1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trace.h" 20 #include "xfs_sysfs.h" 21 #include "xfs_sb.h" 22 #include "xfs_health.h" 23 #include "xfs_zone_alloc.h" 24 25 struct kmem_cache *xfs_log_ticket_cache; 26 27 /* Local miscellaneous function prototypes */ 28 STATIC struct xlog * 29 xlog_alloc_log( 30 struct xfs_mount *mp, 31 struct xfs_buftarg *log_target, 32 xfs_daddr_t blk_offset, 33 int num_bblks); 34 STATIC void 35 xlog_dealloc_log( 36 struct xlog *log); 37 38 /* local state machine functions */ 39 STATIC void xlog_state_done_syncing( 40 struct xlog_in_core *iclog); 41 STATIC void xlog_state_do_callback( 42 struct xlog *log); 43 STATIC int 44 xlog_state_get_iclog_space( 45 struct xlog *log, 46 int len, 47 struct xlog_in_core **iclog, 48 struct xlog_ticket *ticket, 49 int *logoffsetp); 50 STATIC void 51 xlog_sync( 52 struct xlog *log, 53 struct xlog_in_core *iclog, 54 struct xlog_ticket *ticket); 55 #if defined(DEBUG) 56 STATIC void 57 xlog_verify_iclog( 58 struct xlog *log, 59 struct xlog_in_core *iclog, 60 int count); 61 STATIC void 62 xlog_verify_tail_lsn( 63 struct xlog *log, 64 struct xlog_in_core *iclog); 65 #else 66 #define xlog_verify_iclog(a,b,c) 67 #define xlog_verify_tail_lsn(a,b) 68 #endif 69 70 STATIC int 71 xlog_iclogs_empty( 72 struct xlog *log); 73 74 static int 75 xfs_log_cover(struct xfs_mount *); 76 77 /* 78 * We need to make sure the buffer pointer returned is naturally aligned for the 79 * biggest basic data type we put into it. We have already accounted for this 80 * padding when sizing the buffer. 81 * 82 * However, this padding does not get written into the log, and hence we have to 83 * track the space used by the log vectors separately to prevent log space hangs 84 * due to inaccurate accounting (i.e. a leak) of the used log space through the 85 * CIL context ticket. 86 * 87 * We also add space for the xlog_op_header that describes this region in the 88 * log. This prepends the data region we return to the caller to copy their data 89 * into, so do all the static initialisation of the ophdr now. Because the ophdr 90 * is not 8 byte aligned, we have to be careful to ensure that we align the 91 * start of the buffer such that the region we return to the call is 8 byte 92 * aligned and packed against the tail of the ophdr. 93 */ 94 void * 95 xlog_prepare_iovec( 96 struct xfs_log_vec *lv, 97 struct xfs_log_iovec **vecp, 98 uint type) 99 { 100 struct xfs_log_iovec *vec = *vecp; 101 struct xlog_op_header *oph; 102 uint32_t len; 103 void *buf; 104 105 if (vec) { 106 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs); 107 vec++; 108 } else { 109 vec = &lv->lv_iovecp[0]; 110 } 111 112 len = lv->lv_buf_used + sizeof(struct xlog_op_header); 113 if (!IS_ALIGNED(len, sizeof(uint64_t))) { 114 lv->lv_buf_used = round_up(len, sizeof(uint64_t)) - 115 sizeof(struct xlog_op_header); 116 } 117 118 vec->i_type = type; 119 vec->i_addr = lv->lv_buf + lv->lv_buf_used; 120 121 oph = vec->i_addr; 122 oph->oh_clientid = XFS_TRANSACTION; 123 oph->oh_res2 = 0; 124 oph->oh_flags = 0; 125 126 buf = vec->i_addr + sizeof(struct xlog_op_header); 127 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t))); 128 129 *vecp = vec; 130 return buf; 131 } 132 133 static inline void 134 xlog_grant_sub_space( 135 struct xlog_grant_head *head, 136 int64_t bytes) 137 { 138 atomic64_sub(bytes, &head->grant); 139 } 140 141 static inline void 142 xlog_grant_add_space( 143 struct xlog_grant_head *head, 144 int64_t bytes) 145 { 146 atomic64_add(bytes, &head->grant); 147 } 148 149 static void 150 xlog_grant_head_init( 151 struct xlog_grant_head *head) 152 { 153 atomic64_set(&head->grant, 0); 154 INIT_LIST_HEAD(&head->waiters); 155 spin_lock_init(&head->lock); 156 } 157 158 void 159 xlog_grant_return_space( 160 struct xlog *log, 161 xfs_lsn_t old_head, 162 xfs_lsn_t new_head) 163 { 164 int64_t diff = xlog_lsn_sub(log, new_head, old_head); 165 166 xlog_grant_sub_space(&log->l_reserve_head, diff); 167 xlog_grant_sub_space(&log->l_write_head, diff); 168 } 169 170 /* 171 * Return the space in the log between the tail and the head. In the case where 172 * we have overrun available reservation space, return 0. The memory barrier 173 * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head 174 * vs tail space updates are seen in the correct order and hence avoid 175 * transients as space is transferred from the grant heads to the AIL on commit 176 * completion. 177 */ 178 static uint64_t 179 xlog_grant_space_left( 180 struct xlog *log, 181 struct xlog_grant_head *head) 182 { 183 int64_t free_bytes; 184 185 smp_rmb(); /* paired with smp_wmb in xlog_cil_ail_insert() */ 186 free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) - 187 atomic64_read(&head->grant); 188 if (free_bytes > 0) 189 return free_bytes; 190 return 0; 191 } 192 193 STATIC void 194 xlog_grant_head_wake_all( 195 struct xlog_grant_head *head) 196 { 197 struct xlog_ticket *tic; 198 199 spin_lock(&head->lock); 200 list_for_each_entry(tic, &head->waiters, t_queue) 201 wake_up_process(tic->t_task); 202 spin_unlock(&head->lock); 203 } 204 205 static inline int 206 xlog_ticket_reservation( 207 struct xlog *log, 208 struct xlog_grant_head *head, 209 struct xlog_ticket *tic) 210 { 211 if (head == &log->l_write_head) { 212 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 213 return tic->t_unit_res; 214 } 215 216 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 217 return tic->t_unit_res * tic->t_cnt; 218 219 return tic->t_unit_res; 220 } 221 222 STATIC bool 223 xlog_grant_head_wake( 224 struct xlog *log, 225 struct xlog_grant_head *head, 226 int *free_bytes) 227 { 228 struct xlog_ticket *tic; 229 int need_bytes; 230 231 list_for_each_entry(tic, &head->waiters, t_queue) { 232 need_bytes = xlog_ticket_reservation(log, head, tic); 233 if (*free_bytes < need_bytes) 234 return false; 235 236 *free_bytes -= need_bytes; 237 trace_xfs_log_grant_wake_up(log, tic); 238 wake_up_process(tic->t_task); 239 } 240 241 return true; 242 } 243 244 STATIC int 245 xlog_grant_head_wait( 246 struct xlog *log, 247 struct xlog_grant_head *head, 248 struct xlog_ticket *tic, 249 int need_bytes) __releases(&head->lock) 250 __acquires(&head->lock) 251 { 252 list_add_tail(&tic->t_queue, &head->waiters); 253 254 do { 255 if (xlog_is_shutdown(log)) 256 goto shutdown; 257 258 __set_current_state(TASK_UNINTERRUPTIBLE); 259 spin_unlock(&head->lock); 260 261 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 262 263 /* Push on the AIL to free up all the log space. */ 264 xfs_ail_push_all(log->l_ailp); 265 266 trace_xfs_log_grant_sleep(log, tic); 267 schedule(); 268 trace_xfs_log_grant_wake(log, tic); 269 270 spin_lock(&head->lock); 271 if (xlog_is_shutdown(log)) 272 goto shutdown; 273 } while (xlog_grant_space_left(log, head) < need_bytes); 274 275 list_del_init(&tic->t_queue); 276 return 0; 277 shutdown: 278 list_del_init(&tic->t_queue); 279 return -EIO; 280 } 281 282 /* 283 * Atomically get the log space required for a log ticket. 284 * 285 * Once a ticket gets put onto head->waiters, it will only return after the 286 * needed reservation is satisfied. 287 * 288 * This function is structured so that it has a lock free fast path. This is 289 * necessary because every new transaction reservation will come through this 290 * path. Hence any lock will be globally hot if we take it unconditionally on 291 * every pass. 292 * 293 * As tickets are only ever moved on and off head->waiters under head->lock, we 294 * only need to take that lock if we are going to add the ticket to the queue 295 * and sleep. We can avoid taking the lock if the ticket was never added to 296 * head->waiters because the t_queue list head will be empty and we hold the 297 * only reference to it so it can safely be checked unlocked. 298 */ 299 STATIC int 300 xlog_grant_head_check( 301 struct xlog *log, 302 struct xlog_grant_head *head, 303 struct xlog_ticket *tic, 304 int *need_bytes) 305 { 306 int free_bytes; 307 int error = 0; 308 309 ASSERT(!xlog_in_recovery(log)); 310 311 /* 312 * If there are other waiters on the queue then give them a chance at 313 * logspace before us. Wake up the first waiters, if we do not wake 314 * up all the waiters then go to sleep waiting for more free space, 315 * otherwise try to get some space for this transaction. 316 */ 317 *need_bytes = xlog_ticket_reservation(log, head, tic); 318 free_bytes = xlog_grant_space_left(log, head); 319 if (!list_empty_careful(&head->waiters)) { 320 spin_lock(&head->lock); 321 if (!xlog_grant_head_wake(log, head, &free_bytes) || 322 free_bytes < *need_bytes) { 323 error = xlog_grant_head_wait(log, head, tic, 324 *need_bytes); 325 } 326 spin_unlock(&head->lock); 327 } else if (free_bytes < *need_bytes) { 328 spin_lock(&head->lock); 329 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 330 spin_unlock(&head->lock); 331 } 332 333 return error; 334 } 335 336 bool 337 xfs_log_writable( 338 struct xfs_mount *mp) 339 { 340 /* 341 * Do not write to the log on norecovery mounts, if the data or log 342 * devices are read-only, or if the filesystem is shutdown. Read-only 343 * mounts allow internal writes for log recovery and unmount purposes, 344 * so don't restrict that case. 345 */ 346 if (xfs_has_norecovery(mp)) 347 return false; 348 if (xfs_readonly_buftarg(mp->m_ddev_targp)) 349 return false; 350 if (xfs_readonly_buftarg(mp->m_log->l_targ)) 351 return false; 352 if (xlog_is_shutdown(mp->m_log)) 353 return false; 354 return true; 355 } 356 357 /* 358 * Replenish the byte reservation required by moving the grant write head. 359 */ 360 int 361 xfs_log_regrant( 362 struct xfs_mount *mp, 363 struct xlog_ticket *tic) 364 { 365 struct xlog *log = mp->m_log; 366 int need_bytes; 367 int error = 0; 368 369 if (xlog_is_shutdown(log)) 370 return -EIO; 371 372 XFS_STATS_INC(mp, xs_try_logspace); 373 374 /* 375 * This is a new transaction on the ticket, so we need to change the 376 * transaction ID so that the next transaction has a different TID in 377 * the log. Just add one to the existing tid so that we can see chains 378 * of rolling transactions in the log easily. 379 */ 380 tic->t_tid++; 381 tic->t_curr_res = tic->t_unit_res; 382 if (tic->t_cnt > 0) 383 return 0; 384 385 trace_xfs_log_regrant(log, tic); 386 387 error = xlog_grant_head_check(log, &log->l_write_head, tic, 388 &need_bytes); 389 if (error) 390 goto out_error; 391 392 xlog_grant_add_space(&log->l_write_head, need_bytes); 393 trace_xfs_log_regrant_exit(log, tic); 394 return 0; 395 396 out_error: 397 /* 398 * If we are failing, make sure the ticket doesn't have any current 399 * reservations. We don't want to add this back when the ticket/ 400 * transaction gets cancelled. 401 */ 402 tic->t_curr_res = 0; 403 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 404 return error; 405 } 406 407 /* 408 * Reserve log space and return a ticket corresponding to the reservation. 409 * 410 * Each reservation is going to reserve extra space for a log record header. 411 * When writes happen to the on-disk log, we don't subtract the length of the 412 * log record header from any reservation. By wasting space in each 413 * reservation, we prevent over allocation problems. 414 */ 415 int 416 xfs_log_reserve( 417 struct xfs_mount *mp, 418 int unit_bytes, 419 int cnt, 420 struct xlog_ticket **ticp, 421 bool permanent) 422 { 423 struct xlog *log = mp->m_log; 424 struct xlog_ticket *tic; 425 int need_bytes; 426 int error = 0; 427 428 if (xlog_is_shutdown(log)) 429 return -EIO; 430 431 XFS_STATS_INC(mp, xs_try_logspace); 432 433 ASSERT(*ticp == NULL); 434 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent); 435 *ticp = tic; 436 trace_xfs_log_reserve(log, tic); 437 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 438 &need_bytes); 439 if (error) 440 goto out_error; 441 442 xlog_grant_add_space(&log->l_reserve_head, need_bytes); 443 xlog_grant_add_space(&log->l_write_head, need_bytes); 444 trace_xfs_log_reserve_exit(log, tic); 445 return 0; 446 447 out_error: 448 /* 449 * If we are failing, make sure the ticket doesn't have any current 450 * reservations. We don't want to add this back when the ticket/ 451 * transaction gets cancelled. 452 */ 453 tic->t_curr_res = 0; 454 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 455 return error; 456 } 457 458 /* 459 * Run all the pending iclog callbacks and wake log force waiters and iclog 460 * space waiters so they can process the newly set shutdown state. We really 461 * don't care what order we process callbacks here because the log is shut down 462 * and so state cannot change on disk anymore. However, we cannot wake waiters 463 * until the callbacks have been processed because we may be in unmount and 464 * we must ensure that all AIL operations the callbacks perform have completed 465 * before we tear down the AIL. 466 * 467 * We avoid processing actively referenced iclogs so that we don't run callbacks 468 * while the iclog owner might still be preparing the iclog for IO submssion. 469 * These will be caught by xlog_state_iclog_release() and call this function 470 * again to process any callbacks that may have been added to that iclog. 471 */ 472 static void 473 xlog_state_shutdown_callbacks( 474 struct xlog *log) 475 { 476 struct xlog_in_core *iclog; 477 LIST_HEAD(cb_list); 478 479 iclog = log->l_iclog; 480 do { 481 if (atomic_read(&iclog->ic_refcnt)) { 482 /* Reference holder will re-run iclog callbacks. */ 483 continue; 484 } 485 list_splice_init(&iclog->ic_callbacks, &cb_list); 486 spin_unlock(&log->l_icloglock); 487 488 xlog_cil_process_committed(&cb_list); 489 490 spin_lock(&log->l_icloglock); 491 wake_up_all(&iclog->ic_write_wait); 492 wake_up_all(&iclog->ic_force_wait); 493 } while ((iclog = iclog->ic_next) != log->l_iclog); 494 495 wake_up_all(&log->l_flush_wait); 496 } 497 498 /* 499 * Flush iclog to disk if this is the last reference to the given iclog and the 500 * it is in the WANT_SYNC state. 501 * 502 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the 503 * log tail is updated correctly. NEED_FUA indicates that the iclog will be 504 * written to stable storage, and implies that a commit record is contained 505 * within the iclog. We need to ensure that the log tail does not move beyond 506 * the tail that the first commit record in the iclog ordered against, otherwise 507 * correct recovery of that checkpoint becomes dependent on future operations 508 * performed on this iclog. 509 * 510 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the 511 * current tail into iclog. Once the iclog tail is set, future operations must 512 * not modify it, otherwise they potentially violate ordering constraints for 513 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in 514 * the iclog will get zeroed on activation of the iclog after sync, so we 515 * always capture the tail lsn on the iclog on the first NEED_FUA release 516 * regardless of the number of active reference counts on this iclog. 517 */ 518 int 519 xlog_state_release_iclog( 520 struct xlog *log, 521 struct xlog_in_core *iclog, 522 struct xlog_ticket *ticket) 523 { 524 bool last_ref; 525 526 lockdep_assert_held(&log->l_icloglock); 527 528 trace_xlog_iclog_release(iclog, _RET_IP_); 529 /* 530 * Grabbing the current log tail needs to be atomic w.r.t. the writing 531 * of the tail LSN into the iclog so we guarantee that the log tail does 532 * not move between the first time we know that the iclog needs to be 533 * made stable and when we eventually submit it. 534 */ 535 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC || 536 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) && 537 !iclog->ic_header->h_tail_lsn) { 538 iclog->ic_header->h_tail_lsn = 539 cpu_to_be64(atomic64_read(&log->l_tail_lsn)); 540 } 541 542 last_ref = atomic_dec_and_test(&iclog->ic_refcnt); 543 544 if (xlog_is_shutdown(log)) { 545 /* 546 * If there are no more references to this iclog, process the 547 * pending iclog callbacks that were waiting on the release of 548 * this iclog. 549 */ 550 if (last_ref) 551 xlog_state_shutdown_callbacks(log); 552 return -EIO; 553 } 554 555 if (!last_ref) 556 return 0; 557 558 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) { 559 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 560 return 0; 561 } 562 563 iclog->ic_state = XLOG_STATE_SYNCING; 564 xlog_verify_tail_lsn(log, iclog); 565 trace_xlog_iclog_syncing(iclog, _RET_IP_); 566 567 spin_unlock(&log->l_icloglock); 568 xlog_sync(log, iclog, ticket); 569 spin_lock(&log->l_icloglock); 570 return 0; 571 } 572 573 /* 574 * Mount a log filesystem 575 * 576 * mp - ubiquitous xfs mount point structure 577 * log_target - buftarg of on-disk log device 578 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 579 * num_bblocks - Number of BBSIZE blocks in on-disk log 580 * 581 * Return error or zero. 582 */ 583 int 584 xfs_log_mount( 585 xfs_mount_t *mp, 586 struct xfs_buftarg *log_target, 587 xfs_daddr_t blk_offset, 588 int num_bblks) 589 { 590 struct xlog *log; 591 int error = 0; 592 int min_logfsbs; 593 594 if (!xfs_has_norecovery(mp)) { 595 xfs_notice(mp, "Mounting V%d Filesystem %pU", 596 XFS_SB_VERSION_NUM(&mp->m_sb), 597 &mp->m_sb.sb_uuid); 598 } else { 599 xfs_notice(mp, 600 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.", 601 XFS_SB_VERSION_NUM(&mp->m_sb), 602 &mp->m_sb.sb_uuid); 603 ASSERT(xfs_is_readonly(mp)); 604 } 605 606 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 607 if (IS_ERR(log)) { 608 error = PTR_ERR(log); 609 goto out; 610 } 611 mp->m_log = log; 612 613 /* 614 * Now that we have set up the log and it's internal geometry 615 * parameters, we can validate the given log space and drop a critical 616 * message via syslog if the log size is too small. A log that is too 617 * small can lead to unexpected situations in transaction log space 618 * reservation stage. The superblock verifier has already validated all 619 * the other log geometry constraints, so we don't have to check those 620 * here. 621 * 622 * Note: For v4 filesystems, we can't just reject the mount if the 623 * validation fails. This would mean that people would have to 624 * downgrade their kernel just to remedy the situation as there is no 625 * way to grow the log (short of black magic surgery with xfs_db). 626 * 627 * We can, however, reject mounts for V5 format filesystems, as the 628 * mkfs binary being used to make the filesystem should never create a 629 * filesystem with a log that is too small. 630 */ 631 min_logfsbs = xfs_log_calc_minimum_size(mp); 632 if (mp->m_sb.sb_logblocks < min_logfsbs) { 633 xfs_warn(mp, 634 "Log size %d blocks too small, minimum size is %d blocks", 635 mp->m_sb.sb_logblocks, min_logfsbs); 636 637 /* 638 * Log check errors are always fatal on v5; or whenever bad 639 * metadata leads to a crash. 640 */ 641 if (xfs_has_crc(mp)) { 642 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 643 ASSERT(0); 644 error = -EINVAL; 645 goto out_free_log; 646 } 647 xfs_crit(mp, "Log size out of supported range."); 648 xfs_crit(mp, 649 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 650 } 651 652 /* 653 * Initialize the AIL now we have a log. 654 */ 655 error = xfs_trans_ail_init(mp); 656 if (error) { 657 xfs_warn(mp, "AIL initialisation failed: error %d", error); 658 goto out_free_log; 659 } 660 log->l_ailp = mp->m_ail; 661 662 /* 663 * skip log recovery on a norecovery mount. pretend it all 664 * just worked. 665 */ 666 if (!xfs_has_norecovery(mp)) { 667 error = xlog_recover(log); 668 if (error) { 669 xfs_warn(mp, "log mount/recovery failed: error %d", 670 error); 671 xlog_recover_cancel(log); 672 goto out_destroy_ail; 673 } 674 } 675 676 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 677 "log"); 678 if (error) 679 goto out_destroy_ail; 680 681 /* Normal transactions can now occur */ 682 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 683 684 /* 685 * Now the log has been fully initialised and we know were our 686 * space grant counters are, we can initialise the permanent ticket 687 * needed for delayed logging to work. 688 */ 689 xlog_cil_init_post_recovery(log); 690 691 return 0; 692 693 out_destroy_ail: 694 xfs_trans_ail_destroy(mp); 695 out_free_log: 696 xlog_dealloc_log(log); 697 out: 698 return error; 699 } 700 701 /* 702 * Finish the recovery of the file system. This is separate from the 703 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 704 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 705 * here. 706 * 707 * If we finish recovery successfully, start the background log work. If we are 708 * not doing recovery, then we have a RO filesystem and we don't need to start 709 * it. 710 */ 711 int 712 xfs_log_mount_finish( 713 struct xfs_mount *mp) 714 { 715 struct xlog *log = mp->m_log; 716 int error = 0; 717 718 if (xfs_has_norecovery(mp)) { 719 ASSERT(xfs_is_readonly(mp)); 720 return 0; 721 } 722 723 /* 724 * During the second phase of log recovery, we need iget and 725 * iput to behave like they do for an active filesystem. 726 * xfs_fs_drop_inode needs to be able to prevent the deletion 727 * of inodes before we're done replaying log items on those 728 * inodes. Turn it off immediately after recovery finishes 729 * so that we don't leak the quota inodes if subsequent mount 730 * activities fail. 731 * 732 * We let all inodes involved in redo item processing end up on 733 * the LRU instead of being evicted immediately so that if we do 734 * something to an unlinked inode, the irele won't cause 735 * premature truncation and freeing of the inode, which results 736 * in log recovery failure. We have to evict the unreferenced 737 * lru inodes after clearing SB_ACTIVE because we don't 738 * otherwise clean up the lru if there's a subsequent failure in 739 * xfs_mountfs, which leads to us leaking the inodes if nothing 740 * else (e.g. quotacheck) references the inodes before the 741 * mount failure occurs. 742 */ 743 mp->m_super->s_flags |= SB_ACTIVE; 744 xfs_log_work_queue(mp); 745 if (xlog_recovery_needed(log)) 746 error = xlog_recover_finish(log); 747 mp->m_super->s_flags &= ~SB_ACTIVE; 748 evict_inodes(mp->m_super); 749 750 /* 751 * Drain the buffer LRU after log recovery. This is required for v4 752 * filesystems to avoid leaving around buffers with NULL verifier ops, 753 * but we do it unconditionally to make sure we're always in a clean 754 * cache state after mount. 755 * 756 * Don't push in the error case because the AIL may have pending intents 757 * that aren't removed until recovery is cancelled. 758 */ 759 if (xlog_recovery_needed(log)) { 760 if (!error) { 761 xfs_log_force(mp, XFS_LOG_SYNC); 762 xfs_ail_push_all_sync(mp->m_ail); 763 } 764 xfs_notice(mp, "Ending recovery (logdev: %s)", 765 mp->m_logname ? mp->m_logname : "internal"); 766 } else { 767 xfs_info(mp, "Ending clean mount"); 768 } 769 xfs_buftarg_drain(mp->m_ddev_targp); 770 771 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 772 773 /* Make sure the log is dead if we're returning failure. */ 774 ASSERT(!error || xlog_is_shutdown(log)); 775 776 return error; 777 } 778 779 /* 780 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 781 * the log. 782 */ 783 void 784 xfs_log_mount_cancel( 785 struct xfs_mount *mp) 786 { 787 xlog_recover_cancel(mp->m_log); 788 xfs_log_unmount(mp); 789 } 790 791 /* 792 * Flush out the iclog to disk ensuring that device caches are flushed and 793 * the iclog hits stable storage before any completion waiters are woken. 794 */ 795 static inline int 796 xlog_force_iclog( 797 struct xlog_in_core *iclog) 798 { 799 atomic_inc(&iclog->ic_refcnt); 800 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 801 if (iclog->ic_state == XLOG_STATE_ACTIVE) 802 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0); 803 return xlog_state_release_iclog(iclog->ic_log, iclog, NULL); 804 } 805 806 /* 807 * Cycle all the iclogbuf locks to make sure all log IO completion 808 * is done before we tear down these buffers. 809 */ 810 static void 811 xlog_wait_iclog_completion(struct xlog *log) 812 { 813 int i; 814 struct xlog_in_core *iclog = log->l_iclog; 815 816 for (i = 0; i < log->l_iclog_bufs; i++) { 817 down(&iclog->ic_sema); 818 up(&iclog->ic_sema); 819 iclog = iclog->ic_next; 820 } 821 } 822 823 /* 824 * Wait for the iclog and all prior iclogs to be written disk as required by the 825 * log force state machine. Waiting on ic_force_wait ensures iclog completions 826 * have been ordered and callbacks run before we are woken here, hence 827 * guaranteeing that all the iclogs up to this one are on stable storage. 828 */ 829 int 830 xlog_wait_on_iclog( 831 struct xlog_in_core *iclog) 832 __releases(iclog->ic_log->l_icloglock) 833 { 834 struct xlog *log = iclog->ic_log; 835 836 trace_xlog_iclog_wait_on(iclog, _RET_IP_); 837 if (!xlog_is_shutdown(log) && 838 iclog->ic_state != XLOG_STATE_ACTIVE && 839 iclog->ic_state != XLOG_STATE_DIRTY) { 840 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 841 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 842 } else { 843 spin_unlock(&log->l_icloglock); 844 } 845 846 if (xlog_is_shutdown(log)) 847 return -EIO; 848 return 0; 849 } 850 851 /* 852 * Write out an unmount record using the ticket provided. We have to account for 853 * the data space used in the unmount ticket as this write is not done from a 854 * transaction context that has already done the accounting for us. 855 */ 856 static int 857 xlog_write_unmount_record( 858 struct xlog *log, 859 struct xlog_ticket *ticket) 860 { 861 struct { 862 struct xlog_op_header ophdr; 863 struct xfs_unmount_log_format ulf; 864 } unmount_rec = { 865 .ophdr = { 866 .oh_clientid = XFS_LOG, 867 .oh_tid = cpu_to_be32(ticket->t_tid), 868 .oh_flags = XLOG_UNMOUNT_TRANS, 869 }, 870 .ulf = { 871 .magic = XLOG_UNMOUNT_TYPE, 872 }, 873 }; 874 struct xfs_log_iovec reg = { 875 .i_addr = &unmount_rec, 876 .i_len = sizeof(unmount_rec), 877 .i_type = XLOG_REG_TYPE_UNMOUNT, 878 }; 879 struct xfs_log_vec vec = { 880 .lv_niovecs = 1, 881 .lv_iovecp = ®, 882 }; 883 LIST_HEAD(lv_chain); 884 list_add(&vec.lv_list, &lv_chain); 885 886 BUILD_BUG_ON((sizeof(struct xlog_op_header) + 887 sizeof(struct xfs_unmount_log_format)) != 888 sizeof(unmount_rec)); 889 890 /* account for space used by record data */ 891 ticket->t_curr_res -= sizeof(unmount_rec); 892 893 return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len); 894 } 895 896 /* 897 * Mark the filesystem clean by writing an unmount record to the head of the 898 * log. 899 */ 900 static void 901 xlog_unmount_write( 902 struct xlog *log) 903 { 904 struct xfs_mount *mp = log->l_mp; 905 struct xlog_in_core *iclog; 906 struct xlog_ticket *tic = NULL; 907 int error; 908 909 error = xfs_log_reserve(mp, 600, 1, &tic, 0); 910 if (error) 911 goto out_err; 912 913 error = xlog_write_unmount_record(log, tic); 914 /* 915 * At this point, we're umounting anyway, so there's no point in 916 * transitioning log state to shutdown. Just continue... 917 */ 918 out_err: 919 if (error) 920 xfs_alert(mp, "%s: unmount record failed", __func__); 921 922 spin_lock(&log->l_icloglock); 923 iclog = log->l_iclog; 924 error = xlog_force_iclog(iclog); 925 xlog_wait_on_iclog(iclog); 926 927 if (tic) { 928 trace_xfs_log_umount_write(log, tic); 929 xfs_log_ticket_ungrant(log, tic); 930 } 931 } 932 933 static void 934 xfs_log_unmount_verify_iclog( 935 struct xlog *log) 936 { 937 struct xlog_in_core *iclog = log->l_iclog; 938 939 do { 940 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 941 ASSERT(iclog->ic_offset == 0); 942 } while ((iclog = iclog->ic_next) != log->l_iclog); 943 } 944 945 /* 946 * Unmount record used to have a string "Unmount filesystem--" in the 947 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 948 * We just write the magic number now since that particular field isn't 949 * currently architecture converted and "Unmount" is a bit foo. 950 * As far as I know, there weren't any dependencies on the old behaviour. 951 */ 952 static void 953 xfs_log_unmount_write( 954 struct xfs_mount *mp) 955 { 956 struct xlog *log = mp->m_log; 957 958 if (!xfs_log_writable(mp)) 959 return; 960 961 xfs_log_force(mp, XFS_LOG_SYNC); 962 963 if (xlog_is_shutdown(log)) 964 return; 965 966 /* 967 * If we think the summary counters are bad, avoid writing the unmount 968 * record to force log recovery at next mount, after which the summary 969 * counters will be recalculated. Refer to xlog_check_unmount_rec for 970 * more details. 971 */ 972 if (xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS) || 973 XFS_TEST_ERROR(mp, XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 974 xfs_alert(mp, "%s: will fix summary counters at next mount", 975 __func__); 976 return; 977 } 978 979 xfs_log_unmount_verify_iclog(log); 980 xlog_unmount_write(log); 981 } 982 983 /* 984 * Empty the log for unmount/freeze. 985 * 986 * To do this, we first need to shut down the background log work so it is not 987 * trying to cover the log as we clean up. We then need to unpin all objects in 988 * the log so we can then flush them out. Once they have completed their IO and 989 * run the callbacks removing themselves from the AIL, we can cover the log. 990 */ 991 int 992 xfs_log_quiesce( 993 struct xfs_mount *mp) 994 { 995 /* 996 * Clear log incompat features since we're quiescing the log. Report 997 * failures, though it's not fatal to have a higher log feature 998 * protection level than the log contents actually require. 999 */ 1000 if (xfs_clear_incompat_log_features(mp)) { 1001 int error; 1002 1003 error = xfs_sync_sb(mp, false); 1004 if (error) 1005 xfs_warn(mp, 1006 "Failed to clear log incompat features on quiesce"); 1007 } 1008 1009 cancel_delayed_work_sync(&mp->m_log->l_work); 1010 xfs_log_force(mp, XFS_LOG_SYNC); 1011 1012 /* 1013 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1014 * will push it, xfs_buftarg_wait() will not wait for it. Further, 1015 * xfs_buf_iowait() cannot be used because it was pushed with the 1016 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1017 * the IO to complete. 1018 */ 1019 xfs_ail_push_all_sync(mp->m_ail); 1020 xfs_buftarg_wait(mp->m_ddev_targp); 1021 xfs_buf_lock(mp->m_sb_bp); 1022 xfs_buf_unlock(mp->m_sb_bp); 1023 1024 return xfs_log_cover(mp); 1025 } 1026 1027 void 1028 xfs_log_clean( 1029 struct xfs_mount *mp) 1030 { 1031 xfs_log_quiesce(mp); 1032 xfs_log_unmount_write(mp); 1033 } 1034 1035 /* 1036 * Shut down and release the AIL and Log. 1037 * 1038 * During unmount, we need to ensure we flush all the dirty metadata objects 1039 * from the AIL so that the log is empty before we write the unmount record to 1040 * the log. Once this is done, we can tear down the AIL and the log. 1041 */ 1042 void 1043 xfs_log_unmount( 1044 struct xfs_mount *mp) 1045 { 1046 xfs_log_clean(mp); 1047 1048 /* 1049 * If shutdown has come from iclog IO context, the log 1050 * cleaning will have been skipped and so we need to wait 1051 * for the iclog to complete shutdown processing before we 1052 * tear anything down. 1053 */ 1054 xlog_wait_iclog_completion(mp->m_log); 1055 1056 xfs_buftarg_drain(mp->m_ddev_targp); 1057 1058 xfs_trans_ail_destroy(mp); 1059 1060 xfs_sysfs_del(&mp->m_log->l_kobj); 1061 1062 xlog_dealloc_log(mp->m_log); 1063 } 1064 1065 void 1066 xfs_log_item_init( 1067 struct xfs_mount *mp, 1068 struct xfs_log_item *item, 1069 int type, 1070 const struct xfs_item_ops *ops) 1071 { 1072 item->li_log = mp->m_log; 1073 item->li_ailp = mp->m_ail; 1074 item->li_type = type; 1075 item->li_ops = ops; 1076 item->li_lv = NULL; 1077 1078 INIT_LIST_HEAD(&item->li_ail); 1079 INIT_LIST_HEAD(&item->li_cil); 1080 INIT_LIST_HEAD(&item->li_bio_list); 1081 INIT_LIST_HEAD(&item->li_trans); 1082 } 1083 1084 /* 1085 * Wake up processes waiting for log space after we have moved the log tail. 1086 */ 1087 void 1088 xfs_log_space_wake( 1089 struct xfs_mount *mp) 1090 { 1091 struct xlog *log = mp->m_log; 1092 int free_bytes; 1093 1094 if (xlog_is_shutdown(log)) 1095 return; 1096 1097 if (!list_empty_careful(&log->l_write_head.waiters)) { 1098 ASSERT(!xlog_in_recovery(log)); 1099 1100 spin_lock(&log->l_write_head.lock); 1101 free_bytes = xlog_grant_space_left(log, &log->l_write_head); 1102 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1103 spin_unlock(&log->l_write_head.lock); 1104 } 1105 1106 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1107 ASSERT(!xlog_in_recovery(log)); 1108 1109 spin_lock(&log->l_reserve_head.lock); 1110 free_bytes = xlog_grant_space_left(log, &log->l_reserve_head); 1111 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1112 spin_unlock(&log->l_reserve_head.lock); 1113 } 1114 } 1115 1116 /* 1117 * Determine if we have a transaction that has gone to disk that needs to be 1118 * covered. To begin the transition to the idle state firstly the log needs to 1119 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1120 * we start attempting to cover the log. 1121 * 1122 * Only if we are then in a state where covering is needed, the caller is 1123 * informed that dummy transactions are required to move the log into the idle 1124 * state. 1125 * 1126 * If there are any items in the AIl or CIL, then we do not want to attempt to 1127 * cover the log as we may be in a situation where there isn't log space 1128 * available to run a dummy transaction and this can lead to deadlocks when the 1129 * tail of the log is pinned by an item that is modified in the CIL. Hence 1130 * there's no point in running a dummy transaction at this point because we 1131 * can't start trying to idle the log until both the CIL and AIL are empty. 1132 */ 1133 static bool 1134 xfs_log_need_covered( 1135 struct xfs_mount *mp) 1136 { 1137 struct xlog *log = mp->m_log; 1138 bool needed = false; 1139 1140 if (!xlog_cil_empty(log)) 1141 return false; 1142 1143 spin_lock(&log->l_icloglock); 1144 switch (log->l_covered_state) { 1145 case XLOG_STATE_COVER_DONE: 1146 case XLOG_STATE_COVER_DONE2: 1147 case XLOG_STATE_COVER_IDLE: 1148 break; 1149 case XLOG_STATE_COVER_NEED: 1150 case XLOG_STATE_COVER_NEED2: 1151 if (xfs_ail_min_lsn(log->l_ailp)) 1152 break; 1153 if (!xlog_iclogs_empty(log)) 1154 break; 1155 1156 needed = true; 1157 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1158 log->l_covered_state = XLOG_STATE_COVER_DONE; 1159 else 1160 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1161 break; 1162 default: 1163 needed = true; 1164 break; 1165 } 1166 spin_unlock(&log->l_icloglock); 1167 return needed; 1168 } 1169 1170 /* 1171 * Explicitly cover the log. This is similar to background log covering but 1172 * intended for usage in quiesce codepaths. The caller is responsible to ensure 1173 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL 1174 * must all be empty. 1175 */ 1176 static int 1177 xfs_log_cover( 1178 struct xfs_mount *mp) 1179 { 1180 int error = 0; 1181 bool need_covered; 1182 1183 if (!xlog_is_shutdown(mp->m_log)) { 1184 ASSERT(xlog_cil_empty(mp->m_log)); 1185 ASSERT(xlog_iclogs_empty(mp->m_log)); 1186 ASSERT(!xfs_ail_min_lsn(mp->m_log->l_ailp)); 1187 } 1188 1189 if (!xfs_log_writable(mp)) 1190 return 0; 1191 1192 /* 1193 * xfs_log_need_covered() is not idempotent because it progresses the 1194 * state machine if the log requires covering. Therefore, we must call 1195 * this function once and use the result until we've issued an sb sync. 1196 * Do so first to make that abundantly clear. 1197 * 1198 * Fall into the covering sequence if the log needs covering or the 1199 * mount has lazy superblock accounting to sync to disk. The sb sync 1200 * used for covering accumulates the in-core counters, so covering 1201 * handles this for us. 1202 */ 1203 need_covered = xfs_log_need_covered(mp); 1204 if (!need_covered && !xfs_has_lazysbcount(mp)) 1205 return 0; 1206 1207 /* 1208 * To cover the log, commit the superblock twice (at most) in 1209 * independent checkpoints. The first serves as a reference for the 1210 * tail pointer. The sync transaction and AIL push empties the AIL and 1211 * updates the in-core tail to the LSN of the first checkpoint. The 1212 * second commit updates the on-disk tail with the in-core LSN, 1213 * covering the log. Push the AIL one more time to leave it empty, as 1214 * we found it. 1215 */ 1216 do { 1217 error = xfs_sync_sb(mp, true); 1218 if (error) 1219 break; 1220 xfs_ail_push_all_sync(mp->m_ail); 1221 } while (xfs_log_need_covered(mp)); 1222 1223 return error; 1224 } 1225 1226 static void 1227 xlog_ioend_work( 1228 struct work_struct *work) 1229 { 1230 struct xlog_in_core *iclog = 1231 container_of(work, struct xlog_in_core, ic_end_io_work); 1232 struct xlog *log = iclog->ic_log; 1233 int error; 1234 1235 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1236 #ifdef DEBUG 1237 /* treat writes with injected CRC errors as failed */ 1238 if (iclog->ic_fail_crc) 1239 error = -EIO; 1240 #endif 1241 1242 /* 1243 * Race to shutdown the filesystem if we see an error. 1244 */ 1245 if (error || XFS_TEST_ERROR(log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1246 xfs_alert(log->l_mp, "log I/O error %d", error); 1247 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1248 } 1249 1250 xlog_state_done_syncing(iclog); 1251 bio_uninit(&iclog->ic_bio); 1252 1253 /* 1254 * Drop the lock to signal that we are done. Nothing references the 1255 * iclog after this, so an unmount waiting on this lock can now tear it 1256 * down safely. As such, it is unsafe to reference the iclog after the 1257 * unlock as we could race with it being freed. 1258 */ 1259 up(&iclog->ic_sema); 1260 } 1261 1262 /* 1263 * Return size of each in-core log record buffer. 1264 * 1265 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1266 * 1267 * If the filesystem blocksize is too large, we may need to choose a 1268 * larger size since the directory code currently logs entire blocks. 1269 */ 1270 STATIC void 1271 xlog_get_iclog_buffer_size( 1272 struct xfs_mount *mp, 1273 struct xlog *log) 1274 { 1275 if (mp->m_logbufs <= 0) 1276 mp->m_logbufs = XLOG_MAX_ICLOGS; 1277 if (mp->m_logbsize <= 0) 1278 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1279 1280 log->l_iclog_bufs = mp->m_logbufs; 1281 log->l_iclog_size = mp->m_logbsize; 1282 1283 /* 1284 * Combined size of the log record headers. The first 32k cycles 1285 * are stored directly in the xlog_rec_header, the rest in the 1286 * variable number of xlog_rec_ext_headers at its end. 1287 */ 1288 log->l_iclog_hsize = struct_size(log->l_iclog->ic_header, h_ext, 1289 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE) - 1); 1290 } 1291 1292 void 1293 xfs_log_work_queue( 1294 struct xfs_mount *mp) 1295 { 1296 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1297 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1298 } 1299 1300 /* 1301 * Clear the log incompat flags if we have the opportunity. 1302 * 1303 * This only happens if we're about to log the second dummy transaction as part 1304 * of covering the log. 1305 */ 1306 static inline void 1307 xlog_clear_incompat( 1308 struct xlog *log) 1309 { 1310 struct xfs_mount *mp = log->l_mp; 1311 1312 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb, 1313 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) 1314 return; 1315 1316 if (log->l_covered_state != XLOG_STATE_COVER_DONE2) 1317 return; 1318 1319 xfs_clear_incompat_log_features(mp); 1320 } 1321 1322 /* 1323 * Every sync period we need to unpin all items in the AIL and push them to 1324 * disk. If there is nothing dirty, then we might need to cover the log to 1325 * indicate that the filesystem is idle. 1326 */ 1327 static void 1328 xfs_log_worker( 1329 struct work_struct *work) 1330 { 1331 struct xlog *log = container_of(to_delayed_work(work), 1332 struct xlog, l_work); 1333 struct xfs_mount *mp = log->l_mp; 1334 1335 /* dgc: errors ignored - not fatal and nowhere to report them */ 1336 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) { 1337 /* 1338 * Dump a transaction into the log that contains no real change. 1339 * This is needed to stamp the current tail LSN into the log 1340 * during the covering operation. 1341 * 1342 * We cannot use an inode here for this - that will push dirty 1343 * state back up into the VFS and then periodic inode flushing 1344 * will prevent log covering from making progress. Hence we 1345 * synchronously log the superblock instead to ensure the 1346 * superblock is immediately unpinned and can be written back. 1347 */ 1348 xlog_clear_incompat(log); 1349 xfs_sync_sb(mp, true); 1350 } else 1351 xfs_log_force(mp, 0); 1352 1353 /* start pushing all the metadata that is currently dirty */ 1354 xfs_ail_push_all(mp->m_ail); 1355 1356 /* queue us up again */ 1357 xfs_log_work_queue(mp); 1358 } 1359 1360 /* 1361 * This routine initializes some of the log structure for a given mount point. 1362 * Its primary purpose is to fill in enough, so recovery can occur. However, 1363 * some other stuff may be filled in too. 1364 */ 1365 STATIC struct xlog * 1366 xlog_alloc_log( 1367 struct xfs_mount *mp, 1368 struct xfs_buftarg *log_target, 1369 xfs_daddr_t blk_offset, 1370 int num_bblks) 1371 { 1372 struct xlog *log; 1373 struct xlog_in_core **iclogp; 1374 struct xlog_in_core *iclog, *prev_iclog = NULL; 1375 int i; 1376 int error = -ENOMEM; 1377 uint log2_size = 0; 1378 1379 log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1380 if (!log) { 1381 xfs_warn(mp, "Log allocation failed: No memory!"); 1382 goto out; 1383 } 1384 1385 log->l_mp = mp; 1386 log->l_targ = log_target; 1387 log->l_logsize = BBTOB(num_bblks); 1388 log->l_logBBstart = blk_offset; 1389 log->l_logBBsize = num_bblks; 1390 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1391 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 1392 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1393 INIT_LIST_HEAD(&log->r_dfops); 1394 1395 log->l_prev_block = -1; 1396 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1397 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1398 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1399 1400 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1) 1401 log->l_iclog_roundoff = mp->m_sb.sb_logsunit; 1402 else 1403 log->l_iclog_roundoff = BBSIZE; 1404 1405 xlog_grant_head_init(&log->l_reserve_head); 1406 xlog_grant_head_init(&log->l_write_head); 1407 1408 error = -EFSCORRUPTED; 1409 if (xfs_has_sector(mp)) { 1410 log2_size = mp->m_sb.sb_logsectlog; 1411 if (log2_size < BBSHIFT) { 1412 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1413 log2_size, BBSHIFT); 1414 goto out_free_log; 1415 } 1416 1417 log2_size -= BBSHIFT; 1418 if (log2_size > mp->m_sectbb_log) { 1419 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1420 log2_size, mp->m_sectbb_log); 1421 goto out_free_log; 1422 } 1423 1424 /* for larger sector sizes, must have v2 or external log */ 1425 if (log2_size && log->l_logBBstart > 0 && 1426 !xfs_has_logv2(mp)) { 1427 xfs_warn(mp, 1428 "log sector size (0x%x) invalid for configuration.", 1429 log2_size); 1430 goto out_free_log; 1431 } 1432 } 1433 log->l_sectBBsize = 1 << log2_size; 1434 1435 xlog_get_iclog_buffer_size(mp, log); 1436 1437 spin_lock_init(&log->l_icloglock); 1438 init_waitqueue_head(&log->l_flush_wait); 1439 1440 iclogp = &log->l_iclog; 1441 ASSERT(log->l_iclog_size >= 4096); 1442 for (i = 0; i < log->l_iclog_bufs; i++) { 1443 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1444 sizeof(struct bio_vec); 1445 1446 iclog = kzalloc(sizeof(*iclog) + bvec_size, 1447 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1448 if (!iclog) 1449 goto out_free_iclog; 1450 1451 *iclogp = iclog; 1452 iclog->ic_prev = prev_iclog; 1453 prev_iclog = iclog; 1454 1455 iclog->ic_header = kvzalloc(log->l_iclog_size, 1456 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1457 if (!iclog->ic_header) 1458 goto out_free_iclog; 1459 iclog->ic_header->h_magicno = 1460 cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1461 iclog->ic_header->h_version = cpu_to_be32( 1462 xfs_has_logv2(log->l_mp) ? 2 : 1); 1463 iclog->ic_header->h_size = cpu_to_be32(log->l_iclog_size); 1464 iclog->ic_header->h_fmt = cpu_to_be32(XLOG_FMT); 1465 memcpy(&iclog->ic_header->h_fs_uuid, &mp->m_sb.sb_uuid, 1466 sizeof(iclog->ic_header->h_fs_uuid)); 1467 1468 iclog->ic_datap = (void *)iclog->ic_header + log->l_iclog_hsize; 1469 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1470 iclog->ic_state = XLOG_STATE_ACTIVE; 1471 iclog->ic_log = log; 1472 atomic_set(&iclog->ic_refcnt, 0); 1473 INIT_LIST_HEAD(&iclog->ic_callbacks); 1474 1475 init_waitqueue_head(&iclog->ic_force_wait); 1476 init_waitqueue_head(&iclog->ic_write_wait); 1477 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1478 sema_init(&iclog->ic_sema, 1); 1479 1480 iclogp = &iclog->ic_next; 1481 } 1482 *iclogp = log->l_iclog; /* complete ring */ 1483 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1484 1485 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1486 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_PERCPU), 1487 0, mp->m_super->s_id); 1488 if (!log->l_ioend_workqueue) 1489 goto out_free_iclog; 1490 1491 error = xlog_cil_init(log); 1492 if (error) 1493 goto out_destroy_workqueue; 1494 return log; 1495 1496 out_destroy_workqueue: 1497 destroy_workqueue(log->l_ioend_workqueue); 1498 out_free_iclog: 1499 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1500 prev_iclog = iclog->ic_next; 1501 kvfree(iclog->ic_header); 1502 kfree(iclog); 1503 if (prev_iclog == log->l_iclog) 1504 break; 1505 } 1506 out_free_log: 1507 kfree(log); 1508 out: 1509 return ERR_PTR(error); 1510 } /* xlog_alloc_log */ 1511 1512 /* 1513 * Stamp cycle number in every block 1514 */ 1515 STATIC void 1516 xlog_pack_data( 1517 struct xlog *log, 1518 struct xlog_in_core *iclog, 1519 int roundoff) 1520 { 1521 struct xlog_rec_header *rhead = iclog->ic_header; 1522 __be32 cycle_lsn = CYCLE_LSN_DISK(rhead->h_lsn); 1523 char *dp = iclog->ic_datap; 1524 int i; 1525 1526 for (i = 0; i < BTOBB(iclog->ic_offset + roundoff); i++) { 1527 *xlog_cycle_data(rhead, i) = *(__be32 *)dp; 1528 *(__be32 *)dp = cycle_lsn; 1529 dp += BBSIZE; 1530 } 1531 1532 for (i = 0; i < (log->l_iclog_hsize >> BBSHIFT) - 1; i++) 1533 rhead->h_ext[i].xh_cycle = cycle_lsn; 1534 } 1535 1536 /* 1537 * Calculate the checksum for a log buffer. 1538 * 1539 * This is a little more complicated than it should be because the various 1540 * headers and the actual data are non-contiguous. 1541 */ 1542 __le32 1543 xlog_cksum( 1544 struct xlog *log, 1545 struct xlog_rec_header *rhead, 1546 char *dp, 1547 unsigned int hdrsize, 1548 unsigned int size) 1549 { 1550 uint32_t crc; 1551 1552 /* first generate the crc for the record header ... */ 1553 crc = xfs_start_cksum_update((char *)rhead, hdrsize, 1554 offsetof(struct xlog_rec_header, h_crc)); 1555 1556 /* ... then for additional cycle data for v2 logs ... */ 1557 if (xfs_has_logv2(log->l_mp)) { 1558 int xheads, i; 1559 1560 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE) - 1; 1561 for (i = 0; i < xheads; i++) 1562 crc = crc32c(crc, &rhead->h_ext[i], XLOG_REC_EXT_SIZE); 1563 } 1564 1565 /* ... and finally for the payload */ 1566 crc = crc32c(crc, dp, size); 1567 1568 return xfs_end_cksum(crc); 1569 } 1570 1571 static void 1572 xlog_bio_end_io( 1573 struct bio *bio) 1574 { 1575 struct xlog_in_core *iclog = bio->bi_private; 1576 1577 queue_work(iclog->ic_log->l_ioend_workqueue, 1578 &iclog->ic_end_io_work); 1579 } 1580 1581 STATIC void 1582 xlog_write_iclog( 1583 struct xlog *log, 1584 struct xlog_in_core *iclog, 1585 uint64_t bno, 1586 unsigned int count) 1587 { 1588 ASSERT(bno < log->l_logBBsize); 1589 trace_xlog_iclog_write(iclog, _RET_IP_); 1590 1591 /* 1592 * We lock the iclogbufs here so that we can serialise against I/O 1593 * completion during unmount. We might be processing a shutdown 1594 * triggered during unmount, and that can occur asynchronously to the 1595 * unmount thread, and hence we need to ensure that completes before 1596 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1597 * across the log IO to archieve that. 1598 */ 1599 down(&iclog->ic_sema); 1600 if (xlog_is_shutdown(log)) { 1601 /* 1602 * It would seem logical to return EIO here, but we rely on 1603 * the log state machine to propagate I/O errors instead of 1604 * doing it here. We kick of the state machine and unlock 1605 * the buffer manually, the code needs to be kept in sync 1606 * with the I/O completion path. 1607 */ 1608 goto sync; 1609 } 1610 1611 /* 1612 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more 1613 * IOs coming immediately after this one. This prevents the block layer 1614 * writeback throttle from throttling log writes behind background 1615 * metadata writeback and causing priority inversions. 1616 */ 1617 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec, 1618 howmany(count, PAGE_SIZE), 1619 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE); 1620 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1621 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1622 iclog->ic_bio.bi_private = iclog; 1623 1624 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) { 1625 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1626 /* 1627 * For external log devices, we also need to flush the data 1628 * device cache first to ensure all metadata writeback covered 1629 * by the LSN in this iclog is on stable storage. This is slow, 1630 * but it *must* complete before we issue the external log IO. 1631 * 1632 * If the flush fails, we cannot conclude that past metadata 1633 * writeback from the log succeeded. Repeating the flush is 1634 * not possible, hence we must shut down with log IO error to 1635 * avoid shutdown re-entering this path and erroring out again. 1636 */ 1637 if (log->l_targ != log->l_mp->m_ddev_targp && 1638 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev)) 1639 goto shutdown; 1640 } 1641 if (iclog->ic_flags & XLOG_ICL_NEED_FUA) 1642 iclog->ic_bio.bi_opf |= REQ_FUA; 1643 1644 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA); 1645 1646 if (is_vmalloc_addr(iclog->ic_header)) { 1647 if (!bio_add_vmalloc(&iclog->ic_bio, iclog->ic_header, count)) 1648 goto shutdown; 1649 } else { 1650 bio_add_virt_nofail(&iclog->ic_bio, iclog->ic_header, count); 1651 } 1652 1653 /* 1654 * If this log buffer would straddle the end of the log we will have 1655 * to split it up into two bios, so that we can continue at the start. 1656 */ 1657 if (bno + BTOBB(count) > log->l_logBBsize) { 1658 struct bio *split; 1659 1660 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1661 GFP_NOIO, &fs_bio_set); 1662 bio_chain(split, &iclog->ic_bio); 1663 submit_bio(split); 1664 1665 /* restart at logical offset zero for the remainder */ 1666 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1667 } 1668 1669 submit_bio(&iclog->ic_bio); 1670 return; 1671 shutdown: 1672 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1673 sync: 1674 xlog_state_done_syncing(iclog); 1675 up(&iclog->ic_sema); 1676 } 1677 1678 /* 1679 * We need to bump cycle number for the part of the iclog that is 1680 * written to the start of the log. Watch out for the header magic 1681 * number case, though. 1682 */ 1683 static void 1684 xlog_split_iclog( 1685 struct xlog *log, 1686 void *data, 1687 uint64_t bno, 1688 unsigned int count) 1689 { 1690 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 1691 unsigned int i; 1692 1693 for (i = split_offset; i < count; i += BBSIZE) { 1694 uint32_t cycle = get_unaligned_be32(data + i); 1695 1696 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1697 cycle++; 1698 put_unaligned_be32(cycle, data + i); 1699 } 1700 } 1701 1702 static int 1703 xlog_calc_iclog_size( 1704 struct xlog *log, 1705 struct xlog_in_core *iclog, 1706 uint32_t *roundoff) 1707 { 1708 uint32_t count_init, count; 1709 1710 /* Add for LR header */ 1711 count_init = log->l_iclog_hsize + iclog->ic_offset; 1712 count = roundup(count_init, log->l_iclog_roundoff); 1713 1714 *roundoff = count - count_init; 1715 1716 ASSERT(count >= count_init); 1717 ASSERT(*roundoff < log->l_iclog_roundoff); 1718 return count; 1719 } 1720 1721 /* 1722 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1723 * fashion. Previously, we should have moved the current iclog 1724 * ptr in the log to point to the next available iclog. This allows further 1725 * write to continue while this code syncs out an iclog ready to go. 1726 * Before an in-core log can be written out, the data section must be scanned 1727 * to save away the 1st word of each BBSIZE block into the header. We replace 1728 * it with the current cycle count. Each BBSIZE block is tagged with the 1729 * cycle count because there in an implicit assumption that drives will 1730 * guarantee that entire 512 byte blocks get written at once. In other words, 1731 * we can't have part of a 512 byte block written and part not written. By 1732 * tagging each block, we will know which blocks are valid when recovering 1733 * after an unclean shutdown. 1734 * 1735 * This routine is single threaded on the iclog. No other thread can be in 1736 * this routine with the same iclog. Changing contents of iclog can there- 1737 * fore be done without grabbing the state machine lock. Updating the global 1738 * log will require grabbing the lock though. 1739 * 1740 * The entire log manager uses a logical block numbering scheme. Only 1741 * xlog_write_iclog knows about the fact that the log may not start with 1742 * block zero on a given device. 1743 */ 1744 STATIC void 1745 xlog_sync( 1746 struct xlog *log, 1747 struct xlog_in_core *iclog, 1748 struct xlog_ticket *ticket) 1749 { 1750 unsigned int count; /* byte count of bwrite */ 1751 unsigned int roundoff; /* roundoff to BB or stripe */ 1752 uint64_t bno; 1753 unsigned int size; 1754 1755 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1756 trace_xlog_iclog_sync(iclog, _RET_IP_); 1757 1758 count = xlog_calc_iclog_size(log, iclog, &roundoff); 1759 1760 /* 1761 * If we have a ticket, account for the roundoff via the ticket 1762 * reservation to avoid touching the hot grant heads needlessly. 1763 * Otherwise, we have to move grant heads directly. 1764 */ 1765 if (ticket) { 1766 ticket->t_curr_res -= roundoff; 1767 } else { 1768 xlog_grant_add_space(&log->l_reserve_head, roundoff); 1769 xlog_grant_add_space(&log->l_write_head, roundoff); 1770 } 1771 1772 /* put cycle number in every block */ 1773 xlog_pack_data(log, iclog, roundoff); 1774 1775 /* real byte length */ 1776 size = iclog->ic_offset; 1777 if (xfs_has_logv2(log->l_mp)) 1778 size += roundoff; 1779 iclog->ic_header->h_len = cpu_to_be32(size); 1780 1781 XFS_STATS_INC(log->l_mp, xs_log_writes); 1782 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1783 1784 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header->h_lsn)); 1785 1786 /* Do we need to split this write into 2 parts? */ 1787 if (bno + BTOBB(count) > log->l_logBBsize) 1788 xlog_split_iclog(log, iclog->ic_header, bno, count); 1789 1790 /* calculcate the checksum */ 1791 iclog->ic_header->h_crc = xlog_cksum(log, iclog->ic_header, 1792 iclog->ic_datap, XLOG_REC_SIZE, size); 1793 /* 1794 * Intentionally corrupt the log record CRC based on the error injection 1795 * frequency, if defined. This facilitates testing log recovery in the 1796 * event of torn writes. Hence, set the IOABORT state to abort the log 1797 * write on I/O completion and shutdown the fs. The subsequent mount 1798 * detects the bad CRC and attempts to recover. 1799 */ 1800 #ifdef DEBUG 1801 if (XFS_TEST_ERROR(log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 1802 iclog->ic_header->h_crc &= cpu_to_le32(0xAAAAAAAA); 1803 iclog->ic_fail_crc = true; 1804 xfs_warn(log->l_mp, 1805 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1806 be64_to_cpu(iclog->ic_header->h_lsn)); 1807 } 1808 #endif 1809 xlog_verify_iclog(log, iclog, count); 1810 xlog_write_iclog(log, iclog, bno, count); 1811 } 1812 1813 /* 1814 * Deallocate a log structure 1815 */ 1816 STATIC void 1817 xlog_dealloc_log( 1818 struct xlog *log) 1819 { 1820 struct xlog_in_core *iclog, *next_iclog; 1821 int i; 1822 1823 /* 1824 * Destroy the CIL after waiting for iclog IO completion because an 1825 * iclog EIO error will try to shut down the log, which accesses the 1826 * CIL to wake up the waiters. 1827 */ 1828 xlog_cil_destroy(log); 1829 1830 iclog = log->l_iclog; 1831 for (i = 0; i < log->l_iclog_bufs; i++) { 1832 next_iclog = iclog->ic_next; 1833 kvfree(iclog->ic_header); 1834 kfree(iclog); 1835 iclog = next_iclog; 1836 } 1837 1838 log->l_mp->m_log = NULL; 1839 destroy_workqueue(log->l_ioend_workqueue); 1840 kfree(log); 1841 } 1842 1843 /* 1844 * Update counters atomically now that memcpy is done. 1845 */ 1846 static inline void 1847 xlog_state_finish_copy( 1848 struct xlog *log, 1849 struct xlog_in_core *iclog, 1850 int record_cnt, 1851 int copy_bytes) 1852 { 1853 lockdep_assert_held(&log->l_icloglock); 1854 1855 be32_add_cpu(&iclog->ic_header->h_num_logops, record_cnt); 1856 iclog->ic_offset += copy_bytes; 1857 } 1858 1859 /* 1860 * print out info relating to regions written which consume 1861 * the reservation 1862 */ 1863 void 1864 xlog_print_tic_res( 1865 struct xfs_mount *mp, 1866 struct xlog_ticket *ticket) 1867 { 1868 xfs_warn(mp, "ticket reservation summary:"); 1869 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res); 1870 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res); 1871 xfs_warn(mp, " original count = %d", ticket->t_ocnt); 1872 xfs_warn(mp, " remaining count = %d", ticket->t_cnt); 1873 } 1874 1875 /* 1876 * Print a summary of the transaction. 1877 */ 1878 void 1879 xlog_print_trans( 1880 struct xfs_trans *tp) 1881 { 1882 struct xfs_mount *mp = tp->t_mountp; 1883 struct xfs_log_item *lip; 1884 1885 /* dump core transaction and ticket info */ 1886 xfs_warn(mp, "transaction summary:"); 1887 xfs_warn(mp, " log res = %d", tp->t_log_res); 1888 xfs_warn(mp, " log count = %d", tp->t_log_count); 1889 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 1890 1891 xlog_print_tic_res(mp, tp->t_ticket); 1892 1893 /* dump each log item */ 1894 list_for_each_entry(lip, &tp->t_items, li_trans) { 1895 struct xfs_log_vec *lv = lip->li_lv; 1896 struct xfs_log_iovec *vec; 1897 int i; 1898 1899 xfs_warn(mp, "log item: "); 1900 xfs_warn(mp, " type = 0x%x", lip->li_type); 1901 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 1902 if (!lv) 1903 continue; 1904 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 1905 xfs_warn(mp, " alloc_size = %d", lv->lv_alloc_size); 1906 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 1907 xfs_warn(mp, " buf used= %d", lv->lv_buf_used); 1908 1909 /* dump each iovec for the log item */ 1910 vec = lv->lv_iovecp; 1911 for (i = 0; i < lv->lv_niovecs; i++) { 1912 int dumplen = min(vec->i_len, 32); 1913 1914 xfs_warn(mp, " iovec[%d]", i); 1915 xfs_warn(mp, " type = 0x%x", vec->i_type); 1916 xfs_warn(mp, " len = %d", vec->i_len); 1917 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 1918 xfs_hex_dump(vec->i_addr, dumplen); 1919 1920 vec++; 1921 } 1922 } 1923 } 1924 1925 static inline void 1926 xlog_write_iovec( 1927 struct xlog_in_core *iclog, 1928 uint32_t *log_offset, 1929 void *data, 1930 uint32_t write_len, 1931 int *bytes_left, 1932 uint32_t *record_cnt, 1933 uint32_t *data_cnt) 1934 { 1935 ASSERT(*log_offset < iclog->ic_log->l_iclog_size); 1936 ASSERT(*log_offset % sizeof(int32_t) == 0); 1937 ASSERT(write_len % sizeof(int32_t) == 0); 1938 1939 memcpy(iclog->ic_datap + *log_offset, data, write_len); 1940 *log_offset += write_len; 1941 *bytes_left -= write_len; 1942 (*record_cnt)++; 1943 *data_cnt += write_len; 1944 } 1945 1946 /* 1947 * Write log vectors into a single iclog which is guaranteed by the caller 1948 * to have enough space to write the entire log vector into. 1949 */ 1950 static void 1951 xlog_write_full( 1952 struct xfs_log_vec *lv, 1953 struct xlog_ticket *ticket, 1954 struct xlog_in_core *iclog, 1955 uint32_t *log_offset, 1956 uint32_t *len, 1957 uint32_t *record_cnt, 1958 uint32_t *data_cnt) 1959 { 1960 int index; 1961 1962 ASSERT(*log_offset + *len <= iclog->ic_size || 1963 iclog->ic_state == XLOG_STATE_WANT_SYNC); 1964 1965 /* 1966 * Ordered log vectors have no regions to write so this 1967 * loop will naturally skip them. 1968 */ 1969 for (index = 0; index < lv->lv_niovecs; index++) { 1970 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 1971 struct xlog_op_header *ophdr = reg->i_addr; 1972 1973 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 1974 xlog_write_iovec(iclog, log_offset, reg->i_addr, 1975 reg->i_len, len, record_cnt, data_cnt); 1976 } 1977 } 1978 1979 static int 1980 xlog_write_get_more_iclog_space( 1981 struct xlog_ticket *ticket, 1982 struct xlog_in_core **iclogp, 1983 uint32_t *log_offset, 1984 uint32_t len, 1985 uint32_t *record_cnt, 1986 uint32_t *data_cnt) 1987 { 1988 struct xlog_in_core *iclog = *iclogp; 1989 struct xlog *log = iclog->ic_log; 1990 int error; 1991 1992 spin_lock(&log->l_icloglock); 1993 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC); 1994 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 1995 error = xlog_state_release_iclog(log, iclog, ticket); 1996 spin_unlock(&log->l_icloglock); 1997 if (error) 1998 return error; 1999 2000 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2001 log_offset); 2002 if (error) 2003 return error; 2004 *record_cnt = 0; 2005 *data_cnt = 0; 2006 *iclogp = iclog; 2007 return 0; 2008 } 2009 2010 /* 2011 * Write log vectors into a single iclog which is smaller than the current chain 2012 * length. We write until we cannot fit a full record into the remaining space 2013 * and then stop. We return the log vector that is to be written that cannot 2014 * wholly fit in the iclog. 2015 */ 2016 static int 2017 xlog_write_partial( 2018 struct xfs_log_vec *lv, 2019 struct xlog_ticket *ticket, 2020 struct xlog_in_core **iclogp, 2021 uint32_t *log_offset, 2022 uint32_t *len, 2023 uint32_t *record_cnt, 2024 uint32_t *data_cnt) 2025 { 2026 struct xlog_in_core *iclog = *iclogp; 2027 struct xlog_op_header *ophdr; 2028 int index = 0; 2029 uint32_t rlen; 2030 int error; 2031 2032 /* walk the logvec, copying until we run out of space in the iclog */ 2033 for (index = 0; index < lv->lv_niovecs; index++) { 2034 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2035 uint32_t reg_offset = 0; 2036 2037 /* 2038 * The first region of a continuation must have a non-zero 2039 * length otherwise log recovery will just skip over it and 2040 * start recovering from the next opheader it finds. Because we 2041 * mark the next opheader as a continuation, recovery will then 2042 * incorrectly add the continuation to the previous region and 2043 * that breaks stuff. 2044 * 2045 * Hence if there isn't space for region data after the 2046 * opheader, then we need to start afresh with a new iclog. 2047 */ 2048 if (iclog->ic_size - *log_offset <= 2049 sizeof(struct xlog_op_header)) { 2050 error = xlog_write_get_more_iclog_space(ticket, 2051 &iclog, log_offset, *len, record_cnt, 2052 data_cnt); 2053 if (error) 2054 return error; 2055 } 2056 2057 ophdr = reg->i_addr; 2058 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset); 2059 2060 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2061 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header)); 2062 if (rlen != reg->i_len) 2063 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2064 2065 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2066 rlen, len, record_cnt, data_cnt); 2067 2068 /* If we wrote the whole region, move to the next. */ 2069 if (rlen == reg->i_len) 2070 continue; 2071 2072 /* 2073 * We now have a partially written iovec, but it can span 2074 * multiple iclogs so we loop here. First we release the iclog 2075 * we currently have, then we get a new iclog and add a new 2076 * opheader. Then we continue copying from where we were until 2077 * we either complete the iovec or fill the iclog. If we 2078 * complete the iovec, then we increment the index and go right 2079 * back to the top of the outer loop. if we fill the iclog, we 2080 * run the inner loop again. 2081 * 2082 * This is complicated by the tail of a region using all the 2083 * space in an iclog and hence requiring us to release the iclog 2084 * and get a new one before returning to the outer loop. We must 2085 * always guarantee that we exit this inner loop with at least 2086 * space for log transaction opheaders left in the current 2087 * iclog, hence we cannot just terminate the loop at the end 2088 * of the of the continuation. So we loop while there is no 2089 * space left in the current iclog, and check for the end of the 2090 * continuation after getting a new iclog. 2091 */ 2092 do { 2093 /* 2094 * Ensure we include the continuation opheader in the 2095 * space we need in the new iclog by adding that size 2096 * to the length we require. This continuation opheader 2097 * needs to be accounted to the ticket as the space it 2098 * consumes hasn't been accounted to the lv we are 2099 * writing. 2100 */ 2101 error = xlog_write_get_more_iclog_space(ticket, 2102 &iclog, log_offset, 2103 *len + sizeof(struct xlog_op_header), 2104 record_cnt, data_cnt); 2105 if (error) 2106 return error; 2107 2108 ophdr = iclog->ic_datap + *log_offset; 2109 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2110 ophdr->oh_clientid = XFS_TRANSACTION; 2111 ophdr->oh_res2 = 0; 2112 ophdr->oh_flags = XLOG_WAS_CONT_TRANS; 2113 2114 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2115 *log_offset += sizeof(struct xlog_op_header); 2116 *data_cnt += sizeof(struct xlog_op_header); 2117 2118 /* 2119 * If rlen fits in the iclog, then end the region 2120 * continuation. Otherwise we're going around again. 2121 */ 2122 reg_offset += rlen; 2123 rlen = reg->i_len - reg_offset; 2124 if (rlen <= iclog->ic_size - *log_offset) 2125 ophdr->oh_flags |= XLOG_END_TRANS; 2126 else 2127 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2128 2129 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset); 2130 ophdr->oh_len = cpu_to_be32(rlen); 2131 2132 xlog_write_iovec(iclog, log_offset, 2133 reg->i_addr + reg_offset, 2134 rlen, len, record_cnt, data_cnt); 2135 2136 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS); 2137 } 2138 2139 /* 2140 * No more iovecs remain in this logvec so return the next log vec to 2141 * the caller so it can go back to fast path copying. 2142 */ 2143 *iclogp = iclog; 2144 return 0; 2145 } 2146 2147 /* 2148 * Write some region out to in-core log 2149 * 2150 * This will be called when writing externally provided regions or when 2151 * writing out a commit record for a given transaction. 2152 * 2153 * General algorithm: 2154 * 1. Find total length of this write. This may include adding to the 2155 * lengths passed in. 2156 * 2. Check whether we violate the tickets reservation. 2157 * 3. While writing to this iclog 2158 * A. Reserve as much space in this iclog as can get 2159 * B. If this is first write, save away start lsn 2160 * C. While writing this region: 2161 * 1. If first write of transaction, write start record 2162 * 2. Write log operation header (header per region) 2163 * 3. Find out if we can fit entire region into this iclog 2164 * 4. Potentially, verify destination memcpy ptr 2165 * 5. Memcpy (partial) region 2166 * 6. If partial copy, release iclog; otherwise, continue 2167 * copying more regions into current iclog 2168 * 4. Mark want sync bit (in simulation mode) 2169 * 5. Release iclog for potential flush to on-disk log. 2170 * 2171 * ERRORS: 2172 * 1. Panic if reservation is overrun. This should never happen since 2173 * reservation amounts are generated internal to the filesystem. 2174 * NOTES: 2175 * 1. Tickets are single threaded data structures. 2176 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2177 * syncing routine. When a single log_write region needs to span 2178 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2179 * on all log operation writes which don't contain the end of the 2180 * region. The XLOG_END_TRANS bit is used for the in-core log 2181 * operation which contains the end of the continued log_write region. 2182 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2183 * we don't really know exactly how much space will be used. As a result, 2184 * we don't update ic_offset until the end when we know exactly how many 2185 * bytes have been written out. 2186 */ 2187 int 2188 xlog_write( 2189 struct xlog *log, 2190 struct xfs_cil_ctx *ctx, 2191 struct list_head *lv_chain, 2192 struct xlog_ticket *ticket, 2193 uint32_t len) 2194 2195 { 2196 struct xlog_in_core *iclog = NULL; 2197 struct xfs_log_vec *lv; 2198 uint32_t record_cnt = 0; 2199 uint32_t data_cnt = 0; 2200 int error = 0; 2201 int log_offset; 2202 2203 if (ticket->t_curr_res < 0) { 2204 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2205 "ctx ticket reservation ran out. Need to up reservation"); 2206 xlog_print_tic_res(log->l_mp, ticket); 2207 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 2208 } 2209 2210 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2211 &log_offset); 2212 if (error) 2213 return error; 2214 2215 ASSERT(log_offset <= iclog->ic_size - 1); 2216 2217 /* 2218 * If we have a context pointer, pass it the first iclog we are 2219 * writing to so it can record state needed for iclog write 2220 * ordering. 2221 */ 2222 if (ctx) 2223 xlog_cil_set_ctx_write_state(ctx, iclog); 2224 2225 list_for_each_entry(lv, lv_chain, lv_list) { 2226 /* 2227 * If the entire log vec does not fit in the iclog, punt it to 2228 * the partial copy loop which can handle this case. 2229 */ 2230 if (lv->lv_niovecs && 2231 lv->lv_bytes > iclog->ic_size - log_offset) { 2232 error = xlog_write_partial(lv, ticket, &iclog, 2233 &log_offset, &len, &record_cnt, 2234 &data_cnt); 2235 if (error) { 2236 /* 2237 * We have no iclog to release, so just return 2238 * the error immediately. 2239 */ 2240 return error; 2241 } 2242 } else { 2243 xlog_write_full(lv, ticket, iclog, &log_offset, 2244 &len, &record_cnt, &data_cnt); 2245 } 2246 } 2247 ASSERT(len == 0); 2248 2249 /* 2250 * We've already been guaranteed that the last writes will fit inside 2251 * the current iclog, and hence it will already have the space used by 2252 * those writes accounted to it. Hence we do not need to update the 2253 * iclog with the number of bytes written here. 2254 */ 2255 spin_lock(&log->l_icloglock); 2256 xlog_state_finish_copy(log, iclog, record_cnt, 0); 2257 error = xlog_state_release_iclog(log, iclog, ticket); 2258 spin_unlock(&log->l_icloglock); 2259 2260 return error; 2261 } 2262 2263 static void 2264 xlog_state_activate_iclog( 2265 struct xlog_in_core *iclog, 2266 int *iclogs_changed) 2267 { 2268 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2269 trace_xlog_iclog_activate(iclog, _RET_IP_); 2270 2271 /* 2272 * If the number of ops in this iclog indicate it just contains the 2273 * dummy transaction, we can change state into IDLE (the second time 2274 * around). Otherwise we should change the state into NEED a dummy. 2275 * We don't need to cover the dummy. 2276 */ 2277 if (*iclogs_changed == 0 && 2278 iclog->ic_header->h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) { 2279 *iclogs_changed = 1; 2280 } else { 2281 /* 2282 * We have two dirty iclogs so start over. This could also be 2283 * num of ops indicating this is not the dummy going out. 2284 */ 2285 *iclogs_changed = 2; 2286 } 2287 2288 iclog->ic_state = XLOG_STATE_ACTIVE; 2289 iclog->ic_offset = 0; 2290 iclog->ic_header->h_num_logops = 0; 2291 memset(iclog->ic_header->h_cycle_data, 0, 2292 sizeof(iclog->ic_header->h_cycle_data)); 2293 iclog->ic_header->h_lsn = 0; 2294 iclog->ic_header->h_tail_lsn = 0; 2295 } 2296 2297 /* 2298 * Loop through all iclogs and mark all iclogs currently marked DIRTY as 2299 * ACTIVE after iclog I/O has completed. 2300 */ 2301 static void 2302 xlog_state_activate_iclogs( 2303 struct xlog *log, 2304 int *iclogs_changed) 2305 { 2306 struct xlog_in_core *iclog = log->l_iclog; 2307 2308 do { 2309 if (iclog->ic_state == XLOG_STATE_DIRTY) 2310 xlog_state_activate_iclog(iclog, iclogs_changed); 2311 /* 2312 * The ordering of marking iclogs ACTIVE must be maintained, so 2313 * an iclog doesn't become ACTIVE beyond one that is SYNCING. 2314 */ 2315 else if (iclog->ic_state != XLOG_STATE_ACTIVE) 2316 break; 2317 } while ((iclog = iclog->ic_next) != log->l_iclog); 2318 } 2319 2320 static int 2321 xlog_covered_state( 2322 int prev_state, 2323 int iclogs_changed) 2324 { 2325 /* 2326 * We go to NEED for any non-covering writes. We go to NEED2 if we just 2327 * wrote the first covering record (DONE). We go to IDLE if we just 2328 * wrote the second covering record (DONE2) and remain in IDLE until a 2329 * non-covering write occurs. 2330 */ 2331 switch (prev_state) { 2332 case XLOG_STATE_COVER_IDLE: 2333 if (iclogs_changed == 1) 2334 return XLOG_STATE_COVER_IDLE; 2335 fallthrough; 2336 case XLOG_STATE_COVER_NEED: 2337 case XLOG_STATE_COVER_NEED2: 2338 break; 2339 case XLOG_STATE_COVER_DONE: 2340 if (iclogs_changed == 1) 2341 return XLOG_STATE_COVER_NEED2; 2342 break; 2343 case XLOG_STATE_COVER_DONE2: 2344 if (iclogs_changed == 1) 2345 return XLOG_STATE_COVER_IDLE; 2346 break; 2347 default: 2348 ASSERT(0); 2349 } 2350 2351 return XLOG_STATE_COVER_NEED; 2352 } 2353 2354 STATIC void 2355 xlog_state_clean_iclog( 2356 struct xlog *log, 2357 struct xlog_in_core *dirty_iclog) 2358 { 2359 int iclogs_changed = 0; 2360 2361 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_); 2362 2363 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2364 2365 xlog_state_activate_iclogs(log, &iclogs_changed); 2366 wake_up_all(&dirty_iclog->ic_force_wait); 2367 2368 if (iclogs_changed) { 2369 log->l_covered_state = xlog_covered_state(log->l_covered_state, 2370 iclogs_changed); 2371 } 2372 } 2373 2374 STATIC xfs_lsn_t 2375 xlog_get_lowest_lsn( 2376 struct xlog *log) 2377 { 2378 struct xlog_in_core *iclog = log->l_iclog; 2379 xfs_lsn_t lowest_lsn = 0, lsn; 2380 2381 do { 2382 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2383 iclog->ic_state == XLOG_STATE_DIRTY) 2384 continue; 2385 2386 lsn = be64_to_cpu(iclog->ic_header->h_lsn); 2387 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2388 lowest_lsn = lsn; 2389 } while ((iclog = iclog->ic_next) != log->l_iclog); 2390 2391 return lowest_lsn; 2392 } 2393 2394 /* 2395 * Return true if we need to stop processing, false to continue to the next 2396 * iclog. The caller will need to run callbacks if the iclog is returned in the 2397 * XLOG_STATE_CALLBACK state. 2398 */ 2399 static bool 2400 xlog_state_iodone_process_iclog( 2401 struct xlog *log, 2402 struct xlog_in_core *iclog) 2403 { 2404 xfs_lsn_t lowest_lsn; 2405 xfs_lsn_t header_lsn; 2406 2407 switch (iclog->ic_state) { 2408 case XLOG_STATE_ACTIVE: 2409 case XLOG_STATE_DIRTY: 2410 /* 2411 * Skip all iclogs in the ACTIVE & DIRTY states: 2412 */ 2413 return false; 2414 case XLOG_STATE_DONE_SYNC: 2415 /* 2416 * Now that we have an iclog that is in the DONE_SYNC state, do 2417 * one more check here to see if we have chased our tail around. 2418 * If this is not the lowest lsn iclog, then we will leave it 2419 * for another completion to process. 2420 */ 2421 header_lsn = be64_to_cpu(iclog->ic_header->h_lsn); 2422 lowest_lsn = xlog_get_lowest_lsn(log); 2423 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2424 return false; 2425 /* 2426 * If there are no callbacks on this iclog, we can mark it clean 2427 * immediately and return. Otherwise we need to run the 2428 * callbacks. 2429 */ 2430 if (list_empty(&iclog->ic_callbacks)) { 2431 xlog_state_clean_iclog(log, iclog); 2432 return false; 2433 } 2434 trace_xlog_iclog_callback(iclog, _RET_IP_); 2435 iclog->ic_state = XLOG_STATE_CALLBACK; 2436 return false; 2437 default: 2438 /* 2439 * Can only perform callbacks in order. Since this iclog is not 2440 * in the DONE_SYNC state, we skip the rest and just try to 2441 * clean up. 2442 */ 2443 return true; 2444 } 2445 } 2446 2447 /* 2448 * Loop over all the iclogs, running attached callbacks on them. Return true if 2449 * we ran any callbacks, indicating that we dropped the icloglock. We don't need 2450 * to handle transient shutdown state here at all because 2451 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown 2452 * cleanup of the callbacks. 2453 */ 2454 static bool 2455 xlog_state_do_iclog_callbacks( 2456 struct xlog *log) 2457 __releases(&log->l_icloglock) 2458 __acquires(&log->l_icloglock) 2459 { 2460 struct xlog_in_core *first_iclog = log->l_iclog; 2461 struct xlog_in_core *iclog = first_iclog; 2462 bool ran_callback = false; 2463 2464 do { 2465 LIST_HEAD(cb_list); 2466 2467 if (xlog_state_iodone_process_iclog(log, iclog)) 2468 break; 2469 if (iclog->ic_state != XLOG_STATE_CALLBACK) { 2470 iclog = iclog->ic_next; 2471 continue; 2472 } 2473 list_splice_init(&iclog->ic_callbacks, &cb_list); 2474 spin_unlock(&log->l_icloglock); 2475 2476 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_); 2477 xlog_cil_process_committed(&cb_list); 2478 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_); 2479 ran_callback = true; 2480 2481 spin_lock(&log->l_icloglock); 2482 xlog_state_clean_iclog(log, iclog); 2483 iclog = iclog->ic_next; 2484 } while (iclog != first_iclog); 2485 2486 return ran_callback; 2487 } 2488 2489 2490 /* 2491 * Loop running iclog completion callbacks until there are no more iclogs in a 2492 * state that can run callbacks. 2493 */ 2494 STATIC void 2495 xlog_state_do_callback( 2496 struct xlog *log) 2497 { 2498 int flushcnt = 0; 2499 int repeats = 0; 2500 2501 spin_lock(&log->l_icloglock); 2502 while (xlog_state_do_iclog_callbacks(log)) { 2503 if (xlog_is_shutdown(log)) 2504 break; 2505 2506 if (++repeats > 5000) { 2507 flushcnt += repeats; 2508 repeats = 0; 2509 xfs_warn(log->l_mp, 2510 "%s: possible infinite loop (%d iterations)", 2511 __func__, flushcnt); 2512 } 2513 } 2514 2515 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE) 2516 wake_up_all(&log->l_flush_wait); 2517 2518 spin_unlock(&log->l_icloglock); 2519 } 2520 2521 2522 /* 2523 * Finish transitioning this iclog to the dirty state. 2524 * 2525 * Callbacks could take time, so they are done outside the scope of the 2526 * global state machine log lock. 2527 */ 2528 STATIC void 2529 xlog_state_done_syncing( 2530 struct xlog_in_core *iclog) 2531 { 2532 struct xlog *log = iclog->ic_log; 2533 2534 spin_lock(&log->l_icloglock); 2535 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2536 trace_xlog_iclog_sync_done(iclog, _RET_IP_); 2537 2538 /* 2539 * If we got an error, either on the first buffer, or in the case of 2540 * split log writes, on the second, we shut down the file system and 2541 * no iclogs should ever be attempted to be written to disk again. 2542 */ 2543 if (!xlog_is_shutdown(log)) { 2544 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING); 2545 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2546 } 2547 2548 /* 2549 * Someone could be sleeping prior to writing out the next 2550 * iclog buffer, we wake them all, one will get to do the 2551 * I/O, the others get to wait for the result. 2552 */ 2553 wake_up_all(&iclog->ic_write_wait); 2554 spin_unlock(&log->l_icloglock); 2555 xlog_state_do_callback(log); 2556 } 2557 2558 /* 2559 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2560 * sleep. We wait on the flush queue on the head iclog as that should be 2561 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2562 * we will wait here and all new writes will sleep until a sync completes. 2563 * 2564 * The in-core logs are used in a circular fashion. They are not used 2565 * out-of-order even when an iclog past the head is free. 2566 * 2567 * return: 2568 * * log_offset where xlog_write() can start writing into the in-core 2569 * log's data space. 2570 * * in-core log pointer to which xlog_write() should write. 2571 * * boolean indicating this is a continued write to an in-core log. 2572 * If this is the last write, then the in-core log's offset field 2573 * needs to be incremented, depending on the amount of data which 2574 * is copied. 2575 */ 2576 STATIC int 2577 xlog_state_get_iclog_space( 2578 struct xlog *log, 2579 int len, 2580 struct xlog_in_core **iclogp, 2581 struct xlog_ticket *ticket, 2582 int *logoffsetp) 2583 { 2584 int log_offset; 2585 struct xlog_rec_header *head; 2586 struct xlog_in_core *iclog; 2587 2588 restart: 2589 spin_lock(&log->l_icloglock); 2590 if (xlog_is_shutdown(log)) { 2591 spin_unlock(&log->l_icloglock); 2592 return -EIO; 2593 } 2594 2595 iclog = log->l_iclog; 2596 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2597 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2598 2599 /* Wait for log writes to have flushed */ 2600 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2601 goto restart; 2602 } 2603 2604 head = iclog->ic_header; 2605 2606 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2607 log_offset = iclog->ic_offset; 2608 2609 trace_xlog_iclog_get_space(iclog, _RET_IP_); 2610 2611 /* On the 1st write to an iclog, figure out lsn. This works 2612 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2613 * committing to. If the offset is set, that's how many blocks 2614 * must be written. 2615 */ 2616 if (log_offset == 0) { 2617 ticket->t_curr_res -= log->l_iclog_hsize; 2618 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2619 head->h_lsn = cpu_to_be64( 2620 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2621 ASSERT(log->l_curr_block >= 0); 2622 } 2623 2624 /* If there is enough room to write everything, then do it. Otherwise, 2625 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2626 * bit is on, so this will get flushed out. Don't update ic_offset 2627 * until you know exactly how many bytes get copied. Therefore, wait 2628 * until later to update ic_offset. 2629 * 2630 * xlog_write() algorithm assumes that at least 2 xlog_op_header's 2631 * can fit into remaining data section. 2632 */ 2633 if (iclog->ic_size - iclog->ic_offset < 2634 2 * sizeof(struct xlog_op_header)) { 2635 int error = 0; 2636 2637 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2638 2639 /* 2640 * If we are the only one writing to this iclog, sync it to 2641 * disk. We need to do an atomic compare and decrement here to 2642 * avoid racing with concurrent atomic_dec_and_lock() calls in 2643 * xlog_state_release_iclog() when there is more than one 2644 * reference to the iclog. 2645 */ 2646 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 2647 error = xlog_state_release_iclog(log, iclog, ticket); 2648 spin_unlock(&log->l_icloglock); 2649 if (error) 2650 return error; 2651 goto restart; 2652 } 2653 2654 /* Do we have enough room to write the full amount in the remainder 2655 * of this iclog? Or must we continue a write on the next iclog and 2656 * mark this iclog as completely taken? In the case where we switch 2657 * iclogs (to mark it taken), this particular iclog will release/sync 2658 * to disk in xlog_write(). 2659 */ 2660 if (len <= iclog->ic_size - iclog->ic_offset) 2661 iclog->ic_offset += len; 2662 else 2663 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2664 *iclogp = iclog; 2665 2666 ASSERT(iclog->ic_offset <= iclog->ic_size); 2667 spin_unlock(&log->l_icloglock); 2668 2669 *logoffsetp = log_offset; 2670 return 0; 2671 } 2672 2673 /* 2674 * The first cnt-1 times a ticket goes through here we don't need to move the 2675 * grant write head because the permanent reservation has reserved cnt times the 2676 * unit amount. Release part of current permanent unit reservation and reset 2677 * current reservation to be one units worth. Also move grant reservation head 2678 * forward. 2679 */ 2680 void 2681 xfs_log_ticket_regrant( 2682 struct xlog *log, 2683 struct xlog_ticket *ticket) 2684 { 2685 trace_xfs_log_ticket_regrant(log, ticket); 2686 2687 if (ticket->t_cnt > 0) 2688 ticket->t_cnt--; 2689 2690 xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res); 2691 xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res); 2692 ticket->t_curr_res = ticket->t_unit_res; 2693 2694 trace_xfs_log_ticket_regrant_sub(log, ticket); 2695 2696 /* just return if we still have some of the pre-reserved space */ 2697 if (!ticket->t_cnt) { 2698 xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res); 2699 trace_xfs_log_ticket_regrant_exit(log, ticket); 2700 } 2701 2702 xfs_log_ticket_put(ticket); 2703 } 2704 2705 /* 2706 * Give back the space left from a reservation. 2707 * 2708 * All the information we need to make a correct determination of space left 2709 * is present. For non-permanent reservations, things are quite easy. The 2710 * count should have been decremented to zero. We only need to deal with the 2711 * space remaining in the current reservation part of the ticket. If the 2712 * ticket contains a permanent reservation, there may be left over space which 2713 * needs to be released. A count of N means that N-1 refills of the current 2714 * reservation can be done before we need to ask for more space. The first 2715 * one goes to fill up the first current reservation. Once we run out of 2716 * space, the count will stay at zero and the only space remaining will be 2717 * in the current reservation field. 2718 */ 2719 void 2720 xfs_log_ticket_ungrant( 2721 struct xlog *log, 2722 struct xlog_ticket *ticket) 2723 { 2724 int bytes; 2725 2726 trace_xfs_log_ticket_ungrant(log, ticket); 2727 2728 if (ticket->t_cnt > 0) 2729 ticket->t_cnt--; 2730 2731 trace_xfs_log_ticket_ungrant_sub(log, ticket); 2732 2733 /* 2734 * If this is a permanent reservation ticket, we may be able to free 2735 * up more space based on the remaining count. 2736 */ 2737 bytes = ticket->t_curr_res; 2738 if (ticket->t_cnt > 0) { 2739 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 2740 bytes += ticket->t_unit_res*ticket->t_cnt; 2741 } 2742 2743 xlog_grant_sub_space(&log->l_reserve_head, bytes); 2744 xlog_grant_sub_space(&log->l_write_head, bytes); 2745 2746 trace_xfs_log_ticket_ungrant_exit(log, ticket); 2747 2748 xfs_log_space_wake(log->l_mp); 2749 xfs_log_ticket_put(ticket); 2750 } 2751 2752 /* 2753 * This routine will mark the current iclog in the ring as WANT_SYNC and move 2754 * the current iclog pointer to the next iclog in the ring. 2755 */ 2756 void 2757 xlog_state_switch_iclogs( 2758 struct xlog *log, 2759 struct xlog_in_core *iclog, 2760 int eventual_size) 2761 { 2762 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 2763 assert_spin_locked(&log->l_icloglock); 2764 trace_xlog_iclog_switch(iclog, _RET_IP_); 2765 2766 if (!eventual_size) 2767 eventual_size = iclog->ic_offset; 2768 iclog->ic_state = XLOG_STATE_WANT_SYNC; 2769 iclog->ic_header->h_prev_block = cpu_to_be32(log->l_prev_block); 2770 log->l_prev_block = log->l_curr_block; 2771 log->l_prev_cycle = log->l_curr_cycle; 2772 2773 /* roll log?: ic_offset changed later */ 2774 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 2775 2776 /* Round up to next log-sunit */ 2777 if (log->l_iclog_roundoff > BBSIZE) { 2778 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff); 2779 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 2780 } 2781 2782 if (log->l_curr_block >= log->l_logBBsize) { 2783 /* 2784 * Rewind the current block before the cycle is bumped to make 2785 * sure that the combined LSN never transiently moves forward 2786 * when the log wraps to the next cycle. This is to support the 2787 * unlocked sample of these fields from xlog_valid_lsn(). Most 2788 * other cases should acquire l_icloglock. 2789 */ 2790 log->l_curr_block -= log->l_logBBsize; 2791 ASSERT(log->l_curr_block >= 0); 2792 smp_wmb(); 2793 log->l_curr_cycle++; 2794 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 2795 log->l_curr_cycle++; 2796 } 2797 ASSERT(iclog == log->l_iclog); 2798 log->l_iclog = iclog->ic_next; 2799 } 2800 2801 /* 2802 * Force the iclog to disk and check if the iclog has been completed before 2803 * xlog_force_iclog() returns. This can happen on synchronous (e.g. 2804 * pmem) or fast async storage because we drop the icloglock to issue the IO. 2805 * If completion has already occurred, tell the caller so that it can avoid an 2806 * unnecessary wait on the iclog. 2807 */ 2808 static int 2809 xlog_force_and_check_iclog( 2810 struct xlog_in_core *iclog, 2811 bool *completed) 2812 { 2813 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header->h_lsn); 2814 int error; 2815 2816 *completed = false; 2817 error = xlog_force_iclog(iclog); 2818 if (error) 2819 return error; 2820 2821 /* 2822 * If the iclog has already been completed and reused the header LSN 2823 * will have been rewritten by completion 2824 */ 2825 if (be64_to_cpu(iclog->ic_header->h_lsn) != lsn) 2826 *completed = true; 2827 return 0; 2828 } 2829 2830 /* 2831 * Write out all data in the in-core log as of this exact moment in time. 2832 * 2833 * Data may be written to the in-core log during this call. However, 2834 * we don't guarantee this data will be written out. A change from past 2835 * implementation means this routine will *not* write out zero length LRs. 2836 * 2837 * Basically, we try and perform an intelligent scan of the in-core logs. 2838 * If we determine there is no flushable data, we just return. There is no 2839 * flushable data if: 2840 * 2841 * 1. the current iclog is active and has no data; the previous iclog 2842 * is in the active or dirty state. 2843 * 2. the current iclog is dirty, and the previous iclog is in the 2844 * active or dirty state. 2845 * 2846 * We may sleep if: 2847 * 2848 * 1. the current iclog is not in the active nor dirty state. 2849 * 2. the current iclog dirty, and the previous iclog is not in the 2850 * active nor dirty state. 2851 * 3. the current iclog is active, and there is another thread writing 2852 * to this particular iclog. 2853 * 4. a) the current iclog is active and has no other writers 2854 * b) when we return from flushing out this iclog, it is still 2855 * not in the active nor dirty state. 2856 */ 2857 int 2858 xfs_log_force( 2859 struct xfs_mount *mp, 2860 uint flags) 2861 { 2862 struct xlog *log = mp->m_log; 2863 struct xlog_in_core *iclog; 2864 2865 XFS_STATS_INC(mp, xs_log_force); 2866 trace_xfs_log_force(mp, 0, _RET_IP_); 2867 2868 xlog_cil_force(log); 2869 2870 spin_lock(&log->l_icloglock); 2871 if (xlog_is_shutdown(log)) 2872 goto out_error; 2873 2874 iclog = log->l_iclog; 2875 trace_xlog_iclog_force(iclog, _RET_IP_); 2876 2877 if (iclog->ic_state == XLOG_STATE_DIRTY || 2878 (iclog->ic_state == XLOG_STATE_ACTIVE && 2879 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 2880 /* 2881 * If the head is dirty or (active and empty), then we need to 2882 * look at the previous iclog. 2883 * 2884 * If the previous iclog is active or dirty we are done. There 2885 * is nothing to sync out. Otherwise, we attach ourselves to the 2886 * previous iclog and go to sleep. 2887 */ 2888 iclog = iclog->ic_prev; 2889 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 2890 if (atomic_read(&iclog->ic_refcnt) == 0) { 2891 /* We have exclusive access to this iclog. */ 2892 bool completed; 2893 2894 if (xlog_force_and_check_iclog(iclog, &completed)) 2895 goto out_error; 2896 2897 if (completed) 2898 goto out_unlock; 2899 } else { 2900 /* 2901 * Someone else is still writing to this iclog, so we 2902 * need to ensure that when they release the iclog it 2903 * gets synced immediately as we may be waiting on it. 2904 */ 2905 xlog_state_switch_iclogs(log, iclog, 0); 2906 } 2907 } 2908 2909 /* 2910 * The iclog we are about to wait on may contain the checkpoint pushed 2911 * by the above xlog_cil_force() call, but it may not have been pushed 2912 * to disk yet. Like the ACTIVE case above, we need to make sure caches 2913 * are flushed when this iclog is written. 2914 */ 2915 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) 2916 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 2917 2918 if (flags & XFS_LOG_SYNC) 2919 return xlog_wait_on_iclog(iclog); 2920 out_unlock: 2921 spin_unlock(&log->l_icloglock); 2922 return 0; 2923 out_error: 2924 spin_unlock(&log->l_icloglock); 2925 return -EIO; 2926 } 2927 2928 /* 2929 * Force the log to a specific LSN. 2930 * 2931 * If an iclog with that lsn can be found: 2932 * If it is in the DIRTY state, just return. 2933 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 2934 * state and go to sleep or return. 2935 * If it is in any other state, go to sleep or return. 2936 * 2937 * Synchronous forces are implemented with a wait queue. All callers trying 2938 * to force a given lsn to disk must wait on the queue attached to the 2939 * specific in-core log. When given in-core log finally completes its write 2940 * to disk, that thread will wake up all threads waiting on the queue. 2941 */ 2942 static int 2943 xlog_force_lsn( 2944 struct xlog *log, 2945 xfs_lsn_t lsn, 2946 uint flags, 2947 int *log_flushed, 2948 bool already_slept) 2949 { 2950 struct xlog_in_core *iclog; 2951 bool completed; 2952 2953 spin_lock(&log->l_icloglock); 2954 if (xlog_is_shutdown(log)) 2955 goto out_error; 2956 2957 iclog = log->l_iclog; 2958 while (be64_to_cpu(iclog->ic_header->h_lsn) != lsn) { 2959 trace_xlog_iclog_force_lsn(iclog, _RET_IP_); 2960 iclog = iclog->ic_next; 2961 if (iclog == log->l_iclog) 2962 goto out_unlock; 2963 } 2964 2965 switch (iclog->ic_state) { 2966 case XLOG_STATE_ACTIVE: 2967 /* 2968 * We sleep here if we haven't already slept (e.g. this is the 2969 * first time we've looked at the correct iclog buf) and the 2970 * buffer before us is going to be sync'ed. The reason for this 2971 * is that if we are doing sync transactions here, by waiting 2972 * for the previous I/O to complete, we can allow a few more 2973 * transactions into this iclog before we close it down. 2974 * 2975 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 2976 * refcnt so we can release the log (which drops the ref count). 2977 * The state switch keeps new transaction commits from using 2978 * this buffer. When the current commits finish writing into 2979 * the buffer, the refcount will drop to zero and the buffer 2980 * will go out then. 2981 */ 2982 if (!already_slept && 2983 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 2984 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 2985 xlog_wait(&iclog->ic_prev->ic_write_wait, 2986 &log->l_icloglock); 2987 return -EAGAIN; 2988 } 2989 if (xlog_force_and_check_iclog(iclog, &completed)) 2990 goto out_error; 2991 if (log_flushed) 2992 *log_flushed = 1; 2993 if (completed) 2994 goto out_unlock; 2995 break; 2996 case XLOG_STATE_WANT_SYNC: 2997 /* 2998 * This iclog may contain the checkpoint pushed by the 2999 * xlog_cil_force_seq() call, but there are other writers still 3000 * accessing it so it hasn't been pushed to disk yet. Like the 3001 * ACTIVE case above, we need to make sure caches are flushed 3002 * when this iclog is written. 3003 */ 3004 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3005 break; 3006 default: 3007 /* 3008 * The entire checkpoint was written by the CIL force and is on 3009 * its way to disk already. It will be stable when it 3010 * completes, so we don't need to manipulate caches here at all. 3011 * We just need to wait for completion if necessary. 3012 */ 3013 break; 3014 } 3015 3016 if (flags & XFS_LOG_SYNC) 3017 return xlog_wait_on_iclog(iclog); 3018 out_unlock: 3019 spin_unlock(&log->l_icloglock); 3020 return 0; 3021 out_error: 3022 spin_unlock(&log->l_icloglock); 3023 return -EIO; 3024 } 3025 3026 /* 3027 * Force the log to a specific checkpoint sequence. 3028 * 3029 * First force the CIL so that all the required changes have been flushed to the 3030 * iclogs. If the CIL force completed it will return a commit LSN that indicates 3031 * the iclog that needs to be flushed to stable storage. If the caller needs 3032 * a synchronous log force, we will wait on the iclog with the LSN returned by 3033 * xlog_cil_force_seq() to be completed. 3034 */ 3035 int 3036 xfs_log_force_seq( 3037 struct xfs_mount *mp, 3038 xfs_csn_t seq, 3039 uint flags, 3040 int *log_flushed) 3041 { 3042 struct xlog *log = mp->m_log; 3043 xfs_lsn_t lsn; 3044 int ret; 3045 ASSERT(seq != 0); 3046 3047 XFS_STATS_INC(mp, xs_log_force); 3048 trace_xfs_log_force(mp, seq, _RET_IP_); 3049 3050 lsn = xlog_cil_force_seq(log, seq); 3051 if (lsn == NULLCOMMITLSN) 3052 return 0; 3053 3054 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false); 3055 if (ret == -EAGAIN) { 3056 XFS_STATS_INC(mp, xs_log_force_sleep); 3057 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true); 3058 } 3059 return ret; 3060 } 3061 3062 /* 3063 * Free a used ticket when its refcount falls to zero. 3064 */ 3065 void 3066 xfs_log_ticket_put( 3067 struct xlog_ticket *ticket) 3068 { 3069 ASSERT(atomic_read(&ticket->t_ref) > 0); 3070 if (atomic_dec_and_test(&ticket->t_ref)) 3071 kmem_cache_free(xfs_log_ticket_cache, ticket); 3072 } 3073 3074 struct xlog_ticket * 3075 xfs_log_ticket_get( 3076 struct xlog_ticket *ticket) 3077 { 3078 ASSERT(atomic_read(&ticket->t_ref) > 0); 3079 atomic_inc(&ticket->t_ref); 3080 return ticket; 3081 } 3082 3083 /* 3084 * Figure out the total log space unit (in bytes) that would be 3085 * required for a log ticket. 3086 */ 3087 static int 3088 xlog_calc_unit_res( 3089 struct xlog *log, 3090 int unit_bytes, 3091 int *niclogs) 3092 { 3093 int iclog_space; 3094 uint num_headers; 3095 3096 /* 3097 * Permanent reservations have up to 'cnt'-1 active log operations 3098 * in the log. A unit in this case is the amount of space for one 3099 * of these log operations. Normal reservations have a cnt of 1 3100 * and their unit amount is the total amount of space required. 3101 * 3102 * The following lines of code account for non-transaction data 3103 * which occupy space in the on-disk log. 3104 * 3105 * Normal form of a transaction is: 3106 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3107 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3108 * 3109 * We need to account for all the leadup data and trailer data 3110 * around the transaction data. 3111 * And then we need to account for the worst case in terms of using 3112 * more space. 3113 * The worst case will happen if: 3114 * - the placement of the transaction happens to be such that the 3115 * roundoff is at its maximum 3116 * - the transaction data is synced before the commit record is synced 3117 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3118 * Therefore the commit record is in its own Log Record. 3119 * This can happen as the commit record is called with its 3120 * own region to xlog_write(). 3121 * This then means that in the worst case, roundoff can happen for 3122 * the commit-rec as well. 3123 * The commit-rec is smaller than padding in this scenario and so it is 3124 * not added separately. 3125 */ 3126 3127 /* for trans header */ 3128 unit_bytes += sizeof(struct xlog_op_header); 3129 unit_bytes += sizeof(struct xfs_trans_header); 3130 3131 /* for start-rec */ 3132 unit_bytes += sizeof(struct xlog_op_header); 3133 3134 /* 3135 * for LR headers - the space for data in an iclog is the size minus 3136 * the space used for the headers. If we use the iclog size, then we 3137 * undercalculate the number of headers required. 3138 * 3139 * Furthermore - the addition of op headers for split-recs might 3140 * increase the space required enough to require more log and op 3141 * headers, so take that into account too. 3142 * 3143 * IMPORTANT: This reservation makes the assumption that if this 3144 * transaction is the first in an iclog and hence has the LR headers 3145 * accounted to it, then the remaining space in the iclog is 3146 * exclusively for this transaction. i.e. if the transaction is larger 3147 * than the iclog, it will be the only thing in that iclog. 3148 * Fundamentally, this means we must pass the entire log vector to 3149 * xlog_write to guarantee this. 3150 */ 3151 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3152 num_headers = howmany(unit_bytes, iclog_space); 3153 3154 /* for split-recs - ophdrs added when data split over LRs */ 3155 unit_bytes += sizeof(struct xlog_op_header) * num_headers; 3156 3157 /* add extra header reservations if we overrun */ 3158 while (!num_headers || 3159 howmany(unit_bytes, iclog_space) > num_headers) { 3160 unit_bytes += sizeof(struct xlog_op_header); 3161 num_headers++; 3162 } 3163 unit_bytes += log->l_iclog_hsize * num_headers; 3164 3165 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3166 unit_bytes += log->l_iclog_hsize; 3167 3168 /* roundoff padding for transaction data and one for commit record */ 3169 unit_bytes += 2 * log->l_iclog_roundoff; 3170 3171 if (niclogs) 3172 *niclogs = num_headers; 3173 return unit_bytes; 3174 } 3175 3176 int 3177 xfs_log_calc_unit_res( 3178 struct xfs_mount *mp, 3179 int unit_bytes) 3180 { 3181 return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL); 3182 } 3183 3184 /* 3185 * Allocate and initialise a new log ticket. 3186 */ 3187 struct xlog_ticket * 3188 xlog_ticket_alloc( 3189 struct xlog *log, 3190 int unit_bytes, 3191 int cnt, 3192 bool permanent) 3193 { 3194 struct xlog_ticket *tic; 3195 int unit_res; 3196 3197 tic = kmem_cache_zalloc(xfs_log_ticket_cache, 3198 GFP_KERNEL | __GFP_NOFAIL); 3199 3200 unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs); 3201 3202 atomic_set(&tic->t_ref, 1); 3203 tic->t_task = current; 3204 INIT_LIST_HEAD(&tic->t_queue); 3205 tic->t_unit_res = unit_res; 3206 tic->t_curr_res = unit_res; 3207 tic->t_cnt = cnt; 3208 tic->t_ocnt = cnt; 3209 tic->t_tid = get_random_u32(); 3210 if (permanent) 3211 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3212 3213 return tic; 3214 } 3215 3216 #if defined(DEBUG) 3217 static void 3218 xlog_verify_dump_tail( 3219 struct xlog *log, 3220 struct xlog_in_core *iclog) 3221 { 3222 xfs_alert(log->l_mp, 3223 "ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x", 3224 iclog ? be64_to_cpu(iclog->ic_header->h_tail_lsn) : -1, 3225 atomic64_read(&log->l_tail_lsn), 3226 log->l_ailp->ail_head_lsn, 3227 log->l_curr_cycle, log->l_curr_block, 3228 log->l_prev_cycle, log->l_prev_block); 3229 xfs_alert(log->l_mp, 3230 "write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x", 3231 atomic64_read(&log->l_write_head.grant), 3232 atomic64_read(&log->l_reserve_head.grant), 3233 log->l_tail_space, log->l_logsize, 3234 iclog ? iclog->ic_flags : -1); 3235 } 3236 3237 /* Check if the new iclog will fit in the log. */ 3238 STATIC void 3239 xlog_verify_tail_lsn( 3240 struct xlog *log, 3241 struct xlog_in_core *iclog) 3242 { 3243 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header->h_tail_lsn); 3244 int blocks; 3245 3246 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3247 blocks = log->l_logBBsize - 3248 (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3249 if (blocks < BTOBB(iclog->ic_offset) + 3250 BTOBB(log->l_iclog_hsize)) { 3251 xfs_emerg(log->l_mp, 3252 "%s: ran out of log space", __func__); 3253 xlog_verify_dump_tail(log, iclog); 3254 } 3255 return; 3256 } 3257 3258 if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) { 3259 xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__); 3260 xlog_verify_dump_tail(log, iclog); 3261 return; 3262 } 3263 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) { 3264 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3265 xlog_verify_dump_tail(log, iclog); 3266 return; 3267 } 3268 3269 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3270 if (blocks < BTOBB(iclog->ic_offset) + 1) { 3271 xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__); 3272 xlog_verify_dump_tail(log, iclog); 3273 } 3274 } 3275 3276 /* 3277 * Perform a number of checks on the iclog before writing to disk. 3278 * 3279 * 1. Make sure the iclogs are still circular 3280 * 2. Make sure we have a good magic number 3281 * 3. Make sure we don't have magic numbers in the data 3282 * 4. Check fields of each log operation header for: 3283 * A. Valid client identifier 3284 * B. tid ptr value falls in valid ptr space (user space code) 3285 * C. Length in log record header is correct according to the 3286 * individual operation headers within record. 3287 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3288 * log, check the preceding blocks of the physical log to make sure all 3289 * the cycle numbers agree with the current cycle number. 3290 */ 3291 STATIC void 3292 xlog_verify_iclog( 3293 struct xlog *log, 3294 struct xlog_in_core *iclog, 3295 int count) 3296 { 3297 struct xlog_rec_header *rhead = iclog->ic_header; 3298 struct xlog_in_core *icptr; 3299 void *base_ptr, *ptr; 3300 ptrdiff_t field_offset; 3301 uint8_t clientid; 3302 int len, i, op_len; 3303 int idx; 3304 3305 /* check validity of iclog pointers */ 3306 spin_lock(&log->l_icloglock); 3307 icptr = log->l_iclog; 3308 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3309 ASSERT(icptr); 3310 3311 if (icptr != log->l_iclog) 3312 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3313 spin_unlock(&log->l_icloglock); 3314 3315 /* check log magic numbers */ 3316 if (rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3317 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3318 3319 base_ptr = ptr = rhead; 3320 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3321 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3322 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3323 __func__); 3324 } 3325 3326 /* check fields */ 3327 len = be32_to_cpu(rhead->h_num_logops); 3328 base_ptr = ptr = iclog->ic_datap; 3329 for (i = 0; i < len; i++) { 3330 struct xlog_op_header *ophead = ptr; 3331 void *p = &ophead->oh_clientid; 3332 3333 /* clientid is only 1 byte */ 3334 field_offset = p - base_ptr; 3335 if (field_offset & 0x1ff) { 3336 clientid = ophead->oh_clientid; 3337 } else { 3338 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap); 3339 clientid = xlog_get_client_id(*xlog_cycle_data(rhead, idx)); 3340 } 3341 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) { 3342 xfs_warn(log->l_mp, 3343 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx", 3344 __func__, i, clientid, ophead, 3345 (unsigned long)field_offset); 3346 } 3347 3348 /* check length */ 3349 p = &ophead->oh_len; 3350 field_offset = p - base_ptr; 3351 if (field_offset & 0x1ff) { 3352 op_len = be32_to_cpu(ophead->oh_len); 3353 } else { 3354 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap); 3355 op_len = be32_to_cpu(*xlog_cycle_data(rhead, idx)); 3356 } 3357 ptr += sizeof(struct xlog_op_header) + op_len; 3358 } 3359 } 3360 #endif 3361 3362 /* 3363 * Perform a forced shutdown on the log. 3364 * 3365 * This can be called from low level log code to trigger a shutdown, or from the 3366 * high level mount shutdown code when the mount shuts down. 3367 * 3368 * Our main objectives here are to make sure that: 3369 * a. if the shutdown was not due to a log IO error, flush the logs to 3370 * disk. Anything modified after this is ignored. 3371 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested 3372 * parties to find out. Nothing new gets queued after this is done. 3373 * c. Tasks sleeping on log reservations, pinned objects and 3374 * other resources get woken up. 3375 * d. The mount is also marked as shut down so that log triggered shutdowns 3376 * still behave the same as if they called xfs_forced_shutdown(). 3377 * 3378 * Return true if the shutdown cause was a log IO error and we actually shut the 3379 * log down. 3380 */ 3381 bool 3382 xlog_force_shutdown( 3383 struct xlog *log, 3384 uint32_t shutdown_flags) 3385 { 3386 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR); 3387 3388 if (!log) 3389 return false; 3390 3391 /* 3392 * Ensure that there is only ever one log shutdown being processed. 3393 * If we allow the log force below on a second pass after shutting 3394 * down the log, we risk deadlocking the CIL push as it may require 3395 * locks on objects the current shutdown context holds (e.g. taking 3396 * buffer locks to abort buffers on last unpin of buf log items). 3397 */ 3398 if (test_and_set_bit(XLOG_SHUTDOWN_STARTED, &log->l_opstate)) 3399 return false; 3400 3401 /* 3402 * Flush all the completed transactions to disk before marking the log 3403 * being shut down. We need to do this first as shutting down the log 3404 * before the force will prevent the log force from flushing the iclogs 3405 * to disk. 3406 * 3407 * When we are in recovery, there are no transactions to flush, and 3408 * we don't want to touch the log because we don't want to perturb the 3409 * current head/tail for future recovery attempts. Hence we need to 3410 * avoid a log force in this case. 3411 * 3412 * If we are shutting down due to a log IO error, then we must avoid 3413 * trying to write the log as that may just result in more IO errors and 3414 * an endless shutdown/force loop. 3415 */ 3416 if (!log_error && !xlog_in_recovery(log)) 3417 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3418 3419 /* 3420 * Atomically set the shutdown state. If the shutdown state is already 3421 * set, there someone else is performing the shutdown and so we are done 3422 * here. This should never happen because we should only ever get called 3423 * once by the first shutdown caller. 3424 * 3425 * Much of the log state machine transitions assume that shutdown state 3426 * cannot change once they hold the log->l_icloglock. Hence we need to 3427 * hold that lock here, even though we use the atomic test_and_set_bit() 3428 * operation to set the shutdown state. 3429 */ 3430 spin_lock(&log->l_icloglock); 3431 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) { 3432 spin_unlock(&log->l_icloglock); 3433 ASSERT(0); 3434 return false; 3435 } 3436 spin_unlock(&log->l_icloglock); 3437 3438 /* 3439 * If this log shutdown also sets the mount shutdown state, issue a 3440 * shutdown warning message. 3441 */ 3442 if (!xfs_set_shutdown(log->l_mp)) { 3443 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR, 3444 "Filesystem has been shut down due to log error (0x%x).", 3445 shutdown_flags); 3446 xfs_alert(log->l_mp, 3447 "Please unmount the filesystem and rectify the problem(s)."); 3448 if (xfs_error_level >= XFS_ERRLEVEL_HIGH) 3449 xfs_stack_trace(); 3450 } 3451 3452 /* 3453 * We don't want anybody waiting for log reservations after this. That 3454 * means we have to wake up everybody queued up on reserveq as well as 3455 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3456 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3457 * action is protected by the grant locks. 3458 */ 3459 xlog_grant_head_wake_all(&log->l_reserve_head); 3460 xlog_grant_head_wake_all(&log->l_write_head); 3461 3462 /* 3463 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3464 * as if the log writes were completed. The abort handling in the log 3465 * item committed callback functions will do this again under lock to 3466 * avoid races. 3467 */ 3468 spin_lock(&log->l_cilp->xc_push_lock); 3469 wake_up_all(&log->l_cilp->xc_start_wait); 3470 wake_up_all(&log->l_cilp->xc_commit_wait); 3471 spin_unlock(&log->l_cilp->xc_push_lock); 3472 3473 spin_lock(&log->l_icloglock); 3474 xlog_state_shutdown_callbacks(log); 3475 spin_unlock(&log->l_icloglock); 3476 3477 wake_up_var(&log->l_opstate); 3478 if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(log->l_mp)) 3479 xfs_zoned_wake_all(log->l_mp); 3480 3481 return log_error; 3482 } 3483 3484 STATIC int 3485 xlog_iclogs_empty( 3486 struct xlog *log) 3487 { 3488 struct xlog_in_core *iclog = log->l_iclog; 3489 3490 do { 3491 /* endianness does not matter here, zero is zero in 3492 * any language. 3493 */ 3494 if (iclog->ic_header->h_num_logops) 3495 return 0; 3496 iclog = iclog->ic_next; 3497 } while (iclog != log->l_iclog); 3498 3499 return 1; 3500 } 3501 3502 /* 3503 * Verify that an LSN stamped into a piece of metadata is valid. This is 3504 * intended for use in read verifiers on v5 superblocks. 3505 */ 3506 bool 3507 xfs_log_check_lsn( 3508 struct xfs_mount *mp, 3509 xfs_lsn_t lsn) 3510 { 3511 struct xlog *log = mp->m_log; 3512 bool valid; 3513 3514 /* 3515 * norecovery mode skips mount-time log processing and unconditionally 3516 * resets the in-core LSN. We can't validate in this mode, but 3517 * modifications are not allowed anyways so just return true. 3518 */ 3519 if (xfs_has_norecovery(mp)) 3520 return true; 3521 3522 /* 3523 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3524 * handled by recovery and thus safe to ignore here. 3525 */ 3526 if (lsn == NULLCOMMITLSN) 3527 return true; 3528 3529 valid = xlog_valid_lsn(mp->m_log, lsn); 3530 3531 /* warn the user about what's gone wrong before verifier failure */ 3532 if (!valid) { 3533 spin_lock(&log->l_icloglock); 3534 xfs_warn(mp, 3535 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3536 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 3537 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 3538 log->l_curr_cycle, log->l_curr_block); 3539 spin_unlock(&log->l_icloglock); 3540 } 3541 3542 return valid; 3543 } 3544