xref: /linux/fs/xfs/xfs_log.c (revision b1c5f3085149e9643b125eb10aae0e74644d7dcc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 struct kmem_cache	*xfs_log_ticket_cache;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 	struct xfs_mount	*mp,
30 	struct xfs_buftarg	*log_target,
31 	xfs_daddr_t		blk_offset,
32 	int			num_bblks);
33 STATIC int
34 xlog_space_left(
35 	struct xlog		*log,
36 	atomic64_t		*head);
37 STATIC void
38 xlog_dealloc_log(
39 	struct xlog		*log);
40 
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 	struct xlog_in_core	*iclog);
44 STATIC void xlog_state_do_callback(
45 	struct xlog		*log);
46 STATIC int
47 xlog_state_get_iclog_space(
48 	struct xlog		*log,
49 	int			len,
50 	struct xlog_in_core	**iclog,
51 	struct xlog_ticket	*ticket,
52 	int			*continued_write,
53 	int			*logoffsetp);
54 STATIC void
55 xlog_grant_push_ail(
56 	struct xlog		*log,
57 	int			need_bytes);
58 STATIC void
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 #if defined(DEBUG)
63 STATIC void
64 xlog_verify_dest_ptr(
65 	struct xlog		*log,
66 	void			*ptr);
67 STATIC void
68 xlog_verify_grant_tail(
69 	struct xlog *log);
70 STATIC void
71 xlog_verify_iclog(
72 	struct xlog		*log,
73 	struct xlog_in_core	*iclog,
74 	int			count);
75 STATIC void
76 xlog_verify_tail_lsn(
77 	struct xlog		*log,
78 	struct xlog_in_core	*iclog);
79 #else
80 #define xlog_verify_dest_ptr(a,b)
81 #define xlog_verify_grant_tail(a)
82 #define xlog_verify_iclog(a,b,c)
83 #define xlog_verify_tail_lsn(a,b)
84 #endif
85 
86 STATIC int
87 xlog_iclogs_empty(
88 	struct xlog		*log);
89 
90 static int
91 xfs_log_cover(struct xfs_mount *);
92 
93 static void
94 xlog_grant_sub_space(
95 	struct xlog		*log,
96 	atomic64_t		*head,
97 	int			bytes)
98 {
99 	int64_t	head_val = atomic64_read(head);
100 	int64_t new, old;
101 
102 	do {
103 		int	cycle, space;
104 
105 		xlog_crack_grant_head_val(head_val, &cycle, &space);
106 
107 		space -= bytes;
108 		if (space < 0) {
109 			space += log->l_logsize;
110 			cycle--;
111 		}
112 
113 		old = head_val;
114 		new = xlog_assign_grant_head_val(cycle, space);
115 		head_val = atomic64_cmpxchg(head, old, new);
116 	} while (head_val != old);
117 }
118 
119 static void
120 xlog_grant_add_space(
121 	struct xlog		*log,
122 	atomic64_t		*head,
123 	int			bytes)
124 {
125 	int64_t	head_val = atomic64_read(head);
126 	int64_t new, old;
127 
128 	do {
129 		int		tmp;
130 		int		cycle, space;
131 
132 		xlog_crack_grant_head_val(head_val, &cycle, &space);
133 
134 		tmp = log->l_logsize - space;
135 		if (tmp > bytes)
136 			space += bytes;
137 		else {
138 			space = bytes - tmp;
139 			cycle++;
140 		}
141 
142 		old = head_val;
143 		new = xlog_assign_grant_head_val(cycle, space);
144 		head_val = atomic64_cmpxchg(head, old, new);
145 	} while (head_val != old);
146 }
147 
148 STATIC void
149 xlog_grant_head_init(
150 	struct xlog_grant_head	*head)
151 {
152 	xlog_assign_grant_head(&head->grant, 1, 0);
153 	INIT_LIST_HEAD(&head->waiters);
154 	spin_lock_init(&head->lock);
155 }
156 
157 STATIC void
158 xlog_grant_head_wake_all(
159 	struct xlog_grant_head	*head)
160 {
161 	struct xlog_ticket	*tic;
162 
163 	spin_lock(&head->lock);
164 	list_for_each_entry(tic, &head->waiters, t_queue)
165 		wake_up_process(tic->t_task);
166 	spin_unlock(&head->lock);
167 }
168 
169 static inline int
170 xlog_ticket_reservation(
171 	struct xlog		*log,
172 	struct xlog_grant_head	*head,
173 	struct xlog_ticket	*tic)
174 {
175 	if (head == &log->l_write_head) {
176 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
177 		return tic->t_unit_res;
178 	} else {
179 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
180 			return tic->t_unit_res * tic->t_cnt;
181 		else
182 			return tic->t_unit_res;
183 	}
184 }
185 
186 STATIC bool
187 xlog_grant_head_wake(
188 	struct xlog		*log,
189 	struct xlog_grant_head	*head,
190 	int			*free_bytes)
191 {
192 	struct xlog_ticket	*tic;
193 	int			need_bytes;
194 	bool			woken_task = false;
195 
196 	list_for_each_entry(tic, &head->waiters, t_queue) {
197 
198 		/*
199 		 * There is a chance that the size of the CIL checkpoints in
200 		 * progress at the last AIL push target calculation resulted in
201 		 * limiting the target to the log head (l_last_sync_lsn) at the
202 		 * time. This may not reflect where the log head is now as the
203 		 * CIL checkpoints may have completed.
204 		 *
205 		 * Hence when we are woken here, it may be that the head of the
206 		 * log that has moved rather than the tail. As the tail didn't
207 		 * move, there still won't be space available for the
208 		 * reservation we require.  However, if the AIL has already
209 		 * pushed to the target defined by the old log head location, we
210 		 * will hang here waiting for something else to update the AIL
211 		 * push target.
212 		 *
213 		 * Therefore, if there isn't space to wake the first waiter on
214 		 * the grant head, we need to push the AIL again to ensure the
215 		 * target reflects both the current log tail and log head
216 		 * position before we wait for the tail to move again.
217 		 */
218 
219 		need_bytes = xlog_ticket_reservation(log, head, tic);
220 		if (*free_bytes < need_bytes) {
221 			if (!woken_task)
222 				xlog_grant_push_ail(log, need_bytes);
223 			return false;
224 		}
225 
226 		*free_bytes -= need_bytes;
227 		trace_xfs_log_grant_wake_up(log, tic);
228 		wake_up_process(tic->t_task);
229 		woken_task = true;
230 	}
231 
232 	return true;
233 }
234 
235 STATIC int
236 xlog_grant_head_wait(
237 	struct xlog		*log,
238 	struct xlog_grant_head	*head,
239 	struct xlog_ticket	*tic,
240 	int			need_bytes) __releases(&head->lock)
241 					    __acquires(&head->lock)
242 {
243 	list_add_tail(&tic->t_queue, &head->waiters);
244 
245 	do {
246 		if (xlog_is_shutdown(log))
247 			goto shutdown;
248 		xlog_grant_push_ail(log, need_bytes);
249 
250 		__set_current_state(TASK_UNINTERRUPTIBLE);
251 		spin_unlock(&head->lock);
252 
253 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
254 
255 		trace_xfs_log_grant_sleep(log, tic);
256 		schedule();
257 		trace_xfs_log_grant_wake(log, tic);
258 
259 		spin_lock(&head->lock);
260 		if (xlog_is_shutdown(log))
261 			goto shutdown;
262 	} while (xlog_space_left(log, &head->grant) < need_bytes);
263 
264 	list_del_init(&tic->t_queue);
265 	return 0;
266 shutdown:
267 	list_del_init(&tic->t_queue);
268 	return -EIO;
269 }
270 
271 /*
272  * Atomically get the log space required for a log ticket.
273  *
274  * Once a ticket gets put onto head->waiters, it will only return after the
275  * needed reservation is satisfied.
276  *
277  * This function is structured so that it has a lock free fast path. This is
278  * necessary because every new transaction reservation will come through this
279  * path. Hence any lock will be globally hot if we take it unconditionally on
280  * every pass.
281  *
282  * As tickets are only ever moved on and off head->waiters under head->lock, we
283  * only need to take that lock if we are going to add the ticket to the queue
284  * and sleep. We can avoid taking the lock if the ticket was never added to
285  * head->waiters because the t_queue list head will be empty and we hold the
286  * only reference to it so it can safely be checked unlocked.
287  */
288 STATIC int
289 xlog_grant_head_check(
290 	struct xlog		*log,
291 	struct xlog_grant_head	*head,
292 	struct xlog_ticket	*tic,
293 	int			*need_bytes)
294 {
295 	int			free_bytes;
296 	int			error = 0;
297 
298 	ASSERT(!xlog_in_recovery(log));
299 
300 	/*
301 	 * If there are other waiters on the queue then give them a chance at
302 	 * logspace before us.  Wake up the first waiters, if we do not wake
303 	 * up all the waiters then go to sleep waiting for more free space,
304 	 * otherwise try to get some space for this transaction.
305 	 */
306 	*need_bytes = xlog_ticket_reservation(log, head, tic);
307 	free_bytes = xlog_space_left(log, &head->grant);
308 	if (!list_empty_careful(&head->waiters)) {
309 		spin_lock(&head->lock);
310 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
311 		    free_bytes < *need_bytes) {
312 			error = xlog_grant_head_wait(log, head, tic,
313 						     *need_bytes);
314 		}
315 		spin_unlock(&head->lock);
316 	} else if (free_bytes < *need_bytes) {
317 		spin_lock(&head->lock);
318 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
319 		spin_unlock(&head->lock);
320 	}
321 
322 	return error;
323 }
324 
325 static void
326 xlog_tic_reset_res(xlog_ticket_t *tic)
327 {
328 	tic->t_res_num = 0;
329 	tic->t_res_arr_sum = 0;
330 	tic->t_res_num_ophdrs = 0;
331 }
332 
333 static void
334 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
335 {
336 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
337 		/* add to overflow and start again */
338 		tic->t_res_o_flow += tic->t_res_arr_sum;
339 		tic->t_res_num = 0;
340 		tic->t_res_arr_sum = 0;
341 	}
342 
343 	tic->t_res_arr[tic->t_res_num].r_len = len;
344 	tic->t_res_arr[tic->t_res_num].r_type = type;
345 	tic->t_res_arr_sum += len;
346 	tic->t_res_num++;
347 }
348 
349 bool
350 xfs_log_writable(
351 	struct xfs_mount	*mp)
352 {
353 	/*
354 	 * Do not write to the log on norecovery mounts, if the data or log
355 	 * devices are read-only, or if the filesystem is shutdown. Read-only
356 	 * mounts allow internal writes for log recovery and unmount purposes,
357 	 * so don't restrict that case.
358 	 */
359 	if (xfs_has_norecovery(mp))
360 		return false;
361 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
362 		return false;
363 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
364 		return false;
365 	if (xlog_is_shutdown(mp->m_log))
366 		return false;
367 	return true;
368 }
369 
370 /*
371  * Replenish the byte reservation required by moving the grant write head.
372  */
373 int
374 xfs_log_regrant(
375 	struct xfs_mount	*mp,
376 	struct xlog_ticket	*tic)
377 {
378 	struct xlog		*log = mp->m_log;
379 	int			need_bytes;
380 	int			error = 0;
381 
382 	if (xlog_is_shutdown(log))
383 		return -EIO;
384 
385 	XFS_STATS_INC(mp, xs_try_logspace);
386 
387 	/*
388 	 * This is a new transaction on the ticket, so we need to change the
389 	 * transaction ID so that the next transaction has a different TID in
390 	 * the log. Just add one to the existing tid so that we can see chains
391 	 * of rolling transactions in the log easily.
392 	 */
393 	tic->t_tid++;
394 
395 	xlog_grant_push_ail(log, tic->t_unit_res);
396 
397 	tic->t_curr_res = tic->t_unit_res;
398 	xlog_tic_reset_res(tic);
399 
400 	if (tic->t_cnt > 0)
401 		return 0;
402 
403 	trace_xfs_log_regrant(log, tic);
404 
405 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
406 				      &need_bytes);
407 	if (error)
408 		goto out_error;
409 
410 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
411 	trace_xfs_log_regrant_exit(log, tic);
412 	xlog_verify_grant_tail(log);
413 	return 0;
414 
415 out_error:
416 	/*
417 	 * If we are failing, make sure the ticket doesn't have any current
418 	 * reservations.  We don't want to add this back when the ticket/
419 	 * transaction gets cancelled.
420 	 */
421 	tic->t_curr_res = 0;
422 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
423 	return error;
424 }
425 
426 /*
427  * Reserve log space and return a ticket corresponding to the reservation.
428  *
429  * Each reservation is going to reserve extra space for a log record header.
430  * When writes happen to the on-disk log, we don't subtract the length of the
431  * log record header from any reservation.  By wasting space in each
432  * reservation, we prevent over allocation problems.
433  */
434 int
435 xfs_log_reserve(
436 	struct xfs_mount	*mp,
437 	int		 	unit_bytes,
438 	int		 	cnt,
439 	struct xlog_ticket	**ticp,
440 	uint8_t		 	client,
441 	bool			permanent)
442 {
443 	struct xlog		*log = mp->m_log;
444 	struct xlog_ticket	*tic;
445 	int			need_bytes;
446 	int			error = 0;
447 
448 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
449 
450 	if (xlog_is_shutdown(log))
451 		return -EIO;
452 
453 	XFS_STATS_INC(mp, xs_try_logspace);
454 
455 	ASSERT(*ticp == NULL);
456 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
457 	*ticp = tic;
458 
459 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
460 					    : tic->t_unit_res);
461 
462 	trace_xfs_log_reserve(log, tic);
463 
464 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
465 				      &need_bytes);
466 	if (error)
467 		goto out_error;
468 
469 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
470 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
471 	trace_xfs_log_reserve_exit(log, tic);
472 	xlog_verify_grant_tail(log);
473 	return 0;
474 
475 out_error:
476 	/*
477 	 * If we are failing, make sure the ticket doesn't have any current
478 	 * reservations.  We don't want to add this back when the ticket/
479 	 * transaction gets cancelled.
480 	 */
481 	tic->t_curr_res = 0;
482 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
483 	return error;
484 }
485 
486 /*
487  * Run all the pending iclog callbacks and wake log force waiters and iclog
488  * space waiters so they can process the newly set shutdown state. We really
489  * don't care what order we process callbacks here because the log is shut down
490  * and so state cannot change on disk anymore. However, we cannot wake waiters
491  * until the callbacks have been processed because we may be in unmount and
492  * we must ensure that all AIL operations the callbacks perform have completed
493  * before we tear down the AIL.
494  *
495  * We avoid processing actively referenced iclogs so that we don't run callbacks
496  * while the iclog owner might still be preparing the iclog for IO submssion.
497  * These will be caught by xlog_state_iclog_release() and call this function
498  * again to process any callbacks that may have been added to that iclog.
499  */
500 static void
501 xlog_state_shutdown_callbacks(
502 	struct xlog		*log)
503 {
504 	struct xlog_in_core	*iclog;
505 	LIST_HEAD(cb_list);
506 
507 	iclog = log->l_iclog;
508 	do {
509 		if (atomic_read(&iclog->ic_refcnt)) {
510 			/* Reference holder will re-run iclog callbacks. */
511 			continue;
512 		}
513 		list_splice_init(&iclog->ic_callbacks, &cb_list);
514 		spin_unlock(&log->l_icloglock);
515 
516 		xlog_cil_process_committed(&cb_list);
517 
518 		spin_lock(&log->l_icloglock);
519 		wake_up_all(&iclog->ic_write_wait);
520 		wake_up_all(&iclog->ic_force_wait);
521 	} while ((iclog = iclog->ic_next) != log->l_iclog);
522 
523 	wake_up_all(&log->l_flush_wait);
524 }
525 
526 /*
527  * Flush iclog to disk if this is the last reference to the given iclog and the
528  * it is in the WANT_SYNC state.
529  *
530  * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
531  * log tail is updated correctly. NEED_FUA indicates that the iclog will be
532  * written to stable storage, and implies that a commit record is contained
533  * within the iclog. We need to ensure that the log tail does not move beyond
534  * the tail that the first commit record in the iclog ordered against, otherwise
535  * correct recovery of that checkpoint becomes dependent on future operations
536  * performed on this iclog.
537  *
538  * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
539  * current tail into iclog. Once the iclog tail is set, future operations must
540  * not modify it, otherwise they potentially violate ordering constraints for
541  * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
542  * the iclog will get zeroed on activation of the iclog after sync, so we
543  * always capture the tail lsn on the iclog on the first NEED_FUA release
544  * regardless of the number of active reference counts on this iclog.
545  */
546 int
547 xlog_state_release_iclog(
548 	struct xlog		*log,
549 	struct xlog_in_core	*iclog)
550 {
551 	xfs_lsn_t		tail_lsn;
552 	bool			last_ref;
553 
554 	lockdep_assert_held(&log->l_icloglock);
555 
556 	trace_xlog_iclog_release(iclog, _RET_IP_);
557 	/*
558 	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
559 	 * of the tail LSN into the iclog so we guarantee that the log tail does
560 	 * not move between the first time we know that the iclog needs to be
561 	 * made stable and when we eventually submit it.
562 	 */
563 	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
564 	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
565 	    !iclog->ic_header.h_tail_lsn) {
566 		tail_lsn = xlog_assign_tail_lsn(log->l_mp);
567 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
568 	}
569 
570 	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
571 
572 	if (xlog_is_shutdown(log)) {
573 		/*
574 		 * If there are no more references to this iclog, process the
575 		 * pending iclog callbacks that were waiting on the release of
576 		 * this iclog.
577 		 */
578 		if (last_ref)
579 			xlog_state_shutdown_callbacks(log);
580 		return -EIO;
581 	}
582 
583 	if (!last_ref)
584 		return 0;
585 
586 	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
587 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
588 		return 0;
589 	}
590 
591 	iclog->ic_state = XLOG_STATE_SYNCING;
592 	xlog_verify_tail_lsn(log, iclog);
593 	trace_xlog_iclog_syncing(iclog, _RET_IP_);
594 
595 	spin_unlock(&log->l_icloglock);
596 	xlog_sync(log, iclog);
597 	spin_lock(&log->l_icloglock);
598 	return 0;
599 }
600 
601 /*
602  * Mount a log filesystem
603  *
604  * mp		- ubiquitous xfs mount point structure
605  * log_target	- buftarg of on-disk log device
606  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
607  * num_bblocks	- Number of BBSIZE blocks in on-disk log
608  *
609  * Return error or zero.
610  */
611 int
612 xfs_log_mount(
613 	xfs_mount_t	*mp,
614 	xfs_buftarg_t	*log_target,
615 	xfs_daddr_t	blk_offset,
616 	int		num_bblks)
617 {
618 	struct xlog	*log;
619 	bool		fatal = xfs_has_crc(mp);
620 	int		error = 0;
621 	int		min_logfsbs;
622 
623 	if (!xfs_has_norecovery(mp)) {
624 		xfs_notice(mp, "Mounting V%d Filesystem",
625 			   XFS_SB_VERSION_NUM(&mp->m_sb));
626 	} else {
627 		xfs_notice(mp,
628 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
629 			   XFS_SB_VERSION_NUM(&mp->m_sb));
630 		ASSERT(xfs_is_readonly(mp));
631 	}
632 
633 	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
634 	if (IS_ERR(log)) {
635 		error = PTR_ERR(log);
636 		goto out;
637 	}
638 	mp->m_log = log;
639 
640 	/*
641 	 * Validate the given log space and drop a critical message via syslog
642 	 * if the log size is too small that would lead to some unexpected
643 	 * situations in transaction log space reservation stage.
644 	 *
645 	 * Note: we can't just reject the mount if the validation fails.  This
646 	 * would mean that people would have to downgrade their kernel just to
647 	 * remedy the situation as there is no way to grow the log (short of
648 	 * black magic surgery with xfs_db).
649 	 *
650 	 * We can, however, reject mounts for CRC format filesystems, as the
651 	 * mkfs binary being used to make the filesystem should never create a
652 	 * filesystem with a log that is too small.
653 	 */
654 	min_logfsbs = xfs_log_calc_minimum_size(mp);
655 
656 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
657 		xfs_warn(mp,
658 		"Log size %d blocks too small, minimum size is %d blocks",
659 			 mp->m_sb.sb_logblocks, min_logfsbs);
660 		error = -EINVAL;
661 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
662 		xfs_warn(mp,
663 		"Log size %d blocks too large, maximum size is %lld blocks",
664 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
665 		error = -EINVAL;
666 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
667 		xfs_warn(mp,
668 		"log size %lld bytes too large, maximum size is %lld bytes",
669 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
670 			 XFS_MAX_LOG_BYTES);
671 		error = -EINVAL;
672 	} else if (mp->m_sb.sb_logsunit > 1 &&
673 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
674 		xfs_warn(mp,
675 		"log stripe unit %u bytes must be a multiple of block size",
676 			 mp->m_sb.sb_logsunit);
677 		error = -EINVAL;
678 		fatal = true;
679 	}
680 	if (error) {
681 		/*
682 		 * Log check errors are always fatal on v5; or whenever bad
683 		 * metadata leads to a crash.
684 		 */
685 		if (fatal) {
686 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
687 			ASSERT(0);
688 			goto out_free_log;
689 		}
690 		xfs_crit(mp, "Log size out of supported range.");
691 		xfs_crit(mp,
692 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
693 	}
694 
695 	/*
696 	 * Initialize the AIL now we have a log.
697 	 */
698 	error = xfs_trans_ail_init(mp);
699 	if (error) {
700 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
701 		goto out_free_log;
702 	}
703 	log->l_ailp = mp->m_ail;
704 
705 	/*
706 	 * skip log recovery on a norecovery mount.  pretend it all
707 	 * just worked.
708 	 */
709 	if (!xfs_has_norecovery(mp)) {
710 		/*
711 		 * log recovery ignores readonly state and so we need to clear
712 		 * mount-based read only state so it can write to disk.
713 		 */
714 		bool	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY,
715 						&mp->m_opstate);
716 		error = xlog_recover(log);
717 		if (readonly)
718 			set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
719 		if (error) {
720 			xfs_warn(mp, "log mount/recovery failed: error %d",
721 				error);
722 			xlog_recover_cancel(log);
723 			goto out_destroy_ail;
724 		}
725 	}
726 
727 	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
728 			       "log");
729 	if (error)
730 		goto out_destroy_ail;
731 
732 	/* Normal transactions can now occur */
733 	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
734 
735 	/*
736 	 * Now the log has been fully initialised and we know were our
737 	 * space grant counters are, we can initialise the permanent ticket
738 	 * needed for delayed logging to work.
739 	 */
740 	xlog_cil_init_post_recovery(log);
741 
742 	return 0;
743 
744 out_destroy_ail:
745 	xfs_trans_ail_destroy(mp);
746 out_free_log:
747 	xlog_dealloc_log(log);
748 out:
749 	return error;
750 }
751 
752 /*
753  * Finish the recovery of the file system.  This is separate from the
754  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
755  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
756  * here.
757  *
758  * If we finish recovery successfully, start the background log work. If we are
759  * not doing recovery, then we have a RO filesystem and we don't need to start
760  * it.
761  */
762 int
763 xfs_log_mount_finish(
764 	struct xfs_mount	*mp)
765 {
766 	struct xlog		*log = mp->m_log;
767 	bool			readonly;
768 	int			error = 0;
769 
770 	if (xfs_has_norecovery(mp)) {
771 		ASSERT(xfs_is_readonly(mp));
772 		return 0;
773 	}
774 
775 	/*
776 	 * log recovery ignores readonly state and so we need to clear
777 	 * mount-based read only state so it can write to disk.
778 	 */
779 	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
780 
781 	/*
782 	 * During the second phase of log recovery, we need iget and
783 	 * iput to behave like they do for an active filesystem.
784 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
785 	 * of inodes before we're done replaying log items on those
786 	 * inodes.  Turn it off immediately after recovery finishes
787 	 * so that we don't leak the quota inodes if subsequent mount
788 	 * activities fail.
789 	 *
790 	 * We let all inodes involved in redo item processing end up on
791 	 * the LRU instead of being evicted immediately so that if we do
792 	 * something to an unlinked inode, the irele won't cause
793 	 * premature truncation and freeing of the inode, which results
794 	 * in log recovery failure.  We have to evict the unreferenced
795 	 * lru inodes after clearing SB_ACTIVE because we don't
796 	 * otherwise clean up the lru if there's a subsequent failure in
797 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
798 	 * else (e.g. quotacheck) references the inodes before the
799 	 * mount failure occurs.
800 	 */
801 	mp->m_super->s_flags |= SB_ACTIVE;
802 	xfs_log_work_queue(mp);
803 	if (xlog_recovery_needed(log))
804 		error = xlog_recover_finish(log);
805 	mp->m_super->s_flags &= ~SB_ACTIVE;
806 	evict_inodes(mp->m_super);
807 
808 	/*
809 	 * Drain the buffer LRU after log recovery. This is required for v4
810 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
811 	 * but we do it unconditionally to make sure we're always in a clean
812 	 * cache state after mount.
813 	 *
814 	 * Don't push in the error case because the AIL may have pending intents
815 	 * that aren't removed until recovery is cancelled.
816 	 */
817 	if (xlog_recovery_needed(log)) {
818 		if (!error) {
819 			xfs_log_force(mp, XFS_LOG_SYNC);
820 			xfs_ail_push_all_sync(mp->m_ail);
821 		}
822 		xfs_notice(mp, "Ending recovery (logdev: %s)",
823 				mp->m_logname ? mp->m_logname : "internal");
824 	} else {
825 		xfs_info(mp, "Ending clean mount");
826 	}
827 	xfs_buftarg_drain(mp->m_ddev_targp);
828 
829 	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
830 	if (readonly)
831 		set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
832 
833 	/* Make sure the log is dead if we're returning failure. */
834 	ASSERT(!error || xlog_is_shutdown(log));
835 
836 	return error;
837 }
838 
839 /*
840  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
841  * the log.
842  */
843 void
844 xfs_log_mount_cancel(
845 	struct xfs_mount	*mp)
846 {
847 	xlog_recover_cancel(mp->m_log);
848 	xfs_log_unmount(mp);
849 }
850 
851 /*
852  * Flush out the iclog to disk ensuring that device caches are flushed and
853  * the iclog hits stable storage before any completion waiters are woken.
854  */
855 static inline int
856 xlog_force_iclog(
857 	struct xlog_in_core	*iclog)
858 {
859 	atomic_inc(&iclog->ic_refcnt);
860 	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
861 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
862 		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
863 	return xlog_state_release_iclog(iclog->ic_log, iclog);
864 }
865 
866 /*
867  * Wait for the iclog and all prior iclogs to be written disk as required by the
868  * log force state machine. Waiting on ic_force_wait ensures iclog completions
869  * have been ordered and callbacks run before we are woken here, hence
870  * guaranteeing that all the iclogs up to this one are on stable storage.
871  */
872 int
873 xlog_wait_on_iclog(
874 	struct xlog_in_core	*iclog)
875 		__releases(iclog->ic_log->l_icloglock)
876 {
877 	struct xlog		*log = iclog->ic_log;
878 
879 	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
880 	if (!xlog_is_shutdown(log) &&
881 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
882 	    iclog->ic_state != XLOG_STATE_DIRTY) {
883 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
884 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
885 	} else {
886 		spin_unlock(&log->l_icloglock);
887 	}
888 
889 	if (xlog_is_shutdown(log))
890 		return -EIO;
891 	return 0;
892 }
893 
894 /*
895  * Write out an unmount record using the ticket provided. We have to account for
896  * the data space used in the unmount ticket as this write is not done from a
897  * transaction context that has already done the accounting for us.
898  */
899 static int
900 xlog_write_unmount_record(
901 	struct xlog		*log,
902 	struct xlog_ticket	*ticket)
903 {
904 	struct xfs_unmount_log_format ulf = {
905 		.magic = XLOG_UNMOUNT_TYPE,
906 	};
907 	struct xfs_log_iovec reg = {
908 		.i_addr = &ulf,
909 		.i_len = sizeof(ulf),
910 		.i_type = XLOG_REG_TYPE_UNMOUNT,
911 	};
912 	struct xfs_log_vec vec = {
913 		.lv_niovecs = 1,
914 		.lv_iovecp = &reg,
915 	};
916 
917 	/* account for space used by record data */
918 	ticket->t_curr_res -= sizeof(ulf);
919 
920 	return xlog_write(log, NULL, &vec, ticket, XLOG_UNMOUNT_TRANS);
921 }
922 
923 /*
924  * Mark the filesystem clean by writing an unmount record to the head of the
925  * log.
926  */
927 static void
928 xlog_unmount_write(
929 	struct xlog		*log)
930 {
931 	struct xfs_mount	*mp = log->l_mp;
932 	struct xlog_in_core	*iclog;
933 	struct xlog_ticket	*tic = NULL;
934 	int			error;
935 
936 	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
937 	if (error)
938 		goto out_err;
939 
940 	error = xlog_write_unmount_record(log, tic);
941 	/*
942 	 * At this point, we're umounting anyway, so there's no point in
943 	 * transitioning log state to shutdown. Just continue...
944 	 */
945 out_err:
946 	if (error)
947 		xfs_alert(mp, "%s: unmount record failed", __func__);
948 
949 	spin_lock(&log->l_icloglock);
950 	iclog = log->l_iclog;
951 	error = xlog_force_iclog(iclog);
952 	xlog_wait_on_iclog(iclog);
953 
954 	if (tic) {
955 		trace_xfs_log_umount_write(log, tic);
956 		xfs_log_ticket_ungrant(log, tic);
957 	}
958 }
959 
960 static void
961 xfs_log_unmount_verify_iclog(
962 	struct xlog		*log)
963 {
964 	struct xlog_in_core	*iclog = log->l_iclog;
965 
966 	do {
967 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
968 		ASSERT(iclog->ic_offset == 0);
969 	} while ((iclog = iclog->ic_next) != log->l_iclog);
970 }
971 
972 /*
973  * Unmount record used to have a string "Unmount filesystem--" in the
974  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
975  * We just write the magic number now since that particular field isn't
976  * currently architecture converted and "Unmount" is a bit foo.
977  * As far as I know, there weren't any dependencies on the old behaviour.
978  */
979 static void
980 xfs_log_unmount_write(
981 	struct xfs_mount	*mp)
982 {
983 	struct xlog		*log = mp->m_log;
984 
985 	if (!xfs_log_writable(mp))
986 		return;
987 
988 	xfs_log_force(mp, XFS_LOG_SYNC);
989 
990 	if (xlog_is_shutdown(log))
991 		return;
992 
993 	/*
994 	 * If we think the summary counters are bad, avoid writing the unmount
995 	 * record to force log recovery at next mount, after which the summary
996 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
997 	 * more details.
998 	 */
999 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1000 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1001 		xfs_alert(mp, "%s: will fix summary counters at next mount",
1002 				__func__);
1003 		return;
1004 	}
1005 
1006 	xfs_log_unmount_verify_iclog(log);
1007 	xlog_unmount_write(log);
1008 }
1009 
1010 /*
1011  * Empty the log for unmount/freeze.
1012  *
1013  * To do this, we first need to shut down the background log work so it is not
1014  * trying to cover the log as we clean up. We then need to unpin all objects in
1015  * the log so we can then flush them out. Once they have completed their IO and
1016  * run the callbacks removing themselves from the AIL, we can cover the log.
1017  */
1018 int
1019 xfs_log_quiesce(
1020 	struct xfs_mount	*mp)
1021 {
1022 	/*
1023 	 * Clear log incompat features since we're quiescing the log.  Report
1024 	 * failures, though it's not fatal to have a higher log feature
1025 	 * protection level than the log contents actually require.
1026 	 */
1027 	if (xfs_clear_incompat_log_features(mp)) {
1028 		int error;
1029 
1030 		error = xfs_sync_sb(mp, false);
1031 		if (error)
1032 			xfs_warn(mp,
1033 	"Failed to clear log incompat features on quiesce");
1034 	}
1035 
1036 	cancel_delayed_work_sync(&mp->m_log->l_work);
1037 	xfs_log_force(mp, XFS_LOG_SYNC);
1038 
1039 	/*
1040 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1041 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1042 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1043 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1044 	 * the IO to complete.
1045 	 */
1046 	xfs_ail_push_all_sync(mp->m_ail);
1047 	xfs_buftarg_wait(mp->m_ddev_targp);
1048 	xfs_buf_lock(mp->m_sb_bp);
1049 	xfs_buf_unlock(mp->m_sb_bp);
1050 
1051 	return xfs_log_cover(mp);
1052 }
1053 
1054 void
1055 xfs_log_clean(
1056 	struct xfs_mount	*mp)
1057 {
1058 	xfs_log_quiesce(mp);
1059 	xfs_log_unmount_write(mp);
1060 }
1061 
1062 /*
1063  * Shut down and release the AIL and Log.
1064  *
1065  * During unmount, we need to ensure we flush all the dirty metadata objects
1066  * from the AIL so that the log is empty before we write the unmount record to
1067  * the log. Once this is done, we can tear down the AIL and the log.
1068  */
1069 void
1070 xfs_log_unmount(
1071 	struct xfs_mount	*mp)
1072 {
1073 	xfs_log_clean(mp);
1074 
1075 	xfs_buftarg_drain(mp->m_ddev_targp);
1076 
1077 	xfs_trans_ail_destroy(mp);
1078 
1079 	xfs_sysfs_del(&mp->m_log->l_kobj);
1080 
1081 	xlog_dealloc_log(mp->m_log);
1082 }
1083 
1084 void
1085 xfs_log_item_init(
1086 	struct xfs_mount	*mp,
1087 	struct xfs_log_item	*item,
1088 	int			type,
1089 	const struct xfs_item_ops *ops)
1090 {
1091 	item->li_log = mp->m_log;
1092 	item->li_ailp = mp->m_ail;
1093 	item->li_type = type;
1094 	item->li_ops = ops;
1095 	item->li_lv = NULL;
1096 
1097 	INIT_LIST_HEAD(&item->li_ail);
1098 	INIT_LIST_HEAD(&item->li_cil);
1099 	INIT_LIST_HEAD(&item->li_bio_list);
1100 	INIT_LIST_HEAD(&item->li_trans);
1101 }
1102 
1103 /*
1104  * Wake up processes waiting for log space after we have moved the log tail.
1105  */
1106 void
1107 xfs_log_space_wake(
1108 	struct xfs_mount	*mp)
1109 {
1110 	struct xlog		*log = mp->m_log;
1111 	int			free_bytes;
1112 
1113 	if (xlog_is_shutdown(log))
1114 		return;
1115 
1116 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1117 		ASSERT(!xlog_in_recovery(log));
1118 
1119 		spin_lock(&log->l_write_head.lock);
1120 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1121 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1122 		spin_unlock(&log->l_write_head.lock);
1123 	}
1124 
1125 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1126 		ASSERT(!xlog_in_recovery(log));
1127 
1128 		spin_lock(&log->l_reserve_head.lock);
1129 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1130 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1131 		spin_unlock(&log->l_reserve_head.lock);
1132 	}
1133 }
1134 
1135 /*
1136  * Determine if we have a transaction that has gone to disk that needs to be
1137  * covered. To begin the transition to the idle state firstly the log needs to
1138  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1139  * we start attempting to cover the log.
1140  *
1141  * Only if we are then in a state where covering is needed, the caller is
1142  * informed that dummy transactions are required to move the log into the idle
1143  * state.
1144  *
1145  * If there are any items in the AIl or CIL, then we do not want to attempt to
1146  * cover the log as we may be in a situation where there isn't log space
1147  * available to run a dummy transaction and this can lead to deadlocks when the
1148  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1149  * there's no point in running a dummy transaction at this point because we
1150  * can't start trying to idle the log until both the CIL and AIL are empty.
1151  */
1152 static bool
1153 xfs_log_need_covered(
1154 	struct xfs_mount	*mp)
1155 {
1156 	struct xlog		*log = mp->m_log;
1157 	bool			needed = false;
1158 
1159 	if (!xlog_cil_empty(log))
1160 		return false;
1161 
1162 	spin_lock(&log->l_icloglock);
1163 	switch (log->l_covered_state) {
1164 	case XLOG_STATE_COVER_DONE:
1165 	case XLOG_STATE_COVER_DONE2:
1166 	case XLOG_STATE_COVER_IDLE:
1167 		break;
1168 	case XLOG_STATE_COVER_NEED:
1169 	case XLOG_STATE_COVER_NEED2:
1170 		if (xfs_ail_min_lsn(log->l_ailp))
1171 			break;
1172 		if (!xlog_iclogs_empty(log))
1173 			break;
1174 
1175 		needed = true;
1176 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1177 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1178 		else
1179 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1180 		break;
1181 	default:
1182 		needed = true;
1183 		break;
1184 	}
1185 	spin_unlock(&log->l_icloglock);
1186 	return needed;
1187 }
1188 
1189 /*
1190  * Explicitly cover the log. This is similar to background log covering but
1191  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1192  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1193  * must all be empty.
1194  */
1195 static int
1196 xfs_log_cover(
1197 	struct xfs_mount	*mp)
1198 {
1199 	int			error = 0;
1200 	bool			need_covered;
1201 
1202 	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1203 	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1204 		xlog_is_shutdown(mp->m_log));
1205 
1206 	if (!xfs_log_writable(mp))
1207 		return 0;
1208 
1209 	/*
1210 	 * xfs_log_need_covered() is not idempotent because it progresses the
1211 	 * state machine if the log requires covering. Therefore, we must call
1212 	 * this function once and use the result until we've issued an sb sync.
1213 	 * Do so first to make that abundantly clear.
1214 	 *
1215 	 * Fall into the covering sequence if the log needs covering or the
1216 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1217 	 * used for covering accumulates the in-core counters, so covering
1218 	 * handles this for us.
1219 	 */
1220 	need_covered = xfs_log_need_covered(mp);
1221 	if (!need_covered && !xfs_has_lazysbcount(mp))
1222 		return 0;
1223 
1224 	/*
1225 	 * To cover the log, commit the superblock twice (at most) in
1226 	 * independent checkpoints. The first serves as a reference for the
1227 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1228 	 * updates the in-core tail to the LSN of the first checkpoint. The
1229 	 * second commit updates the on-disk tail with the in-core LSN,
1230 	 * covering the log. Push the AIL one more time to leave it empty, as
1231 	 * we found it.
1232 	 */
1233 	do {
1234 		error = xfs_sync_sb(mp, true);
1235 		if (error)
1236 			break;
1237 		xfs_ail_push_all_sync(mp->m_ail);
1238 	} while (xfs_log_need_covered(mp));
1239 
1240 	return error;
1241 }
1242 
1243 /*
1244  * We may be holding the log iclog lock upon entering this routine.
1245  */
1246 xfs_lsn_t
1247 xlog_assign_tail_lsn_locked(
1248 	struct xfs_mount	*mp)
1249 {
1250 	struct xlog		*log = mp->m_log;
1251 	struct xfs_log_item	*lip;
1252 	xfs_lsn_t		tail_lsn;
1253 
1254 	assert_spin_locked(&mp->m_ail->ail_lock);
1255 
1256 	/*
1257 	 * To make sure we always have a valid LSN for the log tail we keep
1258 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1259 	 * and use that when the AIL was empty.
1260 	 */
1261 	lip = xfs_ail_min(mp->m_ail);
1262 	if (lip)
1263 		tail_lsn = lip->li_lsn;
1264 	else
1265 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1266 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1267 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1268 	return tail_lsn;
1269 }
1270 
1271 xfs_lsn_t
1272 xlog_assign_tail_lsn(
1273 	struct xfs_mount	*mp)
1274 {
1275 	xfs_lsn_t		tail_lsn;
1276 
1277 	spin_lock(&mp->m_ail->ail_lock);
1278 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1279 	spin_unlock(&mp->m_ail->ail_lock);
1280 
1281 	return tail_lsn;
1282 }
1283 
1284 /*
1285  * Return the space in the log between the tail and the head.  The head
1286  * is passed in the cycle/bytes formal parms.  In the special case where
1287  * the reserve head has wrapped passed the tail, this calculation is no
1288  * longer valid.  In this case, just return 0 which means there is no space
1289  * in the log.  This works for all places where this function is called
1290  * with the reserve head.  Of course, if the write head were to ever
1291  * wrap the tail, we should blow up.  Rather than catch this case here,
1292  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1293  *
1294  * If reservation head is behind the tail, we have a problem. Warn about it,
1295  * but then treat it as if the log is empty.
1296  *
1297  * If the log is shut down, the head and tail may be invalid or out of whack, so
1298  * shortcut invalidity asserts in this case so that we don't trigger them
1299  * falsely.
1300  */
1301 STATIC int
1302 xlog_space_left(
1303 	struct xlog	*log,
1304 	atomic64_t	*head)
1305 {
1306 	int		tail_bytes;
1307 	int		tail_cycle;
1308 	int		head_cycle;
1309 	int		head_bytes;
1310 
1311 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1312 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1313 	tail_bytes = BBTOB(tail_bytes);
1314 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1315 		return log->l_logsize - (head_bytes - tail_bytes);
1316 	if (tail_cycle + 1 < head_cycle)
1317 		return 0;
1318 
1319 	/* Ignore potential inconsistency when shutdown. */
1320 	if (xlog_is_shutdown(log))
1321 		return log->l_logsize;
1322 
1323 	if (tail_cycle < head_cycle) {
1324 		ASSERT(tail_cycle == (head_cycle - 1));
1325 		return tail_bytes - head_bytes;
1326 	}
1327 
1328 	/*
1329 	 * The reservation head is behind the tail. In this case we just want to
1330 	 * return the size of the log as the amount of space left.
1331 	 */
1332 	xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1333 	xfs_alert(log->l_mp, "  tail_cycle = %d, tail_bytes = %d",
1334 		  tail_cycle, tail_bytes);
1335 	xfs_alert(log->l_mp, "  GH   cycle = %d, GH   bytes = %d",
1336 		  head_cycle, head_bytes);
1337 	ASSERT(0);
1338 	return log->l_logsize;
1339 }
1340 
1341 
1342 static void
1343 xlog_ioend_work(
1344 	struct work_struct	*work)
1345 {
1346 	struct xlog_in_core     *iclog =
1347 		container_of(work, struct xlog_in_core, ic_end_io_work);
1348 	struct xlog		*log = iclog->ic_log;
1349 	int			error;
1350 
1351 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1352 #ifdef DEBUG
1353 	/* treat writes with injected CRC errors as failed */
1354 	if (iclog->ic_fail_crc)
1355 		error = -EIO;
1356 #endif
1357 
1358 	/*
1359 	 * Race to shutdown the filesystem if we see an error.
1360 	 */
1361 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1362 		xfs_alert(log->l_mp, "log I/O error %d", error);
1363 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1364 	}
1365 
1366 	xlog_state_done_syncing(iclog);
1367 	bio_uninit(&iclog->ic_bio);
1368 
1369 	/*
1370 	 * Drop the lock to signal that we are done. Nothing references the
1371 	 * iclog after this, so an unmount waiting on this lock can now tear it
1372 	 * down safely. As such, it is unsafe to reference the iclog after the
1373 	 * unlock as we could race with it being freed.
1374 	 */
1375 	up(&iclog->ic_sema);
1376 }
1377 
1378 /*
1379  * Return size of each in-core log record buffer.
1380  *
1381  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1382  *
1383  * If the filesystem blocksize is too large, we may need to choose a
1384  * larger size since the directory code currently logs entire blocks.
1385  */
1386 STATIC void
1387 xlog_get_iclog_buffer_size(
1388 	struct xfs_mount	*mp,
1389 	struct xlog		*log)
1390 {
1391 	if (mp->m_logbufs <= 0)
1392 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1393 	if (mp->m_logbsize <= 0)
1394 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1395 
1396 	log->l_iclog_bufs = mp->m_logbufs;
1397 	log->l_iclog_size = mp->m_logbsize;
1398 
1399 	/*
1400 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1401 	 */
1402 	log->l_iclog_heads =
1403 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1404 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1405 }
1406 
1407 void
1408 xfs_log_work_queue(
1409 	struct xfs_mount        *mp)
1410 {
1411 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1412 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1413 }
1414 
1415 /*
1416  * Clear the log incompat flags if we have the opportunity.
1417  *
1418  * This only happens if we're about to log the second dummy transaction as part
1419  * of covering the log and we can get the log incompat feature usage lock.
1420  */
1421 static inline void
1422 xlog_clear_incompat(
1423 	struct xlog		*log)
1424 {
1425 	struct xfs_mount	*mp = log->l_mp;
1426 
1427 	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1428 				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1429 		return;
1430 
1431 	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1432 		return;
1433 
1434 	if (!down_write_trylock(&log->l_incompat_users))
1435 		return;
1436 
1437 	xfs_clear_incompat_log_features(mp);
1438 	up_write(&log->l_incompat_users);
1439 }
1440 
1441 /*
1442  * Every sync period we need to unpin all items in the AIL and push them to
1443  * disk. If there is nothing dirty, then we might need to cover the log to
1444  * indicate that the filesystem is idle.
1445  */
1446 static void
1447 xfs_log_worker(
1448 	struct work_struct	*work)
1449 {
1450 	struct xlog		*log = container_of(to_delayed_work(work),
1451 						struct xlog, l_work);
1452 	struct xfs_mount	*mp = log->l_mp;
1453 
1454 	/* dgc: errors ignored - not fatal and nowhere to report them */
1455 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1456 		/*
1457 		 * Dump a transaction into the log that contains no real change.
1458 		 * This is needed to stamp the current tail LSN into the log
1459 		 * during the covering operation.
1460 		 *
1461 		 * We cannot use an inode here for this - that will push dirty
1462 		 * state back up into the VFS and then periodic inode flushing
1463 		 * will prevent log covering from making progress. Hence we
1464 		 * synchronously log the superblock instead to ensure the
1465 		 * superblock is immediately unpinned and can be written back.
1466 		 */
1467 		xlog_clear_incompat(log);
1468 		xfs_sync_sb(mp, true);
1469 	} else
1470 		xfs_log_force(mp, 0);
1471 
1472 	/* start pushing all the metadata that is currently dirty */
1473 	xfs_ail_push_all(mp->m_ail);
1474 
1475 	/* queue us up again */
1476 	xfs_log_work_queue(mp);
1477 }
1478 
1479 /*
1480  * This routine initializes some of the log structure for a given mount point.
1481  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1482  * some other stuff may be filled in too.
1483  */
1484 STATIC struct xlog *
1485 xlog_alloc_log(
1486 	struct xfs_mount	*mp,
1487 	struct xfs_buftarg	*log_target,
1488 	xfs_daddr_t		blk_offset,
1489 	int			num_bblks)
1490 {
1491 	struct xlog		*log;
1492 	xlog_rec_header_t	*head;
1493 	xlog_in_core_t		**iclogp;
1494 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1495 	int			i;
1496 	int			error = -ENOMEM;
1497 	uint			log2_size = 0;
1498 
1499 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1500 	if (!log) {
1501 		xfs_warn(mp, "Log allocation failed: No memory!");
1502 		goto out;
1503 	}
1504 
1505 	log->l_mp	   = mp;
1506 	log->l_targ	   = log_target;
1507 	log->l_logsize     = BBTOB(num_bblks);
1508 	log->l_logBBstart  = blk_offset;
1509 	log->l_logBBsize   = num_bblks;
1510 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1511 	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1512 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1513 
1514 	log->l_prev_block  = -1;
1515 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1516 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1517 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1518 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1519 
1520 	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1521 		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1522 	else
1523 		log->l_iclog_roundoff = BBSIZE;
1524 
1525 	xlog_grant_head_init(&log->l_reserve_head);
1526 	xlog_grant_head_init(&log->l_write_head);
1527 
1528 	error = -EFSCORRUPTED;
1529 	if (xfs_has_sector(mp)) {
1530 	        log2_size = mp->m_sb.sb_logsectlog;
1531 		if (log2_size < BBSHIFT) {
1532 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1533 				log2_size, BBSHIFT);
1534 			goto out_free_log;
1535 		}
1536 
1537 	        log2_size -= BBSHIFT;
1538 		if (log2_size > mp->m_sectbb_log) {
1539 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1540 				log2_size, mp->m_sectbb_log);
1541 			goto out_free_log;
1542 		}
1543 
1544 		/* for larger sector sizes, must have v2 or external log */
1545 		if (log2_size && log->l_logBBstart > 0 &&
1546 			    !xfs_has_logv2(mp)) {
1547 			xfs_warn(mp,
1548 		"log sector size (0x%x) invalid for configuration.",
1549 				log2_size);
1550 			goto out_free_log;
1551 		}
1552 	}
1553 	log->l_sectBBsize = 1 << log2_size;
1554 
1555 	init_rwsem(&log->l_incompat_users);
1556 
1557 	xlog_get_iclog_buffer_size(mp, log);
1558 
1559 	spin_lock_init(&log->l_icloglock);
1560 	init_waitqueue_head(&log->l_flush_wait);
1561 
1562 	iclogp = &log->l_iclog;
1563 	/*
1564 	 * The amount of memory to allocate for the iclog structure is
1565 	 * rather funky due to the way the structure is defined.  It is
1566 	 * done this way so that we can use different sizes for machines
1567 	 * with different amounts of memory.  See the definition of
1568 	 * xlog_in_core_t in xfs_log_priv.h for details.
1569 	 */
1570 	ASSERT(log->l_iclog_size >= 4096);
1571 	for (i = 0; i < log->l_iclog_bufs; i++) {
1572 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1573 				sizeof(struct bio_vec);
1574 
1575 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1576 		if (!iclog)
1577 			goto out_free_iclog;
1578 
1579 		*iclogp = iclog;
1580 		iclog->ic_prev = prev_iclog;
1581 		prev_iclog = iclog;
1582 
1583 		iclog->ic_data = kvzalloc(log->l_iclog_size,
1584 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1585 		if (!iclog->ic_data)
1586 			goto out_free_iclog;
1587 #ifdef DEBUG
1588 		log->l_iclog_bak[i] = &iclog->ic_header;
1589 #endif
1590 		head = &iclog->ic_header;
1591 		memset(head, 0, sizeof(xlog_rec_header_t));
1592 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1593 		head->h_version = cpu_to_be32(
1594 			xfs_has_logv2(log->l_mp) ? 2 : 1);
1595 		head->h_size = cpu_to_be32(log->l_iclog_size);
1596 		/* new fields */
1597 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1598 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1599 
1600 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1601 		iclog->ic_state = XLOG_STATE_ACTIVE;
1602 		iclog->ic_log = log;
1603 		atomic_set(&iclog->ic_refcnt, 0);
1604 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1605 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1606 
1607 		init_waitqueue_head(&iclog->ic_force_wait);
1608 		init_waitqueue_head(&iclog->ic_write_wait);
1609 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1610 		sema_init(&iclog->ic_sema, 1);
1611 
1612 		iclogp = &iclog->ic_next;
1613 	}
1614 	*iclogp = log->l_iclog;			/* complete ring */
1615 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1616 
1617 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1618 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1619 				    WQ_HIGHPRI),
1620 			0, mp->m_super->s_id);
1621 	if (!log->l_ioend_workqueue)
1622 		goto out_free_iclog;
1623 
1624 	error = xlog_cil_init(log);
1625 	if (error)
1626 		goto out_destroy_workqueue;
1627 	return log;
1628 
1629 out_destroy_workqueue:
1630 	destroy_workqueue(log->l_ioend_workqueue);
1631 out_free_iclog:
1632 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1633 		prev_iclog = iclog->ic_next;
1634 		kmem_free(iclog->ic_data);
1635 		kmem_free(iclog);
1636 		if (prev_iclog == log->l_iclog)
1637 			break;
1638 	}
1639 out_free_log:
1640 	kmem_free(log);
1641 out:
1642 	return ERR_PTR(error);
1643 }	/* xlog_alloc_log */
1644 
1645 /*
1646  * Compute the LSN that we'd need to push the log tail towards in order to have
1647  * (a) enough on-disk log space to log the number of bytes specified, (b) at
1648  * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1649  * log free space already meets all three thresholds, this function returns
1650  * NULLCOMMITLSN.
1651  */
1652 xfs_lsn_t
1653 xlog_grant_push_threshold(
1654 	struct xlog	*log,
1655 	int		need_bytes)
1656 {
1657 	xfs_lsn_t	threshold_lsn = 0;
1658 	xfs_lsn_t	last_sync_lsn;
1659 	int		free_blocks;
1660 	int		free_bytes;
1661 	int		threshold_block;
1662 	int		threshold_cycle;
1663 	int		free_threshold;
1664 
1665 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1666 
1667 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1668 	free_blocks = BTOBBT(free_bytes);
1669 
1670 	/*
1671 	 * Set the threshold for the minimum number of free blocks in the
1672 	 * log to the maximum of what the caller needs, one quarter of the
1673 	 * log, and 256 blocks.
1674 	 */
1675 	free_threshold = BTOBB(need_bytes);
1676 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1677 	free_threshold = max(free_threshold, 256);
1678 	if (free_blocks >= free_threshold)
1679 		return NULLCOMMITLSN;
1680 
1681 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1682 						&threshold_block);
1683 	threshold_block += free_threshold;
1684 	if (threshold_block >= log->l_logBBsize) {
1685 		threshold_block -= log->l_logBBsize;
1686 		threshold_cycle += 1;
1687 	}
1688 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1689 					threshold_block);
1690 	/*
1691 	 * Don't pass in an lsn greater than the lsn of the last
1692 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1693 	 * so that it doesn't change between the compare and the set.
1694 	 */
1695 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1696 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1697 		threshold_lsn = last_sync_lsn;
1698 
1699 	return threshold_lsn;
1700 }
1701 
1702 /*
1703  * Push the tail of the log if we need to do so to maintain the free log space
1704  * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1705  * policy which pushes on an lsn which is further along in the log once we
1706  * reach the high water mark.  In this manner, we would be creating a low water
1707  * mark.
1708  */
1709 STATIC void
1710 xlog_grant_push_ail(
1711 	struct xlog	*log,
1712 	int		need_bytes)
1713 {
1714 	xfs_lsn_t	threshold_lsn;
1715 
1716 	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1717 	if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1718 		return;
1719 
1720 	/*
1721 	 * Get the transaction layer to kick the dirty buffers out to
1722 	 * disk asynchronously. No point in trying to do this if
1723 	 * the filesystem is shutting down.
1724 	 */
1725 	xfs_ail_push(log->l_ailp, threshold_lsn);
1726 }
1727 
1728 /*
1729  * Stamp cycle number in every block
1730  */
1731 STATIC void
1732 xlog_pack_data(
1733 	struct xlog		*log,
1734 	struct xlog_in_core	*iclog,
1735 	int			roundoff)
1736 {
1737 	int			i, j, k;
1738 	int			size = iclog->ic_offset + roundoff;
1739 	__be32			cycle_lsn;
1740 	char			*dp;
1741 
1742 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1743 
1744 	dp = iclog->ic_datap;
1745 	for (i = 0; i < BTOBB(size); i++) {
1746 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1747 			break;
1748 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1749 		*(__be32 *)dp = cycle_lsn;
1750 		dp += BBSIZE;
1751 	}
1752 
1753 	if (xfs_has_logv2(log->l_mp)) {
1754 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1755 
1756 		for ( ; i < BTOBB(size); i++) {
1757 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1758 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1759 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1760 			*(__be32 *)dp = cycle_lsn;
1761 			dp += BBSIZE;
1762 		}
1763 
1764 		for (i = 1; i < log->l_iclog_heads; i++)
1765 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1766 	}
1767 }
1768 
1769 /*
1770  * Calculate the checksum for a log buffer.
1771  *
1772  * This is a little more complicated than it should be because the various
1773  * headers and the actual data are non-contiguous.
1774  */
1775 __le32
1776 xlog_cksum(
1777 	struct xlog		*log,
1778 	struct xlog_rec_header	*rhead,
1779 	char			*dp,
1780 	int			size)
1781 {
1782 	uint32_t		crc;
1783 
1784 	/* first generate the crc for the record header ... */
1785 	crc = xfs_start_cksum_update((char *)rhead,
1786 			      sizeof(struct xlog_rec_header),
1787 			      offsetof(struct xlog_rec_header, h_crc));
1788 
1789 	/* ... then for additional cycle data for v2 logs ... */
1790 	if (xfs_has_logv2(log->l_mp)) {
1791 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1792 		int		i;
1793 		int		xheads;
1794 
1795 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1796 
1797 		for (i = 1; i < xheads; i++) {
1798 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1799 				     sizeof(struct xlog_rec_ext_header));
1800 		}
1801 	}
1802 
1803 	/* ... and finally for the payload */
1804 	crc = crc32c(crc, dp, size);
1805 
1806 	return xfs_end_cksum(crc);
1807 }
1808 
1809 static void
1810 xlog_bio_end_io(
1811 	struct bio		*bio)
1812 {
1813 	struct xlog_in_core	*iclog = bio->bi_private;
1814 
1815 	queue_work(iclog->ic_log->l_ioend_workqueue,
1816 		   &iclog->ic_end_io_work);
1817 }
1818 
1819 static int
1820 xlog_map_iclog_data(
1821 	struct bio		*bio,
1822 	void			*data,
1823 	size_t			count)
1824 {
1825 	do {
1826 		struct page	*page = kmem_to_page(data);
1827 		unsigned int	off = offset_in_page(data);
1828 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1829 
1830 		if (bio_add_page(bio, page, len, off) != len)
1831 			return -EIO;
1832 
1833 		data += len;
1834 		count -= len;
1835 	} while (count);
1836 
1837 	return 0;
1838 }
1839 
1840 STATIC void
1841 xlog_write_iclog(
1842 	struct xlog		*log,
1843 	struct xlog_in_core	*iclog,
1844 	uint64_t		bno,
1845 	unsigned int		count)
1846 {
1847 	ASSERT(bno < log->l_logBBsize);
1848 	trace_xlog_iclog_write(iclog, _RET_IP_);
1849 
1850 	/*
1851 	 * We lock the iclogbufs here so that we can serialise against I/O
1852 	 * completion during unmount.  We might be processing a shutdown
1853 	 * triggered during unmount, and that can occur asynchronously to the
1854 	 * unmount thread, and hence we need to ensure that completes before
1855 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1856 	 * across the log IO to archieve that.
1857 	 */
1858 	down(&iclog->ic_sema);
1859 	if (xlog_is_shutdown(log)) {
1860 		/*
1861 		 * It would seem logical to return EIO here, but we rely on
1862 		 * the log state machine to propagate I/O errors instead of
1863 		 * doing it here.  We kick of the state machine and unlock
1864 		 * the buffer manually, the code needs to be kept in sync
1865 		 * with the I/O completion path.
1866 		 */
1867 		xlog_state_done_syncing(iclog);
1868 		up(&iclog->ic_sema);
1869 		return;
1870 	}
1871 
1872 	/*
1873 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1874 	 * IOs coming immediately after this one. This prevents the block layer
1875 	 * writeback throttle from throttling log writes behind background
1876 	 * metadata writeback and causing priority inversions.
1877 	 */
1878 	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1879 		 howmany(count, PAGE_SIZE),
1880 		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1881 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1882 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1883 	iclog->ic_bio.bi_private = iclog;
1884 
1885 	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1886 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1887 		/*
1888 		 * For external log devices, we also need to flush the data
1889 		 * device cache first to ensure all metadata writeback covered
1890 		 * by the LSN in this iclog is on stable storage. This is slow,
1891 		 * but it *must* complete before we issue the external log IO.
1892 		 */
1893 		if (log->l_targ != log->l_mp->m_ddev_targp)
1894 			blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev);
1895 	}
1896 	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1897 		iclog->ic_bio.bi_opf |= REQ_FUA;
1898 
1899 	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1900 
1901 	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1902 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1903 		return;
1904 	}
1905 	if (is_vmalloc_addr(iclog->ic_data))
1906 		flush_kernel_vmap_range(iclog->ic_data, count);
1907 
1908 	/*
1909 	 * If this log buffer would straddle the end of the log we will have
1910 	 * to split it up into two bios, so that we can continue at the start.
1911 	 */
1912 	if (bno + BTOBB(count) > log->l_logBBsize) {
1913 		struct bio *split;
1914 
1915 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1916 				  GFP_NOIO, &fs_bio_set);
1917 		bio_chain(split, &iclog->ic_bio);
1918 		submit_bio(split);
1919 
1920 		/* restart at logical offset zero for the remainder */
1921 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1922 	}
1923 
1924 	submit_bio(&iclog->ic_bio);
1925 }
1926 
1927 /*
1928  * We need to bump cycle number for the part of the iclog that is
1929  * written to the start of the log. Watch out for the header magic
1930  * number case, though.
1931  */
1932 static void
1933 xlog_split_iclog(
1934 	struct xlog		*log,
1935 	void			*data,
1936 	uint64_t		bno,
1937 	unsigned int		count)
1938 {
1939 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1940 	unsigned int		i;
1941 
1942 	for (i = split_offset; i < count; i += BBSIZE) {
1943 		uint32_t cycle = get_unaligned_be32(data + i);
1944 
1945 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1946 			cycle++;
1947 		put_unaligned_be32(cycle, data + i);
1948 	}
1949 }
1950 
1951 static int
1952 xlog_calc_iclog_size(
1953 	struct xlog		*log,
1954 	struct xlog_in_core	*iclog,
1955 	uint32_t		*roundoff)
1956 {
1957 	uint32_t		count_init, count;
1958 
1959 	/* Add for LR header */
1960 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1961 	count = roundup(count_init, log->l_iclog_roundoff);
1962 
1963 	*roundoff = count - count_init;
1964 
1965 	ASSERT(count >= count_init);
1966 	ASSERT(*roundoff < log->l_iclog_roundoff);
1967 	return count;
1968 }
1969 
1970 /*
1971  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1972  * fashion.  Previously, we should have moved the current iclog
1973  * ptr in the log to point to the next available iclog.  This allows further
1974  * write to continue while this code syncs out an iclog ready to go.
1975  * Before an in-core log can be written out, the data section must be scanned
1976  * to save away the 1st word of each BBSIZE block into the header.  We replace
1977  * it with the current cycle count.  Each BBSIZE block is tagged with the
1978  * cycle count because there in an implicit assumption that drives will
1979  * guarantee that entire 512 byte blocks get written at once.  In other words,
1980  * we can't have part of a 512 byte block written and part not written.  By
1981  * tagging each block, we will know which blocks are valid when recovering
1982  * after an unclean shutdown.
1983  *
1984  * This routine is single threaded on the iclog.  No other thread can be in
1985  * this routine with the same iclog.  Changing contents of iclog can there-
1986  * fore be done without grabbing the state machine lock.  Updating the global
1987  * log will require grabbing the lock though.
1988  *
1989  * The entire log manager uses a logical block numbering scheme.  Only
1990  * xlog_write_iclog knows about the fact that the log may not start with
1991  * block zero on a given device.
1992  */
1993 STATIC void
1994 xlog_sync(
1995 	struct xlog		*log,
1996 	struct xlog_in_core	*iclog)
1997 {
1998 	unsigned int		count;		/* byte count of bwrite */
1999 	unsigned int		roundoff;       /* roundoff to BB or stripe */
2000 	uint64_t		bno;
2001 	unsigned int		size;
2002 
2003 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2004 	trace_xlog_iclog_sync(iclog, _RET_IP_);
2005 
2006 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
2007 
2008 	/* move grant heads by roundoff in sync */
2009 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2010 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2011 
2012 	/* put cycle number in every block */
2013 	xlog_pack_data(log, iclog, roundoff);
2014 
2015 	/* real byte length */
2016 	size = iclog->ic_offset;
2017 	if (xfs_has_logv2(log->l_mp))
2018 		size += roundoff;
2019 	iclog->ic_header.h_len = cpu_to_be32(size);
2020 
2021 	XFS_STATS_INC(log->l_mp, xs_log_writes);
2022 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2023 
2024 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2025 
2026 	/* Do we need to split this write into 2 parts? */
2027 	if (bno + BTOBB(count) > log->l_logBBsize)
2028 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
2029 
2030 	/* calculcate the checksum */
2031 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2032 					    iclog->ic_datap, size);
2033 	/*
2034 	 * Intentionally corrupt the log record CRC based on the error injection
2035 	 * frequency, if defined. This facilitates testing log recovery in the
2036 	 * event of torn writes. Hence, set the IOABORT state to abort the log
2037 	 * write on I/O completion and shutdown the fs. The subsequent mount
2038 	 * detects the bad CRC and attempts to recover.
2039 	 */
2040 #ifdef DEBUG
2041 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2042 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2043 		iclog->ic_fail_crc = true;
2044 		xfs_warn(log->l_mp,
2045 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2046 			 be64_to_cpu(iclog->ic_header.h_lsn));
2047 	}
2048 #endif
2049 	xlog_verify_iclog(log, iclog, count);
2050 	xlog_write_iclog(log, iclog, bno, count);
2051 }
2052 
2053 /*
2054  * Deallocate a log structure
2055  */
2056 STATIC void
2057 xlog_dealloc_log(
2058 	struct xlog	*log)
2059 {
2060 	xlog_in_core_t	*iclog, *next_iclog;
2061 	int		i;
2062 
2063 	xlog_cil_destroy(log);
2064 
2065 	/*
2066 	 * Cycle all the iclogbuf locks to make sure all log IO completion
2067 	 * is done before we tear down these buffers.
2068 	 */
2069 	iclog = log->l_iclog;
2070 	for (i = 0; i < log->l_iclog_bufs; i++) {
2071 		down(&iclog->ic_sema);
2072 		up(&iclog->ic_sema);
2073 		iclog = iclog->ic_next;
2074 	}
2075 
2076 	iclog = log->l_iclog;
2077 	for (i = 0; i < log->l_iclog_bufs; i++) {
2078 		next_iclog = iclog->ic_next;
2079 		kmem_free(iclog->ic_data);
2080 		kmem_free(iclog);
2081 		iclog = next_iclog;
2082 	}
2083 
2084 	log->l_mp->m_log = NULL;
2085 	destroy_workqueue(log->l_ioend_workqueue);
2086 	kmem_free(log);
2087 }
2088 
2089 /*
2090  * Update counters atomically now that memcpy is done.
2091  */
2092 static inline void
2093 xlog_state_finish_copy(
2094 	struct xlog		*log,
2095 	struct xlog_in_core	*iclog,
2096 	int			record_cnt,
2097 	int			copy_bytes)
2098 {
2099 	lockdep_assert_held(&log->l_icloglock);
2100 
2101 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2102 	iclog->ic_offset += copy_bytes;
2103 }
2104 
2105 /*
2106  * print out info relating to regions written which consume
2107  * the reservation
2108  */
2109 void
2110 xlog_print_tic_res(
2111 	struct xfs_mount	*mp,
2112 	struct xlog_ticket	*ticket)
2113 {
2114 	uint i;
2115 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2116 
2117 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2118 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2119 	static char *res_type_str[] = {
2120 	    REG_TYPE_STR(BFORMAT, "bformat"),
2121 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2122 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2123 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2124 	    REG_TYPE_STR(IFORMAT, "iformat"),
2125 	    REG_TYPE_STR(ICORE, "icore"),
2126 	    REG_TYPE_STR(IEXT, "iext"),
2127 	    REG_TYPE_STR(IBROOT, "ibroot"),
2128 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2129 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2130 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2131 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2132 	    REG_TYPE_STR(QFORMAT, "qformat"),
2133 	    REG_TYPE_STR(DQUOT, "dquot"),
2134 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2135 	    REG_TYPE_STR(LRHEADER, "LR header"),
2136 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2137 	    REG_TYPE_STR(COMMIT, "commit"),
2138 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2139 	    REG_TYPE_STR(ICREATE, "inode create"),
2140 	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2141 	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2142 	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2143 	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2144 	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2145 	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2146 	};
2147 	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2148 #undef REG_TYPE_STR
2149 
2150 	xfs_warn(mp, "ticket reservation summary:");
2151 	xfs_warn(mp, "  unit res    = %d bytes",
2152 		 ticket->t_unit_res);
2153 	xfs_warn(mp, "  current res = %d bytes",
2154 		 ticket->t_curr_res);
2155 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2156 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2157 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2158 		 ticket->t_res_num_ophdrs, ophdr_spc);
2159 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2160 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2161 	xfs_warn(mp, "  num regions = %u",
2162 		 ticket->t_res_num);
2163 
2164 	for (i = 0; i < ticket->t_res_num; i++) {
2165 		uint r_type = ticket->t_res_arr[i].r_type;
2166 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2167 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2168 			    "bad-rtype" : res_type_str[r_type]),
2169 			    ticket->t_res_arr[i].r_len);
2170 	}
2171 }
2172 
2173 /*
2174  * Print a summary of the transaction.
2175  */
2176 void
2177 xlog_print_trans(
2178 	struct xfs_trans	*tp)
2179 {
2180 	struct xfs_mount	*mp = tp->t_mountp;
2181 	struct xfs_log_item	*lip;
2182 
2183 	/* dump core transaction and ticket info */
2184 	xfs_warn(mp, "transaction summary:");
2185 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2186 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2187 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2188 
2189 	xlog_print_tic_res(mp, tp->t_ticket);
2190 
2191 	/* dump each log item */
2192 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2193 		struct xfs_log_vec	*lv = lip->li_lv;
2194 		struct xfs_log_iovec	*vec;
2195 		int			i;
2196 
2197 		xfs_warn(mp, "log item: ");
2198 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2199 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2200 		if (!lv)
2201 			continue;
2202 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2203 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2204 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2205 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2206 
2207 		/* dump each iovec for the log item */
2208 		vec = lv->lv_iovecp;
2209 		for (i = 0; i < lv->lv_niovecs; i++) {
2210 			int dumplen = min(vec->i_len, 32);
2211 
2212 			xfs_warn(mp, "  iovec[%d]", i);
2213 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2214 			xfs_warn(mp, "    len	= %d", vec->i_len);
2215 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2216 			xfs_hex_dump(vec->i_addr, dumplen);
2217 
2218 			vec++;
2219 		}
2220 	}
2221 }
2222 
2223 /*
2224  * Calculate the potential space needed by the log vector.  We may need a start
2225  * record, and each region gets its own struct xlog_op_header and may need to be
2226  * double word aligned.
2227  */
2228 static int
2229 xlog_write_calc_vec_length(
2230 	struct xlog_ticket	*ticket,
2231 	struct xfs_log_vec	*log_vector,
2232 	uint			optype)
2233 {
2234 	struct xfs_log_vec	*lv;
2235 	int			headers = 0;
2236 	int			len = 0;
2237 	int			i;
2238 
2239 	if (optype & XLOG_START_TRANS)
2240 		headers++;
2241 
2242 	for (lv = log_vector; lv; lv = lv->lv_next) {
2243 		/* we don't write ordered log vectors */
2244 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2245 			continue;
2246 
2247 		headers += lv->lv_niovecs;
2248 
2249 		for (i = 0; i < lv->lv_niovecs; i++) {
2250 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2251 
2252 			len += vecp->i_len;
2253 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2254 		}
2255 	}
2256 
2257 	ticket->t_res_num_ophdrs += headers;
2258 	len += headers * sizeof(struct xlog_op_header);
2259 
2260 	return len;
2261 }
2262 
2263 static void
2264 xlog_write_start_rec(
2265 	struct xlog_op_header	*ophdr,
2266 	struct xlog_ticket	*ticket)
2267 {
2268 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2269 	ophdr->oh_clientid = ticket->t_clientid;
2270 	ophdr->oh_len = 0;
2271 	ophdr->oh_flags = XLOG_START_TRANS;
2272 	ophdr->oh_res2 = 0;
2273 }
2274 
2275 static xlog_op_header_t *
2276 xlog_write_setup_ophdr(
2277 	struct xlog		*log,
2278 	struct xlog_op_header	*ophdr,
2279 	struct xlog_ticket	*ticket,
2280 	uint			flags)
2281 {
2282 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2283 	ophdr->oh_clientid = ticket->t_clientid;
2284 	ophdr->oh_res2 = 0;
2285 
2286 	/* are we copying a commit or unmount record? */
2287 	ophdr->oh_flags = flags;
2288 
2289 	/*
2290 	 * We've seen logs corrupted with bad transaction client ids.  This
2291 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2292 	 * and shut down the filesystem.
2293 	 */
2294 	switch (ophdr->oh_clientid)  {
2295 	case XFS_TRANSACTION:
2296 	case XFS_VOLUME:
2297 	case XFS_LOG:
2298 		break;
2299 	default:
2300 		xfs_warn(log->l_mp,
2301 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2302 			ophdr->oh_clientid, ticket);
2303 		return NULL;
2304 	}
2305 
2306 	return ophdr;
2307 }
2308 
2309 /*
2310  * Set up the parameters of the region copy into the log. This has
2311  * to handle region write split across multiple log buffers - this
2312  * state is kept external to this function so that this code can
2313  * be written in an obvious, self documenting manner.
2314  */
2315 static int
2316 xlog_write_setup_copy(
2317 	struct xlog_ticket	*ticket,
2318 	struct xlog_op_header	*ophdr,
2319 	int			space_available,
2320 	int			space_required,
2321 	int			*copy_off,
2322 	int			*copy_len,
2323 	int			*last_was_partial_copy,
2324 	int			*bytes_consumed)
2325 {
2326 	int			still_to_copy;
2327 
2328 	still_to_copy = space_required - *bytes_consumed;
2329 	*copy_off = *bytes_consumed;
2330 
2331 	if (still_to_copy <= space_available) {
2332 		/* write of region completes here */
2333 		*copy_len = still_to_copy;
2334 		ophdr->oh_len = cpu_to_be32(*copy_len);
2335 		if (*last_was_partial_copy)
2336 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2337 		*last_was_partial_copy = 0;
2338 		*bytes_consumed = 0;
2339 		return 0;
2340 	}
2341 
2342 	/* partial write of region, needs extra log op header reservation */
2343 	*copy_len = space_available;
2344 	ophdr->oh_len = cpu_to_be32(*copy_len);
2345 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2346 	if (*last_was_partial_copy)
2347 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2348 	*bytes_consumed += *copy_len;
2349 	(*last_was_partial_copy)++;
2350 
2351 	/* account for new log op header */
2352 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2353 	ticket->t_res_num_ophdrs++;
2354 
2355 	return sizeof(struct xlog_op_header);
2356 }
2357 
2358 static int
2359 xlog_write_copy_finish(
2360 	struct xlog		*log,
2361 	struct xlog_in_core	*iclog,
2362 	uint			flags,
2363 	int			*record_cnt,
2364 	int			*data_cnt,
2365 	int			*partial_copy,
2366 	int			*partial_copy_len,
2367 	int			log_offset)
2368 {
2369 	int			error;
2370 
2371 	if (*partial_copy) {
2372 		/*
2373 		 * This iclog has already been marked WANT_SYNC by
2374 		 * xlog_state_get_iclog_space.
2375 		 */
2376 		spin_lock(&log->l_icloglock);
2377 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2378 		*record_cnt = 0;
2379 		*data_cnt = 0;
2380 		goto release_iclog;
2381 	}
2382 
2383 	*partial_copy = 0;
2384 	*partial_copy_len = 0;
2385 
2386 	if (iclog->ic_size - log_offset > sizeof(xlog_op_header_t))
2387 		return 0;
2388 
2389 	/* no more space in this iclog - push it. */
2390 	spin_lock(&log->l_icloglock);
2391 	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2392 	*record_cnt = 0;
2393 	*data_cnt = 0;
2394 
2395 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
2396 		xlog_state_switch_iclogs(log, iclog, 0);
2397 	else
2398 		ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2399 			xlog_is_shutdown(log));
2400 release_iclog:
2401 	error = xlog_state_release_iclog(log, iclog);
2402 	spin_unlock(&log->l_icloglock);
2403 	return error;
2404 }
2405 
2406 /*
2407  * Write some region out to in-core log
2408  *
2409  * This will be called when writing externally provided regions or when
2410  * writing out a commit record for a given transaction.
2411  *
2412  * General algorithm:
2413  *	1. Find total length of this write.  This may include adding to the
2414  *		lengths passed in.
2415  *	2. Check whether we violate the tickets reservation.
2416  *	3. While writing to this iclog
2417  *	    A. Reserve as much space in this iclog as can get
2418  *	    B. If this is first write, save away start lsn
2419  *	    C. While writing this region:
2420  *		1. If first write of transaction, write start record
2421  *		2. Write log operation header (header per region)
2422  *		3. Find out if we can fit entire region into this iclog
2423  *		4. Potentially, verify destination memcpy ptr
2424  *		5. Memcpy (partial) region
2425  *		6. If partial copy, release iclog; otherwise, continue
2426  *			copying more regions into current iclog
2427  *	4. Mark want sync bit (in simulation mode)
2428  *	5. Release iclog for potential flush to on-disk log.
2429  *
2430  * ERRORS:
2431  * 1.	Panic if reservation is overrun.  This should never happen since
2432  *	reservation amounts are generated internal to the filesystem.
2433  * NOTES:
2434  * 1. Tickets are single threaded data structures.
2435  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2436  *	syncing routine.  When a single log_write region needs to span
2437  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2438  *	on all log operation writes which don't contain the end of the
2439  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2440  *	operation which contains the end of the continued log_write region.
2441  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2442  *	we don't really know exactly how much space will be used.  As a result,
2443  *	we don't update ic_offset until the end when we know exactly how many
2444  *	bytes have been written out.
2445  */
2446 int
2447 xlog_write(
2448 	struct xlog		*log,
2449 	struct xfs_cil_ctx	*ctx,
2450 	struct xfs_log_vec	*log_vector,
2451 	struct xlog_ticket	*ticket,
2452 	uint			optype)
2453 {
2454 	struct xlog_in_core	*iclog = NULL;
2455 	struct xfs_log_vec	*lv = log_vector;
2456 	struct xfs_log_iovec	*vecp = lv->lv_iovecp;
2457 	int			index = 0;
2458 	int			len;
2459 	int			partial_copy = 0;
2460 	int			partial_copy_len = 0;
2461 	int			contwr = 0;
2462 	int			record_cnt = 0;
2463 	int			data_cnt = 0;
2464 	int			error = 0;
2465 
2466 	/*
2467 	 * If this is a commit or unmount transaction, we don't need a start
2468 	 * record to be written.  We do, however, have to account for the
2469 	 * commit or unmount header that gets written. Hence we always have
2470 	 * to account for an extra xlog_op_header here.
2471 	 */
2472 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2473 	if (ticket->t_curr_res < 0) {
2474 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2475 		     "ctx ticket reservation ran out. Need to up reservation");
2476 		xlog_print_tic_res(log->l_mp, ticket);
2477 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2478 	}
2479 
2480 	len = xlog_write_calc_vec_length(ticket, log_vector, optype);
2481 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2482 		void		*ptr;
2483 		int		log_offset;
2484 
2485 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2486 						   &contwr, &log_offset);
2487 		if (error)
2488 			return error;
2489 
2490 		ASSERT(log_offset <= iclog->ic_size - 1);
2491 		ptr = iclog->ic_datap + log_offset;
2492 
2493 		/*
2494 		 * If we have a context pointer, pass it the first iclog we are
2495 		 * writing to so it can record state needed for iclog write
2496 		 * ordering.
2497 		 */
2498 		if (ctx) {
2499 			xlog_cil_set_ctx_write_state(ctx, iclog);
2500 			ctx = NULL;
2501 		}
2502 
2503 		/*
2504 		 * This loop writes out as many regions as can fit in the amount
2505 		 * of space which was allocated by xlog_state_get_iclog_space().
2506 		 */
2507 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2508 			struct xfs_log_iovec	*reg;
2509 			struct xlog_op_header	*ophdr;
2510 			int			copy_len;
2511 			int			copy_off;
2512 			bool			ordered = false;
2513 			bool			wrote_start_rec = false;
2514 
2515 			/* ordered log vectors have no regions to write */
2516 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2517 				ASSERT(lv->lv_niovecs == 0);
2518 				ordered = true;
2519 				goto next_lv;
2520 			}
2521 
2522 			reg = &vecp[index];
2523 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2524 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2525 
2526 			/*
2527 			 * Before we start formatting log vectors, we need to
2528 			 * write a start record. Only do this for the first
2529 			 * iclog we write to.
2530 			 */
2531 			if (optype & XLOG_START_TRANS) {
2532 				xlog_write_start_rec(ptr, ticket);
2533 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2534 						sizeof(struct xlog_op_header));
2535 				optype &= ~XLOG_START_TRANS;
2536 				wrote_start_rec = true;
2537 			}
2538 
2539 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype);
2540 			if (!ophdr)
2541 				return -EIO;
2542 
2543 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2544 					   sizeof(struct xlog_op_header));
2545 
2546 			len += xlog_write_setup_copy(ticket, ophdr,
2547 						     iclog->ic_size-log_offset,
2548 						     reg->i_len,
2549 						     &copy_off, &copy_len,
2550 						     &partial_copy,
2551 						     &partial_copy_len);
2552 			xlog_verify_dest_ptr(log, ptr);
2553 
2554 			/*
2555 			 * Copy region.
2556 			 *
2557 			 * Unmount records just log an opheader, so can have
2558 			 * empty payloads with no data region to copy. Hence we
2559 			 * only copy the payload if the vector says it has data
2560 			 * to copy.
2561 			 */
2562 			ASSERT(copy_len >= 0);
2563 			if (copy_len > 0) {
2564 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2565 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2566 						   copy_len);
2567 			}
2568 			copy_len += sizeof(struct xlog_op_header);
2569 			record_cnt++;
2570 			if (wrote_start_rec) {
2571 				copy_len += sizeof(struct xlog_op_header);
2572 				record_cnt++;
2573 			}
2574 			data_cnt += contwr ? copy_len : 0;
2575 
2576 			error = xlog_write_copy_finish(log, iclog, optype,
2577 						       &record_cnt, &data_cnt,
2578 						       &partial_copy,
2579 						       &partial_copy_len,
2580 						       log_offset);
2581 			if (error)
2582 				return error;
2583 
2584 			/*
2585 			 * if we had a partial copy, we need to get more iclog
2586 			 * space but we don't want to increment the region
2587 			 * index because there is still more is this region to
2588 			 * write.
2589 			 *
2590 			 * If we completed writing this region, and we flushed
2591 			 * the iclog (indicated by resetting of the record
2592 			 * count), then we also need to get more log space. If
2593 			 * this was the last record, though, we are done and
2594 			 * can just return.
2595 			 */
2596 			if (partial_copy)
2597 				break;
2598 
2599 			if (++index == lv->lv_niovecs) {
2600 next_lv:
2601 				lv = lv->lv_next;
2602 				index = 0;
2603 				if (lv)
2604 					vecp = lv->lv_iovecp;
2605 			}
2606 			if (record_cnt == 0 && !ordered) {
2607 				if (!lv)
2608 					return 0;
2609 				break;
2610 			}
2611 		}
2612 	}
2613 
2614 	ASSERT(len == 0);
2615 
2616 	spin_lock(&log->l_icloglock);
2617 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2618 	error = xlog_state_release_iclog(log, iclog);
2619 	spin_unlock(&log->l_icloglock);
2620 
2621 	return error;
2622 }
2623 
2624 static void
2625 xlog_state_activate_iclog(
2626 	struct xlog_in_core	*iclog,
2627 	int			*iclogs_changed)
2628 {
2629 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2630 	trace_xlog_iclog_activate(iclog, _RET_IP_);
2631 
2632 	/*
2633 	 * If the number of ops in this iclog indicate it just contains the
2634 	 * dummy transaction, we can change state into IDLE (the second time
2635 	 * around). Otherwise we should change the state into NEED a dummy.
2636 	 * We don't need to cover the dummy.
2637 	 */
2638 	if (*iclogs_changed == 0 &&
2639 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2640 		*iclogs_changed = 1;
2641 	} else {
2642 		/*
2643 		 * We have two dirty iclogs so start over.  This could also be
2644 		 * num of ops indicating this is not the dummy going out.
2645 		 */
2646 		*iclogs_changed = 2;
2647 	}
2648 
2649 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2650 	iclog->ic_offset = 0;
2651 	iclog->ic_header.h_num_logops = 0;
2652 	memset(iclog->ic_header.h_cycle_data, 0,
2653 		sizeof(iclog->ic_header.h_cycle_data));
2654 	iclog->ic_header.h_lsn = 0;
2655 	iclog->ic_header.h_tail_lsn = 0;
2656 }
2657 
2658 /*
2659  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2660  * ACTIVE after iclog I/O has completed.
2661  */
2662 static void
2663 xlog_state_activate_iclogs(
2664 	struct xlog		*log,
2665 	int			*iclogs_changed)
2666 {
2667 	struct xlog_in_core	*iclog = log->l_iclog;
2668 
2669 	do {
2670 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2671 			xlog_state_activate_iclog(iclog, iclogs_changed);
2672 		/*
2673 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2674 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2675 		 */
2676 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2677 			break;
2678 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2679 }
2680 
2681 static int
2682 xlog_covered_state(
2683 	int			prev_state,
2684 	int			iclogs_changed)
2685 {
2686 	/*
2687 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2688 	 * wrote the first covering record (DONE). We go to IDLE if we just
2689 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2690 	 * non-covering write occurs.
2691 	 */
2692 	switch (prev_state) {
2693 	case XLOG_STATE_COVER_IDLE:
2694 		if (iclogs_changed == 1)
2695 			return XLOG_STATE_COVER_IDLE;
2696 		fallthrough;
2697 	case XLOG_STATE_COVER_NEED:
2698 	case XLOG_STATE_COVER_NEED2:
2699 		break;
2700 	case XLOG_STATE_COVER_DONE:
2701 		if (iclogs_changed == 1)
2702 			return XLOG_STATE_COVER_NEED2;
2703 		break;
2704 	case XLOG_STATE_COVER_DONE2:
2705 		if (iclogs_changed == 1)
2706 			return XLOG_STATE_COVER_IDLE;
2707 		break;
2708 	default:
2709 		ASSERT(0);
2710 	}
2711 
2712 	return XLOG_STATE_COVER_NEED;
2713 }
2714 
2715 STATIC void
2716 xlog_state_clean_iclog(
2717 	struct xlog		*log,
2718 	struct xlog_in_core	*dirty_iclog)
2719 {
2720 	int			iclogs_changed = 0;
2721 
2722 	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2723 
2724 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2725 
2726 	xlog_state_activate_iclogs(log, &iclogs_changed);
2727 	wake_up_all(&dirty_iclog->ic_force_wait);
2728 
2729 	if (iclogs_changed) {
2730 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2731 				iclogs_changed);
2732 	}
2733 }
2734 
2735 STATIC xfs_lsn_t
2736 xlog_get_lowest_lsn(
2737 	struct xlog		*log)
2738 {
2739 	struct xlog_in_core	*iclog = log->l_iclog;
2740 	xfs_lsn_t		lowest_lsn = 0, lsn;
2741 
2742 	do {
2743 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2744 		    iclog->ic_state == XLOG_STATE_DIRTY)
2745 			continue;
2746 
2747 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2748 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2749 			lowest_lsn = lsn;
2750 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2751 
2752 	return lowest_lsn;
2753 }
2754 
2755 /*
2756  * Completion of a iclog IO does not imply that a transaction has completed, as
2757  * transactions can be large enough to span many iclogs. We cannot change the
2758  * tail of the log half way through a transaction as this may be the only
2759  * transaction in the log and moving the tail to point to the middle of it
2760  * will prevent recovery from finding the start of the transaction. Hence we
2761  * should only update the last_sync_lsn if this iclog contains transaction
2762  * completion callbacks on it.
2763  *
2764  * We have to do this before we drop the icloglock to ensure we are the only one
2765  * that can update it.
2766  *
2767  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2768  * the reservation grant head pushing. This is due to the fact that the push
2769  * target is bound by the current last_sync_lsn value. Hence if we have a large
2770  * amount of log space bound up in this committing transaction then the
2771  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2772  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2773  * should push the AIL to ensure the push target (and hence the grant head) is
2774  * no longer bound by the old log head location and can move forwards and make
2775  * progress again.
2776  */
2777 static void
2778 xlog_state_set_callback(
2779 	struct xlog		*log,
2780 	struct xlog_in_core	*iclog,
2781 	xfs_lsn_t		header_lsn)
2782 {
2783 	trace_xlog_iclog_callback(iclog, _RET_IP_);
2784 	iclog->ic_state = XLOG_STATE_CALLBACK;
2785 
2786 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2787 			   header_lsn) <= 0);
2788 
2789 	if (list_empty_careful(&iclog->ic_callbacks))
2790 		return;
2791 
2792 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2793 	xlog_grant_push_ail(log, 0);
2794 }
2795 
2796 /*
2797  * Return true if we need to stop processing, false to continue to the next
2798  * iclog. The caller will need to run callbacks if the iclog is returned in the
2799  * XLOG_STATE_CALLBACK state.
2800  */
2801 static bool
2802 xlog_state_iodone_process_iclog(
2803 	struct xlog		*log,
2804 	struct xlog_in_core	*iclog)
2805 {
2806 	xfs_lsn_t		lowest_lsn;
2807 	xfs_lsn_t		header_lsn;
2808 
2809 	switch (iclog->ic_state) {
2810 	case XLOG_STATE_ACTIVE:
2811 	case XLOG_STATE_DIRTY:
2812 		/*
2813 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2814 		 */
2815 		return false;
2816 	case XLOG_STATE_DONE_SYNC:
2817 		/*
2818 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2819 		 * one more check here to see if we have chased our tail around.
2820 		 * If this is not the lowest lsn iclog, then we will leave it
2821 		 * for another completion to process.
2822 		 */
2823 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2824 		lowest_lsn = xlog_get_lowest_lsn(log);
2825 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2826 			return false;
2827 		xlog_state_set_callback(log, iclog, header_lsn);
2828 		return false;
2829 	default:
2830 		/*
2831 		 * Can only perform callbacks in order.  Since this iclog is not
2832 		 * in the DONE_SYNC state, we skip the rest and just try to
2833 		 * clean up.
2834 		 */
2835 		return true;
2836 	}
2837 }
2838 
2839 /*
2840  * Loop over all the iclogs, running attached callbacks on them. Return true if
2841  * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2842  * to handle transient shutdown state here at all because
2843  * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2844  * cleanup of the callbacks.
2845  */
2846 static bool
2847 xlog_state_do_iclog_callbacks(
2848 	struct xlog		*log)
2849 		__releases(&log->l_icloglock)
2850 		__acquires(&log->l_icloglock)
2851 {
2852 	struct xlog_in_core	*first_iclog = log->l_iclog;
2853 	struct xlog_in_core	*iclog = first_iclog;
2854 	bool			ran_callback = false;
2855 
2856 	do {
2857 		LIST_HEAD(cb_list);
2858 
2859 		if (xlog_state_iodone_process_iclog(log, iclog))
2860 			break;
2861 		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2862 			iclog = iclog->ic_next;
2863 			continue;
2864 		}
2865 		list_splice_init(&iclog->ic_callbacks, &cb_list);
2866 		spin_unlock(&log->l_icloglock);
2867 
2868 		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2869 		xlog_cil_process_committed(&cb_list);
2870 		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2871 		ran_callback = true;
2872 
2873 		spin_lock(&log->l_icloglock);
2874 		xlog_state_clean_iclog(log, iclog);
2875 		iclog = iclog->ic_next;
2876 	} while (iclog != first_iclog);
2877 
2878 	return ran_callback;
2879 }
2880 
2881 
2882 /*
2883  * Loop running iclog completion callbacks until there are no more iclogs in a
2884  * state that can run callbacks.
2885  */
2886 STATIC void
2887 xlog_state_do_callback(
2888 	struct xlog		*log)
2889 {
2890 	int			flushcnt = 0;
2891 	int			repeats = 0;
2892 
2893 	spin_lock(&log->l_icloglock);
2894 	while (xlog_state_do_iclog_callbacks(log)) {
2895 		if (xlog_is_shutdown(log))
2896 			break;
2897 
2898 		if (++repeats > 5000) {
2899 			flushcnt += repeats;
2900 			repeats = 0;
2901 			xfs_warn(log->l_mp,
2902 				"%s: possible infinite loop (%d iterations)",
2903 				__func__, flushcnt);
2904 		}
2905 	}
2906 
2907 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2908 		wake_up_all(&log->l_flush_wait);
2909 
2910 	spin_unlock(&log->l_icloglock);
2911 }
2912 
2913 
2914 /*
2915  * Finish transitioning this iclog to the dirty state.
2916  *
2917  * Callbacks could take time, so they are done outside the scope of the
2918  * global state machine log lock.
2919  */
2920 STATIC void
2921 xlog_state_done_syncing(
2922 	struct xlog_in_core	*iclog)
2923 {
2924 	struct xlog		*log = iclog->ic_log;
2925 
2926 	spin_lock(&log->l_icloglock);
2927 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2928 	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2929 
2930 	/*
2931 	 * If we got an error, either on the first buffer, or in the case of
2932 	 * split log writes, on the second, we shut down the file system and
2933 	 * no iclogs should ever be attempted to be written to disk again.
2934 	 */
2935 	if (!xlog_is_shutdown(log)) {
2936 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2937 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2938 	}
2939 
2940 	/*
2941 	 * Someone could be sleeping prior to writing out the next
2942 	 * iclog buffer, we wake them all, one will get to do the
2943 	 * I/O, the others get to wait for the result.
2944 	 */
2945 	wake_up_all(&iclog->ic_write_wait);
2946 	spin_unlock(&log->l_icloglock);
2947 	xlog_state_do_callback(log);
2948 }
2949 
2950 /*
2951  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2952  * sleep.  We wait on the flush queue on the head iclog as that should be
2953  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2954  * we will wait here and all new writes will sleep until a sync completes.
2955  *
2956  * The in-core logs are used in a circular fashion. They are not used
2957  * out-of-order even when an iclog past the head is free.
2958  *
2959  * return:
2960  *	* log_offset where xlog_write() can start writing into the in-core
2961  *		log's data space.
2962  *	* in-core log pointer to which xlog_write() should write.
2963  *	* boolean indicating this is a continued write to an in-core log.
2964  *		If this is the last write, then the in-core log's offset field
2965  *		needs to be incremented, depending on the amount of data which
2966  *		is copied.
2967  */
2968 STATIC int
2969 xlog_state_get_iclog_space(
2970 	struct xlog		*log,
2971 	int			len,
2972 	struct xlog_in_core	**iclogp,
2973 	struct xlog_ticket	*ticket,
2974 	int			*continued_write,
2975 	int			*logoffsetp)
2976 {
2977 	int		  log_offset;
2978 	xlog_rec_header_t *head;
2979 	xlog_in_core_t	  *iclog;
2980 
2981 restart:
2982 	spin_lock(&log->l_icloglock);
2983 	if (xlog_is_shutdown(log)) {
2984 		spin_unlock(&log->l_icloglock);
2985 		return -EIO;
2986 	}
2987 
2988 	iclog = log->l_iclog;
2989 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2990 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2991 
2992 		/* Wait for log writes to have flushed */
2993 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2994 		goto restart;
2995 	}
2996 
2997 	head = &iclog->ic_header;
2998 
2999 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
3000 	log_offset = iclog->ic_offset;
3001 
3002 	trace_xlog_iclog_get_space(iclog, _RET_IP_);
3003 
3004 	/* On the 1st write to an iclog, figure out lsn.  This works
3005 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3006 	 * committing to.  If the offset is set, that's how many blocks
3007 	 * must be written.
3008 	 */
3009 	if (log_offset == 0) {
3010 		ticket->t_curr_res -= log->l_iclog_hsize;
3011 		xlog_tic_add_region(ticket,
3012 				    log->l_iclog_hsize,
3013 				    XLOG_REG_TYPE_LRHEADER);
3014 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3015 		head->h_lsn = cpu_to_be64(
3016 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3017 		ASSERT(log->l_curr_block >= 0);
3018 	}
3019 
3020 	/* If there is enough room to write everything, then do it.  Otherwise,
3021 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3022 	 * bit is on, so this will get flushed out.  Don't update ic_offset
3023 	 * until you know exactly how many bytes get copied.  Therefore, wait
3024 	 * until later to update ic_offset.
3025 	 *
3026 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3027 	 * can fit into remaining data section.
3028 	 */
3029 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3030 		int		error = 0;
3031 
3032 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3033 
3034 		/*
3035 		 * If we are the only one writing to this iclog, sync it to
3036 		 * disk.  We need to do an atomic compare and decrement here to
3037 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
3038 		 * xlog_state_release_iclog() when there is more than one
3039 		 * reference to the iclog.
3040 		 */
3041 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3042 			error = xlog_state_release_iclog(log, iclog);
3043 		spin_unlock(&log->l_icloglock);
3044 		if (error)
3045 			return error;
3046 		goto restart;
3047 	}
3048 
3049 	/* Do we have enough room to write the full amount in the remainder
3050 	 * of this iclog?  Or must we continue a write on the next iclog and
3051 	 * mark this iclog as completely taken?  In the case where we switch
3052 	 * iclogs (to mark it taken), this particular iclog will release/sync
3053 	 * to disk in xlog_write().
3054 	 */
3055 	if (len <= iclog->ic_size - iclog->ic_offset) {
3056 		*continued_write = 0;
3057 		iclog->ic_offset += len;
3058 	} else {
3059 		*continued_write = 1;
3060 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3061 	}
3062 	*iclogp = iclog;
3063 
3064 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3065 	spin_unlock(&log->l_icloglock);
3066 
3067 	*logoffsetp = log_offset;
3068 	return 0;
3069 }
3070 
3071 /*
3072  * The first cnt-1 times a ticket goes through here we don't need to move the
3073  * grant write head because the permanent reservation has reserved cnt times the
3074  * unit amount.  Release part of current permanent unit reservation and reset
3075  * current reservation to be one units worth.  Also move grant reservation head
3076  * forward.
3077  */
3078 void
3079 xfs_log_ticket_regrant(
3080 	struct xlog		*log,
3081 	struct xlog_ticket	*ticket)
3082 {
3083 	trace_xfs_log_ticket_regrant(log, ticket);
3084 
3085 	if (ticket->t_cnt > 0)
3086 		ticket->t_cnt--;
3087 
3088 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3089 					ticket->t_curr_res);
3090 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3091 					ticket->t_curr_res);
3092 	ticket->t_curr_res = ticket->t_unit_res;
3093 	xlog_tic_reset_res(ticket);
3094 
3095 	trace_xfs_log_ticket_regrant_sub(log, ticket);
3096 
3097 	/* just return if we still have some of the pre-reserved space */
3098 	if (!ticket->t_cnt) {
3099 		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3100 				     ticket->t_unit_res);
3101 		trace_xfs_log_ticket_regrant_exit(log, ticket);
3102 
3103 		ticket->t_curr_res = ticket->t_unit_res;
3104 		xlog_tic_reset_res(ticket);
3105 	}
3106 
3107 	xfs_log_ticket_put(ticket);
3108 }
3109 
3110 /*
3111  * Give back the space left from a reservation.
3112  *
3113  * All the information we need to make a correct determination of space left
3114  * is present.  For non-permanent reservations, things are quite easy.  The
3115  * count should have been decremented to zero.  We only need to deal with the
3116  * space remaining in the current reservation part of the ticket.  If the
3117  * ticket contains a permanent reservation, there may be left over space which
3118  * needs to be released.  A count of N means that N-1 refills of the current
3119  * reservation can be done before we need to ask for more space.  The first
3120  * one goes to fill up the first current reservation.  Once we run out of
3121  * space, the count will stay at zero and the only space remaining will be
3122  * in the current reservation field.
3123  */
3124 void
3125 xfs_log_ticket_ungrant(
3126 	struct xlog		*log,
3127 	struct xlog_ticket	*ticket)
3128 {
3129 	int			bytes;
3130 
3131 	trace_xfs_log_ticket_ungrant(log, ticket);
3132 
3133 	if (ticket->t_cnt > 0)
3134 		ticket->t_cnt--;
3135 
3136 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3137 
3138 	/*
3139 	 * If this is a permanent reservation ticket, we may be able to free
3140 	 * up more space based on the remaining count.
3141 	 */
3142 	bytes = ticket->t_curr_res;
3143 	if (ticket->t_cnt > 0) {
3144 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3145 		bytes += ticket->t_unit_res*ticket->t_cnt;
3146 	}
3147 
3148 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3149 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3150 
3151 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3152 
3153 	xfs_log_space_wake(log->l_mp);
3154 	xfs_log_ticket_put(ticket);
3155 }
3156 
3157 /*
3158  * This routine will mark the current iclog in the ring as WANT_SYNC and move
3159  * the current iclog pointer to the next iclog in the ring.
3160  */
3161 void
3162 xlog_state_switch_iclogs(
3163 	struct xlog		*log,
3164 	struct xlog_in_core	*iclog,
3165 	int			eventual_size)
3166 {
3167 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3168 	assert_spin_locked(&log->l_icloglock);
3169 	trace_xlog_iclog_switch(iclog, _RET_IP_);
3170 
3171 	if (!eventual_size)
3172 		eventual_size = iclog->ic_offset;
3173 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3174 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3175 	log->l_prev_block = log->l_curr_block;
3176 	log->l_prev_cycle = log->l_curr_cycle;
3177 
3178 	/* roll log?: ic_offset changed later */
3179 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3180 
3181 	/* Round up to next log-sunit */
3182 	if (log->l_iclog_roundoff > BBSIZE) {
3183 		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3184 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3185 	}
3186 
3187 	if (log->l_curr_block >= log->l_logBBsize) {
3188 		/*
3189 		 * Rewind the current block before the cycle is bumped to make
3190 		 * sure that the combined LSN never transiently moves forward
3191 		 * when the log wraps to the next cycle. This is to support the
3192 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3193 		 * other cases should acquire l_icloglock.
3194 		 */
3195 		log->l_curr_block -= log->l_logBBsize;
3196 		ASSERT(log->l_curr_block >= 0);
3197 		smp_wmb();
3198 		log->l_curr_cycle++;
3199 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3200 			log->l_curr_cycle++;
3201 	}
3202 	ASSERT(iclog == log->l_iclog);
3203 	log->l_iclog = iclog->ic_next;
3204 }
3205 
3206 /*
3207  * Force the iclog to disk and check if the iclog has been completed before
3208  * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3209  * pmem) or fast async storage because we drop the icloglock to issue the IO.
3210  * If completion has already occurred, tell the caller so that it can avoid an
3211  * unnecessary wait on the iclog.
3212  */
3213 static int
3214 xlog_force_and_check_iclog(
3215 	struct xlog_in_core	*iclog,
3216 	bool			*completed)
3217 {
3218 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3219 	int			error;
3220 
3221 	*completed = false;
3222 	error = xlog_force_iclog(iclog);
3223 	if (error)
3224 		return error;
3225 
3226 	/*
3227 	 * If the iclog has already been completed and reused the header LSN
3228 	 * will have been rewritten by completion
3229 	 */
3230 	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3231 		*completed = true;
3232 	return 0;
3233 }
3234 
3235 /*
3236  * Write out all data in the in-core log as of this exact moment in time.
3237  *
3238  * Data may be written to the in-core log during this call.  However,
3239  * we don't guarantee this data will be written out.  A change from past
3240  * implementation means this routine will *not* write out zero length LRs.
3241  *
3242  * Basically, we try and perform an intelligent scan of the in-core logs.
3243  * If we determine there is no flushable data, we just return.  There is no
3244  * flushable data if:
3245  *
3246  *	1. the current iclog is active and has no data; the previous iclog
3247  *		is in the active or dirty state.
3248  *	2. the current iclog is drity, and the previous iclog is in the
3249  *		active or dirty state.
3250  *
3251  * We may sleep if:
3252  *
3253  *	1. the current iclog is not in the active nor dirty state.
3254  *	2. the current iclog dirty, and the previous iclog is not in the
3255  *		active nor dirty state.
3256  *	3. the current iclog is active, and there is another thread writing
3257  *		to this particular iclog.
3258  *	4. a) the current iclog is active and has no other writers
3259  *	   b) when we return from flushing out this iclog, it is still
3260  *		not in the active nor dirty state.
3261  */
3262 int
3263 xfs_log_force(
3264 	struct xfs_mount	*mp,
3265 	uint			flags)
3266 {
3267 	struct xlog		*log = mp->m_log;
3268 	struct xlog_in_core	*iclog;
3269 
3270 	XFS_STATS_INC(mp, xs_log_force);
3271 	trace_xfs_log_force(mp, 0, _RET_IP_);
3272 
3273 	xlog_cil_force(log);
3274 
3275 	spin_lock(&log->l_icloglock);
3276 	if (xlog_is_shutdown(log))
3277 		goto out_error;
3278 
3279 	iclog = log->l_iclog;
3280 	trace_xlog_iclog_force(iclog, _RET_IP_);
3281 
3282 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3283 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3284 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3285 		/*
3286 		 * If the head is dirty or (active and empty), then we need to
3287 		 * look at the previous iclog.
3288 		 *
3289 		 * If the previous iclog is active or dirty we are done.  There
3290 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3291 		 * previous iclog and go to sleep.
3292 		 */
3293 		iclog = iclog->ic_prev;
3294 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3295 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3296 			/* We have exclusive access to this iclog. */
3297 			bool	completed;
3298 
3299 			if (xlog_force_and_check_iclog(iclog, &completed))
3300 				goto out_error;
3301 
3302 			if (completed)
3303 				goto out_unlock;
3304 		} else {
3305 			/*
3306 			 * Someone else is still writing to this iclog, so we
3307 			 * need to ensure that when they release the iclog it
3308 			 * gets synced immediately as we may be waiting on it.
3309 			 */
3310 			xlog_state_switch_iclogs(log, iclog, 0);
3311 		}
3312 	}
3313 
3314 	/*
3315 	 * The iclog we are about to wait on may contain the checkpoint pushed
3316 	 * by the above xlog_cil_force() call, but it may not have been pushed
3317 	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3318 	 * are flushed when this iclog is written.
3319 	 */
3320 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3321 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3322 
3323 	if (flags & XFS_LOG_SYNC)
3324 		return xlog_wait_on_iclog(iclog);
3325 out_unlock:
3326 	spin_unlock(&log->l_icloglock);
3327 	return 0;
3328 out_error:
3329 	spin_unlock(&log->l_icloglock);
3330 	return -EIO;
3331 }
3332 
3333 /*
3334  * Force the log to a specific LSN.
3335  *
3336  * If an iclog with that lsn can be found:
3337  *	If it is in the DIRTY state, just return.
3338  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3339  *		state and go to sleep or return.
3340  *	If it is in any other state, go to sleep or return.
3341  *
3342  * Synchronous forces are implemented with a wait queue.  All callers trying
3343  * to force a given lsn to disk must wait on the queue attached to the
3344  * specific in-core log.  When given in-core log finally completes its write
3345  * to disk, that thread will wake up all threads waiting on the queue.
3346  */
3347 static int
3348 xlog_force_lsn(
3349 	struct xlog		*log,
3350 	xfs_lsn_t		lsn,
3351 	uint			flags,
3352 	int			*log_flushed,
3353 	bool			already_slept)
3354 {
3355 	struct xlog_in_core	*iclog;
3356 	bool			completed;
3357 
3358 	spin_lock(&log->l_icloglock);
3359 	if (xlog_is_shutdown(log))
3360 		goto out_error;
3361 
3362 	iclog = log->l_iclog;
3363 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3364 		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3365 		iclog = iclog->ic_next;
3366 		if (iclog == log->l_iclog)
3367 			goto out_unlock;
3368 	}
3369 
3370 	switch (iclog->ic_state) {
3371 	case XLOG_STATE_ACTIVE:
3372 		/*
3373 		 * We sleep here if we haven't already slept (e.g. this is the
3374 		 * first time we've looked at the correct iclog buf) and the
3375 		 * buffer before us is going to be sync'ed.  The reason for this
3376 		 * is that if we are doing sync transactions here, by waiting
3377 		 * for the previous I/O to complete, we can allow a few more
3378 		 * transactions into this iclog before we close it down.
3379 		 *
3380 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3381 		 * refcnt so we can release the log (which drops the ref count).
3382 		 * The state switch keeps new transaction commits from using
3383 		 * this buffer.  When the current commits finish writing into
3384 		 * the buffer, the refcount will drop to zero and the buffer
3385 		 * will go out then.
3386 		 */
3387 		if (!already_slept &&
3388 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3389 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3390 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3391 					&log->l_icloglock);
3392 			return -EAGAIN;
3393 		}
3394 		if (xlog_force_and_check_iclog(iclog, &completed))
3395 			goto out_error;
3396 		if (log_flushed)
3397 			*log_flushed = 1;
3398 		if (completed)
3399 			goto out_unlock;
3400 		break;
3401 	case XLOG_STATE_WANT_SYNC:
3402 		/*
3403 		 * This iclog may contain the checkpoint pushed by the
3404 		 * xlog_cil_force_seq() call, but there are other writers still
3405 		 * accessing it so it hasn't been pushed to disk yet. Like the
3406 		 * ACTIVE case above, we need to make sure caches are flushed
3407 		 * when this iclog is written.
3408 		 */
3409 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3410 		break;
3411 	default:
3412 		/*
3413 		 * The entire checkpoint was written by the CIL force and is on
3414 		 * its way to disk already. It will be stable when it
3415 		 * completes, so we don't need to manipulate caches here at all.
3416 		 * We just need to wait for completion if necessary.
3417 		 */
3418 		break;
3419 	}
3420 
3421 	if (flags & XFS_LOG_SYNC)
3422 		return xlog_wait_on_iclog(iclog);
3423 out_unlock:
3424 	spin_unlock(&log->l_icloglock);
3425 	return 0;
3426 out_error:
3427 	spin_unlock(&log->l_icloglock);
3428 	return -EIO;
3429 }
3430 
3431 /*
3432  * Force the log to a specific checkpoint sequence.
3433  *
3434  * First force the CIL so that all the required changes have been flushed to the
3435  * iclogs. If the CIL force completed it will return a commit LSN that indicates
3436  * the iclog that needs to be flushed to stable storage. If the caller needs
3437  * a synchronous log force, we will wait on the iclog with the LSN returned by
3438  * xlog_cil_force_seq() to be completed.
3439  */
3440 int
3441 xfs_log_force_seq(
3442 	struct xfs_mount	*mp,
3443 	xfs_csn_t		seq,
3444 	uint			flags,
3445 	int			*log_flushed)
3446 {
3447 	struct xlog		*log = mp->m_log;
3448 	xfs_lsn_t		lsn;
3449 	int			ret;
3450 	ASSERT(seq != 0);
3451 
3452 	XFS_STATS_INC(mp, xs_log_force);
3453 	trace_xfs_log_force(mp, seq, _RET_IP_);
3454 
3455 	lsn = xlog_cil_force_seq(log, seq);
3456 	if (lsn == NULLCOMMITLSN)
3457 		return 0;
3458 
3459 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3460 	if (ret == -EAGAIN) {
3461 		XFS_STATS_INC(mp, xs_log_force_sleep);
3462 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3463 	}
3464 	return ret;
3465 }
3466 
3467 /*
3468  * Free a used ticket when its refcount falls to zero.
3469  */
3470 void
3471 xfs_log_ticket_put(
3472 	xlog_ticket_t	*ticket)
3473 {
3474 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3475 	if (atomic_dec_and_test(&ticket->t_ref))
3476 		kmem_cache_free(xfs_log_ticket_cache, ticket);
3477 }
3478 
3479 xlog_ticket_t *
3480 xfs_log_ticket_get(
3481 	xlog_ticket_t	*ticket)
3482 {
3483 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3484 	atomic_inc(&ticket->t_ref);
3485 	return ticket;
3486 }
3487 
3488 /*
3489  * Figure out the total log space unit (in bytes) that would be
3490  * required for a log ticket.
3491  */
3492 static int
3493 xlog_calc_unit_res(
3494 	struct xlog		*log,
3495 	int			unit_bytes)
3496 {
3497 	int			iclog_space;
3498 	uint			num_headers;
3499 
3500 	/*
3501 	 * Permanent reservations have up to 'cnt'-1 active log operations
3502 	 * in the log.  A unit in this case is the amount of space for one
3503 	 * of these log operations.  Normal reservations have a cnt of 1
3504 	 * and their unit amount is the total amount of space required.
3505 	 *
3506 	 * The following lines of code account for non-transaction data
3507 	 * which occupy space in the on-disk log.
3508 	 *
3509 	 * Normal form of a transaction is:
3510 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3511 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3512 	 *
3513 	 * We need to account for all the leadup data and trailer data
3514 	 * around the transaction data.
3515 	 * And then we need to account for the worst case in terms of using
3516 	 * more space.
3517 	 * The worst case will happen if:
3518 	 * - the placement of the transaction happens to be such that the
3519 	 *   roundoff is at its maximum
3520 	 * - the transaction data is synced before the commit record is synced
3521 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3522 	 *   Therefore the commit record is in its own Log Record.
3523 	 *   This can happen as the commit record is called with its
3524 	 *   own region to xlog_write().
3525 	 *   This then means that in the worst case, roundoff can happen for
3526 	 *   the commit-rec as well.
3527 	 *   The commit-rec is smaller than padding in this scenario and so it is
3528 	 *   not added separately.
3529 	 */
3530 
3531 	/* for trans header */
3532 	unit_bytes += sizeof(xlog_op_header_t);
3533 	unit_bytes += sizeof(xfs_trans_header_t);
3534 
3535 	/* for start-rec */
3536 	unit_bytes += sizeof(xlog_op_header_t);
3537 
3538 	/*
3539 	 * for LR headers - the space for data in an iclog is the size minus
3540 	 * the space used for the headers. If we use the iclog size, then we
3541 	 * undercalculate the number of headers required.
3542 	 *
3543 	 * Furthermore - the addition of op headers for split-recs might
3544 	 * increase the space required enough to require more log and op
3545 	 * headers, so take that into account too.
3546 	 *
3547 	 * IMPORTANT: This reservation makes the assumption that if this
3548 	 * transaction is the first in an iclog and hence has the LR headers
3549 	 * accounted to it, then the remaining space in the iclog is
3550 	 * exclusively for this transaction.  i.e. if the transaction is larger
3551 	 * than the iclog, it will be the only thing in that iclog.
3552 	 * Fundamentally, this means we must pass the entire log vector to
3553 	 * xlog_write to guarantee this.
3554 	 */
3555 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3556 	num_headers = howmany(unit_bytes, iclog_space);
3557 
3558 	/* for split-recs - ophdrs added when data split over LRs */
3559 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3560 
3561 	/* add extra header reservations if we overrun */
3562 	while (!num_headers ||
3563 	       howmany(unit_bytes, iclog_space) > num_headers) {
3564 		unit_bytes += sizeof(xlog_op_header_t);
3565 		num_headers++;
3566 	}
3567 	unit_bytes += log->l_iclog_hsize * num_headers;
3568 
3569 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3570 	unit_bytes += log->l_iclog_hsize;
3571 
3572 	/* roundoff padding for transaction data and one for commit record */
3573 	unit_bytes += 2 * log->l_iclog_roundoff;
3574 
3575 	return unit_bytes;
3576 }
3577 
3578 int
3579 xfs_log_calc_unit_res(
3580 	struct xfs_mount	*mp,
3581 	int			unit_bytes)
3582 {
3583 	return xlog_calc_unit_res(mp->m_log, unit_bytes);
3584 }
3585 
3586 /*
3587  * Allocate and initialise a new log ticket.
3588  */
3589 struct xlog_ticket *
3590 xlog_ticket_alloc(
3591 	struct xlog		*log,
3592 	int			unit_bytes,
3593 	int			cnt,
3594 	char			client,
3595 	bool			permanent)
3596 {
3597 	struct xlog_ticket	*tic;
3598 	int			unit_res;
3599 
3600 	tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL);
3601 
3602 	unit_res = xlog_calc_unit_res(log, unit_bytes);
3603 
3604 	atomic_set(&tic->t_ref, 1);
3605 	tic->t_task		= current;
3606 	INIT_LIST_HEAD(&tic->t_queue);
3607 	tic->t_unit_res		= unit_res;
3608 	tic->t_curr_res		= unit_res;
3609 	tic->t_cnt		= cnt;
3610 	tic->t_ocnt		= cnt;
3611 	tic->t_tid		= prandom_u32();
3612 	tic->t_clientid		= client;
3613 	if (permanent)
3614 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3615 
3616 	xlog_tic_reset_res(tic);
3617 
3618 	return tic;
3619 }
3620 
3621 #if defined(DEBUG)
3622 /*
3623  * Make sure that the destination ptr is within the valid data region of
3624  * one of the iclogs.  This uses backup pointers stored in a different
3625  * part of the log in case we trash the log structure.
3626  */
3627 STATIC void
3628 xlog_verify_dest_ptr(
3629 	struct xlog	*log,
3630 	void		*ptr)
3631 {
3632 	int i;
3633 	int good_ptr = 0;
3634 
3635 	for (i = 0; i < log->l_iclog_bufs; i++) {
3636 		if (ptr >= log->l_iclog_bak[i] &&
3637 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3638 			good_ptr++;
3639 	}
3640 
3641 	if (!good_ptr)
3642 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3643 }
3644 
3645 /*
3646  * Check to make sure the grant write head didn't just over lap the tail.  If
3647  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3648  * the cycles differ by exactly one and check the byte count.
3649  *
3650  * This check is run unlocked, so can give false positives. Rather than assert
3651  * on failures, use a warn-once flag and a panic tag to allow the admin to
3652  * determine if they want to panic the machine when such an error occurs. For
3653  * debug kernels this will have the same effect as using an assert but, unlinke
3654  * an assert, it can be turned off at runtime.
3655  */
3656 STATIC void
3657 xlog_verify_grant_tail(
3658 	struct xlog	*log)
3659 {
3660 	int		tail_cycle, tail_blocks;
3661 	int		cycle, space;
3662 
3663 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3664 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3665 	if (tail_cycle != cycle) {
3666 		if (cycle - 1 != tail_cycle &&
3667 		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3668 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3669 				"%s: cycle - 1 != tail_cycle", __func__);
3670 		}
3671 
3672 		if (space > BBTOB(tail_blocks) &&
3673 		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3674 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3675 				"%s: space > BBTOB(tail_blocks)", __func__);
3676 		}
3677 	}
3678 }
3679 
3680 /* check if it will fit */
3681 STATIC void
3682 xlog_verify_tail_lsn(
3683 	struct xlog		*log,
3684 	struct xlog_in_core	*iclog)
3685 {
3686 	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3687 	int		blocks;
3688 
3689     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3690 	blocks =
3691 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3692 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3693 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3694     } else {
3695 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3696 
3697 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3698 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3699 
3700 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3701 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3702 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3703     }
3704 }
3705 
3706 /*
3707  * Perform a number of checks on the iclog before writing to disk.
3708  *
3709  * 1. Make sure the iclogs are still circular
3710  * 2. Make sure we have a good magic number
3711  * 3. Make sure we don't have magic numbers in the data
3712  * 4. Check fields of each log operation header for:
3713  *	A. Valid client identifier
3714  *	B. tid ptr value falls in valid ptr space (user space code)
3715  *	C. Length in log record header is correct according to the
3716  *		individual operation headers within record.
3717  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3718  *	log, check the preceding blocks of the physical log to make sure all
3719  *	the cycle numbers agree with the current cycle number.
3720  */
3721 STATIC void
3722 xlog_verify_iclog(
3723 	struct xlog		*log,
3724 	struct xlog_in_core	*iclog,
3725 	int			count)
3726 {
3727 	xlog_op_header_t	*ophead;
3728 	xlog_in_core_t		*icptr;
3729 	xlog_in_core_2_t	*xhdr;
3730 	void			*base_ptr, *ptr, *p;
3731 	ptrdiff_t		field_offset;
3732 	uint8_t			clientid;
3733 	int			len, i, j, k, op_len;
3734 	int			idx;
3735 
3736 	/* check validity of iclog pointers */
3737 	spin_lock(&log->l_icloglock);
3738 	icptr = log->l_iclog;
3739 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3740 		ASSERT(icptr);
3741 
3742 	if (icptr != log->l_iclog)
3743 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3744 	spin_unlock(&log->l_icloglock);
3745 
3746 	/* check log magic numbers */
3747 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3748 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3749 
3750 	base_ptr = ptr = &iclog->ic_header;
3751 	p = &iclog->ic_header;
3752 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3753 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3754 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3755 				__func__);
3756 	}
3757 
3758 	/* check fields */
3759 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3760 	base_ptr = ptr = iclog->ic_datap;
3761 	ophead = ptr;
3762 	xhdr = iclog->ic_data;
3763 	for (i = 0; i < len; i++) {
3764 		ophead = ptr;
3765 
3766 		/* clientid is only 1 byte */
3767 		p = &ophead->oh_clientid;
3768 		field_offset = p - base_ptr;
3769 		if (field_offset & 0x1ff) {
3770 			clientid = ophead->oh_clientid;
3771 		} else {
3772 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3773 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3774 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3775 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3776 				clientid = xlog_get_client_id(
3777 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3778 			} else {
3779 				clientid = xlog_get_client_id(
3780 					iclog->ic_header.h_cycle_data[idx]);
3781 			}
3782 		}
3783 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3784 			xfs_warn(log->l_mp,
3785 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3786 				__func__, clientid, ophead,
3787 				(unsigned long)field_offset);
3788 
3789 		/* check length */
3790 		p = &ophead->oh_len;
3791 		field_offset = p - base_ptr;
3792 		if (field_offset & 0x1ff) {
3793 			op_len = be32_to_cpu(ophead->oh_len);
3794 		} else {
3795 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3796 				    (uintptr_t)iclog->ic_datap);
3797 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3798 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3799 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3800 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3801 			} else {
3802 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3803 			}
3804 		}
3805 		ptr += sizeof(xlog_op_header_t) + op_len;
3806 	}
3807 }
3808 #endif
3809 
3810 /*
3811  * Perform a forced shutdown on the log.
3812  *
3813  * This can be called from low level log code to trigger a shutdown, or from the
3814  * high level mount shutdown code when the mount shuts down.
3815  *
3816  * Our main objectives here are to make sure that:
3817  *	a. if the shutdown was not due to a log IO error, flush the logs to
3818  *	   disk. Anything modified after this is ignored.
3819  *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3820  *	   parties to find out. Nothing new gets queued after this is done.
3821  *	c. Tasks sleeping on log reservations, pinned objects and
3822  *	   other resources get woken up.
3823  *	d. The mount is also marked as shut down so that log triggered shutdowns
3824  *	   still behave the same as if they called xfs_forced_shutdown().
3825  *
3826  * Return true if the shutdown cause was a log IO error and we actually shut the
3827  * log down.
3828  */
3829 bool
3830 xlog_force_shutdown(
3831 	struct xlog	*log,
3832 	int		shutdown_flags)
3833 {
3834 	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3835 
3836 	if (!log)
3837 		return false;
3838 
3839 	/*
3840 	 * Flush all the completed transactions to disk before marking the log
3841 	 * being shut down. We need to do this first as shutting down the log
3842 	 * before the force will prevent the log force from flushing the iclogs
3843 	 * to disk.
3844 	 *
3845 	 * When we are in recovery, there are no transactions to flush, and
3846 	 * we don't want to touch the log because we don't want to perturb the
3847 	 * current head/tail for future recovery attempts. Hence we need to
3848 	 * avoid a log force in this case.
3849 	 *
3850 	 * If we are shutting down due to a log IO error, then we must avoid
3851 	 * trying to write the log as that may just result in more IO errors and
3852 	 * an endless shutdown/force loop.
3853 	 */
3854 	if (!log_error && !xlog_in_recovery(log))
3855 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3856 
3857 	/*
3858 	 * Atomically set the shutdown state. If the shutdown state is already
3859 	 * set, there someone else is performing the shutdown and so we are done
3860 	 * here. This should never happen because we should only ever get called
3861 	 * once by the first shutdown caller.
3862 	 *
3863 	 * Much of the log state machine transitions assume that shutdown state
3864 	 * cannot change once they hold the log->l_icloglock. Hence we need to
3865 	 * hold that lock here, even though we use the atomic test_and_set_bit()
3866 	 * operation to set the shutdown state.
3867 	 */
3868 	spin_lock(&log->l_icloglock);
3869 	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3870 		spin_unlock(&log->l_icloglock);
3871 		return false;
3872 	}
3873 	spin_unlock(&log->l_icloglock);
3874 
3875 	/*
3876 	 * If this log shutdown also sets the mount shutdown state, issue a
3877 	 * shutdown warning message.
3878 	 */
3879 	if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) {
3880 		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3881 "Filesystem has been shut down due to log error (0x%x).",
3882 				shutdown_flags);
3883 		xfs_alert(log->l_mp,
3884 "Please unmount the filesystem and rectify the problem(s).");
3885 		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3886 			xfs_stack_trace();
3887 	}
3888 
3889 	/*
3890 	 * We don't want anybody waiting for log reservations after this. That
3891 	 * means we have to wake up everybody queued up on reserveq as well as
3892 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3893 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3894 	 * action is protected by the grant locks.
3895 	 */
3896 	xlog_grant_head_wake_all(&log->l_reserve_head);
3897 	xlog_grant_head_wake_all(&log->l_write_head);
3898 
3899 	/*
3900 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3901 	 * as if the log writes were completed. The abort handling in the log
3902 	 * item committed callback functions will do this again under lock to
3903 	 * avoid races.
3904 	 */
3905 	spin_lock(&log->l_cilp->xc_push_lock);
3906 	wake_up_all(&log->l_cilp->xc_start_wait);
3907 	wake_up_all(&log->l_cilp->xc_commit_wait);
3908 	spin_unlock(&log->l_cilp->xc_push_lock);
3909 
3910 	spin_lock(&log->l_icloglock);
3911 	xlog_state_shutdown_callbacks(log);
3912 	spin_unlock(&log->l_icloglock);
3913 
3914 	wake_up_var(&log->l_opstate);
3915 	return log_error;
3916 }
3917 
3918 STATIC int
3919 xlog_iclogs_empty(
3920 	struct xlog	*log)
3921 {
3922 	xlog_in_core_t	*iclog;
3923 
3924 	iclog = log->l_iclog;
3925 	do {
3926 		/* endianness does not matter here, zero is zero in
3927 		 * any language.
3928 		 */
3929 		if (iclog->ic_header.h_num_logops)
3930 			return 0;
3931 		iclog = iclog->ic_next;
3932 	} while (iclog != log->l_iclog);
3933 	return 1;
3934 }
3935 
3936 /*
3937  * Verify that an LSN stamped into a piece of metadata is valid. This is
3938  * intended for use in read verifiers on v5 superblocks.
3939  */
3940 bool
3941 xfs_log_check_lsn(
3942 	struct xfs_mount	*mp,
3943 	xfs_lsn_t		lsn)
3944 {
3945 	struct xlog		*log = mp->m_log;
3946 	bool			valid;
3947 
3948 	/*
3949 	 * norecovery mode skips mount-time log processing and unconditionally
3950 	 * resets the in-core LSN. We can't validate in this mode, but
3951 	 * modifications are not allowed anyways so just return true.
3952 	 */
3953 	if (xfs_has_norecovery(mp))
3954 		return true;
3955 
3956 	/*
3957 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3958 	 * handled by recovery and thus safe to ignore here.
3959 	 */
3960 	if (lsn == NULLCOMMITLSN)
3961 		return true;
3962 
3963 	valid = xlog_valid_lsn(mp->m_log, lsn);
3964 
3965 	/* warn the user about what's gone wrong before verifier failure */
3966 	if (!valid) {
3967 		spin_lock(&log->l_icloglock);
3968 		xfs_warn(mp,
3969 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3970 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3971 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3972 			 log->l_curr_cycle, log->l_curr_block);
3973 		spin_unlock(&log->l_icloglock);
3974 	}
3975 
3976 	return valid;
3977 }
3978 
3979 /*
3980  * Notify the log that we're about to start using a feature that is protected
3981  * by a log incompat feature flag.  This will prevent log covering from
3982  * clearing those flags.
3983  */
3984 void
3985 xlog_use_incompat_feat(
3986 	struct xlog		*log)
3987 {
3988 	down_read(&log->l_incompat_users);
3989 }
3990 
3991 /* Notify the log that we've finished using log incompat features. */
3992 void
3993 xlog_drop_incompat_feat(
3994 	struct xlog		*log)
3995 {
3996 	up_read(&log->l_incompat_users);
3997 }
3998