284 		 * previous iclog and go to sleep.
3285 		 */
3286 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3287 		    (atomic_read(&iclog->ic_refcnt) == 0
3288 		     && iclog->ic_offset == 0)) {
3289 			iclog = iclog->ic_prev;
3290 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3291 			    iclog->ic_state == XLOG_STATE_DIRTY)
3292 				goto no_sleep;
3293 			else
3294 				goto maybe_sleep;
3295 		} else {
3296 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3297 				/* We are the only one with access to this
3298 				 * iclog.  Flush it out now.  There should
3299 				 * be a roundoff of zero to show that someone
3300 				 * has already taken care of the roundoff from
3301 				 * the previous sync.
3302 				 */
3303 				atomic_inc(&iclog->ic_refcnt);
3304 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3305 				xlog_state_switch_iclogs(log, iclog, 0);
3306 				spin_unlock(&log->l_icloglock);
3307 
3308 				if (xlog_state_release_iclog(log, iclog))
3309 					return -EIO;
3310 
3311 				if (log_flushed)
3312 					*log_flushed = 1;
3313 				spin_lock(&log->l_icloglock);
3314 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3315 				    iclog->ic_state != XLOG_STATE_DIRTY)
3316 					goto maybe_sleep;
3317 				else
3318 					goto no_sleep;
3319 			} else {
3320 				/* Someone else is writing to this iclog.
3321 				 * Use its call to flush out the data.  However,
3322 				 * the other thread may not force out this LR,
3323 				 * so we mark it WANT_SYNC.
3324 				 */
3325 				xlog_state_switch_iclogs(log, iclog, 0);
3326 				goto maybe_sleep;
3327 			}
3328 		}
3329 	}
3330 
3331 	/* By the time we come around again, the iclog could've been filled
3332 	 * which would give it another lsn.  If we have a new lsn, just
3333 	 * return because the relevant data has been flushed.
3334 	 */
3335 maybe_sleep:
3336 	if (flags & XFS_LOG_SYNC) {
3337 		/*
3338 		 * We must check if we're shutting down here, before
3339 		 * we wait, while we're holding the l_icloglock.
3340 		 * Then we check again after waking up, in case our
3341 		 * sleep was disturbed by a bad news.
3342 		 */
3343 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3344 			spin_unlock(&log->l_icloglock);
3345 			return -EIO;
3346 		}
3347 		XFS_STATS_INC(mp, xs_log_force_sleep);
3348 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3349 		/*
3350 		 * No need to grab the log lock here since we're
3351 		 * only deciding whether or not to return EIO
3352 		 * and the memory read should be atomic.
3353 		 */
3354 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3355 			return -EIO;
3356 		if (log_flushed)
3357 			*log_flushed = 1;
3358 	} else {
3359 
3360 no_sleep:
3361 		spin_unlock(&log->l_icloglock);
3362 	}
3363 	return 0;
3364 }
3365 
3366 /*
3367  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3368  * about errors or whether the log was flushed or not. This is the normal
3369  * interface to use when trying to unpin items or move the log forward.
3370  */
3371 void
3372 xfs_log_force(
3373 	xfs_mount_t	*mp,
3374 	uint		flags)
3375 {
3376 	trace_xfs_log_force(mp, 0, _RET_IP_);
3377 	_xfs_log_force(mp, flags, NULL);
3378 }
3379 
3380 /*
3381  * Force the in-core log to disk for a specific LSN.
3382  *
3383  * Find in-core log with lsn.
3384  *	If it is in the DIRTY state, just return.
3385  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3386  *		state and go to sleep or return.
3387  *	If it is in any other state, go to sleep or return.
3388  *
3389  * Synchronous forces are implemented with a signal variable. All callers
3390  * to force a given lsn to disk will wait on a the sv attached to the
3391  * specific in-core log.  When given in-core log finally completes its
3392  * write to disk, that thread will wake up all threads waiting on the
3393  * sv.
3394  */
3395 int
3396 _xfs_log_force_lsn(
3397 	struct xfs_mount	*mp,
3398 	xfs_lsn_t		lsn,
3399 	uint			flags,
3400 	int			*log_flushed)
3401 {
3402 	struct xlog		*log = mp->m_log;
3403 	struct xlog_in_core	*iclog;
3404 	int			already_slept = 0;
3405 
3406 	ASSERT(lsn != 0);
3407 
3408 	XFS_STATS_INC(mp, xs_log_force);
3409 
3410 	lsn = xlog_cil_force_lsn(log, lsn);
3411 	if (lsn == NULLCOMMITLSN)
3412 		return 0;
3413 
3414 try_again:
3415 	spin_lock(&log->l_icloglock);
3416 	iclog = log->l_iclog;
3417 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3418 		spin_unlock(&log->l_icloglock);
3419 		return -EIO;
3420 	}
3421 
3422 	do {
3423 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3424 			iclog = iclog->ic_next;
3425 			continue;
3426 		}
3427 
3428 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3429 			spin_unlock(&log->l_icloglock);
3430 			return 0;
3431 		}
3432 
3433 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3434 			/*
3435 			 * We sleep here if we haven't already slept (e.g.
3436 			 * this is the first time we've looked at the correct
3437 			 * iclog buf) and the buffer before us is going to
3438 			 * be sync'ed. The reason for this is that if we
3439 			 * are doing sync transactions here, by waiting for
3440 			 * the previous I/O to complete, we can allow a few
3441 			 * more transactions into this iclog before we close
3442 			 * it down.
3443 			 *
3444 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3445 			 * up the refcnt so we can release the log (which
3446 			 * drops the ref count).  The state switch keeps new
3447 			 * transaction commits from using this buffer.  When
3448 			 * the current commits finish writing into the buffer,
3449 			 * the refcount will drop to zero and the buffer will
3450 			 * go out then.
3451 			 */
3452 			if (!already_slept &&
3453 			    (iclog->ic_prev->ic_state &
3454 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3455 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3456 
3457 				XFS_STATS_INC(mp, xs_log_force_sleep);
3458 
3459 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3460 							&log->l_icloglock);
3461 				if (log_flushed)
3462 					*log_flushed = 1;
3463 				already_slept = 1;
3464 				goto try_again;
3465 			}
3466 			atomic_inc(&iclog->ic_refcnt);
3467 			xlog_state_switch_iclogs(log, iclog, 0);
3468 			spin_unlock(&log->l_icloglock);
3469 			if (xlog_state_release_iclog(log, iclog))
3470 				return -EIO;
3471 			if (log_flushed)
3472 				*log_flushed = 1;
3473 			spin_lock(&log->l_icloglock);
3474 		}
3475 
3476 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3477 		    !(iclog->ic_state &
3478 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3479 			/*
3480 			 * Don't wait on completion if we know that we've
3481 			 * gotten a log write error.
3482 			 */
3483 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3484 				spin_unlock(&log->l_icloglock);
3485 				return -EIO;
3486 			}
3487 			XFS_STATS_INC(mp, xs_log_force_sleep);
3488 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3489 			/*
3490 			 * No need to grab the log lock here since we're
3491 			 * only deciding whether or not to return EIO
3492 			 * and the memory read should be atomic.
3493 			 */
3494 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3495 				return -EIO;
3496 
3497 			if (log_flushed)
3498 				*log_flushed = 1;
3499 		} else {		/* just return */
3500 			spin_unlock(&log->l_icloglock);
3501 		}
3502 
3503 		return 0;
3504 	} while (iclog != log->l_iclog);
3505 
3506 	spin_unlock(&log->l_icloglock);
3507 	return 0;
3508 }
3509 
3510 /*
3511  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3512  * about errors or whether the log was flushed or not. This is the normal
3513  * interface to use when trying to unpin items or move the log forward.
3514  */
3515 void
3516 xfs_log_force_lsn(
3517 	xfs_mount_t	*mp,
3518 	xfs_lsn_t	lsn,
3519 	uint		flags)
3520 {
3521 	trace_xfs_log_force(mp, lsn, _RET_IP_);
3522 	_xfs_log_force_lsn(mp, lsn, flags, NULL);
3523 }
3524 
3525 /*
3526  * Called when we want to mark the current iclog as being ready to sync to
3527  * disk.
3528  */
3529 STATIC void
3530 xlog_state_want_sync(
3531 	struct xlog		*log,
3532 	struct xlog_in_core	*iclog)
3533 {
3534 	assert_spin_locked(&log->l_icloglock);
3535 
3536 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3537 		xlog_state_switch_iclogs(log, iclog, 0);
3538 	} else {
3539 		ASSERT(iclog->ic_state &
3540 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3541 	}
3542 }
3543 
3544 
3545 /*****************************************************************************
3546  *
3547  *		TICKET functions
3548  *
3549  *****************************************************************************
3550  */
3551 
3552 /*
3553  * Free a used ticket when its refcount falls to zero.
3554  */
3555 void
3556 xfs_log_ticket_put(
3557 	xlog_ticket_t	*ticket)
3558 {
3559 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3560 	if (atomic_dec_and_test(&ticket->t_ref))
3561 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3562 }
3563 
3564 xlog_ticket_t *
3565 xfs_log_ticket_get(
3566 	xlog_ticket_t	*ticket)
3567 {
3568 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3569 	atomic_inc(&ticket->t_ref);
3570 	return ticket;
3571 }
3572 
3573 /*
3574  * Figure out the total log space unit (in bytes) that would be
3575  * required for a log ticket.
3576  */
3577 int
3578 xfs_log_calc_unit_res(
3579 	struct xfs_mount	*mp,
3580 	int			unit_bytes)
3581 {
3582 	struct xlog		*log = mp->m_log;
3583 	int			iclog_space;
3584 	uint			num_headers;
3585 
3586 	/*
3587 	 * Permanent reservations have up to 'cnt'-1 active log operations
3588 	 * in the log.  A unit in this case is the amount of space for one
3589 	 * of these log operations.  Normal reservations have a cnt of 1
3590 	 * and their unit amount is the total amount of space required.
3591 	 *
3592 	 * The following lines of code account for non-transaction data
3593 	 * which occupy space in the on-disk log.
3594 	 *
3595 	 * Normal form of a transaction is:
3596 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3597 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3598 	 *
3599 	 * We need to account for all the leadup data and trailer data
3600 	 * around the transaction data.
3601 	 * And then we need to account for the worst case in terms of using
3602 	 * more space.
3603 	 * The worst case will happen if:
3604 	 * - the placement of the transaction happens to be such that the
3605 	 *   roundoff is at its maximum
3606 	 * - the transaction data is synced before the commit record is synced
3607 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3608 	 *   Therefore the commit record is in its own Log Record.
3609 	 *   This can happen as the commit record is called with its
3610 	 *   own region to xlog_write().
3611 	 *   This then means that in the worst case, roundoff can happen for
3612 	 *   the commit-rec as well.
3613 	 *   The commit-rec is smaller than padding in this scenario and so it is
3614 	 *   not added separately.
3615 	 */
3616 
3617 	/* for trans header */
3618 	unit_bytes += sizeof(xlog_op_header_t);
3619 	unit_bytes += sizeof(xfs_trans_header_t);
3620 
3621 	/* for start-rec */
3622 	unit_bytes += sizeof(xlog_op_header_t);
3623 
3624 	/*
3625 	 * for LR headers - the space for data in an iclog is the size minus
3626 	 * the space used for the headers. If we use the iclog size, then we
3627 	 * undercalculate the number of headers required.
3628 	 *
3629 	 * Furthermore - the addition of op headers for split-recs might
3630 	 * increase the space required enough to require more log and op
3631 	 * headers, so take that into account too.
3632 	 *
3633 	 * IMPORTANT: This reservation makes the assumption that if this
3634 	 * transaction is the first in an iclog and hence has the LR headers
3635 	 * accounted to it, then the remaining space in the iclog is
3636 	 * exclusively for this transaction.  i.e. if the transaction is larger
3637 	 * than the iclog, it will be the only thing in that iclog.
3638 	 * Fundamentally, this means we must pass the entire log vector to
3639 	 * xlog_write to guarantee this.
3640 	 */
3641 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3642 	num_headers = howmany(unit_bytes, iclog_space);
3643 
3644 	/* for split-recs - ophdrs added when data split over LRs */
3645 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3646 
3647 	/* add extra header reservations if we overrun */
3648 	while (!num_headers ||
3649 	       howmany(unit_bytes, iclog_space) > num_headers) {
3650 		unit_bytes += sizeof(xlog_op_header_t);
3651 		num_headers++;
3652 	}
3653 	unit_bytes += log->l_iclog_hsize * num_headers;
3654 
3655 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3656 	unit_bytes += log->l_iclog_hsize;
3657 
3658 	/* for roundoff padding for transaction data and one for commit record */
3659 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3660 		/* log su roundoff */
3661 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3662 	} else {
3663 		/* BB roundoff */
3664 		unit_bytes += 2 * BBSIZE;
3665         }
3666 
3667 	return unit_bytes;
3668 }
3669 
3670 /*
3671  * Allocate and initialise a new log ticket.
3672  */
3673 struct xlog_ticket *
3674 xlog_ticket_alloc(
3675 	struct xlog		*log,
3676 	int			unit_bytes,
3677 	int			cnt,
3678 	char			client,
3679 	bool			permanent,
3680 	xfs_km_flags_t		alloc_flags)
3681 {
3682 	struct xlog_ticket	*tic;
3683 	int			unit_res;
3684 
3685 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3686 	if (!tic)
3687 		return NULL;
3688 
3689 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3690 
3691 	atomic_set(&tic->t_ref, 1);
3692 	tic->t_task		= current;
3693 	INIT_LIST_HEAD(&tic->t_queue);
3694 	tic->t_unit_res		= unit_res;
3695 	tic->t_curr_res		= unit_res;
3696 	tic->t_cnt		= cnt;
3697 	tic->t_ocnt		= cnt;
3698 	tic->t_tid		= prandom_u32();
3699 	tic->t_clientid		= client;
3700 	tic->t_flags		= XLOG_TIC_INITED;
3701 	if (permanent)
3702 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3703 
3704 	xlog_tic_reset_res(tic);
3705 
3706 	return tic;
3707 }
3708 
3709 
3710 /******************************************************************************
3711  *
3712  *		Log debug routines
3713  *
3714  ******************************************************************************
3715  */
3716 #if defined(DEBUG)
3717 /*
3718  * Make sure that the destination ptr is within the valid data region of
3719  * one of the iclogs.  This uses backup pointers stored in a different
3720  * part of the log in case we trash the log structure.
3721  */
3722 void
3723 xlog_verify_dest_ptr(
3724 	struct xlog	*log,
3725 	void		*ptr)
3726 {
3727 	int i;
3728 	int good_ptr = 0;
3729 
3730 	for (i = 0; i < log->l_iclog_bufs; i++) {
3731 		if (ptr >= log->l_iclog_bak[i] &&
3732 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3733 			good_ptr++;
3734 	}
3735 
3736 	if (!good_ptr)
3737 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3738 }
3739 
3740 /*
3741  * Check to make sure the grant write head didn't just over lap the tail.  If
3742  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3743  * the cycles differ by exactly one and check the byte count.
3744  *
3745  * This check is run unlocked, so can give false positives. Rather than assert
3746  * on failures, use a warn-once flag and a panic tag to allow the admin to
3747  * determine if they want to panic the machine when such an error occurs. For
3748  * debug kernels this will have the same effect as using an assert but, unlinke
3749  * an assert, it can be turned off at runtime.
3750  */
3751 STATIC void
3752 xlog_verify_grant_tail(
3753 	struct xlog	*log)
3754 {
3755 	int		tail_cycle, tail_blocks;
3756 	int		cycle, space;
3757 
3758 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3759 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3760 	if (tail_cycle != cycle) {
3761 		if (cycle - 1 != tail_cycle &&
3762 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3763 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3764 				"%s: cycle - 1 != tail_cycle", __func__);
3765 			log->l_flags |= XLOG_TAIL_WARN;
3766 		}
3767 
3768 		if (space > BBTOB(tail_blocks) &&
3769 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3770 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3771 				"%s: space > BBTOB(tail_blocks)", __func__);
3772 			log->l_flags |= XLOG_TAIL_WARN;
3773 		}
3774 	}
3775 }
3776 
3777 /* check if it will fit */
3778 STATIC void
3779 xlog_verify_tail_lsn(
3780 	struct xlog		*log,
3781 	struct xlog_in_core	*iclog,
3782 	xfs_lsn_t		tail_lsn)
3783 {
3784     int blocks;
3785 
3786     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3787 	blocks =
3788 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3789 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3790 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3791     } else {
3792 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3793 
3794 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3795 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3796 
3797 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3798 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3799 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3800     }
3801 }	/* xlog_verify_tail_lsn */
3802 
3803 /*
3804  * Perform a number of checks on the iclog before writing to disk.
3805  *
3806  * 1. Make sure the iclogs are still circular
3807  * 2. Make sure we have a good magic number
3808  * 3. Make sure we don't have magic numbers in the data
3809  * 4. Check fields of each log operation header for:
3810  *	A. Valid client identifier
3811  *	B. tid ptr value falls in valid ptr space (user space code)
3812  *	C. Length in log record header is correct according to the
3813  *		individual operation headers within record.
3814  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3815  *	log, check the preceding blocks of the physical log to make sure all
3816  *	the cycle numbers agree with the current cycle number.
3817  */
3818 STATIC void
3819 xlog_verify_iclog(
3820 	struct xlog		*log,
3821 	struct xlog_in_core	*iclog,
3822 	int			count,
3823 	bool                    syncing)
3824 {
3825 	xlog_op_header_t	*ophead;
3826 	xlog_in_core_t		*icptr;
3827 	xlog_in_core_2_t	*xhdr;
3828 	void			*base_ptr, *ptr, *p;
3829 	ptrdiff_t		field_offset;
3830 	uint8_t			clientid;
3831 	int			len, i, j, k, op_len;
3832 	int			idx;
3833 
3834 	/* check validity of iclog pointers */
3835 	spin_lock(&log->l_icloglock);
3836 	icptr = log->l_iclog;
3837 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3838 		ASSERT(icptr);
3839 
3840 	if (icptr != log->l_iclog)
3841 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3842 	spin_unlock(&log->l_icloglock);
3843 
3844 	/* check log magic numbers */
3845 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3846 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3847 
3848 	base_ptr = ptr = &iclog->ic_header;
3849 	p = &iclog->ic_header;
3850 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3851 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3852 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3853 				__func__);
3854 	}
3855 
3856 	/* check fields */
3857 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3858 	base_ptr = ptr = iclog->ic_datap;
3859 	ophead = ptr;
3860 	xhdr = iclog->ic_data;
3861 	for (i = 0; i < len; i++) {
3862 		ophead = ptr;
3863 
3864 		/* clientid is only 1 byte */
3865 		p = &ophead->oh_clientid;
3866 		field_offset = p - base_ptr;
3867 		if (!syncing || (field_offset & 0x1ff)) {
3868 			clientid = ophead->oh_clientid;
3869 		} else {
3870 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3871 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3872 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3873 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3874 				clientid = xlog_get_client_id(
3875 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3876 			} else {
3877 				clientid = xlog_get_client_id(
3878 					iclog->ic_header.h_cycle_data[idx]);
3879 			}
3880 		}
3881 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3882 			xfs_warn(log->l_mp,
3883 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3884 				__func__, clientid, ophead,
3885 				(unsigned long)field_offset);
3886 
3887 		/* check length */
3888 		p = &ophead->oh_len;
3889 		field_offset = p - base_ptr;
3890 		if (!syncing || (field_offset & 0x1ff)) {
3891 			op_len = be32_to_cpu(ophead->oh_len);
3892 		} else {
3893 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3894 				    (uintptr_t)iclog->ic_datap);
3895 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3896 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3897 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3898 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3899 			} else {
3900 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3901 			}
3902 		}
3903 		ptr += sizeof(xlog_op_header_t) + op_len;
3904 	}
3905 }	/* xlog_verify_iclog */
3906 #endif
3907 
3908 /*
3909  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3910  */
3911 STATIC int
3912 xlog_state_ioerror(
3913 	struct xlog	*log)
3914 {
3915 	xlog_in_core_t	*iclog, *ic;
3916 
3917 	iclog = log->l_iclog;
3918 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3919 		/*
3920 		 * Mark all the incore logs IOERROR.
3921 		 * From now on, no log flushes will result.
3922 		 */
3923 		ic = iclog;
3924 		do {
3925 			ic->ic_state = XLOG_STATE_IOERROR;
3926 			ic = ic->ic_next;
3927 		} while (ic != iclog);
3928 		return 0;
3929 	}
3930 	/*
3931 	 * Return non-zero, if state transition has already happened.
3932 	 */
3933 	return 1;
3934 }
3935 
3936 /*
3937  * This is called from xfs_force_shutdown, when we're forcibly
3938  * shutting down the filesystem, typically because of an IO error.
3939  * Our main objectives here are to make sure that:
3940  *	a. if !logerror, flush the logs to disk. Anything modified
3941  *	   after this is ignored.
3942  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3943  *	   parties to find out, 'atomically'.
3944  *	c. those who're sleeping on log reservations, pinned objects and
3945  *	    other resources get woken up, and be told the bad news.
3946  *	d. nothing new gets queued up after (b) and (c) are done.
3947  *
3948  * Note: for the !logerror case we need to flush the regions held in memory out
3949  * to disk first. This needs to be done before the log is marked as shutdown,
3950  * otherwise the iclog writes will fail.
3951  */
3952 int
3953 xfs_log_force_umount(
3954 	struct xfs_mount	*mp,
3955 	int			logerror)
3956 {
3957 	struct xlog	*log;
3958 	int		retval;
3959 
3960 	log = mp->m_log;
3961 
3962 	/*
3963 	 * If this happens during log recovery, don't worry about
3964 	 * locking; the log isn't open for business yet.
3965 	 */
3966 	if (!log ||
3967 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3968 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3969 		if (mp->m_sb_bp)
3970 			mp->m_sb_bp->b_flags |= XBF_DONE;
3971 		return 0;
3972 	}
3973 
3974 	/*
3975 	 * Somebody could've already done the hard work for us.
3976 	 * No need to get locks for this.
3977 	 */
3978 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3979 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3980 		return 1;
3981 	}
3982 
3983 	/*
3984 	 * Flush all the completed transactions to disk before marking the log
3985 	 * being shut down. We need to do it in this order to ensure that
3986 	 * completed operations are safely on disk before we shut down, and that
3987 	 * we don't have to issue any buffer IO after the shutdown flags are set
3988 	 * to guarantee this.
3989 	 */
3990 	if (!logerror)
3991 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3992 
3993 	/*
3994 	 * mark the filesystem and the as in a shutdown state and wake
3995 	 * everybody up to tell them the bad news.
3996 	 */
3997 	spin_lock(&log->l_icloglock);
3998 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3999 	if (mp->m_sb_bp)
4000 		mp->m_sb_bp->b_flags |= XBF_DONE;
4001 
4002 	/*
4003 	 * Mark the log and the iclogs with IO error flags to prevent any
4004 	 * further log IO from being issued or completed.
4005 	 */
4006 	log->l_flags |= XLOG_IO_ERROR;
4007 	retval = xlog_state_ioerror(log);
4008 	spin_unlock(&log->l_icloglock);
4009 
4010 	/*
4011 	 * We don't want anybody waiting for log reservations after this. That
4012 	 * means we have to wake up everybody queued up on reserveq as well as
4013 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4014 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4015 	 * action is protected by the grant locks.
4016 	 */
4017 	xlog_grant_head_wake_all(&log->l_reserve_head);
4018 	xlog_grant_head_wake_all(&log->l_write_head);
4019 
4020 	/*
4021 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4022 	 * as if the log writes were completed. The abort handling in the log
4023 	 * item committed callback functions will do this again under lock to
4024 	 * avoid races.
4025 	 */
4026 	wake_up_all(&log->l_cilp->xc_commit_wait);
4027 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4028 
4029 #ifdef XFSERRORDEBUG
4030 	{
4031 		xlog_in_core_t	*iclog;
4032 
4033 		spin_lock(&log->l_icloglock);
4034 		iclog = log->l_iclog;
4035 		do {
4036 			ASSERT(iclog->ic_callback == 0);
4037 			iclog = iclog->ic_next;
4038 		} while (iclog != log->l_iclog);
4039 		spin_unlock(&log->l_icloglock);
4040 	}
4041 #endif
4042 	/* return non-zero if log IOERROR transition had already happened */
4043 	return retval;
4044 }
4045 
4046 STATIC int
4047 xlog_iclogs_empty(
4048 	struct xlog	*log)
4049 {
4050 	xlog_in_core_t	*iclog;
4051 
4052 	iclog = log->l_iclog;
4053 	do {
4054 		/* endianness does not matter here, zero is zero in
4055 		 * any language.
4056 		 */
4057 		if (iclog->ic_header.h_num_logops)
4058 			return 0;
4059 		iclog = iclog->ic_next;
4060 	} while (iclog != log->l_iclog);
4061 	return 1;
4062 }
4063 
4064 /*
4065  * Verify that an LSN stamped into a piece of metadata is valid. This is
4066  * intended for use in read verifiers on v5 superblocks.
4067  */
4068 bool
4069 xfs_log_check_lsn(
4070 	struct xfs_mount	*mp,
4071 	xfs_lsn_t		lsn)
4072 {
4073 	struct xlog		*log = mp->m_log;
4074 	bool			valid;
4075 
4076 	/*
4077 	 * norecovery mode skips mount-time log processing and unconditionally
4078 	 * resets the in-core LSN. We can't validate in this mode, but
4079 	 * modifications are not allowed anyways so just return true.
4080 	 */
4081 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4082 		return true;
4083 
4084 	/*
4085 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4086 	 * handled by recovery and thus safe to ignore here.
4087 	 */
4088 	if (lsn == NULLCOMMITLSN)
4089 		return true;
4090 
4091 	valid = xlog_valid_lsn(mp->m_log, lsn);
4092 
4093 	/* warn the user about what's gone wrong before verifier failure */
4094 	if (!valid) {
4095 		spin_lock(&log->l_icloglock);
4096 		xfs_warn(mp,
4097 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4098 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4099 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4100 			 log->l_curr_cycle, log->l_curr_block);
4101 		spin_unlock(&log->l_icloglock);
4102 	}
4103 
4104 	return valid;
4105 }
4106