xref: /linux/fs/xfs/xfs_log.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37 
38 kmem_zone_t	*xfs_log_ticket_zone;
39 
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 	struct xlog		*log,
44 	struct xlog_ticket	*ticket,
45 	struct xlog_in_core	**iclog,
46 	xfs_lsn_t		*commitlsnp);
47 
48 STATIC struct xlog *
49 xlog_alloc_log(
50 	struct xfs_mount	*mp,
51 	struct xfs_buftarg	*log_target,
52 	xfs_daddr_t		blk_offset,
53 	int			num_bblks);
54 STATIC int
55 xlog_space_left(
56 	struct xlog		*log,
57 	atomic64_t		*head);
58 STATIC int
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 STATIC void
63 xlog_dealloc_log(
64 	struct xlog		*log);
65 
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 	struct xlog		*log,
71 	int			aborted,
72 	struct xlog_in_core	*iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 	struct xlog		*log,
76 	int			len,
77 	struct xlog_in_core	**iclog,
78 	struct xlog_ticket	*ticket,
79 	int			*continued_write,
80 	int			*logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 	struct xlog		*log,
84 	struct xlog_in_core	*iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 	struct xlog		*log,
88 	struct xlog_in_core	*iclog,
89 	int			eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 	struct xlog		*log,
93 	struct xlog_in_core	*iclog);
94 
95 STATIC void
96 xlog_grant_push_ail(
97 	struct xlog		*log,
98 	int			need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 	struct xlog		*log,
102 	struct xlog_ticket	*ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 	struct xlog		*log,
106 	struct xlog_ticket	*ticket);
107 
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 	struct xlog		*log,
112 	void			*ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 	struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 	struct xlog		*log,
119 	struct xlog_in_core	*iclog,
120 	int			count,
121 	bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 	struct xlog		*log,
125 	struct xlog_in_core	*iclog,
126 	xfs_lsn_t		tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133 
134 STATIC int
135 xlog_iclogs_empty(
136 	struct xlog		*log);
137 
138 static void
139 xlog_grant_sub_space(
140 	struct xlog		*log,
141 	atomic64_t		*head,
142 	int			bytes)
143 {
144 	int64_t	head_val = atomic64_read(head);
145 	int64_t new, old;
146 
147 	do {
148 		int	cycle, space;
149 
150 		xlog_crack_grant_head_val(head_val, &cycle, &space);
151 
152 		space -= bytes;
153 		if (space < 0) {
154 			space += log->l_logsize;
155 			cycle--;
156 		}
157 
158 		old = head_val;
159 		new = xlog_assign_grant_head_val(cycle, space);
160 		head_val = atomic64_cmpxchg(head, old, new);
161 	} while (head_val != old);
162 }
163 
164 static void
165 xlog_grant_add_space(
166 	struct xlog		*log,
167 	atomic64_t		*head,
168 	int			bytes)
169 {
170 	int64_t	head_val = atomic64_read(head);
171 	int64_t new, old;
172 
173 	do {
174 		int		tmp;
175 		int		cycle, space;
176 
177 		xlog_crack_grant_head_val(head_val, &cycle, &space);
178 
179 		tmp = log->l_logsize - space;
180 		if (tmp > bytes)
181 			space += bytes;
182 		else {
183 			space = bytes - tmp;
184 			cycle++;
185 		}
186 
187 		old = head_val;
188 		new = xlog_assign_grant_head_val(cycle, space);
189 		head_val = atomic64_cmpxchg(head, old, new);
190 	} while (head_val != old);
191 }
192 
193 STATIC void
194 xlog_grant_head_init(
195 	struct xlog_grant_head	*head)
196 {
197 	xlog_assign_grant_head(&head->grant, 1, 0);
198 	INIT_LIST_HEAD(&head->waiters);
199 	spin_lock_init(&head->lock);
200 }
201 
202 STATIC void
203 xlog_grant_head_wake_all(
204 	struct xlog_grant_head	*head)
205 {
206 	struct xlog_ticket	*tic;
207 
208 	spin_lock(&head->lock);
209 	list_for_each_entry(tic, &head->waiters, t_queue)
210 		wake_up_process(tic->t_task);
211 	spin_unlock(&head->lock);
212 }
213 
214 static inline int
215 xlog_ticket_reservation(
216 	struct xlog		*log,
217 	struct xlog_grant_head	*head,
218 	struct xlog_ticket	*tic)
219 {
220 	if (head == &log->l_write_head) {
221 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 		return tic->t_unit_res;
223 	} else {
224 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 			return tic->t_unit_res * tic->t_cnt;
226 		else
227 			return tic->t_unit_res;
228 	}
229 }
230 
231 STATIC bool
232 xlog_grant_head_wake(
233 	struct xlog		*log,
234 	struct xlog_grant_head	*head,
235 	int			*free_bytes)
236 {
237 	struct xlog_ticket	*tic;
238 	int			need_bytes;
239 
240 	list_for_each_entry(tic, &head->waiters, t_queue) {
241 		need_bytes = xlog_ticket_reservation(log, head, tic);
242 		if (*free_bytes < need_bytes)
243 			return false;
244 
245 		*free_bytes -= need_bytes;
246 		trace_xfs_log_grant_wake_up(log, tic);
247 		wake_up_process(tic->t_task);
248 	}
249 
250 	return true;
251 }
252 
253 STATIC int
254 xlog_grant_head_wait(
255 	struct xlog		*log,
256 	struct xlog_grant_head	*head,
257 	struct xlog_ticket	*tic,
258 	int			need_bytes) __releases(&head->lock)
259 					    __acquires(&head->lock)
260 {
261 	list_add_tail(&tic->t_queue, &head->waiters);
262 
263 	do {
264 		if (XLOG_FORCED_SHUTDOWN(log))
265 			goto shutdown;
266 		xlog_grant_push_ail(log, need_bytes);
267 
268 		__set_current_state(TASK_UNINTERRUPTIBLE);
269 		spin_unlock(&head->lock);
270 
271 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272 
273 		trace_xfs_log_grant_sleep(log, tic);
274 		schedule();
275 		trace_xfs_log_grant_wake(log, tic);
276 
277 		spin_lock(&head->lock);
278 		if (XLOG_FORCED_SHUTDOWN(log))
279 			goto shutdown;
280 	} while (xlog_space_left(log, &head->grant) < need_bytes);
281 
282 	list_del_init(&tic->t_queue);
283 	return 0;
284 shutdown:
285 	list_del_init(&tic->t_queue);
286 	return -EIO;
287 }
288 
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308 	struct xlog		*log,
309 	struct xlog_grant_head	*head,
310 	struct xlog_ticket	*tic,
311 	int			*need_bytes)
312 {
313 	int			free_bytes;
314 	int			error = 0;
315 
316 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317 
318 	/*
319 	 * If there are other waiters on the queue then give them a chance at
320 	 * logspace before us.  Wake up the first waiters, if we do not wake
321 	 * up all the waiters then go to sleep waiting for more free space,
322 	 * otherwise try to get some space for this transaction.
323 	 */
324 	*need_bytes = xlog_ticket_reservation(log, head, tic);
325 	free_bytes = xlog_space_left(log, &head->grant);
326 	if (!list_empty_careful(&head->waiters)) {
327 		spin_lock(&head->lock);
328 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 		    free_bytes < *need_bytes) {
330 			error = xlog_grant_head_wait(log, head, tic,
331 						     *need_bytes);
332 		}
333 		spin_unlock(&head->lock);
334 	} else if (free_bytes < *need_bytes) {
335 		spin_lock(&head->lock);
336 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 		spin_unlock(&head->lock);
338 	}
339 
340 	return error;
341 }
342 
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 	tic->t_res_num = 0;
347 	tic->t_res_arr_sum = 0;
348 	tic->t_res_num_ophdrs = 0;
349 }
350 
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 		/* add to overflow and start again */
356 		tic->t_res_o_flow += tic->t_res_arr_sum;
357 		tic->t_res_num = 0;
358 		tic->t_res_arr_sum = 0;
359 	}
360 
361 	tic->t_res_arr[tic->t_res_num].r_len = len;
362 	tic->t_res_arr[tic->t_res_num].r_type = type;
363 	tic->t_res_arr_sum += len;
364 	tic->t_res_num++;
365 }
366 
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372 	struct xfs_mount	*mp,
373 	struct xlog_ticket	*tic)
374 {
375 	struct xlog		*log = mp->m_log;
376 	int			need_bytes;
377 	int			error = 0;
378 
379 	if (XLOG_FORCED_SHUTDOWN(log))
380 		return -EIO;
381 
382 	XFS_STATS_INC(mp, xs_try_logspace);
383 
384 	/*
385 	 * This is a new transaction on the ticket, so we need to change the
386 	 * transaction ID so that the next transaction has a different TID in
387 	 * the log. Just add one to the existing tid so that we can see chains
388 	 * of rolling transactions in the log easily.
389 	 */
390 	tic->t_tid++;
391 
392 	xlog_grant_push_ail(log, tic->t_unit_res);
393 
394 	tic->t_curr_res = tic->t_unit_res;
395 	xlog_tic_reset_res(tic);
396 
397 	if (tic->t_cnt > 0)
398 		return 0;
399 
400 	trace_xfs_log_regrant(log, tic);
401 
402 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 				      &need_bytes);
404 	if (error)
405 		goto out_error;
406 
407 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 	trace_xfs_log_regrant_exit(log, tic);
409 	xlog_verify_grant_tail(log);
410 	return 0;
411 
412 out_error:
413 	/*
414 	 * If we are failing, make sure the ticket doesn't have any current
415 	 * reservations.  We don't want to add this back when the ticket/
416 	 * transaction gets cancelled.
417 	 */
418 	tic->t_curr_res = 0;
419 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
420 	return error;
421 }
422 
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433 	struct xfs_mount	*mp,
434 	int		 	unit_bytes,
435 	int		 	cnt,
436 	struct xlog_ticket	**ticp,
437 	__uint8_t	 	client,
438 	bool			permanent,
439 	uint		 	t_type)
440 {
441 	struct xlog		*log = mp->m_log;
442 	struct xlog_ticket	*tic;
443 	int			need_bytes;
444 	int			error = 0;
445 
446 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447 
448 	if (XLOG_FORCED_SHUTDOWN(log))
449 		return -EIO;
450 
451 	XFS_STATS_INC(mp, xs_try_logspace);
452 
453 	ASSERT(*ticp == NULL);
454 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 				KM_SLEEP | KM_MAYFAIL);
456 	if (!tic)
457 		return -ENOMEM;
458 
459 	tic->t_trans_type = t_type;
460 	*ticp = tic;
461 
462 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 					    : tic->t_unit_res);
464 
465 	trace_xfs_log_reserve(log, tic);
466 
467 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 				      &need_bytes);
469 	if (error)
470 		goto out_error;
471 
472 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 	trace_xfs_log_reserve_exit(log, tic);
475 	xlog_verify_grant_tail(log);
476 	return 0;
477 
478 out_error:
479 	/*
480 	 * If we are failing, make sure the ticket doesn't have any current
481 	 * reservations.  We don't want to add this back when the ticket/
482 	 * transaction gets cancelled.
483 	 */
484 	tic->t_curr_res = 0;
485 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
486 	return error;
487 }
488 
489 
490 /*
491  * NOTES:
492  *
493  *	1. currblock field gets updated at startup and after in-core logs
494  *		marked as with WANT_SYNC.
495  */
496 
497 /*
498  * This routine is called when a user of a log manager ticket is done with
499  * the reservation.  If the ticket was ever used, then a commit record for
500  * the associated transaction is written out as a log operation header with
501  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
502  * a given ticket.  If the ticket was one with a permanent reservation, then
503  * a few operations are done differently.  Permanent reservation tickets by
504  * default don't release the reservation.  They just commit the current
505  * transaction with the belief that the reservation is still needed.  A flag
506  * must be passed in before permanent reservations are actually released.
507  * When these type of tickets are not released, they need to be set into
508  * the inited state again.  By doing this, a start record will be written
509  * out when the next write occurs.
510  */
511 xfs_lsn_t
512 xfs_log_done(
513 	struct xfs_mount	*mp,
514 	struct xlog_ticket	*ticket,
515 	struct xlog_in_core	**iclog,
516 	bool			regrant)
517 {
518 	struct xlog		*log = mp->m_log;
519 	xfs_lsn_t		lsn = 0;
520 
521 	if (XLOG_FORCED_SHUTDOWN(log) ||
522 	    /*
523 	     * If nothing was ever written, don't write out commit record.
524 	     * If we get an error, just continue and give back the log ticket.
525 	     */
526 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528 		lsn = (xfs_lsn_t) -1;
529 		regrant = false;
530 	}
531 
532 
533 	if (!regrant) {
534 		trace_xfs_log_done_nonperm(log, ticket);
535 
536 		/*
537 		 * Release ticket if not permanent reservation or a specific
538 		 * request has been made to release a permanent reservation.
539 		 */
540 		xlog_ungrant_log_space(log, ticket);
541 	} else {
542 		trace_xfs_log_done_perm(log, ticket);
543 
544 		xlog_regrant_reserve_log_space(log, ticket);
545 		/* If this ticket was a permanent reservation and we aren't
546 		 * trying to release it, reset the inited flags; so next time
547 		 * we write, a start record will be written out.
548 		 */
549 		ticket->t_flags |= XLOG_TIC_INITED;
550 	}
551 
552 	xfs_log_ticket_put(ticket);
553 	return lsn;
554 }
555 
556 /*
557  * Attaches a new iclog I/O completion callback routine during
558  * transaction commit.  If the log is in error state, a non-zero
559  * return code is handed back and the caller is responsible for
560  * executing the callback at an appropriate time.
561  */
562 int
563 xfs_log_notify(
564 	struct xfs_mount	*mp,
565 	struct xlog_in_core	*iclog,
566 	xfs_log_callback_t	*cb)
567 {
568 	int	abortflg;
569 
570 	spin_lock(&iclog->ic_callback_lock);
571 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
572 	if (!abortflg) {
573 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
574 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
575 		cb->cb_next = NULL;
576 		*(iclog->ic_callback_tail) = cb;
577 		iclog->ic_callback_tail = &(cb->cb_next);
578 	}
579 	spin_unlock(&iclog->ic_callback_lock);
580 	return abortflg;
581 }
582 
583 int
584 xfs_log_release_iclog(
585 	struct xfs_mount	*mp,
586 	struct xlog_in_core	*iclog)
587 {
588 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
589 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
590 		return -EIO;
591 	}
592 
593 	return 0;
594 }
595 
596 /*
597  * Mount a log filesystem
598  *
599  * mp		- ubiquitous xfs mount point structure
600  * log_target	- buftarg of on-disk log device
601  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
602  * num_bblocks	- Number of BBSIZE blocks in on-disk log
603  *
604  * Return error or zero.
605  */
606 int
607 xfs_log_mount(
608 	xfs_mount_t	*mp,
609 	xfs_buftarg_t	*log_target,
610 	xfs_daddr_t	blk_offset,
611 	int		num_bblks)
612 {
613 	int		error = 0;
614 	int		min_logfsbs;
615 
616 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
617 		xfs_notice(mp, "Mounting V%d Filesystem",
618 			   XFS_SB_VERSION_NUM(&mp->m_sb));
619 	} else {
620 		xfs_notice(mp,
621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622 			   XFS_SB_VERSION_NUM(&mp->m_sb));
623 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
624 	}
625 
626 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
627 	if (IS_ERR(mp->m_log)) {
628 		error = PTR_ERR(mp->m_log);
629 		goto out;
630 	}
631 
632 	/*
633 	 * Validate the given log space and drop a critical message via syslog
634 	 * if the log size is too small that would lead to some unexpected
635 	 * situations in transaction log space reservation stage.
636 	 *
637 	 * Note: we can't just reject the mount if the validation fails.  This
638 	 * would mean that people would have to downgrade their kernel just to
639 	 * remedy the situation as there is no way to grow the log (short of
640 	 * black magic surgery with xfs_db).
641 	 *
642 	 * We can, however, reject mounts for CRC format filesystems, as the
643 	 * mkfs binary being used to make the filesystem should never create a
644 	 * filesystem with a log that is too small.
645 	 */
646 	min_logfsbs = xfs_log_calc_minimum_size(mp);
647 
648 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
649 		xfs_warn(mp,
650 		"Log size %d blocks too small, minimum size is %d blocks",
651 			 mp->m_sb.sb_logblocks, min_logfsbs);
652 		error = -EINVAL;
653 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
654 		xfs_warn(mp,
655 		"Log size %d blocks too large, maximum size is %lld blocks",
656 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
657 		error = -EINVAL;
658 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
659 		xfs_warn(mp,
660 		"log size %lld bytes too large, maximum size is %lld bytes",
661 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
662 			 XFS_MAX_LOG_BYTES);
663 		error = -EINVAL;
664 	}
665 	if (error) {
666 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
667 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
668 			ASSERT(0);
669 			goto out_free_log;
670 		}
671 		xfs_crit(mp, "Log size out of supported range.");
672 		xfs_crit(mp,
673 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
674 	}
675 
676 	/*
677 	 * Initialize the AIL now we have a log.
678 	 */
679 	error = xfs_trans_ail_init(mp);
680 	if (error) {
681 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
682 		goto out_free_log;
683 	}
684 	mp->m_log->l_ailp = mp->m_ail;
685 
686 	/*
687 	 * skip log recovery on a norecovery mount.  pretend it all
688 	 * just worked.
689 	 */
690 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
691 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
692 
693 		if (readonly)
694 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
695 
696 		error = xlog_recover(mp->m_log);
697 
698 		if (readonly)
699 			mp->m_flags |= XFS_MOUNT_RDONLY;
700 		if (error) {
701 			xfs_warn(mp, "log mount/recovery failed: error %d",
702 				error);
703 			xlog_recover_cancel(mp->m_log);
704 			goto out_destroy_ail;
705 		}
706 	}
707 
708 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
709 			       "log");
710 	if (error)
711 		goto out_destroy_ail;
712 
713 	/* Normal transactions can now occur */
714 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
715 
716 	/*
717 	 * Now the log has been fully initialised and we know were our
718 	 * space grant counters are, we can initialise the permanent ticket
719 	 * needed for delayed logging to work.
720 	 */
721 	xlog_cil_init_post_recovery(mp->m_log);
722 
723 	return 0;
724 
725 out_destroy_ail:
726 	xfs_trans_ail_destroy(mp);
727 out_free_log:
728 	xlog_dealloc_log(mp->m_log);
729 out:
730 	return error;
731 }
732 
733 /*
734  * Finish the recovery of the file system.  This is separate from the
735  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
736  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
737  * here.
738  *
739  * If we finish recovery successfully, start the background log work. If we are
740  * not doing recovery, then we have a RO filesystem and we don't need to start
741  * it.
742  */
743 int
744 xfs_log_mount_finish(
745 	struct xfs_mount	*mp)
746 {
747 	int	error = 0;
748 
749 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
750 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
751 		return 0;
752 	}
753 
754 	error = xlog_recover_finish(mp->m_log);
755 	if (!error)
756 		xfs_log_work_queue(mp);
757 
758 	return error;
759 }
760 
761 /*
762  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
763  * the log.
764  */
765 int
766 xfs_log_mount_cancel(
767 	struct xfs_mount	*mp)
768 {
769 	int			error;
770 
771 	error = xlog_recover_cancel(mp->m_log);
772 	xfs_log_unmount(mp);
773 
774 	return error;
775 }
776 
777 /*
778  * Final log writes as part of unmount.
779  *
780  * Mark the filesystem clean as unmount happens.  Note that during relocation
781  * this routine needs to be executed as part of source-bag while the
782  * deallocation must not be done until source-end.
783  */
784 
785 /*
786  * Unmount record used to have a string "Unmount filesystem--" in the
787  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
788  * We just write the magic number now since that particular field isn't
789  * currently architecture converted and "Unmount" is a bit foo.
790  * As far as I know, there weren't any dependencies on the old behaviour.
791  */
792 
793 int
794 xfs_log_unmount_write(xfs_mount_t *mp)
795 {
796 	struct xlog	 *log = mp->m_log;
797 	xlog_in_core_t	 *iclog;
798 #ifdef DEBUG
799 	xlog_in_core_t	 *first_iclog;
800 #endif
801 	xlog_ticket_t	*tic = NULL;
802 	xfs_lsn_t	 lsn;
803 	int		 error;
804 
805 	/*
806 	 * Don't write out unmount record on read-only mounts.
807 	 * Or, if we are doing a forced umount (typically because of IO errors).
808 	 */
809 	if (mp->m_flags & XFS_MOUNT_RDONLY)
810 		return 0;
811 
812 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
813 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
814 
815 #ifdef DEBUG
816 	first_iclog = iclog = log->l_iclog;
817 	do {
818 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
819 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
820 			ASSERT(iclog->ic_offset == 0);
821 		}
822 		iclog = iclog->ic_next;
823 	} while (iclog != first_iclog);
824 #endif
825 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
826 		error = xfs_log_reserve(mp, 600, 1, &tic,
827 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
828 		if (!error) {
829 			/* the data section must be 32 bit size aligned */
830 			struct {
831 			    __uint16_t magic;
832 			    __uint16_t pad1;
833 			    __uint32_t pad2; /* may as well make it 64 bits */
834 			} magic = {
835 				.magic = XLOG_UNMOUNT_TYPE,
836 			};
837 			struct xfs_log_iovec reg = {
838 				.i_addr = &magic,
839 				.i_len = sizeof(magic),
840 				.i_type = XLOG_REG_TYPE_UNMOUNT,
841 			};
842 			struct xfs_log_vec vec = {
843 				.lv_niovecs = 1,
844 				.lv_iovecp = &reg,
845 			};
846 
847 			/* remove inited flag, and account for space used */
848 			tic->t_flags = 0;
849 			tic->t_curr_res -= sizeof(magic);
850 			error = xlog_write(log, &vec, tic, &lsn,
851 					   NULL, XLOG_UNMOUNT_TRANS);
852 			/*
853 			 * At this point, we're umounting anyway,
854 			 * so there's no point in transitioning log state
855 			 * to IOERROR. Just continue...
856 			 */
857 		}
858 
859 		if (error)
860 			xfs_alert(mp, "%s: unmount record failed", __func__);
861 
862 
863 		spin_lock(&log->l_icloglock);
864 		iclog = log->l_iclog;
865 		atomic_inc(&iclog->ic_refcnt);
866 		xlog_state_want_sync(log, iclog);
867 		spin_unlock(&log->l_icloglock);
868 		error = xlog_state_release_iclog(log, iclog);
869 
870 		spin_lock(&log->l_icloglock);
871 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
872 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
873 			if (!XLOG_FORCED_SHUTDOWN(log)) {
874 				xlog_wait(&iclog->ic_force_wait,
875 							&log->l_icloglock);
876 			} else {
877 				spin_unlock(&log->l_icloglock);
878 			}
879 		} else {
880 			spin_unlock(&log->l_icloglock);
881 		}
882 		if (tic) {
883 			trace_xfs_log_umount_write(log, tic);
884 			xlog_ungrant_log_space(log, tic);
885 			xfs_log_ticket_put(tic);
886 		}
887 	} else {
888 		/*
889 		 * We're already in forced_shutdown mode, couldn't
890 		 * even attempt to write out the unmount transaction.
891 		 *
892 		 * Go through the motions of sync'ing and releasing
893 		 * the iclog, even though no I/O will actually happen,
894 		 * we need to wait for other log I/Os that may already
895 		 * be in progress.  Do this as a separate section of
896 		 * code so we'll know if we ever get stuck here that
897 		 * we're in this odd situation of trying to unmount
898 		 * a file system that went into forced_shutdown as
899 		 * the result of an unmount..
900 		 */
901 		spin_lock(&log->l_icloglock);
902 		iclog = log->l_iclog;
903 		atomic_inc(&iclog->ic_refcnt);
904 
905 		xlog_state_want_sync(log, iclog);
906 		spin_unlock(&log->l_icloglock);
907 		error =  xlog_state_release_iclog(log, iclog);
908 
909 		spin_lock(&log->l_icloglock);
910 
911 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
912 			|| iclog->ic_state == XLOG_STATE_DIRTY
913 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
914 
915 				xlog_wait(&iclog->ic_force_wait,
916 							&log->l_icloglock);
917 		} else {
918 			spin_unlock(&log->l_icloglock);
919 		}
920 	}
921 
922 	return error;
923 }	/* xfs_log_unmount_write */
924 
925 /*
926  * Empty the log for unmount/freeze.
927  *
928  * To do this, we first need to shut down the background log work so it is not
929  * trying to cover the log as we clean up. We then need to unpin all objects in
930  * the log so we can then flush them out. Once they have completed their IO and
931  * run the callbacks removing themselves from the AIL, we can write the unmount
932  * record.
933  */
934 void
935 xfs_log_quiesce(
936 	struct xfs_mount	*mp)
937 {
938 	cancel_delayed_work_sync(&mp->m_log->l_work);
939 	xfs_log_force(mp, XFS_LOG_SYNC);
940 
941 	/*
942 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
943 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
944 	 * xfs_buf_iowait() cannot be used because it was pushed with the
945 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
946 	 * the IO to complete.
947 	 */
948 	xfs_ail_push_all_sync(mp->m_ail);
949 	xfs_wait_buftarg(mp->m_ddev_targp);
950 	xfs_buf_lock(mp->m_sb_bp);
951 	xfs_buf_unlock(mp->m_sb_bp);
952 
953 	xfs_log_unmount_write(mp);
954 }
955 
956 /*
957  * Shut down and release the AIL and Log.
958  *
959  * During unmount, we need to ensure we flush all the dirty metadata objects
960  * from the AIL so that the log is empty before we write the unmount record to
961  * the log. Once this is done, we can tear down the AIL and the log.
962  */
963 void
964 xfs_log_unmount(
965 	struct xfs_mount	*mp)
966 {
967 	xfs_log_quiesce(mp);
968 
969 	xfs_trans_ail_destroy(mp);
970 
971 	xfs_sysfs_del(&mp->m_log->l_kobj);
972 
973 	xlog_dealloc_log(mp->m_log);
974 }
975 
976 void
977 xfs_log_item_init(
978 	struct xfs_mount	*mp,
979 	struct xfs_log_item	*item,
980 	int			type,
981 	const struct xfs_item_ops *ops)
982 {
983 	item->li_mountp = mp;
984 	item->li_ailp = mp->m_ail;
985 	item->li_type = type;
986 	item->li_ops = ops;
987 	item->li_lv = NULL;
988 
989 	INIT_LIST_HEAD(&item->li_ail);
990 	INIT_LIST_HEAD(&item->li_cil);
991 }
992 
993 /*
994  * Wake up processes waiting for log space after we have moved the log tail.
995  */
996 void
997 xfs_log_space_wake(
998 	struct xfs_mount	*mp)
999 {
1000 	struct xlog		*log = mp->m_log;
1001 	int			free_bytes;
1002 
1003 	if (XLOG_FORCED_SHUTDOWN(log))
1004 		return;
1005 
1006 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1007 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1008 
1009 		spin_lock(&log->l_write_head.lock);
1010 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1011 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1012 		spin_unlock(&log->l_write_head.lock);
1013 	}
1014 
1015 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1016 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1017 
1018 		spin_lock(&log->l_reserve_head.lock);
1019 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1020 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1021 		spin_unlock(&log->l_reserve_head.lock);
1022 	}
1023 }
1024 
1025 /*
1026  * Determine if we have a transaction that has gone to disk that needs to be
1027  * covered. To begin the transition to the idle state firstly the log needs to
1028  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1029  * we start attempting to cover the log.
1030  *
1031  * Only if we are then in a state where covering is needed, the caller is
1032  * informed that dummy transactions are required to move the log into the idle
1033  * state.
1034  *
1035  * If there are any items in the AIl or CIL, then we do not want to attempt to
1036  * cover the log as we may be in a situation where there isn't log space
1037  * available to run a dummy transaction and this can lead to deadlocks when the
1038  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1039  * there's no point in running a dummy transaction at this point because we
1040  * can't start trying to idle the log until both the CIL and AIL are empty.
1041  */
1042 int
1043 xfs_log_need_covered(xfs_mount_t *mp)
1044 {
1045 	struct xlog	*log = mp->m_log;
1046 	int		needed = 0;
1047 
1048 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1049 		return 0;
1050 
1051 	if (!xlog_cil_empty(log))
1052 		return 0;
1053 
1054 	spin_lock(&log->l_icloglock);
1055 	switch (log->l_covered_state) {
1056 	case XLOG_STATE_COVER_DONE:
1057 	case XLOG_STATE_COVER_DONE2:
1058 	case XLOG_STATE_COVER_IDLE:
1059 		break;
1060 	case XLOG_STATE_COVER_NEED:
1061 	case XLOG_STATE_COVER_NEED2:
1062 		if (xfs_ail_min_lsn(log->l_ailp))
1063 			break;
1064 		if (!xlog_iclogs_empty(log))
1065 			break;
1066 
1067 		needed = 1;
1068 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1069 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1070 		else
1071 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1072 		break;
1073 	default:
1074 		needed = 1;
1075 		break;
1076 	}
1077 	spin_unlock(&log->l_icloglock);
1078 	return needed;
1079 }
1080 
1081 /*
1082  * We may be holding the log iclog lock upon entering this routine.
1083  */
1084 xfs_lsn_t
1085 xlog_assign_tail_lsn_locked(
1086 	struct xfs_mount	*mp)
1087 {
1088 	struct xlog		*log = mp->m_log;
1089 	struct xfs_log_item	*lip;
1090 	xfs_lsn_t		tail_lsn;
1091 
1092 	assert_spin_locked(&mp->m_ail->xa_lock);
1093 
1094 	/*
1095 	 * To make sure we always have a valid LSN for the log tail we keep
1096 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1097 	 * and use that when the AIL was empty.
1098 	 */
1099 	lip = xfs_ail_min(mp->m_ail);
1100 	if (lip)
1101 		tail_lsn = lip->li_lsn;
1102 	else
1103 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1104 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1105 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1106 	return tail_lsn;
1107 }
1108 
1109 xfs_lsn_t
1110 xlog_assign_tail_lsn(
1111 	struct xfs_mount	*mp)
1112 {
1113 	xfs_lsn_t		tail_lsn;
1114 
1115 	spin_lock(&mp->m_ail->xa_lock);
1116 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1117 	spin_unlock(&mp->m_ail->xa_lock);
1118 
1119 	return tail_lsn;
1120 }
1121 
1122 /*
1123  * Return the space in the log between the tail and the head.  The head
1124  * is passed in the cycle/bytes formal parms.  In the special case where
1125  * the reserve head has wrapped passed the tail, this calculation is no
1126  * longer valid.  In this case, just return 0 which means there is no space
1127  * in the log.  This works for all places where this function is called
1128  * with the reserve head.  Of course, if the write head were to ever
1129  * wrap the tail, we should blow up.  Rather than catch this case here,
1130  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1131  *
1132  * This code also handles the case where the reservation head is behind
1133  * the tail.  The details of this case are described below, but the end
1134  * result is that we return the size of the log as the amount of space left.
1135  */
1136 STATIC int
1137 xlog_space_left(
1138 	struct xlog	*log,
1139 	atomic64_t	*head)
1140 {
1141 	int		free_bytes;
1142 	int		tail_bytes;
1143 	int		tail_cycle;
1144 	int		head_cycle;
1145 	int		head_bytes;
1146 
1147 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1148 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1149 	tail_bytes = BBTOB(tail_bytes);
1150 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1151 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1152 	else if (tail_cycle + 1 < head_cycle)
1153 		return 0;
1154 	else if (tail_cycle < head_cycle) {
1155 		ASSERT(tail_cycle == (head_cycle - 1));
1156 		free_bytes = tail_bytes - head_bytes;
1157 	} else {
1158 		/*
1159 		 * The reservation head is behind the tail.
1160 		 * In this case we just want to return the size of the
1161 		 * log as the amount of space left.
1162 		 */
1163 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1164 		xfs_alert(log->l_mp,
1165 			  "  tail_cycle = %d, tail_bytes = %d",
1166 			  tail_cycle, tail_bytes);
1167 		xfs_alert(log->l_mp,
1168 			  "  GH   cycle = %d, GH   bytes = %d",
1169 			  head_cycle, head_bytes);
1170 		ASSERT(0);
1171 		free_bytes = log->l_logsize;
1172 	}
1173 	return free_bytes;
1174 }
1175 
1176 
1177 /*
1178  * Log function which is called when an io completes.
1179  *
1180  * The log manager needs its own routine, in order to control what
1181  * happens with the buffer after the write completes.
1182  */
1183 void
1184 xlog_iodone(xfs_buf_t *bp)
1185 {
1186 	struct xlog_in_core	*iclog = bp->b_fspriv;
1187 	struct xlog		*l = iclog->ic_log;
1188 	int			aborted = 0;
1189 
1190 	/*
1191 	 * Race to shutdown the filesystem if we see an error or the iclog is in
1192 	 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1193 	 * CRC errors into log recovery.
1194 	 */
1195 	if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1196 			   XFS_RANDOM_IODONE_IOERR) ||
1197 	    iclog->ic_state & XLOG_STATE_IOABORT) {
1198 		if (iclog->ic_state & XLOG_STATE_IOABORT)
1199 			iclog->ic_state &= ~XLOG_STATE_IOABORT;
1200 
1201 		xfs_buf_ioerror_alert(bp, __func__);
1202 		xfs_buf_stale(bp);
1203 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1204 		/*
1205 		 * This flag will be propagated to the trans-committed
1206 		 * callback routines to let them know that the log-commit
1207 		 * didn't succeed.
1208 		 */
1209 		aborted = XFS_LI_ABORTED;
1210 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1211 		aborted = XFS_LI_ABORTED;
1212 	}
1213 
1214 	/* log I/O is always issued ASYNC */
1215 	ASSERT(XFS_BUF_ISASYNC(bp));
1216 	xlog_state_done_syncing(iclog, aborted);
1217 
1218 	/*
1219 	 * drop the buffer lock now that we are done. Nothing references
1220 	 * the buffer after this, so an unmount waiting on this lock can now
1221 	 * tear it down safely. As such, it is unsafe to reference the buffer
1222 	 * (bp) after the unlock as we could race with it being freed.
1223 	 */
1224 	xfs_buf_unlock(bp);
1225 }
1226 
1227 /*
1228  * Return size of each in-core log record buffer.
1229  *
1230  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1231  *
1232  * If the filesystem blocksize is too large, we may need to choose a
1233  * larger size since the directory code currently logs entire blocks.
1234  */
1235 
1236 STATIC void
1237 xlog_get_iclog_buffer_size(
1238 	struct xfs_mount	*mp,
1239 	struct xlog		*log)
1240 {
1241 	int size;
1242 	int xhdrs;
1243 
1244 	if (mp->m_logbufs <= 0)
1245 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1246 	else
1247 		log->l_iclog_bufs = mp->m_logbufs;
1248 
1249 	/*
1250 	 * Buffer size passed in from mount system call.
1251 	 */
1252 	if (mp->m_logbsize > 0) {
1253 		size = log->l_iclog_size = mp->m_logbsize;
1254 		log->l_iclog_size_log = 0;
1255 		while (size != 1) {
1256 			log->l_iclog_size_log++;
1257 			size >>= 1;
1258 		}
1259 
1260 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1261 			/* # headers = size / 32k
1262 			 * one header holds cycles from 32k of data
1263 			 */
1264 
1265 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1266 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1267 				xhdrs++;
1268 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1269 			log->l_iclog_heads = xhdrs;
1270 		} else {
1271 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1272 			log->l_iclog_hsize = BBSIZE;
1273 			log->l_iclog_heads = 1;
1274 		}
1275 		goto done;
1276 	}
1277 
1278 	/* All machines use 32kB buffers by default. */
1279 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1280 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1281 
1282 	/* the default log size is 16k or 32k which is one header sector */
1283 	log->l_iclog_hsize = BBSIZE;
1284 	log->l_iclog_heads = 1;
1285 
1286 done:
1287 	/* are we being asked to make the sizes selected above visible? */
1288 	if (mp->m_logbufs == 0)
1289 		mp->m_logbufs = log->l_iclog_bufs;
1290 	if (mp->m_logbsize == 0)
1291 		mp->m_logbsize = log->l_iclog_size;
1292 }	/* xlog_get_iclog_buffer_size */
1293 
1294 
1295 void
1296 xfs_log_work_queue(
1297 	struct xfs_mount        *mp)
1298 {
1299 	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1300 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1301 }
1302 
1303 /*
1304  * Every sync period we need to unpin all items in the AIL and push them to
1305  * disk. If there is nothing dirty, then we might need to cover the log to
1306  * indicate that the filesystem is idle.
1307  */
1308 void
1309 xfs_log_worker(
1310 	struct work_struct	*work)
1311 {
1312 	struct xlog		*log = container_of(to_delayed_work(work),
1313 						struct xlog, l_work);
1314 	struct xfs_mount	*mp = log->l_mp;
1315 
1316 	/* dgc: errors ignored - not fatal and nowhere to report them */
1317 	if (xfs_log_need_covered(mp)) {
1318 		/*
1319 		 * Dump a transaction into the log that contains no real change.
1320 		 * This is needed to stamp the current tail LSN into the log
1321 		 * during the covering operation.
1322 		 *
1323 		 * We cannot use an inode here for this - that will push dirty
1324 		 * state back up into the VFS and then periodic inode flushing
1325 		 * will prevent log covering from making progress. Hence we
1326 		 * synchronously log the superblock instead to ensure the
1327 		 * superblock is immediately unpinned and can be written back.
1328 		 */
1329 		xfs_sync_sb(mp, true);
1330 	} else
1331 		xfs_log_force(mp, 0);
1332 
1333 	/* start pushing all the metadata that is currently dirty */
1334 	xfs_ail_push_all(mp->m_ail);
1335 
1336 	/* queue us up again */
1337 	xfs_log_work_queue(mp);
1338 }
1339 
1340 /*
1341  * This routine initializes some of the log structure for a given mount point.
1342  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1343  * some other stuff may be filled in too.
1344  */
1345 STATIC struct xlog *
1346 xlog_alloc_log(
1347 	struct xfs_mount	*mp,
1348 	struct xfs_buftarg	*log_target,
1349 	xfs_daddr_t		blk_offset,
1350 	int			num_bblks)
1351 {
1352 	struct xlog		*log;
1353 	xlog_rec_header_t	*head;
1354 	xlog_in_core_t		**iclogp;
1355 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1356 	xfs_buf_t		*bp;
1357 	int			i;
1358 	int			error = -ENOMEM;
1359 	uint			log2_size = 0;
1360 
1361 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1362 	if (!log) {
1363 		xfs_warn(mp, "Log allocation failed: No memory!");
1364 		goto out;
1365 	}
1366 
1367 	log->l_mp	   = mp;
1368 	log->l_targ	   = log_target;
1369 	log->l_logsize     = BBTOB(num_bblks);
1370 	log->l_logBBstart  = blk_offset;
1371 	log->l_logBBsize   = num_bblks;
1372 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1373 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1374 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1375 
1376 	log->l_prev_block  = -1;
1377 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1378 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1379 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1380 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1381 
1382 	xlog_grant_head_init(&log->l_reserve_head);
1383 	xlog_grant_head_init(&log->l_write_head);
1384 
1385 	error = -EFSCORRUPTED;
1386 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1387 	        log2_size = mp->m_sb.sb_logsectlog;
1388 		if (log2_size < BBSHIFT) {
1389 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1390 				log2_size, BBSHIFT);
1391 			goto out_free_log;
1392 		}
1393 
1394 	        log2_size -= BBSHIFT;
1395 		if (log2_size > mp->m_sectbb_log) {
1396 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1397 				log2_size, mp->m_sectbb_log);
1398 			goto out_free_log;
1399 		}
1400 
1401 		/* for larger sector sizes, must have v2 or external log */
1402 		if (log2_size && log->l_logBBstart > 0 &&
1403 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1404 			xfs_warn(mp,
1405 		"log sector size (0x%x) invalid for configuration.",
1406 				log2_size);
1407 			goto out_free_log;
1408 		}
1409 	}
1410 	log->l_sectBBsize = 1 << log2_size;
1411 
1412 	xlog_get_iclog_buffer_size(mp, log);
1413 
1414 	/*
1415 	 * Use a NULL block for the extra log buffer used during splits so that
1416 	 * it will trigger errors if we ever try to do IO on it without first
1417 	 * having set it up properly.
1418 	 */
1419 	error = -ENOMEM;
1420 	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1421 			   BTOBB(log->l_iclog_size), 0);
1422 	if (!bp)
1423 		goto out_free_log;
1424 
1425 	/*
1426 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1427 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1428 	 * when appropriately.
1429 	 */
1430 	ASSERT(xfs_buf_islocked(bp));
1431 	xfs_buf_unlock(bp);
1432 
1433 	/* use high priority wq for log I/O completion */
1434 	bp->b_ioend_wq = mp->m_log_workqueue;
1435 	bp->b_iodone = xlog_iodone;
1436 	log->l_xbuf = bp;
1437 
1438 	spin_lock_init(&log->l_icloglock);
1439 	init_waitqueue_head(&log->l_flush_wait);
1440 
1441 	iclogp = &log->l_iclog;
1442 	/*
1443 	 * The amount of memory to allocate for the iclog structure is
1444 	 * rather funky due to the way the structure is defined.  It is
1445 	 * done this way so that we can use different sizes for machines
1446 	 * with different amounts of memory.  See the definition of
1447 	 * xlog_in_core_t in xfs_log_priv.h for details.
1448 	 */
1449 	ASSERT(log->l_iclog_size >= 4096);
1450 	for (i=0; i < log->l_iclog_bufs; i++) {
1451 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1452 		if (!*iclogp)
1453 			goto out_free_iclog;
1454 
1455 		iclog = *iclogp;
1456 		iclog->ic_prev = prev_iclog;
1457 		prev_iclog = iclog;
1458 
1459 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1460 						BTOBB(log->l_iclog_size), 0);
1461 		if (!bp)
1462 			goto out_free_iclog;
1463 
1464 		ASSERT(xfs_buf_islocked(bp));
1465 		xfs_buf_unlock(bp);
1466 
1467 		/* use high priority wq for log I/O completion */
1468 		bp->b_ioend_wq = mp->m_log_workqueue;
1469 		bp->b_iodone = xlog_iodone;
1470 		iclog->ic_bp = bp;
1471 		iclog->ic_data = bp->b_addr;
1472 #ifdef DEBUG
1473 		log->l_iclog_bak[i] = &iclog->ic_header;
1474 #endif
1475 		head = &iclog->ic_header;
1476 		memset(head, 0, sizeof(xlog_rec_header_t));
1477 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1478 		head->h_version = cpu_to_be32(
1479 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1480 		head->h_size = cpu_to_be32(log->l_iclog_size);
1481 		/* new fields */
1482 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1483 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1484 
1485 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1486 		iclog->ic_state = XLOG_STATE_ACTIVE;
1487 		iclog->ic_log = log;
1488 		atomic_set(&iclog->ic_refcnt, 0);
1489 		spin_lock_init(&iclog->ic_callback_lock);
1490 		iclog->ic_callback_tail = &(iclog->ic_callback);
1491 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1492 
1493 		init_waitqueue_head(&iclog->ic_force_wait);
1494 		init_waitqueue_head(&iclog->ic_write_wait);
1495 
1496 		iclogp = &iclog->ic_next;
1497 	}
1498 	*iclogp = log->l_iclog;			/* complete ring */
1499 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1500 
1501 	error = xlog_cil_init(log);
1502 	if (error)
1503 		goto out_free_iclog;
1504 	return log;
1505 
1506 out_free_iclog:
1507 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1508 		prev_iclog = iclog->ic_next;
1509 		if (iclog->ic_bp)
1510 			xfs_buf_free(iclog->ic_bp);
1511 		kmem_free(iclog);
1512 	}
1513 	spinlock_destroy(&log->l_icloglock);
1514 	xfs_buf_free(log->l_xbuf);
1515 out_free_log:
1516 	kmem_free(log);
1517 out:
1518 	return ERR_PTR(error);
1519 }	/* xlog_alloc_log */
1520 
1521 
1522 /*
1523  * Write out the commit record of a transaction associated with the given
1524  * ticket.  Return the lsn of the commit record.
1525  */
1526 STATIC int
1527 xlog_commit_record(
1528 	struct xlog		*log,
1529 	struct xlog_ticket	*ticket,
1530 	struct xlog_in_core	**iclog,
1531 	xfs_lsn_t		*commitlsnp)
1532 {
1533 	struct xfs_mount *mp = log->l_mp;
1534 	int	error;
1535 	struct xfs_log_iovec reg = {
1536 		.i_addr = NULL,
1537 		.i_len = 0,
1538 		.i_type = XLOG_REG_TYPE_COMMIT,
1539 	};
1540 	struct xfs_log_vec vec = {
1541 		.lv_niovecs = 1,
1542 		.lv_iovecp = &reg,
1543 	};
1544 
1545 	ASSERT_ALWAYS(iclog);
1546 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1547 					XLOG_COMMIT_TRANS);
1548 	if (error)
1549 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1550 	return error;
1551 }
1552 
1553 /*
1554  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1555  * log space.  This code pushes on the lsn which would supposedly free up
1556  * the 25% which we want to leave free.  We may need to adopt a policy which
1557  * pushes on an lsn which is further along in the log once we reach the high
1558  * water mark.  In this manner, we would be creating a low water mark.
1559  */
1560 STATIC void
1561 xlog_grant_push_ail(
1562 	struct xlog	*log,
1563 	int		need_bytes)
1564 {
1565 	xfs_lsn_t	threshold_lsn = 0;
1566 	xfs_lsn_t	last_sync_lsn;
1567 	int		free_blocks;
1568 	int		free_bytes;
1569 	int		threshold_block;
1570 	int		threshold_cycle;
1571 	int		free_threshold;
1572 
1573 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1574 
1575 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1576 	free_blocks = BTOBBT(free_bytes);
1577 
1578 	/*
1579 	 * Set the threshold for the minimum number of free blocks in the
1580 	 * log to the maximum of what the caller needs, one quarter of the
1581 	 * log, and 256 blocks.
1582 	 */
1583 	free_threshold = BTOBB(need_bytes);
1584 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1585 	free_threshold = MAX(free_threshold, 256);
1586 	if (free_blocks >= free_threshold)
1587 		return;
1588 
1589 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1590 						&threshold_block);
1591 	threshold_block += free_threshold;
1592 	if (threshold_block >= log->l_logBBsize) {
1593 		threshold_block -= log->l_logBBsize;
1594 		threshold_cycle += 1;
1595 	}
1596 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1597 					threshold_block);
1598 	/*
1599 	 * Don't pass in an lsn greater than the lsn of the last
1600 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1601 	 * so that it doesn't change between the compare and the set.
1602 	 */
1603 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1604 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1605 		threshold_lsn = last_sync_lsn;
1606 
1607 	/*
1608 	 * Get the transaction layer to kick the dirty buffers out to
1609 	 * disk asynchronously. No point in trying to do this if
1610 	 * the filesystem is shutting down.
1611 	 */
1612 	if (!XLOG_FORCED_SHUTDOWN(log))
1613 		xfs_ail_push(log->l_ailp, threshold_lsn);
1614 }
1615 
1616 /*
1617  * Stamp cycle number in every block
1618  */
1619 STATIC void
1620 xlog_pack_data(
1621 	struct xlog		*log,
1622 	struct xlog_in_core	*iclog,
1623 	int			roundoff)
1624 {
1625 	int			i, j, k;
1626 	int			size = iclog->ic_offset + roundoff;
1627 	__be32			cycle_lsn;
1628 	char			*dp;
1629 
1630 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1631 
1632 	dp = iclog->ic_datap;
1633 	for (i = 0; i < BTOBB(size); i++) {
1634 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1635 			break;
1636 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1637 		*(__be32 *)dp = cycle_lsn;
1638 		dp += BBSIZE;
1639 	}
1640 
1641 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1642 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1643 
1644 		for ( ; i < BTOBB(size); i++) {
1645 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1646 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1647 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1648 			*(__be32 *)dp = cycle_lsn;
1649 			dp += BBSIZE;
1650 		}
1651 
1652 		for (i = 1; i < log->l_iclog_heads; i++)
1653 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1654 	}
1655 }
1656 
1657 /*
1658  * Calculate the checksum for a log buffer.
1659  *
1660  * This is a little more complicated than it should be because the various
1661  * headers and the actual data are non-contiguous.
1662  */
1663 __le32
1664 xlog_cksum(
1665 	struct xlog		*log,
1666 	struct xlog_rec_header	*rhead,
1667 	char			*dp,
1668 	int			size)
1669 {
1670 	__uint32_t		crc;
1671 
1672 	/* first generate the crc for the record header ... */
1673 	crc = xfs_start_cksum((char *)rhead,
1674 			      sizeof(struct xlog_rec_header),
1675 			      offsetof(struct xlog_rec_header, h_crc));
1676 
1677 	/* ... then for additional cycle data for v2 logs ... */
1678 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1679 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1680 		int		i;
1681 		int		xheads;
1682 
1683 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1684 		if (size % XLOG_HEADER_CYCLE_SIZE)
1685 			xheads++;
1686 
1687 		for (i = 1; i < xheads; i++) {
1688 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1689 				     sizeof(struct xlog_rec_ext_header));
1690 		}
1691 	}
1692 
1693 	/* ... and finally for the payload */
1694 	crc = crc32c(crc, dp, size);
1695 
1696 	return xfs_end_cksum(crc);
1697 }
1698 
1699 /*
1700  * The bdstrat callback function for log bufs. This gives us a central
1701  * place to trap bufs in case we get hit by a log I/O error and need to
1702  * shutdown. Actually, in practice, even when we didn't get a log error,
1703  * we transition the iclogs to IOERROR state *after* flushing all existing
1704  * iclogs to disk. This is because we don't want anymore new transactions to be
1705  * started or completed afterwards.
1706  *
1707  * We lock the iclogbufs here so that we can serialise against IO completion
1708  * during unmount. We might be processing a shutdown triggered during unmount,
1709  * and that can occur asynchronously to the unmount thread, and hence we need to
1710  * ensure that completes before tearing down the iclogbufs. Hence we need to
1711  * hold the buffer lock across the log IO to acheive that.
1712  */
1713 STATIC int
1714 xlog_bdstrat(
1715 	struct xfs_buf		*bp)
1716 {
1717 	struct xlog_in_core	*iclog = bp->b_fspriv;
1718 
1719 	xfs_buf_lock(bp);
1720 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1721 		xfs_buf_ioerror(bp, -EIO);
1722 		xfs_buf_stale(bp);
1723 		xfs_buf_ioend(bp);
1724 		/*
1725 		 * It would seem logical to return EIO here, but we rely on
1726 		 * the log state machine to propagate I/O errors instead of
1727 		 * doing it here. Similarly, IO completion will unlock the
1728 		 * buffer, so we don't do it here.
1729 		 */
1730 		return 0;
1731 	}
1732 
1733 	xfs_buf_submit(bp);
1734 	return 0;
1735 }
1736 
1737 /*
1738  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1739  * fashion.  Previously, we should have moved the current iclog
1740  * ptr in the log to point to the next available iclog.  This allows further
1741  * write to continue while this code syncs out an iclog ready to go.
1742  * Before an in-core log can be written out, the data section must be scanned
1743  * to save away the 1st word of each BBSIZE block into the header.  We replace
1744  * it with the current cycle count.  Each BBSIZE block is tagged with the
1745  * cycle count because there in an implicit assumption that drives will
1746  * guarantee that entire 512 byte blocks get written at once.  In other words,
1747  * we can't have part of a 512 byte block written and part not written.  By
1748  * tagging each block, we will know which blocks are valid when recovering
1749  * after an unclean shutdown.
1750  *
1751  * This routine is single threaded on the iclog.  No other thread can be in
1752  * this routine with the same iclog.  Changing contents of iclog can there-
1753  * fore be done without grabbing the state machine lock.  Updating the global
1754  * log will require grabbing the lock though.
1755  *
1756  * The entire log manager uses a logical block numbering scheme.  Only
1757  * log_sync (and then only bwrite()) know about the fact that the log may
1758  * not start with block zero on a given device.  The log block start offset
1759  * is added immediately before calling bwrite().
1760  */
1761 
1762 STATIC int
1763 xlog_sync(
1764 	struct xlog		*log,
1765 	struct xlog_in_core	*iclog)
1766 {
1767 	xfs_buf_t	*bp;
1768 	int		i;
1769 	uint		count;		/* byte count of bwrite */
1770 	uint		count_init;	/* initial count before roundup */
1771 	int		roundoff;       /* roundoff to BB or stripe */
1772 	int		split = 0;	/* split write into two regions */
1773 	int		error;
1774 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1775 	int		size;
1776 
1777 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1778 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1779 
1780 	/* Add for LR header */
1781 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1782 
1783 	/* Round out the log write size */
1784 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1785 		/* we have a v2 stripe unit to use */
1786 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1787 	} else {
1788 		count = BBTOB(BTOBB(count_init));
1789 	}
1790 	roundoff = count - count_init;
1791 	ASSERT(roundoff >= 0);
1792 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1793                 roundoff < log->l_mp->m_sb.sb_logsunit)
1794 		||
1795 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1796 		 roundoff < BBTOB(1)));
1797 
1798 	/* move grant heads by roundoff in sync */
1799 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1800 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1801 
1802 	/* put cycle number in every block */
1803 	xlog_pack_data(log, iclog, roundoff);
1804 
1805 	/* real byte length */
1806 	size = iclog->ic_offset;
1807 	if (v2)
1808 		size += roundoff;
1809 	iclog->ic_header.h_len = cpu_to_be32(size);
1810 
1811 	bp = iclog->ic_bp;
1812 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1813 
1814 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1815 
1816 	/* Do we need to split this write into 2 parts? */
1817 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1818 		char		*dptr;
1819 
1820 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1821 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1822 		iclog->ic_bwritecnt = 2;
1823 
1824 		/*
1825 		 * Bump the cycle numbers at the start of each block in the
1826 		 * part of the iclog that ends up in the buffer that gets
1827 		 * written to the start of the log.
1828 		 *
1829 		 * Watch out for the header magic number case, though.
1830 		 */
1831 		dptr = (char *)&iclog->ic_header + count;
1832 		for (i = 0; i < split; i += BBSIZE) {
1833 			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1834 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1835 				cycle++;
1836 			*(__be32 *)dptr = cpu_to_be32(cycle);
1837 
1838 			dptr += BBSIZE;
1839 		}
1840 	} else {
1841 		iclog->ic_bwritecnt = 1;
1842 	}
1843 
1844 	/* calculcate the checksum */
1845 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1846 					    iclog->ic_datap, size);
1847 #ifdef DEBUG
1848 	/*
1849 	 * Intentionally corrupt the log record CRC based on the error injection
1850 	 * frequency, if defined. This facilitates testing log recovery in the
1851 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1852 	 * write on I/O completion and shutdown the fs. The subsequent mount
1853 	 * detects the bad CRC and attempts to recover.
1854 	 */
1855 	if (log->l_badcrc_factor &&
1856 	    (prandom_u32() % log->l_badcrc_factor == 0)) {
1857 		iclog->ic_header.h_crc &= 0xAAAAAAAA;
1858 		iclog->ic_state |= XLOG_STATE_IOABORT;
1859 		xfs_warn(log->l_mp,
1860 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1861 			 be64_to_cpu(iclog->ic_header.h_lsn));
1862 	}
1863 #endif
1864 
1865 	bp->b_io_length = BTOBB(count);
1866 	bp->b_fspriv = iclog;
1867 	XFS_BUF_ZEROFLAGS(bp);
1868 	XFS_BUF_ASYNC(bp);
1869 	bp->b_flags |= XBF_SYNCIO;
1870 
1871 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1872 		bp->b_flags |= XBF_FUA;
1873 
1874 		/*
1875 		 * Flush the data device before flushing the log to make
1876 		 * sure all meta data written back from the AIL actually made
1877 		 * it to disk before stamping the new log tail LSN into the
1878 		 * log buffer.  For an external log we need to issue the
1879 		 * flush explicitly, and unfortunately synchronously here;
1880 		 * for an internal log we can simply use the block layer
1881 		 * state machine for preflushes.
1882 		 */
1883 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1884 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1885 		else
1886 			bp->b_flags |= XBF_FLUSH;
1887 	}
1888 
1889 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1890 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1891 
1892 	xlog_verify_iclog(log, iclog, count, true);
1893 
1894 	/* account for log which doesn't start at block #0 */
1895 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1896 	/*
1897 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1898 	 * is shutting down.
1899 	 */
1900 	XFS_BUF_WRITE(bp);
1901 
1902 	error = xlog_bdstrat(bp);
1903 	if (error) {
1904 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1905 		return error;
1906 	}
1907 	if (split) {
1908 		bp = iclog->ic_log->l_xbuf;
1909 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1910 		xfs_buf_associate_memory(bp,
1911 				(char *)&iclog->ic_header + count, split);
1912 		bp->b_fspriv = iclog;
1913 		XFS_BUF_ZEROFLAGS(bp);
1914 		XFS_BUF_ASYNC(bp);
1915 		bp->b_flags |= XBF_SYNCIO;
1916 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1917 			bp->b_flags |= XBF_FUA;
1918 
1919 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1920 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1921 
1922 		/* account for internal log which doesn't start at block #0 */
1923 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1924 		XFS_BUF_WRITE(bp);
1925 		error = xlog_bdstrat(bp);
1926 		if (error) {
1927 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1928 			return error;
1929 		}
1930 	}
1931 	return 0;
1932 }	/* xlog_sync */
1933 
1934 /*
1935  * Deallocate a log structure
1936  */
1937 STATIC void
1938 xlog_dealloc_log(
1939 	struct xlog	*log)
1940 {
1941 	xlog_in_core_t	*iclog, *next_iclog;
1942 	int		i;
1943 
1944 	xlog_cil_destroy(log);
1945 
1946 	/*
1947 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1948 	 * is done before we tear down these buffers.
1949 	 */
1950 	iclog = log->l_iclog;
1951 	for (i = 0; i < log->l_iclog_bufs; i++) {
1952 		xfs_buf_lock(iclog->ic_bp);
1953 		xfs_buf_unlock(iclog->ic_bp);
1954 		iclog = iclog->ic_next;
1955 	}
1956 
1957 	/*
1958 	 * Always need to ensure that the extra buffer does not point to memory
1959 	 * owned by another log buffer before we free it. Also, cycle the lock
1960 	 * first to ensure we've completed IO on it.
1961 	 */
1962 	xfs_buf_lock(log->l_xbuf);
1963 	xfs_buf_unlock(log->l_xbuf);
1964 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1965 	xfs_buf_free(log->l_xbuf);
1966 
1967 	iclog = log->l_iclog;
1968 	for (i = 0; i < log->l_iclog_bufs; i++) {
1969 		xfs_buf_free(iclog->ic_bp);
1970 		next_iclog = iclog->ic_next;
1971 		kmem_free(iclog);
1972 		iclog = next_iclog;
1973 	}
1974 	spinlock_destroy(&log->l_icloglock);
1975 
1976 	log->l_mp->m_log = NULL;
1977 	kmem_free(log);
1978 }	/* xlog_dealloc_log */
1979 
1980 /*
1981  * Update counters atomically now that memcpy is done.
1982  */
1983 /* ARGSUSED */
1984 static inline void
1985 xlog_state_finish_copy(
1986 	struct xlog		*log,
1987 	struct xlog_in_core	*iclog,
1988 	int			record_cnt,
1989 	int			copy_bytes)
1990 {
1991 	spin_lock(&log->l_icloglock);
1992 
1993 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1994 	iclog->ic_offset += copy_bytes;
1995 
1996 	spin_unlock(&log->l_icloglock);
1997 }	/* xlog_state_finish_copy */
1998 
1999 
2000 
2001 
2002 /*
2003  * print out info relating to regions written which consume
2004  * the reservation
2005  */
2006 void
2007 xlog_print_tic_res(
2008 	struct xfs_mount	*mp,
2009 	struct xlog_ticket	*ticket)
2010 {
2011 	uint i;
2012 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2013 
2014 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2015 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
2016 	    "bformat",
2017 	    "bchunk",
2018 	    "efi_format",
2019 	    "efd_format",
2020 	    "iformat",
2021 	    "icore",
2022 	    "iext",
2023 	    "ibroot",
2024 	    "ilocal",
2025 	    "iattr_ext",
2026 	    "iattr_broot",
2027 	    "iattr_local",
2028 	    "qformat",
2029 	    "dquot",
2030 	    "quotaoff",
2031 	    "LR header",
2032 	    "unmount",
2033 	    "commit",
2034 	    "trans header"
2035 	};
2036 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
2037 	    "SETATTR_NOT_SIZE",
2038 	    "SETATTR_SIZE",
2039 	    "INACTIVE",
2040 	    "CREATE",
2041 	    "CREATE_TRUNC",
2042 	    "TRUNCATE_FILE",
2043 	    "REMOVE",
2044 	    "LINK",
2045 	    "RENAME",
2046 	    "MKDIR",
2047 	    "RMDIR",
2048 	    "SYMLINK",
2049 	    "SET_DMATTRS",
2050 	    "GROWFS",
2051 	    "STRAT_WRITE",
2052 	    "DIOSTRAT",
2053 	    "WRITE_SYNC",
2054 	    "WRITEID",
2055 	    "ADDAFORK",
2056 	    "ATTRINVAL",
2057 	    "ATRUNCATE",
2058 	    "ATTR_SET",
2059 	    "ATTR_RM",
2060 	    "ATTR_FLAG",
2061 	    "CLEAR_AGI_BUCKET",
2062 	    "QM_SBCHANGE",
2063 	    "DUMMY1",
2064 	    "DUMMY2",
2065 	    "QM_QUOTAOFF",
2066 	    "QM_DQALLOC",
2067 	    "QM_SETQLIM",
2068 	    "QM_DQCLUSTER",
2069 	    "QM_QINOCREATE",
2070 	    "QM_QUOTAOFF_END",
2071 	    "FSYNC_TS",
2072 	    "GROWFSRT_ALLOC",
2073 	    "GROWFSRT_ZERO",
2074 	    "GROWFSRT_FREE",
2075 	    "SWAPEXT",
2076 	    "CHECKPOINT",
2077 	    "ICREATE",
2078 	    "CREATE_TMPFILE"
2079 	};
2080 
2081 	xfs_warn(mp, "xlog_write: reservation summary:");
2082 	xfs_warn(mp, "  trans type  = %s (%u)",
2083 		 ((ticket->t_trans_type <= 0 ||
2084 		   ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2085 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2086 		 ticket->t_trans_type);
2087 	xfs_warn(mp, "  unit res    = %d bytes",
2088 		 ticket->t_unit_res);
2089 	xfs_warn(mp, "  current res = %d bytes",
2090 		 ticket->t_curr_res);
2091 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2092 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2093 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2094 		 ticket->t_res_num_ophdrs, ophdr_spc);
2095 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2096 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2097 	xfs_warn(mp, "  num regions = %u",
2098 		 ticket->t_res_num);
2099 
2100 	for (i = 0; i < ticket->t_res_num; i++) {
2101 		uint r_type = ticket->t_res_arr[i].r_type;
2102 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2103 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2104 			    "bad-rtype" : res_type_str[r_type-1]),
2105 			    ticket->t_res_arr[i].r_len);
2106 	}
2107 
2108 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2109 		"xlog_write: reservation ran out. Need to up reservation");
2110 	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2111 }
2112 
2113 /*
2114  * Calculate the potential space needed by the log vector.  Each region gets
2115  * its own xlog_op_header_t and may need to be double word aligned.
2116  */
2117 static int
2118 xlog_write_calc_vec_length(
2119 	struct xlog_ticket	*ticket,
2120 	struct xfs_log_vec	*log_vector)
2121 {
2122 	struct xfs_log_vec	*lv;
2123 	int			headers = 0;
2124 	int			len = 0;
2125 	int			i;
2126 
2127 	/* acct for start rec of xact */
2128 	if (ticket->t_flags & XLOG_TIC_INITED)
2129 		headers++;
2130 
2131 	for (lv = log_vector; lv; lv = lv->lv_next) {
2132 		/* we don't write ordered log vectors */
2133 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2134 			continue;
2135 
2136 		headers += lv->lv_niovecs;
2137 
2138 		for (i = 0; i < lv->lv_niovecs; i++) {
2139 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2140 
2141 			len += vecp->i_len;
2142 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2143 		}
2144 	}
2145 
2146 	ticket->t_res_num_ophdrs += headers;
2147 	len += headers * sizeof(struct xlog_op_header);
2148 
2149 	return len;
2150 }
2151 
2152 /*
2153  * If first write for transaction, insert start record  We can't be trying to
2154  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2155  */
2156 static int
2157 xlog_write_start_rec(
2158 	struct xlog_op_header	*ophdr,
2159 	struct xlog_ticket	*ticket)
2160 {
2161 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2162 		return 0;
2163 
2164 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2165 	ophdr->oh_clientid = ticket->t_clientid;
2166 	ophdr->oh_len = 0;
2167 	ophdr->oh_flags = XLOG_START_TRANS;
2168 	ophdr->oh_res2 = 0;
2169 
2170 	ticket->t_flags &= ~XLOG_TIC_INITED;
2171 
2172 	return sizeof(struct xlog_op_header);
2173 }
2174 
2175 static xlog_op_header_t *
2176 xlog_write_setup_ophdr(
2177 	struct xlog		*log,
2178 	struct xlog_op_header	*ophdr,
2179 	struct xlog_ticket	*ticket,
2180 	uint			flags)
2181 {
2182 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2183 	ophdr->oh_clientid = ticket->t_clientid;
2184 	ophdr->oh_res2 = 0;
2185 
2186 	/* are we copying a commit or unmount record? */
2187 	ophdr->oh_flags = flags;
2188 
2189 	/*
2190 	 * We've seen logs corrupted with bad transaction client ids.  This
2191 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2192 	 * and shut down the filesystem.
2193 	 */
2194 	switch (ophdr->oh_clientid)  {
2195 	case XFS_TRANSACTION:
2196 	case XFS_VOLUME:
2197 	case XFS_LOG:
2198 		break;
2199 	default:
2200 		xfs_warn(log->l_mp,
2201 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2202 			ophdr->oh_clientid, ticket);
2203 		return NULL;
2204 	}
2205 
2206 	return ophdr;
2207 }
2208 
2209 /*
2210  * Set up the parameters of the region copy into the log. This has
2211  * to handle region write split across multiple log buffers - this
2212  * state is kept external to this function so that this code can
2213  * be written in an obvious, self documenting manner.
2214  */
2215 static int
2216 xlog_write_setup_copy(
2217 	struct xlog_ticket	*ticket,
2218 	struct xlog_op_header	*ophdr,
2219 	int			space_available,
2220 	int			space_required,
2221 	int			*copy_off,
2222 	int			*copy_len,
2223 	int			*last_was_partial_copy,
2224 	int			*bytes_consumed)
2225 {
2226 	int			still_to_copy;
2227 
2228 	still_to_copy = space_required - *bytes_consumed;
2229 	*copy_off = *bytes_consumed;
2230 
2231 	if (still_to_copy <= space_available) {
2232 		/* write of region completes here */
2233 		*copy_len = still_to_copy;
2234 		ophdr->oh_len = cpu_to_be32(*copy_len);
2235 		if (*last_was_partial_copy)
2236 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2237 		*last_was_partial_copy = 0;
2238 		*bytes_consumed = 0;
2239 		return 0;
2240 	}
2241 
2242 	/* partial write of region, needs extra log op header reservation */
2243 	*copy_len = space_available;
2244 	ophdr->oh_len = cpu_to_be32(*copy_len);
2245 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2246 	if (*last_was_partial_copy)
2247 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2248 	*bytes_consumed += *copy_len;
2249 	(*last_was_partial_copy)++;
2250 
2251 	/* account for new log op header */
2252 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2253 	ticket->t_res_num_ophdrs++;
2254 
2255 	return sizeof(struct xlog_op_header);
2256 }
2257 
2258 static int
2259 xlog_write_copy_finish(
2260 	struct xlog		*log,
2261 	struct xlog_in_core	*iclog,
2262 	uint			flags,
2263 	int			*record_cnt,
2264 	int			*data_cnt,
2265 	int			*partial_copy,
2266 	int			*partial_copy_len,
2267 	int			log_offset,
2268 	struct xlog_in_core	**commit_iclog)
2269 {
2270 	if (*partial_copy) {
2271 		/*
2272 		 * This iclog has already been marked WANT_SYNC by
2273 		 * xlog_state_get_iclog_space.
2274 		 */
2275 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2276 		*record_cnt = 0;
2277 		*data_cnt = 0;
2278 		return xlog_state_release_iclog(log, iclog);
2279 	}
2280 
2281 	*partial_copy = 0;
2282 	*partial_copy_len = 0;
2283 
2284 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2285 		/* no more space in this iclog - push it. */
2286 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2287 		*record_cnt = 0;
2288 		*data_cnt = 0;
2289 
2290 		spin_lock(&log->l_icloglock);
2291 		xlog_state_want_sync(log, iclog);
2292 		spin_unlock(&log->l_icloglock);
2293 
2294 		if (!commit_iclog)
2295 			return xlog_state_release_iclog(log, iclog);
2296 		ASSERT(flags & XLOG_COMMIT_TRANS);
2297 		*commit_iclog = iclog;
2298 	}
2299 
2300 	return 0;
2301 }
2302 
2303 /*
2304  * Write some region out to in-core log
2305  *
2306  * This will be called when writing externally provided regions or when
2307  * writing out a commit record for a given transaction.
2308  *
2309  * General algorithm:
2310  *	1. Find total length of this write.  This may include adding to the
2311  *		lengths passed in.
2312  *	2. Check whether we violate the tickets reservation.
2313  *	3. While writing to this iclog
2314  *	    A. Reserve as much space in this iclog as can get
2315  *	    B. If this is first write, save away start lsn
2316  *	    C. While writing this region:
2317  *		1. If first write of transaction, write start record
2318  *		2. Write log operation header (header per region)
2319  *		3. Find out if we can fit entire region into this iclog
2320  *		4. Potentially, verify destination memcpy ptr
2321  *		5. Memcpy (partial) region
2322  *		6. If partial copy, release iclog; otherwise, continue
2323  *			copying more regions into current iclog
2324  *	4. Mark want sync bit (in simulation mode)
2325  *	5. Release iclog for potential flush to on-disk log.
2326  *
2327  * ERRORS:
2328  * 1.	Panic if reservation is overrun.  This should never happen since
2329  *	reservation amounts are generated internal to the filesystem.
2330  * NOTES:
2331  * 1. Tickets are single threaded data structures.
2332  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2333  *	syncing routine.  When a single log_write region needs to span
2334  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2335  *	on all log operation writes which don't contain the end of the
2336  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2337  *	operation which contains the end of the continued log_write region.
2338  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2339  *	we don't really know exactly how much space will be used.  As a result,
2340  *	we don't update ic_offset until the end when we know exactly how many
2341  *	bytes have been written out.
2342  */
2343 int
2344 xlog_write(
2345 	struct xlog		*log,
2346 	struct xfs_log_vec	*log_vector,
2347 	struct xlog_ticket	*ticket,
2348 	xfs_lsn_t		*start_lsn,
2349 	struct xlog_in_core	**commit_iclog,
2350 	uint			flags)
2351 {
2352 	struct xlog_in_core	*iclog = NULL;
2353 	struct xfs_log_iovec	*vecp;
2354 	struct xfs_log_vec	*lv;
2355 	int			len;
2356 	int			index;
2357 	int			partial_copy = 0;
2358 	int			partial_copy_len = 0;
2359 	int			contwr = 0;
2360 	int			record_cnt = 0;
2361 	int			data_cnt = 0;
2362 	int			error;
2363 
2364 	*start_lsn = 0;
2365 
2366 	len = xlog_write_calc_vec_length(ticket, log_vector);
2367 
2368 	/*
2369 	 * Region headers and bytes are already accounted for.
2370 	 * We only need to take into account start records and
2371 	 * split regions in this function.
2372 	 */
2373 	if (ticket->t_flags & XLOG_TIC_INITED)
2374 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2375 
2376 	/*
2377 	 * Commit record headers need to be accounted for. These
2378 	 * come in as separate writes so are easy to detect.
2379 	 */
2380 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2381 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2382 
2383 	if (ticket->t_curr_res < 0)
2384 		xlog_print_tic_res(log->l_mp, ticket);
2385 
2386 	index = 0;
2387 	lv = log_vector;
2388 	vecp = lv->lv_iovecp;
2389 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2390 		void		*ptr;
2391 		int		log_offset;
2392 
2393 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2394 						   &contwr, &log_offset);
2395 		if (error)
2396 			return error;
2397 
2398 		ASSERT(log_offset <= iclog->ic_size - 1);
2399 		ptr = iclog->ic_datap + log_offset;
2400 
2401 		/* start_lsn is the first lsn written to. That's all we need. */
2402 		if (!*start_lsn)
2403 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2404 
2405 		/*
2406 		 * This loop writes out as many regions as can fit in the amount
2407 		 * of space which was allocated by xlog_state_get_iclog_space().
2408 		 */
2409 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2410 			struct xfs_log_iovec	*reg;
2411 			struct xlog_op_header	*ophdr;
2412 			int			start_rec_copy;
2413 			int			copy_len;
2414 			int			copy_off;
2415 			bool			ordered = false;
2416 
2417 			/* ordered log vectors have no regions to write */
2418 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2419 				ASSERT(lv->lv_niovecs == 0);
2420 				ordered = true;
2421 				goto next_lv;
2422 			}
2423 
2424 			reg = &vecp[index];
2425 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2426 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2427 
2428 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2429 			if (start_rec_copy) {
2430 				record_cnt++;
2431 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2432 						   start_rec_copy);
2433 			}
2434 
2435 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2436 			if (!ophdr)
2437 				return -EIO;
2438 
2439 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2440 					   sizeof(struct xlog_op_header));
2441 
2442 			len += xlog_write_setup_copy(ticket, ophdr,
2443 						     iclog->ic_size-log_offset,
2444 						     reg->i_len,
2445 						     &copy_off, &copy_len,
2446 						     &partial_copy,
2447 						     &partial_copy_len);
2448 			xlog_verify_dest_ptr(log, ptr);
2449 
2450 			/*
2451 			 * Copy region.
2452 			 *
2453 			 * Unmount records just log an opheader, so can have
2454 			 * empty payloads with no data region to copy. Hence we
2455 			 * only copy the payload if the vector says it has data
2456 			 * to copy.
2457 			 */
2458 			ASSERT(copy_len >= 0);
2459 			if (copy_len > 0) {
2460 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2461 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2462 						   copy_len);
2463 			}
2464 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2465 			record_cnt++;
2466 			data_cnt += contwr ? copy_len : 0;
2467 
2468 			error = xlog_write_copy_finish(log, iclog, flags,
2469 						       &record_cnt, &data_cnt,
2470 						       &partial_copy,
2471 						       &partial_copy_len,
2472 						       log_offset,
2473 						       commit_iclog);
2474 			if (error)
2475 				return error;
2476 
2477 			/*
2478 			 * if we had a partial copy, we need to get more iclog
2479 			 * space but we don't want to increment the region
2480 			 * index because there is still more is this region to
2481 			 * write.
2482 			 *
2483 			 * If we completed writing this region, and we flushed
2484 			 * the iclog (indicated by resetting of the record
2485 			 * count), then we also need to get more log space. If
2486 			 * this was the last record, though, we are done and
2487 			 * can just return.
2488 			 */
2489 			if (partial_copy)
2490 				break;
2491 
2492 			if (++index == lv->lv_niovecs) {
2493 next_lv:
2494 				lv = lv->lv_next;
2495 				index = 0;
2496 				if (lv)
2497 					vecp = lv->lv_iovecp;
2498 			}
2499 			if (record_cnt == 0 && ordered == false) {
2500 				if (!lv)
2501 					return 0;
2502 				break;
2503 			}
2504 		}
2505 	}
2506 
2507 	ASSERT(len == 0);
2508 
2509 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2510 	if (!commit_iclog)
2511 		return xlog_state_release_iclog(log, iclog);
2512 
2513 	ASSERT(flags & XLOG_COMMIT_TRANS);
2514 	*commit_iclog = iclog;
2515 	return 0;
2516 }
2517 
2518 
2519 /*****************************************************************************
2520  *
2521  *		State Machine functions
2522  *
2523  *****************************************************************************
2524  */
2525 
2526 /* Clean iclogs starting from the head.  This ordering must be
2527  * maintained, so an iclog doesn't become ACTIVE beyond one that
2528  * is SYNCING.  This is also required to maintain the notion that we use
2529  * a ordered wait queue to hold off would be writers to the log when every
2530  * iclog is trying to sync to disk.
2531  *
2532  * State Change: DIRTY -> ACTIVE
2533  */
2534 STATIC void
2535 xlog_state_clean_log(
2536 	struct xlog *log)
2537 {
2538 	xlog_in_core_t	*iclog;
2539 	int changed = 0;
2540 
2541 	iclog = log->l_iclog;
2542 	do {
2543 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2544 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2545 			iclog->ic_offset       = 0;
2546 			ASSERT(iclog->ic_callback == NULL);
2547 			/*
2548 			 * If the number of ops in this iclog indicate it just
2549 			 * contains the dummy transaction, we can
2550 			 * change state into IDLE (the second time around).
2551 			 * Otherwise we should change the state into
2552 			 * NEED a dummy.
2553 			 * We don't need to cover the dummy.
2554 			 */
2555 			if (!changed &&
2556 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2557 			   		XLOG_COVER_OPS)) {
2558 				changed = 1;
2559 			} else {
2560 				/*
2561 				 * We have two dirty iclogs so start over
2562 				 * This could also be num of ops indicates
2563 				 * this is not the dummy going out.
2564 				 */
2565 				changed = 2;
2566 			}
2567 			iclog->ic_header.h_num_logops = 0;
2568 			memset(iclog->ic_header.h_cycle_data, 0,
2569 			      sizeof(iclog->ic_header.h_cycle_data));
2570 			iclog->ic_header.h_lsn = 0;
2571 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2572 			/* do nothing */;
2573 		else
2574 			break;	/* stop cleaning */
2575 		iclog = iclog->ic_next;
2576 	} while (iclog != log->l_iclog);
2577 
2578 	/* log is locked when we are called */
2579 	/*
2580 	 * Change state for the dummy log recording.
2581 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2582 	 * we are done writing the dummy record.
2583 	 * If we are done with the second dummy recored (DONE2), then
2584 	 * we go to IDLE.
2585 	 */
2586 	if (changed) {
2587 		switch (log->l_covered_state) {
2588 		case XLOG_STATE_COVER_IDLE:
2589 		case XLOG_STATE_COVER_NEED:
2590 		case XLOG_STATE_COVER_NEED2:
2591 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2592 			break;
2593 
2594 		case XLOG_STATE_COVER_DONE:
2595 			if (changed == 1)
2596 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2597 			else
2598 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2599 			break;
2600 
2601 		case XLOG_STATE_COVER_DONE2:
2602 			if (changed == 1)
2603 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2604 			else
2605 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2606 			break;
2607 
2608 		default:
2609 			ASSERT(0);
2610 		}
2611 	}
2612 }	/* xlog_state_clean_log */
2613 
2614 STATIC xfs_lsn_t
2615 xlog_get_lowest_lsn(
2616 	struct xlog	*log)
2617 {
2618 	xlog_in_core_t  *lsn_log;
2619 	xfs_lsn_t	lowest_lsn, lsn;
2620 
2621 	lsn_log = log->l_iclog;
2622 	lowest_lsn = 0;
2623 	do {
2624 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2625 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2626 		if ((lsn && !lowest_lsn) ||
2627 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2628 			lowest_lsn = lsn;
2629 		}
2630 	    }
2631 	    lsn_log = lsn_log->ic_next;
2632 	} while (lsn_log != log->l_iclog);
2633 	return lowest_lsn;
2634 }
2635 
2636 
2637 STATIC void
2638 xlog_state_do_callback(
2639 	struct xlog		*log,
2640 	int			aborted,
2641 	struct xlog_in_core	*ciclog)
2642 {
2643 	xlog_in_core_t	   *iclog;
2644 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2645 						 * processed all iclogs once */
2646 	xfs_log_callback_t *cb, *cb_next;
2647 	int		   flushcnt = 0;
2648 	xfs_lsn_t	   lowest_lsn;
2649 	int		   ioerrors;	/* counter: iclogs with errors */
2650 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2651 	int		   funcdidcallbacks; /* flag: function did callbacks */
2652 	int		   repeats;	/* for issuing console warnings if
2653 					 * looping too many times */
2654 	int		   wake = 0;
2655 
2656 	spin_lock(&log->l_icloglock);
2657 	first_iclog = iclog = log->l_iclog;
2658 	ioerrors = 0;
2659 	funcdidcallbacks = 0;
2660 	repeats = 0;
2661 
2662 	do {
2663 		/*
2664 		 * Scan all iclogs starting with the one pointed to by the
2665 		 * log.  Reset this starting point each time the log is
2666 		 * unlocked (during callbacks).
2667 		 *
2668 		 * Keep looping through iclogs until one full pass is made
2669 		 * without running any callbacks.
2670 		 */
2671 		first_iclog = log->l_iclog;
2672 		iclog = log->l_iclog;
2673 		loopdidcallbacks = 0;
2674 		repeats++;
2675 
2676 		do {
2677 
2678 			/* skip all iclogs in the ACTIVE & DIRTY states */
2679 			if (iclog->ic_state &
2680 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2681 				iclog = iclog->ic_next;
2682 				continue;
2683 			}
2684 
2685 			/*
2686 			 * Between marking a filesystem SHUTDOWN and stopping
2687 			 * the log, we do flush all iclogs to disk (if there
2688 			 * wasn't a log I/O error). So, we do want things to
2689 			 * go smoothly in case of just a SHUTDOWN  w/o a
2690 			 * LOG_IO_ERROR.
2691 			 */
2692 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2693 				/*
2694 				 * Can only perform callbacks in order.  Since
2695 				 * this iclog is not in the DONE_SYNC/
2696 				 * DO_CALLBACK state, we skip the rest and
2697 				 * just try to clean up.  If we set our iclog
2698 				 * to DO_CALLBACK, we will not process it when
2699 				 * we retry since a previous iclog is in the
2700 				 * CALLBACK and the state cannot change since
2701 				 * we are holding the l_icloglock.
2702 				 */
2703 				if (!(iclog->ic_state &
2704 					(XLOG_STATE_DONE_SYNC |
2705 						 XLOG_STATE_DO_CALLBACK))) {
2706 					if (ciclog && (ciclog->ic_state ==
2707 							XLOG_STATE_DONE_SYNC)) {
2708 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2709 					}
2710 					break;
2711 				}
2712 				/*
2713 				 * We now have an iclog that is in either the
2714 				 * DO_CALLBACK or DONE_SYNC states. The other
2715 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2716 				 * caught by the above if and are going to
2717 				 * clean (i.e. we aren't doing their callbacks)
2718 				 * see the above if.
2719 				 */
2720 
2721 				/*
2722 				 * We will do one more check here to see if we
2723 				 * have chased our tail around.
2724 				 */
2725 
2726 				lowest_lsn = xlog_get_lowest_lsn(log);
2727 				if (lowest_lsn &&
2728 				    XFS_LSN_CMP(lowest_lsn,
2729 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2730 					iclog = iclog->ic_next;
2731 					continue; /* Leave this iclog for
2732 						   * another thread */
2733 				}
2734 
2735 				iclog->ic_state = XLOG_STATE_CALLBACK;
2736 
2737 
2738 				/*
2739 				 * Completion of a iclog IO does not imply that
2740 				 * a transaction has completed, as transactions
2741 				 * can be large enough to span many iclogs. We
2742 				 * cannot change the tail of the log half way
2743 				 * through a transaction as this may be the only
2744 				 * transaction in the log and moving th etail to
2745 				 * point to the middle of it will prevent
2746 				 * recovery from finding the start of the
2747 				 * transaction. Hence we should only update the
2748 				 * last_sync_lsn if this iclog contains
2749 				 * transaction completion callbacks on it.
2750 				 *
2751 				 * We have to do this before we drop the
2752 				 * icloglock to ensure we are the only one that
2753 				 * can update it.
2754 				 */
2755 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2756 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2757 				if (iclog->ic_callback)
2758 					atomic64_set(&log->l_last_sync_lsn,
2759 						be64_to_cpu(iclog->ic_header.h_lsn));
2760 
2761 			} else
2762 				ioerrors++;
2763 
2764 			spin_unlock(&log->l_icloglock);
2765 
2766 			/*
2767 			 * Keep processing entries in the callback list until
2768 			 * we come around and it is empty.  We need to
2769 			 * atomically see that the list is empty and change the
2770 			 * state to DIRTY so that we don't miss any more
2771 			 * callbacks being added.
2772 			 */
2773 			spin_lock(&iclog->ic_callback_lock);
2774 			cb = iclog->ic_callback;
2775 			while (cb) {
2776 				iclog->ic_callback_tail = &(iclog->ic_callback);
2777 				iclog->ic_callback = NULL;
2778 				spin_unlock(&iclog->ic_callback_lock);
2779 
2780 				/* perform callbacks in the order given */
2781 				for (; cb; cb = cb_next) {
2782 					cb_next = cb->cb_next;
2783 					cb->cb_func(cb->cb_arg, aborted);
2784 				}
2785 				spin_lock(&iclog->ic_callback_lock);
2786 				cb = iclog->ic_callback;
2787 			}
2788 
2789 			loopdidcallbacks++;
2790 			funcdidcallbacks++;
2791 
2792 			spin_lock(&log->l_icloglock);
2793 			ASSERT(iclog->ic_callback == NULL);
2794 			spin_unlock(&iclog->ic_callback_lock);
2795 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2796 				iclog->ic_state = XLOG_STATE_DIRTY;
2797 
2798 			/*
2799 			 * Transition from DIRTY to ACTIVE if applicable.
2800 			 * NOP if STATE_IOERROR.
2801 			 */
2802 			xlog_state_clean_log(log);
2803 
2804 			/* wake up threads waiting in xfs_log_force() */
2805 			wake_up_all(&iclog->ic_force_wait);
2806 
2807 			iclog = iclog->ic_next;
2808 		} while (first_iclog != iclog);
2809 
2810 		if (repeats > 5000) {
2811 			flushcnt += repeats;
2812 			repeats = 0;
2813 			xfs_warn(log->l_mp,
2814 				"%s: possible infinite loop (%d iterations)",
2815 				__func__, flushcnt);
2816 		}
2817 	} while (!ioerrors && loopdidcallbacks);
2818 
2819 #ifdef DEBUG
2820 	/*
2821 	 * Make one last gasp attempt to see if iclogs are being left in limbo.
2822 	 * If the above loop finds an iclog earlier than the current iclog and
2823 	 * in one of the syncing states, the current iclog is put into
2824 	 * DO_CALLBACK and the callbacks are deferred to the completion of the
2825 	 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2826 	 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2827 	 * states.
2828 	 *
2829 	 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2830 	 * for ic_state == SYNCING.
2831 	 */
2832 	if (funcdidcallbacks) {
2833 		first_iclog = iclog = log->l_iclog;
2834 		do {
2835 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2836 			/*
2837 			 * Terminate the loop if iclogs are found in states
2838 			 * which will cause other threads to clean up iclogs.
2839 			 *
2840 			 * SYNCING - i/o completion will go through logs
2841 			 * DONE_SYNC - interrupt thread should be waiting for
2842 			 *              l_icloglock
2843 			 * IOERROR - give up hope all ye who enter here
2844 			 */
2845 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2846 			    iclog->ic_state & XLOG_STATE_SYNCING ||
2847 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2848 			    iclog->ic_state == XLOG_STATE_IOERROR )
2849 				break;
2850 			iclog = iclog->ic_next;
2851 		} while (first_iclog != iclog);
2852 	}
2853 #endif
2854 
2855 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2856 		wake = 1;
2857 	spin_unlock(&log->l_icloglock);
2858 
2859 	if (wake)
2860 		wake_up_all(&log->l_flush_wait);
2861 }
2862 
2863 
2864 /*
2865  * Finish transitioning this iclog to the dirty state.
2866  *
2867  * Make sure that we completely execute this routine only when this is
2868  * the last call to the iclog.  There is a good chance that iclog flushes,
2869  * when we reach the end of the physical log, get turned into 2 separate
2870  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2871  * routine.  By using the reference count bwritecnt, we guarantee that only
2872  * the second completion goes through.
2873  *
2874  * Callbacks could take time, so they are done outside the scope of the
2875  * global state machine log lock.
2876  */
2877 STATIC void
2878 xlog_state_done_syncing(
2879 	xlog_in_core_t	*iclog,
2880 	int		aborted)
2881 {
2882 	struct xlog	   *log = iclog->ic_log;
2883 
2884 	spin_lock(&log->l_icloglock);
2885 
2886 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2887 	       iclog->ic_state == XLOG_STATE_IOERROR);
2888 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2889 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2890 
2891 
2892 	/*
2893 	 * If we got an error, either on the first buffer, or in the case of
2894 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2895 	 * and none should ever be attempted to be written to disk
2896 	 * again.
2897 	 */
2898 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2899 		if (--iclog->ic_bwritecnt == 1) {
2900 			spin_unlock(&log->l_icloglock);
2901 			return;
2902 		}
2903 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2904 	}
2905 
2906 	/*
2907 	 * Someone could be sleeping prior to writing out the next
2908 	 * iclog buffer, we wake them all, one will get to do the
2909 	 * I/O, the others get to wait for the result.
2910 	 */
2911 	wake_up_all(&iclog->ic_write_wait);
2912 	spin_unlock(&log->l_icloglock);
2913 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2914 }	/* xlog_state_done_syncing */
2915 
2916 
2917 /*
2918  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2919  * sleep.  We wait on the flush queue on the head iclog as that should be
2920  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2921  * we will wait here and all new writes will sleep until a sync completes.
2922  *
2923  * The in-core logs are used in a circular fashion. They are not used
2924  * out-of-order even when an iclog past the head is free.
2925  *
2926  * return:
2927  *	* log_offset where xlog_write() can start writing into the in-core
2928  *		log's data space.
2929  *	* in-core log pointer to which xlog_write() should write.
2930  *	* boolean indicating this is a continued write to an in-core log.
2931  *		If this is the last write, then the in-core log's offset field
2932  *		needs to be incremented, depending on the amount of data which
2933  *		is copied.
2934  */
2935 STATIC int
2936 xlog_state_get_iclog_space(
2937 	struct xlog		*log,
2938 	int			len,
2939 	struct xlog_in_core	**iclogp,
2940 	struct xlog_ticket	*ticket,
2941 	int			*continued_write,
2942 	int			*logoffsetp)
2943 {
2944 	int		  log_offset;
2945 	xlog_rec_header_t *head;
2946 	xlog_in_core_t	  *iclog;
2947 	int		  error;
2948 
2949 restart:
2950 	spin_lock(&log->l_icloglock);
2951 	if (XLOG_FORCED_SHUTDOWN(log)) {
2952 		spin_unlock(&log->l_icloglock);
2953 		return -EIO;
2954 	}
2955 
2956 	iclog = log->l_iclog;
2957 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2958 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2959 
2960 		/* Wait for log writes to have flushed */
2961 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2962 		goto restart;
2963 	}
2964 
2965 	head = &iclog->ic_header;
2966 
2967 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2968 	log_offset = iclog->ic_offset;
2969 
2970 	/* On the 1st write to an iclog, figure out lsn.  This works
2971 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2972 	 * committing to.  If the offset is set, that's how many blocks
2973 	 * must be written.
2974 	 */
2975 	if (log_offset == 0) {
2976 		ticket->t_curr_res -= log->l_iclog_hsize;
2977 		xlog_tic_add_region(ticket,
2978 				    log->l_iclog_hsize,
2979 				    XLOG_REG_TYPE_LRHEADER);
2980 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2981 		head->h_lsn = cpu_to_be64(
2982 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2983 		ASSERT(log->l_curr_block >= 0);
2984 	}
2985 
2986 	/* If there is enough room to write everything, then do it.  Otherwise,
2987 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2988 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2989 	 * until you know exactly how many bytes get copied.  Therefore, wait
2990 	 * until later to update ic_offset.
2991 	 *
2992 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2993 	 * can fit into remaining data section.
2994 	 */
2995 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2996 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2997 
2998 		/*
2999 		 * If I'm the only one writing to this iclog, sync it to disk.
3000 		 * We need to do an atomic compare and decrement here to avoid
3001 		 * racing with concurrent atomic_dec_and_lock() calls in
3002 		 * xlog_state_release_iclog() when there is more than one
3003 		 * reference to the iclog.
3004 		 */
3005 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3006 			/* we are the only one */
3007 			spin_unlock(&log->l_icloglock);
3008 			error = xlog_state_release_iclog(log, iclog);
3009 			if (error)
3010 				return error;
3011 		} else {
3012 			spin_unlock(&log->l_icloglock);
3013 		}
3014 		goto restart;
3015 	}
3016 
3017 	/* Do we have enough room to write the full amount in the remainder
3018 	 * of this iclog?  Or must we continue a write on the next iclog and
3019 	 * mark this iclog as completely taken?  In the case where we switch
3020 	 * iclogs (to mark it taken), this particular iclog will release/sync
3021 	 * to disk in xlog_write().
3022 	 */
3023 	if (len <= iclog->ic_size - iclog->ic_offset) {
3024 		*continued_write = 0;
3025 		iclog->ic_offset += len;
3026 	} else {
3027 		*continued_write = 1;
3028 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3029 	}
3030 	*iclogp = iclog;
3031 
3032 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3033 	spin_unlock(&log->l_icloglock);
3034 
3035 	*logoffsetp = log_offset;
3036 	return 0;
3037 }	/* xlog_state_get_iclog_space */
3038 
3039 /* The first cnt-1 times through here we don't need to
3040  * move the grant write head because the permanent
3041  * reservation has reserved cnt times the unit amount.
3042  * Release part of current permanent unit reservation and
3043  * reset current reservation to be one units worth.  Also
3044  * move grant reservation head forward.
3045  */
3046 STATIC void
3047 xlog_regrant_reserve_log_space(
3048 	struct xlog		*log,
3049 	struct xlog_ticket	*ticket)
3050 {
3051 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3052 
3053 	if (ticket->t_cnt > 0)
3054 		ticket->t_cnt--;
3055 
3056 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3057 					ticket->t_curr_res);
3058 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3059 					ticket->t_curr_res);
3060 	ticket->t_curr_res = ticket->t_unit_res;
3061 	xlog_tic_reset_res(ticket);
3062 
3063 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3064 
3065 	/* just return if we still have some of the pre-reserved space */
3066 	if (ticket->t_cnt > 0)
3067 		return;
3068 
3069 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3070 					ticket->t_unit_res);
3071 
3072 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3073 
3074 	ticket->t_curr_res = ticket->t_unit_res;
3075 	xlog_tic_reset_res(ticket);
3076 }	/* xlog_regrant_reserve_log_space */
3077 
3078 
3079 /*
3080  * Give back the space left from a reservation.
3081  *
3082  * All the information we need to make a correct determination of space left
3083  * is present.  For non-permanent reservations, things are quite easy.  The
3084  * count should have been decremented to zero.  We only need to deal with the
3085  * space remaining in the current reservation part of the ticket.  If the
3086  * ticket contains a permanent reservation, there may be left over space which
3087  * needs to be released.  A count of N means that N-1 refills of the current
3088  * reservation can be done before we need to ask for more space.  The first
3089  * one goes to fill up the first current reservation.  Once we run out of
3090  * space, the count will stay at zero and the only space remaining will be
3091  * in the current reservation field.
3092  */
3093 STATIC void
3094 xlog_ungrant_log_space(
3095 	struct xlog		*log,
3096 	struct xlog_ticket	*ticket)
3097 {
3098 	int	bytes;
3099 
3100 	if (ticket->t_cnt > 0)
3101 		ticket->t_cnt--;
3102 
3103 	trace_xfs_log_ungrant_enter(log, ticket);
3104 	trace_xfs_log_ungrant_sub(log, ticket);
3105 
3106 	/*
3107 	 * If this is a permanent reservation ticket, we may be able to free
3108 	 * up more space based on the remaining count.
3109 	 */
3110 	bytes = ticket->t_curr_res;
3111 	if (ticket->t_cnt > 0) {
3112 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3113 		bytes += ticket->t_unit_res*ticket->t_cnt;
3114 	}
3115 
3116 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3117 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3118 
3119 	trace_xfs_log_ungrant_exit(log, ticket);
3120 
3121 	xfs_log_space_wake(log->l_mp);
3122 }
3123 
3124 /*
3125  * Flush iclog to disk if this is the last reference to the given iclog and
3126  * the WANT_SYNC bit is set.
3127  *
3128  * When this function is entered, the iclog is not necessarily in the
3129  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3130  *
3131  *
3132  */
3133 STATIC int
3134 xlog_state_release_iclog(
3135 	struct xlog		*log,
3136 	struct xlog_in_core	*iclog)
3137 {
3138 	int		sync = 0;	/* do we sync? */
3139 
3140 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3141 		return -EIO;
3142 
3143 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3144 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3145 		return 0;
3146 
3147 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3148 		spin_unlock(&log->l_icloglock);
3149 		return -EIO;
3150 	}
3151 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3152 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3153 
3154 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3155 		/* update tail before writing to iclog */
3156 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3157 		sync++;
3158 		iclog->ic_state = XLOG_STATE_SYNCING;
3159 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3160 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3161 		/* cycle incremented when incrementing curr_block */
3162 	}
3163 	spin_unlock(&log->l_icloglock);
3164 
3165 	/*
3166 	 * We let the log lock go, so it's possible that we hit a log I/O
3167 	 * error or some other SHUTDOWN condition that marks the iclog
3168 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3169 	 * this iclog has consistent data, so we ignore IOERROR
3170 	 * flags after this point.
3171 	 */
3172 	if (sync)
3173 		return xlog_sync(log, iclog);
3174 	return 0;
3175 }	/* xlog_state_release_iclog */
3176 
3177 
3178 /*
3179  * This routine will mark the current iclog in the ring as WANT_SYNC
3180  * and move the current iclog pointer to the next iclog in the ring.
3181  * When this routine is called from xlog_state_get_iclog_space(), the
3182  * exact size of the iclog has not yet been determined.  All we know is
3183  * that every data block.  We have run out of space in this log record.
3184  */
3185 STATIC void
3186 xlog_state_switch_iclogs(
3187 	struct xlog		*log,
3188 	struct xlog_in_core	*iclog,
3189 	int			eventual_size)
3190 {
3191 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3192 	if (!eventual_size)
3193 		eventual_size = iclog->ic_offset;
3194 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3195 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3196 	log->l_prev_block = log->l_curr_block;
3197 	log->l_prev_cycle = log->l_curr_cycle;
3198 
3199 	/* roll log?: ic_offset changed later */
3200 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3201 
3202 	/* Round up to next log-sunit */
3203 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3204 	    log->l_mp->m_sb.sb_logsunit > 1) {
3205 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3206 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3207 	}
3208 
3209 	if (log->l_curr_block >= log->l_logBBsize) {
3210 		/*
3211 		 * Rewind the current block before the cycle is bumped to make
3212 		 * sure that the combined LSN never transiently moves forward
3213 		 * when the log wraps to the next cycle. This is to support the
3214 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3215 		 * other cases should acquire l_icloglock.
3216 		 */
3217 		log->l_curr_block -= log->l_logBBsize;
3218 		ASSERT(log->l_curr_block >= 0);
3219 		smp_wmb();
3220 		log->l_curr_cycle++;
3221 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3222 			log->l_curr_cycle++;
3223 	}
3224 	ASSERT(iclog == log->l_iclog);
3225 	log->l_iclog = iclog->ic_next;
3226 }	/* xlog_state_switch_iclogs */
3227 
3228 /*
3229  * Write out all data in the in-core log as of this exact moment in time.
3230  *
3231  * Data may be written to the in-core log during this call.  However,
3232  * we don't guarantee this data will be written out.  A change from past
3233  * implementation means this routine will *not* write out zero length LRs.
3234  *
3235  * Basically, we try and perform an intelligent scan of the in-core logs.
3236  * If we determine there is no flushable data, we just return.  There is no
3237  * flushable data if:
3238  *
3239  *	1. the current iclog is active and has no data; the previous iclog
3240  *		is in the active or dirty state.
3241  *	2. the current iclog is drity, and the previous iclog is in the
3242  *		active or dirty state.
3243  *
3244  * We may sleep if:
3245  *
3246  *	1. the current iclog is not in the active nor dirty state.
3247  *	2. the current iclog dirty, and the previous iclog is not in the
3248  *		active nor dirty state.
3249  *	3. the current iclog is active, and there is another thread writing
3250  *		to this particular iclog.
3251  *	4. a) the current iclog is active and has no other writers
3252  *	   b) when we return from flushing out this iclog, it is still
3253  *		not in the active nor dirty state.
3254  */
3255 int
3256 _xfs_log_force(
3257 	struct xfs_mount	*mp,
3258 	uint			flags,
3259 	int			*log_flushed)
3260 {
3261 	struct xlog		*log = mp->m_log;
3262 	struct xlog_in_core	*iclog;
3263 	xfs_lsn_t		lsn;
3264 
3265 	XFS_STATS_INC(mp, xs_log_force);
3266 
3267 	xlog_cil_force(log);
3268 
3269 	spin_lock(&log->l_icloglock);
3270 
3271 	iclog = log->l_iclog;
3272 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3273 		spin_unlock(&log->l_icloglock);
3274 		return -EIO;
3275 	}
3276 
3277 	/* If the head iclog is not active nor dirty, we just attach
3278 	 * ourselves to the head and go to sleep.
3279 	 */
3280 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3281 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3282 		/*
3283 		 * If the head is dirty or (active and empty), then
3284 		 * we need to look at the previous iclog.  If the previous
3285 		 * iclog is active or dirty we are done.  There is nothing
3286 		 * to sync out.  Otherwise, we attach ourselves to the
3287 		 * previous iclog and go to sleep.
3288 		 */
3289 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3290 		    (atomic_read(&iclog->ic_refcnt) == 0
3291 		     && iclog->ic_offset == 0)) {
3292 			iclog = iclog->ic_prev;
3293 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3294 			    iclog->ic_state == XLOG_STATE_DIRTY)
3295 				goto no_sleep;
3296 			else
3297 				goto maybe_sleep;
3298 		} else {
3299 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3300 				/* We are the only one with access to this
3301 				 * iclog.  Flush it out now.  There should
3302 				 * be a roundoff of zero to show that someone
3303 				 * has already taken care of the roundoff from
3304 				 * the previous sync.
3305 				 */
3306 				atomic_inc(&iclog->ic_refcnt);
3307 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3308 				xlog_state_switch_iclogs(log, iclog, 0);
3309 				spin_unlock(&log->l_icloglock);
3310 
3311 				if (xlog_state_release_iclog(log, iclog))
3312 					return -EIO;
3313 
3314 				if (log_flushed)
3315 					*log_flushed = 1;
3316 				spin_lock(&log->l_icloglock);
3317 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3318 				    iclog->ic_state != XLOG_STATE_DIRTY)
3319 					goto maybe_sleep;
3320 				else
3321 					goto no_sleep;
3322 			} else {
3323 				/* Someone else is writing to this iclog.
3324 				 * Use its call to flush out the data.  However,
3325 				 * the other thread may not force out this LR,
3326 				 * so we mark it WANT_SYNC.
3327 				 */
3328 				xlog_state_switch_iclogs(log, iclog, 0);
3329 				goto maybe_sleep;
3330 			}
3331 		}
3332 	}
3333 
3334 	/* By the time we come around again, the iclog could've been filled
3335 	 * which would give it another lsn.  If we have a new lsn, just
3336 	 * return because the relevant data has been flushed.
3337 	 */
3338 maybe_sleep:
3339 	if (flags & XFS_LOG_SYNC) {
3340 		/*
3341 		 * We must check if we're shutting down here, before
3342 		 * we wait, while we're holding the l_icloglock.
3343 		 * Then we check again after waking up, in case our
3344 		 * sleep was disturbed by a bad news.
3345 		 */
3346 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3347 			spin_unlock(&log->l_icloglock);
3348 			return -EIO;
3349 		}
3350 		XFS_STATS_INC(mp, xs_log_force_sleep);
3351 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3352 		/*
3353 		 * No need to grab the log lock here since we're
3354 		 * only deciding whether or not to return EIO
3355 		 * and the memory read should be atomic.
3356 		 */
3357 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3358 			return -EIO;
3359 		if (log_flushed)
3360 			*log_flushed = 1;
3361 	} else {
3362 
3363 no_sleep:
3364 		spin_unlock(&log->l_icloglock);
3365 	}
3366 	return 0;
3367 }
3368 
3369 /*
3370  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3371  * about errors or whether the log was flushed or not. This is the normal
3372  * interface to use when trying to unpin items or move the log forward.
3373  */
3374 void
3375 xfs_log_force(
3376 	xfs_mount_t	*mp,
3377 	uint		flags)
3378 {
3379 	int	error;
3380 
3381 	trace_xfs_log_force(mp, 0);
3382 	error = _xfs_log_force(mp, flags, NULL);
3383 	if (error)
3384 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3385 }
3386 
3387 /*
3388  * Force the in-core log to disk for a specific LSN.
3389  *
3390  * Find in-core log with lsn.
3391  *	If it is in the DIRTY state, just return.
3392  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3393  *		state and go to sleep or return.
3394  *	If it is in any other state, go to sleep or return.
3395  *
3396  * Synchronous forces are implemented with a signal variable. All callers
3397  * to force a given lsn to disk will wait on a the sv attached to the
3398  * specific in-core log.  When given in-core log finally completes its
3399  * write to disk, that thread will wake up all threads waiting on the
3400  * sv.
3401  */
3402 int
3403 _xfs_log_force_lsn(
3404 	struct xfs_mount	*mp,
3405 	xfs_lsn_t		lsn,
3406 	uint			flags,
3407 	int			*log_flushed)
3408 {
3409 	struct xlog		*log = mp->m_log;
3410 	struct xlog_in_core	*iclog;
3411 	int			already_slept = 0;
3412 
3413 	ASSERT(lsn != 0);
3414 
3415 	XFS_STATS_INC(mp, xs_log_force);
3416 
3417 	lsn = xlog_cil_force_lsn(log, lsn);
3418 	if (lsn == NULLCOMMITLSN)
3419 		return 0;
3420 
3421 try_again:
3422 	spin_lock(&log->l_icloglock);
3423 	iclog = log->l_iclog;
3424 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3425 		spin_unlock(&log->l_icloglock);
3426 		return -EIO;
3427 	}
3428 
3429 	do {
3430 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3431 			iclog = iclog->ic_next;
3432 			continue;
3433 		}
3434 
3435 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3436 			spin_unlock(&log->l_icloglock);
3437 			return 0;
3438 		}
3439 
3440 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3441 			/*
3442 			 * We sleep here if we haven't already slept (e.g.
3443 			 * this is the first time we've looked at the correct
3444 			 * iclog buf) and the buffer before us is going to
3445 			 * be sync'ed. The reason for this is that if we
3446 			 * are doing sync transactions here, by waiting for
3447 			 * the previous I/O to complete, we can allow a few
3448 			 * more transactions into this iclog before we close
3449 			 * it down.
3450 			 *
3451 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3452 			 * up the refcnt so we can release the log (which
3453 			 * drops the ref count).  The state switch keeps new
3454 			 * transaction commits from using this buffer.  When
3455 			 * the current commits finish writing into the buffer,
3456 			 * the refcount will drop to zero and the buffer will
3457 			 * go out then.
3458 			 */
3459 			if (!already_slept &&
3460 			    (iclog->ic_prev->ic_state &
3461 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3462 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3463 
3464 				XFS_STATS_INC(mp, xs_log_force_sleep);
3465 
3466 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3467 							&log->l_icloglock);
3468 				if (log_flushed)
3469 					*log_flushed = 1;
3470 				already_slept = 1;
3471 				goto try_again;
3472 			}
3473 			atomic_inc(&iclog->ic_refcnt);
3474 			xlog_state_switch_iclogs(log, iclog, 0);
3475 			spin_unlock(&log->l_icloglock);
3476 			if (xlog_state_release_iclog(log, iclog))
3477 				return -EIO;
3478 			if (log_flushed)
3479 				*log_flushed = 1;
3480 			spin_lock(&log->l_icloglock);
3481 		}
3482 
3483 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3484 		    !(iclog->ic_state &
3485 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3486 			/*
3487 			 * Don't wait on completion if we know that we've
3488 			 * gotten a log write error.
3489 			 */
3490 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3491 				spin_unlock(&log->l_icloglock);
3492 				return -EIO;
3493 			}
3494 			XFS_STATS_INC(mp, xs_log_force_sleep);
3495 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3496 			/*
3497 			 * No need to grab the log lock here since we're
3498 			 * only deciding whether or not to return EIO
3499 			 * and the memory read should be atomic.
3500 			 */
3501 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3502 				return -EIO;
3503 
3504 			if (log_flushed)
3505 				*log_flushed = 1;
3506 		} else {		/* just return */
3507 			spin_unlock(&log->l_icloglock);
3508 		}
3509 
3510 		return 0;
3511 	} while (iclog != log->l_iclog);
3512 
3513 	spin_unlock(&log->l_icloglock);
3514 	return 0;
3515 }
3516 
3517 /*
3518  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3519  * about errors or whether the log was flushed or not. This is the normal
3520  * interface to use when trying to unpin items or move the log forward.
3521  */
3522 void
3523 xfs_log_force_lsn(
3524 	xfs_mount_t	*mp,
3525 	xfs_lsn_t	lsn,
3526 	uint		flags)
3527 {
3528 	int	error;
3529 
3530 	trace_xfs_log_force(mp, lsn);
3531 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3532 	if (error)
3533 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3534 }
3535 
3536 /*
3537  * Called when we want to mark the current iclog as being ready to sync to
3538  * disk.
3539  */
3540 STATIC void
3541 xlog_state_want_sync(
3542 	struct xlog		*log,
3543 	struct xlog_in_core	*iclog)
3544 {
3545 	assert_spin_locked(&log->l_icloglock);
3546 
3547 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3548 		xlog_state_switch_iclogs(log, iclog, 0);
3549 	} else {
3550 		ASSERT(iclog->ic_state &
3551 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3552 	}
3553 }
3554 
3555 
3556 /*****************************************************************************
3557  *
3558  *		TICKET functions
3559  *
3560  *****************************************************************************
3561  */
3562 
3563 /*
3564  * Free a used ticket when its refcount falls to zero.
3565  */
3566 void
3567 xfs_log_ticket_put(
3568 	xlog_ticket_t	*ticket)
3569 {
3570 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3571 	if (atomic_dec_and_test(&ticket->t_ref))
3572 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3573 }
3574 
3575 xlog_ticket_t *
3576 xfs_log_ticket_get(
3577 	xlog_ticket_t	*ticket)
3578 {
3579 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3580 	atomic_inc(&ticket->t_ref);
3581 	return ticket;
3582 }
3583 
3584 /*
3585  * Figure out the total log space unit (in bytes) that would be
3586  * required for a log ticket.
3587  */
3588 int
3589 xfs_log_calc_unit_res(
3590 	struct xfs_mount	*mp,
3591 	int			unit_bytes)
3592 {
3593 	struct xlog		*log = mp->m_log;
3594 	int			iclog_space;
3595 	uint			num_headers;
3596 
3597 	/*
3598 	 * Permanent reservations have up to 'cnt'-1 active log operations
3599 	 * in the log.  A unit in this case is the amount of space for one
3600 	 * of these log operations.  Normal reservations have a cnt of 1
3601 	 * and their unit amount is the total amount of space required.
3602 	 *
3603 	 * The following lines of code account for non-transaction data
3604 	 * which occupy space in the on-disk log.
3605 	 *
3606 	 * Normal form of a transaction is:
3607 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3608 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3609 	 *
3610 	 * We need to account for all the leadup data and trailer data
3611 	 * around the transaction data.
3612 	 * And then we need to account for the worst case in terms of using
3613 	 * more space.
3614 	 * The worst case will happen if:
3615 	 * - the placement of the transaction happens to be such that the
3616 	 *   roundoff is at its maximum
3617 	 * - the transaction data is synced before the commit record is synced
3618 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3619 	 *   Therefore the commit record is in its own Log Record.
3620 	 *   This can happen as the commit record is called with its
3621 	 *   own region to xlog_write().
3622 	 *   This then means that in the worst case, roundoff can happen for
3623 	 *   the commit-rec as well.
3624 	 *   The commit-rec is smaller than padding in this scenario and so it is
3625 	 *   not added separately.
3626 	 */
3627 
3628 	/* for trans header */
3629 	unit_bytes += sizeof(xlog_op_header_t);
3630 	unit_bytes += sizeof(xfs_trans_header_t);
3631 
3632 	/* for start-rec */
3633 	unit_bytes += sizeof(xlog_op_header_t);
3634 
3635 	/*
3636 	 * for LR headers - the space for data in an iclog is the size minus
3637 	 * the space used for the headers. If we use the iclog size, then we
3638 	 * undercalculate the number of headers required.
3639 	 *
3640 	 * Furthermore - the addition of op headers for split-recs might
3641 	 * increase the space required enough to require more log and op
3642 	 * headers, so take that into account too.
3643 	 *
3644 	 * IMPORTANT: This reservation makes the assumption that if this
3645 	 * transaction is the first in an iclog and hence has the LR headers
3646 	 * accounted to it, then the remaining space in the iclog is
3647 	 * exclusively for this transaction.  i.e. if the transaction is larger
3648 	 * than the iclog, it will be the only thing in that iclog.
3649 	 * Fundamentally, this means we must pass the entire log vector to
3650 	 * xlog_write to guarantee this.
3651 	 */
3652 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3653 	num_headers = howmany(unit_bytes, iclog_space);
3654 
3655 	/* for split-recs - ophdrs added when data split over LRs */
3656 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3657 
3658 	/* add extra header reservations if we overrun */
3659 	while (!num_headers ||
3660 	       howmany(unit_bytes, iclog_space) > num_headers) {
3661 		unit_bytes += sizeof(xlog_op_header_t);
3662 		num_headers++;
3663 	}
3664 	unit_bytes += log->l_iclog_hsize * num_headers;
3665 
3666 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3667 	unit_bytes += log->l_iclog_hsize;
3668 
3669 	/* for roundoff padding for transaction data and one for commit record */
3670 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3671 		/* log su roundoff */
3672 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3673 	} else {
3674 		/* BB roundoff */
3675 		unit_bytes += 2 * BBSIZE;
3676         }
3677 
3678 	return unit_bytes;
3679 }
3680 
3681 /*
3682  * Allocate and initialise a new log ticket.
3683  */
3684 struct xlog_ticket *
3685 xlog_ticket_alloc(
3686 	struct xlog		*log,
3687 	int			unit_bytes,
3688 	int			cnt,
3689 	char			client,
3690 	bool			permanent,
3691 	xfs_km_flags_t		alloc_flags)
3692 {
3693 	struct xlog_ticket	*tic;
3694 	int			unit_res;
3695 
3696 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3697 	if (!tic)
3698 		return NULL;
3699 
3700 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3701 
3702 	atomic_set(&tic->t_ref, 1);
3703 	tic->t_task		= current;
3704 	INIT_LIST_HEAD(&tic->t_queue);
3705 	tic->t_unit_res		= unit_res;
3706 	tic->t_curr_res		= unit_res;
3707 	tic->t_cnt		= cnt;
3708 	tic->t_ocnt		= cnt;
3709 	tic->t_tid		= prandom_u32();
3710 	tic->t_clientid		= client;
3711 	tic->t_flags		= XLOG_TIC_INITED;
3712 	tic->t_trans_type	= 0;
3713 	if (permanent)
3714 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3715 
3716 	xlog_tic_reset_res(tic);
3717 
3718 	return tic;
3719 }
3720 
3721 
3722 /******************************************************************************
3723  *
3724  *		Log debug routines
3725  *
3726  ******************************************************************************
3727  */
3728 #if defined(DEBUG)
3729 /*
3730  * Make sure that the destination ptr is within the valid data region of
3731  * one of the iclogs.  This uses backup pointers stored in a different
3732  * part of the log in case we trash the log structure.
3733  */
3734 void
3735 xlog_verify_dest_ptr(
3736 	struct xlog	*log,
3737 	void		*ptr)
3738 {
3739 	int i;
3740 	int good_ptr = 0;
3741 
3742 	for (i = 0; i < log->l_iclog_bufs; i++) {
3743 		if (ptr >= log->l_iclog_bak[i] &&
3744 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3745 			good_ptr++;
3746 	}
3747 
3748 	if (!good_ptr)
3749 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3750 }
3751 
3752 /*
3753  * Check to make sure the grant write head didn't just over lap the tail.  If
3754  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3755  * the cycles differ by exactly one and check the byte count.
3756  *
3757  * This check is run unlocked, so can give false positives. Rather than assert
3758  * on failures, use a warn-once flag and a panic tag to allow the admin to
3759  * determine if they want to panic the machine when such an error occurs. For
3760  * debug kernels this will have the same effect as using an assert but, unlinke
3761  * an assert, it can be turned off at runtime.
3762  */
3763 STATIC void
3764 xlog_verify_grant_tail(
3765 	struct xlog	*log)
3766 {
3767 	int		tail_cycle, tail_blocks;
3768 	int		cycle, space;
3769 
3770 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3771 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3772 	if (tail_cycle != cycle) {
3773 		if (cycle - 1 != tail_cycle &&
3774 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3775 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3776 				"%s: cycle - 1 != tail_cycle", __func__);
3777 			log->l_flags |= XLOG_TAIL_WARN;
3778 		}
3779 
3780 		if (space > BBTOB(tail_blocks) &&
3781 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3782 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3783 				"%s: space > BBTOB(tail_blocks)", __func__);
3784 			log->l_flags |= XLOG_TAIL_WARN;
3785 		}
3786 	}
3787 }
3788 
3789 /* check if it will fit */
3790 STATIC void
3791 xlog_verify_tail_lsn(
3792 	struct xlog		*log,
3793 	struct xlog_in_core	*iclog,
3794 	xfs_lsn_t		tail_lsn)
3795 {
3796     int blocks;
3797 
3798     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3799 	blocks =
3800 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3801 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3802 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3803     } else {
3804 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3805 
3806 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3807 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3808 
3809 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3810 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3811 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3812     }
3813 }	/* xlog_verify_tail_lsn */
3814 
3815 /*
3816  * Perform a number of checks on the iclog before writing to disk.
3817  *
3818  * 1. Make sure the iclogs are still circular
3819  * 2. Make sure we have a good magic number
3820  * 3. Make sure we don't have magic numbers in the data
3821  * 4. Check fields of each log operation header for:
3822  *	A. Valid client identifier
3823  *	B. tid ptr value falls in valid ptr space (user space code)
3824  *	C. Length in log record header is correct according to the
3825  *		individual operation headers within record.
3826  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3827  *	log, check the preceding blocks of the physical log to make sure all
3828  *	the cycle numbers agree with the current cycle number.
3829  */
3830 STATIC void
3831 xlog_verify_iclog(
3832 	struct xlog		*log,
3833 	struct xlog_in_core	*iclog,
3834 	int			count,
3835 	bool                    syncing)
3836 {
3837 	xlog_op_header_t	*ophead;
3838 	xlog_in_core_t		*icptr;
3839 	xlog_in_core_2_t	*xhdr;
3840 	void			*base_ptr, *ptr, *p;
3841 	ptrdiff_t		field_offset;
3842 	__uint8_t		clientid;
3843 	int			len, i, j, k, op_len;
3844 	int			idx;
3845 
3846 	/* check validity of iclog pointers */
3847 	spin_lock(&log->l_icloglock);
3848 	icptr = log->l_iclog;
3849 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3850 		ASSERT(icptr);
3851 
3852 	if (icptr != log->l_iclog)
3853 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3854 	spin_unlock(&log->l_icloglock);
3855 
3856 	/* check log magic numbers */
3857 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3858 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3859 
3860 	base_ptr = ptr = &iclog->ic_header;
3861 	p = &iclog->ic_header;
3862 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3863 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3864 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3865 				__func__);
3866 	}
3867 
3868 	/* check fields */
3869 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3870 	base_ptr = ptr = iclog->ic_datap;
3871 	ophead = ptr;
3872 	xhdr = iclog->ic_data;
3873 	for (i = 0; i < len; i++) {
3874 		ophead = ptr;
3875 
3876 		/* clientid is only 1 byte */
3877 		p = &ophead->oh_clientid;
3878 		field_offset = p - base_ptr;
3879 		if (!syncing || (field_offset & 0x1ff)) {
3880 			clientid = ophead->oh_clientid;
3881 		} else {
3882 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3883 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3884 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3885 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3886 				clientid = xlog_get_client_id(
3887 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3888 			} else {
3889 				clientid = xlog_get_client_id(
3890 					iclog->ic_header.h_cycle_data[idx]);
3891 			}
3892 		}
3893 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3894 			xfs_warn(log->l_mp,
3895 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3896 				__func__, clientid, ophead,
3897 				(unsigned long)field_offset);
3898 
3899 		/* check length */
3900 		p = &ophead->oh_len;
3901 		field_offset = p - base_ptr;
3902 		if (!syncing || (field_offset & 0x1ff)) {
3903 			op_len = be32_to_cpu(ophead->oh_len);
3904 		} else {
3905 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3906 				    (uintptr_t)iclog->ic_datap);
3907 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3908 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3909 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3910 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3911 			} else {
3912 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3913 			}
3914 		}
3915 		ptr += sizeof(xlog_op_header_t) + op_len;
3916 	}
3917 }	/* xlog_verify_iclog */
3918 #endif
3919 
3920 /*
3921  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3922  */
3923 STATIC int
3924 xlog_state_ioerror(
3925 	struct xlog	*log)
3926 {
3927 	xlog_in_core_t	*iclog, *ic;
3928 
3929 	iclog = log->l_iclog;
3930 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3931 		/*
3932 		 * Mark all the incore logs IOERROR.
3933 		 * From now on, no log flushes will result.
3934 		 */
3935 		ic = iclog;
3936 		do {
3937 			ic->ic_state = XLOG_STATE_IOERROR;
3938 			ic = ic->ic_next;
3939 		} while (ic != iclog);
3940 		return 0;
3941 	}
3942 	/*
3943 	 * Return non-zero, if state transition has already happened.
3944 	 */
3945 	return 1;
3946 }
3947 
3948 /*
3949  * This is called from xfs_force_shutdown, when we're forcibly
3950  * shutting down the filesystem, typically because of an IO error.
3951  * Our main objectives here are to make sure that:
3952  *	a. if !logerror, flush the logs to disk. Anything modified
3953  *	   after this is ignored.
3954  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3955  *	   parties to find out, 'atomically'.
3956  *	c. those who're sleeping on log reservations, pinned objects and
3957  *	    other resources get woken up, and be told the bad news.
3958  *	d. nothing new gets queued up after (b) and (c) are done.
3959  *
3960  * Note: for the !logerror case we need to flush the regions held in memory out
3961  * to disk first. This needs to be done before the log is marked as shutdown,
3962  * otherwise the iclog writes will fail.
3963  */
3964 int
3965 xfs_log_force_umount(
3966 	struct xfs_mount	*mp,
3967 	int			logerror)
3968 {
3969 	struct xlog	*log;
3970 	int		retval;
3971 
3972 	log = mp->m_log;
3973 
3974 	/*
3975 	 * If this happens during log recovery, don't worry about
3976 	 * locking; the log isn't open for business yet.
3977 	 */
3978 	if (!log ||
3979 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3980 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3981 		if (mp->m_sb_bp)
3982 			XFS_BUF_DONE(mp->m_sb_bp);
3983 		return 0;
3984 	}
3985 
3986 	/*
3987 	 * Somebody could've already done the hard work for us.
3988 	 * No need to get locks for this.
3989 	 */
3990 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3991 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3992 		return 1;
3993 	}
3994 
3995 	/*
3996 	 * Flush all the completed transactions to disk before marking the log
3997 	 * being shut down. We need to do it in this order to ensure that
3998 	 * completed operations are safely on disk before we shut down, and that
3999 	 * we don't have to issue any buffer IO after the shutdown flags are set
4000 	 * to guarantee this.
4001 	 */
4002 	if (!logerror)
4003 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
4004 
4005 	/*
4006 	 * mark the filesystem and the as in a shutdown state and wake
4007 	 * everybody up to tell them the bad news.
4008 	 */
4009 	spin_lock(&log->l_icloglock);
4010 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4011 	if (mp->m_sb_bp)
4012 		XFS_BUF_DONE(mp->m_sb_bp);
4013 
4014 	/*
4015 	 * Mark the log and the iclogs with IO error flags to prevent any
4016 	 * further log IO from being issued or completed.
4017 	 */
4018 	log->l_flags |= XLOG_IO_ERROR;
4019 	retval = xlog_state_ioerror(log);
4020 	spin_unlock(&log->l_icloglock);
4021 
4022 	/*
4023 	 * We don't want anybody waiting for log reservations after this. That
4024 	 * means we have to wake up everybody queued up on reserveq as well as
4025 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4026 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4027 	 * action is protected by the grant locks.
4028 	 */
4029 	xlog_grant_head_wake_all(&log->l_reserve_head);
4030 	xlog_grant_head_wake_all(&log->l_write_head);
4031 
4032 	/*
4033 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4034 	 * as if the log writes were completed. The abort handling in the log
4035 	 * item committed callback functions will do this again under lock to
4036 	 * avoid races.
4037 	 */
4038 	wake_up_all(&log->l_cilp->xc_commit_wait);
4039 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4040 
4041 #ifdef XFSERRORDEBUG
4042 	{
4043 		xlog_in_core_t	*iclog;
4044 
4045 		spin_lock(&log->l_icloglock);
4046 		iclog = log->l_iclog;
4047 		do {
4048 			ASSERT(iclog->ic_callback == 0);
4049 			iclog = iclog->ic_next;
4050 		} while (iclog != log->l_iclog);
4051 		spin_unlock(&log->l_icloglock);
4052 	}
4053 #endif
4054 	/* return non-zero if log IOERROR transition had already happened */
4055 	return retval;
4056 }
4057 
4058 STATIC int
4059 xlog_iclogs_empty(
4060 	struct xlog	*log)
4061 {
4062 	xlog_in_core_t	*iclog;
4063 
4064 	iclog = log->l_iclog;
4065 	do {
4066 		/* endianness does not matter here, zero is zero in
4067 		 * any language.
4068 		 */
4069 		if (iclog->ic_header.h_num_logops)
4070 			return 0;
4071 		iclog = iclog->ic_next;
4072 	} while (iclog != log->l_iclog);
4073 	return 1;
4074 }
4075 
4076 /*
4077  * Verify that an LSN stamped into a piece of metadata is valid. This is
4078  * intended for use in read verifiers on v5 superblocks.
4079  */
4080 bool
4081 xfs_log_check_lsn(
4082 	struct xfs_mount	*mp,
4083 	xfs_lsn_t		lsn)
4084 {
4085 	struct xlog		*log = mp->m_log;
4086 	bool			valid;
4087 
4088 	/*
4089 	 * norecovery mode skips mount-time log processing and unconditionally
4090 	 * resets the in-core LSN. We can't validate in this mode, but
4091 	 * modifications are not allowed anyways so just return true.
4092 	 */
4093 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4094 		return true;
4095 
4096 	/*
4097 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4098 	 * handled by recovery and thus safe to ignore here.
4099 	 */
4100 	if (lsn == NULLCOMMITLSN)
4101 		return true;
4102 
4103 	valid = xlog_valid_lsn(mp->m_log, lsn);
4104 
4105 	/* warn the user about what's gone wrong before verifier failure */
4106 	if (!valid) {
4107 		spin_lock(&log->l_icloglock);
4108 		xfs_warn(mp,
4109 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4110 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4111 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4112 			 log->l_curr_cycle, log->l_curr_block);
4113 		spin_unlock(&log->l_icloglock);
4114 	}
4115 
4116 	return valid;
4117 }
4118