1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trace.h" 20 #include "xfs_sysfs.h" 21 #include "xfs_sb.h" 22 #include "xfs_health.h" 23 24 struct kmem_cache *xfs_log_ticket_cache; 25 26 /* Local miscellaneous function prototypes */ 27 STATIC struct xlog * 28 xlog_alloc_log( 29 struct xfs_mount *mp, 30 struct xfs_buftarg *log_target, 31 xfs_daddr_t blk_offset, 32 int num_bblks); 33 STATIC int 34 xlog_space_left( 35 struct xlog *log, 36 atomic64_t *head); 37 STATIC void 38 xlog_dealloc_log( 39 struct xlog *log); 40 41 /* local state machine functions */ 42 STATIC void xlog_state_done_syncing( 43 struct xlog_in_core *iclog); 44 STATIC void xlog_state_do_callback( 45 struct xlog *log); 46 STATIC int 47 xlog_state_get_iclog_space( 48 struct xlog *log, 49 int len, 50 struct xlog_in_core **iclog, 51 struct xlog_ticket *ticket, 52 int *logoffsetp); 53 STATIC void 54 xlog_grant_push_ail( 55 struct xlog *log, 56 int need_bytes); 57 STATIC void 58 xlog_sync( 59 struct xlog *log, 60 struct xlog_in_core *iclog, 61 struct xlog_ticket *ticket); 62 #if defined(DEBUG) 63 STATIC void 64 xlog_verify_grant_tail( 65 struct xlog *log); 66 STATIC void 67 xlog_verify_iclog( 68 struct xlog *log, 69 struct xlog_in_core *iclog, 70 int count); 71 STATIC void 72 xlog_verify_tail_lsn( 73 struct xlog *log, 74 struct xlog_in_core *iclog); 75 #else 76 #define xlog_verify_grant_tail(a) 77 #define xlog_verify_iclog(a,b,c) 78 #define xlog_verify_tail_lsn(a,b) 79 #endif 80 81 STATIC int 82 xlog_iclogs_empty( 83 struct xlog *log); 84 85 static int 86 xfs_log_cover(struct xfs_mount *); 87 88 /* 89 * We need to make sure the buffer pointer returned is naturally aligned for the 90 * biggest basic data type we put into it. We have already accounted for this 91 * padding when sizing the buffer. 92 * 93 * However, this padding does not get written into the log, and hence we have to 94 * track the space used by the log vectors separately to prevent log space hangs 95 * due to inaccurate accounting (i.e. a leak) of the used log space through the 96 * CIL context ticket. 97 * 98 * We also add space for the xlog_op_header that describes this region in the 99 * log. This prepends the data region we return to the caller to copy their data 100 * into, so do all the static initialisation of the ophdr now. Because the ophdr 101 * is not 8 byte aligned, we have to be careful to ensure that we align the 102 * start of the buffer such that the region we return to the call is 8 byte 103 * aligned and packed against the tail of the ophdr. 104 */ 105 void * 106 xlog_prepare_iovec( 107 struct xfs_log_vec *lv, 108 struct xfs_log_iovec **vecp, 109 uint type) 110 { 111 struct xfs_log_iovec *vec = *vecp; 112 struct xlog_op_header *oph; 113 uint32_t len; 114 void *buf; 115 116 if (vec) { 117 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs); 118 vec++; 119 } else { 120 vec = &lv->lv_iovecp[0]; 121 } 122 123 len = lv->lv_buf_len + sizeof(struct xlog_op_header); 124 if (!IS_ALIGNED(len, sizeof(uint64_t))) { 125 lv->lv_buf_len = round_up(len, sizeof(uint64_t)) - 126 sizeof(struct xlog_op_header); 127 } 128 129 vec->i_type = type; 130 vec->i_addr = lv->lv_buf + lv->lv_buf_len; 131 132 oph = vec->i_addr; 133 oph->oh_clientid = XFS_TRANSACTION; 134 oph->oh_res2 = 0; 135 oph->oh_flags = 0; 136 137 buf = vec->i_addr + sizeof(struct xlog_op_header); 138 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t))); 139 140 *vecp = vec; 141 return buf; 142 } 143 144 static void 145 xlog_grant_sub_space( 146 struct xlog *log, 147 atomic64_t *head, 148 int bytes) 149 { 150 int64_t head_val = atomic64_read(head); 151 int64_t new, old; 152 153 do { 154 int cycle, space; 155 156 xlog_crack_grant_head_val(head_val, &cycle, &space); 157 158 space -= bytes; 159 if (space < 0) { 160 space += log->l_logsize; 161 cycle--; 162 } 163 164 old = head_val; 165 new = xlog_assign_grant_head_val(cycle, space); 166 head_val = atomic64_cmpxchg(head, old, new); 167 } while (head_val != old); 168 } 169 170 static void 171 xlog_grant_add_space( 172 struct xlog *log, 173 atomic64_t *head, 174 int bytes) 175 { 176 int64_t head_val = atomic64_read(head); 177 int64_t new, old; 178 179 do { 180 int tmp; 181 int cycle, space; 182 183 xlog_crack_grant_head_val(head_val, &cycle, &space); 184 185 tmp = log->l_logsize - space; 186 if (tmp > bytes) 187 space += bytes; 188 else { 189 space = bytes - tmp; 190 cycle++; 191 } 192 193 old = head_val; 194 new = xlog_assign_grant_head_val(cycle, space); 195 head_val = atomic64_cmpxchg(head, old, new); 196 } while (head_val != old); 197 } 198 199 STATIC void 200 xlog_grant_head_init( 201 struct xlog_grant_head *head) 202 { 203 xlog_assign_grant_head(&head->grant, 1, 0); 204 INIT_LIST_HEAD(&head->waiters); 205 spin_lock_init(&head->lock); 206 } 207 208 STATIC void 209 xlog_grant_head_wake_all( 210 struct xlog_grant_head *head) 211 { 212 struct xlog_ticket *tic; 213 214 spin_lock(&head->lock); 215 list_for_each_entry(tic, &head->waiters, t_queue) 216 wake_up_process(tic->t_task); 217 spin_unlock(&head->lock); 218 } 219 220 static inline int 221 xlog_ticket_reservation( 222 struct xlog *log, 223 struct xlog_grant_head *head, 224 struct xlog_ticket *tic) 225 { 226 if (head == &log->l_write_head) { 227 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 228 return tic->t_unit_res; 229 } 230 231 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 232 return tic->t_unit_res * tic->t_cnt; 233 234 return tic->t_unit_res; 235 } 236 237 STATIC bool 238 xlog_grant_head_wake( 239 struct xlog *log, 240 struct xlog_grant_head *head, 241 int *free_bytes) 242 { 243 struct xlog_ticket *tic; 244 int need_bytes; 245 bool woken_task = false; 246 247 list_for_each_entry(tic, &head->waiters, t_queue) { 248 249 /* 250 * There is a chance that the size of the CIL checkpoints in 251 * progress at the last AIL push target calculation resulted in 252 * limiting the target to the log head (l_last_sync_lsn) at the 253 * time. This may not reflect where the log head is now as the 254 * CIL checkpoints may have completed. 255 * 256 * Hence when we are woken here, it may be that the head of the 257 * log that has moved rather than the tail. As the tail didn't 258 * move, there still won't be space available for the 259 * reservation we require. However, if the AIL has already 260 * pushed to the target defined by the old log head location, we 261 * will hang here waiting for something else to update the AIL 262 * push target. 263 * 264 * Therefore, if there isn't space to wake the first waiter on 265 * the grant head, we need to push the AIL again to ensure the 266 * target reflects both the current log tail and log head 267 * position before we wait for the tail to move again. 268 */ 269 270 need_bytes = xlog_ticket_reservation(log, head, tic); 271 if (*free_bytes < need_bytes) { 272 if (!woken_task) 273 xlog_grant_push_ail(log, need_bytes); 274 return false; 275 } 276 277 *free_bytes -= need_bytes; 278 trace_xfs_log_grant_wake_up(log, tic); 279 wake_up_process(tic->t_task); 280 woken_task = true; 281 } 282 283 return true; 284 } 285 286 STATIC int 287 xlog_grant_head_wait( 288 struct xlog *log, 289 struct xlog_grant_head *head, 290 struct xlog_ticket *tic, 291 int need_bytes) __releases(&head->lock) 292 __acquires(&head->lock) 293 { 294 list_add_tail(&tic->t_queue, &head->waiters); 295 296 do { 297 if (xlog_is_shutdown(log)) 298 goto shutdown; 299 xlog_grant_push_ail(log, need_bytes); 300 301 __set_current_state(TASK_UNINTERRUPTIBLE); 302 spin_unlock(&head->lock); 303 304 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 305 306 trace_xfs_log_grant_sleep(log, tic); 307 schedule(); 308 trace_xfs_log_grant_wake(log, tic); 309 310 spin_lock(&head->lock); 311 if (xlog_is_shutdown(log)) 312 goto shutdown; 313 } while (xlog_space_left(log, &head->grant) < need_bytes); 314 315 list_del_init(&tic->t_queue); 316 return 0; 317 shutdown: 318 list_del_init(&tic->t_queue); 319 return -EIO; 320 } 321 322 /* 323 * Atomically get the log space required for a log ticket. 324 * 325 * Once a ticket gets put onto head->waiters, it will only return after the 326 * needed reservation is satisfied. 327 * 328 * This function is structured so that it has a lock free fast path. This is 329 * necessary because every new transaction reservation will come through this 330 * path. Hence any lock will be globally hot if we take it unconditionally on 331 * every pass. 332 * 333 * As tickets are only ever moved on and off head->waiters under head->lock, we 334 * only need to take that lock if we are going to add the ticket to the queue 335 * and sleep. We can avoid taking the lock if the ticket was never added to 336 * head->waiters because the t_queue list head will be empty and we hold the 337 * only reference to it so it can safely be checked unlocked. 338 */ 339 STATIC int 340 xlog_grant_head_check( 341 struct xlog *log, 342 struct xlog_grant_head *head, 343 struct xlog_ticket *tic, 344 int *need_bytes) 345 { 346 int free_bytes; 347 int error = 0; 348 349 ASSERT(!xlog_in_recovery(log)); 350 351 /* 352 * If there are other waiters on the queue then give them a chance at 353 * logspace before us. Wake up the first waiters, if we do not wake 354 * up all the waiters then go to sleep waiting for more free space, 355 * otherwise try to get some space for this transaction. 356 */ 357 *need_bytes = xlog_ticket_reservation(log, head, tic); 358 free_bytes = xlog_space_left(log, &head->grant); 359 if (!list_empty_careful(&head->waiters)) { 360 spin_lock(&head->lock); 361 if (!xlog_grant_head_wake(log, head, &free_bytes) || 362 free_bytes < *need_bytes) { 363 error = xlog_grant_head_wait(log, head, tic, 364 *need_bytes); 365 } 366 spin_unlock(&head->lock); 367 } else if (free_bytes < *need_bytes) { 368 spin_lock(&head->lock); 369 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 370 spin_unlock(&head->lock); 371 } 372 373 return error; 374 } 375 376 bool 377 xfs_log_writable( 378 struct xfs_mount *mp) 379 { 380 /* 381 * Do not write to the log on norecovery mounts, if the data or log 382 * devices are read-only, or if the filesystem is shutdown. Read-only 383 * mounts allow internal writes for log recovery and unmount purposes, 384 * so don't restrict that case. 385 */ 386 if (xfs_has_norecovery(mp)) 387 return false; 388 if (xfs_readonly_buftarg(mp->m_ddev_targp)) 389 return false; 390 if (xfs_readonly_buftarg(mp->m_log->l_targ)) 391 return false; 392 if (xlog_is_shutdown(mp->m_log)) 393 return false; 394 return true; 395 } 396 397 /* 398 * Replenish the byte reservation required by moving the grant write head. 399 */ 400 int 401 xfs_log_regrant( 402 struct xfs_mount *mp, 403 struct xlog_ticket *tic) 404 { 405 struct xlog *log = mp->m_log; 406 int need_bytes; 407 int error = 0; 408 409 if (xlog_is_shutdown(log)) 410 return -EIO; 411 412 XFS_STATS_INC(mp, xs_try_logspace); 413 414 /* 415 * This is a new transaction on the ticket, so we need to change the 416 * transaction ID so that the next transaction has a different TID in 417 * the log. Just add one to the existing tid so that we can see chains 418 * of rolling transactions in the log easily. 419 */ 420 tic->t_tid++; 421 422 xlog_grant_push_ail(log, tic->t_unit_res); 423 424 tic->t_curr_res = tic->t_unit_res; 425 if (tic->t_cnt > 0) 426 return 0; 427 428 trace_xfs_log_regrant(log, tic); 429 430 error = xlog_grant_head_check(log, &log->l_write_head, tic, 431 &need_bytes); 432 if (error) 433 goto out_error; 434 435 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 436 trace_xfs_log_regrant_exit(log, tic); 437 xlog_verify_grant_tail(log); 438 return 0; 439 440 out_error: 441 /* 442 * If we are failing, make sure the ticket doesn't have any current 443 * reservations. We don't want to add this back when the ticket/ 444 * transaction gets cancelled. 445 */ 446 tic->t_curr_res = 0; 447 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 448 return error; 449 } 450 451 /* 452 * Reserve log space and return a ticket corresponding to the reservation. 453 * 454 * Each reservation is going to reserve extra space for a log record header. 455 * When writes happen to the on-disk log, we don't subtract the length of the 456 * log record header from any reservation. By wasting space in each 457 * reservation, we prevent over allocation problems. 458 */ 459 int 460 xfs_log_reserve( 461 struct xfs_mount *mp, 462 int unit_bytes, 463 int cnt, 464 struct xlog_ticket **ticp, 465 bool permanent) 466 { 467 struct xlog *log = mp->m_log; 468 struct xlog_ticket *tic; 469 int need_bytes; 470 int error = 0; 471 472 if (xlog_is_shutdown(log)) 473 return -EIO; 474 475 XFS_STATS_INC(mp, xs_try_logspace); 476 477 ASSERT(*ticp == NULL); 478 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent); 479 *ticp = tic; 480 481 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 482 : tic->t_unit_res); 483 484 trace_xfs_log_reserve(log, tic); 485 486 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 487 &need_bytes); 488 if (error) 489 goto out_error; 490 491 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 492 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 493 trace_xfs_log_reserve_exit(log, tic); 494 xlog_verify_grant_tail(log); 495 return 0; 496 497 out_error: 498 /* 499 * If we are failing, make sure the ticket doesn't have any current 500 * reservations. We don't want to add this back when the ticket/ 501 * transaction gets cancelled. 502 */ 503 tic->t_curr_res = 0; 504 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 505 return error; 506 } 507 508 /* 509 * Run all the pending iclog callbacks and wake log force waiters and iclog 510 * space waiters so they can process the newly set shutdown state. We really 511 * don't care what order we process callbacks here because the log is shut down 512 * and so state cannot change on disk anymore. However, we cannot wake waiters 513 * until the callbacks have been processed because we may be in unmount and 514 * we must ensure that all AIL operations the callbacks perform have completed 515 * before we tear down the AIL. 516 * 517 * We avoid processing actively referenced iclogs so that we don't run callbacks 518 * while the iclog owner might still be preparing the iclog for IO submssion. 519 * These will be caught by xlog_state_iclog_release() and call this function 520 * again to process any callbacks that may have been added to that iclog. 521 */ 522 static void 523 xlog_state_shutdown_callbacks( 524 struct xlog *log) 525 { 526 struct xlog_in_core *iclog; 527 LIST_HEAD(cb_list); 528 529 iclog = log->l_iclog; 530 do { 531 if (atomic_read(&iclog->ic_refcnt)) { 532 /* Reference holder will re-run iclog callbacks. */ 533 continue; 534 } 535 list_splice_init(&iclog->ic_callbacks, &cb_list); 536 spin_unlock(&log->l_icloglock); 537 538 xlog_cil_process_committed(&cb_list); 539 540 spin_lock(&log->l_icloglock); 541 wake_up_all(&iclog->ic_write_wait); 542 wake_up_all(&iclog->ic_force_wait); 543 } while ((iclog = iclog->ic_next) != log->l_iclog); 544 545 wake_up_all(&log->l_flush_wait); 546 } 547 548 /* 549 * Flush iclog to disk if this is the last reference to the given iclog and the 550 * it is in the WANT_SYNC state. 551 * 552 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the 553 * log tail is updated correctly. NEED_FUA indicates that the iclog will be 554 * written to stable storage, and implies that a commit record is contained 555 * within the iclog. We need to ensure that the log tail does not move beyond 556 * the tail that the first commit record in the iclog ordered against, otherwise 557 * correct recovery of that checkpoint becomes dependent on future operations 558 * performed on this iclog. 559 * 560 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the 561 * current tail into iclog. Once the iclog tail is set, future operations must 562 * not modify it, otherwise they potentially violate ordering constraints for 563 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in 564 * the iclog will get zeroed on activation of the iclog after sync, so we 565 * always capture the tail lsn on the iclog on the first NEED_FUA release 566 * regardless of the number of active reference counts on this iclog. 567 */ 568 int 569 xlog_state_release_iclog( 570 struct xlog *log, 571 struct xlog_in_core *iclog, 572 struct xlog_ticket *ticket) 573 { 574 xfs_lsn_t tail_lsn; 575 bool last_ref; 576 577 lockdep_assert_held(&log->l_icloglock); 578 579 trace_xlog_iclog_release(iclog, _RET_IP_); 580 /* 581 * Grabbing the current log tail needs to be atomic w.r.t. the writing 582 * of the tail LSN into the iclog so we guarantee that the log tail does 583 * not move between the first time we know that the iclog needs to be 584 * made stable and when we eventually submit it. 585 */ 586 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC || 587 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) && 588 !iclog->ic_header.h_tail_lsn) { 589 tail_lsn = xlog_assign_tail_lsn(log->l_mp); 590 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 591 } 592 593 last_ref = atomic_dec_and_test(&iclog->ic_refcnt); 594 595 if (xlog_is_shutdown(log)) { 596 /* 597 * If there are no more references to this iclog, process the 598 * pending iclog callbacks that were waiting on the release of 599 * this iclog. 600 */ 601 if (last_ref) 602 xlog_state_shutdown_callbacks(log); 603 return -EIO; 604 } 605 606 if (!last_ref) 607 return 0; 608 609 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) { 610 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 611 return 0; 612 } 613 614 iclog->ic_state = XLOG_STATE_SYNCING; 615 xlog_verify_tail_lsn(log, iclog); 616 trace_xlog_iclog_syncing(iclog, _RET_IP_); 617 618 spin_unlock(&log->l_icloglock); 619 xlog_sync(log, iclog, ticket); 620 spin_lock(&log->l_icloglock); 621 return 0; 622 } 623 624 /* 625 * Mount a log filesystem 626 * 627 * mp - ubiquitous xfs mount point structure 628 * log_target - buftarg of on-disk log device 629 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 630 * num_bblocks - Number of BBSIZE blocks in on-disk log 631 * 632 * Return error or zero. 633 */ 634 int 635 xfs_log_mount( 636 xfs_mount_t *mp, 637 xfs_buftarg_t *log_target, 638 xfs_daddr_t blk_offset, 639 int num_bblks) 640 { 641 struct xlog *log; 642 int error = 0; 643 int min_logfsbs; 644 645 if (!xfs_has_norecovery(mp)) { 646 xfs_notice(mp, "Mounting V%d Filesystem %pU", 647 XFS_SB_VERSION_NUM(&mp->m_sb), 648 &mp->m_sb.sb_uuid); 649 } else { 650 xfs_notice(mp, 651 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.", 652 XFS_SB_VERSION_NUM(&mp->m_sb), 653 &mp->m_sb.sb_uuid); 654 ASSERT(xfs_is_readonly(mp)); 655 } 656 657 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 658 if (IS_ERR(log)) { 659 error = PTR_ERR(log); 660 goto out; 661 } 662 mp->m_log = log; 663 664 /* 665 * Now that we have set up the log and it's internal geometry 666 * parameters, we can validate the given log space and drop a critical 667 * message via syslog if the log size is too small. A log that is too 668 * small can lead to unexpected situations in transaction log space 669 * reservation stage. The superblock verifier has already validated all 670 * the other log geometry constraints, so we don't have to check those 671 * here. 672 * 673 * Note: For v4 filesystems, we can't just reject the mount if the 674 * validation fails. This would mean that people would have to 675 * downgrade their kernel just to remedy the situation as there is no 676 * way to grow the log (short of black magic surgery with xfs_db). 677 * 678 * We can, however, reject mounts for V5 format filesystems, as the 679 * mkfs binary being used to make the filesystem should never create a 680 * filesystem with a log that is too small. 681 */ 682 min_logfsbs = xfs_log_calc_minimum_size(mp); 683 if (mp->m_sb.sb_logblocks < min_logfsbs) { 684 xfs_warn(mp, 685 "Log size %d blocks too small, minimum size is %d blocks", 686 mp->m_sb.sb_logblocks, min_logfsbs); 687 688 /* 689 * Log check errors are always fatal on v5; or whenever bad 690 * metadata leads to a crash. 691 */ 692 if (xfs_has_crc(mp)) { 693 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 694 ASSERT(0); 695 error = -EINVAL; 696 goto out_free_log; 697 } 698 xfs_crit(mp, "Log size out of supported range."); 699 xfs_crit(mp, 700 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 701 } 702 703 /* 704 * Initialize the AIL now we have a log. 705 */ 706 error = xfs_trans_ail_init(mp); 707 if (error) { 708 xfs_warn(mp, "AIL initialisation failed: error %d", error); 709 goto out_free_log; 710 } 711 log->l_ailp = mp->m_ail; 712 713 /* 714 * skip log recovery on a norecovery mount. pretend it all 715 * just worked. 716 */ 717 if (!xfs_has_norecovery(mp)) { 718 /* 719 * log recovery ignores readonly state and so we need to clear 720 * mount-based read only state so it can write to disk. 721 */ 722 bool readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, 723 &mp->m_opstate); 724 error = xlog_recover(log); 725 if (readonly) 726 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 727 if (error) { 728 xfs_warn(mp, "log mount/recovery failed: error %d", 729 error); 730 xlog_recover_cancel(log); 731 goto out_destroy_ail; 732 } 733 } 734 735 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 736 "log"); 737 if (error) 738 goto out_destroy_ail; 739 740 /* Normal transactions can now occur */ 741 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 742 743 /* 744 * Now the log has been fully initialised and we know were our 745 * space grant counters are, we can initialise the permanent ticket 746 * needed for delayed logging to work. 747 */ 748 xlog_cil_init_post_recovery(log); 749 750 return 0; 751 752 out_destroy_ail: 753 xfs_trans_ail_destroy(mp); 754 out_free_log: 755 xlog_dealloc_log(log); 756 out: 757 return error; 758 } 759 760 /* 761 * Finish the recovery of the file system. This is separate from the 762 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 763 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 764 * here. 765 * 766 * If we finish recovery successfully, start the background log work. If we are 767 * not doing recovery, then we have a RO filesystem and we don't need to start 768 * it. 769 */ 770 int 771 xfs_log_mount_finish( 772 struct xfs_mount *mp) 773 { 774 struct xlog *log = mp->m_log; 775 bool readonly; 776 int error = 0; 777 778 if (xfs_has_norecovery(mp)) { 779 ASSERT(xfs_is_readonly(mp)); 780 return 0; 781 } 782 783 /* 784 * log recovery ignores readonly state and so we need to clear 785 * mount-based read only state so it can write to disk. 786 */ 787 readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 788 789 /* 790 * During the second phase of log recovery, we need iget and 791 * iput to behave like they do for an active filesystem. 792 * xfs_fs_drop_inode needs to be able to prevent the deletion 793 * of inodes before we're done replaying log items on those 794 * inodes. Turn it off immediately after recovery finishes 795 * so that we don't leak the quota inodes if subsequent mount 796 * activities fail. 797 * 798 * We let all inodes involved in redo item processing end up on 799 * the LRU instead of being evicted immediately so that if we do 800 * something to an unlinked inode, the irele won't cause 801 * premature truncation and freeing of the inode, which results 802 * in log recovery failure. We have to evict the unreferenced 803 * lru inodes after clearing SB_ACTIVE because we don't 804 * otherwise clean up the lru if there's a subsequent failure in 805 * xfs_mountfs, which leads to us leaking the inodes if nothing 806 * else (e.g. quotacheck) references the inodes before the 807 * mount failure occurs. 808 */ 809 mp->m_super->s_flags |= SB_ACTIVE; 810 xfs_log_work_queue(mp); 811 if (xlog_recovery_needed(log)) 812 error = xlog_recover_finish(log); 813 mp->m_super->s_flags &= ~SB_ACTIVE; 814 evict_inodes(mp->m_super); 815 816 /* 817 * Drain the buffer LRU after log recovery. This is required for v4 818 * filesystems to avoid leaving around buffers with NULL verifier ops, 819 * but we do it unconditionally to make sure we're always in a clean 820 * cache state after mount. 821 * 822 * Don't push in the error case because the AIL may have pending intents 823 * that aren't removed until recovery is cancelled. 824 */ 825 if (xlog_recovery_needed(log)) { 826 if (!error) { 827 xfs_log_force(mp, XFS_LOG_SYNC); 828 xfs_ail_push_all_sync(mp->m_ail); 829 } 830 xfs_notice(mp, "Ending recovery (logdev: %s)", 831 mp->m_logname ? mp->m_logname : "internal"); 832 } else { 833 xfs_info(mp, "Ending clean mount"); 834 } 835 xfs_buftarg_drain(mp->m_ddev_targp); 836 837 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 838 if (readonly) 839 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 840 841 /* Make sure the log is dead if we're returning failure. */ 842 ASSERT(!error || xlog_is_shutdown(log)); 843 844 return error; 845 } 846 847 /* 848 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 849 * the log. 850 */ 851 void 852 xfs_log_mount_cancel( 853 struct xfs_mount *mp) 854 { 855 xlog_recover_cancel(mp->m_log); 856 xfs_log_unmount(mp); 857 } 858 859 /* 860 * Flush out the iclog to disk ensuring that device caches are flushed and 861 * the iclog hits stable storage before any completion waiters are woken. 862 */ 863 static inline int 864 xlog_force_iclog( 865 struct xlog_in_core *iclog) 866 { 867 atomic_inc(&iclog->ic_refcnt); 868 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 869 if (iclog->ic_state == XLOG_STATE_ACTIVE) 870 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0); 871 return xlog_state_release_iclog(iclog->ic_log, iclog, NULL); 872 } 873 874 /* 875 * Cycle all the iclogbuf locks to make sure all log IO completion 876 * is done before we tear down these buffers. 877 */ 878 static void 879 xlog_wait_iclog_completion(struct xlog *log) 880 { 881 int i; 882 struct xlog_in_core *iclog = log->l_iclog; 883 884 for (i = 0; i < log->l_iclog_bufs; i++) { 885 down(&iclog->ic_sema); 886 up(&iclog->ic_sema); 887 iclog = iclog->ic_next; 888 } 889 } 890 891 /* 892 * Wait for the iclog and all prior iclogs to be written disk as required by the 893 * log force state machine. Waiting on ic_force_wait ensures iclog completions 894 * have been ordered and callbacks run before we are woken here, hence 895 * guaranteeing that all the iclogs up to this one are on stable storage. 896 */ 897 int 898 xlog_wait_on_iclog( 899 struct xlog_in_core *iclog) 900 __releases(iclog->ic_log->l_icloglock) 901 { 902 struct xlog *log = iclog->ic_log; 903 904 trace_xlog_iclog_wait_on(iclog, _RET_IP_); 905 if (!xlog_is_shutdown(log) && 906 iclog->ic_state != XLOG_STATE_ACTIVE && 907 iclog->ic_state != XLOG_STATE_DIRTY) { 908 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 909 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 910 } else { 911 spin_unlock(&log->l_icloglock); 912 } 913 914 if (xlog_is_shutdown(log)) 915 return -EIO; 916 return 0; 917 } 918 919 /* 920 * Write out an unmount record using the ticket provided. We have to account for 921 * the data space used in the unmount ticket as this write is not done from a 922 * transaction context that has already done the accounting for us. 923 */ 924 static int 925 xlog_write_unmount_record( 926 struct xlog *log, 927 struct xlog_ticket *ticket) 928 { 929 struct { 930 struct xlog_op_header ophdr; 931 struct xfs_unmount_log_format ulf; 932 } unmount_rec = { 933 .ophdr = { 934 .oh_clientid = XFS_LOG, 935 .oh_tid = cpu_to_be32(ticket->t_tid), 936 .oh_flags = XLOG_UNMOUNT_TRANS, 937 }, 938 .ulf = { 939 .magic = XLOG_UNMOUNT_TYPE, 940 }, 941 }; 942 struct xfs_log_iovec reg = { 943 .i_addr = &unmount_rec, 944 .i_len = sizeof(unmount_rec), 945 .i_type = XLOG_REG_TYPE_UNMOUNT, 946 }; 947 struct xfs_log_vec vec = { 948 .lv_niovecs = 1, 949 .lv_iovecp = ®, 950 }; 951 LIST_HEAD(lv_chain); 952 list_add(&vec.lv_list, &lv_chain); 953 954 BUILD_BUG_ON((sizeof(struct xlog_op_header) + 955 sizeof(struct xfs_unmount_log_format)) != 956 sizeof(unmount_rec)); 957 958 /* account for space used by record data */ 959 ticket->t_curr_res -= sizeof(unmount_rec); 960 961 return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len); 962 } 963 964 /* 965 * Mark the filesystem clean by writing an unmount record to the head of the 966 * log. 967 */ 968 static void 969 xlog_unmount_write( 970 struct xlog *log) 971 { 972 struct xfs_mount *mp = log->l_mp; 973 struct xlog_in_core *iclog; 974 struct xlog_ticket *tic = NULL; 975 int error; 976 977 error = xfs_log_reserve(mp, 600, 1, &tic, 0); 978 if (error) 979 goto out_err; 980 981 error = xlog_write_unmount_record(log, tic); 982 /* 983 * At this point, we're umounting anyway, so there's no point in 984 * transitioning log state to shutdown. Just continue... 985 */ 986 out_err: 987 if (error) 988 xfs_alert(mp, "%s: unmount record failed", __func__); 989 990 spin_lock(&log->l_icloglock); 991 iclog = log->l_iclog; 992 error = xlog_force_iclog(iclog); 993 xlog_wait_on_iclog(iclog); 994 995 if (tic) { 996 trace_xfs_log_umount_write(log, tic); 997 xfs_log_ticket_ungrant(log, tic); 998 } 999 } 1000 1001 static void 1002 xfs_log_unmount_verify_iclog( 1003 struct xlog *log) 1004 { 1005 struct xlog_in_core *iclog = log->l_iclog; 1006 1007 do { 1008 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 1009 ASSERT(iclog->ic_offset == 0); 1010 } while ((iclog = iclog->ic_next) != log->l_iclog); 1011 } 1012 1013 /* 1014 * Unmount record used to have a string "Unmount filesystem--" in the 1015 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 1016 * We just write the magic number now since that particular field isn't 1017 * currently architecture converted and "Unmount" is a bit foo. 1018 * As far as I know, there weren't any dependencies on the old behaviour. 1019 */ 1020 static void 1021 xfs_log_unmount_write( 1022 struct xfs_mount *mp) 1023 { 1024 struct xlog *log = mp->m_log; 1025 1026 if (!xfs_log_writable(mp)) 1027 return; 1028 1029 xfs_log_force(mp, XFS_LOG_SYNC); 1030 1031 if (xlog_is_shutdown(log)) 1032 return; 1033 1034 /* 1035 * If we think the summary counters are bad, avoid writing the unmount 1036 * record to force log recovery at next mount, after which the summary 1037 * counters will be recalculated. Refer to xlog_check_unmount_rec for 1038 * more details. 1039 */ 1040 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp, 1041 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 1042 xfs_alert(mp, "%s: will fix summary counters at next mount", 1043 __func__); 1044 return; 1045 } 1046 1047 xfs_log_unmount_verify_iclog(log); 1048 xlog_unmount_write(log); 1049 } 1050 1051 /* 1052 * Empty the log for unmount/freeze. 1053 * 1054 * To do this, we first need to shut down the background log work so it is not 1055 * trying to cover the log as we clean up. We then need to unpin all objects in 1056 * the log so we can then flush them out. Once they have completed their IO and 1057 * run the callbacks removing themselves from the AIL, we can cover the log. 1058 */ 1059 int 1060 xfs_log_quiesce( 1061 struct xfs_mount *mp) 1062 { 1063 /* 1064 * Clear log incompat features since we're quiescing the log. Report 1065 * failures, though it's not fatal to have a higher log feature 1066 * protection level than the log contents actually require. 1067 */ 1068 if (xfs_clear_incompat_log_features(mp)) { 1069 int error; 1070 1071 error = xfs_sync_sb(mp, false); 1072 if (error) 1073 xfs_warn(mp, 1074 "Failed to clear log incompat features on quiesce"); 1075 } 1076 1077 cancel_delayed_work_sync(&mp->m_log->l_work); 1078 xfs_log_force(mp, XFS_LOG_SYNC); 1079 1080 /* 1081 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1082 * will push it, xfs_buftarg_wait() will not wait for it. Further, 1083 * xfs_buf_iowait() cannot be used because it was pushed with the 1084 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1085 * the IO to complete. 1086 */ 1087 xfs_ail_push_all_sync(mp->m_ail); 1088 xfs_buftarg_wait(mp->m_ddev_targp); 1089 xfs_buf_lock(mp->m_sb_bp); 1090 xfs_buf_unlock(mp->m_sb_bp); 1091 1092 return xfs_log_cover(mp); 1093 } 1094 1095 void 1096 xfs_log_clean( 1097 struct xfs_mount *mp) 1098 { 1099 xfs_log_quiesce(mp); 1100 xfs_log_unmount_write(mp); 1101 } 1102 1103 /* 1104 * Shut down and release the AIL and Log. 1105 * 1106 * During unmount, we need to ensure we flush all the dirty metadata objects 1107 * from the AIL so that the log is empty before we write the unmount record to 1108 * the log. Once this is done, we can tear down the AIL and the log. 1109 */ 1110 void 1111 xfs_log_unmount( 1112 struct xfs_mount *mp) 1113 { 1114 xfs_log_clean(mp); 1115 1116 /* 1117 * If shutdown has come from iclog IO context, the log 1118 * cleaning will have been skipped and so we need to wait 1119 * for the iclog to complete shutdown processing before we 1120 * tear anything down. 1121 */ 1122 xlog_wait_iclog_completion(mp->m_log); 1123 1124 xfs_buftarg_drain(mp->m_ddev_targp); 1125 1126 xfs_trans_ail_destroy(mp); 1127 1128 xfs_sysfs_del(&mp->m_log->l_kobj); 1129 1130 xlog_dealloc_log(mp->m_log); 1131 } 1132 1133 void 1134 xfs_log_item_init( 1135 struct xfs_mount *mp, 1136 struct xfs_log_item *item, 1137 int type, 1138 const struct xfs_item_ops *ops) 1139 { 1140 item->li_log = mp->m_log; 1141 item->li_ailp = mp->m_ail; 1142 item->li_type = type; 1143 item->li_ops = ops; 1144 item->li_lv = NULL; 1145 1146 INIT_LIST_HEAD(&item->li_ail); 1147 INIT_LIST_HEAD(&item->li_cil); 1148 INIT_LIST_HEAD(&item->li_bio_list); 1149 INIT_LIST_HEAD(&item->li_trans); 1150 } 1151 1152 /* 1153 * Wake up processes waiting for log space after we have moved the log tail. 1154 */ 1155 void 1156 xfs_log_space_wake( 1157 struct xfs_mount *mp) 1158 { 1159 struct xlog *log = mp->m_log; 1160 int free_bytes; 1161 1162 if (xlog_is_shutdown(log)) 1163 return; 1164 1165 if (!list_empty_careful(&log->l_write_head.waiters)) { 1166 ASSERT(!xlog_in_recovery(log)); 1167 1168 spin_lock(&log->l_write_head.lock); 1169 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1170 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1171 spin_unlock(&log->l_write_head.lock); 1172 } 1173 1174 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1175 ASSERT(!xlog_in_recovery(log)); 1176 1177 spin_lock(&log->l_reserve_head.lock); 1178 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1179 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1180 spin_unlock(&log->l_reserve_head.lock); 1181 } 1182 } 1183 1184 /* 1185 * Determine if we have a transaction that has gone to disk that needs to be 1186 * covered. To begin the transition to the idle state firstly the log needs to 1187 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1188 * we start attempting to cover the log. 1189 * 1190 * Only if we are then in a state where covering is needed, the caller is 1191 * informed that dummy transactions are required to move the log into the idle 1192 * state. 1193 * 1194 * If there are any items in the AIl or CIL, then we do not want to attempt to 1195 * cover the log as we may be in a situation where there isn't log space 1196 * available to run a dummy transaction and this can lead to deadlocks when the 1197 * tail of the log is pinned by an item that is modified in the CIL. Hence 1198 * there's no point in running a dummy transaction at this point because we 1199 * can't start trying to idle the log until both the CIL and AIL are empty. 1200 */ 1201 static bool 1202 xfs_log_need_covered( 1203 struct xfs_mount *mp) 1204 { 1205 struct xlog *log = mp->m_log; 1206 bool needed = false; 1207 1208 if (!xlog_cil_empty(log)) 1209 return false; 1210 1211 spin_lock(&log->l_icloglock); 1212 switch (log->l_covered_state) { 1213 case XLOG_STATE_COVER_DONE: 1214 case XLOG_STATE_COVER_DONE2: 1215 case XLOG_STATE_COVER_IDLE: 1216 break; 1217 case XLOG_STATE_COVER_NEED: 1218 case XLOG_STATE_COVER_NEED2: 1219 if (xfs_ail_min_lsn(log->l_ailp)) 1220 break; 1221 if (!xlog_iclogs_empty(log)) 1222 break; 1223 1224 needed = true; 1225 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1226 log->l_covered_state = XLOG_STATE_COVER_DONE; 1227 else 1228 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1229 break; 1230 default: 1231 needed = true; 1232 break; 1233 } 1234 spin_unlock(&log->l_icloglock); 1235 return needed; 1236 } 1237 1238 /* 1239 * Explicitly cover the log. This is similar to background log covering but 1240 * intended for usage in quiesce codepaths. The caller is responsible to ensure 1241 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL 1242 * must all be empty. 1243 */ 1244 static int 1245 xfs_log_cover( 1246 struct xfs_mount *mp) 1247 { 1248 int error = 0; 1249 bool need_covered; 1250 1251 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) && 1252 !xfs_ail_min_lsn(mp->m_log->l_ailp)) || 1253 xlog_is_shutdown(mp->m_log)); 1254 1255 if (!xfs_log_writable(mp)) 1256 return 0; 1257 1258 /* 1259 * xfs_log_need_covered() is not idempotent because it progresses the 1260 * state machine if the log requires covering. Therefore, we must call 1261 * this function once and use the result until we've issued an sb sync. 1262 * Do so first to make that abundantly clear. 1263 * 1264 * Fall into the covering sequence if the log needs covering or the 1265 * mount has lazy superblock accounting to sync to disk. The sb sync 1266 * used for covering accumulates the in-core counters, so covering 1267 * handles this for us. 1268 */ 1269 need_covered = xfs_log_need_covered(mp); 1270 if (!need_covered && !xfs_has_lazysbcount(mp)) 1271 return 0; 1272 1273 /* 1274 * To cover the log, commit the superblock twice (at most) in 1275 * independent checkpoints. The first serves as a reference for the 1276 * tail pointer. The sync transaction and AIL push empties the AIL and 1277 * updates the in-core tail to the LSN of the first checkpoint. The 1278 * second commit updates the on-disk tail with the in-core LSN, 1279 * covering the log. Push the AIL one more time to leave it empty, as 1280 * we found it. 1281 */ 1282 do { 1283 error = xfs_sync_sb(mp, true); 1284 if (error) 1285 break; 1286 xfs_ail_push_all_sync(mp->m_ail); 1287 } while (xfs_log_need_covered(mp)); 1288 1289 return error; 1290 } 1291 1292 /* 1293 * We may be holding the log iclog lock upon entering this routine. 1294 */ 1295 xfs_lsn_t 1296 xlog_assign_tail_lsn_locked( 1297 struct xfs_mount *mp) 1298 { 1299 struct xlog *log = mp->m_log; 1300 struct xfs_log_item *lip; 1301 xfs_lsn_t tail_lsn; 1302 1303 assert_spin_locked(&mp->m_ail->ail_lock); 1304 1305 /* 1306 * To make sure we always have a valid LSN for the log tail we keep 1307 * track of the last LSN which was committed in log->l_last_sync_lsn, 1308 * and use that when the AIL was empty. 1309 */ 1310 lip = xfs_ail_min(mp->m_ail); 1311 if (lip) 1312 tail_lsn = lip->li_lsn; 1313 else 1314 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1315 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1316 atomic64_set(&log->l_tail_lsn, tail_lsn); 1317 return tail_lsn; 1318 } 1319 1320 xfs_lsn_t 1321 xlog_assign_tail_lsn( 1322 struct xfs_mount *mp) 1323 { 1324 xfs_lsn_t tail_lsn; 1325 1326 spin_lock(&mp->m_ail->ail_lock); 1327 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1328 spin_unlock(&mp->m_ail->ail_lock); 1329 1330 return tail_lsn; 1331 } 1332 1333 /* 1334 * Return the space in the log between the tail and the head. The head 1335 * is passed in the cycle/bytes formal parms. In the special case where 1336 * the reserve head has wrapped passed the tail, this calculation is no 1337 * longer valid. In this case, just return 0 which means there is no space 1338 * in the log. This works for all places where this function is called 1339 * with the reserve head. Of course, if the write head were to ever 1340 * wrap the tail, we should blow up. Rather than catch this case here, 1341 * we depend on other ASSERTions in other parts of the code. XXXmiken 1342 * 1343 * If reservation head is behind the tail, we have a problem. Warn about it, 1344 * but then treat it as if the log is empty. 1345 * 1346 * If the log is shut down, the head and tail may be invalid or out of whack, so 1347 * shortcut invalidity asserts in this case so that we don't trigger them 1348 * falsely. 1349 */ 1350 STATIC int 1351 xlog_space_left( 1352 struct xlog *log, 1353 atomic64_t *head) 1354 { 1355 int tail_bytes; 1356 int tail_cycle; 1357 int head_cycle; 1358 int head_bytes; 1359 1360 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1361 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1362 tail_bytes = BBTOB(tail_bytes); 1363 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1364 return log->l_logsize - (head_bytes - tail_bytes); 1365 if (tail_cycle + 1 < head_cycle) 1366 return 0; 1367 1368 /* Ignore potential inconsistency when shutdown. */ 1369 if (xlog_is_shutdown(log)) 1370 return log->l_logsize; 1371 1372 if (tail_cycle < head_cycle) { 1373 ASSERT(tail_cycle == (head_cycle - 1)); 1374 return tail_bytes - head_bytes; 1375 } 1376 1377 /* 1378 * The reservation head is behind the tail. In this case we just want to 1379 * return the size of the log as the amount of space left. 1380 */ 1381 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1382 xfs_alert(log->l_mp, " tail_cycle = %d, tail_bytes = %d", 1383 tail_cycle, tail_bytes); 1384 xfs_alert(log->l_mp, " GH cycle = %d, GH bytes = %d", 1385 head_cycle, head_bytes); 1386 ASSERT(0); 1387 return log->l_logsize; 1388 } 1389 1390 1391 static void 1392 xlog_ioend_work( 1393 struct work_struct *work) 1394 { 1395 struct xlog_in_core *iclog = 1396 container_of(work, struct xlog_in_core, ic_end_io_work); 1397 struct xlog *log = iclog->ic_log; 1398 int error; 1399 1400 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1401 #ifdef DEBUG 1402 /* treat writes with injected CRC errors as failed */ 1403 if (iclog->ic_fail_crc) 1404 error = -EIO; 1405 #endif 1406 1407 /* 1408 * Race to shutdown the filesystem if we see an error. 1409 */ 1410 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1411 xfs_alert(log->l_mp, "log I/O error %d", error); 1412 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1413 } 1414 1415 xlog_state_done_syncing(iclog); 1416 bio_uninit(&iclog->ic_bio); 1417 1418 /* 1419 * Drop the lock to signal that we are done. Nothing references the 1420 * iclog after this, so an unmount waiting on this lock can now tear it 1421 * down safely. As such, it is unsafe to reference the iclog after the 1422 * unlock as we could race with it being freed. 1423 */ 1424 up(&iclog->ic_sema); 1425 } 1426 1427 /* 1428 * Return size of each in-core log record buffer. 1429 * 1430 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1431 * 1432 * If the filesystem blocksize is too large, we may need to choose a 1433 * larger size since the directory code currently logs entire blocks. 1434 */ 1435 STATIC void 1436 xlog_get_iclog_buffer_size( 1437 struct xfs_mount *mp, 1438 struct xlog *log) 1439 { 1440 if (mp->m_logbufs <= 0) 1441 mp->m_logbufs = XLOG_MAX_ICLOGS; 1442 if (mp->m_logbsize <= 0) 1443 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1444 1445 log->l_iclog_bufs = mp->m_logbufs; 1446 log->l_iclog_size = mp->m_logbsize; 1447 1448 /* 1449 * # headers = size / 32k - one header holds cycles from 32k of data. 1450 */ 1451 log->l_iclog_heads = 1452 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE); 1453 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT; 1454 } 1455 1456 void 1457 xfs_log_work_queue( 1458 struct xfs_mount *mp) 1459 { 1460 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1461 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1462 } 1463 1464 /* 1465 * Clear the log incompat flags if we have the opportunity. 1466 * 1467 * This only happens if we're about to log the second dummy transaction as part 1468 * of covering the log and we can get the log incompat feature usage lock. 1469 */ 1470 static inline void 1471 xlog_clear_incompat( 1472 struct xlog *log) 1473 { 1474 struct xfs_mount *mp = log->l_mp; 1475 1476 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb, 1477 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) 1478 return; 1479 1480 if (log->l_covered_state != XLOG_STATE_COVER_DONE2) 1481 return; 1482 1483 if (!down_write_trylock(&log->l_incompat_users)) 1484 return; 1485 1486 xfs_clear_incompat_log_features(mp); 1487 up_write(&log->l_incompat_users); 1488 } 1489 1490 /* 1491 * Every sync period we need to unpin all items in the AIL and push them to 1492 * disk. If there is nothing dirty, then we might need to cover the log to 1493 * indicate that the filesystem is idle. 1494 */ 1495 static void 1496 xfs_log_worker( 1497 struct work_struct *work) 1498 { 1499 struct xlog *log = container_of(to_delayed_work(work), 1500 struct xlog, l_work); 1501 struct xfs_mount *mp = log->l_mp; 1502 1503 /* dgc: errors ignored - not fatal and nowhere to report them */ 1504 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) { 1505 /* 1506 * Dump a transaction into the log that contains no real change. 1507 * This is needed to stamp the current tail LSN into the log 1508 * during the covering operation. 1509 * 1510 * We cannot use an inode here for this - that will push dirty 1511 * state back up into the VFS and then periodic inode flushing 1512 * will prevent log covering from making progress. Hence we 1513 * synchronously log the superblock instead to ensure the 1514 * superblock is immediately unpinned and can be written back. 1515 */ 1516 xlog_clear_incompat(log); 1517 xfs_sync_sb(mp, true); 1518 } else 1519 xfs_log_force(mp, 0); 1520 1521 /* start pushing all the metadata that is currently dirty */ 1522 xfs_ail_push_all(mp->m_ail); 1523 1524 /* queue us up again */ 1525 xfs_log_work_queue(mp); 1526 } 1527 1528 /* 1529 * This routine initializes some of the log structure for a given mount point. 1530 * Its primary purpose is to fill in enough, so recovery can occur. However, 1531 * some other stuff may be filled in too. 1532 */ 1533 STATIC struct xlog * 1534 xlog_alloc_log( 1535 struct xfs_mount *mp, 1536 struct xfs_buftarg *log_target, 1537 xfs_daddr_t blk_offset, 1538 int num_bblks) 1539 { 1540 struct xlog *log; 1541 xlog_rec_header_t *head; 1542 xlog_in_core_t **iclogp; 1543 xlog_in_core_t *iclog, *prev_iclog=NULL; 1544 int i; 1545 int error = -ENOMEM; 1546 uint log2_size = 0; 1547 1548 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1549 if (!log) { 1550 xfs_warn(mp, "Log allocation failed: No memory!"); 1551 goto out; 1552 } 1553 1554 log->l_mp = mp; 1555 log->l_targ = log_target; 1556 log->l_logsize = BBTOB(num_bblks); 1557 log->l_logBBstart = blk_offset; 1558 log->l_logBBsize = num_bblks; 1559 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1560 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 1561 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1562 1563 log->l_prev_block = -1; 1564 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1565 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1566 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1567 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1568 1569 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1) 1570 log->l_iclog_roundoff = mp->m_sb.sb_logsunit; 1571 else 1572 log->l_iclog_roundoff = BBSIZE; 1573 1574 xlog_grant_head_init(&log->l_reserve_head); 1575 xlog_grant_head_init(&log->l_write_head); 1576 1577 error = -EFSCORRUPTED; 1578 if (xfs_has_sector(mp)) { 1579 log2_size = mp->m_sb.sb_logsectlog; 1580 if (log2_size < BBSHIFT) { 1581 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1582 log2_size, BBSHIFT); 1583 goto out_free_log; 1584 } 1585 1586 log2_size -= BBSHIFT; 1587 if (log2_size > mp->m_sectbb_log) { 1588 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1589 log2_size, mp->m_sectbb_log); 1590 goto out_free_log; 1591 } 1592 1593 /* for larger sector sizes, must have v2 or external log */ 1594 if (log2_size && log->l_logBBstart > 0 && 1595 !xfs_has_logv2(mp)) { 1596 xfs_warn(mp, 1597 "log sector size (0x%x) invalid for configuration.", 1598 log2_size); 1599 goto out_free_log; 1600 } 1601 } 1602 log->l_sectBBsize = 1 << log2_size; 1603 1604 init_rwsem(&log->l_incompat_users); 1605 1606 xlog_get_iclog_buffer_size(mp, log); 1607 1608 spin_lock_init(&log->l_icloglock); 1609 init_waitqueue_head(&log->l_flush_wait); 1610 1611 iclogp = &log->l_iclog; 1612 /* 1613 * The amount of memory to allocate for the iclog structure is 1614 * rather funky due to the way the structure is defined. It is 1615 * done this way so that we can use different sizes for machines 1616 * with different amounts of memory. See the definition of 1617 * xlog_in_core_t in xfs_log_priv.h for details. 1618 */ 1619 ASSERT(log->l_iclog_size >= 4096); 1620 for (i = 0; i < log->l_iclog_bufs; i++) { 1621 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1622 sizeof(struct bio_vec); 1623 1624 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL); 1625 if (!iclog) 1626 goto out_free_iclog; 1627 1628 *iclogp = iclog; 1629 iclog->ic_prev = prev_iclog; 1630 prev_iclog = iclog; 1631 1632 iclog->ic_data = kvzalloc(log->l_iclog_size, 1633 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1634 if (!iclog->ic_data) 1635 goto out_free_iclog; 1636 head = &iclog->ic_header; 1637 memset(head, 0, sizeof(xlog_rec_header_t)); 1638 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1639 head->h_version = cpu_to_be32( 1640 xfs_has_logv2(log->l_mp) ? 2 : 1); 1641 head->h_size = cpu_to_be32(log->l_iclog_size); 1642 /* new fields */ 1643 head->h_fmt = cpu_to_be32(XLOG_FMT); 1644 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1645 1646 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1647 iclog->ic_state = XLOG_STATE_ACTIVE; 1648 iclog->ic_log = log; 1649 atomic_set(&iclog->ic_refcnt, 0); 1650 INIT_LIST_HEAD(&iclog->ic_callbacks); 1651 iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize; 1652 1653 init_waitqueue_head(&iclog->ic_force_wait); 1654 init_waitqueue_head(&iclog->ic_write_wait); 1655 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1656 sema_init(&iclog->ic_sema, 1); 1657 1658 iclogp = &iclog->ic_next; 1659 } 1660 *iclogp = log->l_iclog; /* complete ring */ 1661 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1662 1663 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1664 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | 1665 WQ_HIGHPRI), 1666 0, mp->m_super->s_id); 1667 if (!log->l_ioend_workqueue) 1668 goto out_free_iclog; 1669 1670 error = xlog_cil_init(log); 1671 if (error) 1672 goto out_destroy_workqueue; 1673 return log; 1674 1675 out_destroy_workqueue: 1676 destroy_workqueue(log->l_ioend_workqueue); 1677 out_free_iclog: 1678 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1679 prev_iclog = iclog->ic_next; 1680 kmem_free(iclog->ic_data); 1681 kmem_free(iclog); 1682 if (prev_iclog == log->l_iclog) 1683 break; 1684 } 1685 out_free_log: 1686 kmem_free(log); 1687 out: 1688 return ERR_PTR(error); 1689 } /* xlog_alloc_log */ 1690 1691 /* 1692 * Compute the LSN that we'd need to push the log tail towards in order to have 1693 * (a) enough on-disk log space to log the number of bytes specified, (b) at 1694 * least 25% of the log space free, and (c) at least 256 blocks free. If the 1695 * log free space already meets all three thresholds, this function returns 1696 * NULLCOMMITLSN. 1697 */ 1698 xfs_lsn_t 1699 xlog_grant_push_threshold( 1700 struct xlog *log, 1701 int need_bytes) 1702 { 1703 xfs_lsn_t threshold_lsn = 0; 1704 xfs_lsn_t last_sync_lsn; 1705 int free_blocks; 1706 int free_bytes; 1707 int threshold_block; 1708 int threshold_cycle; 1709 int free_threshold; 1710 1711 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1712 1713 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1714 free_blocks = BTOBBT(free_bytes); 1715 1716 /* 1717 * Set the threshold for the minimum number of free blocks in the 1718 * log to the maximum of what the caller needs, one quarter of the 1719 * log, and 256 blocks. 1720 */ 1721 free_threshold = BTOBB(need_bytes); 1722 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1723 free_threshold = max(free_threshold, 256); 1724 if (free_blocks >= free_threshold) 1725 return NULLCOMMITLSN; 1726 1727 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1728 &threshold_block); 1729 threshold_block += free_threshold; 1730 if (threshold_block >= log->l_logBBsize) { 1731 threshold_block -= log->l_logBBsize; 1732 threshold_cycle += 1; 1733 } 1734 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1735 threshold_block); 1736 /* 1737 * Don't pass in an lsn greater than the lsn of the last 1738 * log record known to be on disk. Use a snapshot of the last sync lsn 1739 * so that it doesn't change between the compare and the set. 1740 */ 1741 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1742 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1743 threshold_lsn = last_sync_lsn; 1744 1745 return threshold_lsn; 1746 } 1747 1748 /* 1749 * Push the tail of the log if we need to do so to maintain the free log space 1750 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a 1751 * policy which pushes on an lsn which is further along in the log once we 1752 * reach the high water mark. In this manner, we would be creating a low water 1753 * mark. 1754 */ 1755 STATIC void 1756 xlog_grant_push_ail( 1757 struct xlog *log, 1758 int need_bytes) 1759 { 1760 xfs_lsn_t threshold_lsn; 1761 1762 threshold_lsn = xlog_grant_push_threshold(log, need_bytes); 1763 if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log)) 1764 return; 1765 1766 /* 1767 * Get the transaction layer to kick the dirty buffers out to 1768 * disk asynchronously. No point in trying to do this if 1769 * the filesystem is shutting down. 1770 */ 1771 xfs_ail_push(log->l_ailp, threshold_lsn); 1772 } 1773 1774 /* 1775 * Stamp cycle number in every block 1776 */ 1777 STATIC void 1778 xlog_pack_data( 1779 struct xlog *log, 1780 struct xlog_in_core *iclog, 1781 int roundoff) 1782 { 1783 int i, j, k; 1784 int size = iclog->ic_offset + roundoff; 1785 __be32 cycle_lsn; 1786 char *dp; 1787 1788 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1789 1790 dp = iclog->ic_datap; 1791 for (i = 0; i < BTOBB(size); i++) { 1792 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1793 break; 1794 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1795 *(__be32 *)dp = cycle_lsn; 1796 dp += BBSIZE; 1797 } 1798 1799 if (xfs_has_logv2(log->l_mp)) { 1800 xlog_in_core_2_t *xhdr = iclog->ic_data; 1801 1802 for ( ; i < BTOBB(size); i++) { 1803 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1804 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1805 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1806 *(__be32 *)dp = cycle_lsn; 1807 dp += BBSIZE; 1808 } 1809 1810 for (i = 1; i < log->l_iclog_heads; i++) 1811 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1812 } 1813 } 1814 1815 /* 1816 * Calculate the checksum for a log buffer. 1817 * 1818 * This is a little more complicated than it should be because the various 1819 * headers and the actual data are non-contiguous. 1820 */ 1821 __le32 1822 xlog_cksum( 1823 struct xlog *log, 1824 struct xlog_rec_header *rhead, 1825 char *dp, 1826 int size) 1827 { 1828 uint32_t crc; 1829 1830 /* first generate the crc for the record header ... */ 1831 crc = xfs_start_cksum_update((char *)rhead, 1832 sizeof(struct xlog_rec_header), 1833 offsetof(struct xlog_rec_header, h_crc)); 1834 1835 /* ... then for additional cycle data for v2 logs ... */ 1836 if (xfs_has_logv2(log->l_mp)) { 1837 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1838 int i; 1839 int xheads; 1840 1841 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE); 1842 1843 for (i = 1; i < xheads; i++) { 1844 crc = crc32c(crc, &xhdr[i].hic_xheader, 1845 sizeof(struct xlog_rec_ext_header)); 1846 } 1847 } 1848 1849 /* ... and finally for the payload */ 1850 crc = crc32c(crc, dp, size); 1851 1852 return xfs_end_cksum(crc); 1853 } 1854 1855 static void 1856 xlog_bio_end_io( 1857 struct bio *bio) 1858 { 1859 struct xlog_in_core *iclog = bio->bi_private; 1860 1861 queue_work(iclog->ic_log->l_ioend_workqueue, 1862 &iclog->ic_end_io_work); 1863 } 1864 1865 static int 1866 xlog_map_iclog_data( 1867 struct bio *bio, 1868 void *data, 1869 size_t count) 1870 { 1871 do { 1872 struct page *page = kmem_to_page(data); 1873 unsigned int off = offset_in_page(data); 1874 size_t len = min_t(size_t, count, PAGE_SIZE - off); 1875 1876 if (bio_add_page(bio, page, len, off) != len) 1877 return -EIO; 1878 1879 data += len; 1880 count -= len; 1881 } while (count); 1882 1883 return 0; 1884 } 1885 1886 STATIC void 1887 xlog_write_iclog( 1888 struct xlog *log, 1889 struct xlog_in_core *iclog, 1890 uint64_t bno, 1891 unsigned int count) 1892 { 1893 ASSERT(bno < log->l_logBBsize); 1894 trace_xlog_iclog_write(iclog, _RET_IP_); 1895 1896 /* 1897 * We lock the iclogbufs here so that we can serialise against I/O 1898 * completion during unmount. We might be processing a shutdown 1899 * triggered during unmount, and that can occur asynchronously to the 1900 * unmount thread, and hence we need to ensure that completes before 1901 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1902 * across the log IO to archieve that. 1903 */ 1904 down(&iclog->ic_sema); 1905 if (xlog_is_shutdown(log)) { 1906 /* 1907 * It would seem logical to return EIO here, but we rely on 1908 * the log state machine to propagate I/O errors instead of 1909 * doing it here. We kick of the state machine and unlock 1910 * the buffer manually, the code needs to be kept in sync 1911 * with the I/O completion path. 1912 */ 1913 xlog_state_done_syncing(iclog); 1914 up(&iclog->ic_sema); 1915 return; 1916 } 1917 1918 /* 1919 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more 1920 * IOs coming immediately after this one. This prevents the block layer 1921 * writeback throttle from throttling log writes behind background 1922 * metadata writeback and causing priority inversions. 1923 */ 1924 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec, 1925 howmany(count, PAGE_SIZE), 1926 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE); 1927 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1928 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1929 iclog->ic_bio.bi_private = iclog; 1930 1931 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) { 1932 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1933 /* 1934 * For external log devices, we also need to flush the data 1935 * device cache first to ensure all metadata writeback covered 1936 * by the LSN in this iclog is on stable storage. This is slow, 1937 * but it *must* complete before we issue the external log IO. 1938 * 1939 * If the flush fails, we cannot conclude that past metadata 1940 * writeback from the log succeeded. Repeating the flush is 1941 * not possible, hence we must shut down with log IO error to 1942 * avoid shutdown re-entering this path and erroring out again. 1943 */ 1944 if (log->l_targ != log->l_mp->m_ddev_targp && 1945 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev)) { 1946 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1947 return; 1948 } 1949 } 1950 if (iclog->ic_flags & XLOG_ICL_NEED_FUA) 1951 iclog->ic_bio.bi_opf |= REQ_FUA; 1952 1953 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA); 1954 1955 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) { 1956 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1957 return; 1958 } 1959 if (is_vmalloc_addr(iclog->ic_data)) 1960 flush_kernel_vmap_range(iclog->ic_data, count); 1961 1962 /* 1963 * If this log buffer would straddle the end of the log we will have 1964 * to split it up into two bios, so that we can continue at the start. 1965 */ 1966 if (bno + BTOBB(count) > log->l_logBBsize) { 1967 struct bio *split; 1968 1969 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1970 GFP_NOIO, &fs_bio_set); 1971 bio_chain(split, &iclog->ic_bio); 1972 submit_bio(split); 1973 1974 /* restart at logical offset zero for the remainder */ 1975 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1976 } 1977 1978 submit_bio(&iclog->ic_bio); 1979 } 1980 1981 /* 1982 * We need to bump cycle number for the part of the iclog that is 1983 * written to the start of the log. Watch out for the header magic 1984 * number case, though. 1985 */ 1986 static void 1987 xlog_split_iclog( 1988 struct xlog *log, 1989 void *data, 1990 uint64_t bno, 1991 unsigned int count) 1992 { 1993 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 1994 unsigned int i; 1995 1996 for (i = split_offset; i < count; i += BBSIZE) { 1997 uint32_t cycle = get_unaligned_be32(data + i); 1998 1999 if (++cycle == XLOG_HEADER_MAGIC_NUM) 2000 cycle++; 2001 put_unaligned_be32(cycle, data + i); 2002 } 2003 } 2004 2005 static int 2006 xlog_calc_iclog_size( 2007 struct xlog *log, 2008 struct xlog_in_core *iclog, 2009 uint32_t *roundoff) 2010 { 2011 uint32_t count_init, count; 2012 2013 /* Add for LR header */ 2014 count_init = log->l_iclog_hsize + iclog->ic_offset; 2015 count = roundup(count_init, log->l_iclog_roundoff); 2016 2017 *roundoff = count - count_init; 2018 2019 ASSERT(count >= count_init); 2020 ASSERT(*roundoff < log->l_iclog_roundoff); 2021 return count; 2022 } 2023 2024 /* 2025 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 2026 * fashion. Previously, we should have moved the current iclog 2027 * ptr in the log to point to the next available iclog. This allows further 2028 * write to continue while this code syncs out an iclog ready to go. 2029 * Before an in-core log can be written out, the data section must be scanned 2030 * to save away the 1st word of each BBSIZE block into the header. We replace 2031 * it with the current cycle count. Each BBSIZE block is tagged with the 2032 * cycle count because there in an implicit assumption that drives will 2033 * guarantee that entire 512 byte blocks get written at once. In other words, 2034 * we can't have part of a 512 byte block written and part not written. By 2035 * tagging each block, we will know which blocks are valid when recovering 2036 * after an unclean shutdown. 2037 * 2038 * This routine is single threaded on the iclog. No other thread can be in 2039 * this routine with the same iclog. Changing contents of iclog can there- 2040 * fore be done without grabbing the state machine lock. Updating the global 2041 * log will require grabbing the lock though. 2042 * 2043 * The entire log manager uses a logical block numbering scheme. Only 2044 * xlog_write_iclog knows about the fact that the log may not start with 2045 * block zero on a given device. 2046 */ 2047 STATIC void 2048 xlog_sync( 2049 struct xlog *log, 2050 struct xlog_in_core *iclog, 2051 struct xlog_ticket *ticket) 2052 { 2053 unsigned int count; /* byte count of bwrite */ 2054 unsigned int roundoff; /* roundoff to BB or stripe */ 2055 uint64_t bno; 2056 unsigned int size; 2057 2058 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2059 trace_xlog_iclog_sync(iclog, _RET_IP_); 2060 2061 count = xlog_calc_iclog_size(log, iclog, &roundoff); 2062 2063 /* 2064 * If we have a ticket, account for the roundoff via the ticket 2065 * reservation to avoid touching the hot grant heads needlessly. 2066 * Otherwise, we have to move grant heads directly. 2067 */ 2068 if (ticket) { 2069 ticket->t_curr_res -= roundoff; 2070 } else { 2071 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 2072 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 2073 } 2074 2075 /* put cycle number in every block */ 2076 xlog_pack_data(log, iclog, roundoff); 2077 2078 /* real byte length */ 2079 size = iclog->ic_offset; 2080 if (xfs_has_logv2(log->l_mp)) 2081 size += roundoff; 2082 iclog->ic_header.h_len = cpu_to_be32(size); 2083 2084 XFS_STATS_INC(log->l_mp, xs_log_writes); 2085 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 2086 2087 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)); 2088 2089 /* Do we need to split this write into 2 parts? */ 2090 if (bno + BTOBB(count) > log->l_logBBsize) 2091 xlog_split_iclog(log, &iclog->ic_header, bno, count); 2092 2093 /* calculcate the checksum */ 2094 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 2095 iclog->ic_datap, size); 2096 /* 2097 * Intentionally corrupt the log record CRC based on the error injection 2098 * frequency, if defined. This facilitates testing log recovery in the 2099 * event of torn writes. Hence, set the IOABORT state to abort the log 2100 * write on I/O completion and shutdown the fs. The subsequent mount 2101 * detects the bad CRC and attempts to recover. 2102 */ 2103 #ifdef DEBUG 2104 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 2105 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 2106 iclog->ic_fail_crc = true; 2107 xfs_warn(log->l_mp, 2108 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 2109 be64_to_cpu(iclog->ic_header.h_lsn)); 2110 } 2111 #endif 2112 xlog_verify_iclog(log, iclog, count); 2113 xlog_write_iclog(log, iclog, bno, count); 2114 } 2115 2116 /* 2117 * Deallocate a log structure 2118 */ 2119 STATIC void 2120 xlog_dealloc_log( 2121 struct xlog *log) 2122 { 2123 xlog_in_core_t *iclog, *next_iclog; 2124 int i; 2125 2126 /* 2127 * Destroy the CIL after waiting for iclog IO completion because an 2128 * iclog EIO error will try to shut down the log, which accesses the 2129 * CIL to wake up the waiters. 2130 */ 2131 xlog_cil_destroy(log); 2132 2133 iclog = log->l_iclog; 2134 for (i = 0; i < log->l_iclog_bufs; i++) { 2135 next_iclog = iclog->ic_next; 2136 kmem_free(iclog->ic_data); 2137 kmem_free(iclog); 2138 iclog = next_iclog; 2139 } 2140 2141 log->l_mp->m_log = NULL; 2142 destroy_workqueue(log->l_ioend_workqueue); 2143 kmem_free(log); 2144 } 2145 2146 /* 2147 * Update counters atomically now that memcpy is done. 2148 */ 2149 static inline void 2150 xlog_state_finish_copy( 2151 struct xlog *log, 2152 struct xlog_in_core *iclog, 2153 int record_cnt, 2154 int copy_bytes) 2155 { 2156 lockdep_assert_held(&log->l_icloglock); 2157 2158 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2159 iclog->ic_offset += copy_bytes; 2160 } 2161 2162 /* 2163 * print out info relating to regions written which consume 2164 * the reservation 2165 */ 2166 void 2167 xlog_print_tic_res( 2168 struct xfs_mount *mp, 2169 struct xlog_ticket *ticket) 2170 { 2171 xfs_warn(mp, "ticket reservation summary:"); 2172 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res); 2173 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res); 2174 xfs_warn(mp, " original count = %d", ticket->t_ocnt); 2175 xfs_warn(mp, " remaining count = %d", ticket->t_cnt); 2176 } 2177 2178 /* 2179 * Print a summary of the transaction. 2180 */ 2181 void 2182 xlog_print_trans( 2183 struct xfs_trans *tp) 2184 { 2185 struct xfs_mount *mp = tp->t_mountp; 2186 struct xfs_log_item *lip; 2187 2188 /* dump core transaction and ticket info */ 2189 xfs_warn(mp, "transaction summary:"); 2190 xfs_warn(mp, " log res = %d", tp->t_log_res); 2191 xfs_warn(mp, " log count = %d", tp->t_log_count); 2192 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2193 2194 xlog_print_tic_res(mp, tp->t_ticket); 2195 2196 /* dump each log item */ 2197 list_for_each_entry(lip, &tp->t_items, li_trans) { 2198 struct xfs_log_vec *lv = lip->li_lv; 2199 struct xfs_log_iovec *vec; 2200 int i; 2201 2202 xfs_warn(mp, "log item: "); 2203 xfs_warn(mp, " type = 0x%x", lip->li_type); 2204 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2205 if (!lv) 2206 continue; 2207 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2208 xfs_warn(mp, " size = %d", lv->lv_size); 2209 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2210 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2211 2212 /* dump each iovec for the log item */ 2213 vec = lv->lv_iovecp; 2214 for (i = 0; i < lv->lv_niovecs; i++) { 2215 int dumplen = min(vec->i_len, 32); 2216 2217 xfs_warn(mp, " iovec[%d]", i); 2218 xfs_warn(mp, " type = 0x%x", vec->i_type); 2219 xfs_warn(mp, " len = %d", vec->i_len); 2220 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2221 xfs_hex_dump(vec->i_addr, dumplen); 2222 2223 vec++; 2224 } 2225 } 2226 } 2227 2228 static inline void 2229 xlog_write_iovec( 2230 struct xlog_in_core *iclog, 2231 uint32_t *log_offset, 2232 void *data, 2233 uint32_t write_len, 2234 int *bytes_left, 2235 uint32_t *record_cnt, 2236 uint32_t *data_cnt) 2237 { 2238 ASSERT(*log_offset < iclog->ic_log->l_iclog_size); 2239 ASSERT(*log_offset % sizeof(int32_t) == 0); 2240 ASSERT(write_len % sizeof(int32_t) == 0); 2241 2242 memcpy(iclog->ic_datap + *log_offset, data, write_len); 2243 *log_offset += write_len; 2244 *bytes_left -= write_len; 2245 (*record_cnt)++; 2246 *data_cnt += write_len; 2247 } 2248 2249 /* 2250 * Write log vectors into a single iclog which is guaranteed by the caller 2251 * to have enough space to write the entire log vector into. 2252 */ 2253 static void 2254 xlog_write_full( 2255 struct xfs_log_vec *lv, 2256 struct xlog_ticket *ticket, 2257 struct xlog_in_core *iclog, 2258 uint32_t *log_offset, 2259 uint32_t *len, 2260 uint32_t *record_cnt, 2261 uint32_t *data_cnt) 2262 { 2263 int index; 2264 2265 ASSERT(*log_offset + *len <= iclog->ic_size || 2266 iclog->ic_state == XLOG_STATE_WANT_SYNC); 2267 2268 /* 2269 * Ordered log vectors have no regions to write so this 2270 * loop will naturally skip them. 2271 */ 2272 for (index = 0; index < lv->lv_niovecs; index++) { 2273 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2274 struct xlog_op_header *ophdr = reg->i_addr; 2275 2276 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2277 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2278 reg->i_len, len, record_cnt, data_cnt); 2279 } 2280 } 2281 2282 static int 2283 xlog_write_get_more_iclog_space( 2284 struct xlog_ticket *ticket, 2285 struct xlog_in_core **iclogp, 2286 uint32_t *log_offset, 2287 uint32_t len, 2288 uint32_t *record_cnt, 2289 uint32_t *data_cnt) 2290 { 2291 struct xlog_in_core *iclog = *iclogp; 2292 struct xlog *log = iclog->ic_log; 2293 int error; 2294 2295 spin_lock(&log->l_icloglock); 2296 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC); 2297 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2298 error = xlog_state_release_iclog(log, iclog, ticket); 2299 spin_unlock(&log->l_icloglock); 2300 if (error) 2301 return error; 2302 2303 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2304 log_offset); 2305 if (error) 2306 return error; 2307 *record_cnt = 0; 2308 *data_cnt = 0; 2309 *iclogp = iclog; 2310 return 0; 2311 } 2312 2313 /* 2314 * Write log vectors into a single iclog which is smaller than the current chain 2315 * length. We write until we cannot fit a full record into the remaining space 2316 * and then stop. We return the log vector that is to be written that cannot 2317 * wholly fit in the iclog. 2318 */ 2319 static int 2320 xlog_write_partial( 2321 struct xfs_log_vec *lv, 2322 struct xlog_ticket *ticket, 2323 struct xlog_in_core **iclogp, 2324 uint32_t *log_offset, 2325 uint32_t *len, 2326 uint32_t *record_cnt, 2327 uint32_t *data_cnt) 2328 { 2329 struct xlog_in_core *iclog = *iclogp; 2330 struct xlog_op_header *ophdr; 2331 int index = 0; 2332 uint32_t rlen; 2333 int error; 2334 2335 /* walk the logvec, copying until we run out of space in the iclog */ 2336 for (index = 0; index < lv->lv_niovecs; index++) { 2337 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2338 uint32_t reg_offset = 0; 2339 2340 /* 2341 * The first region of a continuation must have a non-zero 2342 * length otherwise log recovery will just skip over it and 2343 * start recovering from the next opheader it finds. Because we 2344 * mark the next opheader as a continuation, recovery will then 2345 * incorrectly add the continuation to the previous region and 2346 * that breaks stuff. 2347 * 2348 * Hence if there isn't space for region data after the 2349 * opheader, then we need to start afresh with a new iclog. 2350 */ 2351 if (iclog->ic_size - *log_offset <= 2352 sizeof(struct xlog_op_header)) { 2353 error = xlog_write_get_more_iclog_space(ticket, 2354 &iclog, log_offset, *len, record_cnt, 2355 data_cnt); 2356 if (error) 2357 return error; 2358 } 2359 2360 ophdr = reg->i_addr; 2361 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset); 2362 2363 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2364 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header)); 2365 if (rlen != reg->i_len) 2366 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2367 2368 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2369 rlen, len, record_cnt, data_cnt); 2370 2371 /* If we wrote the whole region, move to the next. */ 2372 if (rlen == reg->i_len) 2373 continue; 2374 2375 /* 2376 * We now have a partially written iovec, but it can span 2377 * multiple iclogs so we loop here. First we release the iclog 2378 * we currently have, then we get a new iclog and add a new 2379 * opheader. Then we continue copying from where we were until 2380 * we either complete the iovec or fill the iclog. If we 2381 * complete the iovec, then we increment the index and go right 2382 * back to the top of the outer loop. if we fill the iclog, we 2383 * run the inner loop again. 2384 * 2385 * This is complicated by the tail of a region using all the 2386 * space in an iclog and hence requiring us to release the iclog 2387 * and get a new one before returning to the outer loop. We must 2388 * always guarantee that we exit this inner loop with at least 2389 * space for log transaction opheaders left in the current 2390 * iclog, hence we cannot just terminate the loop at the end 2391 * of the of the continuation. So we loop while there is no 2392 * space left in the current iclog, and check for the end of the 2393 * continuation after getting a new iclog. 2394 */ 2395 do { 2396 /* 2397 * Ensure we include the continuation opheader in the 2398 * space we need in the new iclog by adding that size 2399 * to the length we require. This continuation opheader 2400 * needs to be accounted to the ticket as the space it 2401 * consumes hasn't been accounted to the lv we are 2402 * writing. 2403 */ 2404 error = xlog_write_get_more_iclog_space(ticket, 2405 &iclog, log_offset, 2406 *len + sizeof(struct xlog_op_header), 2407 record_cnt, data_cnt); 2408 if (error) 2409 return error; 2410 2411 ophdr = iclog->ic_datap + *log_offset; 2412 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2413 ophdr->oh_clientid = XFS_TRANSACTION; 2414 ophdr->oh_res2 = 0; 2415 ophdr->oh_flags = XLOG_WAS_CONT_TRANS; 2416 2417 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2418 *log_offset += sizeof(struct xlog_op_header); 2419 *data_cnt += sizeof(struct xlog_op_header); 2420 2421 /* 2422 * If rlen fits in the iclog, then end the region 2423 * continuation. Otherwise we're going around again. 2424 */ 2425 reg_offset += rlen; 2426 rlen = reg->i_len - reg_offset; 2427 if (rlen <= iclog->ic_size - *log_offset) 2428 ophdr->oh_flags |= XLOG_END_TRANS; 2429 else 2430 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2431 2432 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset); 2433 ophdr->oh_len = cpu_to_be32(rlen); 2434 2435 xlog_write_iovec(iclog, log_offset, 2436 reg->i_addr + reg_offset, 2437 rlen, len, record_cnt, data_cnt); 2438 2439 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS); 2440 } 2441 2442 /* 2443 * No more iovecs remain in this logvec so return the next log vec to 2444 * the caller so it can go back to fast path copying. 2445 */ 2446 *iclogp = iclog; 2447 return 0; 2448 } 2449 2450 /* 2451 * Write some region out to in-core log 2452 * 2453 * This will be called when writing externally provided regions or when 2454 * writing out a commit record for a given transaction. 2455 * 2456 * General algorithm: 2457 * 1. Find total length of this write. This may include adding to the 2458 * lengths passed in. 2459 * 2. Check whether we violate the tickets reservation. 2460 * 3. While writing to this iclog 2461 * A. Reserve as much space in this iclog as can get 2462 * B. If this is first write, save away start lsn 2463 * C. While writing this region: 2464 * 1. If first write of transaction, write start record 2465 * 2. Write log operation header (header per region) 2466 * 3. Find out if we can fit entire region into this iclog 2467 * 4. Potentially, verify destination memcpy ptr 2468 * 5. Memcpy (partial) region 2469 * 6. If partial copy, release iclog; otherwise, continue 2470 * copying more regions into current iclog 2471 * 4. Mark want sync bit (in simulation mode) 2472 * 5. Release iclog for potential flush to on-disk log. 2473 * 2474 * ERRORS: 2475 * 1. Panic if reservation is overrun. This should never happen since 2476 * reservation amounts are generated internal to the filesystem. 2477 * NOTES: 2478 * 1. Tickets are single threaded data structures. 2479 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2480 * syncing routine. When a single log_write region needs to span 2481 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2482 * on all log operation writes which don't contain the end of the 2483 * region. The XLOG_END_TRANS bit is used for the in-core log 2484 * operation which contains the end of the continued log_write region. 2485 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2486 * we don't really know exactly how much space will be used. As a result, 2487 * we don't update ic_offset until the end when we know exactly how many 2488 * bytes have been written out. 2489 */ 2490 int 2491 xlog_write( 2492 struct xlog *log, 2493 struct xfs_cil_ctx *ctx, 2494 struct list_head *lv_chain, 2495 struct xlog_ticket *ticket, 2496 uint32_t len) 2497 2498 { 2499 struct xlog_in_core *iclog = NULL; 2500 struct xfs_log_vec *lv; 2501 uint32_t record_cnt = 0; 2502 uint32_t data_cnt = 0; 2503 int error = 0; 2504 int log_offset; 2505 2506 if (ticket->t_curr_res < 0) { 2507 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2508 "ctx ticket reservation ran out. Need to up reservation"); 2509 xlog_print_tic_res(log->l_mp, ticket); 2510 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 2511 } 2512 2513 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2514 &log_offset); 2515 if (error) 2516 return error; 2517 2518 ASSERT(log_offset <= iclog->ic_size - 1); 2519 2520 /* 2521 * If we have a context pointer, pass it the first iclog we are 2522 * writing to so it can record state needed for iclog write 2523 * ordering. 2524 */ 2525 if (ctx) 2526 xlog_cil_set_ctx_write_state(ctx, iclog); 2527 2528 list_for_each_entry(lv, lv_chain, lv_list) { 2529 /* 2530 * If the entire log vec does not fit in the iclog, punt it to 2531 * the partial copy loop which can handle this case. 2532 */ 2533 if (lv->lv_niovecs && 2534 lv->lv_bytes > iclog->ic_size - log_offset) { 2535 error = xlog_write_partial(lv, ticket, &iclog, 2536 &log_offset, &len, &record_cnt, 2537 &data_cnt); 2538 if (error) { 2539 /* 2540 * We have no iclog to release, so just return 2541 * the error immediately. 2542 */ 2543 return error; 2544 } 2545 } else { 2546 xlog_write_full(lv, ticket, iclog, &log_offset, 2547 &len, &record_cnt, &data_cnt); 2548 } 2549 } 2550 ASSERT(len == 0); 2551 2552 /* 2553 * We've already been guaranteed that the last writes will fit inside 2554 * the current iclog, and hence it will already have the space used by 2555 * those writes accounted to it. Hence we do not need to update the 2556 * iclog with the number of bytes written here. 2557 */ 2558 spin_lock(&log->l_icloglock); 2559 xlog_state_finish_copy(log, iclog, record_cnt, 0); 2560 error = xlog_state_release_iclog(log, iclog, ticket); 2561 spin_unlock(&log->l_icloglock); 2562 2563 return error; 2564 } 2565 2566 static void 2567 xlog_state_activate_iclog( 2568 struct xlog_in_core *iclog, 2569 int *iclogs_changed) 2570 { 2571 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2572 trace_xlog_iclog_activate(iclog, _RET_IP_); 2573 2574 /* 2575 * If the number of ops in this iclog indicate it just contains the 2576 * dummy transaction, we can change state into IDLE (the second time 2577 * around). Otherwise we should change the state into NEED a dummy. 2578 * We don't need to cover the dummy. 2579 */ 2580 if (*iclogs_changed == 0 && 2581 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) { 2582 *iclogs_changed = 1; 2583 } else { 2584 /* 2585 * We have two dirty iclogs so start over. This could also be 2586 * num of ops indicating this is not the dummy going out. 2587 */ 2588 *iclogs_changed = 2; 2589 } 2590 2591 iclog->ic_state = XLOG_STATE_ACTIVE; 2592 iclog->ic_offset = 0; 2593 iclog->ic_header.h_num_logops = 0; 2594 memset(iclog->ic_header.h_cycle_data, 0, 2595 sizeof(iclog->ic_header.h_cycle_data)); 2596 iclog->ic_header.h_lsn = 0; 2597 iclog->ic_header.h_tail_lsn = 0; 2598 } 2599 2600 /* 2601 * Loop through all iclogs and mark all iclogs currently marked DIRTY as 2602 * ACTIVE after iclog I/O has completed. 2603 */ 2604 static void 2605 xlog_state_activate_iclogs( 2606 struct xlog *log, 2607 int *iclogs_changed) 2608 { 2609 struct xlog_in_core *iclog = log->l_iclog; 2610 2611 do { 2612 if (iclog->ic_state == XLOG_STATE_DIRTY) 2613 xlog_state_activate_iclog(iclog, iclogs_changed); 2614 /* 2615 * The ordering of marking iclogs ACTIVE must be maintained, so 2616 * an iclog doesn't become ACTIVE beyond one that is SYNCING. 2617 */ 2618 else if (iclog->ic_state != XLOG_STATE_ACTIVE) 2619 break; 2620 } while ((iclog = iclog->ic_next) != log->l_iclog); 2621 } 2622 2623 static int 2624 xlog_covered_state( 2625 int prev_state, 2626 int iclogs_changed) 2627 { 2628 /* 2629 * We go to NEED for any non-covering writes. We go to NEED2 if we just 2630 * wrote the first covering record (DONE). We go to IDLE if we just 2631 * wrote the second covering record (DONE2) and remain in IDLE until a 2632 * non-covering write occurs. 2633 */ 2634 switch (prev_state) { 2635 case XLOG_STATE_COVER_IDLE: 2636 if (iclogs_changed == 1) 2637 return XLOG_STATE_COVER_IDLE; 2638 fallthrough; 2639 case XLOG_STATE_COVER_NEED: 2640 case XLOG_STATE_COVER_NEED2: 2641 break; 2642 case XLOG_STATE_COVER_DONE: 2643 if (iclogs_changed == 1) 2644 return XLOG_STATE_COVER_NEED2; 2645 break; 2646 case XLOG_STATE_COVER_DONE2: 2647 if (iclogs_changed == 1) 2648 return XLOG_STATE_COVER_IDLE; 2649 break; 2650 default: 2651 ASSERT(0); 2652 } 2653 2654 return XLOG_STATE_COVER_NEED; 2655 } 2656 2657 STATIC void 2658 xlog_state_clean_iclog( 2659 struct xlog *log, 2660 struct xlog_in_core *dirty_iclog) 2661 { 2662 int iclogs_changed = 0; 2663 2664 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_); 2665 2666 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2667 2668 xlog_state_activate_iclogs(log, &iclogs_changed); 2669 wake_up_all(&dirty_iclog->ic_force_wait); 2670 2671 if (iclogs_changed) { 2672 log->l_covered_state = xlog_covered_state(log->l_covered_state, 2673 iclogs_changed); 2674 } 2675 } 2676 2677 STATIC xfs_lsn_t 2678 xlog_get_lowest_lsn( 2679 struct xlog *log) 2680 { 2681 struct xlog_in_core *iclog = log->l_iclog; 2682 xfs_lsn_t lowest_lsn = 0, lsn; 2683 2684 do { 2685 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2686 iclog->ic_state == XLOG_STATE_DIRTY) 2687 continue; 2688 2689 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2690 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2691 lowest_lsn = lsn; 2692 } while ((iclog = iclog->ic_next) != log->l_iclog); 2693 2694 return lowest_lsn; 2695 } 2696 2697 /* 2698 * Completion of a iclog IO does not imply that a transaction has completed, as 2699 * transactions can be large enough to span many iclogs. We cannot change the 2700 * tail of the log half way through a transaction as this may be the only 2701 * transaction in the log and moving the tail to point to the middle of it 2702 * will prevent recovery from finding the start of the transaction. Hence we 2703 * should only update the last_sync_lsn if this iclog contains transaction 2704 * completion callbacks on it. 2705 * 2706 * We have to do this before we drop the icloglock to ensure we are the only one 2707 * that can update it. 2708 * 2709 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick 2710 * the reservation grant head pushing. This is due to the fact that the push 2711 * target is bound by the current last_sync_lsn value. Hence if we have a large 2712 * amount of log space bound up in this committing transaction then the 2713 * last_sync_lsn value may be the limiting factor preventing tail pushing from 2714 * freeing space in the log. Hence once we've updated the last_sync_lsn we 2715 * should push the AIL to ensure the push target (and hence the grant head) is 2716 * no longer bound by the old log head location and can move forwards and make 2717 * progress again. 2718 */ 2719 static void 2720 xlog_state_set_callback( 2721 struct xlog *log, 2722 struct xlog_in_core *iclog, 2723 xfs_lsn_t header_lsn) 2724 { 2725 trace_xlog_iclog_callback(iclog, _RET_IP_); 2726 iclog->ic_state = XLOG_STATE_CALLBACK; 2727 2728 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2729 header_lsn) <= 0); 2730 2731 if (list_empty_careful(&iclog->ic_callbacks)) 2732 return; 2733 2734 atomic64_set(&log->l_last_sync_lsn, header_lsn); 2735 xlog_grant_push_ail(log, 0); 2736 } 2737 2738 /* 2739 * Return true if we need to stop processing, false to continue to the next 2740 * iclog. The caller will need to run callbacks if the iclog is returned in the 2741 * XLOG_STATE_CALLBACK state. 2742 */ 2743 static bool 2744 xlog_state_iodone_process_iclog( 2745 struct xlog *log, 2746 struct xlog_in_core *iclog) 2747 { 2748 xfs_lsn_t lowest_lsn; 2749 xfs_lsn_t header_lsn; 2750 2751 switch (iclog->ic_state) { 2752 case XLOG_STATE_ACTIVE: 2753 case XLOG_STATE_DIRTY: 2754 /* 2755 * Skip all iclogs in the ACTIVE & DIRTY states: 2756 */ 2757 return false; 2758 case XLOG_STATE_DONE_SYNC: 2759 /* 2760 * Now that we have an iclog that is in the DONE_SYNC state, do 2761 * one more check here to see if we have chased our tail around. 2762 * If this is not the lowest lsn iclog, then we will leave it 2763 * for another completion to process. 2764 */ 2765 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2766 lowest_lsn = xlog_get_lowest_lsn(log); 2767 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2768 return false; 2769 xlog_state_set_callback(log, iclog, header_lsn); 2770 return false; 2771 default: 2772 /* 2773 * Can only perform callbacks in order. Since this iclog is not 2774 * in the DONE_SYNC state, we skip the rest and just try to 2775 * clean up. 2776 */ 2777 return true; 2778 } 2779 } 2780 2781 /* 2782 * Loop over all the iclogs, running attached callbacks on them. Return true if 2783 * we ran any callbacks, indicating that we dropped the icloglock. We don't need 2784 * to handle transient shutdown state here at all because 2785 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown 2786 * cleanup of the callbacks. 2787 */ 2788 static bool 2789 xlog_state_do_iclog_callbacks( 2790 struct xlog *log) 2791 __releases(&log->l_icloglock) 2792 __acquires(&log->l_icloglock) 2793 { 2794 struct xlog_in_core *first_iclog = log->l_iclog; 2795 struct xlog_in_core *iclog = first_iclog; 2796 bool ran_callback = false; 2797 2798 do { 2799 LIST_HEAD(cb_list); 2800 2801 if (xlog_state_iodone_process_iclog(log, iclog)) 2802 break; 2803 if (iclog->ic_state != XLOG_STATE_CALLBACK) { 2804 iclog = iclog->ic_next; 2805 continue; 2806 } 2807 list_splice_init(&iclog->ic_callbacks, &cb_list); 2808 spin_unlock(&log->l_icloglock); 2809 2810 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_); 2811 xlog_cil_process_committed(&cb_list); 2812 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_); 2813 ran_callback = true; 2814 2815 spin_lock(&log->l_icloglock); 2816 xlog_state_clean_iclog(log, iclog); 2817 iclog = iclog->ic_next; 2818 } while (iclog != first_iclog); 2819 2820 return ran_callback; 2821 } 2822 2823 2824 /* 2825 * Loop running iclog completion callbacks until there are no more iclogs in a 2826 * state that can run callbacks. 2827 */ 2828 STATIC void 2829 xlog_state_do_callback( 2830 struct xlog *log) 2831 { 2832 int flushcnt = 0; 2833 int repeats = 0; 2834 2835 spin_lock(&log->l_icloglock); 2836 while (xlog_state_do_iclog_callbacks(log)) { 2837 if (xlog_is_shutdown(log)) 2838 break; 2839 2840 if (++repeats > 5000) { 2841 flushcnt += repeats; 2842 repeats = 0; 2843 xfs_warn(log->l_mp, 2844 "%s: possible infinite loop (%d iterations)", 2845 __func__, flushcnt); 2846 } 2847 } 2848 2849 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE) 2850 wake_up_all(&log->l_flush_wait); 2851 2852 spin_unlock(&log->l_icloglock); 2853 } 2854 2855 2856 /* 2857 * Finish transitioning this iclog to the dirty state. 2858 * 2859 * Callbacks could take time, so they are done outside the scope of the 2860 * global state machine log lock. 2861 */ 2862 STATIC void 2863 xlog_state_done_syncing( 2864 struct xlog_in_core *iclog) 2865 { 2866 struct xlog *log = iclog->ic_log; 2867 2868 spin_lock(&log->l_icloglock); 2869 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2870 trace_xlog_iclog_sync_done(iclog, _RET_IP_); 2871 2872 /* 2873 * If we got an error, either on the first buffer, or in the case of 2874 * split log writes, on the second, we shut down the file system and 2875 * no iclogs should ever be attempted to be written to disk again. 2876 */ 2877 if (!xlog_is_shutdown(log)) { 2878 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING); 2879 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2880 } 2881 2882 /* 2883 * Someone could be sleeping prior to writing out the next 2884 * iclog buffer, we wake them all, one will get to do the 2885 * I/O, the others get to wait for the result. 2886 */ 2887 wake_up_all(&iclog->ic_write_wait); 2888 spin_unlock(&log->l_icloglock); 2889 xlog_state_do_callback(log); 2890 } 2891 2892 /* 2893 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2894 * sleep. We wait on the flush queue on the head iclog as that should be 2895 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2896 * we will wait here and all new writes will sleep until a sync completes. 2897 * 2898 * The in-core logs are used in a circular fashion. They are not used 2899 * out-of-order even when an iclog past the head is free. 2900 * 2901 * return: 2902 * * log_offset where xlog_write() can start writing into the in-core 2903 * log's data space. 2904 * * in-core log pointer to which xlog_write() should write. 2905 * * boolean indicating this is a continued write to an in-core log. 2906 * If this is the last write, then the in-core log's offset field 2907 * needs to be incremented, depending on the amount of data which 2908 * is copied. 2909 */ 2910 STATIC int 2911 xlog_state_get_iclog_space( 2912 struct xlog *log, 2913 int len, 2914 struct xlog_in_core **iclogp, 2915 struct xlog_ticket *ticket, 2916 int *logoffsetp) 2917 { 2918 int log_offset; 2919 xlog_rec_header_t *head; 2920 xlog_in_core_t *iclog; 2921 2922 restart: 2923 spin_lock(&log->l_icloglock); 2924 if (xlog_is_shutdown(log)) { 2925 spin_unlock(&log->l_icloglock); 2926 return -EIO; 2927 } 2928 2929 iclog = log->l_iclog; 2930 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2931 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2932 2933 /* Wait for log writes to have flushed */ 2934 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2935 goto restart; 2936 } 2937 2938 head = &iclog->ic_header; 2939 2940 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2941 log_offset = iclog->ic_offset; 2942 2943 trace_xlog_iclog_get_space(iclog, _RET_IP_); 2944 2945 /* On the 1st write to an iclog, figure out lsn. This works 2946 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2947 * committing to. If the offset is set, that's how many blocks 2948 * must be written. 2949 */ 2950 if (log_offset == 0) { 2951 ticket->t_curr_res -= log->l_iclog_hsize; 2952 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2953 head->h_lsn = cpu_to_be64( 2954 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2955 ASSERT(log->l_curr_block >= 0); 2956 } 2957 2958 /* If there is enough room to write everything, then do it. Otherwise, 2959 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2960 * bit is on, so this will get flushed out. Don't update ic_offset 2961 * until you know exactly how many bytes get copied. Therefore, wait 2962 * until later to update ic_offset. 2963 * 2964 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2965 * can fit into remaining data section. 2966 */ 2967 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2968 int error = 0; 2969 2970 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2971 2972 /* 2973 * If we are the only one writing to this iclog, sync it to 2974 * disk. We need to do an atomic compare and decrement here to 2975 * avoid racing with concurrent atomic_dec_and_lock() calls in 2976 * xlog_state_release_iclog() when there is more than one 2977 * reference to the iclog. 2978 */ 2979 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 2980 error = xlog_state_release_iclog(log, iclog, ticket); 2981 spin_unlock(&log->l_icloglock); 2982 if (error) 2983 return error; 2984 goto restart; 2985 } 2986 2987 /* Do we have enough room to write the full amount in the remainder 2988 * of this iclog? Or must we continue a write on the next iclog and 2989 * mark this iclog as completely taken? In the case where we switch 2990 * iclogs (to mark it taken), this particular iclog will release/sync 2991 * to disk in xlog_write(). 2992 */ 2993 if (len <= iclog->ic_size - iclog->ic_offset) 2994 iclog->ic_offset += len; 2995 else 2996 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2997 *iclogp = iclog; 2998 2999 ASSERT(iclog->ic_offset <= iclog->ic_size); 3000 spin_unlock(&log->l_icloglock); 3001 3002 *logoffsetp = log_offset; 3003 return 0; 3004 } 3005 3006 /* 3007 * The first cnt-1 times a ticket goes through here we don't need to move the 3008 * grant write head because the permanent reservation has reserved cnt times the 3009 * unit amount. Release part of current permanent unit reservation and reset 3010 * current reservation to be one units worth. Also move grant reservation head 3011 * forward. 3012 */ 3013 void 3014 xfs_log_ticket_regrant( 3015 struct xlog *log, 3016 struct xlog_ticket *ticket) 3017 { 3018 trace_xfs_log_ticket_regrant(log, ticket); 3019 3020 if (ticket->t_cnt > 0) 3021 ticket->t_cnt--; 3022 3023 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3024 ticket->t_curr_res); 3025 xlog_grant_sub_space(log, &log->l_write_head.grant, 3026 ticket->t_curr_res); 3027 ticket->t_curr_res = ticket->t_unit_res; 3028 3029 trace_xfs_log_ticket_regrant_sub(log, ticket); 3030 3031 /* just return if we still have some of the pre-reserved space */ 3032 if (!ticket->t_cnt) { 3033 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3034 ticket->t_unit_res); 3035 trace_xfs_log_ticket_regrant_exit(log, ticket); 3036 3037 ticket->t_curr_res = ticket->t_unit_res; 3038 } 3039 3040 xfs_log_ticket_put(ticket); 3041 } 3042 3043 /* 3044 * Give back the space left from a reservation. 3045 * 3046 * All the information we need to make a correct determination of space left 3047 * is present. For non-permanent reservations, things are quite easy. The 3048 * count should have been decremented to zero. We only need to deal with the 3049 * space remaining in the current reservation part of the ticket. If the 3050 * ticket contains a permanent reservation, there may be left over space which 3051 * needs to be released. A count of N means that N-1 refills of the current 3052 * reservation can be done before we need to ask for more space. The first 3053 * one goes to fill up the first current reservation. Once we run out of 3054 * space, the count will stay at zero and the only space remaining will be 3055 * in the current reservation field. 3056 */ 3057 void 3058 xfs_log_ticket_ungrant( 3059 struct xlog *log, 3060 struct xlog_ticket *ticket) 3061 { 3062 int bytes; 3063 3064 trace_xfs_log_ticket_ungrant(log, ticket); 3065 3066 if (ticket->t_cnt > 0) 3067 ticket->t_cnt--; 3068 3069 trace_xfs_log_ticket_ungrant_sub(log, ticket); 3070 3071 /* 3072 * If this is a permanent reservation ticket, we may be able to free 3073 * up more space based on the remaining count. 3074 */ 3075 bytes = ticket->t_curr_res; 3076 if (ticket->t_cnt > 0) { 3077 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3078 bytes += ticket->t_unit_res*ticket->t_cnt; 3079 } 3080 3081 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3082 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3083 3084 trace_xfs_log_ticket_ungrant_exit(log, ticket); 3085 3086 xfs_log_space_wake(log->l_mp); 3087 xfs_log_ticket_put(ticket); 3088 } 3089 3090 /* 3091 * This routine will mark the current iclog in the ring as WANT_SYNC and move 3092 * the current iclog pointer to the next iclog in the ring. 3093 */ 3094 void 3095 xlog_state_switch_iclogs( 3096 struct xlog *log, 3097 struct xlog_in_core *iclog, 3098 int eventual_size) 3099 { 3100 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3101 assert_spin_locked(&log->l_icloglock); 3102 trace_xlog_iclog_switch(iclog, _RET_IP_); 3103 3104 if (!eventual_size) 3105 eventual_size = iclog->ic_offset; 3106 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3107 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3108 log->l_prev_block = log->l_curr_block; 3109 log->l_prev_cycle = log->l_curr_cycle; 3110 3111 /* roll log?: ic_offset changed later */ 3112 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3113 3114 /* Round up to next log-sunit */ 3115 if (log->l_iclog_roundoff > BBSIZE) { 3116 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff); 3117 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3118 } 3119 3120 if (log->l_curr_block >= log->l_logBBsize) { 3121 /* 3122 * Rewind the current block before the cycle is bumped to make 3123 * sure that the combined LSN never transiently moves forward 3124 * when the log wraps to the next cycle. This is to support the 3125 * unlocked sample of these fields from xlog_valid_lsn(). Most 3126 * other cases should acquire l_icloglock. 3127 */ 3128 log->l_curr_block -= log->l_logBBsize; 3129 ASSERT(log->l_curr_block >= 0); 3130 smp_wmb(); 3131 log->l_curr_cycle++; 3132 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3133 log->l_curr_cycle++; 3134 } 3135 ASSERT(iclog == log->l_iclog); 3136 log->l_iclog = iclog->ic_next; 3137 } 3138 3139 /* 3140 * Force the iclog to disk and check if the iclog has been completed before 3141 * xlog_force_iclog() returns. This can happen on synchronous (e.g. 3142 * pmem) or fast async storage because we drop the icloglock to issue the IO. 3143 * If completion has already occurred, tell the caller so that it can avoid an 3144 * unnecessary wait on the iclog. 3145 */ 3146 static int 3147 xlog_force_and_check_iclog( 3148 struct xlog_in_core *iclog, 3149 bool *completed) 3150 { 3151 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3152 int error; 3153 3154 *completed = false; 3155 error = xlog_force_iclog(iclog); 3156 if (error) 3157 return error; 3158 3159 /* 3160 * If the iclog has already been completed and reused the header LSN 3161 * will have been rewritten by completion 3162 */ 3163 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) 3164 *completed = true; 3165 return 0; 3166 } 3167 3168 /* 3169 * Write out all data in the in-core log as of this exact moment in time. 3170 * 3171 * Data may be written to the in-core log during this call. However, 3172 * we don't guarantee this data will be written out. A change from past 3173 * implementation means this routine will *not* write out zero length LRs. 3174 * 3175 * Basically, we try and perform an intelligent scan of the in-core logs. 3176 * If we determine there is no flushable data, we just return. There is no 3177 * flushable data if: 3178 * 3179 * 1. the current iclog is active and has no data; the previous iclog 3180 * is in the active or dirty state. 3181 * 2. the current iclog is drity, and the previous iclog is in the 3182 * active or dirty state. 3183 * 3184 * We may sleep if: 3185 * 3186 * 1. the current iclog is not in the active nor dirty state. 3187 * 2. the current iclog dirty, and the previous iclog is not in the 3188 * active nor dirty state. 3189 * 3. the current iclog is active, and there is another thread writing 3190 * to this particular iclog. 3191 * 4. a) the current iclog is active and has no other writers 3192 * b) when we return from flushing out this iclog, it is still 3193 * not in the active nor dirty state. 3194 */ 3195 int 3196 xfs_log_force( 3197 struct xfs_mount *mp, 3198 uint flags) 3199 { 3200 struct xlog *log = mp->m_log; 3201 struct xlog_in_core *iclog; 3202 3203 XFS_STATS_INC(mp, xs_log_force); 3204 trace_xfs_log_force(mp, 0, _RET_IP_); 3205 3206 xlog_cil_force(log); 3207 3208 spin_lock(&log->l_icloglock); 3209 if (xlog_is_shutdown(log)) 3210 goto out_error; 3211 3212 iclog = log->l_iclog; 3213 trace_xlog_iclog_force(iclog, _RET_IP_); 3214 3215 if (iclog->ic_state == XLOG_STATE_DIRTY || 3216 (iclog->ic_state == XLOG_STATE_ACTIVE && 3217 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3218 /* 3219 * If the head is dirty or (active and empty), then we need to 3220 * look at the previous iclog. 3221 * 3222 * If the previous iclog is active or dirty we are done. There 3223 * is nothing to sync out. Otherwise, we attach ourselves to the 3224 * previous iclog and go to sleep. 3225 */ 3226 iclog = iclog->ic_prev; 3227 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3228 if (atomic_read(&iclog->ic_refcnt) == 0) { 3229 /* We have exclusive access to this iclog. */ 3230 bool completed; 3231 3232 if (xlog_force_and_check_iclog(iclog, &completed)) 3233 goto out_error; 3234 3235 if (completed) 3236 goto out_unlock; 3237 } else { 3238 /* 3239 * Someone else is still writing to this iclog, so we 3240 * need to ensure that when they release the iclog it 3241 * gets synced immediately as we may be waiting on it. 3242 */ 3243 xlog_state_switch_iclogs(log, iclog, 0); 3244 } 3245 } 3246 3247 /* 3248 * The iclog we are about to wait on may contain the checkpoint pushed 3249 * by the above xlog_cil_force() call, but it may not have been pushed 3250 * to disk yet. Like the ACTIVE case above, we need to make sure caches 3251 * are flushed when this iclog is written. 3252 */ 3253 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) 3254 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3255 3256 if (flags & XFS_LOG_SYNC) 3257 return xlog_wait_on_iclog(iclog); 3258 out_unlock: 3259 spin_unlock(&log->l_icloglock); 3260 return 0; 3261 out_error: 3262 spin_unlock(&log->l_icloglock); 3263 return -EIO; 3264 } 3265 3266 /* 3267 * Force the log to a specific LSN. 3268 * 3269 * If an iclog with that lsn can be found: 3270 * If it is in the DIRTY state, just return. 3271 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3272 * state and go to sleep or return. 3273 * If it is in any other state, go to sleep or return. 3274 * 3275 * Synchronous forces are implemented with a wait queue. All callers trying 3276 * to force a given lsn to disk must wait on the queue attached to the 3277 * specific in-core log. When given in-core log finally completes its write 3278 * to disk, that thread will wake up all threads waiting on the queue. 3279 */ 3280 static int 3281 xlog_force_lsn( 3282 struct xlog *log, 3283 xfs_lsn_t lsn, 3284 uint flags, 3285 int *log_flushed, 3286 bool already_slept) 3287 { 3288 struct xlog_in_core *iclog; 3289 bool completed; 3290 3291 spin_lock(&log->l_icloglock); 3292 if (xlog_is_shutdown(log)) 3293 goto out_error; 3294 3295 iclog = log->l_iclog; 3296 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3297 trace_xlog_iclog_force_lsn(iclog, _RET_IP_); 3298 iclog = iclog->ic_next; 3299 if (iclog == log->l_iclog) 3300 goto out_unlock; 3301 } 3302 3303 switch (iclog->ic_state) { 3304 case XLOG_STATE_ACTIVE: 3305 /* 3306 * We sleep here if we haven't already slept (e.g. this is the 3307 * first time we've looked at the correct iclog buf) and the 3308 * buffer before us is going to be sync'ed. The reason for this 3309 * is that if we are doing sync transactions here, by waiting 3310 * for the previous I/O to complete, we can allow a few more 3311 * transactions into this iclog before we close it down. 3312 * 3313 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3314 * refcnt so we can release the log (which drops the ref count). 3315 * The state switch keeps new transaction commits from using 3316 * this buffer. When the current commits finish writing into 3317 * the buffer, the refcount will drop to zero and the buffer 3318 * will go out then. 3319 */ 3320 if (!already_slept && 3321 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 3322 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 3323 xlog_wait(&iclog->ic_prev->ic_write_wait, 3324 &log->l_icloglock); 3325 return -EAGAIN; 3326 } 3327 if (xlog_force_and_check_iclog(iclog, &completed)) 3328 goto out_error; 3329 if (log_flushed) 3330 *log_flushed = 1; 3331 if (completed) 3332 goto out_unlock; 3333 break; 3334 case XLOG_STATE_WANT_SYNC: 3335 /* 3336 * This iclog may contain the checkpoint pushed by the 3337 * xlog_cil_force_seq() call, but there are other writers still 3338 * accessing it so it hasn't been pushed to disk yet. Like the 3339 * ACTIVE case above, we need to make sure caches are flushed 3340 * when this iclog is written. 3341 */ 3342 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3343 break; 3344 default: 3345 /* 3346 * The entire checkpoint was written by the CIL force and is on 3347 * its way to disk already. It will be stable when it 3348 * completes, so we don't need to manipulate caches here at all. 3349 * We just need to wait for completion if necessary. 3350 */ 3351 break; 3352 } 3353 3354 if (flags & XFS_LOG_SYNC) 3355 return xlog_wait_on_iclog(iclog); 3356 out_unlock: 3357 spin_unlock(&log->l_icloglock); 3358 return 0; 3359 out_error: 3360 spin_unlock(&log->l_icloglock); 3361 return -EIO; 3362 } 3363 3364 /* 3365 * Force the log to a specific checkpoint sequence. 3366 * 3367 * First force the CIL so that all the required changes have been flushed to the 3368 * iclogs. If the CIL force completed it will return a commit LSN that indicates 3369 * the iclog that needs to be flushed to stable storage. If the caller needs 3370 * a synchronous log force, we will wait on the iclog with the LSN returned by 3371 * xlog_cil_force_seq() to be completed. 3372 */ 3373 int 3374 xfs_log_force_seq( 3375 struct xfs_mount *mp, 3376 xfs_csn_t seq, 3377 uint flags, 3378 int *log_flushed) 3379 { 3380 struct xlog *log = mp->m_log; 3381 xfs_lsn_t lsn; 3382 int ret; 3383 ASSERT(seq != 0); 3384 3385 XFS_STATS_INC(mp, xs_log_force); 3386 trace_xfs_log_force(mp, seq, _RET_IP_); 3387 3388 lsn = xlog_cil_force_seq(log, seq); 3389 if (lsn == NULLCOMMITLSN) 3390 return 0; 3391 3392 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false); 3393 if (ret == -EAGAIN) { 3394 XFS_STATS_INC(mp, xs_log_force_sleep); 3395 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true); 3396 } 3397 return ret; 3398 } 3399 3400 /* 3401 * Free a used ticket when its refcount falls to zero. 3402 */ 3403 void 3404 xfs_log_ticket_put( 3405 xlog_ticket_t *ticket) 3406 { 3407 ASSERT(atomic_read(&ticket->t_ref) > 0); 3408 if (atomic_dec_and_test(&ticket->t_ref)) 3409 kmem_cache_free(xfs_log_ticket_cache, ticket); 3410 } 3411 3412 xlog_ticket_t * 3413 xfs_log_ticket_get( 3414 xlog_ticket_t *ticket) 3415 { 3416 ASSERT(atomic_read(&ticket->t_ref) > 0); 3417 atomic_inc(&ticket->t_ref); 3418 return ticket; 3419 } 3420 3421 /* 3422 * Figure out the total log space unit (in bytes) that would be 3423 * required for a log ticket. 3424 */ 3425 static int 3426 xlog_calc_unit_res( 3427 struct xlog *log, 3428 int unit_bytes, 3429 int *niclogs) 3430 { 3431 int iclog_space; 3432 uint num_headers; 3433 3434 /* 3435 * Permanent reservations have up to 'cnt'-1 active log operations 3436 * in the log. A unit in this case is the amount of space for one 3437 * of these log operations. Normal reservations have a cnt of 1 3438 * and their unit amount is the total amount of space required. 3439 * 3440 * The following lines of code account for non-transaction data 3441 * which occupy space in the on-disk log. 3442 * 3443 * Normal form of a transaction is: 3444 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3445 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3446 * 3447 * We need to account for all the leadup data and trailer data 3448 * around the transaction data. 3449 * And then we need to account for the worst case in terms of using 3450 * more space. 3451 * The worst case will happen if: 3452 * - the placement of the transaction happens to be such that the 3453 * roundoff is at its maximum 3454 * - the transaction data is synced before the commit record is synced 3455 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3456 * Therefore the commit record is in its own Log Record. 3457 * This can happen as the commit record is called with its 3458 * own region to xlog_write(). 3459 * This then means that in the worst case, roundoff can happen for 3460 * the commit-rec as well. 3461 * The commit-rec is smaller than padding in this scenario and so it is 3462 * not added separately. 3463 */ 3464 3465 /* for trans header */ 3466 unit_bytes += sizeof(xlog_op_header_t); 3467 unit_bytes += sizeof(xfs_trans_header_t); 3468 3469 /* for start-rec */ 3470 unit_bytes += sizeof(xlog_op_header_t); 3471 3472 /* 3473 * for LR headers - the space for data in an iclog is the size minus 3474 * the space used for the headers. If we use the iclog size, then we 3475 * undercalculate the number of headers required. 3476 * 3477 * Furthermore - the addition of op headers for split-recs might 3478 * increase the space required enough to require more log and op 3479 * headers, so take that into account too. 3480 * 3481 * IMPORTANT: This reservation makes the assumption that if this 3482 * transaction is the first in an iclog and hence has the LR headers 3483 * accounted to it, then the remaining space in the iclog is 3484 * exclusively for this transaction. i.e. if the transaction is larger 3485 * than the iclog, it will be the only thing in that iclog. 3486 * Fundamentally, this means we must pass the entire log vector to 3487 * xlog_write to guarantee this. 3488 */ 3489 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3490 num_headers = howmany(unit_bytes, iclog_space); 3491 3492 /* for split-recs - ophdrs added when data split over LRs */ 3493 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3494 3495 /* add extra header reservations if we overrun */ 3496 while (!num_headers || 3497 howmany(unit_bytes, iclog_space) > num_headers) { 3498 unit_bytes += sizeof(xlog_op_header_t); 3499 num_headers++; 3500 } 3501 unit_bytes += log->l_iclog_hsize * num_headers; 3502 3503 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3504 unit_bytes += log->l_iclog_hsize; 3505 3506 /* roundoff padding for transaction data and one for commit record */ 3507 unit_bytes += 2 * log->l_iclog_roundoff; 3508 3509 if (niclogs) 3510 *niclogs = num_headers; 3511 return unit_bytes; 3512 } 3513 3514 int 3515 xfs_log_calc_unit_res( 3516 struct xfs_mount *mp, 3517 int unit_bytes) 3518 { 3519 return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL); 3520 } 3521 3522 /* 3523 * Allocate and initialise a new log ticket. 3524 */ 3525 struct xlog_ticket * 3526 xlog_ticket_alloc( 3527 struct xlog *log, 3528 int unit_bytes, 3529 int cnt, 3530 bool permanent) 3531 { 3532 struct xlog_ticket *tic; 3533 int unit_res; 3534 3535 tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL); 3536 3537 unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs); 3538 3539 atomic_set(&tic->t_ref, 1); 3540 tic->t_task = current; 3541 INIT_LIST_HEAD(&tic->t_queue); 3542 tic->t_unit_res = unit_res; 3543 tic->t_curr_res = unit_res; 3544 tic->t_cnt = cnt; 3545 tic->t_ocnt = cnt; 3546 tic->t_tid = get_random_u32(); 3547 if (permanent) 3548 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3549 3550 return tic; 3551 } 3552 3553 #if defined(DEBUG) 3554 /* 3555 * Check to make sure the grant write head didn't just over lap the tail. If 3556 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3557 * the cycles differ by exactly one and check the byte count. 3558 * 3559 * This check is run unlocked, so can give false positives. Rather than assert 3560 * on failures, use a warn-once flag and a panic tag to allow the admin to 3561 * determine if they want to panic the machine when such an error occurs. For 3562 * debug kernels this will have the same effect as using an assert but, unlinke 3563 * an assert, it can be turned off at runtime. 3564 */ 3565 STATIC void 3566 xlog_verify_grant_tail( 3567 struct xlog *log) 3568 { 3569 int tail_cycle, tail_blocks; 3570 int cycle, space; 3571 3572 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3573 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3574 if (tail_cycle != cycle) { 3575 if (cycle - 1 != tail_cycle && 3576 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3577 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3578 "%s: cycle - 1 != tail_cycle", __func__); 3579 } 3580 3581 if (space > BBTOB(tail_blocks) && 3582 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3583 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3584 "%s: space > BBTOB(tail_blocks)", __func__); 3585 } 3586 } 3587 } 3588 3589 /* check if it will fit */ 3590 STATIC void 3591 xlog_verify_tail_lsn( 3592 struct xlog *log, 3593 struct xlog_in_core *iclog) 3594 { 3595 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn); 3596 int blocks; 3597 3598 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3599 blocks = 3600 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3601 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3602 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3603 } else { 3604 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3605 3606 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3607 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3608 3609 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3610 if (blocks < BTOBB(iclog->ic_offset) + 1) 3611 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3612 } 3613 } 3614 3615 /* 3616 * Perform a number of checks on the iclog before writing to disk. 3617 * 3618 * 1. Make sure the iclogs are still circular 3619 * 2. Make sure we have a good magic number 3620 * 3. Make sure we don't have magic numbers in the data 3621 * 4. Check fields of each log operation header for: 3622 * A. Valid client identifier 3623 * B. tid ptr value falls in valid ptr space (user space code) 3624 * C. Length in log record header is correct according to the 3625 * individual operation headers within record. 3626 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3627 * log, check the preceding blocks of the physical log to make sure all 3628 * the cycle numbers agree with the current cycle number. 3629 */ 3630 STATIC void 3631 xlog_verify_iclog( 3632 struct xlog *log, 3633 struct xlog_in_core *iclog, 3634 int count) 3635 { 3636 xlog_op_header_t *ophead; 3637 xlog_in_core_t *icptr; 3638 xlog_in_core_2_t *xhdr; 3639 void *base_ptr, *ptr, *p; 3640 ptrdiff_t field_offset; 3641 uint8_t clientid; 3642 int len, i, j, k, op_len; 3643 int idx; 3644 3645 /* check validity of iclog pointers */ 3646 spin_lock(&log->l_icloglock); 3647 icptr = log->l_iclog; 3648 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3649 ASSERT(icptr); 3650 3651 if (icptr != log->l_iclog) 3652 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3653 spin_unlock(&log->l_icloglock); 3654 3655 /* check log magic numbers */ 3656 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3657 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3658 3659 base_ptr = ptr = &iclog->ic_header; 3660 p = &iclog->ic_header; 3661 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3662 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3663 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3664 __func__); 3665 } 3666 3667 /* check fields */ 3668 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3669 base_ptr = ptr = iclog->ic_datap; 3670 ophead = ptr; 3671 xhdr = iclog->ic_data; 3672 for (i = 0; i < len; i++) { 3673 ophead = ptr; 3674 3675 /* clientid is only 1 byte */ 3676 p = &ophead->oh_clientid; 3677 field_offset = p - base_ptr; 3678 if (field_offset & 0x1ff) { 3679 clientid = ophead->oh_clientid; 3680 } else { 3681 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap); 3682 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3683 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3684 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3685 clientid = xlog_get_client_id( 3686 xhdr[j].hic_xheader.xh_cycle_data[k]); 3687 } else { 3688 clientid = xlog_get_client_id( 3689 iclog->ic_header.h_cycle_data[idx]); 3690 } 3691 } 3692 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) { 3693 xfs_warn(log->l_mp, 3694 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx", 3695 __func__, i, clientid, ophead, 3696 (unsigned long)field_offset); 3697 } 3698 3699 /* check length */ 3700 p = &ophead->oh_len; 3701 field_offset = p - base_ptr; 3702 if (field_offset & 0x1ff) { 3703 op_len = be32_to_cpu(ophead->oh_len); 3704 } else { 3705 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap); 3706 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3707 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3708 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3709 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3710 } else { 3711 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3712 } 3713 } 3714 ptr += sizeof(xlog_op_header_t) + op_len; 3715 } 3716 } 3717 #endif 3718 3719 /* 3720 * Perform a forced shutdown on the log. 3721 * 3722 * This can be called from low level log code to trigger a shutdown, or from the 3723 * high level mount shutdown code when the mount shuts down. 3724 * 3725 * Our main objectives here are to make sure that: 3726 * a. if the shutdown was not due to a log IO error, flush the logs to 3727 * disk. Anything modified after this is ignored. 3728 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested 3729 * parties to find out. Nothing new gets queued after this is done. 3730 * c. Tasks sleeping on log reservations, pinned objects and 3731 * other resources get woken up. 3732 * d. The mount is also marked as shut down so that log triggered shutdowns 3733 * still behave the same as if they called xfs_forced_shutdown(). 3734 * 3735 * Return true if the shutdown cause was a log IO error and we actually shut the 3736 * log down. 3737 */ 3738 bool 3739 xlog_force_shutdown( 3740 struct xlog *log, 3741 uint32_t shutdown_flags) 3742 { 3743 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR); 3744 3745 if (!log) 3746 return false; 3747 3748 /* 3749 * Flush all the completed transactions to disk before marking the log 3750 * being shut down. We need to do this first as shutting down the log 3751 * before the force will prevent the log force from flushing the iclogs 3752 * to disk. 3753 * 3754 * When we are in recovery, there are no transactions to flush, and 3755 * we don't want to touch the log because we don't want to perturb the 3756 * current head/tail for future recovery attempts. Hence we need to 3757 * avoid a log force in this case. 3758 * 3759 * If we are shutting down due to a log IO error, then we must avoid 3760 * trying to write the log as that may just result in more IO errors and 3761 * an endless shutdown/force loop. 3762 */ 3763 if (!log_error && !xlog_in_recovery(log)) 3764 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3765 3766 /* 3767 * Atomically set the shutdown state. If the shutdown state is already 3768 * set, there someone else is performing the shutdown and so we are done 3769 * here. This should never happen because we should only ever get called 3770 * once by the first shutdown caller. 3771 * 3772 * Much of the log state machine transitions assume that shutdown state 3773 * cannot change once they hold the log->l_icloglock. Hence we need to 3774 * hold that lock here, even though we use the atomic test_and_set_bit() 3775 * operation to set the shutdown state. 3776 */ 3777 spin_lock(&log->l_icloglock); 3778 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) { 3779 spin_unlock(&log->l_icloglock); 3780 return false; 3781 } 3782 spin_unlock(&log->l_icloglock); 3783 3784 /* 3785 * If this log shutdown also sets the mount shutdown state, issue a 3786 * shutdown warning message. 3787 */ 3788 if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) { 3789 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR, 3790 "Filesystem has been shut down due to log error (0x%x).", 3791 shutdown_flags); 3792 xfs_alert(log->l_mp, 3793 "Please unmount the filesystem and rectify the problem(s)."); 3794 if (xfs_error_level >= XFS_ERRLEVEL_HIGH) 3795 xfs_stack_trace(); 3796 } 3797 3798 /* 3799 * We don't want anybody waiting for log reservations after this. That 3800 * means we have to wake up everybody queued up on reserveq as well as 3801 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3802 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3803 * action is protected by the grant locks. 3804 */ 3805 xlog_grant_head_wake_all(&log->l_reserve_head); 3806 xlog_grant_head_wake_all(&log->l_write_head); 3807 3808 /* 3809 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3810 * as if the log writes were completed. The abort handling in the log 3811 * item committed callback functions will do this again under lock to 3812 * avoid races. 3813 */ 3814 spin_lock(&log->l_cilp->xc_push_lock); 3815 wake_up_all(&log->l_cilp->xc_start_wait); 3816 wake_up_all(&log->l_cilp->xc_commit_wait); 3817 spin_unlock(&log->l_cilp->xc_push_lock); 3818 3819 spin_lock(&log->l_icloglock); 3820 xlog_state_shutdown_callbacks(log); 3821 spin_unlock(&log->l_icloglock); 3822 3823 wake_up_var(&log->l_opstate); 3824 return log_error; 3825 } 3826 3827 STATIC int 3828 xlog_iclogs_empty( 3829 struct xlog *log) 3830 { 3831 xlog_in_core_t *iclog; 3832 3833 iclog = log->l_iclog; 3834 do { 3835 /* endianness does not matter here, zero is zero in 3836 * any language. 3837 */ 3838 if (iclog->ic_header.h_num_logops) 3839 return 0; 3840 iclog = iclog->ic_next; 3841 } while (iclog != log->l_iclog); 3842 return 1; 3843 } 3844 3845 /* 3846 * Verify that an LSN stamped into a piece of metadata is valid. This is 3847 * intended for use in read verifiers on v5 superblocks. 3848 */ 3849 bool 3850 xfs_log_check_lsn( 3851 struct xfs_mount *mp, 3852 xfs_lsn_t lsn) 3853 { 3854 struct xlog *log = mp->m_log; 3855 bool valid; 3856 3857 /* 3858 * norecovery mode skips mount-time log processing and unconditionally 3859 * resets the in-core LSN. We can't validate in this mode, but 3860 * modifications are not allowed anyways so just return true. 3861 */ 3862 if (xfs_has_norecovery(mp)) 3863 return true; 3864 3865 /* 3866 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3867 * handled by recovery and thus safe to ignore here. 3868 */ 3869 if (lsn == NULLCOMMITLSN) 3870 return true; 3871 3872 valid = xlog_valid_lsn(mp->m_log, lsn); 3873 3874 /* warn the user about what's gone wrong before verifier failure */ 3875 if (!valid) { 3876 spin_lock(&log->l_icloglock); 3877 xfs_warn(mp, 3878 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3879 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 3880 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 3881 log->l_curr_cycle, log->l_curr_block); 3882 spin_unlock(&log->l_icloglock); 3883 } 3884 3885 return valid; 3886 } 3887 3888 /* 3889 * Notify the log that we're about to start using a feature that is protected 3890 * by a log incompat feature flag. This will prevent log covering from 3891 * clearing those flags. 3892 */ 3893 void 3894 xlog_use_incompat_feat( 3895 struct xlog *log) 3896 { 3897 down_read(&log->l_incompat_users); 3898 } 3899 3900 /* Notify the log that we've finished using log incompat features. */ 3901 void 3902 xlog_drop_incompat_feat( 3903 struct xlog *log) 3904 { 3905 up_read(&log->l_incompat_users); 3906 } 3907