1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trace.h" 20 #include "xfs_sysfs.h" 21 #include "xfs_sb.h" 22 #include "xfs_health.h" 23 24 struct kmem_cache *xfs_log_ticket_cache; 25 26 /* Local miscellaneous function prototypes */ 27 STATIC struct xlog * 28 xlog_alloc_log( 29 struct xfs_mount *mp, 30 struct xfs_buftarg *log_target, 31 xfs_daddr_t blk_offset, 32 int num_bblks); 33 STATIC int 34 xlog_space_left( 35 struct xlog *log, 36 atomic64_t *head); 37 STATIC void 38 xlog_dealloc_log( 39 struct xlog *log); 40 41 /* local state machine functions */ 42 STATIC void xlog_state_done_syncing( 43 struct xlog_in_core *iclog); 44 STATIC void xlog_state_do_callback( 45 struct xlog *log); 46 STATIC int 47 xlog_state_get_iclog_space( 48 struct xlog *log, 49 int len, 50 struct xlog_in_core **iclog, 51 struct xlog_ticket *ticket, 52 int *logoffsetp); 53 STATIC void 54 xlog_grant_push_ail( 55 struct xlog *log, 56 int need_bytes); 57 STATIC void 58 xlog_sync( 59 struct xlog *log, 60 struct xlog_in_core *iclog, 61 struct xlog_ticket *ticket); 62 #if defined(DEBUG) 63 STATIC void 64 xlog_verify_grant_tail( 65 struct xlog *log); 66 STATIC void 67 xlog_verify_iclog( 68 struct xlog *log, 69 struct xlog_in_core *iclog, 70 int count); 71 STATIC void 72 xlog_verify_tail_lsn( 73 struct xlog *log, 74 struct xlog_in_core *iclog); 75 #else 76 #define xlog_verify_grant_tail(a) 77 #define xlog_verify_iclog(a,b,c) 78 #define xlog_verify_tail_lsn(a,b) 79 #endif 80 81 STATIC int 82 xlog_iclogs_empty( 83 struct xlog *log); 84 85 static int 86 xfs_log_cover(struct xfs_mount *); 87 88 /* 89 * We need to make sure the buffer pointer returned is naturally aligned for the 90 * biggest basic data type we put into it. We have already accounted for this 91 * padding when sizing the buffer. 92 * 93 * However, this padding does not get written into the log, and hence we have to 94 * track the space used by the log vectors separately to prevent log space hangs 95 * due to inaccurate accounting (i.e. a leak) of the used log space through the 96 * CIL context ticket. 97 * 98 * We also add space for the xlog_op_header that describes this region in the 99 * log. This prepends the data region we return to the caller to copy their data 100 * into, so do all the static initialisation of the ophdr now. Because the ophdr 101 * is not 8 byte aligned, we have to be careful to ensure that we align the 102 * start of the buffer such that the region we return to the call is 8 byte 103 * aligned and packed against the tail of the ophdr. 104 */ 105 void * 106 xlog_prepare_iovec( 107 struct xfs_log_vec *lv, 108 struct xfs_log_iovec **vecp, 109 uint type) 110 { 111 struct xfs_log_iovec *vec = *vecp; 112 struct xlog_op_header *oph; 113 uint32_t len; 114 void *buf; 115 116 if (vec) { 117 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs); 118 vec++; 119 } else { 120 vec = &lv->lv_iovecp[0]; 121 } 122 123 len = lv->lv_buf_len + sizeof(struct xlog_op_header); 124 if (!IS_ALIGNED(len, sizeof(uint64_t))) { 125 lv->lv_buf_len = round_up(len, sizeof(uint64_t)) - 126 sizeof(struct xlog_op_header); 127 } 128 129 vec->i_type = type; 130 vec->i_addr = lv->lv_buf + lv->lv_buf_len; 131 132 oph = vec->i_addr; 133 oph->oh_clientid = XFS_TRANSACTION; 134 oph->oh_res2 = 0; 135 oph->oh_flags = 0; 136 137 buf = vec->i_addr + sizeof(struct xlog_op_header); 138 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t))); 139 140 *vecp = vec; 141 return buf; 142 } 143 144 static void 145 xlog_grant_sub_space( 146 struct xlog *log, 147 atomic64_t *head, 148 int bytes) 149 { 150 int64_t head_val = atomic64_read(head); 151 int64_t new, old; 152 153 do { 154 int cycle, space; 155 156 xlog_crack_grant_head_val(head_val, &cycle, &space); 157 158 space -= bytes; 159 if (space < 0) { 160 space += log->l_logsize; 161 cycle--; 162 } 163 164 old = head_val; 165 new = xlog_assign_grant_head_val(cycle, space); 166 head_val = atomic64_cmpxchg(head, old, new); 167 } while (head_val != old); 168 } 169 170 static void 171 xlog_grant_add_space( 172 struct xlog *log, 173 atomic64_t *head, 174 int bytes) 175 { 176 int64_t head_val = atomic64_read(head); 177 int64_t new, old; 178 179 do { 180 int tmp; 181 int cycle, space; 182 183 xlog_crack_grant_head_val(head_val, &cycle, &space); 184 185 tmp = log->l_logsize - space; 186 if (tmp > bytes) 187 space += bytes; 188 else { 189 space = bytes - tmp; 190 cycle++; 191 } 192 193 old = head_val; 194 new = xlog_assign_grant_head_val(cycle, space); 195 head_val = atomic64_cmpxchg(head, old, new); 196 } while (head_val != old); 197 } 198 199 STATIC void 200 xlog_grant_head_init( 201 struct xlog_grant_head *head) 202 { 203 xlog_assign_grant_head(&head->grant, 1, 0); 204 INIT_LIST_HEAD(&head->waiters); 205 spin_lock_init(&head->lock); 206 } 207 208 STATIC void 209 xlog_grant_head_wake_all( 210 struct xlog_grant_head *head) 211 { 212 struct xlog_ticket *tic; 213 214 spin_lock(&head->lock); 215 list_for_each_entry(tic, &head->waiters, t_queue) 216 wake_up_process(tic->t_task); 217 spin_unlock(&head->lock); 218 } 219 220 static inline int 221 xlog_ticket_reservation( 222 struct xlog *log, 223 struct xlog_grant_head *head, 224 struct xlog_ticket *tic) 225 { 226 if (head == &log->l_write_head) { 227 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 228 return tic->t_unit_res; 229 } 230 231 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 232 return tic->t_unit_res * tic->t_cnt; 233 234 return tic->t_unit_res; 235 } 236 237 STATIC bool 238 xlog_grant_head_wake( 239 struct xlog *log, 240 struct xlog_grant_head *head, 241 int *free_bytes) 242 { 243 struct xlog_ticket *tic; 244 int need_bytes; 245 bool woken_task = false; 246 247 list_for_each_entry(tic, &head->waiters, t_queue) { 248 249 /* 250 * There is a chance that the size of the CIL checkpoints in 251 * progress at the last AIL push target calculation resulted in 252 * limiting the target to the log head (l_last_sync_lsn) at the 253 * time. This may not reflect where the log head is now as the 254 * CIL checkpoints may have completed. 255 * 256 * Hence when we are woken here, it may be that the head of the 257 * log that has moved rather than the tail. As the tail didn't 258 * move, there still won't be space available for the 259 * reservation we require. However, if the AIL has already 260 * pushed to the target defined by the old log head location, we 261 * will hang here waiting for something else to update the AIL 262 * push target. 263 * 264 * Therefore, if there isn't space to wake the first waiter on 265 * the grant head, we need to push the AIL again to ensure the 266 * target reflects both the current log tail and log head 267 * position before we wait for the tail to move again. 268 */ 269 270 need_bytes = xlog_ticket_reservation(log, head, tic); 271 if (*free_bytes < need_bytes) { 272 if (!woken_task) 273 xlog_grant_push_ail(log, need_bytes); 274 return false; 275 } 276 277 *free_bytes -= need_bytes; 278 trace_xfs_log_grant_wake_up(log, tic); 279 wake_up_process(tic->t_task); 280 woken_task = true; 281 } 282 283 return true; 284 } 285 286 STATIC int 287 xlog_grant_head_wait( 288 struct xlog *log, 289 struct xlog_grant_head *head, 290 struct xlog_ticket *tic, 291 int need_bytes) __releases(&head->lock) 292 __acquires(&head->lock) 293 { 294 list_add_tail(&tic->t_queue, &head->waiters); 295 296 do { 297 if (xlog_is_shutdown(log)) 298 goto shutdown; 299 xlog_grant_push_ail(log, need_bytes); 300 301 __set_current_state(TASK_UNINTERRUPTIBLE); 302 spin_unlock(&head->lock); 303 304 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 305 306 trace_xfs_log_grant_sleep(log, tic); 307 schedule(); 308 trace_xfs_log_grant_wake(log, tic); 309 310 spin_lock(&head->lock); 311 if (xlog_is_shutdown(log)) 312 goto shutdown; 313 } while (xlog_space_left(log, &head->grant) < need_bytes); 314 315 list_del_init(&tic->t_queue); 316 return 0; 317 shutdown: 318 list_del_init(&tic->t_queue); 319 return -EIO; 320 } 321 322 /* 323 * Atomically get the log space required for a log ticket. 324 * 325 * Once a ticket gets put onto head->waiters, it will only return after the 326 * needed reservation is satisfied. 327 * 328 * This function is structured so that it has a lock free fast path. This is 329 * necessary because every new transaction reservation will come through this 330 * path. Hence any lock will be globally hot if we take it unconditionally on 331 * every pass. 332 * 333 * As tickets are only ever moved on and off head->waiters under head->lock, we 334 * only need to take that lock if we are going to add the ticket to the queue 335 * and sleep. We can avoid taking the lock if the ticket was never added to 336 * head->waiters because the t_queue list head will be empty and we hold the 337 * only reference to it so it can safely be checked unlocked. 338 */ 339 STATIC int 340 xlog_grant_head_check( 341 struct xlog *log, 342 struct xlog_grant_head *head, 343 struct xlog_ticket *tic, 344 int *need_bytes) 345 { 346 int free_bytes; 347 int error = 0; 348 349 ASSERT(!xlog_in_recovery(log)); 350 351 /* 352 * If there are other waiters on the queue then give them a chance at 353 * logspace before us. Wake up the first waiters, if we do not wake 354 * up all the waiters then go to sleep waiting for more free space, 355 * otherwise try to get some space for this transaction. 356 */ 357 *need_bytes = xlog_ticket_reservation(log, head, tic); 358 free_bytes = xlog_space_left(log, &head->grant); 359 if (!list_empty_careful(&head->waiters)) { 360 spin_lock(&head->lock); 361 if (!xlog_grant_head_wake(log, head, &free_bytes) || 362 free_bytes < *need_bytes) { 363 error = xlog_grant_head_wait(log, head, tic, 364 *need_bytes); 365 } 366 spin_unlock(&head->lock); 367 } else if (free_bytes < *need_bytes) { 368 spin_lock(&head->lock); 369 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 370 spin_unlock(&head->lock); 371 } 372 373 return error; 374 } 375 376 bool 377 xfs_log_writable( 378 struct xfs_mount *mp) 379 { 380 /* 381 * Do not write to the log on norecovery mounts, if the data or log 382 * devices are read-only, or if the filesystem is shutdown. Read-only 383 * mounts allow internal writes for log recovery and unmount purposes, 384 * so don't restrict that case. 385 */ 386 if (xfs_has_norecovery(mp)) 387 return false; 388 if (xfs_readonly_buftarg(mp->m_ddev_targp)) 389 return false; 390 if (xfs_readonly_buftarg(mp->m_log->l_targ)) 391 return false; 392 if (xlog_is_shutdown(mp->m_log)) 393 return false; 394 return true; 395 } 396 397 /* 398 * Replenish the byte reservation required by moving the grant write head. 399 */ 400 int 401 xfs_log_regrant( 402 struct xfs_mount *mp, 403 struct xlog_ticket *tic) 404 { 405 struct xlog *log = mp->m_log; 406 int need_bytes; 407 int error = 0; 408 409 if (xlog_is_shutdown(log)) 410 return -EIO; 411 412 XFS_STATS_INC(mp, xs_try_logspace); 413 414 /* 415 * This is a new transaction on the ticket, so we need to change the 416 * transaction ID so that the next transaction has a different TID in 417 * the log. Just add one to the existing tid so that we can see chains 418 * of rolling transactions in the log easily. 419 */ 420 tic->t_tid++; 421 422 xlog_grant_push_ail(log, tic->t_unit_res); 423 424 tic->t_curr_res = tic->t_unit_res; 425 if (tic->t_cnt > 0) 426 return 0; 427 428 trace_xfs_log_regrant(log, tic); 429 430 error = xlog_grant_head_check(log, &log->l_write_head, tic, 431 &need_bytes); 432 if (error) 433 goto out_error; 434 435 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 436 trace_xfs_log_regrant_exit(log, tic); 437 xlog_verify_grant_tail(log); 438 return 0; 439 440 out_error: 441 /* 442 * If we are failing, make sure the ticket doesn't have any current 443 * reservations. We don't want to add this back when the ticket/ 444 * transaction gets cancelled. 445 */ 446 tic->t_curr_res = 0; 447 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 448 return error; 449 } 450 451 /* 452 * Reserve log space and return a ticket corresponding to the reservation. 453 * 454 * Each reservation is going to reserve extra space for a log record header. 455 * When writes happen to the on-disk log, we don't subtract the length of the 456 * log record header from any reservation. By wasting space in each 457 * reservation, we prevent over allocation problems. 458 */ 459 int 460 xfs_log_reserve( 461 struct xfs_mount *mp, 462 int unit_bytes, 463 int cnt, 464 struct xlog_ticket **ticp, 465 bool permanent) 466 { 467 struct xlog *log = mp->m_log; 468 struct xlog_ticket *tic; 469 int need_bytes; 470 int error = 0; 471 472 if (xlog_is_shutdown(log)) 473 return -EIO; 474 475 XFS_STATS_INC(mp, xs_try_logspace); 476 477 ASSERT(*ticp == NULL); 478 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent); 479 *ticp = tic; 480 481 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 482 : tic->t_unit_res); 483 484 trace_xfs_log_reserve(log, tic); 485 486 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 487 &need_bytes); 488 if (error) 489 goto out_error; 490 491 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 492 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 493 trace_xfs_log_reserve_exit(log, tic); 494 xlog_verify_grant_tail(log); 495 return 0; 496 497 out_error: 498 /* 499 * If we are failing, make sure the ticket doesn't have any current 500 * reservations. We don't want to add this back when the ticket/ 501 * transaction gets cancelled. 502 */ 503 tic->t_curr_res = 0; 504 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 505 return error; 506 } 507 508 /* 509 * Run all the pending iclog callbacks and wake log force waiters and iclog 510 * space waiters so they can process the newly set shutdown state. We really 511 * don't care what order we process callbacks here because the log is shut down 512 * and so state cannot change on disk anymore. However, we cannot wake waiters 513 * until the callbacks have been processed because we may be in unmount and 514 * we must ensure that all AIL operations the callbacks perform have completed 515 * before we tear down the AIL. 516 * 517 * We avoid processing actively referenced iclogs so that we don't run callbacks 518 * while the iclog owner might still be preparing the iclog for IO submssion. 519 * These will be caught by xlog_state_iclog_release() and call this function 520 * again to process any callbacks that may have been added to that iclog. 521 */ 522 static void 523 xlog_state_shutdown_callbacks( 524 struct xlog *log) 525 { 526 struct xlog_in_core *iclog; 527 LIST_HEAD(cb_list); 528 529 iclog = log->l_iclog; 530 do { 531 if (atomic_read(&iclog->ic_refcnt)) { 532 /* Reference holder will re-run iclog callbacks. */ 533 continue; 534 } 535 list_splice_init(&iclog->ic_callbacks, &cb_list); 536 spin_unlock(&log->l_icloglock); 537 538 xlog_cil_process_committed(&cb_list); 539 540 spin_lock(&log->l_icloglock); 541 wake_up_all(&iclog->ic_write_wait); 542 wake_up_all(&iclog->ic_force_wait); 543 } while ((iclog = iclog->ic_next) != log->l_iclog); 544 545 wake_up_all(&log->l_flush_wait); 546 } 547 548 /* 549 * Flush iclog to disk if this is the last reference to the given iclog and the 550 * it is in the WANT_SYNC state. 551 * 552 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the 553 * log tail is updated correctly. NEED_FUA indicates that the iclog will be 554 * written to stable storage, and implies that a commit record is contained 555 * within the iclog. We need to ensure that the log tail does not move beyond 556 * the tail that the first commit record in the iclog ordered against, otherwise 557 * correct recovery of that checkpoint becomes dependent on future operations 558 * performed on this iclog. 559 * 560 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the 561 * current tail into iclog. Once the iclog tail is set, future operations must 562 * not modify it, otherwise they potentially violate ordering constraints for 563 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in 564 * the iclog will get zeroed on activation of the iclog after sync, so we 565 * always capture the tail lsn on the iclog on the first NEED_FUA release 566 * regardless of the number of active reference counts on this iclog. 567 */ 568 int 569 xlog_state_release_iclog( 570 struct xlog *log, 571 struct xlog_in_core *iclog, 572 struct xlog_ticket *ticket) 573 { 574 xfs_lsn_t tail_lsn; 575 bool last_ref; 576 577 lockdep_assert_held(&log->l_icloglock); 578 579 trace_xlog_iclog_release(iclog, _RET_IP_); 580 /* 581 * Grabbing the current log tail needs to be atomic w.r.t. the writing 582 * of the tail LSN into the iclog so we guarantee that the log tail does 583 * not move between the first time we know that the iclog needs to be 584 * made stable and when we eventually submit it. 585 */ 586 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC || 587 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) && 588 !iclog->ic_header.h_tail_lsn) { 589 tail_lsn = xlog_assign_tail_lsn(log->l_mp); 590 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 591 } 592 593 last_ref = atomic_dec_and_test(&iclog->ic_refcnt); 594 595 if (xlog_is_shutdown(log)) { 596 /* 597 * If there are no more references to this iclog, process the 598 * pending iclog callbacks that were waiting on the release of 599 * this iclog. 600 */ 601 if (last_ref) 602 xlog_state_shutdown_callbacks(log); 603 return -EIO; 604 } 605 606 if (!last_ref) 607 return 0; 608 609 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) { 610 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 611 return 0; 612 } 613 614 iclog->ic_state = XLOG_STATE_SYNCING; 615 xlog_verify_tail_lsn(log, iclog); 616 trace_xlog_iclog_syncing(iclog, _RET_IP_); 617 618 spin_unlock(&log->l_icloglock); 619 xlog_sync(log, iclog, ticket); 620 spin_lock(&log->l_icloglock); 621 return 0; 622 } 623 624 /* 625 * Mount a log filesystem 626 * 627 * mp - ubiquitous xfs mount point structure 628 * log_target - buftarg of on-disk log device 629 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 630 * num_bblocks - Number of BBSIZE blocks in on-disk log 631 * 632 * Return error or zero. 633 */ 634 int 635 xfs_log_mount( 636 xfs_mount_t *mp, 637 xfs_buftarg_t *log_target, 638 xfs_daddr_t blk_offset, 639 int num_bblks) 640 { 641 struct xlog *log; 642 int error = 0; 643 int min_logfsbs; 644 645 if (!xfs_has_norecovery(mp)) { 646 xfs_notice(mp, "Mounting V%d Filesystem %pU", 647 XFS_SB_VERSION_NUM(&mp->m_sb), 648 &mp->m_sb.sb_uuid); 649 } else { 650 xfs_notice(mp, 651 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.", 652 XFS_SB_VERSION_NUM(&mp->m_sb), 653 &mp->m_sb.sb_uuid); 654 ASSERT(xfs_is_readonly(mp)); 655 } 656 657 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 658 if (IS_ERR(log)) { 659 error = PTR_ERR(log); 660 goto out; 661 } 662 mp->m_log = log; 663 664 /* 665 * Now that we have set up the log and it's internal geometry 666 * parameters, we can validate the given log space and drop a critical 667 * message via syslog if the log size is too small. A log that is too 668 * small can lead to unexpected situations in transaction log space 669 * reservation stage. The superblock verifier has already validated all 670 * the other log geometry constraints, so we don't have to check those 671 * here. 672 * 673 * Note: For v4 filesystems, we can't just reject the mount if the 674 * validation fails. This would mean that people would have to 675 * downgrade their kernel just to remedy the situation as there is no 676 * way to grow the log (short of black magic surgery with xfs_db). 677 * 678 * We can, however, reject mounts for V5 format filesystems, as the 679 * mkfs binary being used to make the filesystem should never create a 680 * filesystem with a log that is too small. 681 */ 682 min_logfsbs = xfs_log_calc_minimum_size(mp); 683 if (mp->m_sb.sb_logblocks < min_logfsbs) { 684 xfs_warn(mp, 685 "Log size %d blocks too small, minimum size is %d blocks", 686 mp->m_sb.sb_logblocks, min_logfsbs); 687 688 /* 689 * Log check errors are always fatal on v5; or whenever bad 690 * metadata leads to a crash. 691 */ 692 if (xfs_has_crc(mp)) { 693 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 694 ASSERT(0); 695 error = -EINVAL; 696 goto out_free_log; 697 } 698 xfs_crit(mp, "Log size out of supported range."); 699 xfs_crit(mp, 700 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 701 } 702 703 /* 704 * Initialize the AIL now we have a log. 705 */ 706 error = xfs_trans_ail_init(mp); 707 if (error) { 708 xfs_warn(mp, "AIL initialisation failed: error %d", error); 709 goto out_free_log; 710 } 711 log->l_ailp = mp->m_ail; 712 713 /* 714 * skip log recovery on a norecovery mount. pretend it all 715 * just worked. 716 */ 717 if (!xfs_has_norecovery(mp)) { 718 error = xlog_recover(log); 719 if (error) { 720 xfs_warn(mp, "log mount/recovery failed: error %d", 721 error); 722 xlog_recover_cancel(log); 723 goto out_destroy_ail; 724 } 725 } 726 727 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 728 "log"); 729 if (error) 730 goto out_destroy_ail; 731 732 /* Normal transactions can now occur */ 733 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 734 735 /* 736 * Now the log has been fully initialised and we know were our 737 * space grant counters are, we can initialise the permanent ticket 738 * needed for delayed logging to work. 739 */ 740 xlog_cil_init_post_recovery(log); 741 742 return 0; 743 744 out_destroy_ail: 745 xfs_trans_ail_destroy(mp); 746 out_free_log: 747 xlog_dealloc_log(log); 748 out: 749 return error; 750 } 751 752 /* 753 * Finish the recovery of the file system. This is separate from the 754 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 755 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 756 * here. 757 * 758 * If we finish recovery successfully, start the background log work. If we are 759 * not doing recovery, then we have a RO filesystem and we don't need to start 760 * it. 761 */ 762 int 763 xfs_log_mount_finish( 764 struct xfs_mount *mp) 765 { 766 struct xlog *log = mp->m_log; 767 int error = 0; 768 769 if (xfs_has_norecovery(mp)) { 770 ASSERT(xfs_is_readonly(mp)); 771 return 0; 772 } 773 774 /* 775 * During the second phase of log recovery, we need iget and 776 * iput to behave like they do for an active filesystem. 777 * xfs_fs_drop_inode needs to be able to prevent the deletion 778 * of inodes before we're done replaying log items on those 779 * inodes. Turn it off immediately after recovery finishes 780 * so that we don't leak the quota inodes if subsequent mount 781 * activities fail. 782 * 783 * We let all inodes involved in redo item processing end up on 784 * the LRU instead of being evicted immediately so that if we do 785 * something to an unlinked inode, the irele won't cause 786 * premature truncation and freeing of the inode, which results 787 * in log recovery failure. We have to evict the unreferenced 788 * lru inodes after clearing SB_ACTIVE because we don't 789 * otherwise clean up the lru if there's a subsequent failure in 790 * xfs_mountfs, which leads to us leaking the inodes if nothing 791 * else (e.g. quotacheck) references the inodes before the 792 * mount failure occurs. 793 */ 794 mp->m_super->s_flags |= SB_ACTIVE; 795 xfs_log_work_queue(mp); 796 if (xlog_recovery_needed(log)) 797 error = xlog_recover_finish(log); 798 mp->m_super->s_flags &= ~SB_ACTIVE; 799 evict_inodes(mp->m_super); 800 801 /* 802 * Drain the buffer LRU after log recovery. This is required for v4 803 * filesystems to avoid leaving around buffers with NULL verifier ops, 804 * but we do it unconditionally to make sure we're always in a clean 805 * cache state after mount. 806 * 807 * Don't push in the error case because the AIL may have pending intents 808 * that aren't removed until recovery is cancelled. 809 */ 810 if (xlog_recovery_needed(log)) { 811 if (!error) { 812 xfs_log_force(mp, XFS_LOG_SYNC); 813 xfs_ail_push_all_sync(mp->m_ail); 814 } 815 xfs_notice(mp, "Ending recovery (logdev: %s)", 816 mp->m_logname ? mp->m_logname : "internal"); 817 } else { 818 xfs_info(mp, "Ending clean mount"); 819 } 820 xfs_buftarg_drain(mp->m_ddev_targp); 821 822 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 823 824 /* Make sure the log is dead if we're returning failure. */ 825 ASSERT(!error || xlog_is_shutdown(log)); 826 827 return error; 828 } 829 830 /* 831 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 832 * the log. 833 */ 834 void 835 xfs_log_mount_cancel( 836 struct xfs_mount *mp) 837 { 838 xlog_recover_cancel(mp->m_log); 839 xfs_log_unmount(mp); 840 } 841 842 /* 843 * Flush out the iclog to disk ensuring that device caches are flushed and 844 * the iclog hits stable storage before any completion waiters are woken. 845 */ 846 static inline int 847 xlog_force_iclog( 848 struct xlog_in_core *iclog) 849 { 850 atomic_inc(&iclog->ic_refcnt); 851 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 852 if (iclog->ic_state == XLOG_STATE_ACTIVE) 853 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0); 854 return xlog_state_release_iclog(iclog->ic_log, iclog, NULL); 855 } 856 857 /* 858 * Cycle all the iclogbuf locks to make sure all log IO completion 859 * is done before we tear down these buffers. 860 */ 861 static void 862 xlog_wait_iclog_completion(struct xlog *log) 863 { 864 int i; 865 struct xlog_in_core *iclog = log->l_iclog; 866 867 for (i = 0; i < log->l_iclog_bufs; i++) { 868 down(&iclog->ic_sema); 869 up(&iclog->ic_sema); 870 iclog = iclog->ic_next; 871 } 872 } 873 874 /* 875 * Wait for the iclog and all prior iclogs to be written disk as required by the 876 * log force state machine. Waiting on ic_force_wait ensures iclog completions 877 * have been ordered and callbacks run before we are woken here, hence 878 * guaranteeing that all the iclogs up to this one are on stable storage. 879 */ 880 int 881 xlog_wait_on_iclog( 882 struct xlog_in_core *iclog) 883 __releases(iclog->ic_log->l_icloglock) 884 { 885 struct xlog *log = iclog->ic_log; 886 887 trace_xlog_iclog_wait_on(iclog, _RET_IP_); 888 if (!xlog_is_shutdown(log) && 889 iclog->ic_state != XLOG_STATE_ACTIVE && 890 iclog->ic_state != XLOG_STATE_DIRTY) { 891 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 892 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 893 } else { 894 spin_unlock(&log->l_icloglock); 895 } 896 897 if (xlog_is_shutdown(log)) 898 return -EIO; 899 return 0; 900 } 901 902 /* 903 * Write out an unmount record using the ticket provided. We have to account for 904 * the data space used in the unmount ticket as this write is not done from a 905 * transaction context that has already done the accounting for us. 906 */ 907 static int 908 xlog_write_unmount_record( 909 struct xlog *log, 910 struct xlog_ticket *ticket) 911 { 912 struct { 913 struct xlog_op_header ophdr; 914 struct xfs_unmount_log_format ulf; 915 } unmount_rec = { 916 .ophdr = { 917 .oh_clientid = XFS_LOG, 918 .oh_tid = cpu_to_be32(ticket->t_tid), 919 .oh_flags = XLOG_UNMOUNT_TRANS, 920 }, 921 .ulf = { 922 .magic = XLOG_UNMOUNT_TYPE, 923 }, 924 }; 925 struct xfs_log_iovec reg = { 926 .i_addr = &unmount_rec, 927 .i_len = sizeof(unmount_rec), 928 .i_type = XLOG_REG_TYPE_UNMOUNT, 929 }; 930 struct xfs_log_vec vec = { 931 .lv_niovecs = 1, 932 .lv_iovecp = ®, 933 }; 934 LIST_HEAD(lv_chain); 935 list_add(&vec.lv_list, &lv_chain); 936 937 BUILD_BUG_ON((sizeof(struct xlog_op_header) + 938 sizeof(struct xfs_unmount_log_format)) != 939 sizeof(unmount_rec)); 940 941 /* account for space used by record data */ 942 ticket->t_curr_res -= sizeof(unmount_rec); 943 944 return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len); 945 } 946 947 /* 948 * Mark the filesystem clean by writing an unmount record to the head of the 949 * log. 950 */ 951 static void 952 xlog_unmount_write( 953 struct xlog *log) 954 { 955 struct xfs_mount *mp = log->l_mp; 956 struct xlog_in_core *iclog; 957 struct xlog_ticket *tic = NULL; 958 int error; 959 960 error = xfs_log_reserve(mp, 600, 1, &tic, 0); 961 if (error) 962 goto out_err; 963 964 error = xlog_write_unmount_record(log, tic); 965 /* 966 * At this point, we're umounting anyway, so there's no point in 967 * transitioning log state to shutdown. Just continue... 968 */ 969 out_err: 970 if (error) 971 xfs_alert(mp, "%s: unmount record failed", __func__); 972 973 spin_lock(&log->l_icloglock); 974 iclog = log->l_iclog; 975 error = xlog_force_iclog(iclog); 976 xlog_wait_on_iclog(iclog); 977 978 if (tic) { 979 trace_xfs_log_umount_write(log, tic); 980 xfs_log_ticket_ungrant(log, tic); 981 } 982 } 983 984 static void 985 xfs_log_unmount_verify_iclog( 986 struct xlog *log) 987 { 988 struct xlog_in_core *iclog = log->l_iclog; 989 990 do { 991 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 992 ASSERT(iclog->ic_offset == 0); 993 } while ((iclog = iclog->ic_next) != log->l_iclog); 994 } 995 996 /* 997 * Unmount record used to have a string "Unmount filesystem--" in the 998 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 999 * We just write the magic number now since that particular field isn't 1000 * currently architecture converted and "Unmount" is a bit foo. 1001 * As far as I know, there weren't any dependencies on the old behaviour. 1002 */ 1003 static void 1004 xfs_log_unmount_write( 1005 struct xfs_mount *mp) 1006 { 1007 struct xlog *log = mp->m_log; 1008 1009 if (!xfs_log_writable(mp)) 1010 return; 1011 1012 xfs_log_force(mp, XFS_LOG_SYNC); 1013 1014 if (xlog_is_shutdown(log)) 1015 return; 1016 1017 /* 1018 * If we think the summary counters are bad, avoid writing the unmount 1019 * record to force log recovery at next mount, after which the summary 1020 * counters will be recalculated. Refer to xlog_check_unmount_rec for 1021 * more details. 1022 */ 1023 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp, 1024 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 1025 xfs_alert(mp, "%s: will fix summary counters at next mount", 1026 __func__); 1027 return; 1028 } 1029 1030 xfs_log_unmount_verify_iclog(log); 1031 xlog_unmount_write(log); 1032 } 1033 1034 /* 1035 * Empty the log for unmount/freeze. 1036 * 1037 * To do this, we first need to shut down the background log work so it is not 1038 * trying to cover the log as we clean up. We then need to unpin all objects in 1039 * the log so we can then flush them out. Once they have completed their IO and 1040 * run the callbacks removing themselves from the AIL, we can cover the log. 1041 */ 1042 int 1043 xfs_log_quiesce( 1044 struct xfs_mount *mp) 1045 { 1046 /* 1047 * Clear log incompat features since we're quiescing the log. Report 1048 * failures, though it's not fatal to have a higher log feature 1049 * protection level than the log contents actually require. 1050 */ 1051 if (xfs_clear_incompat_log_features(mp)) { 1052 int error; 1053 1054 error = xfs_sync_sb(mp, false); 1055 if (error) 1056 xfs_warn(mp, 1057 "Failed to clear log incompat features on quiesce"); 1058 } 1059 1060 cancel_delayed_work_sync(&mp->m_log->l_work); 1061 xfs_log_force(mp, XFS_LOG_SYNC); 1062 1063 /* 1064 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1065 * will push it, xfs_buftarg_wait() will not wait for it. Further, 1066 * xfs_buf_iowait() cannot be used because it was pushed with the 1067 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1068 * the IO to complete. 1069 */ 1070 xfs_ail_push_all_sync(mp->m_ail); 1071 xfs_buftarg_wait(mp->m_ddev_targp); 1072 xfs_buf_lock(mp->m_sb_bp); 1073 xfs_buf_unlock(mp->m_sb_bp); 1074 1075 return xfs_log_cover(mp); 1076 } 1077 1078 void 1079 xfs_log_clean( 1080 struct xfs_mount *mp) 1081 { 1082 xfs_log_quiesce(mp); 1083 xfs_log_unmount_write(mp); 1084 } 1085 1086 /* 1087 * Shut down and release the AIL and Log. 1088 * 1089 * During unmount, we need to ensure we flush all the dirty metadata objects 1090 * from the AIL so that the log is empty before we write the unmount record to 1091 * the log. Once this is done, we can tear down the AIL and the log. 1092 */ 1093 void 1094 xfs_log_unmount( 1095 struct xfs_mount *mp) 1096 { 1097 xfs_log_clean(mp); 1098 1099 /* 1100 * If shutdown has come from iclog IO context, the log 1101 * cleaning will have been skipped and so we need to wait 1102 * for the iclog to complete shutdown processing before we 1103 * tear anything down. 1104 */ 1105 xlog_wait_iclog_completion(mp->m_log); 1106 1107 xfs_buftarg_drain(mp->m_ddev_targp); 1108 1109 xfs_trans_ail_destroy(mp); 1110 1111 xfs_sysfs_del(&mp->m_log->l_kobj); 1112 1113 xlog_dealloc_log(mp->m_log); 1114 } 1115 1116 void 1117 xfs_log_item_init( 1118 struct xfs_mount *mp, 1119 struct xfs_log_item *item, 1120 int type, 1121 const struct xfs_item_ops *ops) 1122 { 1123 item->li_log = mp->m_log; 1124 item->li_ailp = mp->m_ail; 1125 item->li_type = type; 1126 item->li_ops = ops; 1127 item->li_lv = NULL; 1128 1129 INIT_LIST_HEAD(&item->li_ail); 1130 INIT_LIST_HEAD(&item->li_cil); 1131 INIT_LIST_HEAD(&item->li_bio_list); 1132 INIT_LIST_HEAD(&item->li_trans); 1133 } 1134 1135 /* 1136 * Wake up processes waiting for log space after we have moved the log tail. 1137 */ 1138 void 1139 xfs_log_space_wake( 1140 struct xfs_mount *mp) 1141 { 1142 struct xlog *log = mp->m_log; 1143 int free_bytes; 1144 1145 if (xlog_is_shutdown(log)) 1146 return; 1147 1148 if (!list_empty_careful(&log->l_write_head.waiters)) { 1149 ASSERT(!xlog_in_recovery(log)); 1150 1151 spin_lock(&log->l_write_head.lock); 1152 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1153 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1154 spin_unlock(&log->l_write_head.lock); 1155 } 1156 1157 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1158 ASSERT(!xlog_in_recovery(log)); 1159 1160 spin_lock(&log->l_reserve_head.lock); 1161 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1162 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1163 spin_unlock(&log->l_reserve_head.lock); 1164 } 1165 } 1166 1167 /* 1168 * Determine if we have a transaction that has gone to disk that needs to be 1169 * covered. To begin the transition to the idle state firstly the log needs to 1170 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1171 * we start attempting to cover the log. 1172 * 1173 * Only if we are then in a state where covering is needed, the caller is 1174 * informed that dummy transactions are required to move the log into the idle 1175 * state. 1176 * 1177 * If there are any items in the AIl or CIL, then we do not want to attempt to 1178 * cover the log as we may be in a situation where there isn't log space 1179 * available to run a dummy transaction and this can lead to deadlocks when the 1180 * tail of the log is pinned by an item that is modified in the CIL. Hence 1181 * there's no point in running a dummy transaction at this point because we 1182 * can't start trying to idle the log until both the CIL and AIL are empty. 1183 */ 1184 static bool 1185 xfs_log_need_covered( 1186 struct xfs_mount *mp) 1187 { 1188 struct xlog *log = mp->m_log; 1189 bool needed = false; 1190 1191 if (!xlog_cil_empty(log)) 1192 return false; 1193 1194 spin_lock(&log->l_icloglock); 1195 switch (log->l_covered_state) { 1196 case XLOG_STATE_COVER_DONE: 1197 case XLOG_STATE_COVER_DONE2: 1198 case XLOG_STATE_COVER_IDLE: 1199 break; 1200 case XLOG_STATE_COVER_NEED: 1201 case XLOG_STATE_COVER_NEED2: 1202 if (xfs_ail_min_lsn(log->l_ailp)) 1203 break; 1204 if (!xlog_iclogs_empty(log)) 1205 break; 1206 1207 needed = true; 1208 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1209 log->l_covered_state = XLOG_STATE_COVER_DONE; 1210 else 1211 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1212 break; 1213 default: 1214 needed = true; 1215 break; 1216 } 1217 spin_unlock(&log->l_icloglock); 1218 return needed; 1219 } 1220 1221 /* 1222 * Explicitly cover the log. This is similar to background log covering but 1223 * intended for usage in quiesce codepaths. The caller is responsible to ensure 1224 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL 1225 * must all be empty. 1226 */ 1227 static int 1228 xfs_log_cover( 1229 struct xfs_mount *mp) 1230 { 1231 int error = 0; 1232 bool need_covered; 1233 1234 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) && 1235 !xfs_ail_min_lsn(mp->m_log->l_ailp)) || 1236 xlog_is_shutdown(mp->m_log)); 1237 1238 if (!xfs_log_writable(mp)) 1239 return 0; 1240 1241 /* 1242 * xfs_log_need_covered() is not idempotent because it progresses the 1243 * state machine if the log requires covering. Therefore, we must call 1244 * this function once and use the result until we've issued an sb sync. 1245 * Do so first to make that abundantly clear. 1246 * 1247 * Fall into the covering sequence if the log needs covering or the 1248 * mount has lazy superblock accounting to sync to disk. The sb sync 1249 * used for covering accumulates the in-core counters, so covering 1250 * handles this for us. 1251 */ 1252 need_covered = xfs_log_need_covered(mp); 1253 if (!need_covered && !xfs_has_lazysbcount(mp)) 1254 return 0; 1255 1256 /* 1257 * To cover the log, commit the superblock twice (at most) in 1258 * independent checkpoints. The first serves as a reference for the 1259 * tail pointer. The sync transaction and AIL push empties the AIL and 1260 * updates the in-core tail to the LSN of the first checkpoint. The 1261 * second commit updates the on-disk tail with the in-core LSN, 1262 * covering the log. Push the AIL one more time to leave it empty, as 1263 * we found it. 1264 */ 1265 do { 1266 error = xfs_sync_sb(mp, true); 1267 if (error) 1268 break; 1269 xfs_ail_push_all_sync(mp->m_ail); 1270 } while (xfs_log_need_covered(mp)); 1271 1272 return error; 1273 } 1274 1275 /* 1276 * We may be holding the log iclog lock upon entering this routine. 1277 */ 1278 xfs_lsn_t 1279 xlog_assign_tail_lsn_locked( 1280 struct xfs_mount *mp) 1281 { 1282 struct xlog *log = mp->m_log; 1283 struct xfs_log_item *lip; 1284 xfs_lsn_t tail_lsn; 1285 1286 assert_spin_locked(&mp->m_ail->ail_lock); 1287 1288 /* 1289 * To make sure we always have a valid LSN for the log tail we keep 1290 * track of the last LSN which was committed in log->l_last_sync_lsn, 1291 * and use that when the AIL was empty. 1292 */ 1293 lip = xfs_ail_min(mp->m_ail); 1294 if (lip) 1295 tail_lsn = lip->li_lsn; 1296 else 1297 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1298 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1299 atomic64_set(&log->l_tail_lsn, tail_lsn); 1300 return tail_lsn; 1301 } 1302 1303 xfs_lsn_t 1304 xlog_assign_tail_lsn( 1305 struct xfs_mount *mp) 1306 { 1307 xfs_lsn_t tail_lsn; 1308 1309 spin_lock(&mp->m_ail->ail_lock); 1310 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1311 spin_unlock(&mp->m_ail->ail_lock); 1312 1313 return tail_lsn; 1314 } 1315 1316 /* 1317 * Return the space in the log between the tail and the head. The head 1318 * is passed in the cycle/bytes formal parms. In the special case where 1319 * the reserve head has wrapped passed the tail, this calculation is no 1320 * longer valid. In this case, just return 0 which means there is no space 1321 * in the log. This works for all places where this function is called 1322 * with the reserve head. Of course, if the write head were to ever 1323 * wrap the tail, we should blow up. Rather than catch this case here, 1324 * we depend on other ASSERTions in other parts of the code. XXXmiken 1325 * 1326 * If reservation head is behind the tail, we have a problem. Warn about it, 1327 * but then treat it as if the log is empty. 1328 * 1329 * If the log is shut down, the head and tail may be invalid or out of whack, so 1330 * shortcut invalidity asserts in this case so that we don't trigger them 1331 * falsely. 1332 */ 1333 STATIC int 1334 xlog_space_left( 1335 struct xlog *log, 1336 atomic64_t *head) 1337 { 1338 int tail_bytes; 1339 int tail_cycle; 1340 int head_cycle; 1341 int head_bytes; 1342 1343 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1344 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1345 tail_bytes = BBTOB(tail_bytes); 1346 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1347 return log->l_logsize - (head_bytes - tail_bytes); 1348 if (tail_cycle + 1 < head_cycle) 1349 return 0; 1350 1351 /* Ignore potential inconsistency when shutdown. */ 1352 if (xlog_is_shutdown(log)) 1353 return log->l_logsize; 1354 1355 if (tail_cycle < head_cycle) { 1356 ASSERT(tail_cycle == (head_cycle - 1)); 1357 return tail_bytes - head_bytes; 1358 } 1359 1360 /* 1361 * The reservation head is behind the tail. In this case we just want to 1362 * return the size of the log as the amount of space left. 1363 */ 1364 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1365 xfs_alert(log->l_mp, " tail_cycle = %d, tail_bytes = %d", 1366 tail_cycle, tail_bytes); 1367 xfs_alert(log->l_mp, " GH cycle = %d, GH bytes = %d", 1368 head_cycle, head_bytes); 1369 ASSERT(0); 1370 return log->l_logsize; 1371 } 1372 1373 1374 static void 1375 xlog_ioend_work( 1376 struct work_struct *work) 1377 { 1378 struct xlog_in_core *iclog = 1379 container_of(work, struct xlog_in_core, ic_end_io_work); 1380 struct xlog *log = iclog->ic_log; 1381 int error; 1382 1383 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1384 #ifdef DEBUG 1385 /* treat writes with injected CRC errors as failed */ 1386 if (iclog->ic_fail_crc) 1387 error = -EIO; 1388 #endif 1389 1390 /* 1391 * Race to shutdown the filesystem if we see an error. 1392 */ 1393 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1394 xfs_alert(log->l_mp, "log I/O error %d", error); 1395 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1396 } 1397 1398 xlog_state_done_syncing(iclog); 1399 bio_uninit(&iclog->ic_bio); 1400 1401 /* 1402 * Drop the lock to signal that we are done. Nothing references the 1403 * iclog after this, so an unmount waiting on this lock can now tear it 1404 * down safely. As such, it is unsafe to reference the iclog after the 1405 * unlock as we could race with it being freed. 1406 */ 1407 up(&iclog->ic_sema); 1408 } 1409 1410 /* 1411 * Return size of each in-core log record buffer. 1412 * 1413 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1414 * 1415 * If the filesystem blocksize is too large, we may need to choose a 1416 * larger size since the directory code currently logs entire blocks. 1417 */ 1418 STATIC void 1419 xlog_get_iclog_buffer_size( 1420 struct xfs_mount *mp, 1421 struct xlog *log) 1422 { 1423 if (mp->m_logbufs <= 0) 1424 mp->m_logbufs = XLOG_MAX_ICLOGS; 1425 if (mp->m_logbsize <= 0) 1426 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1427 1428 log->l_iclog_bufs = mp->m_logbufs; 1429 log->l_iclog_size = mp->m_logbsize; 1430 1431 /* 1432 * # headers = size / 32k - one header holds cycles from 32k of data. 1433 */ 1434 log->l_iclog_heads = 1435 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE); 1436 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT; 1437 } 1438 1439 void 1440 xfs_log_work_queue( 1441 struct xfs_mount *mp) 1442 { 1443 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1444 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1445 } 1446 1447 /* 1448 * Clear the log incompat flags if we have the opportunity. 1449 * 1450 * This only happens if we're about to log the second dummy transaction as part 1451 * of covering the log and we can get the log incompat feature usage lock. 1452 */ 1453 static inline void 1454 xlog_clear_incompat( 1455 struct xlog *log) 1456 { 1457 struct xfs_mount *mp = log->l_mp; 1458 1459 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb, 1460 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) 1461 return; 1462 1463 if (log->l_covered_state != XLOG_STATE_COVER_DONE2) 1464 return; 1465 1466 if (!down_write_trylock(&log->l_incompat_users)) 1467 return; 1468 1469 xfs_clear_incompat_log_features(mp); 1470 up_write(&log->l_incompat_users); 1471 } 1472 1473 /* 1474 * Every sync period we need to unpin all items in the AIL and push them to 1475 * disk. If there is nothing dirty, then we might need to cover the log to 1476 * indicate that the filesystem is idle. 1477 */ 1478 static void 1479 xfs_log_worker( 1480 struct work_struct *work) 1481 { 1482 struct xlog *log = container_of(to_delayed_work(work), 1483 struct xlog, l_work); 1484 struct xfs_mount *mp = log->l_mp; 1485 1486 /* dgc: errors ignored - not fatal and nowhere to report them */ 1487 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) { 1488 /* 1489 * Dump a transaction into the log that contains no real change. 1490 * This is needed to stamp the current tail LSN into the log 1491 * during the covering operation. 1492 * 1493 * We cannot use an inode here for this - that will push dirty 1494 * state back up into the VFS and then periodic inode flushing 1495 * will prevent log covering from making progress. Hence we 1496 * synchronously log the superblock instead to ensure the 1497 * superblock is immediately unpinned and can be written back. 1498 */ 1499 xlog_clear_incompat(log); 1500 xfs_sync_sb(mp, true); 1501 } else 1502 xfs_log_force(mp, 0); 1503 1504 /* start pushing all the metadata that is currently dirty */ 1505 xfs_ail_push_all(mp->m_ail); 1506 1507 /* queue us up again */ 1508 xfs_log_work_queue(mp); 1509 } 1510 1511 /* 1512 * This routine initializes some of the log structure for a given mount point. 1513 * Its primary purpose is to fill in enough, so recovery can occur. However, 1514 * some other stuff may be filled in too. 1515 */ 1516 STATIC struct xlog * 1517 xlog_alloc_log( 1518 struct xfs_mount *mp, 1519 struct xfs_buftarg *log_target, 1520 xfs_daddr_t blk_offset, 1521 int num_bblks) 1522 { 1523 struct xlog *log; 1524 xlog_rec_header_t *head; 1525 xlog_in_core_t **iclogp; 1526 xlog_in_core_t *iclog, *prev_iclog=NULL; 1527 int i; 1528 int error = -ENOMEM; 1529 uint log2_size = 0; 1530 1531 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1532 if (!log) { 1533 xfs_warn(mp, "Log allocation failed: No memory!"); 1534 goto out; 1535 } 1536 1537 log->l_mp = mp; 1538 log->l_targ = log_target; 1539 log->l_logsize = BBTOB(num_bblks); 1540 log->l_logBBstart = blk_offset; 1541 log->l_logBBsize = num_bblks; 1542 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1543 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 1544 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1545 1546 log->l_prev_block = -1; 1547 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1548 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1549 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1550 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1551 1552 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1) 1553 log->l_iclog_roundoff = mp->m_sb.sb_logsunit; 1554 else 1555 log->l_iclog_roundoff = BBSIZE; 1556 1557 xlog_grant_head_init(&log->l_reserve_head); 1558 xlog_grant_head_init(&log->l_write_head); 1559 1560 error = -EFSCORRUPTED; 1561 if (xfs_has_sector(mp)) { 1562 log2_size = mp->m_sb.sb_logsectlog; 1563 if (log2_size < BBSHIFT) { 1564 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1565 log2_size, BBSHIFT); 1566 goto out_free_log; 1567 } 1568 1569 log2_size -= BBSHIFT; 1570 if (log2_size > mp->m_sectbb_log) { 1571 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1572 log2_size, mp->m_sectbb_log); 1573 goto out_free_log; 1574 } 1575 1576 /* for larger sector sizes, must have v2 or external log */ 1577 if (log2_size && log->l_logBBstart > 0 && 1578 !xfs_has_logv2(mp)) { 1579 xfs_warn(mp, 1580 "log sector size (0x%x) invalid for configuration.", 1581 log2_size); 1582 goto out_free_log; 1583 } 1584 } 1585 log->l_sectBBsize = 1 << log2_size; 1586 1587 init_rwsem(&log->l_incompat_users); 1588 1589 xlog_get_iclog_buffer_size(mp, log); 1590 1591 spin_lock_init(&log->l_icloglock); 1592 init_waitqueue_head(&log->l_flush_wait); 1593 1594 iclogp = &log->l_iclog; 1595 /* 1596 * The amount of memory to allocate for the iclog structure is 1597 * rather funky due to the way the structure is defined. It is 1598 * done this way so that we can use different sizes for machines 1599 * with different amounts of memory. See the definition of 1600 * xlog_in_core_t in xfs_log_priv.h for details. 1601 */ 1602 ASSERT(log->l_iclog_size >= 4096); 1603 for (i = 0; i < log->l_iclog_bufs; i++) { 1604 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1605 sizeof(struct bio_vec); 1606 1607 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL); 1608 if (!iclog) 1609 goto out_free_iclog; 1610 1611 *iclogp = iclog; 1612 iclog->ic_prev = prev_iclog; 1613 prev_iclog = iclog; 1614 1615 iclog->ic_data = kvzalloc(log->l_iclog_size, 1616 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1617 if (!iclog->ic_data) 1618 goto out_free_iclog; 1619 head = &iclog->ic_header; 1620 memset(head, 0, sizeof(xlog_rec_header_t)); 1621 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1622 head->h_version = cpu_to_be32( 1623 xfs_has_logv2(log->l_mp) ? 2 : 1); 1624 head->h_size = cpu_to_be32(log->l_iclog_size); 1625 /* new fields */ 1626 head->h_fmt = cpu_to_be32(XLOG_FMT); 1627 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1628 1629 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1630 iclog->ic_state = XLOG_STATE_ACTIVE; 1631 iclog->ic_log = log; 1632 atomic_set(&iclog->ic_refcnt, 0); 1633 INIT_LIST_HEAD(&iclog->ic_callbacks); 1634 iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize; 1635 1636 init_waitqueue_head(&iclog->ic_force_wait); 1637 init_waitqueue_head(&iclog->ic_write_wait); 1638 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1639 sema_init(&iclog->ic_sema, 1); 1640 1641 iclogp = &iclog->ic_next; 1642 } 1643 *iclogp = log->l_iclog; /* complete ring */ 1644 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1645 1646 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1647 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | 1648 WQ_HIGHPRI), 1649 0, mp->m_super->s_id); 1650 if (!log->l_ioend_workqueue) 1651 goto out_free_iclog; 1652 1653 error = xlog_cil_init(log); 1654 if (error) 1655 goto out_destroy_workqueue; 1656 return log; 1657 1658 out_destroy_workqueue: 1659 destroy_workqueue(log->l_ioend_workqueue); 1660 out_free_iclog: 1661 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1662 prev_iclog = iclog->ic_next; 1663 kmem_free(iclog->ic_data); 1664 kmem_free(iclog); 1665 if (prev_iclog == log->l_iclog) 1666 break; 1667 } 1668 out_free_log: 1669 kmem_free(log); 1670 out: 1671 return ERR_PTR(error); 1672 } /* xlog_alloc_log */ 1673 1674 /* 1675 * Compute the LSN that we'd need to push the log tail towards in order to have 1676 * (a) enough on-disk log space to log the number of bytes specified, (b) at 1677 * least 25% of the log space free, and (c) at least 256 blocks free. If the 1678 * log free space already meets all three thresholds, this function returns 1679 * NULLCOMMITLSN. 1680 */ 1681 xfs_lsn_t 1682 xlog_grant_push_threshold( 1683 struct xlog *log, 1684 int need_bytes) 1685 { 1686 xfs_lsn_t threshold_lsn = 0; 1687 xfs_lsn_t last_sync_lsn; 1688 int free_blocks; 1689 int free_bytes; 1690 int threshold_block; 1691 int threshold_cycle; 1692 int free_threshold; 1693 1694 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1695 1696 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1697 free_blocks = BTOBBT(free_bytes); 1698 1699 /* 1700 * Set the threshold for the minimum number of free blocks in the 1701 * log to the maximum of what the caller needs, one quarter of the 1702 * log, and 256 blocks. 1703 */ 1704 free_threshold = BTOBB(need_bytes); 1705 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1706 free_threshold = max(free_threshold, 256); 1707 if (free_blocks >= free_threshold) 1708 return NULLCOMMITLSN; 1709 1710 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1711 &threshold_block); 1712 threshold_block += free_threshold; 1713 if (threshold_block >= log->l_logBBsize) { 1714 threshold_block -= log->l_logBBsize; 1715 threshold_cycle += 1; 1716 } 1717 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1718 threshold_block); 1719 /* 1720 * Don't pass in an lsn greater than the lsn of the last 1721 * log record known to be on disk. Use a snapshot of the last sync lsn 1722 * so that it doesn't change between the compare and the set. 1723 */ 1724 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1725 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1726 threshold_lsn = last_sync_lsn; 1727 1728 return threshold_lsn; 1729 } 1730 1731 /* 1732 * Push the tail of the log if we need to do so to maintain the free log space 1733 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a 1734 * policy which pushes on an lsn which is further along in the log once we 1735 * reach the high water mark. In this manner, we would be creating a low water 1736 * mark. 1737 */ 1738 STATIC void 1739 xlog_grant_push_ail( 1740 struct xlog *log, 1741 int need_bytes) 1742 { 1743 xfs_lsn_t threshold_lsn; 1744 1745 threshold_lsn = xlog_grant_push_threshold(log, need_bytes); 1746 if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log)) 1747 return; 1748 1749 /* 1750 * Get the transaction layer to kick the dirty buffers out to 1751 * disk asynchronously. No point in trying to do this if 1752 * the filesystem is shutting down. 1753 */ 1754 xfs_ail_push(log->l_ailp, threshold_lsn); 1755 } 1756 1757 /* 1758 * Stamp cycle number in every block 1759 */ 1760 STATIC void 1761 xlog_pack_data( 1762 struct xlog *log, 1763 struct xlog_in_core *iclog, 1764 int roundoff) 1765 { 1766 int i, j, k; 1767 int size = iclog->ic_offset + roundoff; 1768 __be32 cycle_lsn; 1769 char *dp; 1770 1771 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1772 1773 dp = iclog->ic_datap; 1774 for (i = 0; i < BTOBB(size); i++) { 1775 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1776 break; 1777 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1778 *(__be32 *)dp = cycle_lsn; 1779 dp += BBSIZE; 1780 } 1781 1782 if (xfs_has_logv2(log->l_mp)) { 1783 xlog_in_core_2_t *xhdr = iclog->ic_data; 1784 1785 for ( ; i < BTOBB(size); i++) { 1786 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1787 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1788 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1789 *(__be32 *)dp = cycle_lsn; 1790 dp += BBSIZE; 1791 } 1792 1793 for (i = 1; i < log->l_iclog_heads; i++) 1794 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1795 } 1796 } 1797 1798 /* 1799 * Calculate the checksum for a log buffer. 1800 * 1801 * This is a little more complicated than it should be because the various 1802 * headers and the actual data are non-contiguous. 1803 */ 1804 __le32 1805 xlog_cksum( 1806 struct xlog *log, 1807 struct xlog_rec_header *rhead, 1808 char *dp, 1809 int size) 1810 { 1811 uint32_t crc; 1812 1813 /* first generate the crc for the record header ... */ 1814 crc = xfs_start_cksum_update((char *)rhead, 1815 sizeof(struct xlog_rec_header), 1816 offsetof(struct xlog_rec_header, h_crc)); 1817 1818 /* ... then for additional cycle data for v2 logs ... */ 1819 if (xfs_has_logv2(log->l_mp)) { 1820 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1821 int i; 1822 int xheads; 1823 1824 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE); 1825 1826 for (i = 1; i < xheads; i++) { 1827 crc = crc32c(crc, &xhdr[i].hic_xheader, 1828 sizeof(struct xlog_rec_ext_header)); 1829 } 1830 } 1831 1832 /* ... and finally for the payload */ 1833 crc = crc32c(crc, dp, size); 1834 1835 return xfs_end_cksum(crc); 1836 } 1837 1838 static void 1839 xlog_bio_end_io( 1840 struct bio *bio) 1841 { 1842 struct xlog_in_core *iclog = bio->bi_private; 1843 1844 queue_work(iclog->ic_log->l_ioend_workqueue, 1845 &iclog->ic_end_io_work); 1846 } 1847 1848 static int 1849 xlog_map_iclog_data( 1850 struct bio *bio, 1851 void *data, 1852 size_t count) 1853 { 1854 do { 1855 struct page *page = kmem_to_page(data); 1856 unsigned int off = offset_in_page(data); 1857 size_t len = min_t(size_t, count, PAGE_SIZE - off); 1858 1859 if (bio_add_page(bio, page, len, off) != len) 1860 return -EIO; 1861 1862 data += len; 1863 count -= len; 1864 } while (count); 1865 1866 return 0; 1867 } 1868 1869 STATIC void 1870 xlog_write_iclog( 1871 struct xlog *log, 1872 struct xlog_in_core *iclog, 1873 uint64_t bno, 1874 unsigned int count) 1875 { 1876 ASSERT(bno < log->l_logBBsize); 1877 trace_xlog_iclog_write(iclog, _RET_IP_); 1878 1879 /* 1880 * We lock the iclogbufs here so that we can serialise against I/O 1881 * completion during unmount. We might be processing a shutdown 1882 * triggered during unmount, and that can occur asynchronously to the 1883 * unmount thread, and hence we need to ensure that completes before 1884 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1885 * across the log IO to archieve that. 1886 */ 1887 down(&iclog->ic_sema); 1888 if (xlog_is_shutdown(log)) { 1889 /* 1890 * It would seem logical to return EIO here, but we rely on 1891 * the log state machine to propagate I/O errors instead of 1892 * doing it here. We kick of the state machine and unlock 1893 * the buffer manually, the code needs to be kept in sync 1894 * with the I/O completion path. 1895 */ 1896 goto sync; 1897 } 1898 1899 /* 1900 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more 1901 * IOs coming immediately after this one. This prevents the block layer 1902 * writeback throttle from throttling log writes behind background 1903 * metadata writeback and causing priority inversions. 1904 */ 1905 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec, 1906 howmany(count, PAGE_SIZE), 1907 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE); 1908 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1909 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1910 iclog->ic_bio.bi_private = iclog; 1911 1912 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) { 1913 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1914 /* 1915 * For external log devices, we also need to flush the data 1916 * device cache first to ensure all metadata writeback covered 1917 * by the LSN in this iclog is on stable storage. This is slow, 1918 * but it *must* complete before we issue the external log IO. 1919 * 1920 * If the flush fails, we cannot conclude that past metadata 1921 * writeback from the log succeeded. Repeating the flush is 1922 * not possible, hence we must shut down with log IO error to 1923 * avoid shutdown re-entering this path and erroring out again. 1924 */ 1925 if (log->l_targ != log->l_mp->m_ddev_targp && 1926 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev)) 1927 goto shutdown; 1928 } 1929 if (iclog->ic_flags & XLOG_ICL_NEED_FUA) 1930 iclog->ic_bio.bi_opf |= REQ_FUA; 1931 1932 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA); 1933 1934 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) 1935 goto shutdown; 1936 1937 if (is_vmalloc_addr(iclog->ic_data)) 1938 flush_kernel_vmap_range(iclog->ic_data, count); 1939 1940 /* 1941 * If this log buffer would straddle the end of the log we will have 1942 * to split it up into two bios, so that we can continue at the start. 1943 */ 1944 if (bno + BTOBB(count) > log->l_logBBsize) { 1945 struct bio *split; 1946 1947 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1948 GFP_NOIO, &fs_bio_set); 1949 bio_chain(split, &iclog->ic_bio); 1950 submit_bio(split); 1951 1952 /* restart at logical offset zero for the remainder */ 1953 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1954 } 1955 1956 submit_bio(&iclog->ic_bio); 1957 return; 1958 shutdown: 1959 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1960 sync: 1961 xlog_state_done_syncing(iclog); 1962 up(&iclog->ic_sema); 1963 } 1964 1965 /* 1966 * We need to bump cycle number for the part of the iclog that is 1967 * written to the start of the log. Watch out for the header magic 1968 * number case, though. 1969 */ 1970 static void 1971 xlog_split_iclog( 1972 struct xlog *log, 1973 void *data, 1974 uint64_t bno, 1975 unsigned int count) 1976 { 1977 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 1978 unsigned int i; 1979 1980 for (i = split_offset; i < count; i += BBSIZE) { 1981 uint32_t cycle = get_unaligned_be32(data + i); 1982 1983 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1984 cycle++; 1985 put_unaligned_be32(cycle, data + i); 1986 } 1987 } 1988 1989 static int 1990 xlog_calc_iclog_size( 1991 struct xlog *log, 1992 struct xlog_in_core *iclog, 1993 uint32_t *roundoff) 1994 { 1995 uint32_t count_init, count; 1996 1997 /* Add for LR header */ 1998 count_init = log->l_iclog_hsize + iclog->ic_offset; 1999 count = roundup(count_init, log->l_iclog_roundoff); 2000 2001 *roundoff = count - count_init; 2002 2003 ASSERT(count >= count_init); 2004 ASSERT(*roundoff < log->l_iclog_roundoff); 2005 return count; 2006 } 2007 2008 /* 2009 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 2010 * fashion. Previously, we should have moved the current iclog 2011 * ptr in the log to point to the next available iclog. This allows further 2012 * write to continue while this code syncs out an iclog ready to go. 2013 * Before an in-core log can be written out, the data section must be scanned 2014 * to save away the 1st word of each BBSIZE block into the header. We replace 2015 * it with the current cycle count. Each BBSIZE block is tagged with the 2016 * cycle count because there in an implicit assumption that drives will 2017 * guarantee that entire 512 byte blocks get written at once. In other words, 2018 * we can't have part of a 512 byte block written and part not written. By 2019 * tagging each block, we will know which blocks are valid when recovering 2020 * after an unclean shutdown. 2021 * 2022 * This routine is single threaded on the iclog. No other thread can be in 2023 * this routine with the same iclog. Changing contents of iclog can there- 2024 * fore be done without grabbing the state machine lock. Updating the global 2025 * log will require grabbing the lock though. 2026 * 2027 * The entire log manager uses a logical block numbering scheme. Only 2028 * xlog_write_iclog knows about the fact that the log may not start with 2029 * block zero on a given device. 2030 */ 2031 STATIC void 2032 xlog_sync( 2033 struct xlog *log, 2034 struct xlog_in_core *iclog, 2035 struct xlog_ticket *ticket) 2036 { 2037 unsigned int count; /* byte count of bwrite */ 2038 unsigned int roundoff; /* roundoff to BB or stripe */ 2039 uint64_t bno; 2040 unsigned int size; 2041 2042 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2043 trace_xlog_iclog_sync(iclog, _RET_IP_); 2044 2045 count = xlog_calc_iclog_size(log, iclog, &roundoff); 2046 2047 /* 2048 * If we have a ticket, account for the roundoff via the ticket 2049 * reservation to avoid touching the hot grant heads needlessly. 2050 * Otherwise, we have to move grant heads directly. 2051 */ 2052 if (ticket) { 2053 ticket->t_curr_res -= roundoff; 2054 } else { 2055 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 2056 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 2057 } 2058 2059 /* put cycle number in every block */ 2060 xlog_pack_data(log, iclog, roundoff); 2061 2062 /* real byte length */ 2063 size = iclog->ic_offset; 2064 if (xfs_has_logv2(log->l_mp)) 2065 size += roundoff; 2066 iclog->ic_header.h_len = cpu_to_be32(size); 2067 2068 XFS_STATS_INC(log->l_mp, xs_log_writes); 2069 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 2070 2071 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)); 2072 2073 /* Do we need to split this write into 2 parts? */ 2074 if (bno + BTOBB(count) > log->l_logBBsize) 2075 xlog_split_iclog(log, &iclog->ic_header, bno, count); 2076 2077 /* calculcate the checksum */ 2078 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 2079 iclog->ic_datap, size); 2080 /* 2081 * Intentionally corrupt the log record CRC based on the error injection 2082 * frequency, if defined. This facilitates testing log recovery in the 2083 * event of torn writes. Hence, set the IOABORT state to abort the log 2084 * write on I/O completion and shutdown the fs. The subsequent mount 2085 * detects the bad CRC and attempts to recover. 2086 */ 2087 #ifdef DEBUG 2088 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 2089 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 2090 iclog->ic_fail_crc = true; 2091 xfs_warn(log->l_mp, 2092 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 2093 be64_to_cpu(iclog->ic_header.h_lsn)); 2094 } 2095 #endif 2096 xlog_verify_iclog(log, iclog, count); 2097 xlog_write_iclog(log, iclog, bno, count); 2098 } 2099 2100 /* 2101 * Deallocate a log structure 2102 */ 2103 STATIC void 2104 xlog_dealloc_log( 2105 struct xlog *log) 2106 { 2107 xlog_in_core_t *iclog, *next_iclog; 2108 int i; 2109 2110 /* 2111 * Destroy the CIL after waiting for iclog IO completion because an 2112 * iclog EIO error will try to shut down the log, which accesses the 2113 * CIL to wake up the waiters. 2114 */ 2115 xlog_cil_destroy(log); 2116 2117 iclog = log->l_iclog; 2118 for (i = 0; i < log->l_iclog_bufs; i++) { 2119 next_iclog = iclog->ic_next; 2120 kmem_free(iclog->ic_data); 2121 kmem_free(iclog); 2122 iclog = next_iclog; 2123 } 2124 2125 log->l_mp->m_log = NULL; 2126 destroy_workqueue(log->l_ioend_workqueue); 2127 kmem_free(log); 2128 } 2129 2130 /* 2131 * Update counters atomically now that memcpy is done. 2132 */ 2133 static inline void 2134 xlog_state_finish_copy( 2135 struct xlog *log, 2136 struct xlog_in_core *iclog, 2137 int record_cnt, 2138 int copy_bytes) 2139 { 2140 lockdep_assert_held(&log->l_icloglock); 2141 2142 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2143 iclog->ic_offset += copy_bytes; 2144 } 2145 2146 /* 2147 * print out info relating to regions written which consume 2148 * the reservation 2149 */ 2150 void 2151 xlog_print_tic_res( 2152 struct xfs_mount *mp, 2153 struct xlog_ticket *ticket) 2154 { 2155 xfs_warn(mp, "ticket reservation summary:"); 2156 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res); 2157 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res); 2158 xfs_warn(mp, " original count = %d", ticket->t_ocnt); 2159 xfs_warn(mp, " remaining count = %d", ticket->t_cnt); 2160 } 2161 2162 /* 2163 * Print a summary of the transaction. 2164 */ 2165 void 2166 xlog_print_trans( 2167 struct xfs_trans *tp) 2168 { 2169 struct xfs_mount *mp = tp->t_mountp; 2170 struct xfs_log_item *lip; 2171 2172 /* dump core transaction and ticket info */ 2173 xfs_warn(mp, "transaction summary:"); 2174 xfs_warn(mp, " log res = %d", tp->t_log_res); 2175 xfs_warn(mp, " log count = %d", tp->t_log_count); 2176 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2177 2178 xlog_print_tic_res(mp, tp->t_ticket); 2179 2180 /* dump each log item */ 2181 list_for_each_entry(lip, &tp->t_items, li_trans) { 2182 struct xfs_log_vec *lv = lip->li_lv; 2183 struct xfs_log_iovec *vec; 2184 int i; 2185 2186 xfs_warn(mp, "log item: "); 2187 xfs_warn(mp, " type = 0x%x", lip->li_type); 2188 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2189 if (!lv) 2190 continue; 2191 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2192 xfs_warn(mp, " size = %d", lv->lv_size); 2193 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2194 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2195 2196 /* dump each iovec for the log item */ 2197 vec = lv->lv_iovecp; 2198 for (i = 0; i < lv->lv_niovecs; i++) { 2199 int dumplen = min(vec->i_len, 32); 2200 2201 xfs_warn(mp, " iovec[%d]", i); 2202 xfs_warn(mp, " type = 0x%x", vec->i_type); 2203 xfs_warn(mp, " len = %d", vec->i_len); 2204 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2205 xfs_hex_dump(vec->i_addr, dumplen); 2206 2207 vec++; 2208 } 2209 } 2210 } 2211 2212 static inline void 2213 xlog_write_iovec( 2214 struct xlog_in_core *iclog, 2215 uint32_t *log_offset, 2216 void *data, 2217 uint32_t write_len, 2218 int *bytes_left, 2219 uint32_t *record_cnt, 2220 uint32_t *data_cnt) 2221 { 2222 ASSERT(*log_offset < iclog->ic_log->l_iclog_size); 2223 ASSERT(*log_offset % sizeof(int32_t) == 0); 2224 ASSERT(write_len % sizeof(int32_t) == 0); 2225 2226 memcpy(iclog->ic_datap + *log_offset, data, write_len); 2227 *log_offset += write_len; 2228 *bytes_left -= write_len; 2229 (*record_cnt)++; 2230 *data_cnt += write_len; 2231 } 2232 2233 /* 2234 * Write log vectors into a single iclog which is guaranteed by the caller 2235 * to have enough space to write the entire log vector into. 2236 */ 2237 static void 2238 xlog_write_full( 2239 struct xfs_log_vec *lv, 2240 struct xlog_ticket *ticket, 2241 struct xlog_in_core *iclog, 2242 uint32_t *log_offset, 2243 uint32_t *len, 2244 uint32_t *record_cnt, 2245 uint32_t *data_cnt) 2246 { 2247 int index; 2248 2249 ASSERT(*log_offset + *len <= iclog->ic_size || 2250 iclog->ic_state == XLOG_STATE_WANT_SYNC); 2251 2252 /* 2253 * Ordered log vectors have no regions to write so this 2254 * loop will naturally skip them. 2255 */ 2256 for (index = 0; index < lv->lv_niovecs; index++) { 2257 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2258 struct xlog_op_header *ophdr = reg->i_addr; 2259 2260 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2261 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2262 reg->i_len, len, record_cnt, data_cnt); 2263 } 2264 } 2265 2266 static int 2267 xlog_write_get_more_iclog_space( 2268 struct xlog_ticket *ticket, 2269 struct xlog_in_core **iclogp, 2270 uint32_t *log_offset, 2271 uint32_t len, 2272 uint32_t *record_cnt, 2273 uint32_t *data_cnt) 2274 { 2275 struct xlog_in_core *iclog = *iclogp; 2276 struct xlog *log = iclog->ic_log; 2277 int error; 2278 2279 spin_lock(&log->l_icloglock); 2280 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC); 2281 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2282 error = xlog_state_release_iclog(log, iclog, ticket); 2283 spin_unlock(&log->l_icloglock); 2284 if (error) 2285 return error; 2286 2287 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2288 log_offset); 2289 if (error) 2290 return error; 2291 *record_cnt = 0; 2292 *data_cnt = 0; 2293 *iclogp = iclog; 2294 return 0; 2295 } 2296 2297 /* 2298 * Write log vectors into a single iclog which is smaller than the current chain 2299 * length. We write until we cannot fit a full record into the remaining space 2300 * and then stop. We return the log vector that is to be written that cannot 2301 * wholly fit in the iclog. 2302 */ 2303 static int 2304 xlog_write_partial( 2305 struct xfs_log_vec *lv, 2306 struct xlog_ticket *ticket, 2307 struct xlog_in_core **iclogp, 2308 uint32_t *log_offset, 2309 uint32_t *len, 2310 uint32_t *record_cnt, 2311 uint32_t *data_cnt) 2312 { 2313 struct xlog_in_core *iclog = *iclogp; 2314 struct xlog_op_header *ophdr; 2315 int index = 0; 2316 uint32_t rlen; 2317 int error; 2318 2319 /* walk the logvec, copying until we run out of space in the iclog */ 2320 for (index = 0; index < lv->lv_niovecs; index++) { 2321 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2322 uint32_t reg_offset = 0; 2323 2324 /* 2325 * The first region of a continuation must have a non-zero 2326 * length otherwise log recovery will just skip over it and 2327 * start recovering from the next opheader it finds. Because we 2328 * mark the next opheader as a continuation, recovery will then 2329 * incorrectly add the continuation to the previous region and 2330 * that breaks stuff. 2331 * 2332 * Hence if there isn't space for region data after the 2333 * opheader, then we need to start afresh with a new iclog. 2334 */ 2335 if (iclog->ic_size - *log_offset <= 2336 sizeof(struct xlog_op_header)) { 2337 error = xlog_write_get_more_iclog_space(ticket, 2338 &iclog, log_offset, *len, record_cnt, 2339 data_cnt); 2340 if (error) 2341 return error; 2342 } 2343 2344 ophdr = reg->i_addr; 2345 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset); 2346 2347 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2348 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header)); 2349 if (rlen != reg->i_len) 2350 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2351 2352 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2353 rlen, len, record_cnt, data_cnt); 2354 2355 /* If we wrote the whole region, move to the next. */ 2356 if (rlen == reg->i_len) 2357 continue; 2358 2359 /* 2360 * We now have a partially written iovec, but it can span 2361 * multiple iclogs so we loop here. First we release the iclog 2362 * we currently have, then we get a new iclog and add a new 2363 * opheader. Then we continue copying from where we were until 2364 * we either complete the iovec or fill the iclog. If we 2365 * complete the iovec, then we increment the index and go right 2366 * back to the top of the outer loop. if we fill the iclog, we 2367 * run the inner loop again. 2368 * 2369 * This is complicated by the tail of a region using all the 2370 * space in an iclog and hence requiring us to release the iclog 2371 * and get a new one before returning to the outer loop. We must 2372 * always guarantee that we exit this inner loop with at least 2373 * space for log transaction opheaders left in the current 2374 * iclog, hence we cannot just terminate the loop at the end 2375 * of the of the continuation. So we loop while there is no 2376 * space left in the current iclog, and check for the end of the 2377 * continuation after getting a new iclog. 2378 */ 2379 do { 2380 /* 2381 * Ensure we include the continuation opheader in the 2382 * space we need in the new iclog by adding that size 2383 * to the length we require. This continuation opheader 2384 * needs to be accounted to the ticket as the space it 2385 * consumes hasn't been accounted to the lv we are 2386 * writing. 2387 */ 2388 error = xlog_write_get_more_iclog_space(ticket, 2389 &iclog, log_offset, 2390 *len + sizeof(struct xlog_op_header), 2391 record_cnt, data_cnt); 2392 if (error) 2393 return error; 2394 2395 ophdr = iclog->ic_datap + *log_offset; 2396 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2397 ophdr->oh_clientid = XFS_TRANSACTION; 2398 ophdr->oh_res2 = 0; 2399 ophdr->oh_flags = XLOG_WAS_CONT_TRANS; 2400 2401 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2402 *log_offset += sizeof(struct xlog_op_header); 2403 *data_cnt += sizeof(struct xlog_op_header); 2404 2405 /* 2406 * If rlen fits in the iclog, then end the region 2407 * continuation. Otherwise we're going around again. 2408 */ 2409 reg_offset += rlen; 2410 rlen = reg->i_len - reg_offset; 2411 if (rlen <= iclog->ic_size - *log_offset) 2412 ophdr->oh_flags |= XLOG_END_TRANS; 2413 else 2414 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2415 2416 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset); 2417 ophdr->oh_len = cpu_to_be32(rlen); 2418 2419 xlog_write_iovec(iclog, log_offset, 2420 reg->i_addr + reg_offset, 2421 rlen, len, record_cnt, data_cnt); 2422 2423 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS); 2424 } 2425 2426 /* 2427 * No more iovecs remain in this logvec so return the next log vec to 2428 * the caller so it can go back to fast path copying. 2429 */ 2430 *iclogp = iclog; 2431 return 0; 2432 } 2433 2434 /* 2435 * Write some region out to in-core log 2436 * 2437 * This will be called when writing externally provided regions or when 2438 * writing out a commit record for a given transaction. 2439 * 2440 * General algorithm: 2441 * 1. Find total length of this write. This may include adding to the 2442 * lengths passed in. 2443 * 2. Check whether we violate the tickets reservation. 2444 * 3. While writing to this iclog 2445 * A. Reserve as much space in this iclog as can get 2446 * B. If this is first write, save away start lsn 2447 * C. While writing this region: 2448 * 1. If first write of transaction, write start record 2449 * 2. Write log operation header (header per region) 2450 * 3. Find out if we can fit entire region into this iclog 2451 * 4. Potentially, verify destination memcpy ptr 2452 * 5. Memcpy (partial) region 2453 * 6. If partial copy, release iclog; otherwise, continue 2454 * copying more regions into current iclog 2455 * 4. Mark want sync bit (in simulation mode) 2456 * 5. Release iclog for potential flush to on-disk log. 2457 * 2458 * ERRORS: 2459 * 1. Panic if reservation is overrun. This should never happen since 2460 * reservation amounts are generated internal to the filesystem. 2461 * NOTES: 2462 * 1. Tickets are single threaded data structures. 2463 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2464 * syncing routine. When a single log_write region needs to span 2465 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2466 * on all log operation writes which don't contain the end of the 2467 * region. The XLOG_END_TRANS bit is used for the in-core log 2468 * operation which contains the end of the continued log_write region. 2469 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2470 * we don't really know exactly how much space will be used. As a result, 2471 * we don't update ic_offset until the end when we know exactly how many 2472 * bytes have been written out. 2473 */ 2474 int 2475 xlog_write( 2476 struct xlog *log, 2477 struct xfs_cil_ctx *ctx, 2478 struct list_head *lv_chain, 2479 struct xlog_ticket *ticket, 2480 uint32_t len) 2481 2482 { 2483 struct xlog_in_core *iclog = NULL; 2484 struct xfs_log_vec *lv; 2485 uint32_t record_cnt = 0; 2486 uint32_t data_cnt = 0; 2487 int error = 0; 2488 int log_offset; 2489 2490 if (ticket->t_curr_res < 0) { 2491 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2492 "ctx ticket reservation ran out. Need to up reservation"); 2493 xlog_print_tic_res(log->l_mp, ticket); 2494 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 2495 } 2496 2497 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2498 &log_offset); 2499 if (error) 2500 return error; 2501 2502 ASSERT(log_offset <= iclog->ic_size - 1); 2503 2504 /* 2505 * If we have a context pointer, pass it the first iclog we are 2506 * writing to so it can record state needed for iclog write 2507 * ordering. 2508 */ 2509 if (ctx) 2510 xlog_cil_set_ctx_write_state(ctx, iclog); 2511 2512 list_for_each_entry(lv, lv_chain, lv_list) { 2513 /* 2514 * If the entire log vec does not fit in the iclog, punt it to 2515 * the partial copy loop which can handle this case. 2516 */ 2517 if (lv->lv_niovecs && 2518 lv->lv_bytes > iclog->ic_size - log_offset) { 2519 error = xlog_write_partial(lv, ticket, &iclog, 2520 &log_offset, &len, &record_cnt, 2521 &data_cnt); 2522 if (error) { 2523 /* 2524 * We have no iclog to release, so just return 2525 * the error immediately. 2526 */ 2527 return error; 2528 } 2529 } else { 2530 xlog_write_full(lv, ticket, iclog, &log_offset, 2531 &len, &record_cnt, &data_cnt); 2532 } 2533 } 2534 ASSERT(len == 0); 2535 2536 /* 2537 * We've already been guaranteed that the last writes will fit inside 2538 * the current iclog, and hence it will already have the space used by 2539 * those writes accounted to it. Hence we do not need to update the 2540 * iclog with the number of bytes written here. 2541 */ 2542 spin_lock(&log->l_icloglock); 2543 xlog_state_finish_copy(log, iclog, record_cnt, 0); 2544 error = xlog_state_release_iclog(log, iclog, ticket); 2545 spin_unlock(&log->l_icloglock); 2546 2547 return error; 2548 } 2549 2550 static void 2551 xlog_state_activate_iclog( 2552 struct xlog_in_core *iclog, 2553 int *iclogs_changed) 2554 { 2555 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2556 trace_xlog_iclog_activate(iclog, _RET_IP_); 2557 2558 /* 2559 * If the number of ops in this iclog indicate it just contains the 2560 * dummy transaction, we can change state into IDLE (the second time 2561 * around). Otherwise we should change the state into NEED a dummy. 2562 * We don't need to cover the dummy. 2563 */ 2564 if (*iclogs_changed == 0 && 2565 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) { 2566 *iclogs_changed = 1; 2567 } else { 2568 /* 2569 * We have two dirty iclogs so start over. This could also be 2570 * num of ops indicating this is not the dummy going out. 2571 */ 2572 *iclogs_changed = 2; 2573 } 2574 2575 iclog->ic_state = XLOG_STATE_ACTIVE; 2576 iclog->ic_offset = 0; 2577 iclog->ic_header.h_num_logops = 0; 2578 memset(iclog->ic_header.h_cycle_data, 0, 2579 sizeof(iclog->ic_header.h_cycle_data)); 2580 iclog->ic_header.h_lsn = 0; 2581 iclog->ic_header.h_tail_lsn = 0; 2582 } 2583 2584 /* 2585 * Loop through all iclogs and mark all iclogs currently marked DIRTY as 2586 * ACTIVE after iclog I/O has completed. 2587 */ 2588 static void 2589 xlog_state_activate_iclogs( 2590 struct xlog *log, 2591 int *iclogs_changed) 2592 { 2593 struct xlog_in_core *iclog = log->l_iclog; 2594 2595 do { 2596 if (iclog->ic_state == XLOG_STATE_DIRTY) 2597 xlog_state_activate_iclog(iclog, iclogs_changed); 2598 /* 2599 * The ordering of marking iclogs ACTIVE must be maintained, so 2600 * an iclog doesn't become ACTIVE beyond one that is SYNCING. 2601 */ 2602 else if (iclog->ic_state != XLOG_STATE_ACTIVE) 2603 break; 2604 } while ((iclog = iclog->ic_next) != log->l_iclog); 2605 } 2606 2607 static int 2608 xlog_covered_state( 2609 int prev_state, 2610 int iclogs_changed) 2611 { 2612 /* 2613 * We go to NEED for any non-covering writes. We go to NEED2 if we just 2614 * wrote the first covering record (DONE). We go to IDLE if we just 2615 * wrote the second covering record (DONE2) and remain in IDLE until a 2616 * non-covering write occurs. 2617 */ 2618 switch (prev_state) { 2619 case XLOG_STATE_COVER_IDLE: 2620 if (iclogs_changed == 1) 2621 return XLOG_STATE_COVER_IDLE; 2622 fallthrough; 2623 case XLOG_STATE_COVER_NEED: 2624 case XLOG_STATE_COVER_NEED2: 2625 break; 2626 case XLOG_STATE_COVER_DONE: 2627 if (iclogs_changed == 1) 2628 return XLOG_STATE_COVER_NEED2; 2629 break; 2630 case XLOG_STATE_COVER_DONE2: 2631 if (iclogs_changed == 1) 2632 return XLOG_STATE_COVER_IDLE; 2633 break; 2634 default: 2635 ASSERT(0); 2636 } 2637 2638 return XLOG_STATE_COVER_NEED; 2639 } 2640 2641 STATIC void 2642 xlog_state_clean_iclog( 2643 struct xlog *log, 2644 struct xlog_in_core *dirty_iclog) 2645 { 2646 int iclogs_changed = 0; 2647 2648 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_); 2649 2650 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2651 2652 xlog_state_activate_iclogs(log, &iclogs_changed); 2653 wake_up_all(&dirty_iclog->ic_force_wait); 2654 2655 if (iclogs_changed) { 2656 log->l_covered_state = xlog_covered_state(log->l_covered_state, 2657 iclogs_changed); 2658 } 2659 } 2660 2661 STATIC xfs_lsn_t 2662 xlog_get_lowest_lsn( 2663 struct xlog *log) 2664 { 2665 struct xlog_in_core *iclog = log->l_iclog; 2666 xfs_lsn_t lowest_lsn = 0, lsn; 2667 2668 do { 2669 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2670 iclog->ic_state == XLOG_STATE_DIRTY) 2671 continue; 2672 2673 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2674 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2675 lowest_lsn = lsn; 2676 } while ((iclog = iclog->ic_next) != log->l_iclog); 2677 2678 return lowest_lsn; 2679 } 2680 2681 /* 2682 * Completion of a iclog IO does not imply that a transaction has completed, as 2683 * transactions can be large enough to span many iclogs. We cannot change the 2684 * tail of the log half way through a transaction as this may be the only 2685 * transaction in the log and moving the tail to point to the middle of it 2686 * will prevent recovery from finding the start of the transaction. Hence we 2687 * should only update the last_sync_lsn if this iclog contains transaction 2688 * completion callbacks on it. 2689 * 2690 * We have to do this before we drop the icloglock to ensure we are the only one 2691 * that can update it. 2692 * 2693 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick 2694 * the reservation grant head pushing. This is due to the fact that the push 2695 * target is bound by the current last_sync_lsn value. Hence if we have a large 2696 * amount of log space bound up in this committing transaction then the 2697 * last_sync_lsn value may be the limiting factor preventing tail pushing from 2698 * freeing space in the log. Hence once we've updated the last_sync_lsn we 2699 * should push the AIL to ensure the push target (and hence the grant head) is 2700 * no longer bound by the old log head location and can move forwards and make 2701 * progress again. 2702 */ 2703 static void 2704 xlog_state_set_callback( 2705 struct xlog *log, 2706 struct xlog_in_core *iclog, 2707 xfs_lsn_t header_lsn) 2708 { 2709 trace_xlog_iclog_callback(iclog, _RET_IP_); 2710 iclog->ic_state = XLOG_STATE_CALLBACK; 2711 2712 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2713 header_lsn) <= 0); 2714 2715 if (list_empty_careful(&iclog->ic_callbacks)) 2716 return; 2717 2718 atomic64_set(&log->l_last_sync_lsn, header_lsn); 2719 xlog_grant_push_ail(log, 0); 2720 } 2721 2722 /* 2723 * Return true if we need to stop processing, false to continue to the next 2724 * iclog. The caller will need to run callbacks if the iclog is returned in the 2725 * XLOG_STATE_CALLBACK state. 2726 */ 2727 static bool 2728 xlog_state_iodone_process_iclog( 2729 struct xlog *log, 2730 struct xlog_in_core *iclog) 2731 { 2732 xfs_lsn_t lowest_lsn; 2733 xfs_lsn_t header_lsn; 2734 2735 switch (iclog->ic_state) { 2736 case XLOG_STATE_ACTIVE: 2737 case XLOG_STATE_DIRTY: 2738 /* 2739 * Skip all iclogs in the ACTIVE & DIRTY states: 2740 */ 2741 return false; 2742 case XLOG_STATE_DONE_SYNC: 2743 /* 2744 * Now that we have an iclog that is in the DONE_SYNC state, do 2745 * one more check here to see if we have chased our tail around. 2746 * If this is not the lowest lsn iclog, then we will leave it 2747 * for another completion to process. 2748 */ 2749 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2750 lowest_lsn = xlog_get_lowest_lsn(log); 2751 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2752 return false; 2753 xlog_state_set_callback(log, iclog, header_lsn); 2754 return false; 2755 default: 2756 /* 2757 * Can only perform callbacks in order. Since this iclog is not 2758 * in the DONE_SYNC state, we skip the rest and just try to 2759 * clean up. 2760 */ 2761 return true; 2762 } 2763 } 2764 2765 /* 2766 * Loop over all the iclogs, running attached callbacks on them. Return true if 2767 * we ran any callbacks, indicating that we dropped the icloglock. We don't need 2768 * to handle transient shutdown state here at all because 2769 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown 2770 * cleanup of the callbacks. 2771 */ 2772 static bool 2773 xlog_state_do_iclog_callbacks( 2774 struct xlog *log) 2775 __releases(&log->l_icloglock) 2776 __acquires(&log->l_icloglock) 2777 { 2778 struct xlog_in_core *first_iclog = log->l_iclog; 2779 struct xlog_in_core *iclog = first_iclog; 2780 bool ran_callback = false; 2781 2782 do { 2783 LIST_HEAD(cb_list); 2784 2785 if (xlog_state_iodone_process_iclog(log, iclog)) 2786 break; 2787 if (iclog->ic_state != XLOG_STATE_CALLBACK) { 2788 iclog = iclog->ic_next; 2789 continue; 2790 } 2791 list_splice_init(&iclog->ic_callbacks, &cb_list); 2792 spin_unlock(&log->l_icloglock); 2793 2794 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_); 2795 xlog_cil_process_committed(&cb_list); 2796 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_); 2797 ran_callback = true; 2798 2799 spin_lock(&log->l_icloglock); 2800 xlog_state_clean_iclog(log, iclog); 2801 iclog = iclog->ic_next; 2802 } while (iclog != first_iclog); 2803 2804 return ran_callback; 2805 } 2806 2807 2808 /* 2809 * Loop running iclog completion callbacks until there are no more iclogs in a 2810 * state that can run callbacks. 2811 */ 2812 STATIC void 2813 xlog_state_do_callback( 2814 struct xlog *log) 2815 { 2816 int flushcnt = 0; 2817 int repeats = 0; 2818 2819 spin_lock(&log->l_icloglock); 2820 while (xlog_state_do_iclog_callbacks(log)) { 2821 if (xlog_is_shutdown(log)) 2822 break; 2823 2824 if (++repeats > 5000) { 2825 flushcnt += repeats; 2826 repeats = 0; 2827 xfs_warn(log->l_mp, 2828 "%s: possible infinite loop (%d iterations)", 2829 __func__, flushcnt); 2830 } 2831 } 2832 2833 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE) 2834 wake_up_all(&log->l_flush_wait); 2835 2836 spin_unlock(&log->l_icloglock); 2837 } 2838 2839 2840 /* 2841 * Finish transitioning this iclog to the dirty state. 2842 * 2843 * Callbacks could take time, so they are done outside the scope of the 2844 * global state machine log lock. 2845 */ 2846 STATIC void 2847 xlog_state_done_syncing( 2848 struct xlog_in_core *iclog) 2849 { 2850 struct xlog *log = iclog->ic_log; 2851 2852 spin_lock(&log->l_icloglock); 2853 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2854 trace_xlog_iclog_sync_done(iclog, _RET_IP_); 2855 2856 /* 2857 * If we got an error, either on the first buffer, or in the case of 2858 * split log writes, on the second, we shut down the file system and 2859 * no iclogs should ever be attempted to be written to disk again. 2860 */ 2861 if (!xlog_is_shutdown(log)) { 2862 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING); 2863 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2864 } 2865 2866 /* 2867 * Someone could be sleeping prior to writing out the next 2868 * iclog buffer, we wake them all, one will get to do the 2869 * I/O, the others get to wait for the result. 2870 */ 2871 wake_up_all(&iclog->ic_write_wait); 2872 spin_unlock(&log->l_icloglock); 2873 xlog_state_do_callback(log); 2874 } 2875 2876 /* 2877 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2878 * sleep. We wait on the flush queue on the head iclog as that should be 2879 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2880 * we will wait here and all new writes will sleep until a sync completes. 2881 * 2882 * The in-core logs are used in a circular fashion. They are not used 2883 * out-of-order even when an iclog past the head is free. 2884 * 2885 * return: 2886 * * log_offset where xlog_write() can start writing into the in-core 2887 * log's data space. 2888 * * in-core log pointer to which xlog_write() should write. 2889 * * boolean indicating this is a continued write to an in-core log. 2890 * If this is the last write, then the in-core log's offset field 2891 * needs to be incremented, depending on the amount of data which 2892 * is copied. 2893 */ 2894 STATIC int 2895 xlog_state_get_iclog_space( 2896 struct xlog *log, 2897 int len, 2898 struct xlog_in_core **iclogp, 2899 struct xlog_ticket *ticket, 2900 int *logoffsetp) 2901 { 2902 int log_offset; 2903 xlog_rec_header_t *head; 2904 xlog_in_core_t *iclog; 2905 2906 restart: 2907 spin_lock(&log->l_icloglock); 2908 if (xlog_is_shutdown(log)) { 2909 spin_unlock(&log->l_icloglock); 2910 return -EIO; 2911 } 2912 2913 iclog = log->l_iclog; 2914 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2915 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2916 2917 /* Wait for log writes to have flushed */ 2918 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2919 goto restart; 2920 } 2921 2922 head = &iclog->ic_header; 2923 2924 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2925 log_offset = iclog->ic_offset; 2926 2927 trace_xlog_iclog_get_space(iclog, _RET_IP_); 2928 2929 /* On the 1st write to an iclog, figure out lsn. This works 2930 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2931 * committing to. If the offset is set, that's how many blocks 2932 * must be written. 2933 */ 2934 if (log_offset == 0) { 2935 ticket->t_curr_res -= log->l_iclog_hsize; 2936 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2937 head->h_lsn = cpu_to_be64( 2938 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2939 ASSERT(log->l_curr_block >= 0); 2940 } 2941 2942 /* If there is enough room to write everything, then do it. Otherwise, 2943 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2944 * bit is on, so this will get flushed out. Don't update ic_offset 2945 * until you know exactly how many bytes get copied. Therefore, wait 2946 * until later to update ic_offset. 2947 * 2948 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2949 * can fit into remaining data section. 2950 */ 2951 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2952 int error = 0; 2953 2954 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2955 2956 /* 2957 * If we are the only one writing to this iclog, sync it to 2958 * disk. We need to do an atomic compare and decrement here to 2959 * avoid racing with concurrent atomic_dec_and_lock() calls in 2960 * xlog_state_release_iclog() when there is more than one 2961 * reference to the iclog. 2962 */ 2963 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 2964 error = xlog_state_release_iclog(log, iclog, ticket); 2965 spin_unlock(&log->l_icloglock); 2966 if (error) 2967 return error; 2968 goto restart; 2969 } 2970 2971 /* Do we have enough room to write the full amount in the remainder 2972 * of this iclog? Or must we continue a write on the next iclog and 2973 * mark this iclog as completely taken? In the case where we switch 2974 * iclogs (to mark it taken), this particular iclog will release/sync 2975 * to disk in xlog_write(). 2976 */ 2977 if (len <= iclog->ic_size - iclog->ic_offset) 2978 iclog->ic_offset += len; 2979 else 2980 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2981 *iclogp = iclog; 2982 2983 ASSERT(iclog->ic_offset <= iclog->ic_size); 2984 spin_unlock(&log->l_icloglock); 2985 2986 *logoffsetp = log_offset; 2987 return 0; 2988 } 2989 2990 /* 2991 * The first cnt-1 times a ticket goes through here we don't need to move the 2992 * grant write head because the permanent reservation has reserved cnt times the 2993 * unit amount. Release part of current permanent unit reservation and reset 2994 * current reservation to be one units worth. Also move grant reservation head 2995 * forward. 2996 */ 2997 void 2998 xfs_log_ticket_regrant( 2999 struct xlog *log, 3000 struct xlog_ticket *ticket) 3001 { 3002 trace_xfs_log_ticket_regrant(log, ticket); 3003 3004 if (ticket->t_cnt > 0) 3005 ticket->t_cnt--; 3006 3007 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3008 ticket->t_curr_res); 3009 xlog_grant_sub_space(log, &log->l_write_head.grant, 3010 ticket->t_curr_res); 3011 ticket->t_curr_res = ticket->t_unit_res; 3012 3013 trace_xfs_log_ticket_regrant_sub(log, ticket); 3014 3015 /* just return if we still have some of the pre-reserved space */ 3016 if (!ticket->t_cnt) { 3017 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3018 ticket->t_unit_res); 3019 trace_xfs_log_ticket_regrant_exit(log, ticket); 3020 3021 ticket->t_curr_res = ticket->t_unit_res; 3022 } 3023 3024 xfs_log_ticket_put(ticket); 3025 } 3026 3027 /* 3028 * Give back the space left from a reservation. 3029 * 3030 * All the information we need to make a correct determination of space left 3031 * is present. For non-permanent reservations, things are quite easy. The 3032 * count should have been decremented to zero. We only need to deal with the 3033 * space remaining in the current reservation part of the ticket. If the 3034 * ticket contains a permanent reservation, there may be left over space which 3035 * needs to be released. A count of N means that N-1 refills of the current 3036 * reservation can be done before we need to ask for more space. The first 3037 * one goes to fill up the first current reservation. Once we run out of 3038 * space, the count will stay at zero and the only space remaining will be 3039 * in the current reservation field. 3040 */ 3041 void 3042 xfs_log_ticket_ungrant( 3043 struct xlog *log, 3044 struct xlog_ticket *ticket) 3045 { 3046 int bytes; 3047 3048 trace_xfs_log_ticket_ungrant(log, ticket); 3049 3050 if (ticket->t_cnt > 0) 3051 ticket->t_cnt--; 3052 3053 trace_xfs_log_ticket_ungrant_sub(log, ticket); 3054 3055 /* 3056 * If this is a permanent reservation ticket, we may be able to free 3057 * up more space based on the remaining count. 3058 */ 3059 bytes = ticket->t_curr_res; 3060 if (ticket->t_cnt > 0) { 3061 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3062 bytes += ticket->t_unit_res*ticket->t_cnt; 3063 } 3064 3065 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3066 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3067 3068 trace_xfs_log_ticket_ungrant_exit(log, ticket); 3069 3070 xfs_log_space_wake(log->l_mp); 3071 xfs_log_ticket_put(ticket); 3072 } 3073 3074 /* 3075 * This routine will mark the current iclog in the ring as WANT_SYNC and move 3076 * the current iclog pointer to the next iclog in the ring. 3077 */ 3078 void 3079 xlog_state_switch_iclogs( 3080 struct xlog *log, 3081 struct xlog_in_core *iclog, 3082 int eventual_size) 3083 { 3084 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3085 assert_spin_locked(&log->l_icloglock); 3086 trace_xlog_iclog_switch(iclog, _RET_IP_); 3087 3088 if (!eventual_size) 3089 eventual_size = iclog->ic_offset; 3090 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3091 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3092 log->l_prev_block = log->l_curr_block; 3093 log->l_prev_cycle = log->l_curr_cycle; 3094 3095 /* roll log?: ic_offset changed later */ 3096 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3097 3098 /* Round up to next log-sunit */ 3099 if (log->l_iclog_roundoff > BBSIZE) { 3100 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff); 3101 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3102 } 3103 3104 if (log->l_curr_block >= log->l_logBBsize) { 3105 /* 3106 * Rewind the current block before the cycle is bumped to make 3107 * sure that the combined LSN never transiently moves forward 3108 * when the log wraps to the next cycle. This is to support the 3109 * unlocked sample of these fields from xlog_valid_lsn(). Most 3110 * other cases should acquire l_icloglock. 3111 */ 3112 log->l_curr_block -= log->l_logBBsize; 3113 ASSERT(log->l_curr_block >= 0); 3114 smp_wmb(); 3115 log->l_curr_cycle++; 3116 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3117 log->l_curr_cycle++; 3118 } 3119 ASSERT(iclog == log->l_iclog); 3120 log->l_iclog = iclog->ic_next; 3121 } 3122 3123 /* 3124 * Force the iclog to disk and check if the iclog has been completed before 3125 * xlog_force_iclog() returns. This can happen on synchronous (e.g. 3126 * pmem) or fast async storage because we drop the icloglock to issue the IO. 3127 * If completion has already occurred, tell the caller so that it can avoid an 3128 * unnecessary wait on the iclog. 3129 */ 3130 static int 3131 xlog_force_and_check_iclog( 3132 struct xlog_in_core *iclog, 3133 bool *completed) 3134 { 3135 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3136 int error; 3137 3138 *completed = false; 3139 error = xlog_force_iclog(iclog); 3140 if (error) 3141 return error; 3142 3143 /* 3144 * If the iclog has already been completed and reused the header LSN 3145 * will have been rewritten by completion 3146 */ 3147 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) 3148 *completed = true; 3149 return 0; 3150 } 3151 3152 /* 3153 * Write out all data in the in-core log as of this exact moment in time. 3154 * 3155 * Data may be written to the in-core log during this call. However, 3156 * we don't guarantee this data will be written out. A change from past 3157 * implementation means this routine will *not* write out zero length LRs. 3158 * 3159 * Basically, we try and perform an intelligent scan of the in-core logs. 3160 * If we determine there is no flushable data, we just return. There is no 3161 * flushable data if: 3162 * 3163 * 1. the current iclog is active and has no data; the previous iclog 3164 * is in the active or dirty state. 3165 * 2. the current iclog is drity, and the previous iclog is in the 3166 * active or dirty state. 3167 * 3168 * We may sleep if: 3169 * 3170 * 1. the current iclog is not in the active nor dirty state. 3171 * 2. the current iclog dirty, and the previous iclog is not in the 3172 * active nor dirty state. 3173 * 3. the current iclog is active, and there is another thread writing 3174 * to this particular iclog. 3175 * 4. a) the current iclog is active and has no other writers 3176 * b) when we return from flushing out this iclog, it is still 3177 * not in the active nor dirty state. 3178 */ 3179 int 3180 xfs_log_force( 3181 struct xfs_mount *mp, 3182 uint flags) 3183 { 3184 struct xlog *log = mp->m_log; 3185 struct xlog_in_core *iclog; 3186 3187 XFS_STATS_INC(mp, xs_log_force); 3188 trace_xfs_log_force(mp, 0, _RET_IP_); 3189 3190 xlog_cil_force(log); 3191 3192 spin_lock(&log->l_icloglock); 3193 if (xlog_is_shutdown(log)) 3194 goto out_error; 3195 3196 iclog = log->l_iclog; 3197 trace_xlog_iclog_force(iclog, _RET_IP_); 3198 3199 if (iclog->ic_state == XLOG_STATE_DIRTY || 3200 (iclog->ic_state == XLOG_STATE_ACTIVE && 3201 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3202 /* 3203 * If the head is dirty or (active and empty), then we need to 3204 * look at the previous iclog. 3205 * 3206 * If the previous iclog is active or dirty we are done. There 3207 * is nothing to sync out. Otherwise, we attach ourselves to the 3208 * previous iclog and go to sleep. 3209 */ 3210 iclog = iclog->ic_prev; 3211 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3212 if (atomic_read(&iclog->ic_refcnt) == 0) { 3213 /* We have exclusive access to this iclog. */ 3214 bool completed; 3215 3216 if (xlog_force_and_check_iclog(iclog, &completed)) 3217 goto out_error; 3218 3219 if (completed) 3220 goto out_unlock; 3221 } else { 3222 /* 3223 * Someone else is still writing to this iclog, so we 3224 * need to ensure that when they release the iclog it 3225 * gets synced immediately as we may be waiting on it. 3226 */ 3227 xlog_state_switch_iclogs(log, iclog, 0); 3228 } 3229 } 3230 3231 /* 3232 * The iclog we are about to wait on may contain the checkpoint pushed 3233 * by the above xlog_cil_force() call, but it may not have been pushed 3234 * to disk yet. Like the ACTIVE case above, we need to make sure caches 3235 * are flushed when this iclog is written. 3236 */ 3237 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) 3238 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3239 3240 if (flags & XFS_LOG_SYNC) 3241 return xlog_wait_on_iclog(iclog); 3242 out_unlock: 3243 spin_unlock(&log->l_icloglock); 3244 return 0; 3245 out_error: 3246 spin_unlock(&log->l_icloglock); 3247 return -EIO; 3248 } 3249 3250 /* 3251 * Force the log to a specific LSN. 3252 * 3253 * If an iclog with that lsn can be found: 3254 * If it is in the DIRTY state, just return. 3255 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3256 * state and go to sleep or return. 3257 * If it is in any other state, go to sleep or return. 3258 * 3259 * Synchronous forces are implemented with a wait queue. All callers trying 3260 * to force a given lsn to disk must wait on the queue attached to the 3261 * specific in-core log. When given in-core log finally completes its write 3262 * to disk, that thread will wake up all threads waiting on the queue. 3263 */ 3264 static int 3265 xlog_force_lsn( 3266 struct xlog *log, 3267 xfs_lsn_t lsn, 3268 uint flags, 3269 int *log_flushed, 3270 bool already_slept) 3271 { 3272 struct xlog_in_core *iclog; 3273 bool completed; 3274 3275 spin_lock(&log->l_icloglock); 3276 if (xlog_is_shutdown(log)) 3277 goto out_error; 3278 3279 iclog = log->l_iclog; 3280 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3281 trace_xlog_iclog_force_lsn(iclog, _RET_IP_); 3282 iclog = iclog->ic_next; 3283 if (iclog == log->l_iclog) 3284 goto out_unlock; 3285 } 3286 3287 switch (iclog->ic_state) { 3288 case XLOG_STATE_ACTIVE: 3289 /* 3290 * We sleep here if we haven't already slept (e.g. this is the 3291 * first time we've looked at the correct iclog buf) and the 3292 * buffer before us is going to be sync'ed. The reason for this 3293 * is that if we are doing sync transactions here, by waiting 3294 * for the previous I/O to complete, we can allow a few more 3295 * transactions into this iclog before we close it down. 3296 * 3297 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3298 * refcnt so we can release the log (which drops the ref count). 3299 * The state switch keeps new transaction commits from using 3300 * this buffer. When the current commits finish writing into 3301 * the buffer, the refcount will drop to zero and the buffer 3302 * will go out then. 3303 */ 3304 if (!already_slept && 3305 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 3306 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 3307 xlog_wait(&iclog->ic_prev->ic_write_wait, 3308 &log->l_icloglock); 3309 return -EAGAIN; 3310 } 3311 if (xlog_force_and_check_iclog(iclog, &completed)) 3312 goto out_error; 3313 if (log_flushed) 3314 *log_flushed = 1; 3315 if (completed) 3316 goto out_unlock; 3317 break; 3318 case XLOG_STATE_WANT_SYNC: 3319 /* 3320 * This iclog may contain the checkpoint pushed by the 3321 * xlog_cil_force_seq() call, but there are other writers still 3322 * accessing it so it hasn't been pushed to disk yet. Like the 3323 * ACTIVE case above, we need to make sure caches are flushed 3324 * when this iclog is written. 3325 */ 3326 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3327 break; 3328 default: 3329 /* 3330 * The entire checkpoint was written by the CIL force and is on 3331 * its way to disk already. It will be stable when it 3332 * completes, so we don't need to manipulate caches here at all. 3333 * We just need to wait for completion if necessary. 3334 */ 3335 break; 3336 } 3337 3338 if (flags & XFS_LOG_SYNC) 3339 return xlog_wait_on_iclog(iclog); 3340 out_unlock: 3341 spin_unlock(&log->l_icloglock); 3342 return 0; 3343 out_error: 3344 spin_unlock(&log->l_icloglock); 3345 return -EIO; 3346 } 3347 3348 /* 3349 * Force the log to a specific checkpoint sequence. 3350 * 3351 * First force the CIL so that all the required changes have been flushed to the 3352 * iclogs. If the CIL force completed it will return a commit LSN that indicates 3353 * the iclog that needs to be flushed to stable storage. If the caller needs 3354 * a synchronous log force, we will wait on the iclog with the LSN returned by 3355 * xlog_cil_force_seq() to be completed. 3356 */ 3357 int 3358 xfs_log_force_seq( 3359 struct xfs_mount *mp, 3360 xfs_csn_t seq, 3361 uint flags, 3362 int *log_flushed) 3363 { 3364 struct xlog *log = mp->m_log; 3365 xfs_lsn_t lsn; 3366 int ret; 3367 ASSERT(seq != 0); 3368 3369 XFS_STATS_INC(mp, xs_log_force); 3370 trace_xfs_log_force(mp, seq, _RET_IP_); 3371 3372 lsn = xlog_cil_force_seq(log, seq); 3373 if (lsn == NULLCOMMITLSN) 3374 return 0; 3375 3376 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false); 3377 if (ret == -EAGAIN) { 3378 XFS_STATS_INC(mp, xs_log_force_sleep); 3379 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true); 3380 } 3381 return ret; 3382 } 3383 3384 /* 3385 * Free a used ticket when its refcount falls to zero. 3386 */ 3387 void 3388 xfs_log_ticket_put( 3389 xlog_ticket_t *ticket) 3390 { 3391 ASSERT(atomic_read(&ticket->t_ref) > 0); 3392 if (atomic_dec_and_test(&ticket->t_ref)) 3393 kmem_cache_free(xfs_log_ticket_cache, ticket); 3394 } 3395 3396 xlog_ticket_t * 3397 xfs_log_ticket_get( 3398 xlog_ticket_t *ticket) 3399 { 3400 ASSERT(atomic_read(&ticket->t_ref) > 0); 3401 atomic_inc(&ticket->t_ref); 3402 return ticket; 3403 } 3404 3405 /* 3406 * Figure out the total log space unit (in bytes) that would be 3407 * required for a log ticket. 3408 */ 3409 static int 3410 xlog_calc_unit_res( 3411 struct xlog *log, 3412 int unit_bytes, 3413 int *niclogs) 3414 { 3415 int iclog_space; 3416 uint num_headers; 3417 3418 /* 3419 * Permanent reservations have up to 'cnt'-1 active log operations 3420 * in the log. A unit in this case is the amount of space for one 3421 * of these log operations. Normal reservations have a cnt of 1 3422 * and their unit amount is the total amount of space required. 3423 * 3424 * The following lines of code account for non-transaction data 3425 * which occupy space in the on-disk log. 3426 * 3427 * Normal form of a transaction is: 3428 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3429 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3430 * 3431 * We need to account for all the leadup data and trailer data 3432 * around the transaction data. 3433 * And then we need to account for the worst case in terms of using 3434 * more space. 3435 * The worst case will happen if: 3436 * - the placement of the transaction happens to be such that the 3437 * roundoff is at its maximum 3438 * - the transaction data is synced before the commit record is synced 3439 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3440 * Therefore the commit record is in its own Log Record. 3441 * This can happen as the commit record is called with its 3442 * own region to xlog_write(). 3443 * This then means that in the worst case, roundoff can happen for 3444 * the commit-rec as well. 3445 * The commit-rec is smaller than padding in this scenario and so it is 3446 * not added separately. 3447 */ 3448 3449 /* for trans header */ 3450 unit_bytes += sizeof(xlog_op_header_t); 3451 unit_bytes += sizeof(xfs_trans_header_t); 3452 3453 /* for start-rec */ 3454 unit_bytes += sizeof(xlog_op_header_t); 3455 3456 /* 3457 * for LR headers - the space for data in an iclog is the size minus 3458 * the space used for the headers. If we use the iclog size, then we 3459 * undercalculate the number of headers required. 3460 * 3461 * Furthermore - the addition of op headers for split-recs might 3462 * increase the space required enough to require more log and op 3463 * headers, so take that into account too. 3464 * 3465 * IMPORTANT: This reservation makes the assumption that if this 3466 * transaction is the first in an iclog and hence has the LR headers 3467 * accounted to it, then the remaining space in the iclog is 3468 * exclusively for this transaction. i.e. if the transaction is larger 3469 * than the iclog, it will be the only thing in that iclog. 3470 * Fundamentally, this means we must pass the entire log vector to 3471 * xlog_write to guarantee this. 3472 */ 3473 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3474 num_headers = howmany(unit_bytes, iclog_space); 3475 3476 /* for split-recs - ophdrs added when data split over LRs */ 3477 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3478 3479 /* add extra header reservations if we overrun */ 3480 while (!num_headers || 3481 howmany(unit_bytes, iclog_space) > num_headers) { 3482 unit_bytes += sizeof(xlog_op_header_t); 3483 num_headers++; 3484 } 3485 unit_bytes += log->l_iclog_hsize * num_headers; 3486 3487 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3488 unit_bytes += log->l_iclog_hsize; 3489 3490 /* roundoff padding for transaction data and one for commit record */ 3491 unit_bytes += 2 * log->l_iclog_roundoff; 3492 3493 if (niclogs) 3494 *niclogs = num_headers; 3495 return unit_bytes; 3496 } 3497 3498 int 3499 xfs_log_calc_unit_res( 3500 struct xfs_mount *mp, 3501 int unit_bytes) 3502 { 3503 return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL); 3504 } 3505 3506 /* 3507 * Allocate and initialise a new log ticket. 3508 */ 3509 struct xlog_ticket * 3510 xlog_ticket_alloc( 3511 struct xlog *log, 3512 int unit_bytes, 3513 int cnt, 3514 bool permanent) 3515 { 3516 struct xlog_ticket *tic; 3517 int unit_res; 3518 3519 tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL); 3520 3521 unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs); 3522 3523 atomic_set(&tic->t_ref, 1); 3524 tic->t_task = current; 3525 INIT_LIST_HEAD(&tic->t_queue); 3526 tic->t_unit_res = unit_res; 3527 tic->t_curr_res = unit_res; 3528 tic->t_cnt = cnt; 3529 tic->t_ocnt = cnt; 3530 tic->t_tid = get_random_u32(); 3531 if (permanent) 3532 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3533 3534 return tic; 3535 } 3536 3537 #if defined(DEBUG) 3538 /* 3539 * Check to make sure the grant write head didn't just over lap the tail. If 3540 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3541 * the cycles differ by exactly one and check the byte count. 3542 * 3543 * This check is run unlocked, so can give false positives. Rather than assert 3544 * on failures, use a warn-once flag and a panic tag to allow the admin to 3545 * determine if they want to panic the machine when such an error occurs. For 3546 * debug kernels this will have the same effect as using an assert but, unlinke 3547 * an assert, it can be turned off at runtime. 3548 */ 3549 STATIC void 3550 xlog_verify_grant_tail( 3551 struct xlog *log) 3552 { 3553 int tail_cycle, tail_blocks; 3554 int cycle, space; 3555 3556 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3557 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3558 if (tail_cycle != cycle) { 3559 if (cycle - 1 != tail_cycle && 3560 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3561 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3562 "%s: cycle - 1 != tail_cycle", __func__); 3563 } 3564 3565 if (space > BBTOB(tail_blocks) && 3566 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) { 3567 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3568 "%s: space > BBTOB(tail_blocks)", __func__); 3569 } 3570 } 3571 } 3572 3573 /* check if it will fit */ 3574 STATIC void 3575 xlog_verify_tail_lsn( 3576 struct xlog *log, 3577 struct xlog_in_core *iclog) 3578 { 3579 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn); 3580 int blocks; 3581 3582 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3583 blocks = 3584 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3585 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3586 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3587 } else { 3588 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3589 3590 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3591 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3592 3593 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3594 if (blocks < BTOBB(iclog->ic_offset) + 1) 3595 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3596 } 3597 } 3598 3599 /* 3600 * Perform a number of checks on the iclog before writing to disk. 3601 * 3602 * 1. Make sure the iclogs are still circular 3603 * 2. Make sure we have a good magic number 3604 * 3. Make sure we don't have magic numbers in the data 3605 * 4. Check fields of each log operation header for: 3606 * A. Valid client identifier 3607 * B. tid ptr value falls in valid ptr space (user space code) 3608 * C. Length in log record header is correct according to the 3609 * individual operation headers within record. 3610 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3611 * log, check the preceding blocks of the physical log to make sure all 3612 * the cycle numbers agree with the current cycle number. 3613 */ 3614 STATIC void 3615 xlog_verify_iclog( 3616 struct xlog *log, 3617 struct xlog_in_core *iclog, 3618 int count) 3619 { 3620 xlog_op_header_t *ophead; 3621 xlog_in_core_t *icptr; 3622 xlog_in_core_2_t *xhdr; 3623 void *base_ptr, *ptr, *p; 3624 ptrdiff_t field_offset; 3625 uint8_t clientid; 3626 int len, i, j, k, op_len; 3627 int idx; 3628 3629 /* check validity of iclog pointers */ 3630 spin_lock(&log->l_icloglock); 3631 icptr = log->l_iclog; 3632 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3633 ASSERT(icptr); 3634 3635 if (icptr != log->l_iclog) 3636 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3637 spin_unlock(&log->l_icloglock); 3638 3639 /* check log magic numbers */ 3640 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3641 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3642 3643 base_ptr = ptr = &iclog->ic_header; 3644 p = &iclog->ic_header; 3645 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3646 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3647 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3648 __func__); 3649 } 3650 3651 /* check fields */ 3652 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3653 base_ptr = ptr = iclog->ic_datap; 3654 ophead = ptr; 3655 xhdr = iclog->ic_data; 3656 for (i = 0; i < len; i++) { 3657 ophead = ptr; 3658 3659 /* clientid is only 1 byte */ 3660 p = &ophead->oh_clientid; 3661 field_offset = p - base_ptr; 3662 if (field_offset & 0x1ff) { 3663 clientid = ophead->oh_clientid; 3664 } else { 3665 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap); 3666 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3667 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3668 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3669 clientid = xlog_get_client_id( 3670 xhdr[j].hic_xheader.xh_cycle_data[k]); 3671 } else { 3672 clientid = xlog_get_client_id( 3673 iclog->ic_header.h_cycle_data[idx]); 3674 } 3675 } 3676 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) { 3677 xfs_warn(log->l_mp, 3678 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx", 3679 __func__, i, clientid, ophead, 3680 (unsigned long)field_offset); 3681 } 3682 3683 /* check length */ 3684 p = &ophead->oh_len; 3685 field_offset = p - base_ptr; 3686 if (field_offset & 0x1ff) { 3687 op_len = be32_to_cpu(ophead->oh_len); 3688 } else { 3689 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap); 3690 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3691 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3692 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3693 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3694 } else { 3695 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3696 } 3697 } 3698 ptr += sizeof(xlog_op_header_t) + op_len; 3699 } 3700 } 3701 #endif 3702 3703 /* 3704 * Perform a forced shutdown on the log. 3705 * 3706 * This can be called from low level log code to trigger a shutdown, or from the 3707 * high level mount shutdown code when the mount shuts down. 3708 * 3709 * Our main objectives here are to make sure that: 3710 * a. if the shutdown was not due to a log IO error, flush the logs to 3711 * disk. Anything modified after this is ignored. 3712 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested 3713 * parties to find out. Nothing new gets queued after this is done. 3714 * c. Tasks sleeping on log reservations, pinned objects and 3715 * other resources get woken up. 3716 * d. The mount is also marked as shut down so that log triggered shutdowns 3717 * still behave the same as if they called xfs_forced_shutdown(). 3718 * 3719 * Return true if the shutdown cause was a log IO error and we actually shut the 3720 * log down. 3721 */ 3722 bool 3723 xlog_force_shutdown( 3724 struct xlog *log, 3725 uint32_t shutdown_flags) 3726 { 3727 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR); 3728 3729 if (!log) 3730 return false; 3731 3732 /* 3733 * Flush all the completed transactions to disk before marking the log 3734 * being shut down. We need to do this first as shutting down the log 3735 * before the force will prevent the log force from flushing the iclogs 3736 * to disk. 3737 * 3738 * When we are in recovery, there are no transactions to flush, and 3739 * we don't want to touch the log because we don't want to perturb the 3740 * current head/tail for future recovery attempts. Hence we need to 3741 * avoid a log force in this case. 3742 * 3743 * If we are shutting down due to a log IO error, then we must avoid 3744 * trying to write the log as that may just result in more IO errors and 3745 * an endless shutdown/force loop. 3746 */ 3747 if (!log_error && !xlog_in_recovery(log)) 3748 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3749 3750 /* 3751 * Atomically set the shutdown state. If the shutdown state is already 3752 * set, there someone else is performing the shutdown and so we are done 3753 * here. This should never happen because we should only ever get called 3754 * once by the first shutdown caller. 3755 * 3756 * Much of the log state machine transitions assume that shutdown state 3757 * cannot change once they hold the log->l_icloglock. Hence we need to 3758 * hold that lock here, even though we use the atomic test_and_set_bit() 3759 * operation to set the shutdown state. 3760 */ 3761 spin_lock(&log->l_icloglock); 3762 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) { 3763 spin_unlock(&log->l_icloglock); 3764 return false; 3765 } 3766 spin_unlock(&log->l_icloglock); 3767 3768 /* 3769 * If this log shutdown also sets the mount shutdown state, issue a 3770 * shutdown warning message. 3771 */ 3772 if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) { 3773 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR, 3774 "Filesystem has been shut down due to log error (0x%x).", 3775 shutdown_flags); 3776 xfs_alert(log->l_mp, 3777 "Please unmount the filesystem and rectify the problem(s)."); 3778 if (xfs_error_level >= XFS_ERRLEVEL_HIGH) 3779 xfs_stack_trace(); 3780 } 3781 3782 /* 3783 * We don't want anybody waiting for log reservations after this. That 3784 * means we have to wake up everybody queued up on reserveq as well as 3785 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3786 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3787 * action is protected by the grant locks. 3788 */ 3789 xlog_grant_head_wake_all(&log->l_reserve_head); 3790 xlog_grant_head_wake_all(&log->l_write_head); 3791 3792 /* 3793 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3794 * as if the log writes were completed. The abort handling in the log 3795 * item committed callback functions will do this again under lock to 3796 * avoid races. 3797 */ 3798 spin_lock(&log->l_cilp->xc_push_lock); 3799 wake_up_all(&log->l_cilp->xc_start_wait); 3800 wake_up_all(&log->l_cilp->xc_commit_wait); 3801 spin_unlock(&log->l_cilp->xc_push_lock); 3802 3803 spin_lock(&log->l_icloglock); 3804 xlog_state_shutdown_callbacks(log); 3805 spin_unlock(&log->l_icloglock); 3806 3807 wake_up_var(&log->l_opstate); 3808 return log_error; 3809 } 3810 3811 STATIC int 3812 xlog_iclogs_empty( 3813 struct xlog *log) 3814 { 3815 xlog_in_core_t *iclog; 3816 3817 iclog = log->l_iclog; 3818 do { 3819 /* endianness does not matter here, zero is zero in 3820 * any language. 3821 */ 3822 if (iclog->ic_header.h_num_logops) 3823 return 0; 3824 iclog = iclog->ic_next; 3825 } while (iclog != log->l_iclog); 3826 return 1; 3827 } 3828 3829 /* 3830 * Verify that an LSN stamped into a piece of metadata is valid. This is 3831 * intended for use in read verifiers on v5 superblocks. 3832 */ 3833 bool 3834 xfs_log_check_lsn( 3835 struct xfs_mount *mp, 3836 xfs_lsn_t lsn) 3837 { 3838 struct xlog *log = mp->m_log; 3839 bool valid; 3840 3841 /* 3842 * norecovery mode skips mount-time log processing and unconditionally 3843 * resets the in-core LSN. We can't validate in this mode, but 3844 * modifications are not allowed anyways so just return true. 3845 */ 3846 if (xfs_has_norecovery(mp)) 3847 return true; 3848 3849 /* 3850 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3851 * handled by recovery and thus safe to ignore here. 3852 */ 3853 if (lsn == NULLCOMMITLSN) 3854 return true; 3855 3856 valid = xlog_valid_lsn(mp->m_log, lsn); 3857 3858 /* warn the user about what's gone wrong before verifier failure */ 3859 if (!valid) { 3860 spin_lock(&log->l_icloglock); 3861 xfs_warn(mp, 3862 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3863 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 3864 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 3865 log->l_curr_cycle, log->l_curr_block); 3866 spin_unlock(&log->l_icloglock); 3867 } 3868 3869 return valid; 3870 } 3871 3872 /* 3873 * Notify the log that we're about to start using a feature that is protected 3874 * by a log incompat feature flag. This will prevent log covering from 3875 * clearing those flags. 3876 */ 3877 void 3878 xlog_use_incompat_feat( 3879 struct xlog *log) 3880 { 3881 down_read(&log->l_incompat_users); 3882 } 3883 3884 /* Notify the log that we've finished using log incompat features. */ 3885 void 3886 xlog_drop_incompat_feat( 3887 struct xlog *log) 3888 { 3889 up_read(&log->l_incompat_users); 3890 } 3891