1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_error.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_log.h" 29 #include "xfs_log_priv.h" 30 #include "xfs_log_recover.h" 31 #include "xfs_inode.h" 32 #include "xfs_trace.h" 33 #include "xfs_fsops.h" 34 #include "xfs_cksum.h" 35 #include "xfs_sysfs.h" 36 #include "xfs_sb.h" 37 38 kmem_zone_t *xfs_log_ticket_zone; 39 40 /* Local miscellaneous function prototypes */ 41 STATIC int 42 xlog_commit_record( 43 struct xlog *log, 44 struct xlog_ticket *ticket, 45 struct xlog_in_core **iclog, 46 xfs_lsn_t *commitlsnp); 47 48 STATIC struct xlog * 49 xlog_alloc_log( 50 struct xfs_mount *mp, 51 struct xfs_buftarg *log_target, 52 xfs_daddr_t blk_offset, 53 int num_bblks); 54 STATIC int 55 xlog_space_left( 56 struct xlog *log, 57 atomic64_t *head); 58 STATIC int 59 xlog_sync( 60 struct xlog *log, 61 struct xlog_in_core *iclog); 62 STATIC void 63 xlog_dealloc_log( 64 struct xlog *log); 65 66 /* local state machine functions */ 67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 68 STATIC void 69 xlog_state_do_callback( 70 struct xlog *log, 71 int aborted, 72 struct xlog_in_core *iclog); 73 STATIC int 74 xlog_state_get_iclog_space( 75 struct xlog *log, 76 int len, 77 struct xlog_in_core **iclog, 78 struct xlog_ticket *ticket, 79 int *continued_write, 80 int *logoffsetp); 81 STATIC int 82 xlog_state_release_iclog( 83 struct xlog *log, 84 struct xlog_in_core *iclog); 85 STATIC void 86 xlog_state_switch_iclogs( 87 struct xlog *log, 88 struct xlog_in_core *iclog, 89 int eventual_size); 90 STATIC void 91 xlog_state_want_sync( 92 struct xlog *log, 93 struct xlog_in_core *iclog); 94 95 STATIC void 96 xlog_grant_push_ail( 97 struct xlog *log, 98 int need_bytes); 99 STATIC void 100 xlog_regrant_reserve_log_space( 101 struct xlog *log, 102 struct xlog_ticket *ticket); 103 STATIC void 104 xlog_ungrant_log_space( 105 struct xlog *log, 106 struct xlog_ticket *ticket); 107 108 #if defined(DEBUG) 109 STATIC void 110 xlog_verify_dest_ptr( 111 struct xlog *log, 112 void *ptr); 113 STATIC void 114 xlog_verify_grant_tail( 115 struct xlog *log); 116 STATIC void 117 xlog_verify_iclog( 118 struct xlog *log, 119 struct xlog_in_core *iclog, 120 int count, 121 bool syncing); 122 STATIC void 123 xlog_verify_tail_lsn( 124 struct xlog *log, 125 struct xlog_in_core *iclog, 126 xfs_lsn_t tail_lsn); 127 #else 128 #define xlog_verify_dest_ptr(a,b) 129 #define xlog_verify_grant_tail(a) 130 #define xlog_verify_iclog(a,b,c,d) 131 #define xlog_verify_tail_lsn(a,b,c) 132 #endif 133 134 STATIC int 135 xlog_iclogs_empty( 136 struct xlog *log); 137 138 static void 139 xlog_grant_sub_space( 140 struct xlog *log, 141 atomic64_t *head, 142 int bytes) 143 { 144 int64_t head_val = atomic64_read(head); 145 int64_t new, old; 146 147 do { 148 int cycle, space; 149 150 xlog_crack_grant_head_val(head_val, &cycle, &space); 151 152 space -= bytes; 153 if (space < 0) { 154 space += log->l_logsize; 155 cycle--; 156 } 157 158 old = head_val; 159 new = xlog_assign_grant_head_val(cycle, space); 160 head_val = atomic64_cmpxchg(head, old, new); 161 } while (head_val != old); 162 } 163 164 static void 165 xlog_grant_add_space( 166 struct xlog *log, 167 atomic64_t *head, 168 int bytes) 169 { 170 int64_t head_val = atomic64_read(head); 171 int64_t new, old; 172 173 do { 174 int tmp; 175 int cycle, space; 176 177 xlog_crack_grant_head_val(head_val, &cycle, &space); 178 179 tmp = log->l_logsize - space; 180 if (tmp > bytes) 181 space += bytes; 182 else { 183 space = bytes - tmp; 184 cycle++; 185 } 186 187 old = head_val; 188 new = xlog_assign_grant_head_val(cycle, space); 189 head_val = atomic64_cmpxchg(head, old, new); 190 } while (head_val != old); 191 } 192 193 STATIC void 194 xlog_grant_head_init( 195 struct xlog_grant_head *head) 196 { 197 xlog_assign_grant_head(&head->grant, 1, 0); 198 INIT_LIST_HEAD(&head->waiters); 199 spin_lock_init(&head->lock); 200 } 201 202 STATIC void 203 xlog_grant_head_wake_all( 204 struct xlog_grant_head *head) 205 { 206 struct xlog_ticket *tic; 207 208 spin_lock(&head->lock); 209 list_for_each_entry(tic, &head->waiters, t_queue) 210 wake_up_process(tic->t_task); 211 spin_unlock(&head->lock); 212 } 213 214 static inline int 215 xlog_ticket_reservation( 216 struct xlog *log, 217 struct xlog_grant_head *head, 218 struct xlog_ticket *tic) 219 { 220 if (head == &log->l_write_head) { 221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 222 return tic->t_unit_res; 223 } else { 224 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 225 return tic->t_unit_res * tic->t_cnt; 226 else 227 return tic->t_unit_res; 228 } 229 } 230 231 STATIC bool 232 xlog_grant_head_wake( 233 struct xlog *log, 234 struct xlog_grant_head *head, 235 int *free_bytes) 236 { 237 struct xlog_ticket *tic; 238 int need_bytes; 239 240 list_for_each_entry(tic, &head->waiters, t_queue) { 241 need_bytes = xlog_ticket_reservation(log, head, tic); 242 if (*free_bytes < need_bytes) 243 return false; 244 245 *free_bytes -= need_bytes; 246 trace_xfs_log_grant_wake_up(log, tic); 247 wake_up_process(tic->t_task); 248 } 249 250 return true; 251 } 252 253 STATIC int 254 xlog_grant_head_wait( 255 struct xlog *log, 256 struct xlog_grant_head *head, 257 struct xlog_ticket *tic, 258 int need_bytes) __releases(&head->lock) 259 __acquires(&head->lock) 260 { 261 list_add_tail(&tic->t_queue, &head->waiters); 262 263 do { 264 if (XLOG_FORCED_SHUTDOWN(log)) 265 goto shutdown; 266 xlog_grant_push_ail(log, need_bytes); 267 268 __set_current_state(TASK_UNINTERRUPTIBLE); 269 spin_unlock(&head->lock); 270 271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 272 273 trace_xfs_log_grant_sleep(log, tic); 274 schedule(); 275 trace_xfs_log_grant_wake(log, tic); 276 277 spin_lock(&head->lock); 278 if (XLOG_FORCED_SHUTDOWN(log)) 279 goto shutdown; 280 } while (xlog_space_left(log, &head->grant) < need_bytes); 281 282 list_del_init(&tic->t_queue); 283 return 0; 284 shutdown: 285 list_del_init(&tic->t_queue); 286 return -EIO; 287 } 288 289 /* 290 * Atomically get the log space required for a log ticket. 291 * 292 * Once a ticket gets put onto head->waiters, it will only return after the 293 * needed reservation is satisfied. 294 * 295 * This function is structured so that it has a lock free fast path. This is 296 * necessary because every new transaction reservation will come through this 297 * path. Hence any lock will be globally hot if we take it unconditionally on 298 * every pass. 299 * 300 * As tickets are only ever moved on and off head->waiters under head->lock, we 301 * only need to take that lock if we are going to add the ticket to the queue 302 * and sleep. We can avoid taking the lock if the ticket was never added to 303 * head->waiters because the t_queue list head will be empty and we hold the 304 * only reference to it so it can safely be checked unlocked. 305 */ 306 STATIC int 307 xlog_grant_head_check( 308 struct xlog *log, 309 struct xlog_grant_head *head, 310 struct xlog_ticket *tic, 311 int *need_bytes) 312 { 313 int free_bytes; 314 int error = 0; 315 316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 317 318 /* 319 * If there are other waiters on the queue then give them a chance at 320 * logspace before us. Wake up the first waiters, if we do not wake 321 * up all the waiters then go to sleep waiting for more free space, 322 * otherwise try to get some space for this transaction. 323 */ 324 *need_bytes = xlog_ticket_reservation(log, head, tic); 325 free_bytes = xlog_space_left(log, &head->grant); 326 if (!list_empty_careful(&head->waiters)) { 327 spin_lock(&head->lock); 328 if (!xlog_grant_head_wake(log, head, &free_bytes) || 329 free_bytes < *need_bytes) { 330 error = xlog_grant_head_wait(log, head, tic, 331 *need_bytes); 332 } 333 spin_unlock(&head->lock); 334 } else if (free_bytes < *need_bytes) { 335 spin_lock(&head->lock); 336 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 337 spin_unlock(&head->lock); 338 } 339 340 return error; 341 } 342 343 static void 344 xlog_tic_reset_res(xlog_ticket_t *tic) 345 { 346 tic->t_res_num = 0; 347 tic->t_res_arr_sum = 0; 348 tic->t_res_num_ophdrs = 0; 349 } 350 351 static void 352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 353 { 354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 355 /* add to overflow and start again */ 356 tic->t_res_o_flow += tic->t_res_arr_sum; 357 tic->t_res_num = 0; 358 tic->t_res_arr_sum = 0; 359 } 360 361 tic->t_res_arr[tic->t_res_num].r_len = len; 362 tic->t_res_arr[tic->t_res_num].r_type = type; 363 tic->t_res_arr_sum += len; 364 tic->t_res_num++; 365 } 366 367 /* 368 * Replenish the byte reservation required by moving the grant write head. 369 */ 370 int 371 xfs_log_regrant( 372 struct xfs_mount *mp, 373 struct xlog_ticket *tic) 374 { 375 struct xlog *log = mp->m_log; 376 int need_bytes; 377 int error = 0; 378 379 if (XLOG_FORCED_SHUTDOWN(log)) 380 return -EIO; 381 382 XFS_STATS_INC(mp, xs_try_logspace); 383 384 /* 385 * This is a new transaction on the ticket, so we need to change the 386 * transaction ID so that the next transaction has a different TID in 387 * the log. Just add one to the existing tid so that we can see chains 388 * of rolling transactions in the log easily. 389 */ 390 tic->t_tid++; 391 392 xlog_grant_push_ail(log, tic->t_unit_res); 393 394 tic->t_curr_res = tic->t_unit_res; 395 xlog_tic_reset_res(tic); 396 397 if (tic->t_cnt > 0) 398 return 0; 399 400 trace_xfs_log_regrant(log, tic); 401 402 error = xlog_grant_head_check(log, &log->l_write_head, tic, 403 &need_bytes); 404 if (error) 405 goto out_error; 406 407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 408 trace_xfs_log_regrant_exit(log, tic); 409 xlog_verify_grant_tail(log); 410 return 0; 411 412 out_error: 413 /* 414 * If we are failing, make sure the ticket doesn't have any current 415 * reservations. We don't want to add this back when the ticket/ 416 * transaction gets cancelled. 417 */ 418 tic->t_curr_res = 0; 419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 420 return error; 421 } 422 423 /* 424 * Reserve log space and return a ticket corresponding the reservation. 425 * 426 * Each reservation is going to reserve extra space for a log record header. 427 * When writes happen to the on-disk log, we don't subtract the length of the 428 * log record header from any reservation. By wasting space in each 429 * reservation, we prevent over allocation problems. 430 */ 431 int 432 xfs_log_reserve( 433 struct xfs_mount *mp, 434 int unit_bytes, 435 int cnt, 436 struct xlog_ticket **ticp, 437 __uint8_t client, 438 bool permanent, 439 uint t_type) 440 { 441 struct xlog *log = mp->m_log; 442 struct xlog_ticket *tic; 443 int need_bytes; 444 int error = 0; 445 446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 447 448 if (XLOG_FORCED_SHUTDOWN(log)) 449 return -EIO; 450 451 XFS_STATS_INC(mp, xs_try_logspace); 452 453 ASSERT(*ticp == NULL); 454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 455 KM_SLEEP | KM_MAYFAIL); 456 if (!tic) 457 return -ENOMEM; 458 459 tic->t_trans_type = t_type; 460 *ticp = tic; 461 462 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 463 : tic->t_unit_res); 464 465 trace_xfs_log_reserve(log, tic); 466 467 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 468 &need_bytes); 469 if (error) 470 goto out_error; 471 472 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 473 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 474 trace_xfs_log_reserve_exit(log, tic); 475 xlog_verify_grant_tail(log); 476 return 0; 477 478 out_error: 479 /* 480 * If we are failing, make sure the ticket doesn't have any current 481 * reservations. We don't want to add this back when the ticket/ 482 * transaction gets cancelled. 483 */ 484 tic->t_curr_res = 0; 485 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 486 return error; 487 } 488 489 490 /* 491 * NOTES: 492 * 493 * 1. currblock field gets updated at startup and after in-core logs 494 * marked as with WANT_SYNC. 495 */ 496 497 /* 498 * This routine is called when a user of a log manager ticket is done with 499 * the reservation. If the ticket was ever used, then a commit record for 500 * the associated transaction is written out as a log operation header with 501 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 502 * a given ticket. If the ticket was one with a permanent reservation, then 503 * a few operations are done differently. Permanent reservation tickets by 504 * default don't release the reservation. They just commit the current 505 * transaction with the belief that the reservation is still needed. A flag 506 * must be passed in before permanent reservations are actually released. 507 * When these type of tickets are not released, they need to be set into 508 * the inited state again. By doing this, a start record will be written 509 * out when the next write occurs. 510 */ 511 xfs_lsn_t 512 xfs_log_done( 513 struct xfs_mount *mp, 514 struct xlog_ticket *ticket, 515 struct xlog_in_core **iclog, 516 bool regrant) 517 { 518 struct xlog *log = mp->m_log; 519 xfs_lsn_t lsn = 0; 520 521 if (XLOG_FORCED_SHUTDOWN(log) || 522 /* 523 * If nothing was ever written, don't write out commit record. 524 * If we get an error, just continue and give back the log ticket. 525 */ 526 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 527 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 528 lsn = (xfs_lsn_t) -1; 529 regrant = false; 530 } 531 532 533 if (!regrant) { 534 trace_xfs_log_done_nonperm(log, ticket); 535 536 /* 537 * Release ticket if not permanent reservation or a specific 538 * request has been made to release a permanent reservation. 539 */ 540 xlog_ungrant_log_space(log, ticket); 541 } else { 542 trace_xfs_log_done_perm(log, ticket); 543 544 xlog_regrant_reserve_log_space(log, ticket); 545 /* If this ticket was a permanent reservation and we aren't 546 * trying to release it, reset the inited flags; so next time 547 * we write, a start record will be written out. 548 */ 549 ticket->t_flags |= XLOG_TIC_INITED; 550 } 551 552 xfs_log_ticket_put(ticket); 553 return lsn; 554 } 555 556 /* 557 * Attaches a new iclog I/O completion callback routine during 558 * transaction commit. If the log is in error state, a non-zero 559 * return code is handed back and the caller is responsible for 560 * executing the callback at an appropriate time. 561 */ 562 int 563 xfs_log_notify( 564 struct xfs_mount *mp, 565 struct xlog_in_core *iclog, 566 xfs_log_callback_t *cb) 567 { 568 int abortflg; 569 570 spin_lock(&iclog->ic_callback_lock); 571 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 572 if (!abortflg) { 573 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 574 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 575 cb->cb_next = NULL; 576 *(iclog->ic_callback_tail) = cb; 577 iclog->ic_callback_tail = &(cb->cb_next); 578 } 579 spin_unlock(&iclog->ic_callback_lock); 580 return abortflg; 581 } 582 583 int 584 xfs_log_release_iclog( 585 struct xfs_mount *mp, 586 struct xlog_in_core *iclog) 587 { 588 if (xlog_state_release_iclog(mp->m_log, iclog)) { 589 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 590 return -EIO; 591 } 592 593 return 0; 594 } 595 596 /* 597 * Mount a log filesystem 598 * 599 * mp - ubiquitous xfs mount point structure 600 * log_target - buftarg of on-disk log device 601 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 602 * num_bblocks - Number of BBSIZE blocks in on-disk log 603 * 604 * Return error or zero. 605 */ 606 int 607 xfs_log_mount( 608 xfs_mount_t *mp, 609 xfs_buftarg_t *log_target, 610 xfs_daddr_t blk_offset, 611 int num_bblks) 612 { 613 int error = 0; 614 int min_logfsbs; 615 616 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 617 xfs_notice(mp, "Mounting V%d Filesystem", 618 XFS_SB_VERSION_NUM(&mp->m_sb)); 619 } else { 620 xfs_notice(mp, 621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 622 XFS_SB_VERSION_NUM(&mp->m_sb)); 623 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 624 } 625 626 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 627 if (IS_ERR(mp->m_log)) { 628 error = PTR_ERR(mp->m_log); 629 goto out; 630 } 631 632 /* 633 * Validate the given log space and drop a critical message via syslog 634 * if the log size is too small that would lead to some unexpected 635 * situations in transaction log space reservation stage. 636 * 637 * Note: we can't just reject the mount if the validation fails. This 638 * would mean that people would have to downgrade their kernel just to 639 * remedy the situation as there is no way to grow the log (short of 640 * black magic surgery with xfs_db). 641 * 642 * We can, however, reject mounts for CRC format filesystems, as the 643 * mkfs binary being used to make the filesystem should never create a 644 * filesystem with a log that is too small. 645 */ 646 min_logfsbs = xfs_log_calc_minimum_size(mp); 647 648 if (mp->m_sb.sb_logblocks < min_logfsbs) { 649 xfs_warn(mp, 650 "Log size %d blocks too small, minimum size is %d blocks", 651 mp->m_sb.sb_logblocks, min_logfsbs); 652 error = -EINVAL; 653 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 654 xfs_warn(mp, 655 "Log size %d blocks too large, maximum size is %lld blocks", 656 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 657 error = -EINVAL; 658 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 659 xfs_warn(mp, 660 "log size %lld bytes too large, maximum size is %lld bytes", 661 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 662 XFS_MAX_LOG_BYTES); 663 error = -EINVAL; 664 } 665 if (error) { 666 if (xfs_sb_version_hascrc(&mp->m_sb)) { 667 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 668 ASSERT(0); 669 goto out_free_log; 670 } 671 xfs_crit(mp, "Log size out of supported range."); 672 xfs_crit(mp, 673 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 674 } 675 676 /* 677 * Initialize the AIL now we have a log. 678 */ 679 error = xfs_trans_ail_init(mp); 680 if (error) { 681 xfs_warn(mp, "AIL initialisation failed: error %d", error); 682 goto out_free_log; 683 } 684 mp->m_log->l_ailp = mp->m_ail; 685 686 /* 687 * skip log recovery on a norecovery mount. pretend it all 688 * just worked. 689 */ 690 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 691 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 692 693 if (readonly) 694 mp->m_flags &= ~XFS_MOUNT_RDONLY; 695 696 error = xlog_recover(mp->m_log); 697 698 if (readonly) 699 mp->m_flags |= XFS_MOUNT_RDONLY; 700 if (error) { 701 xfs_warn(mp, "log mount/recovery failed: error %d", 702 error); 703 xlog_recover_cancel(mp->m_log); 704 goto out_destroy_ail; 705 } 706 } 707 708 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 709 "log"); 710 if (error) 711 goto out_destroy_ail; 712 713 /* Normal transactions can now occur */ 714 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 715 716 /* 717 * Now the log has been fully initialised and we know were our 718 * space grant counters are, we can initialise the permanent ticket 719 * needed for delayed logging to work. 720 */ 721 xlog_cil_init_post_recovery(mp->m_log); 722 723 return 0; 724 725 out_destroy_ail: 726 xfs_trans_ail_destroy(mp); 727 out_free_log: 728 xlog_dealloc_log(mp->m_log); 729 out: 730 return error; 731 } 732 733 /* 734 * Finish the recovery of the file system. This is separate from the 735 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 736 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 737 * here. 738 * 739 * If we finish recovery successfully, start the background log work. If we are 740 * not doing recovery, then we have a RO filesystem and we don't need to start 741 * it. 742 */ 743 int 744 xfs_log_mount_finish( 745 struct xfs_mount *mp) 746 { 747 int error = 0; 748 749 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 750 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 751 return 0; 752 } 753 754 error = xlog_recover_finish(mp->m_log); 755 if (!error) 756 xfs_log_work_queue(mp); 757 758 return error; 759 } 760 761 /* 762 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 763 * the log. 764 */ 765 int 766 xfs_log_mount_cancel( 767 struct xfs_mount *mp) 768 { 769 int error; 770 771 error = xlog_recover_cancel(mp->m_log); 772 xfs_log_unmount(mp); 773 774 return error; 775 } 776 777 /* 778 * Final log writes as part of unmount. 779 * 780 * Mark the filesystem clean as unmount happens. Note that during relocation 781 * this routine needs to be executed as part of source-bag while the 782 * deallocation must not be done until source-end. 783 */ 784 785 /* 786 * Unmount record used to have a string "Unmount filesystem--" in the 787 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 788 * We just write the magic number now since that particular field isn't 789 * currently architecture converted and "Unmount" is a bit foo. 790 * As far as I know, there weren't any dependencies on the old behaviour. 791 */ 792 793 int 794 xfs_log_unmount_write(xfs_mount_t *mp) 795 { 796 struct xlog *log = mp->m_log; 797 xlog_in_core_t *iclog; 798 #ifdef DEBUG 799 xlog_in_core_t *first_iclog; 800 #endif 801 xlog_ticket_t *tic = NULL; 802 xfs_lsn_t lsn; 803 int error; 804 805 /* 806 * Don't write out unmount record on read-only mounts. 807 * Or, if we are doing a forced umount (typically because of IO errors). 808 */ 809 if (mp->m_flags & XFS_MOUNT_RDONLY) 810 return 0; 811 812 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 813 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 814 815 #ifdef DEBUG 816 first_iclog = iclog = log->l_iclog; 817 do { 818 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 819 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 820 ASSERT(iclog->ic_offset == 0); 821 } 822 iclog = iclog->ic_next; 823 } while (iclog != first_iclog); 824 #endif 825 if (! (XLOG_FORCED_SHUTDOWN(log))) { 826 error = xfs_log_reserve(mp, 600, 1, &tic, 827 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE); 828 if (!error) { 829 /* the data section must be 32 bit size aligned */ 830 struct { 831 __uint16_t magic; 832 __uint16_t pad1; 833 __uint32_t pad2; /* may as well make it 64 bits */ 834 } magic = { 835 .magic = XLOG_UNMOUNT_TYPE, 836 }; 837 struct xfs_log_iovec reg = { 838 .i_addr = &magic, 839 .i_len = sizeof(magic), 840 .i_type = XLOG_REG_TYPE_UNMOUNT, 841 }; 842 struct xfs_log_vec vec = { 843 .lv_niovecs = 1, 844 .lv_iovecp = ®, 845 }; 846 847 /* remove inited flag, and account for space used */ 848 tic->t_flags = 0; 849 tic->t_curr_res -= sizeof(magic); 850 error = xlog_write(log, &vec, tic, &lsn, 851 NULL, XLOG_UNMOUNT_TRANS); 852 /* 853 * At this point, we're umounting anyway, 854 * so there's no point in transitioning log state 855 * to IOERROR. Just continue... 856 */ 857 } 858 859 if (error) 860 xfs_alert(mp, "%s: unmount record failed", __func__); 861 862 863 spin_lock(&log->l_icloglock); 864 iclog = log->l_iclog; 865 atomic_inc(&iclog->ic_refcnt); 866 xlog_state_want_sync(log, iclog); 867 spin_unlock(&log->l_icloglock); 868 error = xlog_state_release_iclog(log, iclog); 869 870 spin_lock(&log->l_icloglock); 871 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 872 iclog->ic_state == XLOG_STATE_DIRTY)) { 873 if (!XLOG_FORCED_SHUTDOWN(log)) { 874 xlog_wait(&iclog->ic_force_wait, 875 &log->l_icloglock); 876 } else { 877 spin_unlock(&log->l_icloglock); 878 } 879 } else { 880 spin_unlock(&log->l_icloglock); 881 } 882 if (tic) { 883 trace_xfs_log_umount_write(log, tic); 884 xlog_ungrant_log_space(log, tic); 885 xfs_log_ticket_put(tic); 886 } 887 } else { 888 /* 889 * We're already in forced_shutdown mode, couldn't 890 * even attempt to write out the unmount transaction. 891 * 892 * Go through the motions of sync'ing and releasing 893 * the iclog, even though no I/O will actually happen, 894 * we need to wait for other log I/Os that may already 895 * be in progress. Do this as a separate section of 896 * code so we'll know if we ever get stuck here that 897 * we're in this odd situation of trying to unmount 898 * a file system that went into forced_shutdown as 899 * the result of an unmount.. 900 */ 901 spin_lock(&log->l_icloglock); 902 iclog = log->l_iclog; 903 atomic_inc(&iclog->ic_refcnt); 904 905 xlog_state_want_sync(log, iclog); 906 spin_unlock(&log->l_icloglock); 907 error = xlog_state_release_iclog(log, iclog); 908 909 spin_lock(&log->l_icloglock); 910 911 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 912 || iclog->ic_state == XLOG_STATE_DIRTY 913 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 914 915 xlog_wait(&iclog->ic_force_wait, 916 &log->l_icloglock); 917 } else { 918 spin_unlock(&log->l_icloglock); 919 } 920 } 921 922 return error; 923 } /* xfs_log_unmount_write */ 924 925 /* 926 * Empty the log for unmount/freeze. 927 * 928 * To do this, we first need to shut down the background log work so it is not 929 * trying to cover the log as we clean up. We then need to unpin all objects in 930 * the log so we can then flush them out. Once they have completed their IO and 931 * run the callbacks removing themselves from the AIL, we can write the unmount 932 * record. 933 */ 934 void 935 xfs_log_quiesce( 936 struct xfs_mount *mp) 937 { 938 cancel_delayed_work_sync(&mp->m_log->l_work); 939 xfs_log_force(mp, XFS_LOG_SYNC); 940 941 /* 942 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 943 * will push it, xfs_wait_buftarg() will not wait for it. Further, 944 * xfs_buf_iowait() cannot be used because it was pushed with the 945 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 946 * the IO to complete. 947 */ 948 xfs_ail_push_all_sync(mp->m_ail); 949 xfs_wait_buftarg(mp->m_ddev_targp); 950 xfs_buf_lock(mp->m_sb_bp); 951 xfs_buf_unlock(mp->m_sb_bp); 952 953 xfs_log_unmount_write(mp); 954 } 955 956 /* 957 * Shut down and release the AIL and Log. 958 * 959 * During unmount, we need to ensure we flush all the dirty metadata objects 960 * from the AIL so that the log is empty before we write the unmount record to 961 * the log. Once this is done, we can tear down the AIL and the log. 962 */ 963 void 964 xfs_log_unmount( 965 struct xfs_mount *mp) 966 { 967 xfs_log_quiesce(mp); 968 969 xfs_trans_ail_destroy(mp); 970 971 xfs_sysfs_del(&mp->m_log->l_kobj); 972 973 xlog_dealloc_log(mp->m_log); 974 } 975 976 void 977 xfs_log_item_init( 978 struct xfs_mount *mp, 979 struct xfs_log_item *item, 980 int type, 981 const struct xfs_item_ops *ops) 982 { 983 item->li_mountp = mp; 984 item->li_ailp = mp->m_ail; 985 item->li_type = type; 986 item->li_ops = ops; 987 item->li_lv = NULL; 988 989 INIT_LIST_HEAD(&item->li_ail); 990 INIT_LIST_HEAD(&item->li_cil); 991 } 992 993 /* 994 * Wake up processes waiting for log space after we have moved the log tail. 995 */ 996 void 997 xfs_log_space_wake( 998 struct xfs_mount *mp) 999 { 1000 struct xlog *log = mp->m_log; 1001 int free_bytes; 1002 1003 if (XLOG_FORCED_SHUTDOWN(log)) 1004 return; 1005 1006 if (!list_empty_careful(&log->l_write_head.waiters)) { 1007 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1008 1009 spin_lock(&log->l_write_head.lock); 1010 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1011 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1012 spin_unlock(&log->l_write_head.lock); 1013 } 1014 1015 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1016 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1017 1018 spin_lock(&log->l_reserve_head.lock); 1019 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1020 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1021 spin_unlock(&log->l_reserve_head.lock); 1022 } 1023 } 1024 1025 /* 1026 * Determine if we have a transaction that has gone to disk that needs to be 1027 * covered. To begin the transition to the idle state firstly the log needs to 1028 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1029 * we start attempting to cover the log. 1030 * 1031 * Only if we are then in a state where covering is needed, the caller is 1032 * informed that dummy transactions are required to move the log into the idle 1033 * state. 1034 * 1035 * If there are any items in the AIl or CIL, then we do not want to attempt to 1036 * cover the log as we may be in a situation where there isn't log space 1037 * available to run a dummy transaction and this can lead to deadlocks when the 1038 * tail of the log is pinned by an item that is modified in the CIL. Hence 1039 * there's no point in running a dummy transaction at this point because we 1040 * can't start trying to idle the log until both the CIL and AIL are empty. 1041 */ 1042 int 1043 xfs_log_need_covered(xfs_mount_t *mp) 1044 { 1045 struct xlog *log = mp->m_log; 1046 int needed = 0; 1047 1048 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 1049 return 0; 1050 1051 if (!xlog_cil_empty(log)) 1052 return 0; 1053 1054 spin_lock(&log->l_icloglock); 1055 switch (log->l_covered_state) { 1056 case XLOG_STATE_COVER_DONE: 1057 case XLOG_STATE_COVER_DONE2: 1058 case XLOG_STATE_COVER_IDLE: 1059 break; 1060 case XLOG_STATE_COVER_NEED: 1061 case XLOG_STATE_COVER_NEED2: 1062 if (xfs_ail_min_lsn(log->l_ailp)) 1063 break; 1064 if (!xlog_iclogs_empty(log)) 1065 break; 1066 1067 needed = 1; 1068 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1069 log->l_covered_state = XLOG_STATE_COVER_DONE; 1070 else 1071 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1072 break; 1073 default: 1074 needed = 1; 1075 break; 1076 } 1077 spin_unlock(&log->l_icloglock); 1078 return needed; 1079 } 1080 1081 /* 1082 * We may be holding the log iclog lock upon entering this routine. 1083 */ 1084 xfs_lsn_t 1085 xlog_assign_tail_lsn_locked( 1086 struct xfs_mount *mp) 1087 { 1088 struct xlog *log = mp->m_log; 1089 struct xfs_log_item *lip; 1090 xfs_lsn_t tail_lsn; 1091 1092 assert_spin_locked(&mp->m_ail->xa_lock); 1093 1094 /* 1095 * To make sure we always have a valid LSN for the log tail we keep 1096 * track of the last LSN which was committed in log->l_last_sync_lsn, 1097 * and use that when the AIL was empty. 1098 */ 1099 lip = xfs_ail_min(mp->m_ail); 1100 if (lip) 1101 tail_lsn = lip->li_lsn; 1102 else 1103 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1104 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1105 atomic64_set(&log->l_tail_lsn, tail_lsn); 1106 return tail_lsn; 1107 } 1108 1109 xfs_lsn_t 1110 xlog_assign_tail_lsn( 1111 struct xfs_mount *mp) 1112 { 1113 xfs_lsn_t tail_lsn; 1114 1115 spin_lock(&mp->m_ail->xa_lock); 1116 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1117 spin_unlock(&mp->m_ail->xa_lock); 1118 1119 return tail_lsn; 1120 } 1121 1122 /* 1123 * Return the space in the log between the tail and the head. The head 1124 * is passed in the cycle/bytes formal parms. In the special case where 1125 * the reserve head has wrapped passed the tail, this calculation is no 1126 * longer valid. In this case, just return 0 which means there is no space 1127 * in the log. This works for all places where this function is called 1128 * with the reserve head. Of course, if the write head were to ever 1129 * wrap the tail, we should blow up. Rather than catch this case here, 1130 * we depend on other ASSERTions in other parts of the code. XXXmiken 1131 * 1132 * This code also handles the case where the reservation head is behind 1133 * the tail. The details of this case are described below, but the end 1134 * result is that we return the size of the log as the amount of space left. 1135 */ 1136 STATIC int 1137 xlog_space_left( 1138 struct xlog *log, 1139 atomic64_t *head) 1140 { 1141 int free_bytes; 1142 int tail_bytes; 1143 int tail_cycle; 1144 int head_cycle; 1145 int head_bytes; 1146 1147 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1148 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1149 tail_bytes = BBTOB(tail_bytes); 1150 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1151 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1152 else if (tail_cycle + 1 < head_cycle) 1153 return 0; 1154 else if (tail_cycle < head_cycle) { 1155 ASSERT(tail_cycle == (head_cycle - 1)); 1156 free_bytes = tail_bytes - head_bytes; 1157 } else { 1158 /* 1159 * The reservation head is behind the tail. 1160 * In this case we just want to return the size of the 1161 * log as the amount of space left. 1162 */ 1163 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1164 xfs_alert(log->l_mp, 1165 " tail_cycle = %d, tail_bytes = %d", 1166 tail_cycle, tail_bytes); 1167 xfs_alert(log->l_mp, 1168 " GH cycle = %d, GH bytes = %d", 1169 head_cycle, head_bytes); 1170 ASSERT(0); 1171 free_bytes = log->l_logsize; 1172 } 1173 return free_bytes; 1174 } 1175 1176 1177 /* 1178 * Log function which is called when an io completes. 1179 * 1180 * The log manager needs its own routine, in order to control what 1181 * happens with the buffer after the write completes. 1182 */ 1183 void 1184 xlog_iodone(xfs_buf_t *bp) 1185 { 1186 struct xlog_in_core *iclog = bp->b_fspriv; 1187 struct xlog *l = iclog->ic_log; 1188 int aborted = 0; 1189 1190 /* 1191 * Race to shutdown the filesystem if we see an error. 1192 */ 1193 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, 1194 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) { 1195 xfs_buf_ioerror_alert(bp, __func__); 1196 xfs_buf_stale(bp); 1197 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1198 /* 1199 * This flag will be propagated to the trans-committed 1200 * callback routines to let them know that the log-commit 1201 * didn't succeed. 1202 */ 1203 aborted = XFS_LI_ABORTED; 1204 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1205 aborted = XFS_LI_ABORTED; 1206 } 1207 1208 /* log I/O is always issued ASYNC */ 1209 ASSERT(XFS_BUF_ISASYNC(bp)); 1210 xlog_state_done_syncing(iclog, aborted); 1211 1212 /* 1213 * drop the buffer lock now that we are done. Nothing references 1214 * the buffer after this, so an unmount waiting on this lock can now 1215 * tear it down safely. As such, it is unsafe to reference the buffer 1216 * (bp) after the unlock as we could race with it being freed. 1217 */ 1218 xfs_buf_unlock(bp); 1219 } 1220 1221 /* 1222 * Return size of each in-core log record buffer. 1223 * 1224 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1225 * 1226 * If the filesystem blocksize is too large, we may need to choose a 1227 * larger size since the directory code currently logs entire blocks. 1228 */ 1229 1230 STATIC void 1231 xlog_get_iclog_buffer_size( 1232 struct xfs_mount *mp, 1233 struct xlog *log) 1234 { 1235 int size; 1236 int xhdrs; 1237 1238 if (mp->m_logbufs <= 0) 1239 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1240 else 1241 log->l_iclog_bufs = mp->m_logbufs; 1242 1243 /* 1244 * Buffer size passed in from mount system call. 1245 */ 1246 if (mp->m_logbsize > 0) { 1247 size = log->l_iclog_size = mp->m_logbsize; 1248 log->l_iclog_size_log = 0; 1249 while (size != 1) { 1250 log->l_iclog_size_log++; 1251 size >>= 1; 1252 } 1253 1254 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1255 /* # headers = size / 32k 1256 * one header holds cycles from 32k of data 1257 */ 1258 1259 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1260 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1261 xhdrs++; 1262 log->l_iclog_hsize = xhdrs << BBSHIFT; 1263 log->l_iclog_heads = xhdrs; 1264 } else { 1265 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1266 log->l_iclog_hsize = BBSIZE; 1267 log->l_iclog_heads = 1; 1268 } 1269 goto done; 1270 } 1271 1272 /* All machines use 32kB buffers by default. */ 1273 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1274 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1275 1276 /* the default log size is 16k or 32k which is one header sector */ 1277 log->l_iclog_hsize = BBSIZE; 1278 log->l_iclog_heads = 1; 1279 1280 done: 1281 /* are we being asked to make the sizes selected above visible? */ 1282 if (mp->m_logbufs == 0) 1283 mp->m_logbufs = log->l_iclog_bufs; 1284 if (mp->m_logbsize == 0) 1285 mp->m_logbsize = log->l_iclog_size; 1286 } /* xlog_get_iclog_buffer_size */ 1287 1288 1289 void 1290 xfs_log_work_queue( 1291 struct xfs_mount *mp) 1292 { 1293 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work, 1294 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1295 } 1296 1297 /* 1298 * Every sync period we need to unpin all items in the AIL and push them to 1299 * disk. If there is nothing dirty, then we might need to cover the log to 1300 * indicate that the filesystem is idle. 1301 */ 1302 void 1303 xfs_log_worker( 1304 struct work_struct *work) 1305 { 1306 struct xlog *log = container_of(to_delayed_work(work), 1307 struct xlog, l_work); 1308 struct xfs_mount *mp = log->l_mp; 1309 1310 /* dgc: errors ignored - not fatal and nowhere to report them */ 1311 if (xfs_log_need_covered(mp)) { 1312 /* 1313 * Dump a transaction into the log that contains no real change. 1314 * This is needed to stamp the current tail LSN into the log 1315 * during the covering operation. 1316 * 1317 * We cannot use an inode here for this - that will push dirty 1318 * state back up into the VFS and then periodic inode flushing 1319 * will prevent log covering from making progress. Hence we 1320 * synchronously log the superblock instead to ensure the 1321 * superblock is immediately unpinned and can be written back. 1322 */ 1323 xfs_sync_sb(mp, true); 1324 } else 1325 xfs_log_force(mp, 0); 1326 1327 /* start pushing all the metadata that is currently dirty */ 1328 xfs_ail_push_all(mp->m_ail); 1329 1330 /* queue us up again */ 1331 xfs_log_work_queue(mp); 1332 } 1333 1334 /* 1335 * This routine initializes some of the log structure for a given mount point. 1336 * Its primary purpose is to fill in enough, so recovery can occur. However, 1337 * some other stuff may be filled in too. 1338 */ 1339 STATIC struct xlog * 1340 xlog_alloc_log( 1341 struct xfs_mount *mp, 1342 struct xfs_buftarg *log_target, 1343 xfs_daddr_t blk_offset, 1344 int num_bblks) 1345 { 1346 struct xlog *log; 1347 xlog_rec_header_t *head; 1348 xlog_in_core_t **iclogp; 1349 xlog_in_core_t *iclog, *prev_iclog=NULL; 1350 xfs_buf_t *bp; 1351 int i; 1352 int error = -ENOMEM; 1353 uint log2_size = 0; 1354 1355 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1356 if (!log) { 1357 xfs_warn(mp, "Log allocation failed: No memory!"); 1358 goto out; 1359 } 1360 1361 log->l_mp = mp; 1362 log->l_targ = log_target; 1363 log->l_logsize = BBTOB(num_bblks); 1364 log->l_logBBstart = blk_offset; 1365 log->l_logBBsize = num_bblks; 1366 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1367 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1368 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1369 1370 log->l_prev_block = -1; 1371 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1372 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1373 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1374 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1375 1376 xlog_grant_head_init(&log->l_reserve_head); 1377 xlog_grant_head_init(&log->l_write_head); 1378 1379 error = -EFSCORRUPTED; 1380 if (xfs_sb_version_hassector(&mp->m_sb)) { 1381 log2_size = mp->m_sb.sb_logsectlog; 1382 if (log2_size < BBSHIFT) { 1383 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1384 log2_size, BBSHIFT); 1385 goto out_free_log; 1386 } 1387 1388 log2_size -= BBSHIFT; 1389 if (log2_size > mp->m_sectbb_log) { 1390 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1391 log2_size, mp->m_sectbb_log); 1392 goto out_free_log; 1393 } 1394 1395 /* for larger sector sizes, must have v2 or external log */ 1396 if (log2_size && log->l_logBBstart > 0 && 1397 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1398 xfs_warn(mp, 1399 "log sector size (0x%x) invalid for configuration.", 1400 log2_size); 1401 goto out_free_log; 1402 } 1403 } 1404 log->l_sectBBsize = 1 << log2_size; 1405 1406 xlog_get_iclog_buffer_size(mp, log); 1407 1408 /* 1409 * Use a NULL block for the extra log buffer used during splits so that 1410 * it will trigger errors if we ever try to do IO on it without first 1411 * having set it up properly. 1412 */ 1413 error = -ENOMEM; 1414 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL, 1415 BTOBB(log->l_iclog_size), 0); 1416 if (!bp) 1417 goto out_free_log; 1418 1419 /* 1420 * The iclogbuf buffer locks are held over IO but we are not going to do 1421 * IO yet. Hence unlock the buffer so that the log IO path can grab it 1422 * when appropriately. 1423 */ 1424 ASSERT(xfs_buf_islocked(bp)); 1425 xfs_buf_unlock(bp); 1426 1427 /* use high priority wq for log I/O completion */ 1428 bp->b_ioend_wq = mp->m_log_workqueue; 1429 bp->b_iodone = xlog_iodone; 1430 log->l_xbuf = bp; 1431 1432 spin_lock_init(&log->l_icloglock); 1433 init_waitqueue_head(&log->l_flush_wait); 1434 1435 iclogp = &log->l_iclog; 1436 /* 1437 * The amount of memory to allocate for the iclog structure is 1438 * rather funky due to the way the structure is defined. It is 1439 * done this way so that we can use different sizes for machines 1440 * with different amounts of memory. See the definition of 1441 * xlog_in_core_t in xfs_log_priv.h for details. 1442 */ 1443 ASSERT(log->l_iclog_size >= 4096); 1444 for (i=0; i < log->l_iclog_bufs; i++) { 1445 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1446 if (!*iclogp) 1447 goto out_free_iclog; 1448 1449 iclog = *iclogp; 1450 iclog->ic_prev = prev_iclog; 1451 prev_iclog = iclog; 1452 1453 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1454 BTOBB(log->l_iclog_size), 0); 1455 if (!bp) 1456 goto out_free_iclog; 1457 1458 ASSERT(xfs_buf_islocked(bp)); 1459 xfs_buf_unlock(bp); 1460 1461 /* use high priority wq for log I/O completion */ 1462 bp->b_ioend_wq = mp->m_log_workqueue; 1463 bp->b_iodone = xlog_iodone; 1464 iclog->ic_bp = bp; 1465 iclog->ic_data = bp->b_addr; 1466 #ifdef DEBUG 1467 log->l_iclog_bak[i] = &iclog->ic_header; 1468 #endif 1469 head = &iclog->ic_header; 1470 memset(head, 0, sizeof(xlog_rec_header_t)); 1471 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1472 head->h_version = cpu_to_be32( 1473 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1474 head->h_size = cpu_to_be32(log->l_iclog_size); 1475 /* new fields */ 1476 head->h_fmt = cpu_to_be32(XLOG_FMT); 1477 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1478 1479 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1480 iclog->ic_state = XLOG_STATE_ACTIVE; 1481 iclog->ic_log = log; 1482 atomic_set(&iclog->ic_refcnt, 0); 1483 spin_lock_init(&iclog->ic_callback_lock); 1484 iclog->ic_callback_tail = &(iclog->ic_callback); 1485 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1486 1487 init_waitqueue_head(&iclog->ic_force_wait); 1488 init_waitqueue_head(&iclog->ic_write_wait); 1489 1490 iclogp = &iclog->ic_next; 1491 } 1492 *iclogp = log->l_iclog; /* complete ring */ 1493 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1494 1495 error = xlog_cil_init(log); 1496 if (error) 1497 goto out_free_iclog; 1498 return log; 1499 1500 out_free_iclog: 1501 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1502 prev_iclog = iclog->ic_next; 1503 if (iclog->ic_bp) 1504 xfs_buf_free(iclog->ic_bp); 1505 kmem_free(iclog); 1506 } 1507 spinlock_destroy(&log->l_icloglock); 1508 xfs_buf_free(log->l_xbuf); 1509 out_free_log: 1510 kmem_free(log); 1511 out: 1512 return ERR_PTR(error); 1513 } /* xlog_alloc_log */ 1514 1515 1516 /* 1517 * Write out the commit record of a transaction associated with the given 1518 * ticket. Return the lsn of the commit record. 1519 */ 1520 STATIC int 1521 xlog_commit_record( 1522 struct xlog *log, 1523 struct xlog_ticket *ticket, 1524 struct xlog_in_core **iclog, 1525 xfs_lsn_t *commitlsnp) 1526 { 1527 struct xfs_mount *mp = log->l_mp; 1528 int error; 1529 struct xfs_log_iovec reg = { 1530 .i_addr = NULL, 1531 .i_len = 0, 1532 .i_type = XLOG_REG_TYPE_COMMIT, 1533 }; 1534 struct xfs_log_vec vec = { 1535 .lv_niovecs = 1, 1536 .lv_iovecp = ®, 1537 }; 1538 1539 ASSERT_ALWAYS(iclog); 1540 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1541 XLOG_COMMIT_TRANS); 1542 if (error) 1543 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1544 return error; 1545 } 1546 1547 /* 1548 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1549 * log space. This code pushes on the lsn which would supposedly free up 1550 * the 25% which we want to leave free. We may need to adopt a policy which 1551 * pushes on an lsn which is further along in the log once we reach the high 1552 * water mark. In this manner, we would be creating a low water mark. 1553 */ 1554 STATIC void 1555 xlog_grant_push_ail( 1556 struct xlog *log, 1557 int need_bytes) 1558 { 1559 xfs_lsn_t threshold_lsn = 0; 1560 xfs_lsn_t last_sync_lsn; 1561 int free_blocks; 1562 int free_bytes; 1563 int threshold_block; 1564 int threshold_cycle; 1565 int free_threshold; 1566 1567 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1568 1569 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1570 free_blocks = BTOBBT(free_bytes); 1571 1572 /* 1573 * Set the threshold for the minimum number of free blocks in the 1574 * log to the maximum of what the caller needs, one quarter of the 1575 * log, and 256 blocks. 1576 */ 1577 free_threshold = BTOBB(need_bytes); 1578 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1579 free_threshold = MAX(free_threshold, 256); 1580 if (free_blocks >= free_threshold) 1581 return; 1582 1583 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1584 &threshold_block); 1585 threshold_block += free_threshold; 1586 if (threshold_block >= log->l_logBBsize) { 1587 threshold_block -= log->l_logBBsize; 1588 threshold_cycle += 1; 1589 } 1590 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1591 threshold_block); 1592 /* 1593 * Don't pass in an lsn greater than the lsn of the last 1594 * log record known to be on disk. Use a snapshot of the last sync lsn 1595 * so that it doesn't change between the compare and the set. 1596 */ 1597 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1598 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1599 threshold_lsn = last_sync_lsn; 1600 1601 /* 1602 * Get the transaction layer to kick the dirty buffers out to 1603 * disk asynchronously. No point in trying to do this if 1604 * the filesystem is shutting down. 1605 */ 1606 if (!XLOG_FORCED_SHUTDOWN(log)) 1607 xfs_ail_push(log->l_ailp, threshold_lsn); 1608 } 1609 1610 /* 1611 * Stamp cycle number in every block 1612 */ 1613 STATIC void 1614 xlog_pack_data( 1615 struct xlog *log, 1616 struct xlog_in_core *iclog, 1617 int roundoff) 1618 { 1619 int i, j, k; 1620 int size = iclog->ic_offset + roundoff; 1621 __be32 cycle_lsn; 1622 char *dp; 1623 1624 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1625 1626 dp = iclog->ic_datap; 1627 for (i = 0; i < BTOBB(size); i++) { 1628 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1629 break; 1630 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1631 *(__be32 *)dp = cycle_lsn; 1632 dp += BBSIZE; 1633 } 1634 1635 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1636 xlog_in_core_2_t *xhdr = iclog->ic_data; 1637 1638 for ( ; i < BTOBB(size); i++) { 1639 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1640 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1641 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1642 *(__be32 *)dp = cycle_lsn; 1643 dp += BBSIZE; 1644 } 1645 1646 for (i = 1; i < log->l_iclog_heads; i++) 1647 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1648 } 1649 } 1650 1651 /* 1652 * Calculate the checksum for a log buffer. 1653 * 1654 * This is a little more complicated than it should be because the various 1655 * headers and the actual data are non-contiguous. 1656 */ 1657 __le32 1658 xlog_cksum( 1659 struct xlog *log, 1660 struct xlog_rec_header *rhead, 1661 char *dp, 1662 int size) 1663 { 1664 __uint32_t crc; 1665 1666 /* first generate the crc for the record header ... */ 1667 crc = xfs_start_cksum((char *)rhead, 1668 sizeof(struct xlog_rec_header), 1669 offsetof(struct xlog_rec_header, h_crc)); 1670 1671 /* ... then for additional cycle data for v2 logs ... */ 1672 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1673 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1674 int i; 1675 int xheads; 1676 1677 xheads = size / XLOG_HEADER_CYCLE_SIZE; 1678 if (size % XLOG_HEADER_CYCLE_SIZE) 1679 xheads++; 1680 1681 for (i = 1; i < xheads; i++) { 1682 crc = crc32c(crc, &xhdr[i].hic_xheader, 1683 sizeof(struct xlog_rec_ext_header)); 1684 } 1685 } 1686 1687 /* ... and finally for the payload */ 1688 crc = crc32c(crc, dp, size); 1689 1690 return xfs_end_cksum(crc); 1691 } 1692 1693 /* 1694 * The bdstrat callback function for log bufs. This gives us a central 1695 * place to trap bufs in case we get hit by a log I/O error and need to 1696 * shutdown. Actually, in practice, even when we didn't get a log error, 1697 * we transition the iclogs to IOERROR state *after* flushing all existing 1698 * iclogs to disk. This is because we don't want anymore new transactions to be 1699 * started or completed afterwards. 1700 * 1701 * We lock the iclogbufs here so that we can serialise against IO completion 1702 * during unmount. We might be processing a shutdown triggered during unmount, 1703 * and that can occur asynchronously to the unmount thread, and hence we need to 1704 * ensure that completes before tearing down the iclogbufs. Hence we need to 1705 * hold the buffer lock across the log IO to acheive that. 1706 */ 1707 STATIC int 1708 xlog_bdstrat( 1709 struct xfs_buf *bp) 1710 { 1711 struct xlog_in_core *iclog = bp->b_fspriv; 1712 1713 xfs_buf_lock(bp); 1714 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1715 xfs_buf_ioerror(bp, -EIO); 1716 xfs_buf_stale(bp); 1717 xfs_buf_ioend(bp); 1718 /* 1719 * It would seem logical to return EIO here, but we rely on 1720 * the log state machine to propagate I/O errors instead of 1721 * doing it here. Similarly, IO completion will unlock the 1722 * buffer, so we don't do it here. 1723 */ 1724 return 0; 1725 } 1726 1727 xfs_buf_submit(bp); 1728 return 0; 1729 } 1730 1731 /* 1732 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1733 * fashion. Previously, we should have moved the current iclog 1734 * ptr in the log to point to the next available iclog. This allows further 1735 * write to continue while this code syncs out an iclog ready to go. 1736 * Before an in-core log can be written out, the data section must be scanned 1737 * to save away the 1st word of each BBSIZE block into the header. We replace 1738 * it with the current cycle count. Each BBSIZE block is tagged with the 1739 * cycle count because there in an implicit assumption that drives will 1740 * guarantee that entire 512 byte blocks get written at once. In other words, 1741 * we can't have part of a 512 byte block written and part not written. By 1742 * tagging each block, we will know which blocks are valid when recovering 1743 * after an unclean shutdown. 1744 * 1745 * This routine is single threaded on the iclog. No other thread can be in 1746 * this routine with the same iclog. Changing contents of iclog can there- 1747 * fore be done without grabbing the state machine lock. Updating the global 1748 * log will require grabbing the lock though. 1749 * 1750 * The entire log manager uses a logical block numbering scheme. Only 1751 * log_sync (and then only bwrite()) know about the fact that the log may 1752 * not start with block zero on a given device. The log block start offset 1753 * is added immediately before calling bwrite(). 1754 */ 1755 1756 STATIC int 1757 xlog_sync( 1758 struct xlog *log, 1759 struct xlog_in_core *iclog) 1760 { 1761 xfs_buf_t *bp; 1762 int i; 1763 uint count; /* byte count of bwrite */ 1764 uint count_init; /* initial count before roundup */ 1765 int roundoff; /* roundoff to BB or stripe */ 1766 int split = 0; /* split write into two regions */ 1767 int error; 1768 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1769 int size; 1770 1771 XFS_STATS_INC(log->l_mp, xs_log_writes); 1772 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1773 1774 /* Add for LR header */ 1775 count_init = log->l_iclog_hsize + iclog->ic_offset; 1776 1777 /* Round out the log write size */ 1778 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1779 /* we have a v2 stripe unit to use */ 1780 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1781 } else { 1782 count = BBTOB(BTOBB(count_init)); 1783 } 1784 roundoff = count - count_init; 1785 ASSERT(roundoff >= 0); 1786 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1787 roundoff < log->l_mp->m_sb.sb_logsunit) 1788 || 1789 (log->l_mp->m_sb.sb_logsunit <= 1 && 1790 roundoff < BBTOB(1))); 1791 1792 /* move grant heads by roundoff in sync */ 1793 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1794 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1795 1796 /* put cycle number in every block */ 1797 xlog_pack_data(log, iclog, roundoff); 1798 1799 /* real byte length */ 1800 size = iclog->ic_offset; 1801 if (v2) 1802 size += roundoff; 1803 iclog->ic_header.h_len = cpu_to_be32(size); 1804 1805 bp = iclog->ic_bp; 1806 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1807 1808 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1809 1810 /* Do we need to split this write into 2 parts? */ 1811 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1812 char *dptr; 1813 1814 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1815 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1816 iclog->ic_bwritecnt = 2; 1817 1818 /* 1819 * Bump the cycle numbers at the start of each block in the 1820 * part of the iclog that ends up in the buffer that gets 1821 * written to the start of the log. 1822 * 1823 * Watch out for the header magic number case, though. 1824 */ 1825 dptr = (char *)&iclog->ic_header + count; 1826 for (i = 0; i < split; i += BBSIZE) { 1827 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr); 1828 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1829 cycle++; 1830 *(__be32 *)dptr = cpu_to_be32(cycle); 1831 1832 dptr += BBSIZE; 1833 } 1834 } else { 1835 iclog->ic_bwritecnt = 1; 1836 } 1837 1838 /* calculcate the checksum */ 1839 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1840 iclog->ic_datap, size); 1841 1842 bp->b_io_length = BTOBB(count); 1843 bp->b_fspriv = iclog; 1844 XFS_BUF_ZEROFLAGS(bp); 1845 XFS_BUF_ASYNC(bp); 1846 bp->b_flags |= XBF_SYNCIO; 1847 1848 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) { 1849 bp->b_flags |= XBF_FUA; 1850 1851 /* 1852 * Flush the data device before flushing the log to make 1853 * sure all meta data written back from the AIL actually made 1854 * it to disk before stamping the new log tail LSN into the 1855 * log buffer. For an external log we need to issue the 1856 * flush explicitly, and unfortunately synchronously here; 1857 * for an internal log we can simply use the block layer 1858 * state machine for preflushes. 1859 */ 1860 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1861 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1862 else 1863 bp->b_flags |= XBF_FLUSH; 1864 } 1865 1866 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1867 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1868 1869 xlog_verify_iclog(log, iclog, count, true); 1870 1871 /* account for log which doesn't start at block #0 */ 1872 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1873 /* 1874 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1875 * is shutting down. 1876 */ 1877 XFS_BUF_WRITE(bp); 1878 1879 error = xlog_bdstrat(bp); 1880 if (error) { 1881 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1882 return error; 1883 } 1884 if (split) { 1885 bp = iclog->ic_log->l_xbuf; 1886 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1887 xfs_buf_associate_memory(bp, 1888 (char *)&iclog->ic_header + count, split); 1889 bp->b_fspriv = iclog; 1890 XFS_BUF_ZEROFLAGS(bp); 1891 XFS_BUF_ASYNC(bp); 1892 bp->b_flags |= XBF_SYNCIO; 1893 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1894 bp->b_flags |= XBF_FUA; 1895 1896 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1897 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1898 1899 /* account for internal log which doesn't start at block #0 */ 1900 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1901 XFS_BUF_WRITE(bp); 1902 error = xlog_bdstrat(bp); 1903 if (error) { 1904 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1905 return error; 1906 } 1907 } 1908 return 0; 1909 } /* xlog_sync */ 1910 1911 /* 1912 * Deallocate a log structure 1913 */ 1914 STATIC void 1915 xlog_dealloc_log( 1916 struct xlog *log) 1917 { 1918 xlog_in_core_t *iclog, *next_iclog; 1919 int i; 1920 1921 xlog_cil_destroy(log); 1922 1923 /* 1924 * Cycle all the iclogbuf locks to make sure all log IO completion 1925 * is done before we tear down these buffers. 1926 */ 1927 iclog = log->l_iclog; 1928 for (i = 0; i < log->l_iclog_bufs; i++) { 1929 xfs_buf_lock(iclog->ic_bp); 1930 xfs_buf_unlock(iclog->ic_bp); 1931 iclog = iclog->ic_next; 1932 } 1933 1934 /* 1935 * Always need to ensure that the extra buffer does not point to memory 1936 * owned by another log buffer before we free it. Also, cycle the lock 1937 * first to ensure we've completed IO on it. 1938 */ 1939 xfs_buf_lock(log->l_xbuf); 1940 xfs_buf_unlock(log->l_xbuf); 1941 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1942 xfs_buf_free(log->l_xbuf); 1943 1944 iclog = log->l_iclog; 1945 for (i = 0; i < log->l_iclog_bufs; i++) { 1946 xfs_buf_free(iclog->ic_bp); 1947 next_iclog = iclog->ic_next; 1948 kmem_free(iclog); 1949 iclog = next_iclog; 1950 } 1951 spinlock_destroy(&log->l_icloglock); 1952 1953 log->l_mp->m_log = NULL; 1954 kmem_free(log); 1955 } /* xlog_dealloc_log */ 1956 1957 /* 1958 * Update counters atomically now that memcpy is done. 1959 */ 1960 /* ARGSUSED */ 1961 static inline void 1962 xlog_state_finish_copy( 1963 struct xlog *log, 1964 struct xlog_in_core *iclog, 1965 int record_cnt, 1966 int copy_bytes) 1967 { 1968 spin_lock(&log->l_icloglock); 1969 1970 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1971 iclog->ic_offset += copy_bytes; 1972 1973 spin_unlock(&log->l_icloglock); 1974 } /* xlog_state_finish_copy */ 1975 1976 1977 1978 1979 /* 1980 * print out info relating to regions written which consume 1981 * the reservation 1982 */ 1983 void 1984 xlog_print_tic_res( 1985 struct xfs_mount *mp, 1986 struct xlog_ticket *ticket) 1987 { 1988 uint i; 1989 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 1990 1991 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 1992 static char *res_type_str[XLOG_REG_TYPE_MAX] = { 1993 "bformat", 1994 "bchunk", 1995 "efi_format", 1996 "efd_format", 1997 "iformat", 1998 "icore", 1999 "iext", 2000 "ibroot", 2001 "ilocal", 2002 "iattr_ext", 2003 "iattr_broot", 2004 "iattr_local", 2005 "qformat", 2006 "dquot", 2007 "quotaoff", 2008 "LR header", 2009 "unmount", 2010 "commit", 2011 "trans header" 2012 }; 2013 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = { 2014 "SETATTR_NOT_SIZE", 2015 "SETATTR_SIZE", 2016 "INACTIVE", 2017 "CREATE", 2018 "CREATE_TRUNC", 2019 "TRUNCATE_FILE", 2020 "REMOVE", 2021 "LINK", 2022 "RENAME", 2023 "MKDIR", 2024 "RMDIR", 2025 "SYMLINK", 2026 "SET_DMATTRS", 2027 "GROWFS", 2028 "STRAT_WRITE", 2029 "DIOSTRAT", 2030 "WRITE_SYNC", 2031 "WRITEID", 2032 "ADDAFORK", 2033 "ATTRINVAL", 2034 "ATRUNCATE", 2035 "ATTR_SET", 2036 "ATTR_RM", 2037 "ATTR_FLAG", 2038 "CLEAR_AGI_BUCKET", 2039 "QM_SBCHANGE", 2040 "DUMMY1", 2041 "DUMMY2", 2042 "QM_QUOTAOFF", 2043 "QM_DQALLOC", 2044 "QM_SETQLIM", 2045 "QM_DQCLUSTER", 2046 "QM_QINOCREATE", 2047 "QM_QUOTAOFF_END", 2048 "SB_UNIT", 2049 "FSYNC_TS", 2050 "GROWFSRT_ALLOC", 2051 "GROWFSRT_ZERO", 2052 "GROWFSRT_FREE", 2053 "SWAPEXT" 2054 }; 2055 2056 xfs_warn(mp, "xlog_write: reservation summary:"); 2057 xfs_warn(mp, " trans type = %s (%u)", 2058 ((ticket->t_trans_type <= 0 || 2059 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ? 2060 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]), 2061 ticket->t_trans_type); 2062 xfs_warn(mp, " unit res = %d bytes", 2063 ticket->t_unit_res); 2064 xfs_warn(mp, " current res = %d bytes", 2065 ticket->t_curr_res); 2066 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2067 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2068 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2069 ticket->t_res_num_ophdrs, ophdr_spc); 2070 xfs_warn(mp, " ophdr + reg = %u bytes", 2071 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2072 xfs_warn(mp, " num regions = %u", 2073 ticket->t_res_num); 2074 2075 for (i = 0; i < ticket->t_res_num; i++) { 2076 uint r_type = ticket->t_res_arr[i].r_type; 2077 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2078 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2079 "bad-rtype" : res_type_str[r_type-1]), 2080 ticket->t_res_arr[i].r_len); 2081 } 2082 2083 xfs_alert_tag(mp, XFS_PTAG_LOGRES, 2084 "xlog_write: reservation ran out. Need to up reservation"); 2085 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 2086 } 2087 2088 /* 2089 * Calculate the potential space needed by the log vector. Each region gets 2090 * its own xlog_op_header_t and may need to be double word aligned. 2091 */ 2092 static int 2093 xlog_write_calc_vec_length( 2094 struct xlog_ticket *ticket, 2095 struct xfs_log_vec *log_vector) 2096 { 2097 struct xfs_log_vec *lv; 2098 int headers = 0; 2099 int len = 0; 2100 int i; 2101 2102 /* acct for start rec of xact */ 2103 if (ticket->t_flags & XLOG_TIC_INITED) 2104 headers++; 2105 2106 for (lv = log_vector; lv; lv = lv->lv_next) { 2107 /* we don't write ordered log vectors */ 2108 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2109 continue; 2110 2111 headers += lv->lv_niovecs; 2112 2113 for (i = 0; i < lv->lv_niovecs; i++) { 2114 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2115 2116 len += vecp->i_len; 2117 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2118 } 2119 } 2120 2121 ticket->t_res_num_ophdrs += headers; 2122 len += headers * sizeof(struct xlog_op_header); 2123 2124 return len; 2125 } 2126 2127 /* 2128 * If first write for transaction, insert start record We can't be trying to 2129 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2130 */ 2131 static int 2132 xlog_write_start_rec( 2133 struct xlog_op_header *ophdr, 2134 struct xlog_ticket *ticket) 2135 { 2136 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2137 return 0; 2138 2139 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2140 ophdr->oh_clientid = ticket->t_clientid; 2141 ophdr->oh_len = 0; 2142 ophdr->oh_flags = XLOG_START_TRANS; 2143 ophdr->oh_res2 = 0; 2144 2145 ticket->t_flags &= ~XLOG_TIC_INITED; 2146 2147 return sizeof(struct xlog_op_header); 2148 } 2149 2150 static xlog_op_header_t * 2151 xlog_write_setup_ophdr( 2152 struct xlog *log, 2153 struct xlog_op_header *ophdr, 2154 struct xlog_ticket *ticket, 2155 uint flags) 2156 { 2157 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2158 ophdr->oh_clientid = ticket->t_clientid; 2159 ophdr->oh_res2 = 0; 2160 2161 /* are we copying a commit or unmount record? */ 2162 ophdr->oh_flags = flags; 2163 2164 /* 2165 * We've seen logs corrupted with bad transaction client ids. This 2166 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2167 * and shut down the filesystem. 2168 */ 2169 switch (ophdr->oh_clientid) { 2170 case XFS_TRANSACTION: 2171 case XFS_VOLUME: 2172 case XFS_LOG: 2173 break; 2174 default: 2175 xfs_warn(log->l_mp, 2176 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 2177 ophdr->oh_clientid, ticket); 2178 return NULL; 2179 } 2180 2181 return ophdr; 2182 } 2183 2184 /* 2185 * Set up the parameters of the region copy into the log. This has 2186 * to handle region write split across multiple log buffers - this 2187 * state is kept external to this function so that this code can 2188 * be written in an obvious, self documenting manner. 2189 */ 2190 static int 2191 xlog_write_setup_copy( 2192 struct xlog_ticket *ticket, 2193 struct xlog_op_header *ophdr, 2194 int space_available, 2195 int space_required, 2196 int *copy_off, 2197 int *copy_len, 2198 int *last_was_partial_copy, 2199 int *bytes_consumed) 2200 { 2201 int still_to_copy; 2202 2203 still_to_copy = space_required - *bytes_consumed; 2204 *copy_off = *bytes_consumed; 2205 2206 if (still_to_copy <= space_available) { 2207 /* write of region completes here */ 2208 *copy_len = still_to_copy; 2209 ophdr->oh_len = cpu_to_be32(*copy_len); 2210 if (*last_was_partial_copy) 2211 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2212 *last_was_partial_copy = 0; 2213 *bytes_consumed = 0; 2214 return 0; 2215 } 2216 2217 /* partial write of region, needs extra log op header reservation */ 2218 *copy_len = space_available; 2219 ophdr->oh_len = cpu_to_be32(*copy_len); 2220 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2221 if (*last_was_partial_copy) 2222 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2223 *bytes_consumed += *copy_len; 2224 (*last_was_partial_copy)++; 2225 2226 /* account for new log op header */ 2227 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2228 ticket->t_res_num_ophdrs++; 2229 2230 return sizeof(struct xlog_op_header); 2231 } 2232 2233 static int 2234 xlog_write_copy_finish( 2235 struct xlog *log, 2236 struct xlog_in_core *iclog, 2237 uint flags, 2238 int *record_cnt, 2239 int *data_cnt, 2240 int *partial_copy, 2241 int *partial_copy_len, 2242 int log_offset, 2243 struct xlog_in_core **commit_iclog) 2244 { 2245 if (*partial_copy) { 2246 /* 2247 * This iclog has already been marked WANT_SYNC by 2248 * xlog_state_get_iclog_space. 2249 */ 2250 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2251 *record_cnt = 0; 2252 *data_cnt = 0; 2253 return xlog_state_release_iclog(log, iclog); 2254 } 2255 2256 *partial_copy = 0; 2257 *partial_copy_len = 0; 2258 2259 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2260 /* no more space in this iclog - push it. */ 2261 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2262 *record_cnt = 0; 2263 *data_cnt = 0; 2264 2265 spin_lock(&log->l_icloglock); 2266 xlog_state_want_sync(log, iclog); 2267 spin_unlock(&log->l_icloglock); 2268 2269 if (!commit_iclog) 2270 return xlog_state_release_iclog(log, iclog); 2271 ASSERT(flags & XLOG_COMMIT_TRANS); 2272 *commit_iclog = iclog; 2273 } 2274 2275 return 0; 2276 } 2277 2278 /* 2279 * Write some region out to in-core log 2280 * 2281 * This will be called when writing externally provided regions or when 2282 * writing out a commit record for a given transaction. 2283 * 2284 * General algorithm: 2285 * 1. Find total length of this write. This may include adding to the 2286 * lengths passed in. 2287 * 2. Check whether we violate the tickets reservation. 2288 * 3. While writing to this iclog 2289 * A. Reserve as much space in this iclog as can get 2290 * B. If this is first write, save away start lsn 2291 * C. While writing this region: 2292 * 1. If first write of transaction, write start record 2293 * 2. Write log operation header (header per region) 2294 * 3. Find out if we can fit entire region into this iclog 2295 * 4. Potentially, verify destination memcpy ptr 2296 * 5. Memcpy (partial) region 2297 * 6. If partial copy, release iclog; otherwise, continue 2298 * copying more regions into current iclog 2299 * 4. Mark want sync bit (in simulation mode) 2300 * 5. Release iclog for potential flush to on-disk log. 2301 * 2302 * ERRORS: 2303 * 1. Panic if reservation is overrun. This should never happen since 2304 * reservation amounts are generated internal to the filesystem. 2305 * NOTES: 2306 * 1. Tickets are single threaded data structures. 2307 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2308 * syncing routine. When a single log_write region needs to span 2309 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2310 * on all log operation writes which don't contain the end of the 2311 * region. The XLOG_END_TRANS bit is used for the in-core log 2312 * operation which contains the end of the continued log_write region. 2313 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2314 * we don't really know exactly how much space will be used. As a result, 2315 * we don't update ic_offset until the end when we know exactly how many 2316 * bytes have been written out. 2317 */ 2318 int 2319 xlog_write( 2320 struct xlog *log, 2321 struct xfs_log_vec *log_vector, 2322 struct xlog_ticket *ticket, 2323 xfs_lsn_t *start_lsn, 2324 struct xlog_in_core **commit_iclog, 2325 uint flags) 2326 { 2327 struct xlog_in_core *iclog = NULL; 2328 struct xfs_log_iovec *vecp; 2329 struct xfs_log_vec *lv; 2330 int len; 2331 int index; 2332 int partial_copy = 0; 2333 int partial_copy_len = 0; 2334 int contwr = 0; 2335 int record_cnt = 0; 2336 int data_cnt = 0; 2337 int error; 2338 2339 *start_lsn = 0; 2340 2341 len = xlog_write_calc_vec_length(ticket, log_vector); 2342 2343 /* 2344 * Region headers and bytes are already accounted for. 2345 * We only need to take into account start records and 2346 * split regions in this function. 2347 */ 2348 if (ticket->t_flags & XLOG_TIC_INITED) 2349 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2350 2351 /* 2352 * Commit record headers need to be accounted for. These 2353 * come in as separate writes so are easy to detect. 2354 */ 2355 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2356 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2357 2358 if (ticket->t_curr_res < 0) 2359 xlog_print_tic_res(log->l_mp, ticket); 2360 2361 index = 0; 2362 lv = log_vector; 2363 vecp = lv->lv_iovecp; 2364 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2365 void *ptr; 2366 int log_offset; 2367 2368 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2369 &contwr, &log_offset); 2370 if (error) 2371 return error; 2372 2373 ASSERT(log_offset <= iclog->ic_size - 1); 2374 ptr = iclog->ic_datap + log_offset; 2375 2376 /* start_lsn is the first lsn written to. That's all we need. */ 2377 if (!*start_lsn) 2378 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2379 2380 /* 2381 * This loop writes out as many regions as can fit in the amount 2382 * of space which was allocated by xlog_state_get_iclog_space(). 2383 */ 2384 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2385 struct xfs_log_iovec *reg; 2386 struct xlog_op_header *ophdr; 2387 int start_rec_copy; 2388 int copy_len; 2389 int copy_off; 2390 bool ordered = false; 2391 2392 /* ordered log vectors have no regions to write */ 2393 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2394 ASSERT(lv->lv_niovecs == 0); 2395 ordered = true; 2396 goto next_lv; 2397 } 2398 2399 reg = &vecp[index]; 2400 ASSERT(reg->i_len % sizeof(__int32_t) == 0); 2401 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); 2402 2403 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2404 if (start_rec_copy) { 2405 record_cnt++; 2406 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2407 start_rec_copy); 2408 } 2409 2410 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2411 if (!ophdr) 2412 return -EIO; 2413 2414 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2415 sizeof(struct xlog_op_header)); 2416 2417 len += xlog_write_setup_copy(ticket, ophdr, 2418 iclog->ic_size-log_offset, 2419 reg->i_len, 2420 ©_off, ©_len, 2421 &partial_copy, 2422 &partial_copy_len); 2423 xlog_verify_dest_ptr(log, ptr); 2424 2425 /* 2426 * Copy region. 2427 * 2428 * Unmount records just log an opheader, so can have 2429 * empty payloads with no data region to copy. Hence we 2430 * only copy the payload if the vector says it has data 2431 * to copy. 2432 */ 2433 ASSERT(copy_len >= 0); 2434 if (copy_len > 0) { 2435 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2436 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2437 copy_len); 2438 } 2439 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2440 record_cnt++; 2441 data_cnt += contwr ? copy_len : 0; 2442 2443 error = xlog_write_copy_finish(log, iclog, flags, 2444 &record_cnt, &data_cnt, 2445 &partial_copy, 2446 &partial_copy_len, 2447 log_offset, 2448 commit_iclog); 2449 if (error) 2450 return error; 2451 2452 /* 2453 * if we had a partial copy, we need to get more iclog 2454 * space but we don't want to increment the region 2455 * index because there is still more is this region to 2456 * write. 2457 * 2458 * If we completed writing this region, and we flushed 2459 * the iclog (indicated by resetting of the record 2460 * count), then we also need to get more log space. If 2461 * this was the last record, though, we are done and 2462 * can just return. 2463 */ 2464 if (partial_copy) 2465 break; 2466 2467 if (++index == lv->lv_niovecs) { 2468 next_lv: 2469 lv = lv->lv_next; 2470 index = 0; 2471 if (lv) 2472 vecp = lv->lv_iovecp; 2473 } 2474 if (record_cnt == 0 && ordered == false) { 2475 if (!lv) 2476 return 0; 2477 break; 2478 } 2479 } 2480 } 2481 2482 ASSERT(len == 0); 2483 2484 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2485 if (!commit_iclog) 2486 return xlog_state_release_iclog(log, iclog); 2487 2488 ASSERT(flags & XLOG_COMMIT_TRANS); 2489 *commit_iclog = iclog; 2490 return 0; 2491 } 2492 2493 2494 /***************************************************************************** 2495 * 2496 * State Machine functions 2497 * 2498 ***************************************************************************** 2499 */ 2500 2501 /* Clean iclogs starting from the head. This ordering must be 2502 * maintained, so an iclog doesn't become ACTIVE beyond one that 2503 * is SYNCING. This is also required to maintain the notion that we use 2504 * a ordered wait queue to hold off would be writers to the log when every 2505 * iclog is trying to sync to disk. 2506 * 2507 * State Change: DIRTY -> ACTIVE 2508 */ 2509 STATIC void 2510 xlog_state_clean_log( 2511 struct xlog *log) 2512 { 2513 xlog_in_core_t *iclog; 2514 int changed = 0; 2515 2516 iclog = log->l_iclog; 2517 do { 2518 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2519 iclog->ic_state = XLOG_STATE_ACTIVE; 2520 iclog->ic_offset = 0; 2521 ASSERT(iclog->ic_callback == NULL); 2522 /* 2523 * If the number of ops in this iclog indicate it just 2524 * contains the dummy transaction, we can 2525 * change state into IDLE (the second time around). 2526 * Otherwise we should change the state into 2527 * NEED a dummy. 2528 * We don't need to cover the dummy. 2529 */ 2530 if (!changed && 2531 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2532 XLOG_COVER_OPS)) { 2533 changed = 1; 2534 } else { 2535 /* 2536 * We have two dirty iclogs so start over 2537 * This could also be num of ops indicates 2538 * this is not the dummy going out. 2539 */ 2540 changed = 2; 2541 } 2542 iclog->ic_header.h_num_logops = 0; 2543 memset(iclog->ic_header.h_cycle_data, 0, 2544 sizeof(iclog->ic_header.h_cycle_data)); 2545 iclog->ic_header.h_lsn = 0; 2546 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2547 /* do nothing */; 2548 else 2549 break; /* stop cleaning */ 2550 iclog = iclog->ic_next; 2551 } while (iclog != log->l_iclog); 2552 2553 /* log is locked when we are called */ 2554 /* 2555 * Change state for the dummy log recording. 2556 * We usually go to NEED. But we go to NEED2 if the changed indicates 2557 * we are done writing the dummy record. 2558 * If we are done with the second dummy recored (DONE2), then 2559 * we go to IDLE. 2560 */ 2561 if (changed) { 2562 switch (log->l_covered_state) { 2563 case XLOG_STATE_COVER_IDLE: 2564 case XLOG_STATE_COVER_NEED: 2565 case XLOG_STATE_COVER_NEED2: 2566 log->l_covered_state = XLOG_STATE_COVER_NEED; 2567 break; 2568 2569 case XLOG_STATE_COVER_DONE: 2570 if (changed == 1) 2571 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2572 else 2573 log->l_covered_state = XLOG_STATE_COVER_NEED; 2574 break; 2575 2576 case XLOG_STATE_COVER_DONE2: 2577 if (changed == 1) 2578 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2579 else 2580 log->l_covered_state = XLOG_STATE_COVER_NEED; 2581 break; 2582 2583 default: 2584 ASSERT(0); 2585 } 2586 } 2587 } /* xlog_state_clean_log */ 2588 2589 STATIC xfs_lsn_t 2590 xlog_get_lowest_lsn( 2591 struct xlog *log) 2592 { 2593 xlog_in_core_t *lsn_log; 2594 xfs_lsn_t lowest_lsn, lsn; 2595 2596 lsn_log = log->l_iclog; 2597 lowest_lsn = 0; 2598 do { 2599 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2600 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2601 if ((lsn && !lowest_lsn) || 2602 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2603 lowest_lsn = lsn; 2604 } 2605 } 2606 lsn_log = lsn_log->ic_next; 2607 } while (lsn_log != log->l_iclog); 2608 return lowest_lsn; 2609 } 2610 2611 2612 STATIC void 2613 xlog_state_do_callback( 2614 struct xlog *log, 2615 int aborted, 2616 struct xlog_in_core *ciclog) 2617 { 2618 xlog_in_core_t *iclog; 2619 xlog_in_core_t *first_iclog; /* used to know when we've 2620 * processed all iclogs once */ 2621 xfs_log_callback_t *cb, *cb_next; 2622 int flushcnt = 0; 2623 xfs_lsn_t lowest_lsn; 2624 int ioerrors; /* counter: iclogs with errors */ 2625 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2626 int funcdidcallbacks; /* flag: function did callbacks */ 2627 int repeats; /* for issuing console warnings if 2628 * looping too many times */ 2629 int wake = 0; 2630 2631 spin_lock(&log->l_icloglock); 2632 first_iclog = iclog = log->l_iclog; 2633 ioerrors = 0; 2634 funcdidcallbacks = 0; 2635 repeats = 0; 2636 2637 do { 2638 /* 2639 * Scan all iclogs starting with the one pointed to by the 2640 * log. Reset this starting point each time the log is 2641 * unlocked (during callbacks). 2642 * 2643 * Keep looping through iclogs until one full pass is made 2644 * without running any callbacks. 2645 */ 2646 first_iclog = log->l_iclog; 2647 iclog = log->l_iclog; 2648 loopdidcallbacks = 0; 2649 repeats++; 2650 2651 do { 2652 2653 /* skip all iclogs in the ACTIVE & DIRTY states */ 2654 if (iclog->ic_state & 2655 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2656 iclog = iclog->ic_next; 2657 continue; 2658 } 2659 2660 /* 2661 * Between marking a filesystem SHUTDOWN and stopping 2662 * the log, we do flush all iclogs to disk (if there 2663 * wasn't a log I/O error). So, we do want things to 2664 * go smoothly in case of just a SHUTDOWN w/o a 2665 * LOG_IO_ERROR. 2666 */ 2667 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2668 /* 2669 * Can only perform callbacks in order. Since 2670 * this iclog is not in the DONE_SYNC/ 2671 * DO_CALLBACK state, we skip the rest and 2672 * just try to clean up. If we set our iclog 2673 * to DO_CALLBACK, we will not process it when 2674 * we retry since a previous iclog is in the 2675 * CALLBACK and the state cannot change since 2676 * we are holding the l_icloglock. 2677 */ 2678 if (!(iclog->ic_state & 2679 (XLOG_STATE_DONE_SYNC | 2680 XLOG_STATE_DO_CALLBACK))) { 2681 if (ciclog && (ciclog->ic_state == 2682 XLOG_STATE_DONE_SYNC)) { 2683 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2684 } 2685 break; 2686 } 2687 /* 2688 * We now have an iclog that is in either the 2689 * DO_CALLBACK or DONE_SYNC states. The other 2690 * states (WANT_SYNC, SYNCING, or CALLBACK were 2691 * caught by the above if and are going to 2692 * clean (i.e. we aren't doing their callbacks) 2693 * see the above if. 2694 */ 2695 2696 /* 2697 * We will do one more check here to see if we 2698 * have chased our tail around. 2699 */ 2700 2701 lowest_lsn = xlog_get_lowest_lsn(log); 2702 if (lowest_lsn && 2703 XFS_LSN_CMP(lowest_lsn, 2704 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2705 iclog = iclog->ic_next; 2706 continue; /* Leave this iclog for 2707 * another thread */ 2708 } 2709 2710 iclog->ic_state = XLOG_STATE_CALLBACK; 2711 2712 2713 /* 2714 * Completion of a iclog IO does not imply that 2715 * a transaction has completed, as transactions 2716 * can be large enough to span many iclogs. We 2717 * cannot change the tail of the log half way 2718 * through a transaction as this may be the only 2719 * transaction in the log and moving th etail to 2720 * point to the middle of it will prevent 2721 * recovery from finding the start of the 2722 * transaction. Hence we should only update the 2723 * last_sync_lsn if this iclog contains 2724 * transaction completion callbacks on it. 2725 * 2726 * We have to do this before we drop the 2727 * icloglock to ensure we are the only one that 2728 * can update it. 2729 */ 2730 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2731 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2732 if (iclog->ic_callback) 2733 atomic64_set(&log->l_last_sync_lsn, 2734 be64_to_cpu(iclog->ic_header.h_lsn)); 2735 2736 } else 2737 ioerrors++; 2738 2739 spin_unlock(&log->l_icloglock); 2740 2741 /* 2742 * Keep processing entries in the callback list until 2743 * we come around and it is empty. We need to 2744 * atomically see that the list is empty and change the 2745 * state to DIRTY so that we don't miss any more 2746 * callbacks being added. 2747 */ 2748 spin_lock(&iclog->ic_callback_lock); 2749 cb = iclog->ic_callback; 2750 while (cb) { 2751 iclog->ic_callback_tail = &(iclog->ic_callback); 2752 iclog->ic_callback = NULL; 2753 spin_unlock(&iclog->ic_callback_lock); 2754 2755 /* perform callbacks in the order given */ 2756 for (; cb; cb = cb_next) { 2757 cb_next = cb->cb_next; 2758 cb->cb_func(cb->cb_arg, aborted); 2759 } 2760 spin_lock(&iclog->ic_callback_lock); 2761 cb = iclog->ic_callback; 2762 } 2763 2764 loopdidcallbacks++; 2765 funcdidcallbacks++; 2766 2767 spin_lock(&log->l_icloglock); 2768 ASSERT(iclog->ic_callback == NULL); 2769 spin_unlock(&iclog->ic_callback_lock); 2770 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2771 iclog->ic_state = XLOG_STATE_DIRTY; 2772 2773 /* 2774 * Transition from DIRTY to ACTIVE if applicable. 2775 * NOP if STATE_IOERROR. 2776 */ 2777 xlog_state_clean_log(log); 2778 2779 /* wake up threads waiting in xfs_log_force() */ 2780 wake_up_all(&iclog->ic_force_wait); 2781 2782 iclog = iclog->ic_next; 2783 } while (first_iclog != iclog); 2784 2785 if (repeats > 5000) { 2786 flushcnt += repeats; 2787 repeats = 0; 2788 xfs_warn(log->l_mp, 2789 "%s: possible infinite loop (%d iterations)", 2790 __func__, flushcnt); 2791 } 2792 } while (!ioerrors && loopdidcallbacks); 2793 2794 /* 2795 * make one last gasp attempt to see if iclogs are being left in 2796 * limbo.. 2797 */ 2798 #ifdef DEBUG 2799 if (funcdidcallbacks) { 2800 first_iclog = iclog = log->l_iclog; 2801 do { 2802 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2803 /* 2804 * Terminate the loop if iclogs are found in states 2805 * which will cause other threads to clean up iclogs. 2806 * 2807 * SYNCING - i/o completion will go through logs 2808 * DONE_SYNC - interrupt thread should be waiting for 2809 * l_icloglock 2810 * IOERROR - give up hope all ye who enter here 2811 */ 2812 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2813 iclog->ic_state == XLOG_STATE_SYNCING || 2814 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2815 iclog->ic_state == XLOG_STATE_IOERROR ) 2816 break; 2817 iclog = iclog->ic_next; 2818 } while (first_iclog != iclog); 2819 } 2820 #endif 2821 2822 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2823 wake = 1; 2824 spin_unlock(&log->l_icloglock); 2825 2826 if (wake) 2827 wake_up_all(&log->l_flush_wait); 2828 } 2829 2830 2831 /* 2832 * Finish transitioning this iclog to the dirty state. 2833 * 2834 * Make sure that we completely execute this routine only when this is 2835 * the last call to the iclog. There is a good chance that iclog flushes, 2836 * when we reach the end of the physical log, get turned into 2 separate 2837 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2838 * routine. By using the reference count bwritecnt, we guarantee that only 2839 * the second completion goes through. 2840 * 2841 * Callbacks could take time, so they are done outside the scope of the 2842 * global state machine log lock. 2843 */ 2844 STATIC void 2845 xlog_state_done_syncing( 2846 xlog_in_core_t *iclog, 2847 int aborted) 2848 { 2849 struct xlog *log = iclog->ic_log; 2850 2851 spin_lock(&log->l_icloglock); 2852 2853 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2854 iclog->ic_state == XLOG_STATE_IOERROR); 2855 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2856 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2857 2858 2859 /* 2860 * If we got an error, either on the first buffer, or in the case of 2861 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2862 * and none should ever be attempted to be written to disk 2863 * again. 2864 */ 2865 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2866 if (--iclog->ic_bwritecnt == 1) { 2867 spin_unlock(&log->l_icloglock); 2868 return; 2869 } 2870 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2871 } 2872 2873 /* 2874 * Someone could be sleeping prior to writing out the next 2875 * iclog buffer, we wake them all, one will get to do the 2876 * I/O, the others get to wait for the result. 2877 */ 2878 wake_up_all(&iclog->ic_write_wait); 2879 spin_unlock(&log->l_icloglock); 2880 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2881 } /* xlog_state_done_syncing */ 2882 2883 2884 /* 2885 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2886 * sleep. We wait on the flush queue on the head iclog as that should be 2887 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2888 * we will wait here and all new writes will sleep until a sync completes. 2889 * 2890 * The in-core logs are used in a circular fashion. They are not used 2891 * out-of-order even when an iclog past the head is free. 2892 * 2893 * return: 2894 * * log_offset where xlog_write() can start writing into the in-core 2895 * log's data space. 2896 * * in-core log pointer to which xlog_write() should write. 2897 * * boolean indicating this is a continued write to an in-core log. 2898 * If this is the last write, then the in-core log's offset field 2899 * needs to be incremented, depending on the amount of data which 2900 * is copied. 2901 */ 2902 STATIC int 2903 xlog_state_get_iclog_space( 2904 struct xlog *log, 2905 int len, 2906 struct xlog_in_core **iclogp, 2907 struct xlog_ticket *ticket, 2908 int *continued_write, 2909 int *logoffsetp) 2910 { 2911 int log_offset; 2912 xlog_rec_header_t *head; 2913 xlog_in_core_t *iclog; 2914 int error; 2915 2916 restart: 2917 spin_lock(&log->l_icloglock); 2918 if (XLOG_FORCED_SHUTDOWN(log)) { 2919 spin_unlock(&log->l_icloglock); 2920 return -EIO; 2921 } 2922 2923 iclog = log->l_iclog; 2924 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2925 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2926 2927 /* Wait for log writes to have flushed */ 2928 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2929 goto restart; 2930 } 2931 2932 head = &iclog->ic_header; 2933 2934 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2935 log_offset = iclog->ic_offset; 2936 2937 /* On the 1st write to an iclog, figure out lsn. This works 2938 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2939 * committing to. If the offset is set, that's how many blocks 2940 * must be written. 2941 */ 2942 if (log_offset == 0) { 2943 ticket->t_curr_res -= log->l_iclog_hsize; 2944 xlog_tic_add_region(ticket, 2945 log->l_iclog_hsize, 2946 XLOG_REG_TYPE_LRHEADER); 2947 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2948 head->h_lsn = cpu_to_be64( 2949 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2950 ASSERT(log->l_curr_block >= 0); 2951 } 2952 2953 /* If there is enough room to write everything, then do it. Otherwise, 2954 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2955 * bit is on, so this will get flushed out. Don't update ic_offset 2956 * until you know exactly how many bytes get copied. Therefore, wait 2957 * until later to update ic_offset. 2958 * 2959 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2960 * can fit into remaining data section. 2961 */ 2962 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2963 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2964 2965 /* 2966 * If I'm the only one writing to this iclog, sync it to disk. 2967 * We need to do an atomic compare and decrement here to avoid 2968 * racing with concurrent atomic_dec_and_lock() calls in 2969 * xlog_state_release_iclog() when there is more than one 2970 * reference to the iclog. 2971 */ 2972 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2973 /* we are the only one */ 2974 spin_unlock(&log->l_icloglock); 2975 error = xlog_state_release_iclog(log, iclog); 2976 if (error) 2977 return error; 2978 } else { 2979 spin_unlock(&log->l_icloglock); 2980 } 2981 goto restart; 2982 } 2983 2984 /* Do we have enough room to write the full amount in the remainder 2985 * of this iclog? Or must we continue a write on the next iclog and 2986 * mark this iclog as completely taken? In the case where we switch 2987 * iclogs (to mark it taken), this particular iclog will release/sync 2988 * to disk in xlog_write(). 2989 */ 2990 if (len <= iclog->ic_size - iclog->ic_offset) { 2991 *continued_write = 0; 2992 iclog->ic_offset += len; 2993 } else { 2994 *continued_write = 1; 2995 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2996 } 2997 *iclogp = iclog; 2998 2999 ASSERT(iclog->ic_offset <= iclog->ic_size); 3000 spin_unlock(&log->l_icloglock); 3001 3002 *logoffsetp = log_offset; 3003 return 0; 3004 } /* xlog_state_get_iclog_space */ 3005 3006 /* The first cnt-1 times through here we don't need to 3007 * move the grant write head because the permanent 3008 * reservation has reserved cnt times the unit amount. 3009 * Release part of current permanent unit reservation and 3010 * reset current reservation to be one units worth. Also 3011 * move grant reservation head forward. 3012 */ 3013 STATIC void 3014 xlog_regrant_reserve_log_space( 3015 struct xlog *log, 3016 struct xlog_ticket *ticket) 3017 { 3018 trace_xfs_log_regrant_reserve_enter(log, ticket); 3019 3020 if (ticket->t_cnt > 0) 3021 ticket->t_cnt--; 3022 3023 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3024 ticket->t_curr_res); 3025 xlog_grant_sub_space(log, &log->l_write_head.grant, 3026 ticket->t_curr_res); 3027 ticket->t_curr_res = ticket->t_unit_res; 3028 xlog_tic_reset_res(ticket); 3029 3030 trace_xfs_log_regrant_reserve_sub(log, ticket); 3031 3032 /* just return if we still have some of the pre-reserved space */ 3033 if (ticket->t_cnt > 0) 3034 return; 3035 3036 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3037 ticket->t_unit_res); 3038 3039 trace_xfs_log_regrant_reserve_exit(log, ticket); 3040 3041 ticket->t_curr_res = ticket->t_unit_res; 3042 xlog_tic_reset_res(ticket); 3043 } /* xlog_regrant_reserve_log_space */ 3044 3045 3046 /* 3047 * Give back the space left from a reservation. 3048 * 3049 * All the information we need to make a correct determination of space left 3050 * is present. For non-permanent reservations, things are quite easy. The 3051 * count should have been decremented to zero. We only need to deal with the 3052 * space remaining in the current reservation part of the ticket. If the 3053 * ticket contains a permanent reservation, there may be left over space which 3054 * needs to be released. A count of N means that N-1 refills of the current 3055 * reservation can be done before we need to ask for more space. The first 3056 * one goes to fill up the first current reservation. Once we run out of 3057 * space, the count will stay at zero and the only space remaining will be 3058 * in the current reservation field. 3059 */ 3060 STATIC void 3061 xlog_ungrant_log_space( 3062 struct xlog *log, 3063 struct xlog_ticket *ticket) 3064 { 3065 int bytes; 3066 3067 if (ticket->t_cnt > 0) 3068 ticket->t_cnt--; 3069 3070 trace_xfs_log_ungrant_enter(log, ticket); 3071 trace_xfs_log_ungrant_sub(log, ticket); 3072 3073 /* 3074 * If this is a permanent reservation ticket, we may be able to free 3075 * up more space based on the remaining count. 3076 */ 3077 bytes = ticket->t_curr_res; 3078 if (ticket->t_cnt > 0) { 3079 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3080 bytes += ticket->t_unit_res*ticket->t_cnt; 3081 } 3082 3083 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3084 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3085 3086 trace_xfs_log_ungrant_exit(log, ticket); 3087 3088 xfs_log_space_wake(log->l_mp); 3089 } 3090 3091 /* 3092 * Flush iclog to disk if this is the last reference to the given iclog and 3093 * the WANT_SYNC bit is set. 3094 * 3095 * When this function is entered, the iclog is not necessarily in the 3096 * WANT_SYNC state. It may be sitting around waiting to get filled. 3097 * 3098 * 3099 */ 3100 STATIC int 3101 xlog_state_release_iclog( 3102 struct xlog *log, 3103 struct xlog_in_core *iclog) 3104 { 3105 int sync = 0; /* do we sync? */ 3106 3107 if (iclog->ic_state & XLOG_STATE_IOERROR) 3108 return -EIO; 3109 3110 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 3111 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 3112 return 0; 3113 3114 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3115 spin_unlock(&log->l_icloglock); 3116 return -EIO; 3117 } 3118 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 3119 iclog->ic_state == XLOG_STATE_WANT_SYNC); 3120 3121 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 3122 /* update tail before writing to iclog */ 3123 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 3124 sync++; 3125 iclog->ic_state = XLOG_STATE_SYNCING; 3126 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 3127 xlog_verify_tail_lsn(log, iclog, tail_lsn); 3128 /* cycle incremented when incrementing curr_block */ 3129 } 3130 spin_unlock(&log->l_icloglock); 3131 3132 /* 3133 * We let the log lock go, so it's possible that we hit a log I/O 3134 * error or some other SHUTDOWN condition that marks the iclog 3135 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 3136 * this iclog has consistent data, so we ignore IOERROR 3137 * flags after this point. 3138 */ 3139 if (sync) 3140 return xlog_sync(log, iclog); 3141 return 0; 3142 } /* xlog_state_release_iclog */ 3143 3144 3145 /* 3146 * This routine will mark the current iclog in the ring as WANT_SYNC 3147 * and move the current iclog pointer to the next iclog in the ring. 3148 * When this routine is called from xlog_state_get_iclog_space(), the 3149 * exact size of the iclog has not yet been determined. All we know is 3150 * that every data block. We have run out of space in this log record. 3151 */ 3152 STATIC void 3153 xlog_state_switch_iclogs( 3154 struct xlog *log, 3155 struct xlog_in_core *iclog, 3156 int eventual_size) 3157 { 3158 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3159 if (!eventual_size) 3160 eventual_size = iclog->ic_offset; 3161 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3162 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3163 log->l_prev_block = log->l_curr_block; 3164 log->l_prev_cycle = log->l_curr_cycle; 3165 3166 /* roll log?: ic_offset changed later */ 3167 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3168 3169 /* Round up to next log-sunit */ 3170 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3171 log->l_mp->m_sb.sb_logsunit > 1) { 3172 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3173 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3174 } 3175 3176 if (log->l_curr_block >= log->l_logBBsize) { 3177 /* 3178 * Rewind the current block before the cycle is bumped to make 3179 * sure that the combined LSN never transiently moves forward 3180 * when the log wraps to the next cycle. This is to support the 3181 * unlocked sample of these fields from xlog_valid_lsn(). Most 3182 * other cases should acquire l_icloglock. 3183 */ 3184 log->l_curr_block -= log->l_logBBsize; 3185 ASSERT(log->l_curr_block >= 0); 3186 smp_wmb(); 3187 log->l_curr_cycle++; 3188 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3189 log->l_curr_cycle++; 3190 } 3191 ASSERT(iclog == log->l_iclog); 3192 log->l_iclog = iclog->ic_next; 3193 } /* xlog_state_switch_iclogs */ 3194 3195 /* 3196 * Write out all data in the in-core log as of this exact moment in time. 3197 * 3198 * Data may be written to the in-core log during this call. However, 3199 * we don't guarantee this data will be written out. A change from past 3200 * implementation means this routine will *not* write out zero length LRs. 3201 * 3202 * Basically, we try and perform an intelligent scan of the in-core logs. 3203 * If we determine there is no flushable data, we just return. There is no 3204 * flushable data if: 3205 * 3206 * 1. the current iclog is active and has no data; the previous iclog 3207 * is in the active or dirty state. 3208 * 2. the current iclog is drity, and the previous iclog is in the 3209 * active or dirty state. 3210 * 3211 * We may sleep if: 3212 * 3213 * 1. the current iclog is not in the active nor dirty state. 3214 * 2. the current iclog dirty, and the previous iclog is not in the 3215 * active nor dirty state. 3216 * 3. the current iclog is active, and there is another thread writing 3217 * to this particular iclog. 3218 * 4. a) the current iclog is active and has no other writers 3219 * b) when we return from flushing out this iclog, it is still 3220 * not in the active nor dirty state. 3221 */ 3222 int 3223 _xfs_log_force( 3224 struct xfs_mount *mp, 3225 uint flags, 3226 int *log_flushed) 3227 { 3228 struct xlog *log = mp->m_log; 3229 struct xlog_in_core *iclog; 3230 xfs_lsn_t lsn; 3231 3232 XFS_STATS_INC(mp, xs_log_force); 3233 3234 xlog_cil_force(log); 3235 3236 spin_lock(&log->l_icloglock); 3237 3238 iclog = log->l_iclog; 3239 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3240 spin_unlock(&log->l_icloglock); 3241 return -EIO; 3242 } 3243 3244 /* If the head iclog is not active nor dirty, we just attach 3245 * ourselves to the head and go to sleep. 3246 */ 3247 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3248 iclog->ic_state == XLOG_STATE_DIRTY) { 3249 /* 3250 * If the head is dirty or (active and empty), then 3251 * we need to look at the previous iclog. If the previous 3252 * iclog is active or dirty we are done. There is nothing 3253 * to sync out. Otherwise, we attach ourselves to the 3254 * previous iclog and go to sleep. 3255 */ 3256 if (iclog->ic_state == XLOG_STATE_DIRTY || 3257 (atomic_read(&iclog->ic_refcnt) == 0 3258 && iclog->ic_offset == 0)) { 3259 iclog = iclog->ic_prev; 3260 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3261 iclog->ic_state == XLOG_STATE_DIRTY) 3262 goto no_sleep; 3263 else 3264 goto maybe_sleep; 3265 } else { 3266 if (atomic_read(&iclog->ic_refcnt) == 0) { 3267 /* We are the only one with access to this 3268 * iclog. Flush it out now. There should 3269 * be a roundoff of zero to show that someone 3270 * has already taken care of the roundoff from 3271 * the previous sync. 3272 */ 3273 atomic_inc(&iclog->ic_refcnt); 3274 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3275 xlog_state_switch_iclogs(log, iclog, 0); 3276 spin_unlock(&log->l_icloglock); 3277 3278 if (xlog_state_release_iclog(log, iclog)) 3279 return -EIO; 3280 3281 if (log_flushed) 3282 *log_flushed = 1; 3283 spin_lock(&log->l_icloglock); 3284 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 3285 iclog->ic_state != XLOG_STATE_DIRTY) 3286 goto maybe_sleep; 3287 else 3288 goto no_sleep; 3289 } else { 3290 /* Someone else is writing to this iclog. 3291 * Use its call to flush out the data. However, 3292 * the other thread may not force out this LR, 3293 * so we mark it WANT_SYNC. 3294 */ 3295 xlog_state_switch_iclogs(log, iclog, 0); 3296 goto maybe_sleep; 3297 } 3298 } 3299 } 3300 3301 /* By the time we come around again, the iclog could've been filled 3302 * which would give it another lsn. If we have a new lsn, just 3303 * return because the relevant data has been flushed. 3304 */ 3305 maybe_sleep: 3306 if (flags & XFS_LOG_SYNC) { 3307 /* 3308 * We must check if we're shutting down here, before 3309 * we wait, while we're holding the l_icloglock. 3310 * Then we check again after waking up, in case our 3311 * sleep was disturbed by a bad news. 3312 */ 3313 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3314 spin_unlock(&log->l_icloglock); 3315 return -EIO; 3316 } 3317 XFS_STATS_INC(mp, xs_log_force_sleep); 3318 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3319 /* 3320 * No need to grab the log lock here since we're 3321 * only deciding whether or not to return EIO 3322 * and the memory read should be atomic. 3323 */ 3324 if (iclog->ic_state & XLOG_STATE_IOERROR) 3325 return -EIO; 3326 if (log_flushed) 3327 *log_flushed = 1; 3328 } else { 3329 3330 no_sleep: 3331 spin_unlock(&log->l_icloglock); 3332 } 3333 return 0; 3334 } 3335 3336 /* 3337 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 3338 * about errors or whether the log was flushed or not. This is the normal 3339 * interface to use when trying to unpin items or move the log forward. 3340 */ 3341 void 3342 xfs_log_force( 3343 xfs_mount_t *mp, 3344 uint flags) 3345 { 3346 int error; 3347 3348 trace_xfs_log_force(mp, 0); 3349 error = _xfs_log_force(mp, flags, NULL); 3350 if (error) 3351 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3352 } 3353 3354 /* 3355 * Force the in-core log to disk for a specific LSN. 3356 * 3357 * Find in-core log with lsn. 3358 * If it is in the DIRTY state, just return. 3359 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3360 * state and go to sleep or return. 3361 * If it is in any other state, go to sleep or return. 3362 * 3363 * Synchronous forces are implemented with a signal variable. All callers 3364 * to force a given lsn to disk will wait on a the sv attached to the 3365 * specific in-core log. When given in-core log finally completes its 3366 * write to disk, that thread will wake up all threads waiting on the 3367 * sv. 3368 */ 3369 int 3370 _xfs_log_force_lsn( 3371 struct xfs_mount *mp, 3372 xfs_lsn_t lsn, 3373 uint flags, 3374 int *log_flushed) 3375 { 3376 struct xlog *log = mp->m_log; 3377 struct xlog_in_core *iclog; 3378 int already_slept = 0; 3379 3380 ASSERT(lsn != 0); 3381 3382 XFS_STATS_INC(mp, xs_log_force); 3383 3384 lsn = xlog_cil_force_lsn(log, lsn); 3385 if (lsn == NULLCOMMITLSN) 3386 return 0; 3387 3388 try_again: 3389 spin_lock(&log->l_icloglock); 3390 iclog = log->l_iclog; 3391 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3392 spin_unlock(&log->l_icloglock); 3393 return -EIO; 3394 } 3395 3396 do { 3397 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3398 iclog = iclog->ic_next; 3399 continue; 3400 } 3401 3402 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3403 spin_unlock(&log->l_icloglock); 3404 return 0; 3405 } 3406 3407 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3408 /* 3409 * We sleep here if we haven't already slept (e.g. 3410 * this is the first time we've looked at the correct 3411 * iclog buf) and the buffer before us is going to 3412 * be sync'ed. The reason for this is that if we 3413 * are doing sync transactions here, by waiting for 3414 * the previous I/O to complete, we can allow a few 3415 * more transactions into this iclog before we close 3416 * it down. 3417 * 3418 * Otherwise, we mark the buffer WANT_SYNC, and bump 3419 * up the refcnt so we can release the log (which 3420 * drops the ref count). The state switch keeps new 3421 * transaction commits from using this buffer. When 3422 * the current commits finish writing into the buffer, 3423 * the refcount will drop to zero and the buffer will 3424 * go out then. 3425 */ 3426 if (!already_slept && 3427 (iclog->ic_prev->ic_state & 3428 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3429 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3430 3431 XFS_STATS_INC(mp, xs_log_force_sleep); 3432 3433 xlog_wait(&iclog->ic_prev->ic_write_wait, 3434 &log->l_icloglock); 3435 if (log_flushed) 3436 *log_flushed = 1; 3437 already_slept = 1; 3438 goto try_again; 3439 } 3440 atomic_inc(&iclog->ic_refcnt); 3441 xlog_state_switch_iclogs(log, iclog, 0); 3442 spin_unlock(&log->l_icloglock); 3443 if (xlog_state_release_iclog(log, iclog)) 3444 return -EIO; 3445 if (log_flushed) 3446 *log_flushed = 1; 3447 spin_lock(&log->l_icloglock); 3448 } 3449 3450 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3451 !(iclog->ic_state & 3452 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3453 /* 3454 * Don't wait on completion if we know that we've 3455 * gotten a log write error. 3456 */ 3457 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3458 spin_unlock(&log->l_icloglock); 3459 return -EIO; 3460 } 3461 XFS_STATS_INC(mp, xs_log_force_sleep); 3462 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3463 /* 3464 * No need to grab the log lock here since we're 3465 * only deciding whether or not to return EIO 3466 * and the memory read should be atomic. 3467 */ 3468 if (iclog->ic_state & XLOG_STATE_IOERROR) 3469 return -EIO; 3470 3471 if (log_flushed) 3472 *log_flushed = 1; 3473 } else { /* just return */ 3474 spin_unlock(&log->l_icloglock); 3475 } 3476 3477 return 0; 3478 } while (iclog != log->l_iclog); 3479 3480 spin_unlock(&log->l_icloglock); 3481 return 0; 3482 } 3483 3484 /* 3485 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3486 * about errors or whether the log was flushed or not. This is the normal 3487 * interface to use when trying to unpin items or move the log forward. 3488 */ 3489 void 3490 xfs_log_force_lsn( 3491 xfs_mount_t *mp, 3492 xfs_lsn_t lsn, 3493 uint flags) 3494 { 3495 int error; 3496 3497 trace_xfs_log_force(mp, lsn); 3498 error = _xfs_log_force_lsn(mp, lsn, flags, NULL); 3499 if (error) 3500 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3501 } 3502 3503 /* 3504 * Called when we want to mark the current iclog as being ready to sync to 3505 * disk. 3506 */ 3507 STATIC void 3508 xlog_state_want_sync( 3509 struct xlog *log, 3510 struct xlog_in_core *iclog) 3511 { 3512 assert_spin_locked(&log->l_icloglock); 3513 3514 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3515 xlog_state_switch_iclogs(log, iclog, 0); 3516 } else { 3517 ASSERT(iclog->ic_state & 3518 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3519 } 3520 } 3521 3522 3523 /***************************************************************************** 3524 * 3525 * TICKET functions 3526 * 3527 ***************************************************************************** 3528 */ 3529 3530 /* 3531 * Free a used ticket when its refcount falls to zero. 3532 */ 3533 void 3534 xfs_log_ticket_put( 3535 xlog_ticket_t *ticket) 3536 { 3537 ASSERT(atomic_read(&ticket->t_ref) > 0); 3538 if (atomic_dec_and_test(&ticket->t_ref)) 3539 kmem_zone_free(xfs_log_ticket_zone, ticket); 3540 } 3541 3542 xlog_ticket_t * 3543 xfs_log_ticket_get( 3544 xlog_ticket_t *ticket) 3545 { 3546 ASSERT(atomic_read(&ticket->t_ref) > 0); 3547 atomic_inc(&ticket->t_ref); 3548 return ticket; 3549 } 3550 3551 /* 3552 * Figure out the total log space unit (in bytes) that would be 3553 * required for a log ticket. 3554 */ 3555 int 3556 xfs_log_calc_unit_res( 3557 struct xfs_mount *mp, 3558 int unit_bytes) 3559 { 3560 struct xlog *log = mp->m_log; 3561 int iclog_space; 3562 uint num_headers; 3563 3564 /* 3565 * Permanent reservations have up to 'cnt'-1 active log operations 3566 * in the log. A unit in this case is the amount of space for one 3567 * of these log operations. Normal reservations have a cnt of 1 3568 * and their unit amount is the total amount of space required. 3569 * 3570 * The following lines of code account for non-transaction data 3571 * which occupy space in the on-disk log. 3572 * 3573 * Normal form of a transaction is: 3574 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3575 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3576 * 3577 * We need to account for all the leadup data and trailer data 3578 * around the transaction data. 3579 * And then we need to account for the worst case in terms of using 3580 * more space. 3581 * The worst case will happen if: 3582 * - the placement of the transaction happens to be such that the 3583 * roundoff is at its maximum 3584 * - the transaction data is synced before the commit record is synced 3585 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3586 * Therefore the commit record is in its own Log Record. 3587 * This can happen as the commit record is called with its 3588 * own region to xlog_write(). 3589 * This then means that in the worst case, roundoff can happen for 3590 * the commit-rec as well. 3591 * The commit-rec is smaller than padding in this scenario and so it is 3592 * not added separately. 3593 */ 3594 3595 /* for trans header */ 3596 unit_bytes += sizeof(xlog_op_header_t); 3597 unit_bytes += sizeof(xfs_trans_header_t); 3598 3599 /* for start-rec */ 3600 unit_bytes += sizeof(xlog_op_header_t); 3601 3602 /* 3603 * for LR headers - the space for data in an iclog is the size minus 3604 * the space used for the headers. If we use the iclog size, then we 3605 * undercalculate the number of headers required. 3606 * 3607 * Furthermore - the addition of op headers for split-recs might 3608 * increase the space required enough to require more log and op 3609 * headers, so take that into account too. 3610 * 3611 * IMPORTANT: This reservation makes the assumption that if this 3612 * transaction is the first in an iclog and hence has the LR headers 3613 * accounted to it, then the remaining space in the iclog is 3614 * exclusively for this transaction. i.e. if the transaction is larger 3615 * than the iclog, it will be the only thing in that iclog. 3616 * Fundamentally, this means we must pass the entire log vector to 3617 * xlog_write to guarantee this. 3618 */ 3619 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3620 num_headers = howmany(unit_bytes, iclog_space); 3621 3622 /* for split-recs - ophdrs added when data split over LRs */ 3623 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3624 3625 /* add extra header reservations if we overrun */ 3626 while (!num_headers || 3627 howmany(unit_bytes, iclog_space) > num_headers) { 3628 unit_bytes += sizeof(xlog_op_header_t); 3629 num_headers++; 3630 } 3631 unit_bytes += log->l_iclog_hsize * num_headers; 3632 3633 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3634 unit_bytes += log->l_iclog_hsize; 3635 3636 /* for roundoff padding for transaction data and one for commit record */ 3637 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3638 /* log su roundoff */ 3639 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3640 } else { 3641 /* BB roundoff */ 3642 unit_bytes += 2 * BBSIZE; 3643 } 3644 3645 return unit_bytes; 3646 } 3647 3648 /* 3649 * Allocate and initialise a new log ticket. 3650 */ 3651 struct xlog_ticket * 3652 xlog_ticket_alloc( 3653 struct xlog *log, 3654 int unit_bytes, 3655 int cnt, 3656 char client, 3657 bool permanent, 3658 xfs_km_flags_t alloc_flags) 3659 { 3660 struct xlog_ticket *tic; 3661 int unit_res; 3662 3663 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3664 if (!tic) 3665 return NULL; 3666 3667 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3668 3669 atomic_set(&tic->t_ref, 1); 3670 tic->t_task = current; 3671 INIT_LIST_HEAD(&tic->t_queue); 3672 tic->t_unit_res = unit_res; 3673 tic->t_curr_res = unit_res; 3674 tic->t_cnt = cnt; 3675 tic->t_ocnt = cnt; 3676 tic->t_tid = prandom_u32(); 3677 tic->t_clientid = client; 3678 tic->t_flags = XLOG_TIC_INITED; 3679 tic->t_trans_type = 0; 3680 if (permanent) 3681 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3682 3683 xlog_tic_reset_res(tic); 3684 3685 return tic; 3686 } 3687 3688 3689 /****************************************************************************** 3690 * 3691 * Log debug routines 3692 * 3693 ****************************************************************************** 3694 */ 3695 #if defined(DEBUG) 3696 /* 3697 * Make sure that the destination ptr is within the valid data region of 3698 * one of the iclogs. This uses backup pointers stored in a different 3699 * part of the log in case we trash the log structure. 3700 */ 3701 void 3702 xlog_verify_dest_ptr( 3703 struct xlog *log, 3704 void *ptr) 3705 { 3706 int i; 3707 int good_ptr = 0; 3708 3709 for (i = 0; i < log->l_iclog_bufs; i++) { 3710 if (ptr >= log->l_iclog_bak[i] && 3711 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3712 good_ptr++; 3713 } 3714 3715 if (!good_ptr) 3716 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3717 } 3718 3719 /* 3720 * Check to make sure the grant write head didn't just over lap the tail. If 3721 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3722 * the cycles differ by exactly one and check the byte count. 3723 * 3724 * This check is run unlocked, so can give false positives. Rather than assert 3725 * on failures, use a warn-once flag and a panic tag to allow the admin to 3726 * determine if they want to panic the machine when such an error occurs. For 3727 * debug kernels this will have the same effect as using an assert but, unlinke 3728 * an assert, it can be turned off at runtime. 3729 */ 3730 STATIC void 3731 xlog_verify_grant_tail( 3732 struct xlog *log) 3733 { 3734 int tail_cycle, tail_blocks; 3735 int cycle, space; 3736 3737 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3738 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3739 if (tail_cycle != cycle) { 3740 if (cycle - 1 != tail_cycle && 3741 !(log->l_flags & XLOG_TAIL_WARN)) { 3742 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3743 "%s: cycle - 1 != tail_cycle", __func__); 3744 log->l_flags |= XLOG_TAIL_WARN; 3745 } 3746 3747 if (space > BBTOB(tail_blocks) && 3748 !(log->l_flags & XLOG_TAIL_WARN)) { 3749 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3750 "%s: space > BBTOB(tail_blocks)", __func__); 3751 log->l_flags |= XLOG_TAIL_WARN; 3752 } 3753 } 3754 } 3755 3756 /* check if it will fit */ 3757 STATIC void 3758 xlog_verify_tail_lsn( 3759 struct xlog *log, 3760 struct xlog_in_core *iclog, 3761 xfs_lsn_t tail_lsn) 3762 { 3763 int blocks; 3764 3765 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3766 blocks = 3767 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3768 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3769 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3770 } else { 3771 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3772 3773 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3774 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3775 3776 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3777 if (blocks < BTOBB(iclog->ic_offset) + 1) 3778 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3779 } 3780 } /* xlog_verify_tail_lsn */ 3781 3782 /* 3783 * Perform a number of checks on the iclog before writing to disk. 3784 * 3785 * 1. Make sure the iclogs are still circular 3786 * 2. Make sure we have a good magic number 3787 * 3. Make sure we don't have magic numbers in the data 3788 * 4. Check fields of each log operation header for: 3789 * A. Valid client identifier 3790 * B. tid ptr value falls in valid ptr space (user space code) 3791 * C. Length in log record header is correct according to the 3792 * individual operation headers within record. 3793 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3794 * log, check the preceding blocks of the physical log to make sure all 3795 * the cycle numbers agree with the current cycle number. 3796 */ 3797 STATIC void 3798 xlog_verify_iclog( 3799 struct xlog *log, 3800 struct xlog_in_core *iclog, 3801 int count, 3802 bool syncing) 3803 { 3804 xlog_op_header_t *ophead; 3805 xlog_in_core_t *icptr; 3806 xlog_in_core_2_t *xhdr; 3807 void *base_ptr, *ptr, *p; 3808 ptrdiff_t field_offset; 3809 __uint8_t clientid; 3810 int len, i, j, k, op_len; 3811 int idx; 3812 3813 /* check validity of iclog pointers */ 3814 spin_lock(&log->l_icloglock); 3815 icptr = log->l_iclog; 3816 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3817 ASSERT(icptr); 3818 3819 if (icptr != log->l_iclog) 3820 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3821 spin_unlock(&log->l_icloglock); 3822 3823 /* check log magic numbers */ 3824 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3825 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3826 3827 base_ptr = ptr = &iclog->ic_header; 3828 p = &iclog->ic_header; 3829 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3830 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3831 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3832 __func__); 3833 } 3834 3835 /* check fields */ 3836 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3837 base_ptr = ptr = iclog->ic_datap; 3838 ophead = ptr; 3839 xhdr = iclog->ic_data; 3840 for (i = 0; i < len; i++) { 3841 ophead = ptr; 3842 3843 /* clientid is only 1 byte */ 3844 p = &ophead->oh_clientid; 3845 field_offset = p - base_ptr; 3846 if (!syncing || (field_offset & 0x1ff)) { 3847 clientid = ophead->oh_clientid; 3848 } else { 3849 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3850 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3851 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3852 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3853 clientid = xlog_get_client_id( 3854 xhdr[j].hic_xheader.xh_cycle_data[k]); 3855 } else { 3856 clientid = xlog_get_client_id( 3857 iclog->ic_header.h_cycle_data[idx]); 3858 } 3859 } 3860 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3861 xfs_warn(log->l_mp, 3862 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3863 __func__, clientid, ophead, 3864 (unsigned long)field_offset); 3865 3866 /* check length */ 3867 p = &ophead->oh_len; 3868 field_offset = p - base_ptr; 3869 if (!syncing || (field_offset & 0x1ff)) { 3870 op_len = be32_to_cpu(ophead->oh_len); 3871 } else { 3872 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3873 (uintptr_t)iclog->ic_datap); 3874 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3875 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3876 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3877 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3878 } else { 3879 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3880 } 3881 } 3882 ptr += sizeof(xlog_op_header_t) + op_len; 3883 } 3884 } /* xlog_verify_iclog */ 3885 #endif 3886 3887 /* 3888 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3889 */ 3890 STATIC int 3891 xlog_state_ioerror( 3892 struct xlog *log) 3893 { 3894 xlog_in_core_t *iclog, *ic; 3895 3896 iclog = log->l_iclog; 3897 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3898 /* 3899 * Mark all the incore logs IOERROR. 3900 * From now on, no log flushes will result. 3901 */ 3902 ic = iclog; 3903 do { 3904 ic->ic_state = XLOG_STATE_IOERROR; 3905 ic = ic->ic_next; 3906 } while (ic != iclog); 3907 return 0; 3908 } 3909 /* 3910 * Return non-zero, if state transition has already happened. 3911 */ 3912 return 1; 3913 } 3914 3915 /* 3916 * This is called from xfs_force_shutdown, when we're forcibly 3917 * shutting down the filesystem, typically because of an IO error. 3918 * Our main objectives here are to make sure that: 3919 * a. if !logerror, flush the logs to disk. Anything modified 3920 * after this is ignored. 3921 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3922 * parties to find out, 'atomically'. 3923 * c. those who're sleeping on log reservations, pinned objects and 3924 * other resources get woken up, and be told the bad news. 3925 * d. nothing new gets queued up after (b) and (c) are done. 3926 * 3927 * Note: for the !logerror case we need to flush the regions held in memory out 3928 * to disk first. This needs to be done before the log is marked as shutdown, 3929 * otherwise the iclog writes will fail. 3930 */ 3931 int 3932 xfs_log_force_umount( 3933 struct xfs_mount *mp, 3934 int logerror) 3935 { 3936 struct xlog *log; 3937 int retval; 3938 3939 log = mp->m_log; 3940 3941 /* 3942 * If this happens during log recovery, don't worry about 3943 * locking; the log isn't open for business yet. 3944 */ 3945 if (!log || 3946 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3947 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3948 if (mp->m_sb_bp) 3949 XFS_BUF_DONE(mp->m_sb_bp); 3950 return 0; 3951 } 3952 3953 /* 3954 * Somebody could've already done the hard work for us. 3955 * No need to get locks for this. 3956 */ 3957 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3958 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3959 return 1; 3960 } 3961 3962 /* 3963 * Flush all the completed transactions to disk before marking the log 3964 * being shut down. We need to do it in this order to ensure that 3965 * completed operations are safely on disk before we shut down, and that 3966 * we don't have to issue any buffer IO after the shutdown flags are set 3967 * to guarantee this. 3968 */ 3969 if (!logerror) 3970 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3971 3972 /* 3973 * mark the filesystem and the as in a shutdown state and wake 3974 * everybody up to tell them the bad news. 3975 */ 3976 spin_lock(&log->l_icloglock); 3977 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3978 if (mp->m_sb_bp) 3979 XFS_BUF_DONE(mp->m_sb_bp); 3980 3981 /* 3982 * Mark the log and the iclogs with IO error flags to prevent any 3983 * further log IO from being issued or completed. 3984 */ 3985 log->l_flags |= XLOG_IO_ERROR; 3986 retval = xlog_state_ioerror(log); 3987 spin_unlock(&log->l_icloglock); 3988 3989 /* 3990 * We don't want anybody waiting for log reservations after this. That 3991 * means we have to wake up everybody queued up on reserveq as well as 3992 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3993 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3994 * action is protected by the grant locks. 3995 */ 3996 xlog_grant_head_wake_all(&log->l_reserve_head); 3997 xlog_grant_head_wake_all(&log->l_write_head); 3998 3999 /* 4000 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 4001 * as if the log writes were completed. The abort handling in the log 4002 * item committed callback functions will do this again under lock to 4003 * avoid races. 4004 */ 4005 wake_up_all(&log->l_cilp->xc_commit_wait); 4006 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 4007 4008 #ifdef XFSERRORDEBUG 4009 { 4010 xlog_in_core_t *iclog; 4011 4012 spin_lock(&log->l_icloglock); 4013 iclog = log->l_iclog; 4014 do { 4015 ASSERT(iclog->ic_callback == 0); 4016 iclog = iclog->ic_next; 4017 } while (iclog != log->l_iclog); 4018 spin_unlock(&log->l_icloglock); 4019 } 4020 #endif 4021 /* return non-zero if log IOERROR transition had already happened */ 4022 return retval; 4023 } 4024 4025 STATIC int 4026 xlog_iclogs_empty( 4027 struct xlog *log) 4028 { 4029 xlog_in_core_t *iclog; 4030 4031 iclog = log->l_iclog; 4032 do { 4033 /* endianness does not matter here, zero is zero in 4034 * any language. 4035 */ 4036 if (iclog->ic_header.h_num_logops) 4037 return 0; 4038 iclog = iclog->ic_next; 4039 } while (iclog != log->l_iclog); 4040 return 1; 4041 } 4042 4043 /* 4044 * Verify that an LSN stamped into a piece of metadata is valid. This is 4045 * intended for use in read verifiers on v5 superblocks. 4046 */ 4047 bool 4048 xfs_log_check_lsn( 4049 struct xfs_mount *mp, 4050 xfs_lsn_t lsn) 4051 { 4052 struct xlog *log = mp->m_log; 4053 bool valid; 4054 4055 /* 4056 * norecovery mode skips mount-time log processing and unconditionally 4057 * resets the in-core LSN. We can't validate in this mode, but 4058 * modifications are not allowed anyways so just return true. 4059 */ 4060 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 4061 return true; 4062 4063 /* 4064 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 4065 * handled by recovery and thus safe to ignore here. 4066 */ 4067 if (lsn == NULLCOMMITLSN) 4068 return true; 4069 4070 valid = xlog_valid_lsn(mp->m_log, lsn); 4071 4072 /* warn the user about what's gone wrong before verifier failure */ 4073 if (!valid) { 4074 spin_lock(&log->l_icloglock); 4075 xfs_warn(mp, 4076 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 4077 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 4078 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 4079 log->l_curr_cycle, log->l_curr_block); 4080 spin_unlock(&log->l_icloglock); 4081 } 4082 4083 return valid; 4084 } 4085