1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trace.h" 20 #include "xfs_sysfs.h" 21 #include "xfs_sb.h" 22 #include "xfs_health.h" 23 24 struct kmem_cache *xfs_log_ticket_cache; 25 26 /* Local miscellaneous function prototypes */ 27 STATIC struct xlog * 28 xlog_alloc_log( 29 struct xfs_mount *mp, 30 struct xfs_buftarg *log_target, 31 xfs_daddr_t blk_offset, 32 int num_bblks); 33 STATIC int 34 xlog_space_left( 35 struct xlog *log, 36 atomic64_t *head); 37 STATIC void 38 xlog_dealloc_log( 39 struct xlog *log); 40 41 /* local state machine functions */ 42 STATIC void xlog_state_done_syncing( 43 struct xlog_in_core *iclog); 44 STATIC void xlog_state_do_callback( 45 struct xlog *log); 46 STATIC int 47 xlog_state_get_iclog_space( 48 struct xlog *log, 49 int len, 50 struct xlog_in_core **iclog, 51 struct xlog_ticket *ticket, 52 int *logoffsetp); 53 STATIC void 54 xlog_grant_push_ail( 55 struct xlog *log, 56 int need_bytes); 57 STATIC void 58 xlog_sync( 59 struct xlog *log, 60 struct xlog_in_core *iclog); 61 #if defined(DEBUG) 62 STATIC void 63 xlog_verify_grant_tail( 64 struct xlog *log); 65 STATIC void 66 xlog_verify_iclog( 67 struct xlog *log, 68 struct xlog_in_core *iclog, 69 int count); 70 STATIC void 71 xlog_verify_tail_lsn( 72 struct xlog *log, 73 struct xlog_in_core *iclog); 74 #else 75 #define xlog_verify_grant_tail(a) 76 #define xlog_verify_iclog(a,b,c) 77 #define xlog_verify_tail_lsn(a,b) 78 #endif 79 80 STATIC int 81 xlog_iclogs_empty( 82 struct xlog *log); 83 84 static int 85 xfs_log_cover(struct xfs_mount *); 86 87 /* 88 * We need to make sure the buffer pointer returned is naturally aligned for the 89 * biggest basic data type we put into it. We have already accounted for this 90 * padding when sizing the buffer. 91 * 92 * However, this padding does not get written into the log, and hence we have to 93 * track the space used by the log vectors separately to prevent log space hangs 94 * due to inaccurate accounting (i.e. a leak) of the used log space through the 95 * CIL context ticket. 96 * 97 * We also add space for the xlog_op_header that describes this region in the 98 * log. This prepends the data region we return to the caller to copy their data 99 * into, so do all the static initialisation of the ophdr now. Because the ophdr 100 * is not 8 byte aligned, we have to be careful to ensure that we align the 101 * start of the buffer such that the region we return to the call is 8 byte 102 * aligned and packed against the tail of the ophdr. 103 */ 104 void * 105 xlog_prepare_iovec( 106 struct xfs_log_vec *lv, 107 struct xfs_log_iovec **vecp, 108 uint type) 109 { 110 struct xfs_log_iovec *vec = *vecp; 111 struct xlog_op_header *oph; 112 uint32_t len; 113 void *buf; 114 115 if (vec) { 116 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs); 117 vec++; 118 } else { 119 vec = &lv->lv_iovecp[0]; 120 } 121 122 len = lv->lv_buf_len + sizeof(struct xlog_op_header); 123 if (!IS_ALIGNED(len, sizeof(uint64_t))) { 124 lv->lv_buf_len = round_up(len, sizeof(uint64_t)) - 125 sizeof(struct xlog_op_header); 126 } 127 128 vec->i_type = type; 129 vec->i_addr = lv->lv_buf + lv->lv_buf_len; 130 131 oph = vec->i_addr; 132 oph->oh_clientid = XFS_TRANSACTION; 133 oph->oh_res2 = 0; 134 oph->oh_flags = 0; 135 136 buf = vec->i_addr + sizeof(struct xlog_op_header); 137 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t))); 138 139 *vecp = vec; 140 return buf; 141 } 142 143 static void 144 xlog_grant_sub_space( 145 struct xlog *log, 146 atomic64_t *head, 147 int bytes) 148 { 149 int64_t head_val = atomic64_read(head); 150 int64_t new, old; 151 152 do { 153 int cycle, space; 154 155 xlog_crack_grant_head_val(head_val, &cycle, &space); 156 157 space -= bytes; 158 if (space < 0) { 159 space += log->l_logsize; 160 cycle--; 161 } 162 163 old = head_val; 164 new = xlog_assign_grant_head_val(cycle, space); 165 head_val = atomic64_cmpxchg(head, old, new); 166 } while (head_val != old); 167 } 168 169 static void 170 xlog_grant_add_space( 171 struct xlog *log, 172 atomic64_t *head, 173 int bytes) 174 { 175 int64_t head_val = atomic64_read(head); 176 int64_t new, old; 177 178 do { 179 int tmp; 180 int cycle, space; 181 182 xlog_crack_grant_head_val(head_val, &cycle, &space); 183 184 tmp = log->l_logsize - space; 185 if (tmp > bytes) 186 space += bytes; 187 else { 188 space = bytes - tmp; 189 cycle++; 190 } 191 192 old = head_val; 193 new = xlog_assign_grant_head_val(cycle, space); 194 head_val = atomic64_cmpxchg(head, old, new); 195 } while (head_val != old); 196 } 197 198 STATIC void 199 xlog_grant_head_init( 200 struct xlog_grant_head *head) 201 { 202 xlog_assign_grant_head(&head->grant, 1, 0); 203 INIT_LIST_HEAD(&head->waiters); 204 spin_lock_init(&head->lock); 205 } 206 207 STATIC void 208 xlog_grant_head_wake_all( 209 struct xlog_grant_head *head) 210 { 211 struct xlog_ticket *tic; 212 213 spin_lock(&head->lock); 214 list_for_each_entry(tic, &head->waiters, t_queue) 215 wake_up_process(tic->t_task); 216 spin_unlock(&head->lock); 217 } 218 219 static inline int 220 xlog_ticket_reservation( 221 struct xlog *log, 222 struct xlog_grant_head *head, 223 struct xlog_ticket *tic) 224 { 225 if (head == &log->l_write_head) { 226 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 227 return tic->t_unit_res; 228 } else { 229 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 230 return tic->t_unit_res * tic->t_cnt; 231 else 232 return tic->t_unit_res; 233 } 234 } 235 236 STATIC bool 237 xlog_grant_head_wake( 238 struct xlog *log, 239 struct xlog_grant_head *head, 240 int *free_bytes) 241 { 242 struct xlog_ticket *tic; 243 int need_bytes; 244 bool woken_task = false; 245 246 list_for_each_entry(tic, &head->waiters, t_queue) { 247 248 /* 249 * There is a chance that the size of the CIL checkpoints in 250 * progress at the last AIL push target calculation resulted in 251 * limiting the target to the log head (l_last_sync_lsn) at the 252 * time. This may not reflect where the log head is now as the 253 * CIL checkpoints may have completed. 254 * 255 * Hence when we are woken here, it may be that the head of the 256 * log that has moved rather than the tail. As the tail didn't 257 * move, there still won't be space available for the 258 * reservation we require. However, if the AIL has already 259 * pushed to the target defined by the old log head location, we 260 * will hang here waiting for something else to update the AIL 261 * push target. 262 * 263 * Therefore, if there isn't space to wake the first waiter on 264 * the grant head, we need to push the AIL again to ensure the 265 * target reflects both the current log tail and log head 266 * position before we wait for the tail to move again. 267 */ 268 269 need_bytes = xlog_ticket_reservation(log, head, tic); 270 if (*free_bytes < need_bytes) { 271 if (!woken_task) 272 xlog_grant_push_ail(log, need_bytes); 273 return false; 274 } 275 276 *free_bytes -= need_bytes; 277 trace_xfs_log_grant_wake_up(log, tic); 278 wake_up_process(tic->t_task); 279 woken_task = true; 280 } 281 282 return true; 283 } 284 285 STATIC int 286 xlog_grant_head_wait( 287 struct xlog *log, 288 struct xlog_grant_head *head, 289 struct xlog_ticket *tic, 290 int need_bytes) __releases(&head->lock) 291 __acquires(&head->lock) 292 { 293 list_add_tail(&tic->t_queue, &head->waiters); 294 295 do { 296 if (xlog_is_shutdown(log)) 297 goto shutdown; 298 xlog_grant_push_ail(log, need_bytes); 299 300 __set_current_state(TASK_UNINTERRUPTIBLE); 301 spin_unlock(&head->lock); 302 303 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 304 305 trace_xfs_log_grant_sleep(log, tic); 306 schedule(); 307 trace_xfs_log_grant_wake(log, tic); 308 309 spin_lock(&head->lock); 310 if (xlog_is_shutdown(log)) 311 goto shutdown; 312 } while (xlog_space_left(log, &head->grant) < need_bytes); 313 314 list_del_init(&tic->t_queue); 315 return 0; 316 shutdown: 317 list_del_init(&tic->t_queue); 318 return -EIO; 319 } 320 321 /* 322 * Atomically get the log space required for a log ticket. 323 * 324 * Once a ticket gets put onto head->waiters, it will only return after the 325 * needed reservation is satisfied. 326 * 327 * This function is structured so that it has a lock free fast path. This is 328 * necessary because every new transaction reservation will come through this 329 * path. Hence any lock will be globally hot if we take it unconditionally on 330 * every pass. 331 * 332 * As tickets are only ever moved on and off head->waiters under head->lock, we 333 * only need to take that lock if we are going to add the ticket to the queue 334 * and sleep. We can avoid taking the lock if the ticket was never added to 335 * head->waiters because the t_queue list head will be empty and we hold the 336 * only reference to it so it can safely be checked unlocked. 337 */ 338 STATIC int 339 xlog_grant_head_check( 340 struct xlog *log, 341 struct xlog_grant_head *head, 342 struct xlog_ticket *tic, 343 int *need_bytes) 344 { 345 int free_bytes; 346 int error = 0; 347 348 ASSERT(!xlog_in_recovery(log)); 349 350 /* 351 * If there are other waiters on the queue then give them a chance at 352 * logspace before us. Wake up the first waiters, if we do not wake 353 * up all the waiters then go to sleep waiting for more free space, 354 * otherwise try to get some space for this transaction. 355 */ 356 *need_bytes = xlog_ticket_reservation(log, head, tic); 357 free_bytes = xlog_space_left(log, &head->grant); 358 if (!list_empty_careful(&head->waiters)) { 359 spin_lock(&head->lock); 360 if (!xlog_grant_head_wake(log, head, &free_bytes) || 361 free_bytes < *need_bytes) { 362 error = xlog_grant_head_wait(log, head, tic, 363 *need_bytes); 364 } 365 spin_unlock(&head->lock); 366 } else if (free_bytes < *need_bytes) { 367 spin_lock(&head->lock); 368 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 369 spin_unlock(&head->lock); 370 } 371 372 return error; 373 } 374 375 bool 376 xfs_log_writable( 377 struct xfs_mount *mp) 378 { 379 /* 380 * Do not write to the log on norecovery mounts, if the data or log 381 * devices are read-only, or if the filesystem is shutdown. Read-only 382 * mounts allow internal writes for log recovery and unmount purposes, 383 * so don't restrict that case. 384 */ 385 if (xfs_has_norecovery(mp)) 386 return false; 387 if (xfs_readonly_buftarg(mp->m_ddev_targp)) 388 return false; 389 if (xfs_readonly_buftarg(mp->m_log->l_targ)) 390 return false; 391 if (xlog_is_shutdown(mp->m_log)) 392 return false; 393 return true; 394 } 395 396 /* 397 * Replenish the byte reservation required by moving the grant write head. 398 */ 399 int 400 xfs_log_regrant( 401 struct xfs_mount *mp, 402 struct xlog_ticket *tic) 403 { 404 struct xlog *log = mp->m_log; 405 int need_bytes; 406 int error = 0; 407 408 if (xlog_is_shutdown(log)) 409 return -EIO; 410 411 XFS_STATS_INC(mp, xs_try_logspace); 412 413 /* 414 * This is a new transaction on the ticket, so we need to change the 415 * transaction ID so that the next transaction has a different TID in 416 * the log. Just add one to the existing tid so that we can see chains 417 * of rolling transactions in the log easily. 418 */ 419 tic->t_tid++; 420 421 xlog_grant_push_ail(log, tic->t_unit_res); 422 423 tic->t_curr_res = tic->t_unit_res; 424 if (tic->t_cnt > 0) 425 return 0; 426 427 trace_xfs_log_regrant(log, tic); 428 429 error = xlog_grant_head_check(log, &log->l_write_head, tic, 430 &need_bytes); 431 if (error) 432 goto out_error; 433 434 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 435 trace_xfs_log_regrant_exit(log, tic); 436 xlog_verify_grant_tail(log); 437 return 0; 438 439 out_error: 440 /* 441 * If we are failing, make sure the ticket doesn't have any current 442 * reservations. We don't want to add this back when the ticket/ 443 * transaction gets cancelled. 444 */ 445 tic->t_curr_res = 0; 446 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 447 return error; 448 } 449 450 /* 451 * Reserve log space and return a ticket corresponding to the reservation. 452 * 453 * Each reservation is going to reserve extra space for a log record header. 454 * When writes happen to the on-disk log, we don't subtract the length of the 455 * log record header from any reservation. By wasting space in each 456 * reservation, we prevent over allocation problems. 457 */ 458 int 459 xfs_log_reserve( 460 struct xfs_mount *mp, 461 int unit_bytes, 462 int cnt, 463 struct xlog_ticket **ticp, 464 bool permanent) 465 { 466 struct xlog *log = mp->m_log; 467 struct xlog_ticket *tic; 468 int need_bytes; 469 int error = 0; 470 471 if (xlog_is_shutdown(log)) 472 return -EIO; 473 474 XFS_STATS_INC(mp, xs_try_logspace); 475 476 ASSERT(*ticp == NULL); 477 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent); 478 *ticp = tic; 479 480 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 481 : tic->t_unit_res); 482 483 trace_xfs_log_reserve(log, tic); 484 485 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 486 &need_bytes); 487 if (error) 488 goto out_error; 489 490 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 491 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 492 trace_xfs_log_reserve_exit(log, tic); 493 xlog_verify_grant_tail(log); 494 return 0; 495 496 out_error: 497 /* 498 * If we are failing, make sure the ticket doesn't have any current 499 * reservations. We don't want to add this back when the ticket/ 500 * transaction gets cancelled. 501 */ 502 tic->t_curr_res = 0; 503 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 504 return error; 505 } 506 507 /* 508 * Run all the pending iclog callbacks and wake log force waiters and iclog 509 * space waiters so they can process the newly set shutdown state. We really 510 * don't care what order we process callbacks here because the log is shut down 511 * and so state cannot change on disk anymore. However, we cannot wake waiters 512 * until the callbacks have been processed because we may be in unmount and 513 * we must ensure that all AIL operations the callbacks perform have completed 514 * before we tear down the AIL. 515 * 516 * We avoid processing actively referenced iclogs so that we don't run callbacks 517 * while the iclog owner might still be preparing the iclog for IO submssion. 518 * These will be caught by xlog_state_iclog_release() and call this function 519 * again to process any callbacks that may have been added to that iclog. 520 */ 521 static void 522 xlog_state_shutdown_callbacks( 523 struct xlog *log) 524 { 525 struct xlog_in_core *iclog; 526 LIST_HEAD(cb_list); 527 528 iclog = log->l_iclog; 529 do { 530 if (atomic_read(&iclog->ic_refcnt)) { 531 /* Reference holder will re-run iclog callbacks. */ 532 continue; 533 } 534 list_splice_init(&iclog->ic_callbacks, &cb_list); 535 spin_unlock(&log->l_icloglock); 536 537 xlog_cil_process_committed(&cb_list); 538 539 spin_lock(&log->l_icloglock); 540 wake_up_all(&iclog->ic_write_wait); 541 wake_up_all(&iclog->ic_force_wait); 542 } while ((iclog = iclog->ic_next) != log->l_iclog); 543 544 wake_up_all(&log->l_flush_wait); 545 } 546 547 /* 548 * Flush iclog to disk if this is the last reference to the given iclog and the 549 * it is in the WANT_SYNC state. 550 * 551 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the 552 * log tail is updated correctly. NEED_FUA indicates that the iclog will be 553 * written to stable storage, and implies that a commit record is contained 554 * within the iclog. We need to ensure that the log tail does not move beyond 555 * the tail that the first commit record in the iclog ordered against, otherwise 556 * correct recovery of that checkpoint becomes dependent on future operations 557 * performed on this iclog. 558 * 559 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the 560 * current tail into iclog. Once the iclog tail is set, future operations must 561 * not modify it, otherwise they potentially violate ordering constraints for 562 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in 563 * the iclog will get zeroed on activation of the iclog after sync, so we 564 * always capture the tail lsn on the iclog on the first NEED_FUA release 565 * regardless of the number of active reference counts on this iclog. 566 */ 567 int 568 xlog_state_release_iclog( 569 struct xlog *log, 570 struct xlog_in_core *iclog) 571 { 572 xfs_lsn_t tail_lsn; 573 bool last_ref; 574 575 lockdep_assert_held(&log->l_icloglock); 576 577 trace_xlog_iclog_release(iclog, _RET_IP_); 578 /* 579 * Grabbing the current log tail needs to be atomic w.r.t. the writing 580 * of the tail LSN into the iclog so we guarantee that the log tail does 581 * not move between the first time we know that the iclog needs to be 582 * made stable and when we eventually submit it. 583 */ 584 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC || 585 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) && 586 !iclog->ic_header.h_tail_lsn) { 587 tail_lsn = xlog_assign_tail_lsn(log->l_mp); 588 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 589 } 590 591 last_ref = atomic_dec_and_test(&iclog->ic_refcnt); 592 593 if (xlog_is_shutdown(log)) { 594 /* 595 * If there are no more references to this iclog, process the 596 * pending iclog callbacks that were waiting on the release of 597 * this iclog. 598 */ 599 if (last_ref) 600 xlog_state_shutdown_callbacks(log); 601 return -EIO; 602 } 603 604 if (!last_ref) 605 return 0; 606 607 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) { 608 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 609 return 0; 610 } 611 612 iclog->ic_state = XLOG_STATE_SYNCING; 613 xlog_verify_tail_lsn(log, iclog); 614 trace_xlog_iclog_syncing(iclog, _RET_IP_); 615 616 spin_unlock(&log->l_icloglock); 617 xlog_sync(log, iclog); 618 spin_lock(&log->l_icloglock); 619 return 0; 620 } 621 622 /* 623 * Mount a log filesystem 624 * 625 * mp - ubiquitous xfs mount point structure 626 * log_target - buftarg of on-disk log device 627 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 628 * num_bblocks - Number of BBSIZE blocks in on-disk log 629 * 630 * Return error or zero. 631 */ 632 int 633 xfs_log_mount( 634 xfs_mount_t *mp, 635 xfs_buftarg_t *log_target, 636 xfs_daddr_t blk_offset, 637 int num_bblks) 638 { 639 struct xlog *log; 640 bool fatal = xfs_has_crc(mp); 641 int error = 0; 642 int min_logfsbs; 643 644 if (!xfs_has_norecovery(mp)) { 645 xfs_notice(mp, "Mounting V%d Filesystem", 646 XFS_SB_VERSION_NUM(&mp->m_sb)); 647 } else { 648 xfs_notice(mp, 649 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 650 XFS_SB_VERSION_NUM(&mp->m_sb)); 651 ASSERT(xfs_is_readonly(mp)); 652 } 653 654 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 655 if (IS_ERR(log)) { 656 error = PTR_ERR(log); 657 goto out; 658 } 659 mp->m_log = log; 660 661 /* 662 * Validate the given log space and drop a critical message via syslog 663 * if the log size is too small that would lead to some unexpected 664 * situations in transaction log space reservation stage. 665 * 666 * Note: we can't just reject the mount if the validation fails. This 667 * would mean that people would have to downgrade their kernel just to 668 * remedy the situation as there is no way to grow the log (short of 669 * black magic surgery with xfs_db). 670 * 671 * We can, however, reject mounts for CRC format filesystems, as the 672 * mkfs binary being used to make the filesystem should never create a 673 * filesystem with a log that is too small. 674 */ 675 min_logfsbs = xfs_log_calc_minimum_size(mp); 676 677 if (mp->m_sb.sb_logblocks < min_logfsbs) { 678 xfs_warn(mp, 679 "Log size %d blocks too small, minimum size is %d blocks", 680 mp->m_sb.sb_logblocks, min_logfsbs); 681 error = -EINVAL; 682 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 683 xfs_warn(mp, 684 "Log size %d blocks too large, maximum size is %lld blocks", 685 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 686 error = -EINVAL; 687 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 688 xfs_warn(mp, 689 "log size %lld bytes too large, maximum size is %lld bytes", 690 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 691 XFS_MAX_LOG_BYTES); 692 error = -EINVAL; 693 } else if (mp->m_sb.sb_logsunit > 1 && 694 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) { 695 xfs_warn(mp, 696 "log stripe unit %u bytes must be a multiple of block size", 697 mp->m_sb.sb_logsunit); 698 error = -EINVAL; 699 fatal = true; 700 } 701 if (error) { 702 /* 703 * Log check errors are always fatal on v5; or whenever bad 704 * metadata leads to a crash. 705 */ 706 if (fatal) { 707 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 708 ASSERT(0); 709 goto out_free_log; 710 } 711 xfs_crit(mp, "Log size out of supported range."); 712 xfs_crit(mp, 713 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 714 } 715 716 /* 717 * Initialize the AIL now we have a log. 718 */ 719 error = xfs_trans_ail_init(mp); 720 if (error) { 721 xfs_warn(mp, "AIL initialisation failed: error %d", error); 722 goto out_free_log; 723 } 724 log->l_ailp = mp->m_ail; 725 726 /* 727 * skip log recovery on a norecovery mount. pretend it all 728 * just worked. 729 */ 730 if (!xfs_has_norecovery(mp)) { 731 /* 732 * log recovery ignores readonly state and so we need to clear 733 * mount-based read only state so it can write to disk. 734 */ 735 bool readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, 736 &mp->m_opstate); 737 error = xlog_recover(log); 738 if (readonly) 739 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 740 if (error) { 741 xfs_warn(mp, "log mount/recovery failed: error %d", 742 error); 743 xlog_recover_cancel(log); 744 goto out_destroy_ail; 745 } 746 } 747 748 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 749 "log"); 750 if (error) 751 goto out_destroy_ail; 752 753 /* Normal transactions can now occur */ 754 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 755 756 /* 757 * Now the log has been fully initialised and we know were our 758 * space grant counters are, we can initialise the permanent ticket 759 * needed for delayed logging to work. 760 */ 761 xlog_cil_init_post_recovery(log); 762 763 return 0; 764 765 out_destroy_ail: 766 xfs_trans_ail_destroy(mp); 767 out_free_log: 768 xlog_dealloc_log(log); 769 out: 770 return error; 771 } 772 773 /* 774 * Finish the recovery of the file system. This is separate from the 775 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 776 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 777 * here. 778 * 779 * If we finish recovery successfully, start the background log work. If we are 780 * not doing recovery, then we have a RO filesystem and we don't need to start 781 * it. 782 */ 783 int 784 xfs_log_mount_finish( 785 struct xfs_mount *mp) 786 { 787 struct xlog *log = mp->m_log; 788 bool readonly; 789 int error = 0; 790 791 if (xfs_has_norecovery(mp)) { 792 ASSERT(xfs_is_readonly(mp)); 793 return 0; 794 } 795 796 /* 797 * log recovery ignores readonly state and so we need to clear 798 * mount-based read only state so it can write to disk. 799 */ 800 readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 801 802 /* 803 * During the second phase of log recovery, we need iget and 804 * iput to behave like they do for an active filesystem. 805 * xfs_fs_drop_inode needs to be able to prevent the deletion 806 * of inodes before we're done replaying log items on those 807 * inodes. Turn it off immediately after recovery finishes 808 * so that we don't leak the quota inodes if subsequent mount 809 * activities fail. 810 * 811 * We let all inodes involved in redo item processing end up on 812 * the LRU instead of being evicted immediately so that if we do 813 * something to an unlinked inode, the irele won't cause 814 * premature truncation and freeing of the inode, which results 815 * in log recovery failure. We have to evict the unreferenced 816 * lru inodes after clearing SB_ACTIVE because we don't 817 * otherwise clean up the lru if there's a subsequent failure in 818 * xfs_mountfs, which leads to us leaking the inodes if nothing 819 * else (e.g. quotacheck) references the inodes before the 820 * mount failure occurs. 821 */ 822 mp->m_super->s_flags |= SB_ACTIVE; 823 xfs_log_work_queue(mp); 824 if (xlog_recovery_needed(log)) 825 error = xlog_recover_finish(log); 826 mp->m_super->s_flags &= ~SB_ACTIVE; 827 evict_inodes(mp->m_super); 828 829 /* 830 * Drain the buffer LRU after log recovery. This is required for v4 831 * filesystems to avoid leaving around buffers with NULL verifier ops, 832 * but we do it unconditionally to make sure we're always in a clean 833 * cache state after mount. 834 * 835 * Don't push in the error case because the AIL may have pending intents 836 * that aren't removed until recovery is cancelled. 837 */ 838 if (xlog_recovery_needed(log)) { 839 if (!error) { 840 xfs_log_force(mp, XFS_LOG_SYNC); 841 xfs_ail_push_all_sync(mp->m_ail); 842 } 843 xfs_notice(mp, "Ending recovery (logdev: %s)", 844 mp->m_logname ? mp->m_logname : "internal"); 845 } else { 846 xfs_info(mp, "Ending clean mount"); 847 } 848 xfs_buftarg_drain(mp->m_ddev_targp); 849 850 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 851 if (readonly) 852 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 853 854 /* Make sure the log is dead if we're returning failure. */ 855 ASSERT(!error || xlog_is_shutdown(log)); 856 857 return error; 858 } 859 860 /* 861 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 862 * the log. 863 */ 864 void 865 xfs_log_mount_cancel( 866 struct xfs_mount *mp) 867 { 868 xlog_recover_cancel(mp->m_log); 869 xfs_log_unmount(mp); 870 } 871 872 /* 873 * Flush out the iclog to disk ensuring that device caches are flushed and 874 * the iclog hits stable storage before any completion waiters are woken. 875 */ 876 static inline int 877 xlog_force_iclog( 878 struct xlog_in_core *iclog) 879 { 880 atomic_inc(&iclog->ic_refcnt); 881 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 882 if (iclog->ic_state == XLOG_STATE_ACTIVE) 883 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0); 884 return xlog_state_release_iclog(iclog->ic_log, iclog); 885 } 886 887 /* 888 * Wait for the iclog and all prior iclogs to be written disk as required by the 889 * log force state machine. Waiting on ic_force_wait ensures iclog completions 890 * have been ordered and callbacks run before we are woken here, hence 891 * guaranteeing that all the iclogs up to this one are on stable storage. 892 */ 893 int 894 xlog_wait_on_iclog( 895 struct xlog_in_core *iclog) 896 __releases(iclog->ic_log->l_icloglock) 897 { 898 struct xlog *log = iclog->ic_log; 899 900 trace_xlog_iclog_wait_on(iclog, _RET_IP_); 901 if (!xlog_is_shutdown(log) && 902 iclog->ic_state != XLOG_STATE_ACTIVE && 903 iclog->ic_state != XLOG_STATE_DIRTY) { 904 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 905 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 906 } else { 907 spin_unlock(&log->l_icloglock); 908 } 909 910 if (xlog_is_shutdown(log)) 911 return -EIO; 912 return 0; 913 } 914 915 /* 916 * Write out an unmount record using the ticket provided. We have to account for 917 * the data space used in the unmount ticket as this write is not done from a 918 * transaction context that has already done the accounting for us. 919 */ 920 static int 921 xlog_write_unmount_record( 922 struct xlog *log, 923 struct xlog_ticket *ticket) 924 { 925 struct { 926 struct xlog_op_header ophdr; 927 struct xfs_unmount_log_format ulf; 928 } unmount_rec = { 929 .ophdr = { 930 .oh_clientid = XFS_LOG, 931 .oh_tid = cpu_to_be32(ticket->t_tid), 932 .oh_flags = XLOG_UNMOUNT_TRANS, 933 }, 934 .ulf = { 935 .magic = XLOG_UNMOUNT_TYPE, 936 }, 937 }; 938 struct xfs_log_iovec reg = { 939 .i_addr = &unmount_rec, 940 .i_len = sizeof(unmount_rec), 941 .i_type = XLOG_REG_TYPE_UNMOUNT, 942 }; 943 struct xfs_log_vec vec = { 944 .lv_niovecs = 1, 945 .lv_iovecp = ®, 946 }; 947 948 BUILD_BUG_ON((sizeof(struct xlog_op_header) + 949 sizeof(struct xfs_unmount_log_format)) != 950 sizeof(unmount_rec)); 951 952 /* account for space used by record data */ 953 ticket->t_curr_res -= sizeof(unmount_rec); 954 955 return xlog_write(log, NULL, &vec, ticket, reg.i_len); 956 } 957 958 /* 959 * Mark the filesystem clean by writing an unmount record to the head of the 960 * log. 961 */ 962 static void 963 xlog_unmount_write( 964 struct xlog *log) 965 { 966 struct xfs_mount *mp = log->l_mp; 967 struct xlog_in_core *iclog; 968 struct xlog_ticket *tic = NULL; 969 int error; 970 971 error = xfs_log_reserve(mp, 600, 1, &tic, 0); 972 if (error) 973 goto out_err; 974 975 error = xlog_write_unmount_record(log, tic); 976 /* 977 * At this point, we're umounting anyway, so there's no point in 978 * transitioning log state to shutdown. Just continue... 979 */ 980 out_err: 981 if (error) 982 xfs_alert(mp, "%s: unmount record failed", __func__); 983 984 spin_lock(&log->l_icloglock); 985 iclog = log->l_iclog; 986 error = xlog_force_iclog(iclog); 987 xlog_wait_on_iclog(iclog); 988 989 if (tic) { 990 trace_xfs_log_umount_write(log, tic); 991 xfs_log_ticket_ungrant(log, tic); 992 } 993 } 994 995 static void 996 xfs_log_unmount_verify_iclog( 997 struct xlog *log) 998 { 999 struct xlog_in_core *iclog = log->l_iclog; 1000 1001 do { 1002 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 1003 ASSERT(iclog->ic_offset == 0); 1004 } while ((iclog = iclog->ic_next) != log->l_iclog); 1005 } 1006 1007 /* 1008 * Unmount record used to have a string "Unmount filesystem--" in the 1009 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 1010 * We just write the magic number now since that particular field isn't 1011 * currently architecture converted and "Unmount" is a bit foo. 1012 * As far as I know, there weren't any dependencies on the old behaviour. 1013 */ 1014 static void 1015 xfs_log_unmount_write( 1016 struct xfs_mount *mp) 1017 { 1018 struct xlog *log = mp->m_log; 1019 1020 if (!xfs_log_writable(mp)) 1021 return; 1022 1023 xfs_log_force(mp, XFS_LOG_SYNC); 1024 1025 if (xlog_is_shutdown(log)) 1026 return; 1027 1028 /* 1029 * If we think the summary counters are bad, avoid writing the unmount 1030 * record to force log recovery at next mount, after which the summary 1031 * counters will be recalculated. Refer to xlog_check_unmount_rec for 1032 * more details. 1033 */ 1034 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp, 1035 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 1036 xfs_alert(mp, "%s: will fix summary counters at next mount", 1037 __func__); 1038 return; 1039 } 1040 1041 xfs_log_unmount_verify_iclog(log); 1042 xlog_unmount_write(log); 1043 } 1044 1045 /* 1046 * Empty the log for unmount/freeze. 1047 * 1048 * To do this, we first need to shut down the background log work so it is not 1049 * trying to cover the log as we clean up. We then need to unpin all objects in 1050 * the log so we can then flush them out. Once they have completed their IO and 1051 * run the callbacks removing themselves from the AIL, we can cover the log. 1052 */ 1053 int 1054 xfs_log_quiesce( 1055 struct xfs_mount *mp) 1056 { 1057 /* 1058 * Clear log incompat features since we're quiescing the log. Report 1059 * failures, though it's not fatal to have a higher log feature 1060 * protection level than the log contents actually require. 1061 */ 1062 if (xfs_clear_incompat_log_features(mp)) { 1063 int error; 1064 1065 error = xfs_sync_sb(mp, false); 1066 if (error) 1067 xfs_warn(mp, 1068 "Failed to clear log incompat features on quiesce"); 1069 } 1070 1071 cancel_delayed_work_sync(&mp->m_log->l_work); 1072 xfs_log_force(mp, XFS_LOG_SYNC); 1073 1074 /* 1075 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1076 * will push it, xfs_buftarg_wait() will not wait for it. Further, 1077 * xfs_buf_iowait() cannot be used because it was pushed with the 1078 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1079 * the IO to complete. 1080 */ 1081 xfs_ail_push_all_sync(mp->m_ail); 1082 xfs_buftarg_wait(mp->m_ddev_targp); 1083 xfs_buf_lock(mp->m_sb_bp); 1084 xfs_buf_unlock(mp->m_sb_bp); 1085 1086 return xfs_log_cover(mp); 1087 } 1088 1089 void 1090 xfs_log_clean( 1091 struct xfs_mount *mp) 1092 { 1093 xfs_log_quiesce(mp); 1094 xfs_log_unmount_write(mp); 1095 } 1096 1097 /* 1098 * Shut down and release the AIL and Log. 1099 * 1100 * During unmount, we need to ensure we flush all the dirty metadata objects 1101 * from the AIL so that the log is empty before we write the unmount record to 1102 * the log. Once this is done, we can tear down the AIL and the log. 1103 */ 1104 void 1105 xfs_log_unmount( 1106 struct xfs_mount *mp) 1107 { 1108 xfs_log_clean(mp); 1109 1110 xfs_buftarg_drain(mp->m_ddev_targp); 1111 1112 xfs_trans_ail_destroy(mp); 1113 1114 xfs_sysfs_del(&mp->m_log->l_kobj); 1115 1116 xlog_dealloc_log(mp->m_log); 1117 } 1118 1119 void 1120 xfs_log_item_init( 1121 struct xfs_mount *mp, 1122 struct xfs_log_item *item, 1123 int type, 1124 const struct xfs_item_ops *ops) 1125 { 1126 item->li_log = mp->m_log; 1127 item->li_ailp = mp->m_ail; 1128 item->li_type = type; 1129 item->li_ops = ops; 1130 item->li_lv = NULL; 1131 1132 INIT_LIST_HEAD(&item->li_ail); 1133 INIT_LIST_HEAD(&item->li_cil); 1134 INIT_LIST_HEAD(&item->li_bio_list); 1135 INIT_LIST_HEAD(&item->li_trans); 1136 } 1137 1138 /* 1139 * Wake up processes waiting for log space after we have moved the log tail. 1140 */ 1141 void 1142 xfs_log_space_wake( 1143 struct xfs_mount *mp) 1144 { 1145 struct xlog *log = mp->m_log; 1146 int free_bytes; 1147 1148 if (xlog_is_shutdown(log)) 1149 return; 1150 1151 if (!list_empty_careful(&log->l_write_head.waiters)) { 1152 ASSERT(!xlog_in_recovery(log)); 1153 1154 spin_lock(&log->l_write_head.lock); 1155 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1156 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1157 spin_unlock(&log->l_write_head.lock); 1158 } 1159 1160 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1161 ASSERT(!xlog_in_recovery(log)); 1162 1163 spin_lock(&log->l_reserve_head.lock); 1164 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1165 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1166 spin_unlock(&log->l_reserve_head.lock); 1167 } 1168 } 1169 1170 /* 1171 * Determine if we have a transaction that has gone to disk that needs to be 1172 * covered. To begin the transition to the idle state firstly the log needs to 1173 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1174 * we start attempting to cover the log. 1175 * 1176 * Only if we are then in a state where covering is needed, the caller is 1177 * informed that dummy transactions are required to move the log into the idle 1178 * state. 1179 * 1180 * If there are any items in the AIl or CIL, then we do not want to attempt to 1181 * cover the log as we may be in a situation where there isn't log space 1182 * available to run a dummy transaction and this can lead to deadlocks when the 1183 * tail of the log is pinned by an item that is modified in the CIL. Hence 1184 * there's no point in running a dummy transaction at this point because we 1185 * can't start trying to idle the log until both the CIL and AIL are empty. 1186 */ 1187 static bool 1188 xfs_log_need_covered( 1189 struct xfs_mount *mp) 1190 { 1191 struct xlog *log = mp->m_log; 1192 bool needed = false; 1193 1194 if (!xlog_cil_empty(log)) 1195 return false; 1196 1197 spin_lock(&log->l_icloglock); 1198 switch (log->l_covered_state) { 1199 case XLOG_STATE_COVER_DONE: 1200 case XLOG_STATE_COVER_DONE2: 1201 case XLOG_STATE_COVER_IDLE: 1202 break; 1203 case XLOG_STATE_COVER_NEED: 1204 case XLOG_STATE_COVER_NEED2: 1205 if (xfs_ail_min_lsn(log->l_ailp)) 1206 break; 1207 if (!xlog_iclogs_empty(log)) 1208 break; 1209 1210 needed = true; 1211 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1212 log->l_covered_state = XLOG_STATE_COVER_DONE; 1213 else 1214 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1215 break; 1216 default: 1217 needed = true; 1218 break; 1219 } 1220 spin_unlock(&log->l_icloglock); 1221 return needed; 1222 } 1223 1224 /* 1225 * Explicitly cover the log. This is similar to background log covering but 1226 * intended for usage in quiesce codepaths. The caller is responsible to ensure 1227 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL 1228 * must all be empty. 1229 */ 1230 static int 1231 xfs_log_cover( 1232 struct xfs_mount *mp) 1233 { 1234 int error = 0; 1235 bool need_covered; 1236 1237 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) && 1238 !xfs_ail_min_lsn(mp->m_log->l_ailp)) || 1239 xlog_is_shutdown(mp->m_log)); 1240 1241 if (!xfs_log_writable(mp)) 1242 return 0; 1243 1244 /* 1245 * xfs_log_need_covered() is not idempotent because it progresses the 1246 * state machine if the log requires covering. Therefore, we must call 1247 * this function once and use the result until we've issued an sb sync. 1248 * Do so first to make that abundantly clear. 1249 * 1250 * Fall into the covering sequence if the log needs covering or the 1251 * mount has lazy superblock accounting to sync to disk. The sb sync 1252 * used for covering accumulates the in-core counters, so covering 1253 * handles this for us. 1254 */ 1255 need_covered = xfs_log_need_covered(mp); 1256 if (!need_covered && !xfs_has_lazysbcount(mp)) 1257 return 0; 1258 1259 /* 1260 * To cover the log, commit the superblock twice (at most) in 1261 * independent checkpoints. The first serves as a reference for the 1262 * tail pointer. The sync transaction and AIL push empties the AIL and 1263 * updates the in-core tail to the LSN of the first checkpoint. The 1264 * second commit updates the on-disk tail with the in-core LSN, 1265 * covering the log. Push the AIL one more time to leave it empty, as 1266 * we found it. 1267 */ 1268 do { 1269 error = xfs_sync_sb(mp, true); 1270 if (error) 1271 break; 1272 xfs_ail_push_all_sync(mp->m_ail); 1273 } while (xfs_log_need_covered(mp)); 1274 1275 return error; 1276 } 1277 1278 /* 1279 * We may be holding the log iclog lock upon entering this routine. 1280 */ 1281 xfs_lsn_t 1282 xlog_assign_tail_lsn_locked( 1283 struct xfs_mount *mp) 1284 { 1285 struct xlog *log = mp->m_log; 1286 struct xfs_log_item *lip; 1287 xfs_lsn_t tail_lsn; 1288 1289 assert_spin_locked(&mp->m_ail->ail_lock); 1290 1291 /* 1292 * To make sure we always have a valid LSN for the log tail we keep 1293 * track of the last LSN which was committed in log->l_last_sync_lsn, 1294 * and use that when the AIL was empty. 1295 */ 1296 lip = xfs_ail_min(mp->m_ail); 1297 if (lip) 1298 tail_lsn = lip->li_lsn; 1299 else 1300 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1301 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1302 atomic64_set(&log->l_tail_lsn, tail_lsn); 1303 return tail_lsn; 1304 } 1305 1306 xfs_lsn_t 1307 xlog_assign_tail_lsn( 1308 struct xfs_mount *mp) 1309 { 1310 xfs_lsn_t tail_lsn; 1311 1312 spin_lock(&mp->m_ail->ail_lock); 1313 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1314 spin_unlock(&mp->m_ail->ail_lock); 1315 1316 return tail_lsn; 1317 } 1318 1319 /* 1320 * Return the space in the log between the tail and the head. The head 1321 * is passed in the cycle/bytes formal parms. In the special case where 1322 * the reserve head has wrapped passed the tail, this calculation is no 1323 * longer valid. In this case, just return 0 which means there is no space 1324 * in the log. This works for all places where this function is called 1325 * with the reserve head. Of course, if the write head were to ever 1326 * wrap the tail, we should blow up. Rather than catch this case here, 1327 * we depend on other ASSERTions in other parts of the code. XXXmiken 1328 * 1329 * If reservation head is behind the tail, we have a problem. Warn about it, 1330 * but then treat it as if the log is empty. 1331 * 1332 * If the log is shut down, the head and tail may be invalid or out of whack, so 1333 * shortcut invalidity asserts in this case so that we don't trigger them 1334 * falsely. 1335 */ 1336 STATIC int 1337 xlog_space_left( 1338 struct xlog *log, 1339 atomic64_t *head) 1340 { 1341 int tail_bytes; 1342 int tail_cycle; 1343 int head_cycle; 1344 int head_bytes; 1345 1346 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1347 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1348 tail_bytes = BBTOB(tail_bytes); 1349 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1350 return log->l_logsize - (head_bytes - tail_bytes); 1351 if (tail_cycle + 1 < head_cycle) 1352 return 0; 1353 1354 /* Ignore potential inconsistency when shutdown. */ 1355 if (xlog_is_shutdown(log)) 1356 return log->l_logsize; 1357 1358 if (tail_cycle < head_cycle) { 1359 ASSERT(tail_cycle == (head_cycle - 1)); 1360 return tail_bytes - head_bytes; 1361 } 1362 1363 /* 1364 * The reservation head is behind the tail. In this case we just want to 1365 * return the size of the log as the amount of space left. 1366 */ 1367 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1368 xfs_alert(log->l_mp, " tail_cycle = %d, tail_bytes = %d", 1369 tail_cycle, tail_bytes); 1370 xfs_alert(log->l_mp, " GH cycle = %d, GH bytes = %d", 1371 head_cycle, head_bytes); 1372 ASSERT(0); 1373 return log->l_logsize; 1374 } 1375 1376 1377 static void 1378 xlog_ioend_work( 1379 struct work_struct *work) 1380 { 1381 struct xlog_in_core *iclog = 1382 container_of(work, struct xlog_in_core, ic_end_io_work); 1383 struct xlog *log = iclog->ic_log; 1384 int error; 1385 1386 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1387 #ifdef DEBUG 1388 /* treat writes with injected CRC errors as failed */ 1389 if (iclog->ic_fail_crc) 1390 error = -EIO; 1391 #endif 1392 1393 /* 1394 * Race to shutdown the filesystem if we see an error. 1395 */ 1396 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1397 xfs_alert(log->l_mp, "log I/O error %d", error); 1398 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1399 } 1400 1401 xlog_state_done_syncing(iclog); 1402 bio_uninit(&iclog->ic_bio); 1403 1404 /* 1405 * Drop the lock to signal that we are done. Nothing references the 1406 * iclog after this, so an unmount waiting on this lock can now tear it 1407 * down safely. As such, it is unsafe to reference the iclog after the 1408 * unlock as we could race with it being freed. 1409 */ 1410 up(&iclog->ic_sema); 1411 } 1412 1413 /* 1414 * Return size of each in-core log record buffer. 1415 * 1416 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1417 * 1418 * If the filesystem blocksize is too large, we may need to choose a 1419 * larger size since the directory code currently logs entire blocks. 1420 */ 1421 STATIC void 1422 xlog_get_iclog_buffer_size( 1423 struct xfs_mount *mp, 1424 struct xlog *log) 1425 { 1426 if (mp->m_logbufs <= 0) 1427 mp->m_logbufs = XLOG_MAX_ICLOGS; 1428 if (mp->m_logbsize <= 0) 1429 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1430 1431 log->l_iclog_bufs = mp->m_logbufs; 1432 log->l_iclog_size = mp->m_logbsize; 1433 1434 /* 1435 * # headers = size / 32k - one header holds cycles from 32k of data. 1436 */ 1437 log->l_iclog_heads = 1438 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE); 1439 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT; 1440 } 1441 1442 void 1443 xfs_log_work_queue( 1444 struct xfs_mount *mp) 1445 { 1446 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1447 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1448 } 1449 1450 /* 1451 * Clear the log incompat flags if we have the opportunity. 1452 * 1453 * This only happens if we're about to log the second dummy transaction as part 1454 * of covering the log and we can get the log incompat feature usage lock. 1455 */ 1456 static inline void 1457 xlog_clear_incompat( 1458 struct xlog *log) 1459 { 1460 struct xfs_mount *mp = log->l_mp; 1461 1462 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb, 1463 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) 1464 return; 1465 1466 if (log->l_covered_state != XLOG_STATE_COVER_DONE2) 1467 return; 1468 1469 if (!down_write_trylock(&log->l_incompat_users)) 1470 return; 1471 1472 xfs_clear_incompat_log_features(mp); 1473 up_write(&log->l_incompat_users); 1474 } 1475 1476 /* 1477 * Every sync period we need to unpin all items in the AIL and push them to 1478 * disk. If there is nothing dirty, then we might need to cover the log to 1479 * indicate that the filesystem is idle. 1480 */ 1481 static void 1482 xfs_log_worker( 1483 struct work_struct *work) 1484 { 1485 struct xlog *log = container_of(to_delayed_work(work), 1486 struct xlog, l_work); 1487 struct xfs_mount *mp = log->l_mp; 1488 1489 /* dgc: errors ignored - not fatal and nowhere to report them */ 1490 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) { 1491 /* 1492 * Dump a transaction into the log that contains no real change. 1493 * This is needed to stamp the current tail LSN into the log 1494 * during the covering operation. 1495 * 1496 * We cannot use an inode here for this - that will push dirty 1497 * state back up into the VFS and then periodic inode flushing 1498 * will prevent log covering from making progress. Hence we 1499 * synchronously log the superblock instead to ensure the 1500 * superblock is immediately unpinned and can be written back. 1501 */ 1502 xlog_clear_incompat(log); 1503 xfs_sync_sb(mp, true); 1504 } else 1505 xfs_log_force(mp, 0); 1506 1507 /* start pushing all the metadata that is currently dirty */ 1508 xfs_ail_push_all(mp->m_ail); 1509 1510 /* queue us up again */ 1511 xfs_log_work_queue(mp); 1512 } 1513 1514 /* 1515 * This routine initializes some of the log structure for a given mount point. 1516 * Its primary purpose is to fill in enough, so recovery can occur. However, 1517 * some other stuff may be filled in too. 1518 */ 1519 STATIC struct xlog * 1520 xlog_alloc_log( 1521 struct xfs_mount *mp, 1522 struct xfs_buftarg *log_target, 1523 xfs_daddr_t blk_offset, 1524 int num_bblks) 1525 { 1526 struct xlog *log; 1527 xlog_rec_header_t *head; 1528 xlog_in_core_t **iclogp; 1529 xlog_in_core_t *iclog, *prev_iclog=NULL; 1530 int i; 1531 int error = -ENOMEM; 1532 uint log2_size = 0; 1533 1534 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1535 if (!log) { 1536 xfs_warn(mp, "Log allocation failed: No memory!"); 1537 goto out; 1538 } 1539 1540 log->l_mp = mp; 1541 log->l_targ = log_target; 1542 log->l_logsize = BBTOB(num_bblks); 1543 log->l_logBBstart = blk_offset; 1544 log->l_logBBsize = num_bblks; 1545 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1546 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 1547 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1548 1549 log->l_prev_block = -1; 1550 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1551 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1552 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1553 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1554 1555 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1) 1556 log->l_iclog_roundoff = mp->m_sb.sb_logsunit; 1557 else 1558 log->l_iclog_roundoff = BBSIZE; 1559 1560 xlog_grant_head_init(&log->l_reserve_head); 1561 xlog_grant_head_init(&log->l_write_head); 1562 1563 error = -EFSCORRUPTED; 1564 if (xfs_has_sector(mp)) { 1565 log2_size = mp->m_sb.sb_logsectlog; 1566 if (log2_size < BBSHIFT) { 1567 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1568 log2_size, BBSHIFT); 1569 goto out_free_log; 1570 } 1571 1572 log2_size -= BBSHIFT; 1573 if (log2_size > mp->m_sectbb_log) { 1574 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1575 log2_size, mp->m_sectbb_log); 1576 goto out_free_log; 1577 } 1578 1579 /* for larger sector sizes, must have v2 or external log */ 1580 if (log2_size && log->l_logBBstart > 0 && 1581 !xfs_has_logv2(mp)) { 1582 xfs_warn(mp, 1583 "log sector size (0x%x) invalid for configuration.", 1584 log2_size); 1585 goto out_free_log; 1586 } 1587 } 1588 log->l_sectBBsize = 1 << log2_size; 1589 1590 init_rwsem(&log->l_incompat_users); 1591 1592 xlog_get_iclog_buffer_size(mp, log); 1593 1594 spin_lock_init(&log->l_icloglock); 1595 init_waitqueue_head(&log->l_flush_wait); 1596 1597 iclogp = &log->l_iclog; 1598 /* 1599 * The amount of memory to allocate for the iclog structure is 1600 * rather funky due to the way the structure is defined. It is 1601 * done this way so that we can use different sizes for machines 1602 * with different amounts of memory. See the definition of 1603 * xlog_in_core_t in xfs_log_priv.h for details. 1604 */ 1605 ASSERT(log->l_iclog_size >= 4096); 1606 for (i = 0; i < log->l_iclog_bufs; i++) { 1607 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1608 sizeof(struct bio_vec); 1609 1610 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL); 1611 if (!iclog) 1612 goto out_free_iclog; 1613 1614 *iclogp = iclog; 1615 iclog->ic_prev = prev_iclog; 1616 prev_iclog = iclog; 1617 1618 iclog->ic_data = kvzalloc(log->l_iclog_size, 1619 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1620 if (!iclog->ic_data) 1621 goto out_free_iclog; 1622 head = &iclog->ic_header; 1623 memset(head, 0, sizeof(xlog_rec_header_t)); 1624 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1625 head->h_version = cpu_to_be32( 1626 xfs_has_logv2(log->l_mp) ? 2 : 1); 1627 head->h_size = cpu_to_be32(log->l_iclog_size); 1628 /* new fields */ 1629 head->h_fmt = cpu_to_be32(XLOG_FMT); 1630 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1631 1632 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1633 iclog->ic_state = XLOG_STATE_ACTIVE; 1634 iclog->ic_log = log; 1635 atomic_set(&iclog->ic_refcnt, 0); 1636 INIT_LIST_HEAD(&iclog->ic_callbacks); 1637 iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize; 1638 1639 init_waitqueue_head(&iclog->ic_force_wait); 1640 init_waitqueue_head(&iclog->ic_write_wait); 1641 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1642 sema_init(&iclog->ic_sema, 1); 1643 1644 iclogp = &iclog->ic_next; 1645 } 1646 *iclogp = log->l_iclog; /* complete ring */ 1647 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1648 1649 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1650 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | 1651 WQ_HIGHPRI), 1652 0, mp->m_super->s_id); 1653 if (!log->l_ioend_workqueue) 1654 goto out_free_iclog; 1655 1656 error = xlog_cil_init(log); 1657 if (error) 1658 goto out_destroy_workqueue; 1659 return log; 1660 1661 out_destroy_workqueue: 1662 destroy_workqueue(log->l_ioend_workqueue); 1663 out_free_iclog: 1664 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1665 prev_iclog = iclog->ic_next; 1666 kmem_free(iclog->ic_data); 1667 kmem_free(iclog); 1668 if (prev_iclog == log->l_iclog) 1669 break; 1670 } 1671 out_free_log: 1672 kmem_free(log); 1673 out: 1674 return ERR_PTR(error); 1675 } /* xlog_alloc_log */ 1676 1677 /* 1678 * Compute the LSN that we'd need to push the log tail towards in order to have 1679 * (a) enough on-disk log space to log the number of bytes specified, (b) at 1680 * least 25% of the log space free, and (c) at least 256 blocks free. If the 1681 * log free space already meets all three thresholds, this function returns 1682 * NULLCOMMITLSN. 1683 */ 1684 xfs_lsn_t 1685 xlog_grant_push_threshold( 1686 struct xlog *log, 1687 int need_bytes) 1688 { 1689 xfs_lsn_t threshold_lsn = 0; 1690 xfs_lsn_t last_sync_lsn; 1691 int free_blocks; 1692 int free_bytes; 1693 int threshold_block; 1694 int threshold_cycle; 1695 int free_threshold; 1696 1697 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1698 1699 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1700 free_blocks = BTOBBT(free_bytes); 1701 1702 /* 1703 * Set the threshold for the minimum number of free blocks in the 1704 * log to the maximum of what the caller needs, one quarter of the 1705 * log, and 256 blocks. 1706 */ 1707 free_threshold = BTOBB(need_bytes); 1708 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1709 free_threshold = max(free_threshold, 256); 1710 if (free_blocks >= free_threshold) 1711 return NULLCOMMITLSN; 1712 1713 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1714 &threshold_block); 1715 threshold_block += free_threshold; 1716 if (threshold_block >= log->l_logBBsize) { 1717 threshold_block -= log->l_logBBsize; 1718 threshold_cycle += 1; 1719 } 1720 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1721 threshold_block); 1722 /* 1723 * Don't pass in an lsn greater than the lsn of the last 1724 * log record known to be on disk. Use a snapshot of the last sync lsn 1725 * so that it doesn't change between the compare and the set. 1726 */ 1727 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1728 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1729 threshold_lsn = last_sync_lsn; 1730 1731 return threshold_lsn; 1732 } 1733 1734 /* 1735 * Push the tail of the log if we need to do so to maintain the free log space 1736 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a 1737 * policy which pushes on an lsn which is further along in the log once we 1738 * reach the high water mark. In this manner, we would be creating a low water 1739 * mark. 1740 */ 1741 STATIC void 1742 xlog_grant_push_ail( 1743 struct xlog *log, 1744 int need_bytes) 1745 { 1746 xfs_lsn_t threshold_lsn; 1747 1748 threshold_lsn = xlog_grant_push_threshold(log, need_bytes); 1749 if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log)) 1750 return; 1751 1752 /* 1753 * Get the transaction layer to kick the dirty buffers out to 1754 * disk asynchronously. No point in trying to do this if 1755 * the filesystem is shutting down. 1756 */ 1757 xfs_ail_push(log->l_ailp, threshold_lsn); 1758 } 1759 1760 /* 1761 * Stamp cycle number in every block 1762 */ 1763 STATIC void 1764 xlog_pack_data( 1765 struct xlog *log, 1766 struct xlog_in_core *iclog, 1767 int roundoff) 1768 { 1769 int i, j, k; 1770 int size = iclog->ic_offset + roundoff; 1771 __be32 cycle_lsn; 1772 char *dp; 1773 1774 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1775 1776 dp = iclog->ic_datap; 1777 for (i = 0; i < BTOBB(size); i++) { 1778 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1779 break; 1780 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1781 *(__be32 *)dp = cycle_lsn; 1782 dp += BBSIZE; 1783 } 1784 1785 if (xfs_has_logv2(log->l_mp)) { 1786 xlog_in_core_2_t *xhdr = iclog->ic_data; 1787 1788 for ( ; i < BTOBB(size); i++) { 1789 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1790 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1791 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1792 *(__be32 *)dp = cycle_lsn; 1793 dp += BBSIZE; 1794 } 1795 1796 for (i = 1; i < log->l_iclog_heads; i++) 1797 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1798 } 1799 } 1800 1801 /* 1802 * Calculate the checksum for a log buffer. 1803 * 1804 * This is a little more complicated than it should be because the various 1805 * headers and the actual data are non-contiguous. 1806 */ 1807 __le32 1808 xlog_cksum( 1809 struct xlog *log, 1810 struct xlog_rec_header *rhead, 1811 char *dp, 1812 int size) 1813 { 1814 uint32_t crc; 1815 1816 /* first generate the crc for the record header ... */ 1817 crc = xfs_start_cksum_update((char *)rhead, 1818 sizeof(struct xlog_rec_header), 1819 offsetof(struct xlog_rec_header, h_crc)); 1820 1821 /* ... then for additional cycle data for v2 logs ... */ 1822 if (xfs_has_logv2(log->l_mp)) { 1823 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1824 int i; 1825 int xheads; 1826 1827 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE); 1828 1829 for (i = 1; i < xheads; i++) { 1830 crc = crc32c(crc, &xhdr[i].hic_xheader, 1831 sizeof(struct xlog_rec_ext_header)); 1832 } 1833 } 1834 1835 /* ... and finally for the payload */ 1836 crc = crc32c(crc, dp, size); 1837 1838 return xfs_end_cksum(crc); 1839 } 1840 1841 static void 1842 xlog_bio_end_io( 1843 struct bio *bio) 1844 { 1845 struct xlog_in_core *iclog = bio->bi_private; 1846 1847 queue_work(iclog->ic_log->l_ioend_workqueue, 1848 &iclog->ic_end_io_work); 1849 } 1850 1851 static int 1852 xlog_map_iclog_data( 1853 struct bio *bio, 1854 void *data, 1855 size_t count) 1856 { 1857 do { 1858 struct page *page = kmem_to_page(data); 1859 unsigned int off = offset_in_page(data); 1860 size_t len = min_t(size_t, count, PAGE_SIZE - off); 1861 1862 if (bio_add_page(bio, page, len, off) != len) 1863 return -EIO; 1864 1865 data += len; 1866 count -= len; 1867 } while (count); 1868 1869 return 0; 1870 } 1871 1872 STATIC void 1873 xlog_write_iclog( 1874 struct xlog *log, 1875 struct xlog_in_core *iclog, 1876 uint64_t bno, 1877 unsigned int count) 1878 { 1879 ASSERT(bno < log->l_logBBsize); 1880 trace_xlog_iclog_write(iclog, _RET_IP_); 1881 1882 /* 1883 * We lock the iclogbufs here so that we can serialise against I/O 1884 * completion during unmount. We might be processing a shutdown 1885 * triggered during unmount, and that can occur asynchronously to the 1886 * unmount thread, and hence we need to ensure that completes before 1887 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1888 * across the log IO to archieve that. 1889 */ 1890 down(&iclog->ic_sema); 1891 if (xlog_is_shutdown(log)) { 1892 /* 1893 * It would seem logical to return EIO here, but we rely on 1894 * the log state machine to propagate I/O errors instead of 1895 * doing it here. We kick of the state machine and unlock 1896 * the buffer manually, the code needs to be kept in sync 1897 * with the I/O completion path. 1898 */ 1899 xlog_state_done_syncing(iclog); 1900 up(&iclog->ic_sema); 1901 return; 1902 } 1903 1904 /* 1905 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more 1906 * IOs coming immediately after this one. This prevents the block layer 1907 * writeback throttle from throttling log writes behind background 1908 * metadata writeback and causing priority inversions. 1909 */ 1910 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec, 1911 howmany(count, PAGE_SIZE), 1912 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE); 1913 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1914 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1915 iclog->ic_bio.bi_private = iclog; 1916 1917 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) { 1918 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1919 /* 1920 * For external log devices, we also need to flush the data 1921 * device cache first to ensure all metadata writeback covered 1922 * by the LSN in this iclog is on stable storage. This is slow, 1923 * but it *must* complete before we issue the external log IO. 1924 */ 1925 if (log->l_targ != log->l_mp->m_ddev_targp) 1926 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev); 1927 } 1928 if (iclog->ic_flags & XLOG_ICL_NEED_FUA) 1929 iclog->ic_bio.bi_opf |= REQ_FUA; 1930 1931 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA); 1932 1933 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) { 1934 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1935 return; 1936 } 1937 if (is_vmalloc_addr(iclog->ic_data)) 1938 flush_kernel_vmap_range(iclog->ic_data, count); 1939 1940 /* 1941 * If this log buffer would straddle the end of the log we will have 1942 * to split it up into two bios, so that we can continue at the start. 1943 */ 1944 if (bno + BTOBB(count) > log->l_logBBsize) { 1945 struct bio *split; 1946 1947 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1948 GFP_NOIO, &fs_bio_set); 1949 bio_chain(split, &iclog->ic_bio); 1950 submit_bio(split); 1951 1952 /* restart at logical offset zero for the remainder */ 1953 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1954 } 1955 1956 submit_bio(&iclog->ic_bio); 1957 } 1958 1959 /* 1960 * We need to bump cycle number for the part of the iclog that is 1961 * written to the start of the log. Watch out for the header magic 1962 * number case, though. 1963 */ 1964 static void 1965 xlog_split_iclog( 1966 struct xlog *log, 1967 void *data, 1968 uint64_t bno, 1969 unsigned int count) 1970 { 1971 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 1972 unsigned int i; 1973 1974 for (i = split_offset; i < count; i += BBSIZE) { 1975 uint32_t cycle = get_unaligned_be32(data + i); 1976 1977 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1978 cycle++; 1979 put_unaligned_be32(cycle, data + i); 1980 } 1981 } 1982 1983 static int 1984 xlog_calc_iclog_size( 1985 struct xlog *log, 1986 struct xlog_in_core *iclog, 1987 uint32_t *roundoff) 1988 { 1989 uint32_t count_init, count; 1990 1991 /* Add for LR header */ 1992 count_init = log->l_iclog_hsize + iclog->ic_offset; 1993 count = roundup(count_init, log->l_iclog_roundoff); 1994 1995 *roundoff = count - count_init; 1996 1997 ASSERT(count >= count_init); 1998 ASSERT(*roundoff < log->l_iclog_roundoff); 1999 return count; 2000 } 2001 2002 /* 2003 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 2004 * fashion. Previously, we should have moved the current iclog 2005 * ptr in the log to point to the next available iclog. This allows further 2006 * write to continue while this code syncs out an iclog ready to go. 2007 * Before an in-core log can be written out, the data section must be scanned 2008 * to save away the 1st word of each BBSIZE block into the header. We replace 2009 * it with the current cycle count. Each BBSIZE block is tagged with the 2010 * cycle count because there in an implicit assumption that drives will 2011 * guarantee that entire 512 byte blocks get written at once. In other words, 2012 * we can't have part of a 512 byte block written and part not written. By 2013 * tagging each block, we will know which blocks are valid when recovering 2014 * after an unclean shutdown. 2015 * 2016 * This routine is single threaded on the iclog. No other thread can be in 2017 * this routine with the same iclog. Changing contents of iclog can there- 2018 * fore be done without grabbing the state machine lock. Updating the global 2019 * log will require grabbing the lock though. 2020 * 2021 * The entire log manager uses a logical block numbering scheme. Only 2022 * xlog_write_iclog knows about the fact that the log may not start with 2023 * block zero on a given device. 2024 */ 2025 STATIC void 2026 xlog_sync( 2027 struct xlog *log, 2028 struct xlog_in_core *iclog) 2029 { 2030 unsigned int count; /* byte count of bwrite */ 2031 unsigned int roundoff; /* roundoff to BB or stripe */ 2032 uint64_t bno; 2033 unsigned int size; 2034 2035 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2036 trace_xlog_iclog_sync(iclog, _RET_IP_); 2037 2038 count = xlog_calc_iclog_size(log, iclog, &roundoff); 2039 2040 /* move grant heads by roundoff in sync */ 2041 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 2042 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 2043 2044 /* put cycle number in every block */ 2045 xlog_pack_data(log, iclog, roundoff); 2046 2047 /* real byte length */ 2048 size = iclog->ic_offset; 2049 if (xfs_has_logv2(log->l_mp)) 2050 size += roundoff; 2051 iclog->ic_header.h_len = cpu_to_be32(size); 2052 2053 XFS_STATS_INC(log->l_mp, xs_log_writes); 2054 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 2055 2056 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)); 2057 2058 /* Do we need to split this write into 2 parts? */ 2059 if (bno + BTOBB(count) > log->l_logBBsize) 2060 xlog_split_iclog(log, &iclog->ic_header, bno, count); 2061 2062 /* calculcate the checksum */ 2063 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 2064 iclog->ic_datap, size); 2065 /* 2066 * Intentionally corrupt the log record CRC based on the error injection 2067 * frequency, if defined. This facilitates testing log recovery in the 2068 * event of torn writes. Hence, set the IOABORT state to abort the log 2069 * write on I/O completion and shutdown the fs. The subsequent mount 2070 * detects the bad CRC and attempts to recover. 2071 */ 2072 #ifdef DEBUG 2073 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 2074 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 2075 iclog->ic_fail_crc = true; 2076 xfs_warn(log->l_mp, 2077 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 2078 be64_to_cpu(iclog->ic_header.h_lsn)); 2079 } 2080 #endif 2081 xlog_verify_iclog(log, iclog, count); 2082 xlog_write_iclog(log, iclog, bno, count); 2083 } 2084 2085 /* 2086 * Deallocate a log structure 2087 */ 2088 STATIC void 2089 xlog_dealloc_log( 2090 struct xlog *log) 2091 { 2092 xlog_in_core_t *iclog, *next_iclog; 2093 int i; 2094 2095 /* 2096 * Cycle all the iclogbuf locks to make sure all log IO completion 2097 * is done before we tear down these buffers. 2098 */ 2099 iclog = log->l_iclog; 2100 for (i = 0; i < log->l_iclog_bufs; i++) { 2101 down(&iclog->ic_sema); 2102 up(&iclog->ic_sema); 2103 iclog = iclog->ic_next; 2104 } 2105 2106 /* 2107 * Destroy the CIL after waiting for iclog IO completion because an 2108 * iclog EIO error will try to shut down the log, which accesses the 2109 * CIL to wake up the waiters. 2110 */ 2111 xlog_cil_destroy(log); 2112 2113 iclog = log->l_iclog; 2114 for (i = 0; i < log->l_iclog_bufs; i++) { 2115 next_iclog = iclog->ic_next; 2116 kmem_free(iclog->ic_data); 2117 kmem_free(iclog); 2118 iclog = next_iclog; 2119 } 2120 2121 log->l_mp->m_log = NULL; 2122 destroy_workqueue(log->l_ioend_workqueue); 2123 kmem_free(log); 2124 } 2125 2126 /* 2127 * Update counters atomically now that memcpy is done. 2128 */ 2129 static inline void 2130 xlog_state_finish_copy( 2131 struct xlog *log, 2132 struct xlog_in_core *iclog, 2133 int record_cnt, 2134 int copy_bytes) 2135 { 2136 lockdep_assert_held(&log->l_icloglock); 2137 2138 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2139 iclog->ic_offset += copy_bytes; 2140 } 2141 2142 /* 2143 * print out info relating to regions written which consume 2144 * the reservation 2145 */ 2146 void 2147 xlog_print_tic_res( 2148 struct xfs_mount *mp, 2149 struct xlog_ticket *ticket) 2150 { 2151 xfs_warn(mp, "ticket reservation summary:"); 2152 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res); 2153 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res); 2154 xfs_warn(mp, " original count = %d", ticket->t_ocnt); 2155 xfs_warn(mp, " remaining count = %d", ticket->t_cnt); 2156 } 2157 2158 /* 2159 * Print a summary of the transaction. 2160 */ 2161 void 2162 xlog_print_trans( 2163 struct xfs_trans *tp) 2164 { 2165 struct xfs_mount *mp = tp->t_mountp; 2166 struct xfs_log_item *lip; 2167 2168 /* dump core transaction and ticket info */ 2169 xfs_warn(mp, "transaction summary:"); 2170 xfs_warn(mp, " log res = %d", tp->t_log_res); 2171 xfs_warn(mp, " log count = %d", tp->t_log_count); 2172 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2173 2174 xlog_print_tic_res(mp, tp->t_ticket); 2175 2176 /* dump each log item */ 2177 list_for_each_entry(lip, &tp->t_items, li_trans) { 2178 struct xfs_log_vec *lv = lip->li_lv; 2179 struct xfs_log_iovec *vec; 2180 int i; 2181 2182 xfs_warn(mp, "log item: "); 2183 xfs_warn(mp, " type = 0x%x", lip->li_type); 2184 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2185 if (!lv) 2186 continue; 2187 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2188 xfs_warn(mp, " size = %d", lv->lv_size); 2189 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2190 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2191 2192 /* dump each iovec for the log item */ 2193 vec = lv->lv_iovecp; 2194 for (i = 0; i < lv->lv_niovecs; i++) { 2195 int dumplen = min(vec->i_len, 32); 2196 2197 xfs_warn(mp, " iovec[%d]", i); 2198 xfs_warn(mp, " type = 0x%x", vec->i_type); 2199 xfs_warn(mp, " len = %d", vec->i_len); 2200 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2201 xfs_hex_dump(vec->i_addr, dumplen); 2202 2203 vec++; 2204 } 2205 } 2206 } 2207 2208 static inline void 2209 xlog_write_iovec( 2210 struct xlog_in_core *iclog, 2211 uint32_t *log_offset, 2212 void *data, 2213 uint32_t write_len, 2214 int *bytes_left, 2215 uint32_t *record_cnt, 2216 uint32_t *data_cnt) 2217 { 2218 ASSERT(*log_offset < iclog->ic_log->l_iclog_size); 2219 ASSERT(*log_offset % sizeof(int32_t) == 0); 2220 ASSERT(write_len % sizeof(int32_t) == 0); 2221 2222 memcpy(iclog->ic_datap + *log_offset, data, write_len); 2223 *log_offset += write_len; 2224 *bytes_left -= write_len; 2225 (*record_cnt)++; 2226 *data_cnt += write_len; 2227 } 2228 2229 /* 2230 * Write log vectors into a single iclog which is guaranteed by the caller 2231 * to have enough space to write the entire log vector into. 2232 */ 2233 static void 2234 xlog_write_full( 2235 struct xfs_log_vec *lv, 2236 struct xlog_ticket *ticket, 2237 struct xlog_in_core *iclog, 2238 uint32_t *log_offset, 2239 uint32_t *len, 2240 uint32_t *record_cnt, 2241 uint32_t *data_cnt) 2242 { 2243 int index; 2244 2245 ASSERT(*log_offset + *len <= iclog->ic_size || 2246 iclog->ic_state == XLOG_STATE_WANT_SYNC); 2247 2248 /* 2249 * Ordered log vectors have no regions to write so this 2250 * loop will naturally skip them. 2251 */ 2252 for (index = 0; index < lv->lv_niovecs; index++) { 2253 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2254 struct xlog_op_header *ophdr = reg->i_addr; 2255 2256 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2257 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2258 reg->i_len, len, record_cnt, data_cnt); 2259 } 2260 } 2261 2262 static int 2263 xlog_write_get_more_iclog_space( 2264 struct xlog_ticket *ticket, 2265 struct xlog_in_core **iclogp, 2266 uint32_t *log_offset, 2267 uint32_t len, 2268 uint32_t *record_cnt, 2269 uint32_t *data_cnt) 2270 { 2271 struct xlog_in_core *iclog = *iclogp; 2272 struct xlog *log = iclog->ic_log; 2273 int error; 2274 2275 spin_lock(&log->l_icloglock); 2276 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC); 2277 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2278 error = xlog_state_release_iclog(log, iclog); 2279 spin_unlock(&log->l_icloglock); 2280 if (error) 2281 return error; 2282 2283 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2284 log_offset); 2285 if (error) 2286 return error; 2287 *record_cnt = 0; 2288 *data_cnt = 0; 2289 *iclogp = iclog; 2290 return 0; 2291 } 2292 2293 /* 2294 * Write log vectors into a single iclog which is smaller than the current chain 2295 * length. We write until we cannot fit a full record into the remaining space 2296 * and then stop. We return the log vector that is to be written that cannot 2297 * wholly fit in the iclog. 2298 */ 2299 static int 2300 xlog_write_partial( 2301 struct xfs_log_vec *lv, 2302 struct xlog_ticket *ticket, 2303 struct xlog_in_core **iclogp, 2304 uint32_t *log_offset, 2305 uint32_t *len, 2306 uint32_t *record_cnt, 2307 uint32_t *data_cnt) 2308 { 2309 struct xlog_in_core *iclog = *iclogp; 2310 struct xlog_op_header *ophdr; 2311 int index = 0; 2312 uint32_t rlen; 2313 int error; 2314 2315 /* walk the logvec, copying until we run out of space in the iclog */ 2316 for (index = 0; index < lv->lv_niovecs; index++) { 2317 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2318 uint32_t reg_offset = 0; 2319 2320 /* 2321 * The first region of a continuation must have a non-zero 2322 * length otherwise log recovery will just skip over it and 2323 * start recovering from the next opheader it finds. Because we 2324 * mark the next opheader as a continuation, recovery will then 2325 * incorrectly add the continuation to the previous region and 2326 * that breaks stuff. 2327 * 2328 * Hence if there isn't space for region data after the 2329 * opheader, then we need to start afresh with a new iclog. 2330 */ 2331 if (iclog->ic_size - *log_offset <= 2332 sizeof(struct xlog_op_header)) { 2333 error = xlog_write_get_more_iclog_space(ticket, 2334 &iclog, log_offset, *len, record_cnt, 2335 data_cnt); 2336 if (error) 2337 return error; 2338 } 2339 2340 ophdr = reg->i_addr; 2341 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset); 2342 2343 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2344 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header)); 2345 if (rlen != reg->i_len) 2346 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2347 2348 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2349 rlen, len, record_cnt, data_cnt); 2350 2351 /* If we wrote the whole region, move to the next. */ 2352 if (rlen == reg->i_len) 2353 continue; 2354 2355 /* 2356 * We now have a partially written iovec, but it can span 2357 * multiple iclogs so we loop here. First we release the iclog 2358 * we currently have, then we get a new iclog and add a new 2359 * opheader. Then we continue copying from where we were until 2360 * we either complete the iovec or fill the iclog. If we 2361 * complete the iovec, then we increment the index and go right 2362 * back to the top of the outer loop. if we fill the iclog, we 2363 * run the inner loop again. 2364 * 2365 * This is complicated by the tail of a region using all the 2366 * space in an iclog and hence requiring us to release the iclog 2367 * and get a new one before returning to the outer loop. We must 2368 * always guarantee that we exit this inner loop with at least 2369 * space for log transaction opheaders left in the current 2370 * iclog, hence we cannot just terminate the loop at the end 2371 * of the of the continuation. So we loop while there is no 2372 * space left in the current iclog, and check for the end of the 2373 * continuation after getting a new iclog. 2374 */ 2375 do { 2376 /* 2377 * Ensure we include the continuation opheader in the 2378 * space we need in the new iclog by adding that size 2379 * to the length we require. This continuation opheader 2380 * needs to be accounted to the ticket as the space it 2381 * consumes hasn't been accounted to the lv we are 2382 * writing. 2383 */ 2384 error = xlog_write_get_more_iclog_space(ticket, 2385 &iclog, log_offset, 2386 *len + sizeof(struct xlog_op_header), 2387 record_cnt, data_cnt); 2388 if (error) 2389 return error; 2390 2391 ophdr = iclog->ic_datap + *log_offset; 2392 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2393 ophdr->oh_clientid = XFS_TRANSACTION; 2394 ophdr->oh_res2 = 0; 2395 ophdr->oh_flags = XLOG_WAS_CONT_TRANS; 2396 2397 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2398 *log_offset += sizeof(struct xlog_op_header); 2399 *data_cnt += sizeof(struct xlog_op_header); 2400 2401 /* 2402 * If rlen fits in the iclog, then end the region 2403 * continuation. Otherwise we're going around again. 2404 */ 2405 reg_offset += rlen; 2406 rlen = reg->i_len - reg_offset; 2407 if (rlen <= iclog->ic_size - *log_offset) 2408 ophdr->oh_flags |= XLOG_END_TRANS; 2409 else 2410 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2411 2412 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset); 2413 ophdr->oh_len = cpu_to_be32(rlen); 2414 2415 xlog_write_iovec(iclog, log_offset, 2416 reg->i_addr + reg_offset, 2417 rlen, len, record_cnt, data_cnt); 2418 2419 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS); 2420 } 2421 2422 /* 2423 * No more iovecs remain in this logvec so return the next log vec to 2424 * the caller so it can go back to fast path copying. 2425 */ 2426 *iclogp = iclog; 2427 return 0; 2428 } 2429 2430 /* 2431 * Write some region out to in-core log 2432 * 2433 * This will be called when writing externally provided regions or when 2434 * writing out a commit record for a given transaction. 2435 * 2436 * General algorithm: 2437 * 1. Find total length of this write. This may include adding to the 2438 * lengths passed in. 2439 * 2. Check whether we violate the tickets reservation. 2440 * 3. While writing to this iclog 2441 * A. Reserve as much space in this iclog as can get 2442 * B. If this is first write, save away start lsn 2443 * C. While writing this region: 2444 * 1. If first write of transaction, write start record 2445 * 2. Write log operation header (header per region) 2446 * 3. Find out if we can fit entire region into this iclog 2447 * 4. Potentially, verify destination memcpy ptr 2448 * 5. Memcpy (partial) region 2449 * 6. If partial copy, release iclog; otherwise, continue 2450 * copying more regions into current iclog 2451 * 4. Mark want sync bit (in simulation mode) 2452 * 5. Release iclog for potential flush to on-disk log. 2453 * 2454 * ERRORS: 2455 * 1. Panic if reservation is overrun. This should never happen since 2456 * reservation amounts are generated internal to the filesystem. 2457 * NOTES: 2458 * 1. Tickets are single threaded data structures. 2459 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2460 * syncing routine. When a single log_write region needs to span 2461 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2462 * on all log operation writes which don't contain the end of the 2463 * region. The XLOG_END_TRANS bit is used for the in-core log 2464 * operation which contains the end of the continued log_write region. 2465 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2466 * we don't really know exactly how much space will be used. As a result, 2467 * we don't update ic_offset until the end when we know exactly how many 2468 * bytes have been written out. 2469 */ 2470 int 2471 xlog_write( 2472 struct xlog *log, 2473 struct xfs_cil_ctx *ctx, 2474 struct xfs_log_vec *log_vector, 2475 struct xlog_ticket *ticket, 2476 uint32_t len) 2477 2478 { 2479 struct xlog_in_core *iclog = NULL; 2480 struct xfs_log_vec *lv = log_vector; 2481 uint32_t record_cnt = 0; 2482 uint32_t data_cnt = 0; 2483 int error = 0; 2484 int log_offset; 2485 2486 if (ticket->t_curr_res < 0) { 2487 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2488 "ctx ticket reservation ran out. Need to up reservation"); 2489 xlog_print_tic_res(log->l_mp, ticket); 2490 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 2491 } 2492 2493 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2494 &log_offset); 2495 if (error) 2496 return error; 2497 2498 ASSERT(log_offset <= iclog->ic_size - 1); 2499 2500 /* 2501 * If we have a context pointer, pass it the first iclog we are 2502 * writing to so it can record state needed for iclog write 2503 * ordering. 2504 */ 2505 if (ctx) 2506 xlog_cil_set_ctx_write_state(ctx, iclog); 2507 2508 while (lv) { 2509 /* 2510 * If the entire log vec does not fit in the iclog, punt it to 2511 * the partial copy loop which can handle this case. 2512 */ 2513 if (lv->lv_niovecs && 2514 lv->lv_bytes > iclog->ic_size - log_offset) { 2515 error = xlog_write_partial(lv, ticket, &iclog, 2516 &log_offset, &len, &record_cnt, 2517 &data_cnt); 2518 if (error) { 2519 /* 2520 * We have no iclog to release, so just return 2521 * the error immediately. 2522 */ 2523 return error; 2524 } 2525 } else { 2526 xlog_write_full(lv, ticket, iclog, &log_offset, 2527 &len, &record_cnt, &data_cnt); 2528 } 2529 lv = lv->lv_next; 2530 } 2531 ASSERT(len == 0); 2532 2533 /* 2534 * We've already been guaranteed that the last writes will fit inside 2535 * the current iclog, and hence it will already have the space used by 2536 * those writes accounted to it. Hence we do not need to update the 2537 * iclog with the number of bytes written here. 2538 */ 2539 spin_lock(&log->l_icloglock); 2540 xlog_state_finish_copy(log, iclog, record_cnt, 0); 2541 error = xlog_state_release_iclog(log, iclog); 2542 spin_unlock(&log->l_icloglock); 2543 2544 return error; 2545 } 2546 2547 static void 2548 xlog_state_activate_iclog( 2549 struct xlog_in_core *iclog, 2550 int *iclogs_changed) 2551 { 2552 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2553 trace_xlog_iclog_activate(iclog, _RET_IP_); 2554 2555 /* 2556 * If the number of ops in this iclog indicate it just contains the 2557 * dummy transaction, we can change state into IDLE (the second time 2558 * around). Otherwise we should change the state into NEED a dummy. 2559 * We don't need to cover the dummy. 2560 */ 2561 if (*iclogs_changed == 0 && 2562 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) { 2563 *iclogs_changed = 1; 2564 } else { 2565 /* 2566 * We have two dirty iclogs so start over. This could also be 2567 * num of ops indicating this is not the dummy going out. 2568 */ 2569 *iclogs_changed = 2; 2570 } 2571 2572 iclog->ic_state = XLOG_STATE_ACTIVE; 2573 iclog->ic_offset = 0; 2574 iclog->ic_header.h_num_logops = 0; 2575 memset(iclog->ic_header.h_cycle_data, 0, 2576 sizeof(iclog->ic_header.h_cycle_data)); 2577 iclog->ic_header.h_lsn = 0; 2578 iclog->ic_header.h_tail_lsn = 0; 2579 } 2580 2581 /* 2582 * Loop through all iclogs and mark all iclogs currently marked DIRTY as 2583 * ACTIVE after iclog I/O has completed. 2584 */ 2585 static void 2586 xlog_state_activate_iclogs( 2587 struct xlog *log, 2588 int *iclogs_changed) 2589 { 2590 struct xlog_in_core *iclog = log->l_iclog; 2591 2592 do { 2593 if (iclog->ic_state == XLOG_STATE_DIRTY) 2594 xlog_state_activate_iclog(iclog, iclogs_changed); 2595 /* 2596 * The ordering of marking iclogs ACTIVE must be maintained, so 2597 * an iclog doesn't become ACTIVE beyond one that is SYNCING. 2598 */ 2599 else if (iclog->ic_state != XLOG_STATE_ACTIVE) 2600 break; 2601 } while ((iclog = iclog->ic_next) != log->l_iclog); 2602 } 2603 2604 static int 2605 xlog_covered_state( 2606 int prev_state, 2607 int iclogs_changed) 2608 { 2609 /* 2610 * We go to NEED for any non-covering writes. We go to NEED2 if we just 2611 * wrote the first covering record (DONE). We go to IDLE if we just 2612 * wrote the second covering record (DONE2) and remain in IDLE until a 2613 * non-covering write occurs. 2614 */ 2615 switch (prev_state) { 2616 case XLOG_STATE_COVER_IDLE: 2617 if (iclogs_changed == 1) 2618 return XLOG_STATE_COVER_IDLE; 2619 fallthrough; 2620 case XLOG_STATE_COVER_NEED: 2621 case XLOG_STATE_COVER_NEED2: 2622 break; 2623 case XLOG_STATE_COVER_DONE: 2624 if (iclogs_changed == 1) 2625 return XLOG_STATE_COVER_NEED2; 2626 break; 2627 case XLOG_STATE_COVER_DONE2: 2628 if (iclogs_changed == 1) 2629 return XLOG_STATE_COVER_IDLE; 2630 break; 2631 default: 2632 ASSERT(0); 2633 } 2634 2635 return XLOG_STATE_COVER_NEED; 2636 } 2637 2638 STATIC void 2639 xlog_state_clean_iclog( 2640 struct xlog *log, 2641 struct xlog_in_core *dirty_iclog) 2642 { 2643 int iclogs_changed = 0; 2644 2645 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_); 2646 2647 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2648 2649 xlog_state_activate_iclogs(log, &iclogs_changed); 2650 wake_up_all(&dirty_iclog->ic_force_wait); 2651 2652 if (iclogs_changed) { 2653 log->l_covered_state = xlog_covered_state(log->l_covered_state, 2654 iclogs_changed); 2655 } 2656 } 2657 2658 STATIC xfs_lsn_t 2659 xlog_get_lowest_lsn( 2660 struct xlog *log) 2661 { 2662 struct xlog_in_core *iclog = log->l_iclog; 2663 xfs_lsn_t lowest_lsn = 0, lsn; 2664 2665 do { 2666 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2667 iclog->ic_state == XLOG_STATE_DIRTY) 2668 continue; 2669 2670 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2671 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2672 lowest_lsn = lsn; 2673 } while ((iclog = iclog->ic_next) != log->l_iclog); 2674 2675 return lowest_lsn; 2676 } 2677 2678 /* 2679 * Completion of a iclog IO does not imply that a transaction has completed, as 2680 * transactions can be large enough to span many iclogs. We cannot change the 2681 * tail of the log half way through a transaction as this may be the only 2682 * transaction in the log and moving the tail to point to the middle of it 2683 * will prevent recovery from finding the start of the transaction. Hence we 2684 * should only update the last_sync_lsn if this iclog contains transaction 2685 * completion callbacks on it. 2686 * 2687 * We have to do this before we drop the icloglock to ensure we are the only one 2688 * that can update it. 2689 * 2690 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick 2691 * the reservation grant head pushing. This is due to the fact that the push 2692 * target is bound by the current last_sync_lsn value. Hence if we have a large 2693 * amount of log space bound up in this committing transaction then the 2694 * last_sync_lsn value may be the limiting factor preventing tail pushing from 2695 * freeing space in the log. Hence once we've updated the last_sync_lsn we 2696 * should push the AIL to ensure the push target (and hence the grant head) is 2697 * no longer bound by the old log head location and can move forwards and make 2698 * progress again. 2699 */ 2700 static void 2701 xlog_state_set_callback( 2702 struct xlog *log, 2703 struct xlog_in_core *iclog, 2704 xfs_lsn_t header_lsn) 2705 { 2706 trace_xlog_iclog_callback(iclog, _RET_IP_); 2707 iclog->ic_state = XLOG_STATE_CALLBACK; 2708 2709 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2710 header_lsn) <= 0); 2711 2712 if (list_empty_careful(&iclog->ic_callbacks)) 2713 return; 2714 2715 atomic64_set(&log->l_last_sync_lsn, header_lsn); 2716 xlog_grant_push_ail(log, 0); 2717 } 2718 2719 /* 2720 * Return true if we need to stop processing, false to continue to the next 2721 * iclog. The caller will need to run callbacks if the iclog is returned in the 2722 * XLOG_STATE_CALLBACK state. 2723 */ 2724 static bool 2725 xlog_state_iodone_process_iclog( 2726 struct xlog *log, 2727 struct xlog_in_core *iclog) 2728 { 2729 xfs_lsn_t lowest_lsn; 2730 xfs_lsn_t header_lsn; 2731 2732 switch (iclog->ic_state) { 2733 case XLOG_STATE_ACTIVE: 2734 case XLOG_STATE_DIRTY: 2735 /* 2736 * Skip all iclogs in the ACTIVE & DIRTY states: 2737 */ 2738 return false; 2739 case XLOG_STATE_DONE_SYNC: 2740 /* 2741 * Now that we have an iclog that is in the DONE_SYNC state, do 2742 * one more check here to see if we have chased our tail around. 2743 * If this is not the lowest lsn iclog, then we will leave it 2744 * for another completion to process. 2745 */ 2746 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2747 lowest_lsn = xlog_get_lowest_lsn(log); 2748 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2749 return false; 2750 xlog_state_set_callback(log, iclog, header_lsn); 2751 return false; 2752 default: 2753 /* 2754 * Can only perform callbacks in order. Since this iclog is not 2755 * in the DONE_SYNC state, we skip the rest and just try to 2756 * clean up. 2757 */ 2758 return true; 2759 } 2760 } 2761 2762 /* 2763 * Loop over all the iclogs, running attached callbacks on them. Return true if 2764 * we ran any callbacks, indicating that we dropped the icloglock. We don't need 2765 * to handle transient shutdown state here at all because 2766 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown 2767 * cleanup of the callbacks. 2768 */ 2769 static bool 2770 xlog_state_do_iclog_callbacks( 2771 struct xlog *log) 2772 __releases(&log->l_icloglock) 2773 __acquires(&log->l_icloglock) 2774 { 2775 struct xlog_in_core *first_iclog = log->l_iclog; 2776 struct xlog_in_core *iclog = first_iclog; 2777 bool ran_callback = false; 2778 2779 do { 2780 LIST_HEAD(cb_list); 2781 2782 if (xlog_state_iodone_process_iclog(log, iclog)) 2783 break; 2784 if (iclog->ic_state != XLOG_STATE_CALLBACK) { 2785 iclog = iclog->ic_next; 2786 continue; 2787 } 2788 list_splice_init(&iclog->ic_callbacks, &cb_list); 2789 spin_unlock(&log->l_icloglock); 2790 2791 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_); 2792 xlog_cil_process_committed(&cb_list); 2793 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_); 2794 ran_callback = true; 2795 2796 spin_lock(&log->l_icloglock); 2797 xlog_state_clean_iclog(log, iclog); 2798 iclog = iclog->ic_next; 2799 } while (iclog != first_iclog); 2800 2801 return ran_callback; 2802 } 2803 2804 2805 /* 2806 * Loop running iclog completion callbacks until there are no more iclogs in a 2807 * state that can run callbacks. 2808 */ 2809 STATIC void 2810 xlog_state_do_callback( 2811 struct xlog *log) 2812 { 2813 int flushcnt = 0; 2814 int repeats = 0; 2815 2816 spin_lock(&log->l_icloglock); 2817 while (xlog_state_do_iclog_callbacks(log)) { 2818 if (xlog_is_shutdown(log)) 2819 break; 2820 2821 if (++repeats > 5000) { 2822 flushcnt += repeats; 2823 repeats = 0; 2824 xfs_warn(log->l_mp, 2825 "%s: possible infinite loop (%d iterations)", 2826 __func__, flushcnt); 2827 } 2828 } 2829 2830 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE) 2831 wake_up_all(&log->l_flush_wait); 2832 2833 spin_unlock(&log->l_icloglock); 2834 } 2835 2836 2837 /* 2838 * Finish transitioning this iclog to the dirty state. 2839 * 2840 * Callbacks could take time, so they are done outside the scope of the 2841 * global state machine log lock. 2842 */ 2843 STATIC void 2844 xlog_state_done_syncing( 2845 struct xlog_in_core *iclog) 2846 { 2847 struct xlog *log = iclog->ic_log; 2848 2849 spin_lock(&log->l_icloglock); 2850 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2851 trace_xlog_iclog_sync_done(iclog, _RET_IP_); 2852 2853 /* 2854 * If we got an error, either on the first buffer, or in the case of 2855 * split log writes, on the second, we shut down the file system and 2856 * no iclogs should ever be attempted to be written to disk again. 2857 */ 2858 if (!xlog_is_shutdown(log)) { 2859 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING); 2860 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2861 } 2862 2863 /* 2864 * Someone could be sleeping prior to writing out the next 2865 * iclog buffer, we wake them all, one will get to do the 2866 * I/O, the others get to wait for the result. 2867 */ 2868 wake_up_all(&iclog->ic_write_wait); 2869 spin_unlock(&log->l_icloglock); 2870 xlog_state_do_callback(log); 2871 } 2872 2873 /* 2874 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2875 * sleep. We wait on the flush queue on the head iclog as that should be 2876 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2877 * we will wait here and all new writes will sleep until a sync completes. 2878 * 2879 * The in-core logs are used in a circular fashion. They are not used 2880 * out-of-order even when an iclog past the head is free. 2881 * 2882 * return: 2883 * * log_offset where xlog_write() can start writing into the in-core 2884 * log's data space. 2885 * * in-core log pointer to which xlog_write() should write. 2886 * * boolean indicating this is a continued write to an in-core log. 2887 * If this is the last write, then the in-core log's offset field 2888 * needs to be incremented, depending on the amount of data which 2889 * is copied. 2890 */ 2891 STATIC int 2892 xlog_state_get_iclog_space( 2893 struct xlog *log, 2894 int len, 2895 struct xlog_in_core **iclogp, 2896 struct xlog_ticket *ticket, 2897 int *logoffsetp) 2898 { 2899 int log_offset; 2900 xlog_rec_header_t *head; 2901 xlog_in_core_t *iclog; 2902 2903 restart: 2904 spin_lock(&log->l_icloglock); 2905 if (xlog_is_shutdown(log)) { 2906 spin_unlock(&log->l_icloglock); 2907 return -EIO; 2908 } 2909 2910 iclog = log->l_iclog; 2911 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2912 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2913 2914 /* Wait for log writes to have flushed */ 2915 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2916 goto restart; 2917 } 2918 2919 head = &iclog->ic_header; 2920 2921 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2922 log_offset = iclog->ic_offset; 2923 2924 trace_xlog_iclog_get_space(iclog, _RET_IP_); 2925 2926 /* On the 1st write to an iclog, figure out lsn. This works 2927 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2928 * committing to. If the offset is set, that's how many blocks 2929 * must be written. 2930 */ 2931 if (log_offset == 0) { 2932 ticket->t_curr_res -= log->l_iclog_hsize; 2933 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2934 head->h_lsn = cpu_to_be64( 2935 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2936 ASSERT(log->l_curr_block >= 0); 2937 } 2938 2939 /* If there is enough room to write everything, then do it. Otherwise, 2940 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2941 * bit is on, so this will get flushed out. Don't update ic_offset 2942 * until you know exactly how many bytes get copied. Therefore, wait 2943 * until later to update ic_offset. 2944 * 2945 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2946 * can fit into remaining data section. 2947 */ 2948 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2949 int error = 0; 2950 2951 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2952 2953 /* 2954 * If we are the only one writing to this iclog, sync it to 2955 * disk. We need to do an atomic compare and decrement here to 2956 * avoid racing with concurrent atomic_dec_and_lock() calls in 2957 * xlog_state_release_iclog() when there is more than one 2958 * reference to the iclog. 2959 */ 2960 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 2961 error = xlog_state_release_iclog(log, iclog); 2962 spin_unlock(&log->l_icloglock); 2963 if (error) 2964 return error; 2965 goto restart; 2966 } 2967 2968 /* Do we have enough room to write the full amount in the remainder 2969 * of this iclog? Or must we continue a write on the next iclog and 2970 * mark this iclog as completely taken? In the case where we switch 2971 * iclogs (to mark it taken), this particular iclog will release/sync 2972 * to disk in xlog_write(). 2973 */ 2974 if (len <= iclog->ic_size - iclog->ic_offset) 2975 iclog->ic_offset += len; 2976 else 2977 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2978 *iclogp = iclog; 2979 2980 ASSERT(iclog->ic_offset <= iclog->ic_size); 2981 spin_unlock(&log->l_icloglock); 2982 2983 *logoffsetp = log_offset; 2984 return 0; 2985 } 2986 2987 /* 2988 * The first cnt-1 times a ticket goes through here we don't need to move the 2989 * grant write head because the permanent reservation has reserved cnt times the 2990 * unit amount. Release part of current permanent unit reservation and reset 2991 * current reservation to be one units worth. Also move grant reservation head 2992 * forward. 2993 */ 2994 void 2995 xfs_log_ticket_regrant( 2996 struct xlog *log, 2997 struct xlog_ticket *ticket) 2998 { 2999 trace_xfs_log_ticket_regrant(log, ticket); 3000 3001 if (ticket->t_cnt > 0) 3002 ticket->t_cnt--; 3003 3004 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3005 ticket->t_curr_res); 3006 xlog_grant_sub_space(log, &log->l_write_head.grant, 3007 ticket->t_curr_res); 3008 ticket->t_curr_res = ticket->t_unit_res; 3009 3010 trace_xfs_log_ticket_regrant_sub(log, ticket); 3011 3012 /* just return if we still have some of the pre-reserved space */ 3013 if (!ticket->t_cnt) { 3014 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3015 ticket->t_unit_res); 3016 trace_xfs_log_ticket_regrant_exit(log, ticket); 3017 3018 ticket->t_curr_res = ticket->t_unit_res; 3019 } 3020 3021 xfs_log_ticket_put(ticket); 3022 } 3023 3024 /* 3025 * Give back the space left from a reservation. 3026 * 3027 * All the information we need to make a correct determination of space left 3028 * is present. For non-permanent reservations, things are quite easy. The 3029 * count should have been decremented to zero. We only need to deal with the 3030 * space remaining in the current reservation part of the ticket. If the 3031 * ticket contains a permanent reservation, there may be left over space which 3032 * needs to be released. A count of N means that N-1 refills of the current 3033 * reservation can be done before we need to ask for more space. The first 3034 * one goes to fill up the first current reservation. Once we run out of 3035 * space, the count will stay at zero and the only space remaining will be 3036 * in the current reservation field. 3037 */ 3038 void 3039 xfs_log_ticket_ungrant( 3040 struct xlog *log, 3041 struct xlog_ticket *ticket) 3042 { 3043 int bytes; 3044 3045 trace_xfs_log_ticket_ungrant(log, ticket); 3046 3047 if (ticket->t_cnt > 0) 3048 ticket->t_cnt--; 3049 3050 trace_xfs_log_ticket_ungrant_sub(log, ticket); 3051 3052 /* 3053 * If this is a permanent reservation ticket, we may be able to free 3054 * up more space based on the remaining count. 3055 */ 3056 bytes = ticket->t_curr_res; 3057 if (ticket->t_cnt > 0) { 3058 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3059 bytes += ticket->t_unit_res*ticket->t_cnt; 3060 } 3061 3062 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3063 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3064 3065 trace_xfs_log_ticket_ungrant_exit(log, ticket); 3066 3067 xfs_log_space_wake(log->l_mp); 3068 xfs_log_ticket_put(ticket); 3069 } 3070 3071 /* 3072 * This routine will mark the current iclog in the ring as WANT_SYNC and move 3073 * the current iclog pointer to the next iclog in the ring. 3074 */ 3075 void 3076 xlog_state_switch_iclogs( 3077 struct xlog *log, 3078 struct xlog_in_core *iclog, 3079 int eventual_size) 3080 { 3081 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3082 assert_spin_locked(&log->l_icloglock); 3083 trace_xlog_iclog_switch(iclog, _RET_IP_); 3084 3085 if (!eventual_size) 3086 eventual_size = iclog->ic_offset; 3087 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3088 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3089 log->l_prev_block = log->l_curr_block; 3090 log->l_prev_cycle = log->l_curr_cycle; 3091 3092 /* roll log?: ic_offset changed later */ 3093 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3094 3095 /* Round up to next log-sunit */ 3096 if (log->l_iclog_roundoff > BBSIZE) { 3097 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff); 3098 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3099 } 3100 3101 if (log->l_curr_block >= log->l_logBBsize) { 3102 /* 3103 * Rewind the current block before the cycle is bumped to make 3104 * sure that the combined LSN never transiently moves forward 3105 * when the log wraps to the next cycle. This is to support the 3106 * unlocked sample of these fields from xlog_valid_lsn(). Most 3107 * other cases should acquire l_icloglock. 3108 */ 3109 log->l_curr_block -= log->l_logBBsize; 3110 ASSERT(log->l_curr_block >= 0); 3111 smp_wmb(); 3112 log->l_curr_cycle++; 3113 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3114 log->l_curr_cycle++; 3115 } 3116 ASSERT(iclog == log->l_iclog); 3117 log->l_iclog = iclog->ic_next; 3118 } 3119 3120 /* 3121 * Force the iclog to disk and check if the iclog has been completed before 3122 * xlog_force_iclog() returns. This can happen on synchronous (e.g. 3123 * pmem) or fast async storage because we drop the icloglock to issue the IO. 3124 * If completion has already occurred, tell the caller so that it can avoid an 3125 * unnecessary wait on the iclog. 3126 */ 3127 static int 3128 xlog_force_and_check_iclog( 3129 struct xlog_in_core *iclog, 3130 bool *completed) 3131 { 3132 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3133 int error; 3134 3135 *completed = false; 3136 error = xlog_force_iclog(iclog); 3137 if (error) 3138 return error; 3139 3140 /* 3141 * If the iclog has already been completed and reused the header LSN 3142 * will have been rewritten by completion 3143 */ 3144 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) 3145 *completed = true; 3146 return 0; 3147 } 3148 3149 /* 3150 * Write out all data in the in-core log as of this exact moment in time. 3151 * 3152 * Data may be written to the in-core log during this call. However, 3153 * we don't guarantee this data will be written out. A change from past 3154 * implementation means this routine will *not* write out zero length LRs. 3155 * 3156 * Basically, we try and perform an intelligent scan of the in-core logs. 3157 * If we determine there is no flushable data, we just return. There is no 3158 * flushable data if: 3159 * 3160 * 1. the current iclog is active and has no data; the previous iclog 3161 * is in the active or dirty state. 3162 * 2. the current iclog is drity, and the previous iclog is in the 3163 * active or dirty state. 3164 * 3165 * We may sleep if: 3166 * 3167 * 1. the current iclog is not in the active nor dirty state. 3168 * 2. the current iclog dirty, and the previous iclog is not in the 3169 * active nor dirty state. 3170 * 3. the current iclog is active, and there is another thread writing 3171 * to this particular iclog. 3172 * 4. a) the current iclog is active and has no other writers 3173 * b) when we return from flushing out this iclog, it is still 3174 * not in the active nor dirty state. 3175 */ 3176 int 3177 xfs_log_force( 3178 struct xfs_mount *mp, 3179 uint flags) 3180 { 3181 struct xlog *log = mp->m_log; 3182 struct xlog_in_core *iclog; 3183 3184 XFS_STATS_INC(mp, xs_log_force); 3185 trace_xfs_log_force(mp, 0, _RET_IP_); 3186 3187 xlog_cil_force(log); 3188 3189 spin_lock(&log->l_icloglock); 3190 if (xlog_is_shutdown(log)) 3191 goto out_error; 3192 3193 iclog = log->l_iclog; 3194 trace_xlog_iclog_force(iclog, _RET_IP_); 3195 3196 if (iclog->ic_state == XLOG_STATE_DIRTY || 3197 (iclog->ic_state == XLOG_STATE_ACTIVE && 3198 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3199 /* 3200 * If the head is dirty or (active and empty), then we need to 3201 * look at the previous iclog. 3202 * 3203 * If the previous iclog is active or dirty we are done. There 3204 * is nothing to sync out. Otherwise, we attach ourselves to the 3205 * previous iclog and go to sleep. 3206 */ 3207 iclog = iclog->ic_prev; 3208 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3209 if (atomic_read(&iclog->ic_refcnt) == 0) { 3210 /* We have exclusive access to this iclog. */ 3211 bool completed; 3212 3213 if (xlog_force_and_check_iclog(iclog, &completed)) 3214 goto out_error; 3215 3216 if (completed) 3217 goto out_unlock; 3218 } else { 3219 /* 3220 * Someone else is still writing to this iclog, so we 3221 * need to ensure that when they release the iclog it 3222 * gets synced immediately as we may be waiting on it. 3223 */ 3224 xlog_state_switch_iclogs(log, iclog, 0); 3225 } 3226 } 3227 3228 /* 3229 * The iclog we are about to wait on may contain the checkpoint pushed 3230 * by the above xlog_cil_force() call, but it may not have been pushed 3231 * to disk yet. Like the ACTIVE case above, we need to make sure caches 3232 * are flushed when this iclog is written. 3233 */ 3234 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) 3235 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3236 3237 if (flags & XFS_LOG_SYNC) 3238 return xlog_wait_on_iclog(iclog); 3239 out_unlock: 3240 spin_unlock(&log->l_icloglock); 3241 return 0; 3242 out_error: 3243 spin_unlock(&log->l_icloglock); 3244 return -EIO; 3245 } 3246 3247 /* 3248 * Force the log to a specific LSN. 3249 * 3250 * If an iclog with that lsn can be found: 3251 * If it is in the DIRTY state, just return. 3252 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3253 * state and go to sleep or return. 3254 * If it is in any other state, go to sleep or return. 3255 * 3256 * Synchronous forces are implemented with a wait queue. All callers trying 3257 * to force a given lsn to disk must wait on the queue attached to the 3258 * specific in-core log. When given in-core log finally completes its write 3259 * to disk, that thread will wake up all threads waiting on the queue. 3260 */ 3261 static int 3262 xlog_force_lsn( 3263 struct xlog *log, 3264 xfs_lsn_t lsn, 3265 uint flags, 3266 int *log_flushed, 3267 bool already_slept) 3268 { 3269 struct xlog_in_core *iclog; 3270 bool completed; 3271 3272 spin_lock(&log->l_icloglock); 3273 if (xlog_is_shutdown(log)) 3274 goto out_error; 3275 3276 iclog = log->l_iclog; 3277 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3278 trace_xlog_iclog_force_lsn(iclog, _RET_IP_); 3279 iclog = iclog->ic_next; 3280 if (iclog == log->l_iclog) 3281 goto out_unlock; 3282 } 3283 3284 switch (iclog->ic_state) { 3285 case XLOG_STATE_ACTIVE: 3286 /* 3287 * We sleep here if we haven't already slept (e.g. this is the 3288 * first time we've looked at the correct iclog buf) and the 3289 * buffer before us is going to be sync'ed. The reason for this 3290 * is that if we are doing sync transactions here, by waiting 3291 * for the previous I/O to complete, we can allow a few more 3292 * transactions into this iclog before we close it down. 3293 * 3294 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3295 * refcnt so we can release the log (which drops the ref count). 3296 * The state switch keeps new transaction commits from using 3297 * this buffer. When the current commits finish writing into 3298 * the buffer, the refcount will drop to zero and the buffer 3299 * will go out then. 3300 */ 3301 if (!already_slept && 3302 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 3303 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 3304 xlog_wait(&iclog->ic_prev->ic_write_wait, 3305 &log->l_icloglock); 3306 return -EAGAIN; 3307 } 3308 if (xlog_force_and_check_iclog(iclog, &completed)) 3309 goto out_error; 3310 if (log_flushed) 3311 *log_flushed = 1; 3312 if (completed) 3313 goto out_unlock; 3314 break; 3315 case XLOG_STATE_WANT_SYNC: 3316 /* 3317 * This iclog may contain the checkpoint pushed by the 3318 * xlog_cil_force_seq() call, but there are other writers still 3319 * accessing it so it hasn't been pushed to disk yet. Like the 3320 * ACTIVE case above, we need to make sure caches are flushed 3321 * when this iclog is written. 3322 */ 3323 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3324 break; 3325 default: 3326 /* 3327 * The entire checkpoint was written by the CIL force and is on 3328 * its way to disk already. It will be stable when it 3329 * completes, so we don't need to manipulate caches here at all. 3330 * We just need to wait for completion if necessary. 3331 */ 3332 break; 3333 } 3334 3335 if (flags & XFS_LOG_SYNC) 3336 return xlog_wait_on_iclog(iclog); 3337 out_unlock: 3338 spin_unlock(&log->l_icloglock); 3339 return 0; 3340 out_error: 3341 spin_unlock(&log->l_icloglock); 3342 return -EIO; 3343 } 3344 3345 /* 3346 * Force the log to a specific checkpoint sequence. 3347 * 3348 * First force the CIL so that all the required changes have been flushed to the 3349 * iclogs. If the CIL force completed it will return a commit LSN that indicates 3350 * the iclog that needs to be flushed to stable storage. If the caller needs 3351 * a synchronous log force, we will wait on the iclog with the LSN returned by 3352 * xlog_cil_force_seq() to be completed. 3353 */ 3354 int 3355 xfs_log_force_seq( 3356 struct xfs_mount *mp, 3357 xfs_csn_t seq, 3358 uint flags, 3359 int *log_flushed) 3360 { 3361 struct xlog *log = mp->m_log; 3362 xfs_lsn_t lsn; 3363 int ret; 3364 ASSERT(seq != 0); 3365 3366 XFS_STATS_INC(mp, xs_log_force); 3367 trace_xfs_log_force(mp, seq, _RET_IP_); 3368 3369 lsn = xlog_cil_force_seq(log, seq); 3370 if (lsn == NULLCOMMITLSN) 3371 return 0; 3372 3373 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false); 3374 if (ret == -EAGAIN) { 3375 XFS_STATS_INC(mp, xs_log_force_sleep); 3376 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true); 3377 } 3378 return ret; 3379 } 3380 3381 /* 3382 * Free a used ticket when its refcount falls to zero. 3383 */ 3384 void 3385 xfs_log_ticket_put( 3386 xlog_ticket_t *ticket) 3387 { 3388 ASSERT(atomic_read(&ticket->t_ref) > 0); 3389 if (atomic_dec_and_test(&ticket->t_ref)) 3390 kmem_cache_free(xfs_log_ticket_cache, ticket); 3391 } 3392 3393 xlog_ticket_t * 3394 xfs_log_ticket_get( 3395 xlog_ticket_t *ticket) 3396 { 3397 ASSERT(atomic_read(&ticket->t_ref) > 0); 3398 atomic_inc(&ticket->t_ref); 3399 return ticket; 3400 } 3401 3402 /* 3403 * Figure out the total log space unit (in bytes) that would be 3404 * required for a log ticket. 3405 */ 3406 static int 3407 xlog_calc_unit_res( 3408 struct xlog *log, 3409 int unit_bytes) 3410 { 3411 int iclog_space; 3412 uint num_headers; 3413 3414 /* 3415 * Permanent reservations have up to 'cnt'-1 active log operations 3416 * in the log. A unit in this case is the amount of space for one 3417 * of these log operations. Normal reservations have a cnt of 1 3418 * and their unit amount is the total amount of space required. 3419 * 3420 * The following lines of code account for non-transaction data 3421 * which occupy space in the on-disk log. 3422 * 3423 * Normal form of a transaction is: 3424 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3425 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3426 * 3427 * We need to account for all the leadup data and trailer data 3428 * around the transaction data. 3429 * And then we need to account for the worst case in terms of using 3430 * more space. 3431 * The worst case will happen if: 3432 * - the placement of the transaction happens to be such that the 3433 * roundoff is at its maximum 3434 * - the transaction data is synced before the commit record is synced 3435 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3436 * Therefore the commit record is in its own Log Record. 3437 * This can happen as the commit record is called with its 3438 * own region to xlog_write(). 3439 * This then means that in the worst case, roundoff can happen for 3440 * the commit-rec as well. 3441 * The commit-rec is smaller than padding in this scenario and so it is 3442 * not added separately. 3443 */ 3444 3445 /* for trans header */ 3446 unit_bytes += sizeof(xlog_op_header_t); 3447 unit_bytes += sizeof(xfs_trans_header_t); 3448 3449 /* for start-rec */ 3450 unit_bytes += sizeof(xlog_op_header_t); 3451 3452 /* 3453 * for LR headers - the space for data in an iclog is the size minus 3454 * the space used for the headers. If we use the iclog size, then we 3455 * undercalculate the number of headers required. 3456 * 3457 * Furthermore - the addition of op headers for split-recs might 3458 * increase the space required enough to require more log and op 3459 * headers, so take that into account too. 3460 * 3461 * IMPORTANT: This reservation makes the assumption that if this 3462 * transaction is the first in an iclog and hence has the LR headers 3463 * accounted to it, then the remaining space in the iclog is 3464 * exclusively for this transaction. i.e. if the transaction is larger 3465 * than the iclog, it will be the only thing in that iclog. 3466 * Fundamentally, this means we must pass the entire log vector to 3467 * xlog_write to guarantee this. 3468 */ 3469 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3470 num_headers = howmany(unit_bytes, iclog_space); 3471 3472 /* for split-recs - ophdrs added when data split over LRs */ 3473 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3474 3475 /* add extra header reservations if we overrun */ 3476 while (!num_headers || 3477 howmany(unit_bytes, iclog_space) > num_headers) { 3478 unit_bytes += sizeof(xlog_op_header_t); 3479 num_headers++; 3480 } 3481 unit_bytes += log->l_iclog_hsize * num_headers; 3482 3483 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3484 unit_bytes += log->l_iclog_hsize; 3485 3486 /* roundoff padding for transaction data and one for commit record */ 3487 unit_bytes += 2 * log->l_iclog_roundoff; 3488 3489 return unit_bytes; 3490 } 3491 3492 int 3493 xfs_log_calc_unit_res( 3494 struct xfs_mount *mp, 3495 int unit_bytes) 3496 { 3497 return xlog_calc_unit_res(mp->m_log, unit_bytes); 3498 } 3499 3500 /* 3501 * Allocate and initialise a new log ticket. 3502 */ 3503 struct xlog_ticket * 3504 xlog_ticket_alloc( 3505 struct xlog *log, 3506 int unit_bytes, 3507 int cnt, 3508 bool permanent) 3509 { 3510 struct xlog_ticket *tic; 3511 int unit_res; 3512 3513 tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL); 3514 3515 unit_res = xlog_calc_unit_res(log, unit_bytes); 3516 3517 atomic_set(&tic->t_ref, 1); 3518 tic->t_task = current; 3519 INIT_LIST_HEAD(&tic->t_queue); 3520 tic->t_unit_res = unit_res; 3521 tic->t_curr_res = unit_res; 3522 tic->t_cnt = cnt; 3523 tic->t_ocnt = cnt; 3524 tic->t_tid = prandom_u32(); 3525 if (permanent) 3526 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3527 3528 return tic; 3529 } 3530 3531 #if defined(DEBUG) 3532 /* 3533 * Check to make sure the grant write head didn't just over lap the tail. If 3534 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3535 * the cycles differ by exactly one and check the byte count. 3536 * 3537 * This check is run unlocked, so can give false positives. Rather than assert 3538 * on failures, use a warn-once flag and a panic tag to allow the admin to 3539 * determine if they want to panic the machine when such an error occurs. For 3540 * debug kernels this will have the same effect as using an assert but, unlinke 3541 * an assert, it can be turned off at runtime. 3542 */ 3543 STATIC void 3544 xlog_verify_grant_tail( 3545 struct xlog *log) 3546 { 3547 int tail_cycle, tail_blocks; 3548 int cycle, space; 3549 3550 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3551 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3552 if (tail_cycle != cycle) { 3553 if (cycle - 1 != tail_cycle && 3554 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3555 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3556 "%s: cycle - 1 != tail_cycle", __func__); 3557 } 3558 3559 if (space > BBTOB(tail_blocks) && 3560 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3561 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3562 "%s: space > BBTOB(tail_blocks)", __func__); 3563 } 3564 } 3565 } 3566 3567 /* check if it will fit */ 3568 STATIC void 3569 xlog_verify_tail_lsn( 3570 struct xlog *log, 3571 struct xlog_in_core *iclog) 3572 { 3573 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn); 3574 int blocks; 3575 3576 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3577 blocks = 3578 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3579 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3580 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3581 } else { 3582 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3583 3584 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3585 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3586 3587 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3588 if (blocks < BTOBB(iclog->ic_offset) + 1) 3589 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3590 } 3591 } 3592 3593 /* 3594 * Perform a number of checks on the iclog before writing to disk. 3595 * 3596 * 1. Make sure the iclogs are still circular 3597 * 2. Make sure we have a good magic number 3598 * 3. Make sure we don't have magic numbers in the data 3599 * 4. Check fields of each log operation header for: 3600 * A. Valid client identifier 3601 * B. tid ptr value falls in valid ptr space (user space code) 3602 * C. Length in log record header is correct according to the 3603 * individual operation headers within record. 3604 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3605 * log, check the preceding blocks of the physical log to make sure all 3606 * the cycle numbers agree with the current cycle number. 3607 */ 3608 STATIC void 3609 xlog_verify_iclog( 3610 struct xlog *log, 3611 struct xlog_in_core *iclog, 3612 int count) 3613 { 3614 xlog_op_header_t *ophead; 3615 xlog_in_core_t *icptr; 3616 xlog_in_core_2_t *xhdr; 3617 void *base_ptr, *ptr, *p; 3618 ptrdiff_t field_offset; 3619 uint8_t clientid; 3620 int len, i, j, k, op_len; 3621 int idx; 3622 3623 /* check validity of iclog pointers */ 3624 spin_lock(&log->l_icloglock); 3625 icptr = log->l_iclog; 3626 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3627 ASSERT(icptr); 3628 3629 if (icptr != log->l_iclog) 3630 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3631 spin_unlock(&log->l_icloglock); 3632 3633 /* check log magic numbers */ 3634 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3635 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3636 3637 base_ptr = ptr = &iclog->ic_header; 3638 p = &iclog->ic_header; 3639 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3640 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3641 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3642 __func__); 3643 } 3644 3645 /* check fields */ 3646 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3647 base_ptr = ptr = iclog->ic_datap; 3648 ophead = ptr; 3649 xhdr = iclog->ic_data; 3650 for (i = 0; i < len; i++) { 3651 ophead = ptr; 3652 3653 /* clientid is only 1 byte */ 3654 p = &ophead->oh_clientid; 3655 field_offset = p - base_ptr; 3656 if (field_offset & 0x1ff) { 3657 clientid = ophead->oh_clientid; 3658 } else { 3659 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap); 3660 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3661 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3662 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3663 clientid = xlog_get_client_id( 3664 xhdr[j].hic_xheader.xh_cycle_data[k]); 3665 } else { 3666 clientid = xlog_get_client_id( 3667 iclog->ic_header.h_cycle_data[idx]); 3668 } 3669 } 3670 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) { 3671 xfs_warn(log->l_mp, 3672 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx", 3673 __func__, i, clientid, ophead, 3674 (unsigned long)field_offset); 3675 } 3676 3677 /* check length */ 3678 p = &ophead->oh_len; 3679 field_offset = p - base_ptr; 3680 if (field_offset & 0x1ff) { 3681 op_len = be32_to_cpu(ophead->oh_len); 3682 } else { 3683 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap); 3684 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3685 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3686 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3687 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3688 } else { 3689 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3690 } 3691 } 3692 ptr += sizeof(xlog_op_header_t) + op_len; 3693 } 3694 } 3695 #endif 3696 3697 /* 3698 * Perform a forced shutdown on the log. 3699 * 3700 * This can be called from low level log code to trigger a shutdown, or from the 3701 * high level mount shutdown code when the mount shuts down. 3702 * 3703 * Our main objectives here are to make sure that: 3704 * a. if the shutdown was not due to a log IO error, flush the logs to 3705 * disk. Anything modified after this is ignored. 3706 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested 3707 * parties to find out. Nothing new gets queued after this is done. 3708 * c. Tasks sleeping on log reservations, pinned objects and 3709 * other resources get woken up. 3710 * d. The mount is also marked as shut down so that log triggered shutdowns 3711 * still behave the same as if they called xfs_forced_shutdown(). 3712 * 3713 * Return true if the shutdown cause was a log IO error and we actually shut the 3714 * log down. 3715 */ 3716 bool 3717 xlog_force_shutdown( 3718 struct xlog *log, 3719 uint32_t shutdown_flags) 3720 { 3721 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR); 3722 3723 if (!log) 3724 return false; 3725 3726 /* 3727 * Flush all the completed transactions to disk before marking the log 3728 * being shut down. We need to do this first as shutting down the log 3729 * before the force will prevent the log force from flushing the iclogs 3730 * to disk. 3731 * 3732 * When we are in recovery, there are no transactions to flush, and 3733 * we don't want to touch the log because we don't want to perturb the 3734 * current head/tail for future recovery attempts. Hence we need to 3735 * avoid a log force in this case. 3736 * 3737 * If we are shutting down due to a log IO error, then we must avoid 3738 * trying to write the log as that may just result in more IO errors and 3739 * an endless shutdown/force loop. 3740 */ 3741 if (!log_error && !xlog_in_recovery(log)) 3742 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3743 3744 /* 3745 * Atomically set the shutdown state. If the shutdown state is already 3746 * set, there someone else is performing the shutdown and so we are done 3747 * here. This should never happen because we should only ever get called 3748 * once by the first shutdown caller. 3749 * 3750 * Much of the log state machine transitions assume that shutdown state 3751 * cannot change once they hold the log->l_icloglock. Hence we need to 3752 * hold that lock here, even though we use the atomic test_and_set_bit() 3753 * operation to set the shutdown state. 3754 */ 3755 spin_lock(&log->l_icloglock); 3756 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) { 3757 spin_unlock(&log->l_icloglock); 3758 return false; 3759 } 3760 spin_unlock(&log->l_icloglock); 3761 3762 /* 3763 * If this log shutdown also sets the mount shutdown state, issue a 3764 * shutdown warning message. 3765 */ 3766 if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) { 3767 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR, 3768 "Filesystem has been shut down due to log error (0x%x).", 3769 shutdown_flags); 3770 xfs_alert(log->l_mp, 3771 "Please unmount the filesystem and rectify the problem(s)."); 3772 if (xfs_error_level >= XFS_ERRLEVEL_HIGH) 3773 xfs_stack_trace(); 3774 } 3775 3776 /* 3777 * We don't want anybody waiting for log reservations after this. That 3778 * means we have to wake up everybody queued up on reserveq as well as 3779 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3780 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3781 * action is protected by the grant locks. 3782 */ 3783 xlog_grant_head_wake_all(&log->l_reserve_head); 3784 xlog_grant_head_wake_all(&log->l_write_head); 3785 3786 /* 3787 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3788 * as if the log writes were completed. The abort handling in the log 3789 * item committed callback functions will do this again under lock to 3790 * avoid races. 3791 */ 3792 spin_lock(&log->l_cilp->xc_push_lock); 3793 wake_up_all(&log->l_cilp->xc_start_wait); 3794 wake_up_all(&log->l_cilp->xc_commit_wait); 3795 spin_unlock(&log->l_cilp->xc_push_lock); 3796 3797 spin_lock(&log->l_icloglock); 3798 xlog_state_shutdown_callbacks(log); 3799 spin_unlock(&log->l_icloglock); 3800 3801 wake_up_var(&log->l_opstate); 3802 return log_error; 3803 } 3804 3805 STATIC int 3806 xlog_iclogs_empty( 3807 struct xlog *log) 3808 { 3809 xlog_in_core_t *iclog; 3810 3811 iclog = log->l_iclog; 3812 do { 3813 /* endianness does not matter here, zero is zero in 3814 * any language. 3815 */ 3816 if (iclog->ic_header.h_num_logops) 3817 return 0; 3818 iclog = iclog->ic_next; 3819 } while (iclog != log->l_iclog); 3820 return 1; 3821 } 3822 3823 /* 3824 * Verify that an LSN stamped into a piece of metadata is valid. This is 3825 * intended for use in read verifiers on v5 superblocks. 3826 */ 3827 bool 3828 xfs_log_check_lsn( 3829 struct xfs_mount *mp, 3830 xfs_lsn_t lsn) 3831 { 3832 struct xlog *log = mp->m_log; 3833 bool valid; 3834 3835 /* 3836 * norecovery mode skips mount-time log processing and unconditionally 3837 * resets the in-core LSN. We can't validate in this mode, but 3838 * modifications are not allowed anyways so just return true. 3839 */ 3840 if (xfs_has_norecovery(mp)) 3841 return true; 3842 3843 /* 3844 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3845 * handled by recovery and thus safe to ignore here. 3846 */ 3847 if (lsn == NULLCOMMITLSN) 3848 return true; 3849 3850 valid = xlog_valid_lsn(mp->m_log, lsn); 3851 3852 /* warn the user about what's gone wrong before verifier failure */ 3853 if (!valid) { 3854 spin_lock(&log->l_icloglock); 3855 xfs_warn(mp, 3856 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3857 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 3858 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 3859 log->l_curr_cycle, log->l_curr_block); 3860 spin_unlock(&log->l_icloglock); 3861 } 3862 3863 return valid; 3864 } 3865 3866 /* 3867 * Notify the log that we're about to start using a feature that is protected 3868 * by a log incompat feature flag. This will prevent log covering from 3869 * clearing those flags. 3870 */ 3871 void 3872 xlog_use_incompat_feat( 3873 struct xlog *log) 3874 { 3875 down_read(&log->l_incompat_users); 3876 } 3877 3878 /* Notify the log that we've finished using log incompat features. */ 3879 void 3880 xlog_drop_incompat_feat( 3881 struct xlog *log) 3882 { 3883 up_read(&log->l_incompat_users); 3884 } 3885