xref: /linux/fs/xfs/xfs_log.c (revision 8a8d6bbe1d3bc7137c777ba06246d7e9c08dde4d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 struct kmem_cache	*xfs_log_ticket_cache;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 	struct xfs_mount	*mp,
30 	struct xfs_buftarg	*log_target,
31 	xfs_daddr_t		blk_offset,
32 	int			num_bblks);
33 STATIC int
34 xlog_space_left(
35 	struct xlog		*log,
36 	atomic64_t		*head);
37 STATIC void
38 xlog_dealloc_log(
39 	struct xlog		*log);
40 
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 	struct xlog_in_core	*iclog);
44 STATIC void xlog_state_do_callback(
45 	struct xlog		*log);
46 STATIC int
47 xlog_state_get_iclog_space(
48 	struct xlog		*log,
49 	int			len,
50 	struct xlog_in_core	**iclog,
51 	struct xlog_ticket	*ticket,
52 	int			*continued_write,
53 	int			*logoffsetp);
54 STATIC void
55 xlog_grant_push_ail(
56 	struct xlog		*log,
57 	int			need_bytes);
58 STATIC void
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 #if defined(DEBUG)
63 STATIC void
64 xlog_verify_dest_ptr(
65 	struct xlog		*log,
66 	void			*ptr);
67 STATIC void
68 xlog_verify_grant_tail(
69 	struct xlog *log);
70 STATIC void
71 xlog_verify_iclog(
72 	struct xlog		*log,
73 	struct xlog_in_core	*iclog,
74 	int			count);
75 STATIC void
76 xlog_verify_tail_lsn(
77 	struct xlog		*log,
78 	struct xlog_in_core	*iclog);
79 #else
80 #define xlog_verify_dest_ptr(a,b)
81 #define xlog_verify_grant_tail(a)
82 #define xlog_verify_iclog(a,b,c)
83 #define xlog_verify_tail_lsn(a,b)
84 #endif
85 
86 STATIC int
87 xlog_iclogs_empty(
88 	struct xlog		*log);
89 
90 static int
91 xfs_log_cover(struct xfs_mount *);
92 
93 static void
94 xlog_grant_sub_space(
95 	struct xlog		*log,
96 	atomic64_t		*head,
97 	int			bytes)
98 {
99 	int64_t	head_val = atomic64_read(head);
100 	int64_t new, old;
101 
102 	do {
103 		int	cycle, space;
104 
105 		xlog_crack_grant_head_val(head_val, &cycle, &space);
106 
107 		space -= bytes;
108 		if (space < 0) {
109 			space += log->l_logsize;
110 			cycle--;
111 		}
112 
113 		old = head_val;
114 		new = xlog_assign_grant_head_val(cycle, space);
115 		head_val = atomic64_cmpxchg(head, old, new);
116 	} while (head_val != old);
117 }
118 
119 static void
120 xlog_grant_add_space(
121 	struct xlog		*log,
122 	atomic64_t		*head,
123 	int			bytes)
124 {
125 	int64_t	head_val = atomic64_read(head);
126 	int64_t new, old;
127 
128 	do {
129 		int		tmp;
130 		int		cycle, space;
131 
132 		xlog_crack_grant_head_val(head_val, &cycle, &space);
133 
134 		tmp = log->l_logsize - space;
135 		if (tmp > bytes)
136 			space += bytes;
137 		else {
138 			space = bytes - tmp;
139 			cycle++;
140 		}
141 
142 		old = head_val;
143 		new = xlog_assign_grant_head_val(cycle, space);
144 		head_val = atomic64_cmpxchg(head, old, new);
145 	} while (head_val != old);
146 }
147 
148 STATIC void
149 xlog_grant_head_init(
150 	struct xlog_grant_head	*head)
151 {
152 	xlog_assign_grant_head(&head->grant, 1, 0);
153 	INIT_LIST_HEAD(&head->waiters);
154 	spin_lock_init(&head->lock);
155 }
156 
157 STATIC void
158 xlog_grant_head_wake_all(
159 	struct xlog_grant_head	*head)
160 {
161 	struct xlog_ticket	*tic;
162 
163 	spin_lock(&head->lock);
164 	list_for_each_entry(tic, &head->waiters, t_queue)
165 		wake_up_process(tic->t_task);
166 	spin_unlock(&head->lock);
167 }
168 
169 static inline int
170 xlog_ticket_reservation(
171 	struct xlog		*log,
172 	struct xlog_grant_head	*head,
173 	struct xlog_ticket	*tic)
174 {
175 	if (head == &log->l_write_head) {
176 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
177 		return tic->t_unit_res;
178 	} else {
179 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
180 			return tic->t_unit_res * tic->t_cnt;
181 		else
182 			return tic->t_unit_res;
183 	}
184 }
185 
186 STATIC bool
187 xlog_grant_head_wake(
188 	struct xlog		*log,
189 	struct xlog_grant_head	*head,
190 	int			*free_bytes)
191 {
192 	struct xlog_ticket	*tic;
193 	int			need_bytes;
194 	bool			woken_task = false;
195 
196 	list_for_each_entry(tic, &head->waiters, t_queue) {
197 
198 		/*
199 		 * There is a chance that the size of the CIL checkpoints in
200 		 * progress at the last AIL push target calculation resulted in
201 		 * limiting the target to the log head (l_last_sync_lsn) at the
202 		 * time. This may not reflect where the log head is now as the
203 		 * CIL checkpoints may have completed.
204 		 *
205 		 * Hence when we are woken here, it may be that the head of the
206 		 * log that has moved rather than the tail. As the tail didn't
207 		 * move, there still won't be space available for the
208 		 * reservation we require.  However, if the AIL has already
209 		 * pushed to the target defined by the old log head location, we
210 		 * will hang here waiting for something else to update the AIL
211 		 * push target.
212 		 *
213 		 * Therefore, if there isn't space to wake the first waiter on
214 		 * the grant head, we need to push the AIL again to ensure the
215 		 * target reflects both the current log tail and log head
216 		 * position before we wait for the tail to move again.
217 		 */
218 
219 		need_bytes = xlog_ticket_reservation(log, head, tic);
220 		if (*free_bytes < need_bytes) {
221 			if (!woken_task)
222 				xlog_grant_push_ail(log, need_bytes);
223 			return false;
224 		}
225 
226 		*free_bytes -= need_bytes;
227 		trace_xfs_log_grant_wake_up(log, tic);
228 		wake_up_process(tic->t_task);
229 		woken_task = true;
230 	}
231 
232 	return true;
233 }
234 
235 STATIC int
236 xlog_grant_head_wait(
237 	struct xlog		*log,
238 	struct xlog_grant_head	*head,
239 	struct xlog_ticket	*tic,
240 	int			need_bytes) __releases(&head->lock)
241 					    __acquires(&head->lock)
242 {
243 	list_add_tail(&tic->t_queue, &head->waiters);
244 
245 	do {
246 		if (xlog_is_shutdown(log))
247 			goto shutdown;
248 		xlog_grant_push_ail(log, need_bytes);
249 
250 		__set_current_state(TASK_UNINTERRUPTIBLE);
251 		spin_unlock(&head->lock);
252 
253 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
254 
255 		trace_xfs_log_grant_sleep(log, tic);
256 		schedule();
257 		trace_xfs_log_grant_wake(log, tic);
258 
259 		spin_lock(&head->lock);
260 		if (xlog_is_shutdown(log))
261 			goto shutdown;
262 	} while (xlog_space_left(log, &head->grant) < need_bytes);
263 
264 	list_del_init(&tic->t_queue);
265 	return 0;
266 shutdown:
267 	list_del_init(&tic->t_queue);
268 	return -EIO;
269 }
270 
271 /*
272  * Atomically get the log space required for a log ticket.
273  *
274  * Once a ticket gets put onto head->waiters, it will only return after the
275  * needed reservation is satisfied.
276  *
277  * This function is structured so that it has a lock free fast path. This is
278  * necessary because every new transaction reservation will come through this
279  * path. Hence any lock will be globally hot if we take it unconditionally on
280  * every pass.
281  *
282  * As tickets are only ever moved on and off head->waiters under head->lock, we
283  * only need to take that lock if we are going to add the ticket to the queue
284  * and sleep. We can avoid taking the lock if the ticket was never added to
285  * head->waiters because the t_queue list head will be empty and we hold the
286  * only reference to it so it can safely be checked unlocked.
287  */
288 STATIC int
289 xlog_grant_head_check(
290 	struct xlog		*log,
291 	struct xlog_grant_head	*head,
292 	struct xlog_ticket	*tic,
293 	int			*need_bytes)
294 {
295 	int			free_bytes;
296 	int			error = 0;
297 
298 	ASSERT(!xlog_in_recovery(log));
299 
300 	/*
301 	 * If there are other waiters on the queue then give them a chance at
302 	 * logspace before us.  Wake up the first waiters, if we do not wake
303 	 * up all the waiters then go to sleep waiting for more free space,
304 	 * otherwise try to get some space for this transaction.
305 	 */
306 	*need_bytes = xlog_ticket_reservation(log, head, tic);
307 	free_bytes = xlog_space_left(log, &head->grant);
308 	if (!list_empty_careful(&head->waiters)) {
309 		spin_lock(&head->lock);
310 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
311 		    free_bytes < *need_bytes) {
312 			error = xlog_grant_head_wait(log, head, tic,
313 						     *need_bytes);
314 		}
315 		spin_unlock(&head->lock);
316 	} else if (free_bytes < *need_bytes) {
317 		spin_lock(&head->lock);
318 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
319 		spin_unlock(&head->lock);
320 	}
321 
322 	return error;
323 }
324 
325 static void
326 xlog_tic_reset_res(xlog_ticket_t *tic)
327 {
328 	tic->t_res_num = 0;
329 	tic->t_res_arr_sum = 0;
330 	tic->t_res_num_ophdrs = 0;
331 }
332 
333 static void
334 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
335 {
336 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
337 		/* add to overflow and start again */
338 		tic->t_res_o_flow += tic->t_res_arr_sum;
339 		tic->t_res_num = 0;
340 		tic->t_res_arr_sum = 0;
341 	}
342 
343 	tic->t_res_arr[tic->t_res_num].r_len = len;
344 	tic->t_res_arr[tic->t_res_num].r_type = type;
345 	tic->t_res_arr_sum += len;
346 	tic->t_res_num++;
347 }
348 
349 bool
350 xfs_log_writable(
351 	struct xfs_mount	*mp)
352 {
353 	/*
354 	 * Do not write to the log on norecovery mounts, if the data or log
355 	 * devices are read-only, or if the filesystem is shutdown. Read-only
356 	 * mounts allow internal writes for log recovery and unmount purposes,
357 	 * so don't restrict that case.
358 	 */
359 	if (xfs_has_norecovery(mp))
360 		return false;
361 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
362 		return false;
363 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
364 		return false;
365 	if (xlog_is_shutdown(mp->m_log))
366 		return false;
367 	return true;
368 }
369 
370 /*
371  * Replenish the byte reservation required by moving the grant write head.
372  */
373 int
374 xfs_log_regrant(
375 	struct xfs_mount	*mp,
376 	struct xlog_ticket	*tic)
377 {
378 	struct xlog		*log = mp->m_log;
379 	int			need_bytes;
380 	int			error = 0;
381 
382 	if (xlog_is_shutdown(log))
383 		return -EIO;
384 
385 	XFS_STATS_INC(mp, xs_try_logspace);
386 
387 	/*
388 	 * This is a new transaction on the ticket, so we need to change the
389 	 * transaction ID so that the next transaction has a different TID in
390 	 * the log. Just add one to the existing tid so that we can see chains
391 	 * of rolling transactions in the log easily.
392 	 */
393 	tic->t_tid++;
394 
395 	xlog_grant_push_ail(log, tic->t_unit_res);
396 
397 	tic->t_curr_res = tic->t_unit_res;
398 	xlog_tic_reset_res(tic);
399 
400 	if (tic->t_cnt > 0)
401 		return 0;
402 
403 	trace_xfs_log_regrant(log, tic);
404 
405 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
406 				      &need_bytes);
407 	if (error)
408 		goto out_error;
409 
410 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
411 	trace_xfs_log_regrant_exit(log, tic);
412 	xlog_verify_grant_tail(log);
413 	return 0;
414 
415 out_error:
416 	/*
417 	 * If we are failing, make sure the ticket doesn't have any current
418 	 * reservations.  We don't want to add this back when the ticket/
419 	 * transaction gets cancelled.
420 	 */
421 	tic->t_curr_res = 0;
422 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
423 	return error;
424 }
425 
426 /*
427  * Reserve log space and return a ticket corresponding to the reservation.
428  *
429  * Each reservation is going to reserve extra space for a log record header.
430  * When writes happen to the on-disk log, we don't subtract the length of the
431  * log record header from any reservation.  By wasting space in each
432  * reservation, we prevent over allocation problems.
433  */
434 int
435 xfs_log_reserve(
436 	struct xfs_mount	*mp,
437 	int		 	unit_bytes,
438 	int		 	cnt,
439 	struct xlog_ticket	**ticp,
440 	uint8_t		 	client,
441 	bool			permanent)
442 {
443 	struct xlog		*log = mp->m_log;
444 	struct xlog_ticket	*tic;
445 	int			need_bytes;
446 	int			error = 0;
447 
448 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
449 
450 	if (xlog_is_shutdown(log))
451 		return -EIO;
452 
453 	XFS_STATS_INC(mp, xs_try_logspace);
454 
455 	ASSERT(*ticp == NULL);
456 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
457 	*ticp = tic;
458 
459 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
460 					    : tic->t_unit_res);
461 
462 	trace_xfs_log_reserve(log, tic);
463 
464 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
465 				      &need_bytes);
466 	if (error)
467 		goto out_error;
468 
469 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
470 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
471 	trace_xfs_log_reserve_exit(log, tic);
472 	xlog_verify_grant_tail(log);
473 	return 0;
474 
475 out_error:
476 	/*
477 	 * If we are failing, make sure the ticket doesn't have any current
478 	 * reservations.  We don't want to add this back when the ticket/
479 	 * transaction gets cancelled.
480 	 */
481 	tic->t_curr_res = 0;
482 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
483 	return error;
484 }
485 
486 /*
487  * Run all the pending iclog callbacks and wake log force waiters and iclog
488  * space waiters so they can process the newly set shutdown state. We really
489  * don't care what order we process callbacks here because the log is shut down
490  * and so state cannot change on disk anymore.
491  *
492  * We avoid processing actively referenced iclogs so that we don't run callbacks
493  * while the iclog owner might still be preparing the iclog for IO submssion.
494  * These will be caught by xlog_state_iclog_release() and call this function
495  * again to process any callbacks that may have been added to that iclog.
496  */
497 static void
498 xlog_state_shutdown_callbacks(
499 	struct xlog		*log)
500 {
501 	struct xlog_in_core	*iclog;
502 	LIST_HEAD(cb_list);
503 
504 	spin_lock(&log->l_icloglock);
505 	iclog = log->l_iclog;
506 	do {
507 		if (atomic_read(&iclog->ic_refcnt)) {
508 			/* Reference holder will re-run iclog callbacks. */
509 			continue;
510 		}
511 		list_splice_init(&iclog->ic_callbacks, &cb_list);
512 		wake_up_all(&iclog->ic_write_wait);
513 		wake_up_all(&iclog->ic_force_wait);
514 	} while ((iclog = iclog->ic_next) != log->l_iclog);
515 
516 	wake_up_all(&log->l_flush_wait);
517 	spin_unlock(&log->l_icloglock);
518 
519 	xlog_cil_process_committed(&cb_list);
520 }
521 
522 /*
523  * Flush iclog to disk if this is the last reference to the given iclog and the
524  * it is in the WANT_SYNC state.
525  *
526  * If the caller passes in a non-zero @old_tail_lsn and the current log tail
527  * does not match, there may be metadata on disk that must be persisted before
528  * this iclog is written.  To satisfy that requirement, set the
529  * XLOG_ICL_NEED_FLUSH flag as a condition for writing this iclog with the new
530  * log tail value.
531  *
532  * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
533  * log tail is updated correctly. NEED_FUA indicates that the iclog will be
534  * written to stable storage, and implies that a commit record is contained
535  * within the iclog. We need to ensure that the log tail does not move beyond
536  * the tail that the first commit record in the iclog ordered against, otherwise
537  * correct recovery of that checkpoint becomes dependent on future operations
538  * performed on this iclog.
539  *
540  * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
541  * current tail into iclog. Once the iclog tail is set, future operations must
542  * not modify it, otherwise they potentially violate ordering constraints for
543  * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
544  * the iclog will get zeroed on activation of the iclog after sync, so we
545  * always capture the tail lsn on the iclog on the first NEED_FUA release
546  * regardless of the number of active reference counts on this iclog.
547  */
548 
549 int
550 xlog_state_release_iclog(
551 	struct xlog		*log,
552 	struct xlog_in_core	*iclog,
553 	xfs_lsn_t		old_tail_lsn)
554 {
555 	xfs_lsn_t		tail_lsn;
556 	bool			last_ref;
557 
558 	lockdep_assert_held(&log->l_icloglock);
559 
560 	trace_xlog_iclog_release(iclog, _RET_IP_);
561 	/*
562 	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
563 	 * of the tail LSN into the iclog so we guarantee that the log tail does
564 	 * not move between deciding if a cache flush is required and writing
565 	 * the LSN into the iclog below.
566 	 */
567 	if (old_tail_lsn || iclog->ic_state == XLOG_STATE_WANT_SYNC) {
568 		tail_lsn = xlog_assign_tail_lsn(log->l_mp);
569 
570 		if (old_tail_lsn && tail_lsn != old_tail_lsn)
571 			iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
572 
573 		if ((iclog->ic_flags & XLOG_ICL_NEED_FUA) &&
574 		    !iclog->ic_header.h_tail_lsn)
575 			iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
576 	}
577 
578 	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
579 
580 	if (xlog_is_shutdown(log)) {
581 		/*
582 		 * If there are no more references to this iclog, process the
583 		 * pending iclog callbacks that were waiting on the release of
584 		 * this iclog.
585 		 */
586 		if (last_ref) {
587 			spin_unlock(&log->l_icloglock);
588 			xlog_state_shutdown_callbacks(log);
589 			spin_lock(&log->l_icloglock);
590 		}
591 		return -EIO;
592 	}
593 
594 	if (!last_ref)
595 		return 0;
596 
597 	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
598 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
599 		return 0;
600 	}
601 
602 	iclog->ic_state = XLOG_STATE_SYNCING;
603 	if (!iclog->ic_header.h_tail_lsn)
604 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
605 	xlog_verify_tail_lsn(log, iclog);
606 	trace_xlog_iclog_syncing(iclog, _RET_IP_);
607 
608 	spin_unlock(&log->l_icloglock);
609 	xlog_sync(log, iclog);
610 	spin_lock(&log->l_icloglock);
611 	return 0;
612 }
613 
614 /*
615  * Mount a log filesystem
616  *
617  * mp		- ubiquitous xfs mount point structure
618  * log_target	- buftarg of on-disk log device
619  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
620  * num_bblocks	- Number of BBSIZE blocks in on-disk log
621  *
622  * Return error or zero.
623  */
624 int
625 xfs_log_mount(
626 	xfs_mount_t	*mp,
627 	xfs_buftarg_t	*log_target,
628 	xfs_daddr_t	blk_offset,
629 	int		num_bblks)
630 {
631 	struct xlog	*log;
632 	bool		fatal = xfs_has_crc(mp);
633 	int		error = 0;
634 	int		min_logfsbs;
635 
636 	if (!xfs_has_norecovery(mp)) {
637 		xfs_notice(mp, "Mounting V%d Filesystem",
638 			   XFS_SB_VERSION_NUM(&mp->m_sb));
639 	} else {
640 		xfs_notice(mp,
641 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
642 			   XFS_SB_VERSION_NUM(&mp->m_sb));
643 		ASSERT(xfs_is_readonly(mp));
644 	}
645 
646 	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
647 	if (IS_ERR(log)) {
648 		error = PTR_ERR(log);
649 		goto out;
650 	}
651 	mp->m_log = log;
652 
653 	/*
654 	 * Validate the given log space and drop a critical message via syslog
655 	 * if the log size is too small that would lead to some unexpected
656 	 * situations in transaction log space reservation stage.
657 	 *
658 	 * Note: we can't just reject the mount if the validation fails.  This
659 	 * would mean that people would have to downgrade their kernel just to
660 	 * remedy the situation as there is no way to grow the log (short of
661 	 * black magic surgery with xfs_db).
662 	 *
663 	 * We can, however, reject mounts for CRC format filesystems, as the
664 	 * mkfs binary being used to make the filesystem should never create a
665 	 * filesystem with a log that is too small.
666 	 */
667 	min_logfsbs = xfs_log_calc_minimum_size(mp);
668 
669 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
670 		xfs_warn(mp,
671 		"Log size %d blocks too small, minimum size is %d blocks",
672 			 mp->m_sb.sb_logblocks, min_logfsbs);
673 		error = -EINVAL;
674 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
675 		xfs_warn(mp,
676 		"Log size %d blocks too large, maximum size is %lld blocks",
677 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
678 		error = -EINVAL;
679 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
680 		xfs_warn(mp,
681 		"log size %lld bytes too large, maximum size is %lld bytes",
682 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
683 			 XFS_MAX_LOG_BYTES);
684 		error = -EINVAL;
685 	} else if (mp->m_sb.sb_logsunit > 1 &&
686 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
687 		xfs_warn(mp,
688 		"log stripe unit %u bytes must be a multiple of block size",
689 			 mp->m_sb.sb_logsunit);
690 		error = -EINVAL;
691 		fatal = true;
692 	}
693 	if (error) {
694 		/*
695 		 * Log check errors are always fatal on v5; or whenever bad
696 		 * metadata leads to a crash.
697 		 */
698 		if (fatal) {
699 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
700 			ASSERT(0);
701 			goto out_free_log;
702 		}
703 		xfs_crit(mp, "Log size out of supported range.");
704 		xfs_crit(mp,
705 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
706 	}
707 
708 	/*
709 	 * Initialize the AIL now we have a log.
710 	 */
711 	error = xfs_trans_ail_init(mp);
712 	if (error) {
713 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
714 		goto out_free_log;
715 	}
716 	log->l_ailp = mp->m_ail;
717 
718 	/*
719 	 * skip log recovery on a norecovery mount.  pretend it all
720 	 * just worked.
721 	 */
722 	if (!xfs_has_norecovery(mp)) {
723 		/*
724 		 * log recovery ignores readonly state and so we need to clear
725 		 * mount-based read only state so it can write to disk.
726 		 */
727 		bool	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY,
728 						&mp->m_opstate);
729 		error = xlog_recover(log);
730 		if (readonly)
731 			set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
732 		if (error) {
733 			xfs_warn(mp, "log mount/recovery failed: error %d",
734 				error);
735 			xlog_recover_cancel(log);
736 			goto out_destroy_ail;
737 		}
738 	}
739 
740 	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
741 			       "log");
742 	if (error)
743 		goto out_destroy_ail;
744 
745 	/* Normal transactions can now occur */
746 	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
747 
748 	/*
749 	 * Now the log has been fully initialised and we know were our
750 	 * space grant counters are, we can initialise the permanent ticket
751 	 * needed for delayed logging to work.
752 	 */
753 	xlog_cil_init_post_recovery(log);
754 
755 	return 0;
756 
757 out_destroy_ail:
758 	xfs_trans_ail_destroy(mp);
759 out_free_log:
760 	xlog_dealloc_log(log);
761 out:
762 	return error;
763 }
764 
765 /*
766  * Finish the recovery of the file system.  This is separate from the
767  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
768  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
769  * here.
770  *
771  * If we finish recovery successfully, start the background log work. If we are
772  * not doing recovery, then we have a RO filesystem and we don't need to start
773  * it.
774  */
775 int
776 xfs_log_mount_finish(
777 	struct xfs_mount	*mp)
778 {
779 	struct xlog		*log = mp->m_log;
780 	bool			readonly;
781 	int			error = 0;
782 
783 	if (xfs_has_norecovery(mp)) {
784 		ASSERT(xfs_is_readonly(mp));
785 		return 0;
786 	}
787 
788 	/*
789 	 * log recovery ignores readonly state and so we need to clear
790 	 * mount-based read only state so it can write to disk.
791 	 */
792 	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
793 
794 	/*
795 	 * During the second phase of log recovery, we need iget and
796 	 * iput to behave like they do for an active filesystem.
797 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
798 	 * of inodes before we're done replaying log items on those
799 	 * inodes.  Turn it off immediately after recovery finishes
800 	 * so that we don't leak the quota inodes if subsequent mount
801 	 * activities fail.
802 	 *
803 	 * We let all inodes involved in redo item processing end up on
804 	 * the LRU instead of being evicted immediately so that if we do
805 	 * something to an unlinked inode, the irele won't cause
806 	 * premature truncation and freeing of the inode, which results
807 	 * in log recovery failure.  We have to evict the unreferenced
808 	 * lru inodes after clearing SB_ACTIVE because we don't
809 	 * otherwise clean up the lru if there's a subsequent failure in
810 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
811 	 * else (e.g. quotacheck) references the inodes before the
812 	 * mount failure occurs.
813 	 */
814 	mp->m_super->s_flags |= SB_ACTIVE;
815 	if (xlog_recovery_needed(log))
816 		error = xlog_recover_finish(log);
817 	if (!error)
818 		xfs_log_work_queue(mp);
819 	mp->m_super->s_flags &= ~SB_ACTIVE;
820 	evict_inodes(mp->m_super);
821 
822 	/*
823 	 * Drain the buffer LRU after log recovery. This is required for v4
824 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
825 	 * but we do it unconditionally to make sure we're always in a clean
826 	 * cache state after mount.
827 	 *
828 	 * Don't push in the error case because the AIL may have pending intents
829 	 * that aren't removed until recovery is cancelled.
830 	 */
831 	if (xlog_recovery_needed(log)) {
832 		if (!error) {
833 			xfs_log_force(mp, XFS_LOG_SYNC);
834 			xfs_ail_push_all_sync(mp->m_ail);
835 		}
836 		xfs_notice(mp, "Ending recovery (logdev: %s)",
837 				mp->m_logname ? mp->m_logname : "internal");
838 	} else {
839 		xfs_info(mp, "Ending clean mount");
840 	}
841 	xfs_buftarg_drain(mp->m_ddev_targp);
842 
843 	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
844 	if (readonly)
845 		set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
846 
847 	/* Make sure the log is dead if we're returning failure. */
848 	ASSERT(!error || xlog_is_shutdown(log));
849 
850 	return error;
851 }
852 
853 /*
854  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
855  * the log.
856  */
857 void
858 xfs_log_mount_cancel(
859 	struct xfs_mount	*mp)
860 {
861 	xlog_recover_cancel(mp->m_log);
862 	xfs_log_unmount(mp);
863 }
864 
865 /*
866  * Flush out the iclog to disk ensuring that device caches are flushed and
867  * the iclog hits stable storage before any completion waiters are woken.
868  */
869 static inline int
870 xlog_force_iclog(
871 	struct xlog_in_core	*iclog)
872 {
873 	atomic_inc(&iclog->ic_refcnt);
874 	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
875 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
876 		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
877 	return xlog_state_release_iclog(iclog->ic_log, iclog, 0);
878 }
879 
880 /*
881  * Wait for the iclog and all prior iclogs to be written disk as required by the
882  * log force state machine. Waiting on ic_force_wait ensures iclog completions
883  * have been ordered and callbacks run before we are woken here, hence
884  * guaranteeing that all the iclogs up to this one are on stable storage.
885  */
886 int
887 xlog_wait_on_iclog(
888 	struct xlog_in_core	*iclog)
889 		__releases(iclog->ic_log->l_icloglock)
890 {
891 	struct xlog		*log = iclog->ic_log;
892 
893 	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
894 	if (!xlog_is_shutdown(log) &&
895 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
896 	    iclog->ic_state != XLOG_STATE_DIRTY) {
897 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
898 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
899 	} else {
900 		spin_unlock(&log->l_icloglock);
901 	}
902 
903 	if (xlog_is_shutdown(log))
904 		return -EIO;
905 	return 0;
906 }
907 
908 /*
909  * Write out an unmount record using the ticket provided. We have to account for
910  * the data space used in the unmount ticket as this write is not done from a
911  * transaction context that has already done the accounting for us.
912  */
913 static int
914 xlog_write_unmount_record(
915 	struct xlog		*log,
916 	struct xlog_ticket	*ticket)
917 {
918 	struct xfs_unmount_log_format ulf = {
919 		.magic = XLOG_UNMOUNT_TYPE,
920 	};
921 	struct xfs_log_iovec reg = {
922 		.i_addr = &ulf,
923 		.i_len = sizeof(ulf),
924 		.i_type = XLOG_REG_TYPE_UNMOUNT,
925 	};
926 	struct xfs_log_vec vec = {
927 		.lv_niovecs = 1,
928 		.lv_iovecp = &reg,
929 	};
930 
931 	/* account for space used by record data */
932 	ticket->t_curr_res -= sizeof(ulf);
933 
934 	return xlog_write(log, NULL, &vec, ticket, XLOG_UNMOUNT_TRANS);
935 }
936 
937 /*
938  * Mark the filesystem clean by writing an unmount record to the head of the
939  * log.
940  */
941 static void
942 xlog_unmount_write(
943 	struct xlog		*log)
944 {
945 	struct xfs_mount	*mp = log->l_mp;
946 	struct xlog_in_core	*iclog;
947 	struct xlog_ticket	*tic = NULL;
948 	int			error;
949 
950 	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
951 	if (error)
952 		goto out_err;
953 
954 	error = xlog_write_unmount_record(log, tic);
955 	/*
956 	 * At this point, we're umounting anyway, so there's no point in
957 	 * transitioning log state to shutdown. Just continue...
958 	 */
959 out_err:
960 	if (error)
961 		xfs_alert(mp, "%s: unmount record failed", __func__);
962 
963 	spin_lock(&log->l_icloglock);
964 	iclog = log->l_iclog;
965 	error = xlog_force_iclog(iclog);
966 	xlog_wait_on_iclog(iclog);
967 
968 	if (tic) {
969 		trace_xfs_log_umount_write(log, tic);
970 		xfs_log_ticket_ungrant(log, tic);
971 	}
972 }
973 
974 static void
975 xfs_log_unmount_verify_iclog(
976 	struct xlog		*log)
977 {
978 	struct xlog_in_core	*iclog = log->l_iclog;
979 
980 	do {
981 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
982 		ASSERT(iclog->ic_offset == 0);
983 	} while ((iclog = iclog->ic_next) != log->l_iclog);
984 }
985 
986 /*
987  * Unmount record used to have a string "Unmount filesystem--" in the
988  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
989  * We just write the magic number now since that particular field isn't
990  * currently architecture converted and "Unmount" is a bit foo.
991  * As far as I know, there weren't any dependencies on the old behaviour.
992  */
993 static void
994 xfs_log_unmount_write(
995 	struct xfs_mount	*mp)
996 {
997 	struct xlog		*log = mp->m_log;
998 
999 	if (!xfs_log_writable(mp))
1000 		return;
1001 
1002 	xfs_log_force(mp, XFS_LOG_SYNC);
1003 
1004 	if (xlog_is_shutdown(log))
1005 		return;
1006 
1007 	/*
1008 	 * If we think the summary counters are bad, avoid writing the unmount
1009 	 * record to force log recovery at next mount, after which the summary
1010 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
1011 	 * more details.
1012 	 */
1013 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1014 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1015 		xfs_alert(mp, "%s: will fix summary counters at next mount",
1016 				__func__);
1017 		return;
1018 	}
1019 
1020 	xfs_log_unmount_verify_iclog(log);
1021 	xlog_unmount_write(log);
1022 }
1023 
1024 /*
1025  * Empty the log for unmount/freeze.
1026  *
1027  * To do this, we first need to shut down the background log work so it is not
1028  * trying to cover the log as we clean up. We then need to unpin all objects in
1029  * the log so we can then flush them out. Once they have completed their IO and
1030  * run the callbacks removing themselves from the AIL, we can cover the log.
1031  */
1032 int
1033 xfs_log_quiesce(
1034 	struct xfs_mount	*mp)
1035 {
1036 	/*
1037 	 * Clear log incompat features since we're quiescing the log.  Report
1038 	 * failures, though it's not fatal to have a higher log feature
1039 	 * protection level than the log contents actually require.
1040 	 */
1041 	if (xfs_clear_incompat_log_features(mp)) {
1042 		int error;
1043 
1044 		error = xfs_sync_sb(mp, false);
1045 		if (error)
1046 			xfs_warn(mp,
1047 	"Failed to clear log incompat features on quiesce");
1048 	}
1049 
1050 	cancel_delayed_work_sync(&mp->m_log->l_work);
1051 	xfs_log_force(mp, XFS_LOG_SYNC);
1052 
1053 	/*
1054 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1055 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1056 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1057 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1058 	 * the IO to complete.
1059 	 */
1060 	xfs_ail_push_all_sync(mp->m_ail);
1061 	xfs_buftarg_wait(mp->m_ddev_targp);
1062 	xfs_buf_lock(mp->m_sb_bp);
1063 	xfs_buf_unlock(mp->m_sb_bp);
1064 
1065 	return xfs_log_cover(mp);
1066 }
1067 
1068 void
1069 xfs_log_clean(
1070 	struct xfs_mount	*mp)
1071 {
1072 	xfs_log_quiesce(mp);
1073 	xfs_log_unmount_write(mp);
1074 }
1075 
1076 /*
1077  * Shut down and release the AIL and Log.
1078  *
1079  * During unmount, we need to ensure we flush all the dirty metadata objects
1080  * from the AIL so that the log is empty before we write the unmount record to
1081  * the log. Once this is done, we can tear down the AIL and the log.
1082  */
1083 void
1084 xfs_log_unmount(
1085 	struct xfs_mount	*mp)
1086 {
1087 	xfs_log_clean(mp);
1088 
1089 	xfs_buftarg_drain(mp->m_ddev_targp);
1090 
1091 	xfs_trans_ail_destroy(mp);
1092 
1093 	xfs_sysfs_del(&mp->m_log->l_kobj);
1094 
1095 	xlog_dealloc_log(mp->m_log);
1096 }
1097 
1098 void
1099 xfs_log_item_init(
1100 	struct xfs_mount	*mp,
1101 	struct xfs_log_item	*item,
1102 	int			type,
1103 	const struct xfs_item_ops *ops)
1104 {
1105 	item->li_mountp = mp;
1106 	item->li_ailp = mp->m_ail;
1107 	item->li_type = type;
1108 	item->li_ops = ops;
1109 	item->li_lv = NULL;
1110 
1111 	INIT_LIST_HEAD(&item->li_ail);
1112 	INIT_LIST_HEAD(&item->li_cil);
1113 	INIT_LIST_HEAD(&item->li_bio_list);
1114 	INIT_LIST_HEAD(&item->li_trans);
1115 }
1116 
1117 /*
1118  * Wake up processes waiting for log space after we have moved the log tail.
1119  */
1120 void
1121 xfs_log_space_wake(
1122 	struct xfs_mount	*mp)
1123 {
1124 	struct xlog		*log = mp->m_log;
1125 	int			free_bytes;
1126 
1127 	if (xlog_is_shutdown(log))
1128 		return;
1129 
1130 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1131 		ASSERT(!xlog_in_recovery(log));
1132 
1133 		spin_lock(&log->l_write_head.lock);
1134 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1135 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1136 		spin_unlock(&log->l_write_head.lock);
1137 	}
1138 
1139 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1140 		ASSERT(!xlog_in_recovery(log));
1141 
1142 		spin_lock(&log->l_reserve_head.lock);
1143 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1144 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1145 		spin_unlock(&log->l_reserve_head.lock);
1146 	}
1147 }
1148 
1149 /*
1150  * Determine if we have a transaction that has gone to disk that needs to be
1151  * covered. To begin the transition to the idle state firstly the log needs to
1152  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1153  * we start attempting to cover the log.
1154  *
1155  * Only if we are then in a state where covering is needed, the caller is
1156  * informed that dummy transactions are required to move the log into the idle
1157  * state.
1158  *
1159  * If there are any items in the AIl or CIL, then we do not want to attempt to
1160  * cover the log as we may be in a situation where there isn't log space
1161  * available to run a dummy transaction and this can lead to deadlocks when the
1162  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1163  * there's no point in running a dummy transaction at this point because we
1164  * can't start trying to idle the log until both the CIL and AIL are empty.
1165  */
1166 static bool
1167 xfs_log_need_covered(
1168 	struct xfs_mount	*mp)
1169 {
1170 	struct xlog		*log = mp->m_log;
1171 	bool			needed = false;
1172 
1173 	if (!xlog_cil_empty(log))
1174 		return false;
1175 
1176 	spin_lock(&log->l_icloglock);
1177 	switch (log->l_covered_state) {
1178 	case XLOG_STATE_COVER_DONE:
1179 	case XLOG_STATE_COVER_DONE2:
1180 	case XLOG_STATE_COVER_IDLE:
1181 		break;
1182 	case XLOG_STATE_COVER_NEED:
1183 	case XLOG_STATE_COVER_NEED2:
1184 		if (xfs_ail_min_lsn(log->l_ailp))
1185 			break;
1186 		if (!xlog_iclogs_empty(log))
1187 			break;
1188 
1189 		needed = true;
1190 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1191 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1192 		else
1193 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1194 		break;
1195 	default:
1196 		needed = true;
1197 		break;
1198 	}
1199 	spin_unlock(&log->l_icloglock);
1200 	return needed;
1201 }
1202 
1203 /*
1204  * Explicitly cover the log. This is similar to background log covering but
1205  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1206  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1207  * must all be empty.
1208  */
1209 static int
1210 xfs_log_cover(
1211 	struct xfs_mount	*mp)
1212 {
1213 	int			error = 0;
1214 	bool			need_covered;
1215 
1216 	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1217 	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1218 		xlog_is_shutdown(mp->m_log));
1219 
1220 	if (!xfs_log_writable(mp))
1221 		return 0;
1222 
1223 	/*
1224 	 * xfs_log_need_covered() is not idempotent because it progresses the
1225 	 * state machine if the log requires covering. Therefore, we must call
1226 	 * this function once and use the result until we've issued an sb sync.
1227 	 * Do so first to make that abundantly clear.
1228 	 *
1229 	 * Fall into the covering sequence if the log needs covering or the
1230 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1231 	 * used for covering accumulates the in-core counters, so covering
1232 	 * handles this for us.
1233 	 */
1234 	need_covered = xfs_log_need_covered(mp);
1235 	if (!need_covered && !xfs_has_lazysbcount(mp))
1236 		return 0;
1237 
1238 	/*
1239 	 * To cover the log, commit the superblock twice (at most) in
1240 	 * independent checkpoints. The first serves as a reference for the
1241 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1242 	 * updates the in-core tail to the LSN of the first checkpoint. The
1243 	 * second commit updates the on-disk tail with the in-core LSN,
1244 	 * covering the log. Push the AIL one more time to leave it empty, as
1245 	 * we found it.
1246 	 */
1247 	do {
1248 		error = xfs_sync_sb(mp, true);
1249 		if (error)
1250 			break;
1251 		xfs_ail_push_all_sync(mp->m_ail);
1252 	} while (xfs_log_need_covered(mp));
1253 
1254 	return error;
1255 }
1256 
1257 /*
1258  * We may be holding the log iclog lock upon entering this routine.
1259  */
1260 xfs_lsn_t
1261 xlog_assign_tail_lsn_locked(
1262 	struct xfs_mount	*mp)
1263 {
1264 	struct xlog		*log = mp->m_log;
1265 	struct xfs_log_item	*lip;
1266 	xfs_lsn_t		tail_lsn;
1267 
1268 	assert_spin_locked(&mp->m_ail->ail_lock);
1269 
1270 	/*
1271 	 * To make sure we always have a valid LSN for the log tail we keep
1272 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1273 	 * and use that when the AIL was empty.
1274 	 */
1275 	lip = xfs_ail_min(mp->m_ail);
1276 	if (lip)
1277 		tail_lsn = lip->li_lsn;
1278 	else
1279 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1280 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1281 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1282 	return tail_lsn;
1283 }
1284 
1285 xfs_lsn_t
1286 xlog_assign_tail_lsn(
1287 	struct xfs_mount	*mp)
1288 {
1289 	xfs_lsn_t		tail_lsn;
1290 
1291 	spin_lock(&mp->m_ail->ail_lock);
1292 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1293 	spin_unlock(&mp->m_ail->ail_lock);
1294 
1295 	return tail_lsn;
1296 }
1297 
1298 /*
1299  * Return the space in the log between the tail and the head.  The head
1300  * is passed in the cycle/bytes formal parms.  In the special case where
1301  * the reserve head has wrapped passed the tail, this calculation is no
1302  * longer valid.  In this case, just return 0 which means there is no space
1303  * in the log.  This works for all places where this function is called
1304  * with the reserve head.  Of course, if the write head were to ever
1305  * wrap the tail, we should blow up.  Rather than catch this case here,
1306  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1307  *
1308  * If reservation head is behind the tail, we have a problem. Warn about it,
1309  * but then treat it as if the log is empty.
1310  *
1311  * If the log is shut down, the head and tail may be invalid or out of whack, so
1312  * shortcut invalidity asserts in this case so that we don't trigger them
1313  * falsely.
1314  */
1315 STATIC int
1316 xlog_space_left(
1317 	struct xlog	*log,
1318 	atomic64_t	*head)
1319 {
1320 	int		tail_bytes;
1321 	int		tail_cycle;
1322 	int		head_cycle;
1323 	int		head_bytes;
1324 
1325 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1326 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1327 	tail_bytes = BBTOB(tail_bytes);
1328 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1329 		return log->l_logsize - (head_bytes - tail_bytes);
1330 	if (tail_cycle + 1 < head_cycle)
1331 		return 0;
1332 
1333 	/* Ignore potential inconsistency when shutdown. */
1334 	if (xlog_is_shutdown(log))
1335 		return log->l_logsize;
1336 
1337 	if (tail_cycle < head_cycle) {
1338 		ASSERT(tail_cycle == (head_cycle - 1));
1339 		return tail_bytes - head_bytes;
1340 	}
1341 
1342 	/*
1343 	 * The reservation head is behind the tail. In this case we just want to
1344 	 * return the size of the log as the amount of space left.
1345 	 */
1346 	xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1347 	xfs_alert(log->l_mp, "  tail_cycle = %d, tail_bytes = %d",
1348 		  tail_cycle, tail_bytes);
1349 	xfs_alert(log->l_mp, "  GH   cycle = %d, GH   bytes = %d",
1350 		  head_cycle, head_bytes);
1351 	ASSERT(0);
1352 	return log->l_logsize;
1353 }
1354 
1355 
1356 static void
1357 xlog_ioend_work(
1358 	struct work_struct	*work)
1359 {
1360 	struct xlog_in_core     *iclog =
1361 		container_of(work, struct xlog_in_core, ic_end_io_work);
1362 	struct xlog		*log = iclog->ic_log;
1363 	int			error;
1364 
1365 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1366 #ifdef DEBUG
1367 	/* treat writes with injected CRC errors as failed */
1368 	if (iclog->ic_fail_crc)
1369 		error = -EIO;
1370 #endif
1371 
1372 	/*
1373 	 * Race to shutdown the filesystem if we see an error.
1374 	 */
1375 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1376 		xfs_alert(log->l_mp, "log I/O error %d", error);
1377 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1378 	}
1379 
1380 	xlog_state_done_syncing(iclog);
1381 	bio_uninit(&iclog->ic_bio);
1382 
1383 	/*
1384 	 * Drop the lock to signal that we are done. Nothing references the
1385 	 * iclog after this, so an unmount waiting on this lock can now tear it
1386 	 * down safely. As such, it is unsafe to reference the iclog after the
1387 	 * unlock as we could race with it being freed.
1388 	 */
1389 	up(&iclog->ic_sema);
1390 }
1391 
1392 /*
1393  * Return size of each in-core log record buffer.
1394  *
1395  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1396  *
1397  * If the filesystem blocksize is too large, we may need to choose a
1398  * larger size since the directory code currently logs entire blocks.
1399  */
1400 STATIC void
1401 xlog_get_iclog_buffer_size(
1402 	struct xfs_mount	*mp,
1403 	struct xlog		*log)
1404 {
1405 	if (mp->m_logbufs <= 0)
1406 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1407 	if (mp->m_logbsize <= 0)
1408 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1409 
1410 	log->l_iclog_bufs = mp->m_logbufs;
1411 	log->l_iclog_size = mp->m_logbsize;
1412 
1413 	/*
1414 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1415 	 */
1416 	log->l_iclog_heads =
1417 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1418 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1419 }
1420 
1421 void
1422 xfs_log_work_queue(
1423 	struct xfs_mount        *mp)
1424 {
1425 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1426 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1427 }
1428 
1429 /*
1430  * Clear the log incompat flags if we have the opportunity.
1431  *
1432  * This only happens if we're about to log the second dummy transaction as part
1433  * of covering the log and we can get the log incompat feature usage lock.
1434  */
1435 static inline void
1436 xlog_clear_incompat(
1437 	struct xlog		*log)
1438 {
1439 	struct xfs_mount	*mp = log->l_mp;
1440 
1441 	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1442 				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1443 		return;
1444 
1445 	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1446 		return;
1447 
1448 	if (!down_write_trylock(&log->l_incompat_users))
1449 		return;
1450 
1451 	xfs_clear_incompat_log_features(mp);
1452 	up_write(&log->l_incompat_users);
1453 }
1454 
1455 /*
1456  * Every sync period we need to unpin all items in the AIL and push them to
1457  * disk. If there is nothing dirty, then we might need to cover the log to
1458  * indicate that the filesystem is idle.
1459  */
1460 static void
1461 xfs_log_worker(
1462 	struct work_struct	*work)
1463 {
1464 	struct xlog		*log = container_of(to_delayed_work(work),
1465 						struct xlog, l_work);
1466 	struct xfs_mount	*mp = log->l_mp;
1467 
1468 	/* dgc: errors ignored - not fatal and nowhere to report them */
1469 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1470 		/*
1471 		 * Dump a transaction into the log that contains no real change.
1472 		 * This is needed to stamp the current tail LSN into the log
1473 		 * during the covering operation.
1474 		 *
1475 		 * We cannot use an inode here for this - that will push dirty
1476 		 * state back up into the VFS and then periodic inode flushing
1477 		 * will prevent log covering from making progress. Hence we
1478 		 * synchronously log the superblock instead to ensure the
1479 		 * superblock is immediately unpinned and can be written back.
1480 		 */
1481 		xlog_clear_incompat(log);
1482 		xfs_sync_sb(mp, true);
1483 	} else
1484 		xfs_log_force(mp, 0);
1485 
1486 	/* start pushing all the metadata that is currently dirty */
1487 	xfs_ail_push_all(mp->m_ail);
1488 
1489 	/* queue us up again */
1490 	xfs_log_work_queue(mp);
1491 }
1492 
1493 /*
1494  * This routine initializes some of the log structure for a given mount point.
1495  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1496  * some other stuff may be filled in too.
1497  */
1498 STATIC struct xlog *
1499 xlog_alloc_log(
1500 	struct xfs_mount	*mp,
1501 	struct xfs_buftarg	*log_target,
1502 	xfs_daddr_t		blk_offset,
1503 	int			num_bblks)
1504 {
1505 	struct xlog		*log;
1506 	xlog_rec_header_t	*head;
1507 	xlog_in_core_t		**iclogp;
1508 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1509 	int			i;
1510 	int			error = -ENOMEM;
1511 	uint			log2_size = 0;
1512 
1513 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1514 	if (!log) {
1515 		xfs_warn(mp, "Log allocation failed: No memory!");
1516 		goto out;
1517 	}
1518 
1519 	log->l_mp	   = mp;
1520 	log->l_targ	   = log_target;
1521 	log->l_logsize     = BBTOB(num_bblks);
1522 	log->l_logBBstart  = blk_offset;
1523 	log->l_logBBsize   = num_bblks;
1524 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1525 	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1526 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1527 
1528 	log->l_prev_block  = -1;
1529 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1530 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1531 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1532 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1533 
1534 	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1535 		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1536 	else
1537 		log->l_iclog_roundoff = BBSIZE;
1538 
1539 	xlog_grant_head_init(&log->l_reserve_head);
1540 	xlog_grant_head_init(&log->l_write_head);
1541 
1542 	error = -EFSCORRUPTED;
1543 	if (xfs_has_sector(mp)) {
1544 	        log2_size = mp->m_sb.sb_logsectlog;
1545 		if (log2_size < BBSHIFT) {
1546 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1547 				log2_size, BBSHIFT);
1548 			goto out_free_log;
1549 		}
1550 
1551 	        log2_size -= BBSHIFT;
1552 		if (log2_size > mp->m_sectbb_log) {
1553 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1554 				log2_size, mp->m_sectbb_log);
1555 			goto out_free_log;
1556 		}
1557 
1558 		/* for larger sector sizes, must have v2 or external log */
1559 		if (log2_size && log->l_logBBstart > 0 &&
1560 			    !xfs_has_logv2(mp)) {
1561 			xfs_warn(mp,
1562 		"log sector size (0x%x) invalid for configuration.",
1563 				log2_size);
1564 			goto out_free_log;
1565 		}
1566 	}
1567 	log->l_sectBBsize = 1 << log2_size;
1568 
1569 	init_rwsem(&log->l_incompat_users);
1570 
1571 	xlog_get_iclog_buffer_size(mp, log);
1572 
1573 	spin_lock_init(&log->l_icloglock);
1574 	init_waitqueue_head(&log->l_flush_wait);
1575 
1576 	iclogp = &log->l_iclog;
1577 	/*
1578 	 * The amount of memory to allocate for the iclog structure is
1579 	 * rather funky due to the way the structure is defined.  It is
1580 	 * done this way so that we can use different sizes for machines
1581 	 * with different amounts of memory.  See the definition of
1582 	 * xlog_in_core_t in xfs_log_priv.h for details.
1583 	 */
1584 	ASSERT(log->l_iclog_size >= 4096);
1585 	for (i = 0; i < log->l_iclog_bufs; i++) {
1586 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1587 				sizeof(struct bio_vec);
1588 
1589 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1590 		if (!iclog)
1591 			goto out_free_iclog;
1592 
1593 		*iclogp = iclog;
1594 		iclog->ic_prev = prev_iclog;
1595 		prev_iclog = iclog;
1596 
1597 		iclog->ic_data = kvzalloc(log->l_iclog_size,
1598 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1599 		if (!iclog->ic_data)
1600 			goto out_free_iclog;
1601 #ifdef DEBUG
1602 		log->l_iclog_bak[i] = &iclog->ic_header;
1603 #endif
1604 		head = &iclog->ic_header;
1605 		memset(head, 0, sizeof(xlog_rec_header_t));
1606 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1607 		head->h_version = cpu_to_be32(
1608 			xfs_has_logv2(log->l_mp) ? 2 : 1);
1609 		head->h_size = cpu_to_be32(log->l_iclog_size);
1610 		/* new fields */
1611 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1612 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1613 
1614 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1615 		iclog->ic_state = XLOG_STATE_ACTIVE;
1616 		iclog->ic_log = log;
1617 		atomic_set(&iclog->ic_refcnt, 0);
1618 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1619 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1620 
1621 		init_waitqueue_head(&iclog->ic_force_wait);
1622 		init_waitqueue_head(&iclog->ic_write_wait);
1623 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1624 		sema_init(&iclog->ic_sema, 1);
1625 
1626 		iclogp = &iclog->ic_next;
1627 	}
1628 	*iclogp = log->l_iclog;			/* complete ring */
1629 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1630 
1631 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1632 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1633 				    WQ_HIGHPRI),
1634 			0, mp->m_super->s_id);
1635 	if (!log->l_ioend_workqueue)
1636 		goto out_free_iclog;
1637 
1638 	error = xlog_cil_init(log);
1639 	if (error)
1640 		goto out_destroy_workqueue;
1641 	return log;
1642 
1643 out_destroy_workqueue:
1644 	destroy_workqueue(log->l_ioend_workqueue);
1645 out_free_iclog:
1646 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1647 		prev_iclog = iclog->ic_next;
1648 		kmem_free(iclog->ic_data);
1649 		kmem_free(iclog);
1650 		if (prev_iclog == log->l_iclog)
1651 			break;
1652 	}
1653 out_free_log:
1654 	kmem_free(log);
1655 out:
1656 	return ERR_PTR(error);
1657 }	/* xlog_alloc_log */
1658 
1659 /*
1660  * Compute the LSN that we'd need to push the log tail towards in order to have
1661  * (a) enough on-disk log space to log the number of bytes specified, (b) at
1662  * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1663  * log free space already meets all three thresholds, this function returns
1664  * NULLCOMMITLSN.
1665  */
1666 xfs_lsn_t
1667 xlog_grant_push_threshold(
1668 	struct xlog	*log,
1669 	int		need_bytes)
1670 {
1671 	xfs_lsn_t	threshold_lsn = 0;
1672 	xfs_lsn_t	last_sync_lsn;
1673 	int		free_blocks;
1674 	int		free_bytes;
1675 	int		threshold_block;
1676 	int		threshold_cycle;
1677 	int		free_threshold;
1678 
1679 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1680 
1681 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1682 	free_blocks = BTOBBT(free_bytes);
1683 
1684 	/*
1685 	 * Set the threshold for the minimum number of free blocks in the
1686 	 * log to the maximum of what the caller needs, one quarter of the
1687 	 * log, and 256 blocks.
1688 	 */
1689 	free_threshold = BTOBB(need_bytes);
1690 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1691 	free_threshold = max(free_threshold, 256);
1692 	if (free_blocks >= free_threshold)
1693 		return NULLCOMMITLSN;
1694 
1695 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1696 						&threshold_block);
1697 	threshold_block += free_threshold;
1698 	if (threshold_block >= log->l_logBBsize) {
1699 		threshold_block -= log->l_logBBsize;
1700 		threshold_cycle += 1;
1701 	}
1702 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1703 					threshold_block);
1704 	/*
1705 	 * Don't pass in an lsn greater than the lsn of the last
1706 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1707 	 * so that it doesn't change between the compare and the set.
1708 	 */
1709 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1710 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1711 		threshold_lsn = last_sync_lsn;
1712 
1713 	return threshold_lsn;
1714 }
1715 
1716 /*
1717  * Push the tail of the log if we need to do so to maintain the free log space
1718  * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1719  * policy which pushes on an lsn which is further along in the log once we
1720  * reach the high water mark.  In this manner, we would be creating a low water
1721  * mark.
1722  */
1723 STATIC void
1724 xlog_grant_push_ail(
1725 	struct xlog	*log,
1726 	int		need_bytes)
1727 {
1728 	xfs_lsn_t	threshold_lsn;
1729 
1730 	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1731 	if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1732 		return;
1733 
1734 	/*
1735 	 * Get the transaction layer to kick the dirty buffers out to
1736 	 * disk asynchronously. No point in trying to do this if
1737 	 * the filesystem is shutting down.
1738 	 */
1739 	xfs_ail_push(log->l_ailp, threshold_lsn);
1740 }
1741 
1742 /*
1743  * Stamp cycle number in every block
1744  */
1745 STATIC void
1746 xlog_pack_data(
1747 	struct xlog		*log,
1748 	struct xlog_in_core	*iclog,
1749 	int			roundoff)
1750 {
1751 	int			i, j, k;
1752 	int			size = iclog->ic_offset + roundoff;
1753 	__be32			cycle_lsn;
1754 	char			*dp;
1755 
1756 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1757 
1758 	dp = iclog->ic_datap;
1759 	for (i = 0; i < BTOBB(size); i++) {
1760 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1761 			break;
1762 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1763 		*(__be32 *)dp = cycle_lsn;
1764 		dp += BBSIZE;
1765 	}
1766 
1767 	if (xfs_has_logv2(log->l_mp)) {
1768 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1769 
1770 		for ( ; i < BTOBB(size); i++) {
1771 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1772 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1773 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1774 			*(__be32 *)dp = cycle_lsn;
1775 			dp += BBSIZE;
1776 		}
1777 
1778 		for (i = 1; i < log->l_iclog_heads; i++)
1779 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1780 	}
1781 }
1782 
1783 /*
1784  * Calculate the checksum for a log buffer.
1785  *
1786  * This is a little more complicated than it should be because the various
1787  * headers and the actual data are non-contiguous.
1788  */
1789 __le32
1790 xlog_cksum(
1791 	struct xlog		*log,
1792 	struct xlog_rec_header	*rhead,
1793 	char			*dp,
1794 	int			size)
1795 {
1796 	uint32_t		crc;
1797 
1798 	/* first generate the crc for the record header ... */
1799 	crc = xfs_start_cksum_update((char *)rhead,
1800 			      sizeof(struct xlog_rec_header),
1801 			      offsetof(struct xlog_rec_header, h_crc));
1802 
1803 	/* ... then for additional cycle data for v2 logs ... */
1804 	if (xfs_has_logv2(log->l_mp)) {
1805 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1806 		int		i;
1807 		int		xheads;
1808 
1809 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1810 
1811 		for (i = 1; i < xheads; i++) {
1812 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1813 				     sizeof(struct xlog_rec_ext_header));
1814 		}
1815 	}
1816 
1817 	/* ... and finally for the payload */
1818 	crc = crc32c(crc, dp, size);
1819 
1820 	return xfs_end_cksum(crc);
1821 }
1822 
1823 static void
1824 xlog_bio_end_io(
1825 	struct bio		*bio)
1826 {
1827 	struct xlog_in_core	*iclog = bio->bi_private;
1828 
1829 	queue_work(iclog->ic_log->l_ioend_workqueue,
1830 		   &iclog->ic_end_io_work);
1831 }
1832 
1833 static int
1834 xlog_map_iclog_data(
1835 	struct bio		*bio,
1836 	void			*data,
1837 	size_t			count)
1838 {
1839 	do {
1840 		struct page	*page = kmem_to_page(data);
1841 		unsigned int	off = offset_in_page(data);
1842 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1843 
1844 		if (bio_add_page(bio, page, len, off) != len)
1845 			return -EIO;
1846 
1847 		data += len;
1848 		count -= len;
1849 	} while (count);
1850 
1851 	return 0;
1852 }
1853 
1854 STATIC void
1855 xlog_write_iclog(
1856 	struct xlog		*log,
1857 	struct xlog_in_core	*iclog,
1858 	uint64_t		bno,
1859 	unsigned int		count)
1860 {
1861 	ASSERT(bno < log->l_logBBsize);
1862 	trace_xlog_iclog_write(iclog, _RET_IP_);
1863 
1864 	/*
1865 	 * We lock the iclogbufs here so that we can serialise against I/O
1866 	 * completion during unmount.  We might be processing a shutdown
1867 	 * triggered during unmount, and that can occur asynchronously to the
1868 	 * unmount thread, and hence we need to ensure that completes before
1869 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1870 	 * across the log IO to archieve that.
1871 	 */
1872 	down(&iclog->ic_sema);
1873 	if (xlog_is_shutdown(log)) {
1874 		/*
1875 		 * It would seem logical to return EIO here, but we rely on
1876 		 * the log state machine to propagate I/O errors instead of
1877 		 * doing it here.  We kick of the state machine and unlock
1878 		 * the buffer manually, the code needs to be kept in sync
1879 		 * with the I/O completion path.
1880 		 */
1881 		xlog_state_done_syncing(iclog);
1882 		up(&iclog->ic_sema);
1883 		return;
1884 	}
1885 
1886 	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1887 	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1888 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1889 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1890 	iclog->ic_bio.bi_private = iclog;
1891 
1892 	/*
1893 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1894 	 * IOs coming immediately after this one. This prevents the block layer
1895 	 * writeback throttle from throttling log writes behind background
1896 	 * metadata writeback and causing priority inversions.
1897 	 */
1898 	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE;
1899 	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1900 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1901 		/*
1902 		 * For external log devices, we also need to flush the data
1903 		 * device cache first to ensure all metadata writeback covered
1904 		 * by the LSN in this iclog is on stable storage. This is slow,
1905 		 * but it *must* complete before we issue the external log IO.
1906 		 */
1907 		if (log->l_targ != log->l_mp->m_ddev_targp)
1908 			blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev);
1909 	}
1910 	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1911 		iclog->ic_bio.bi_opf |= REQ_FUA;
1912 
1913 	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1914 
1915 	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1916 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1917 		return;
1918 	}
1919 	if (is_vmalloc_addr(iclog->ic_data))
1920 		flush_kernel_vmap_range(iclog->ic_data, count);
1921 
1922 	/*
1923 	 * If this log buffer would straddle the end of the log we will have
1924 	 * to split it up into two bios, so that we can continue at the start.
1925 	 */
1926 	if (bno + BTOBB(count) > log->l_logBBsize) {
1927 		struct bio *split;
1928 
1929 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1930 				  GFP_NOIO, &fs_bio_set);
1931 		bio_chain(split, &iclog->ic_bio);
1932 		submit_bio(split);
1933 
1934 		/* restart at logical offset zero for the remainder */
1935 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1936 	}
1937 
1938 	submit_bio(&iclog->ic_bio);
1939 }
1940 
1941 /*
1942  * We need to bump cycle number for the part of the iclog that is
1943  * written to the start of the log. Watch out for the header magic
1944  * number case, though.
1945  */
1946 static void
1947 xlog_split_iclog(
1948 	struct xlog		*log,
1949 	void			*data,
1950 	uint64_t		bno,
1951 	unsigned int		count)
1952 {
1953 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1954 	unsigned int		i;
1955 
1956 	for (i = split_offset; i < count; i += BBSIZE) {
1957 		uint32_t cycle = get_unaligned_be32(data + i);
1958 
1959 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1960 			cycle++;
1961 		put_unaligned_be32(cycle, data + i);
1962 	}
1963 }
1964 
1965 static int
1966 xlog_calc_iclog_size(
1967 	struct xlog		*log,
1968 	struct xlog_in_core	*iclog,
1969 	uint32_t		*roundoff)
1970 {
1971 	uint32_t		count_init, count;
1972 
1973 	/* Add for LR header */
1974 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1975 	count = roundup(count_init, log->l_iclog_roundoff);
1976 
1977 	*roundoff = count - count_init;
1978 
1979 	ASSERT(count >= count_init);
1980 	ASSERT(*roundoff < log->l_iclog_roundoff);
1981 	return count;
1982 }
1983 
1984 /*
1985  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1986  * fashion.  Previously, we should have moved the current iclog
1987  * ptr in the log to point to the next available iclog.  This allows further
1988  * write to continue while this code syncs out an iclog ready to go.
1989  * Before an in-core log can be written out, the data section must be scanned
1990  * to save away the 1st word of each BBSIZE block into the header.  We replace
1991  * it with the current cycle count.  Each BBSIZE block is tagged with the
1992  * cycle count because there in an implicit assumption that drives will
1993  * guarantee that entire 512 byte blocks get written at once.  In other words,
1994  * we can't have part of a 512 byte block written and part not written.  By
1995  * tagging each block, we will know which blocks are valid when recovering
1996  * after an unclean shutdown.
1997  *
1998  * This routine is single threaded on the iclog.  No other thread can be in
1999  * this routine with the same iclog.  Changing contents of iclog can there-
2000  * fore be done without grabbing the state machine lock.  Updating the global
2001  * log will require grabbing the lock though.
2002  *
2003  * The entire log manager uses a logical block numbering scheme.  Only
2004  * xlog_write_iclog knows about the fact that the log may not start with
2005  * block zero on a given device.
2006  */
2007 STATIC void
2008 xlog_sync(
2009 	struct xlog		*log,
2010 	struct xlog_in_core	*iclog)
2011 {
2012 	unsigned int		count;		/* byte count of bwrite */
2013 	unsigned int		roundoff;       /* roundoff to BB or stripe */
2014 	uint64_t		bno;
2015 	unsigned int		size;
2016 
2017 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2018 	trace_xlog_iclog_sync(iclog, _RET_IP_);
2019 
2020 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
2021 
2022 	/* move grant heads by roundoff in sync */
2023 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2024 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2025 
2026 	/* put cycle number in every block */
2027 	xlog_pack_data(log, iclog, roundoff);
2028 
2029 	/* real byte length */
2030 	size = iclog->ic_offset;
2031 	if (xfs_has_logv2(log->l_mp))
2032 		size += roundoff;
2033 	iclog->ic_header.h_len = cpu_to_be32(size);
2034 
2035 	XFS_STATS_INC(log->l_mp, xs_log_writes);
2036 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2037 
2038 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2039 
2040 	/* Do we need to split this write into 2 parts? */
2041 	if (bno + BTOBB(count) > log->l_logBBsize)
2042 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
2043 
2044 	/* calculcate the checksum */
2045 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2046 					    iclog->ic_datap, size);
2047 	/*
2048 	 * Intentionally corrupt the log record CRC based on the error injection
2049 	 * frequency, if defined. This facilitates testing log recovery in the
2050 	 * event of torn writes. Hence, set the IOABORT state to abort the log
2051 	 * write on I/O completion and shutdown the fs. The subsequent mount
2052 	 * detects the bad CRC and attempts to recover.
2053 	 */
2054 #ifdef DEBUG
2055 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2056 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2057 		iclog->ic_fail_crc = true;
2058 		xfs_warn(log->l_mp,
2059 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2060 			 be64_to_cpu(iclog->ic_header.h_lsn));
2061 	}
2062 #endif
2063 	xlog_verify_iclog(log, iclog, count);
2064 	xlog_write_iclog(log, iclog, bno, count);
2065 }
2066 
2067 /*
2068  * Deallocate a log structure
2069  */
2070 STATIC void
2071 xlog_dealloc_log(
2072 	struct xlog	*log)
2073 {
2074 	xlog_in_core_t	*iclog, *next_iclog;
2075 	int		i;
2076 
2077 	xlog_cil_destroy(log);
2078 
2079 	/*
2080 	 * Cycle all the iclogbuf locks to make sure all log IO completion
2081 	 * is done before we tear down these buffers.
2082 	 */
2083 	iclog = log->l_iclog;
2084 	for (i = 0; i < log->l_iclog_bufs; i++) {
2085 		down(&iclog->ic_sema);
2086 		up(&iclog->ic_sema);
2087 		iclog = iclog->ic_next;
2088 	}
2089 
2090 	iclog = log->l_iclog;
2091 	for (i = 0; i < log->l_iclog_bufs; i++) {
2092 		next_iclog = iclog->ic_next;
2093 		kmem_free(iclog->ic_data);
2094 		kmem_free(iclog);
2095 		iclog = next_iclog;
2096 	}
2097 
2098 	log->l_mp->m_log = NULL;
2099 	destroy_workqueue(log->l_ioend_workqueue);
2100 	kmem_free(log);
2101 }
2102 
2103 /*
2104  * Update counters atomically now that memcpy is done.
2105  */
2106 static inline void
2107 xlog_state_finish_copy(
2108 	struct xlog		*log,
2109 	struct xlog_in_core	*iclog,
2110 	int			record_cnt,
2111 	int			copy_bytes)
2112 {
2113 	lockdep_assert_held(&log->l_icloglock);
2114 
2115 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2116 	iclog->ic_offset += copy_bytes;
2117 }
2118 
2119 /*
2120  * print out info relating to regions written which consume
2121  * the reservation
2122  */
2123 void
2124 xlog_print_tic_res(
2125 	struct xfs_mount	*mp,
2126 	struct xlog_ticket	*ticket)
2127 {
2128 	uint i;
2129 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2130 
2131 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2132 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2133 	static char *res_type_str[] = {
2134 	    REG_TYPE_STR(BFORMAT, "bformat"),
2135 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2136 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2137 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2138 	    REG_TYPE_STR(IFORMAT, "iformat"),
2139 	    REG_TYPE_STR(ICORE, "icore"),
2140 	    REG_TYPE_STR(IEXT, "iext"),
2141 	    REG_TYPE_STR(IBROOT, "ibroot"),
2142 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2143 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2144 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2145 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2146 	    REG_TYPE_STR(QFORMAT, "qformat"),
2147 	    REG_TYPE_STR(DQUOT, "dquot"),
2148 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2149 	    REG_TYPE_STR(LRHEADER, "LR header"),
2150 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2151 	    REG_TYPE_STR(COMMIT, "commit"),
2152 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2153 	    REG_TYPE_STR(ICREATE, "inode create"),
2154 	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2155 	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2156 	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2157 	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2158 	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2159 	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2160 	};
2161 	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2162 #undef REG_TYPE_STR
2163 
2164 	xfs_warn(mp, "ticket reservation summary:");
2165 	xfs_warn(mp, "  unit res    = %d bytes",
2166 		 ticket->t_unit_res);
2167 	xfs_warn(mp, "  current res = %d bytes",
2168 		 ticket->t_curr_res);
2169 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2170 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2171 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2172 		 ticket->t_res_num_ophdrs, ophdr_spc);
2173 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2174 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2175 	xfs_warn(mp, "  num regions = %u",
2176 		 ticket->t_res_num);
2177 
2178 	for (i = 0; i < ticket->t_res_num; i++) {
2179 		uint r_type = ticket->t_res_arr[i].r_type;
2180 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2181 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2182 			    "bad-rtype" : res_type_str[r_type]),
2183 			    ticket->t_res_arr[i].r_len);
2184 	}
2185 }
2186 
2187 /*
2188  * Print a summary of the transaction.
2189  */
2190 void
2191 xlog_print_trans(
2192 	struct xfs_trans	*tp)
2193 {
2194 	struct xfs_mount	*mp = tp->t_mountp;
2195 	struct xfs_log_item	*lip;
2196 
2197 	/* dump core transaction and ticket info */
2198 	xfs_warn(mp, "transaction summary:");
2199 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2200 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2201 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2202 
2203 	xlog_print_tic_res(mp, tp->t_ticket);
2204 
2205 	/* dump each log item */
2206 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2207 		struct xfs_log_vec	*lv = lip->li_lv;
2208 		struct xfs_log_iovec	*vec;
2209 		int			i;
2210 
2211 		xfs_warn(mp, "log item: ");
2212 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2213 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2214 		if (!lv)
2215 			continue;
2216 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2217 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2218 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2219 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2220 
2221 		/* dump each iovec for the log item */
2222 		vec = lv->lv_iovecp;
2223 		for (i = 0; i < lv->lv_niovecs; i++) {
2224 			int dumplen = min(vec->i_len, 32);
2225 
2226 			xfs_warn(mp, "  iovec[%d]", i);
2227 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2228 			xfs_warn(mp, "    len	= %d", vec->i_len);
2229 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2230 			xfs_hex_dump(vec->i_addr, dumplen);
2231 
2232 			vec++;
2233 		}
2234 	}
2235 }
2236 
2237 /*
2238  * Calculate the potential space needed by the log vector.  We may need a start
2239  * record, and each region gets its own struct xlog_op_header and may need to be
2240  * double word aligned.
2241  */
2242 static int
2243 xlog_write_calc_vec_length(
2244 	struct xlog_ticket	*ticket,
2245 	struct xfs_log_vec	*log_vector,
2246 	uint			optype)
2247 {
2248 	struct xfs_log_vec	*lv;
2249 	int			headers = 0;
2250 	int			len = 0;
2251 	int			i;
2252 
2253 	if (optype & XLOG_START_TRANS)
2254 		headers++;
2255 
2256 	for (lv = log_vector; lv; lv = lv->lv_next) {
2257 		/* we don't write ordered log vectors */
2258 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2259 			continue;
2260 
2261 		headers += lv->lv_niovecs;
2262 
2263 		for (i = 0; i < lv->lv_niovecs; i++) {
2264 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2265 
2266 			len += vecp->i_len;
2267 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2268 		}
2269 	}
2270 
2271 	ticket->t_res_num_ophdrs += headers;
2272 	len += headers * sizeof(struct xlog_op_header);
2273 
2274 	return len;
2275 }
2276 
2277 static void
2278 xlog_write_start_rec(
2279 	struct xlog_op_header	*ophdr,
2280 	struct xlog_ticket	*ticket)
2281 {
2282 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2283 	ophdr->oh_clientid = ticket->t_clientid;
2284 	ophdr->oh_len = 0;
2285 	ophdr->oh_flags = XLOG_START_TRANS;
2286 	ophdr->oh_res2 = 0;
2287 }
2288 
2289 static xlog_op_header_t *
2290 xlog_write_setup_ophdr(
2291 	struct xlog		*log,
2292 	struct xlog_op_header	*ophdr,
2293 	struct xlog_ticket	*ticket,
2294 	uint			flags)
2295 {
2296 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2297 	ophdr->oh_clientid = ticket->t_clientid;
2298 	ophdr->oh_res2 = 0;
2299 
2300 	/* are we copying a commit or unmount record? */
2301 	ophdr->oh_flags = flags;
2302 
2303 	/*
2304 	 * We've seen logs corrupted with bad transaction client ids.  This
2305 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2306 	 * and shut down the filesystem.
2307 	 */
2308 	switch (ophdr->oh_clientid)  {
2309 	case XFS_TRANSACTION:
2310 	case XFS_VOLUME:
2311 	case XFS_LOG:
2312 		break;
2313 	default:
2314 		xfs_warn(log->l_mp,
2315 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2316 			ophdr->oh_clientid, ticket);
2317 		return NULL;
2318 	}
2319 
2320 	return ophdr;
2321 }
2322 
2323 /*
2324  * Set up the parameters of the region copy into the log. This has
2325  * to handle region write split across multiple log buffers - this
2326  * state is kept external to this function so that this code can
2327  * be written in an obvious, self documenting manner.
2328  */
2329 static int
2330 xlog_write_setup_copy(
2331 	struct xlog_ticket	*ticket,
2332 	struct xlog_op_header	*ophdr,
2333 	int			space_available,
2334 	int			space_required,
2335 	int			*copy_off,
2336 	int			*copy_len,
2337 	int			*last_was_partial_copy,
2338 	int			*bytes_consumed)
2339 {
2340 	int			still_to_copy;
2341 
2342 	still_to_copy = space_required - *bytes_consumed;
2343 	*copy_off = *bytes_consumed;
2344 
2345 	if (still_to_copy <= space_available) {
2346 		/* write of region completes here */
2347 		*copy_len = still_to_copy;
2348 		ophdr->oh_len = cpu_to_be32(*copy_len);
2349 		if (*last_was_partial_copy)
2350 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2351 		*last_was_partial_copy = 0;
2352 		*bytes_consumed = 0;
2353 		return 0;
2354 	}
2355 
2356 	/* partial write of region, needs extra log op header reservation */
2357 	*copy_len = space_available;
2358 	ophdr->oh_len = cpu_to_be32(*copy_len);
2359 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2360 	if (*last_was_partial_copy)
2361 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2362 	*bytes_consumed += *copy_len;
2363 	(*last_was_partial_copy)++;
2364 
2365 	/* account for new log op header */
2366 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2367 	ticket->t_res_num_ophdrs++;
2368 
2369 	return sizeof(struct xlog_op_header);
2370 }
2371 
2372 static int
2373 xlog_write_copy_finish(
2374 	struct xlog		*log,
2375 	struct xlog_in_core	*iclog,
2376 	uint			flags,
2377 	int			*record_cnt,
2378 	int			*data_cnt,
2379 	int			*partial_copy,
2380 	int			*partial_copy_len,
2381 	int			log_offset)
2382 {
2383 	int			error;
2384 
2385 	if (*partial_copy) {
2386 		/*
2387 		 * This iclog has already been marked WANT_SYNC by
2388 		 * xlog_state_get_iclog_space.
2389 		 */
2390 		spin_lock(&log->l_icloglock);
2391 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2392 		*record_cnt = 0;
2393 		*data_cnt = 0;
2394 		goto release_iclog;
2395 	}
2396 
2397 	*partial_copy = 0;
2398 	*partial_copy_len = 0;
2399 
2400 	if (iclog->ic_size - log_offset > sizeof(xlog_op_header_t))
2401 		return 0;
2402 
2403 	/* no more space in this iclog - push it. */
2404 	spin_lock(&log->l_icloglock);
2405 	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2406 	*record_cnt = 0;
2407 	*data_cnt = 0;
2408 
2409 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
2410 		xlog_state_switch_iclogs(log, iclog, 0);
2411 	else
2412 		ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2413 			xlog_is_shutdown(log));
2414 release_iclog:
2415 	error = xlog_state_release_iclog(log, iclog, 0);
2416 	spin_unlock(&log->l_icloglock);
2417 	return error;
2418 }
2419 
2420 /*
2421  * Write some region out to in-core log
2422  *
2423  * This will be called when writing externally provided regions or when
2424  * writing out a commit record for a given transaction.
2425  *
2426  * General algorithm:
2427  *	1. Find total length of this write.  This may include adding to the
2428  *		lengths passed in.
2429  *	2. Check whether we violate the tickets reservation.
2430  *	3. While writing to this iclog
2431  *	    A. Reserve as much space in this iclog as can get
2432  *	    B. If this is first write, save away start lsn
2433  *	    C. While writing this region:
2434  *		1. If first write of transaction, write start record
2435  *		2. Write log operation header (header per region)
2436  *		3. Find out if we can fit entire region into this iclog
2437  *		4. Potentially, verify destination memcpy ptr
2438  *		5. Memcpy (partial) region
2439  *		6. If partial copy, release iclog; otherwise, continue
2440  *			copying more regions into current iclog
2441  *	4. Mark want sync bit (in simulation mode)
2442  *	5. Release iclog for potential flush to on-disk log.
2443  *
2444  * ERRORS:
2445  * 1.	Panic if reservation is overrun.  This should never happen since
2446  *	reservation amounts are generated internal to the filesystem.
2447  * NOTES:
2448  * 1. Tickets are single threaded data structures.
2449  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2450  *	syncing routine.  When a single log_write region needs to span
2451  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2452  *	on all log operation writes which don't contain the end of the
2453  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2454  *	operation which contains the end of the continued log_write region.
2455  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2456  *	we don't really know exactly how much space will be used.  As a result,
2457  *	we don't update ic_offset until the end when we know exactly how many
2458  *	bytes have been written out.
2459  */
2460 int
2461 xlog_write(
2462 	struct xlog		*log,
2463 	struct xfs_cil_ctx	*ctx,
2464 	struct xfs_log_vec	*log_vector,
2465 	struct xlog_ticket	*ticket,
2466 	uint			optype)
2467 {
2468 	struct xlog_in_core	*iclog = NULL;
2469 	struct xfs_log_vec	*lv = log_vector;
2470 	struct xfs_log_iovec	*vecp = lv->lv_iovecp;
2471 	int			index = 0;
2472 	int			len;
2473 	int			partial_copy = 0;
2474 	int			partial_copy_len = 0;
2475 	int			contwr = 0;
2476 	int			record_cnt = 0;
2477 	int			data_cnt = 0;
2478 	int			error = 0;
2479 
2480 	/*
2481 	 * If this is a commit or unmount transaction, we don't need a start
2482 	 * record to be written.  We do, however, have to account for the
2483 	 * commit or unmount header that gets written. Hence we always have
2484 	 * to account for an extra xlog_op_header here.
2485 	 */
2486 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2487 	if (ticket->t_curr_res < 0) {
2488 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2489 		     "ctx ticket reservation ran out. Need to up reservation");
2490 		xlog_print_tic_res(log->l_mp, ticket);
2491 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2492 	}
2493 
2494 	len = xlog_write_calc_vec_length(ticket, log_vector, optype);
2495 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2496 		void		*ptr;
2497 		int		log_offset;
2498 
2499 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2500 						   &contwr, &log_offset);
2501 		if (error)
2502 			return error;
2503 
2504 		ASSERT(log_offset <= iclog->ic_size - 1);
2505 		ptr = iclog->ic_datap + log_offset;
2506 
2507 		/*
2508 		 * If we have a context pointer, pass it the first iclog we are
2509 		 * writing to so it can record state needed for iclog write
2510 		 * ordering.
2511 		 */
2512 		if (ctx) {
2513 			xlog_cil_set_ctx_write_state(ctx, iclog);
2514 			ctx = NULL;
2515 		}
2516 
2517 		/*
2518 		 * This loop writes out as many regions as can fit in the amount
2519 		 * of space which was allocated by xlog_state_get_iclog_space().
2520 		 */
2521 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2522 			struct xfs_log_iovec	*reg;
2523 			struct xlog_op_header	*ophdr;
2524 			int			copy_len;
2525 			int			copy_off;
2526 			bool			ordered = false;
2527 			bool			wrote_start_rec = false;
2528 
2529 			/* ordered log vectors have no regions to write */
2530 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2531 				ASSERT(lv->lv_niovecs == 0);
2532 				ordered = true;
2533 				goto next_lv;
2534 			}
2535 
2536 			reg = &vecp[index];
2537 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2538 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2539 
2540 			/*
2541 			 * Before we start formatting log vectors, we need to
2542 			 * write a start record. Only do this for the first
2543 			 * iclog we write to.
2544 			 */
2545 			if (optype & XLOG_START_TRANS) {
2546 				xlog_write_start_rec(ptr, ticket);
2547 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2548 						sizeof(struct xlog_op_header));
2549 				optype &= ~XLOG_START_TRANS;
2550 				wrote_start_rec = true;
2551 			}
2552 
2553 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype);
2554 			if (!ophdr)
2555 				return -EIO;
2556 
2557 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2558 					   sizeof(struct xlog_op_header));
2559 
2560 			len += xlog_write_setup_copy(ticket, ophdr,
2561 						     iclog->ic_size-log_offset,
2562 						     reg->i_len,
2563 						     &copy_off, &copy_len,
2564 						     &partial_copy,
2565 						     &partial_copy_len);
2566 			xlog_verify_dest_ptr(log, ptr);
2567 
2568 			/*
2569 			 * Copy region.
2570 			 *
2571 			 * Unmount records just log an opheader, so can have
2572 			 * empty payloads with no data region to copy. Hence we
2573 			 * only copy the payload if the vector says it has data
2574 			 * to copy.
2575 			 */
2576 			ASSERT(copy_len >= 0);
2577 			if (copy_len > 0) {
2578 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2579 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2580 						   copy_len);
2581 			}
2582 			copy_len += sizeof(struct xlog_op_header);
2583 			record_cnt++;
2584 			if (wrote_start_rec) {
2585 				copy_len += sizeof(struct xlog_op_header);
2586 				record_cnt++;
2587 			}
2588 			data_cnt += contwr ? copy_len : 0;
2589 
2590 			error = xlog_write_copy_finish(log, iclog, optype,
2591 						       &record_cnt, &data_cnt,
2592 						       &partial_copy,
2593 						       &partial_copy_len,
2594 						       log_offset);
2595 			if (error)
2596 				return error;
2597 
2598 			/*
2599 			 * if we had a partial copy, we need to get more iclog
2600 			 * space but we don't want to increment the region
2601 			 * index because there is still more is this region to
2602 			 * write.
2603 			 *
2604 			 * If we completed writing this region, and we flushed
2605 			 * the iclog (indicated by resetting of the record
2606 			 * count), then we also need to get more log space. If
2607 			 * this was the last record, though, we are done and
2608 			 * can just return.
2609 			 */
2610 			if (partial_copy)
2611 				break;
2612 
2613 			if (++index == lv->lv_niovecs) {
2614 next_lv:
2615 				lv = lv->lv_next;
2616 				index = 0;
2617 				if (lv)
2618 					vecp = lv->lv_iovecp;
2619 			}
2620 			if (record_cnt == 0 && !ordered) {
2621 				if (!lv)
2622 					return 0;
2623 				break;
2624 			}
2625 		}
2626 	}
2627 
2628 	ASSERT(len == 0);
2629 
2630 	spin_lock(&log->l_icloglock);
2631 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2632 	error = xlog_state_release_iclog(log, iclog, 0);
2633 	spin_unlock(&log->l_icloglock);
2634 
2635 	return error;
2636 }
2637 
2638 static void
2639 xlog_state_activate_iclog(
2640 	struct xlog_in_core	*iclog,
2641 	int			*iclogs_changed)
2642 {
2643 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2644 	trace_xlog_iclog_activate(iclog, _RET_IP_);
2645 
2646 	/*
2647 	 * If the number of ops in this iclog indicate it just contains the
2648 	 * dummy transaction, we can change state into IDLE (the second time
2649 	 * around). Otherwise we should change the state into NEED a dummy.
2650 	 * We don't need to cover the dummy.
2651 	 */
2652 	if (*iclogs_changed == 0 &&
2653 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2654 		*iclogs_changed = 1;
2655 	} else {
2656 		/*
2657 		 * We have two dirty iclogs so start over.  This could also be
2658 		 * num of ops indicating this is not the dummy going out.
2659 		 */
2660 		*iclogs_changed = 2;
2661 	}
2662 
2663 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2664 	iclog->ic_offset = 0;
2665 	iclog->ic_header.h_num_logops = 0;
2666 	memset(iclog->ic_header.h_cycle_data, 0,
2667 		sizeof(iclog->ic_header.h_cycle_data));
2668 	iclog->ic_header.h_lsn = 0;
2669 	iclog->ic_header.h_tail_lsn = 0;
2670 }
2671 
2672 /*
2673  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2674  * ACTIVE after iclog I/O has completed.
2675  */
2676 static void
2677 xlog_state_activate_iclogs(
2678 	struct xlog		*log,
2679 	int			*iclogs_changed)
2680 {
2681 	struct xlog_in_core	*iclog = log->l_iclog;
2682 
2683 	do {
2684 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2685 			xlog_state_activate_iclog(iclog, iclogs_changed);
2686 		/*
2687 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2688 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2689 		 */
2690 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2691 			break;
2692 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2693 }
2694 
2695 static int
2696 xlog_covered_state(
2697 	int			prev_state,
2698 	int			iclogs_changed)
2699 {
2700 	/*
2701 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2702 	 * wrote the first covering record (DONE). We go to IDLE if we just
2703 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2704 	 * non-covering write occurs.
2705 	 */
2706 	switch (prev_state) {
2707 	case XLOG_STATE_COVER_IDLE:
2708 		if (iclogs_changed == 1)
2709 			return XLOG_STATE_COVER_IDLE;
2710 		fallthrough;
2711 	case XLOG_STATE_COVER_NEED:
2712 	case XLOG_STATE_COVER_NEED2:
2713 		break;
2714 	case XLOG_STATE_COVER_DONE:
2715 		if (iclogs_changed == 1)
2716 			return XLOG_STATE_COVER_NEED2;
2717 		break;
2718 	case XLOG_STATE_COVER_DONE2:
2719 		if (iclogs_changed == 1)
2720 			return XLOG_STATE_COVER_IDLE;
2721 		break;
2722 	default:
2723 		ASSERT(0);
2724 	}
2725 
2726 	return XLOG_STATE_COVER_NEED;
2727 }
2728 
2729 STATIC void
2730 xlog_state_clean_iclog(
2731 	struct xlog		*log,
2732 	struct xlog_in_core	*dirty_iclog)
2733 {
2734 	int			iclogs_changed = 0;
2735 
2736 	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2737 
2738 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2739 
2740 	xlog_state_activate_iclogs(log, &iclogs_changed);
2741 	wake_up_all(&dirty_iclog->ic_force_wait);
2742 
2743 	if (iclogs_changed) {
2744 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2745 				iclogs_changed);
2746 	}
2747 }
2748 
2749 STATIC xfs_lsn_t
2750 xlog_get_lowest_lsn(
2751 	struct xlog		*log)
2752 {
2753 	struct xlog_in_core	*iclog = log->l_iclog;
2754 	xfs_lsn_t		lowest_lsn = 0, lsn;
2755 
2756 	do {
2757 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2758 		    iclog->ic_state == XLOG_STATE_DIRTY)
2759 			continue;
2760 
2761 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2762 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2763 			lowest_lsn = lsn;
2764 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2765 
2766 	return lowest_lsn;
2767 }
2768 
2769 /*
2770  * Completion of a iclog IO does not imply that a transaction has completed, as
2771  * transactions can be large enough to span many iclogs. We cannot change the
2772  * tail of the log half way through a transaction as this may be the only
2773  * transaction in the log and moving the tail to point to the middle of it
2774  * will prevent recovery from finding the start of the transaction. Hence we
2775  * should only update the last_sync_lsn if this iclog contains transaction
2776  * completion callbacks on it.
2777  *
2778  * We have to do this before we drop the icloglock to ensure we are the only one
2779  * that can update it.
2780  *
2781  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2782  * the reservation grant head pushing. This is due to the fact that the push
2783  * target is bound by the current last_sync_lsn value. Hence if we have a large
2784  * amount of log space bound up in this committing transaction then the
2785  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2786  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2787  * should push the AIL to ensure the push target (and hence the grant head) is
2788  * no longer bound by the old log head location and can move forwards and make
2789  * progress again.
2790  */
2791 static void
2792 xlog_state_set_callback(
2793 	struct xlog		*log,
2794 	struct xlog_in_core	*iclog,
2795 	xfs_lsn_t		header_lsn)
2796 {
2797 	trace_xlog_iclog_callback(iclog, _RET_IP_);
2798 	iclog->ic_state = XLOG_STATE_CALLBACK;
2799 
2800 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2801 			   header_lsn) <= 0);
2802 
2803 	if (list_empty_careful(&iclog->ic_callbacks))
2804 		return;
2805 
2806 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2807 	xlog_grant_push_ail(log, 0);
2808 }
2809 
2810 /*
2811  * Return true if we need to stop processing, false to continue to the next
2812  * iclog. The caller will need to run callbacks if the iclog is returned in the
2813  * XLOG_STATE_CALLBACK state.
2814  */
2815 static bool
2816 xlog_state_iodone_process_iclog(
2817 	struct xlog		*log,
2818 	struct xlog_in_core	*iclog)
2819 {
2820 	xfs_lsn_t		lowest_lsn;
2821 	xfs_lsn_t		header_lsn;
2822 
2823 	switch (iclog->ic_state) {
2824 	case XLOG_STATE_ACTIVE:
2825 	case XLOG_STATE_DIRTY:
2826 		/*
2827 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2828 		 */
2829 		return false;
2830 	case XLOG_STATE_DONE_SYNC:
2831 		/*
2832 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2833 		 * one more check here to see if we have chased our tail around.
2834 		 * If this is not the lowest lsn iclog, then we will leave it
2835 		 * for another completion to process.
2836 		 */
2837 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2838 		lowest_lsn = xlog_get_lowest_lsn(log);
2839 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2840 			return false;
2841 		xlog_state_set_callback(log, iclog, header_lsn);
2842 		return false;
2843 	default:
2844 		/*
2845 		 * Can only perform callbacks in order.  Since this iclog is not
2846 		 * in the DONE_SYNC state, we skip the rest and just try to
2847 		 * clean up.
2848 		 */
2849 		return true;
2850 	}
2851 }
2852 
2853 /*
2854  * Loop over all the iclogs, running attached callbacks on them. Return true if
2855  * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2856  * to handle transient shutdown state here at all because
2857  * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2858  * cleanup of the callbacks.
2859  */
2860 static bool
2861 xlog_state_do_iclog_callbacks(
2862 	struct xlog		*log)
2863 		__releases(&log->l_icloglock)
2864 		__acquires(&log->l_icloglock)
2865 {
2866 	struct xlog_in_core	*first_iclog = log->l_iclog;
2867 	struct xlog_in_core	*iclog = first_iclog;
2868 	bool			ran_callback = false;
2869 
2870 	do {
2871 		LIST_HEAD(cb_list);
2872 
2873 		if (xlog_state_iodone_process_iclog(log, iclog))
2874 			break;
2875 		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2876 			iclog = iclog->ic_next;
2877 			continue;
2878 		}
2879 		list_splice_init(&iclog->ic_callbacks, &cb_list);
2880 		spin_unlock(&log->l_icloglock);
2881 
2882 		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2883 		xlog_cil_process_committed(&cb_list);
2884 		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2885 		ran_callback = true;
2886 
2887 		spin_lock(&log->l_icloglock);
2888 		xlog_state_clean_iclog(log, iclog);
2889 		iclog = iclog->ic_next;
2890 	} while (iclog != first_iclog);
2891 
2892 	return ran_callback;
2893 }
2894 
2895 
2896 /*
2897  * Loop running iclog completion callbacks until there are no more iclogs in a
2898  * state that can run callbacks.
2899  */
2900 STATIC void
2901 xlog_state_do_callback(
2902 	struct xlog		*log)
2903 {
2904 	int			flushcnt = 0;
2905 	int			repeats = 0;
2906 
2907 	spin_lock(&log->l_icloglock);
2908 	while (xlog_state_do_iclog_callbacks(log)) {
2909 		if (xlog_is_shutdown(log))
2910 			break;
2911 
2912 		if (++repeats > 5000) {
2913 			flushcnt += repeats;
2914 			repeats = 0;
2915 			xfs_warn(log->l_mp,
2916 				"%s: possible infinite loop (%d iterations)",
2917 				__func__, flushcnt);
2918 		}
2919 	}
2920 
2921 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2922 		wake_up_all(&log->l_flush_wait);
2923 
2924 	spin_unlock(&log->l_icloglock);
2925 }
2926 
2927 
2928 /*
2929  * Finish transitioning this iclog to the dirty state.
2930  *
2931  * Callbacks could take time, so they are done outside the scope of the
2932  * global state machine log lock.
2933  */
2934 STATIC void
2935 xlog_state_done_syncing(
2936 	struct xlog_in_core	*iclog)
2937 {
2938 	struct xlog		*log = iclog->ic_log;
2939 
2940 	spin_lock(&log->l_icloglock);
2941 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2942 	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2943 
2944 	/*
2945 	 * If we got an error, either on the first buffer, or in the case of
2946 	 * split log writes, on the second, we shut down the file system and
2947 	 * no iclogs should ever be attempted to be written to disk again.
2948 	 */
2949 	if (!xlog_is_shutdown(log)) {
2950 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2951 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2952 	}
2953 
2954 	/*
2955 	 * Someone could be sleeping prior to writing out the next
2956 	 * iclog buffer, we wake them all, one will get to do the
2957 	 * I/O, the others get to wait for the result.
2958 	 */
2959 	wake_up_all(&iclog->ic_write_wait);
2960 	spin_unlock(&log->l_icloglock);
2961 	xlog_state_do_callback(log);
2962 }
2963 
2964 /*
2965  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2966  * sleep.  We wait on the flush queue on the head iclog as that should be
2967  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2968  * we will wait here and all new writes will sleep until a sync completes.
2969  *
2970  * The in-core logs are used in a circular fashion. They are not used
2971  * out-of-order even when an iclog past the head is free.
2972  *
2973  * return:
2974  *	* log_offset where xlog_write() can start writing into the in-core
2975  *		log's data space.
2976  *	* in-core log pointer to which xlog_write() should write.
2977  *	* boolean indicating this is a continued write to an in-core log.
2978  *		If this is the last write, then the in-core log's offset field
2979  *		needs to be incremented, depending on the amount of data which
2980  *		is copied.
2981  */
2982 STATIC int
2983 xlog_state_get_iclog_space(
2984 	struct xlog		*log,
2985 	int			len,
2986 	struct xlog_in_core	**iclogp,
2987 	struct xlog_ticket	*ticket,
2988 	int			*continued_write,
2989 	int			*logoffsetp)
2990 {
2991 	int		  log_offset;
2992 	xlog_rec_header_t *head;
2993 	xlog_in_core_t	  *iclog;
2994 
2995 restart:
2996 	spin_lock(&log->l_icloglock);
2997 	if (xlog_is_shutdown(log)) {
2998 		spin_unlock(&log->l_icloglock);
2999 		return -EIO;
3000 	}
3001 
3002 	iclog = log->l_iclog;
3003 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
3004 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
3005 
3006 		/* Wait for log writes to have flushed */
3007 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3008 		goto restart;
3009 	}
3010 
3011 	head = &iclog->ic_header;
3012 
3013 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
3014 	log_offset = iclog->ic_offset;
3015 
3016 	trace_xlog_iclog_get_space(iclog, _RET_IP_);
3017 
3018 	/* On the 1st write to an iclog, figure out lsn.  This works
3019 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3020 	 * committing to.  If the offset is set, that's how many blocks
3021 	 * must be written.
3022 	 */
3023 	if (log_offset == 0) {
3024 		ticket->t_curr_res -= log->l_iclog_hsize;
3025 		xlog_tic_add_region(ticket,
3026 				    log->l_iclog_hsize,
3027 				    XLOG_REG_TYPE_LRHEADER);
3028 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3029 		head->h_lsn = cpu_to_be64(
3030 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3031 		ASSERT(log->l_curr_block >= 0);
3032 	}
3033 
3034 	/* If there is enough room to write everything, then do it.  Otherwise,
3035 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3036 	 * bit is on, so this will get flushed out.  Don't update ic_offset
3037 	 * until you know exactly how many bytes get copied.  Therefore, wait
3038 	 * until later to update ic_offset.
3039 	 *
3040 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3041 	 * can fit into remaining data section.
3042 	 */
3043 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3044 		int		error = 0;
3045 
3046 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3047 
3048 		/*
3049 		 * If we are the only one writing to this iclog, sync it to
3050 		 * disk.  We need to do an atomic compare and decrement here to
3051 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
3052 		 * xlog_state_release_iclog() when there is more than one
3053 		 * reference to the iclog.
3054 		 */
3055 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3056 			error = xlog_state_release_iclog(log, iclog, 0);
3057 		spin_unlock(&log->l_icloglock);
3058 		if (error)
3059 			return error;
3060 		goto restart;
3061 	}
3062 
3063 	/* Do we have enough room to write the full amount in the remainder
3064 	 * of this iclog?  Or must we continue a write on the next iclog and
3065 	 * mark this iclog as completely taken?  In the case where we switch
3066 	 * iclogs (to mark it taken), this particular iclog will release/sync
3067 	 * to disk in xlog_write().
3068 	 */
3069 	if (len <= iclog->ic_size - iclog->ic_offset) {
3070 		*continued_write = 0;
3071 		iclog->ic_offset += len;
3072 	} else {
3073 		*continued_write = 1;
3074 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3075 	}
3076 	*iclogp = iclog;
3077 
3078 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3079 	spin_unlock(&log->l_icloglock);
3080 
3081 	*logoffsetp = log_offset;
3082 	return 0;
3083 }
3084 
3085 /*
3086  * The first cnt-1 times a ticket goes through here we don't need to move the
3087  * grant write head because the permanent reservation has reserved cnt times the
3088  * unit amount.  Release part of current permanent unit reservation and reset
3089  * current reservation to be one units worth.  Also move grant reservation head
3090  * forward.
3091  */
3092 void
3093 xfs_log_ticket_regrant(
3094 	struct xlog		*log,
3095 	struct xlog_ticket	*ticket)
3096 {
3097 	trace_xfs_log_ticket_regrant(log, ticket);
3098 
3099 	if (ticket->t_cnt > 0)
3100 		ticket->t_cnt--;
3101 
3102 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3103 					ticket->t_curr_res);
3104 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3105 					ticket->t_curr_res);
3106 	ticket->t_curr_res = ticket->t_unit_res;
3107 	xlog_tic_reset_res(ticket);
3108 
3109 	trace_xfs_log_ticket_regrant_sub(log, ticket);
3110 
3111 	/* just return if we still have some of the pre-reserved space */
3112 	if (!ticket->t_cnt) {
3113 		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3114 				     ticket->t_unit_res);
3115 		trace_xfs_log_ticket_regrant_exit(log, ticket);
3116 
3117 		ticket->t_curr_res = ticket->t_unit_res;
3118 		xlog_tic_reset_res(ticket);
3119 	}
3120 
3121 	xfs_log_ticket_put(ticket);
3122 }
3123 
3124 /*
3125  * Give back the space left from a reservation.
3126  *
3127  * All the information we need to make a correct determination of space left
3128  * is present.  For non-permanent reservations, things are quite easy.  The
3129  * count should have been decremented to zero.  We only need to deal with the
3130  * space remaining in the current reservation part of the ticket.  If the
3131  * ticket contains a permanent reservation, there may be left over space which
3132  * needs to be released.  A count of N means that N-1 refills of the current
3133  * reservation can be done before we need to ask for more space.  The first
3134  * one goes to fill up the first current reservation.  Once we run out of
3135  * space, the count will stay at zero and the only space remaining will be
3136  * in the current reservation field.
3137  */
3138 void
3139 xfs_log_ticket_ungrant(
3140 	struct xlog		*log,
3141 	struct xlog_ticket	*ticket)
3142 {
3143 	int			bytes;
3144 
3145 	trace_xfs_log_ticket_ungrant(log, ticket);
3146 
3147 	if (ticket->t_cnt > 0)
3148 		ticket->t_cnt--;
3149 
3150 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3151 
3152 	/*
3153 	 * If this is a permanent reservation ticket, we may be able to free
3154 	 * up more space based on the remaining count.
3155 	 */
3156 	bytes = ticket->t_curr_res;
3157 	if (ticket->t_cnt > 0) {
3158 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3159 		bytes += ticket->t_unit_res*ticket->t_cnt;
3160 	}
3161 
3162 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3163 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3164 
3165 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3166 
3167 	xfs_log_space_wake(log->l_mp);
3168 	xfs_log_ticket_put(ticket);
3169 }
3170 
3171 /*
3172  * This routine will mark the current iclog in the ring as WANT_SYNC and move
3173  * the current iclog pointer to the next iclog in the ring.
3174  */
3175 void
3176 xlog_state_switch_iclogs(
3177 	struct xlog		*log,
3178 	struct xlog_in_core	*iclog,
3179 	int			eventual_size)
3180 {
3181 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3182 	assert_spin_locked(&log->l_icloglock);
3183 	trace_xlog_iclog_switch(iclog, _RET_IP_);
3184 
3185 	if (!eventual_size)
3186 		eventual_size = iclog->ic_offset;
3187 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3188 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3189 	log->l_prev_block = log->l_curr_block;
3190 	log->l_prev_cycle = log->l_curr_cycle;
3191 
3192 	/* roll log?: ic_offset changed later */
3193 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3194 
3195 	/* Round up to next log-sunit */
3196 	if (log->l_iclog_roundoff > BBSIZE) {
3197 		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3198 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3199 	}
3200 
3201 	if (log->l_curr_block >= log->l_logBBsize) {
3202 		/*
3203 		 * Rewind the current block before the cycle is bumped to make
3204 		 * sure that the combined LSN never transiently moves forward
3205 		 * when the log wraps to the next cycle. This is to support the
3206 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3207 		 * other cases should acquire l_icloglock.
3208 		 */
3209 		log->l_curr_block -= log->l_logBBsize;
3210 		ASSERT(log->l_curr_block >= 0);
3211 		smp_wmb();
3212 		log->l_curr_cycle++;
3213 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3214 			log->l_curr_cycle++;
3215 	}
3216 	ASSERT(iclog == log->l_iclog);
3217 	log->l_iclog = iclog->ic_next;
3218 }
3219 
3220 /*
3221  * Force the iclog to disk and check if the iclog has been completed before
3222  * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3223  * pmem) or fast async storage because we drop the icloglock to issue the IO.
3224  * If completion has already occurred, tell the caller so that it can avoid an
3225  * unnecessary wait on the iclog.
3226  */
3227 static int
3228 xlog_force_and_check_iclog(
3229 	struct xlog_in_core	*iclog,
3230 	bool			*completed)
3231 {
3232 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3233 	int			error;
3234 
3235 	*completed = false;
3236 	error = xlog_force_iclog(iclog);
3237 	if (error)
3238 		return error;
3239 
3240 	/*
3241 	 * If the iclog has already been completed and reused the header LSN
3242 	 * will have been rewritten by completion
3243 	 */
3244 	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3245 		*completed = true;
3246 	return 0;
3247 }
3248 
3249 /*
3250  * Write out all data in the in-core log as of this exact moment in time.
3251  *
3252  * Data may be written to the in-core log during this call.  However,
3253  * we don't guarantee this data will be written out.  A change from past
3254  * implementation means this routine will *not* write out zero length LRs.
3255  *
3256  * Basically, we try and perform an intelligent scan of the in-core logs.
3257  * If we determine there is no flushable data, we just return.  There is no
3258  * flushable data if:
3259  *
3260  *	1. the current iclog is active and has no data; the previous iclog
3261  *		is in the active or dirty state.
3262  *	2. the current iclog is drity, and the previous iclog is in the
3263  *		active or dirty state.
3264  *
3265  * We may sleep if:
3266  *
3267  *	1. the current iclog is not in the active nor dirty state.
3268  *	2. the current iclog dirty, and the previous iclog is not in the
3269  *		active nor dirty state.
3270  *	3. the current iclog is active, and there is another thread writing
3271  *		to this particular iclog.
3272  *	4. a) the current iclog is active and has no other writers
3273  *	   b) when we return from flushing out this iclog, it is still
3274  *		not in the active nor dirty state.
3275  */
3276 int
3277 xfs_log_force(
3278 	struct xfs_mount	*mp,
3279 	uint			flags)
3280 {
3281 	struct xlog		*log = mp->m_log;
3282 	struct xlog_in_core	*iclog;
3283 
3284 	XFS_STATS_INC(mp, xs_log_force);
3285 	trace_xfs_log_force(mp, 0, _RET_IP_);
3286 
3287 	xlog_cil_force(log);
3288 
3289 	spin_lock(&log->l_icloglock);
3290 	if (xlog_is_shutdown(log))
3291 		goto out_error;
3292 
3293 	iclog = log->l_iclog;
3294 	trace_xlog_iclog_force(iclog, _RET_IP_);
3295 
3296 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3297 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3298 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3299 		/*
3300 		 * If the head is dirty or (active and empty), then we need to
3301 		 * look at the previous iclog.
3302 		 *
3303 		 * If the previous iclog is active or dirty we are done.  There
3304 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3305 		 * previous iclog and go to sleep.
3306 		 */
3307 		iclog = iclog->ic_prev;
3308 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3309 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3310 			/* We have exclusive access to this iclog. */
3311 			bool	completed;
3312 
3313 			if (xlog_force_and_check_iclog(iclog, &completed))
3314 				goto out_error;
3315 
3316 			if (completed)
3317 				goto out_unlock;
3318 		} else {
3319 			/*
3320 			 * Someone else is still writing to this iclog, so we
3321 			 * need to ensure that when they release the iclog it
3322 			 * gets synced immediately as we may be waiting on it.
3323 			 */
3324 			xlog_state_switch_iclogs(log, iclog, 0);
3325 		}
3326 	}
3327 
3328 	/*
3329 	 * The iclog we are about to wait on may contain the checkpoint pushed
3330 	 * by the above xlog_cil_force() call, but it may not have been pushed
3331 	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3332 	 * are flushed when this iclog is written.
3333 	 */
3334 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3335 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3336 
3337 	if (flags & XFS_LOG_SYNC)
3338 		return xlog_wait_on_iclog(iclog);
3339 out_unlock:
3340 	spin_unlock(&log->l_icloglock);
3341 	return 0;
3342 out_error:
3343 	spin_unlock(&log->l_icloglock);
3344 	return -EIO;
3345 }
3346 
3347 /*
3348  * Force the log to a specific LSN.
3349  *
3350  * If an iclog with that lsn can be found:
3351  *	If it is in the DIRTY state, just return.
3352  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3353  *		state and go to sleep or return.
3354  *	If it is in any other state, go to sleep or return.
3355  *
3356  * Synchronous forces are implemented with a wait queue.  All callers trying
3357  * to force a given lsn to disk must wait on the queue attached to the
3358  * specific in-core log.  When given in-core log finally completes its write
3359  * to disk, that thread will wake up all threads waiting on the queue.
3360  */
3361 static int
3362 xlog_force_lsn(
3363 	struct xlog		*log,
3364 	xfs_lsn_t		lsn,
3365 	uint			flags,
3366 	int			*log_flushed,
3367 	bool			already_slept)
3368 {
3369 	struct xlog_in_core	*iclog;
3370 	bool			completed;
3371 
3372 	spin_lock(&log->l_icloglock);
3373 	if (xlog_is_shutdown(log))
3374 		goto out_error;
3375 
3376 	iclog = log->l_iclog;
3377 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3378 		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3379 		iclog = iclog->ic_next;
3380 		if (iclog == log->l_iclog)
3381 			goto out_unlock;
3382 	}
3383 
3384 	switch (iclog->ic_state) {
3385 	case XLOG_STATE_ACTIVE:
3386 		/*
3387 		 * We sleep here if we haven't already slept (e.g. this is the
3388 		 * first time we've looked at the correct iclog buf) and the
3389 		 * buffer before us is going to be sync'ed.  The reason for this
3390 		 * is that if we are doing sync transactions here, by waiting
3391 		 * for the previous I/O to complete, we can allow a few more
3392 		 * transactions into this iclog before we close it down.
3393 		 *
3394 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3395 		 * refcnt so we can release the log (which drops the ref count).
3396 		 * The state switch keeps new transaction commits from using
3397 		 * this buffer.  When the current commits finish writing into
3398 		 * the buffer, the refcount will drop to zero and the buffer
3399 		 * will go out then.
3400 		 */
3401 		if (!already_slept &&
3402 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3403 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3404 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3405 					&log->l_icloglock);
3406 			return -EAGAIN;
3407 		}
3408 		if (xlog_force_and_check_iclog(iclog, &completed))
3409 			goto out_error;
3410 		if (log_flushed)
3411 			*log_flushed = 1;
3412 		if (completed)
3413 			goto out_unlock;
3414 		break;
3415 	case XLOG_STATE_WANT_SYNC:
3416 		/*
3417 		 * This iclog may contain the checkpoint pushed by the
3418 		 * xlog_cil_force_seq() call, but there are other writers still
3419 		 * accessing it so it hasn't been pushed to disk yet. Like the
3420 		 * ACTIVE case above, we need to make sure caches are flushed
3421 		 * when this iclog is written.
3422 		 */
3423 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3424 		break;
3425 	default:
3426 		/*
3427 		 * The entire checkpoint was written by the CIL force and is on
3428 		 * its way to disk already. It will be stable when it
3429 		 * completes, so we don't need to manipulate caches here at all.
3430 		 * We just need to wait for completion if necessary.
3431 		 */
3432 		break;
3433 	}
3434 
3435 	if (flags & XFS_LOG_SYNC)
3436 		return xlog_wait_on_iclog(iclog);
3437 out_unlock:
3438 	spin_unlock(&log->l_icloglock);
3439 	return 0;
3440 out_error:
3441 	spin_unlock(&log->l_icloglock);
3442 	return -EIO;
3443 }
3444 
3445 /*
3446  * Force the log to a specific checkpoint sequence.
3447  *
3448  * First force the CIL so that all the required changes have been flushed to the
3449  * iclogs. If the CIL force completed it will return a commit LSN that indicates
3450  * the iclog that needs to be flushed to stable storage. If the caller needs
3451  * a synchronous log force, we will wait on the iclog with the LSN returned by
3452  * xlog_cil_force_seq() to be completed.
3453  */
3454 int
3455 xfs_log_force_seq(
3456 	struct xfs_mount	*mp,
3457 	xfs_csn_t		seq,
3458 	uint			flags,
3459 	int			*log_flushed)
3460 {
3461 	struct xlog		*log = mp->m_log;
3462 	xfs_lsn_t		lsn;
3463 	int			ret;
3464 	ASSERT(seq != 0);
3465 
3466 	XFS_STATS_INC(mp, xs_log_force);
3467 	trace_xfs_log_force(mp, seq, _RET_IP_);
3468 
3469 	lsn = xlog_cil_force_seq(log, seq);
3470 	if (lsn == NULLCOMMITLSN)
3471 		return 0;
3472 
3473 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3474 	if (ret == -EAGAIN) {
3475 		XFS_STATS_INC(mp, xs_log_force_sleep);
3476 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3477 	}
3478 	return ret;
3479 }
3480 
3481 /*
3482  * Free a used ticket when its refcount falls to zero.
3483  */
3484 void
3485 xfs_log_ticket_put(
3486 	xlog_ticket_t	*ticket)
3487 {
3488 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3489 	if (atomic_dec_and_test(&ticket->t_ref))
3490 		kmem_cache_free(xfs_log_ticket_cache, ticket);
3491 }
3492 
3493 xlog_ticket_t *
3494 xfs_log_ticket_get(
3495 	xlog_ticket_t	*ticket)
3496 {
3497 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3498 	atomic_inc(&ticket->t_ref);
3499 	return ticket;
3500 }
3501 
3502 /*
3503  * Figure out the total log space unit (in bytes) that would be
3504  * required for a log ticket.
3505  */
3506 static int
3507 xlog_calc_unit_res(
3508 	struct xlog		*log,
3509 	int			unit_bytes)
3510 {
3511 	int			iclog_space;
3512 	uint			num_headers;
3513 
3514 	/*
3515 	 * Permanent reservations have up to 'cnt'-1 active log operations
3516 	 * in the log.  A unit in this case is the amount of space for one
3517 	 * of these log operations.  Normal reservations have a cnt of 1
3518 	 * and their unit amount is the total amount of space required.
3519 	 *
3520 	 * The following lines of code account for non-transaction data
3521 	 * which occupy space in the on-disk log.
3522 	 *
3523 	 * Normal form of a transaction is:
3524 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3525 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3526 	 *
3527 	 * We need to account for all the leadup data and trailer data
3528 	 * around the transaction data.
3529 	 * And then we need to account for the worst case in terms of using
3530 	 * more space.
3531 	 * The worst case will happen if:
3532 	 * - the placement of the transaction happens to be such that the
3533 	 *   roundoff is at its maximum
3534 	 * - the transaction data is synced before the commit record is synced
3535 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3536 	 *   Therefore the commit record is in its own Log Record.
3537 	 *   This can happen as the commit record is called with its
3538 	 *   own region to xlog_write().
3539 	 *   This then means that in the worst case, roundoff can happen for
3540 	 *   the commit-rec as well.
3541 	 *   The commit-rec is smaller than padding in this scenario and so it is
3542 	 *   not added separately.
3543 	 */
3544 
3545 	/* for trans header */
3546 	unit_bytes += sizeof(xlog_op_header_t);
3547 	unit_bytes += sizeof(xfs_trans_header_t);
3548 
3549 	/* for start-rec */
3550 	unit_bytes += sizeof(xlog_op_header_t);
3551 
3552 	/*
3553 	 * for LR headers - the space for data in an iclog is the size minus
3554 	 * the space used for the headers. If we use the iclog size, then we
3555 	 * undercalculate the number of headers required.
3556 	 *
3557 	 * Furthermore - the addition of op headers for split-recs might
3558 	 * increase the space required enough to require more log and op
3559 	 * headers, so take that into account too.
3560 	 *
3561 	 * IMPORTANT: This reservation makes the assumption that if this
3562 	 * transaction is the first in an iclog and hence has the LR headers
3563 	 * accounted to it, then the remaining space in the iclog is
3564 	 * exclusively for this transaction.  i.e. if the transaction is larger
3565 	 * than the iclog, it will be the only thing in that iclog.
3566 	 * Fundamentally, this means we must pass the entire log vector to
3567 	 * xlog_write to guarantee this.
3568 	 */
3569 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3570 	num_headers = howmany(unit_bytes, iclog_space);
3571 
3572 	/* for split-recs - ophdrs added when data split over LRs */
3573 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3574 
3575 	/* add extra header reservations if we overrun */
3576 	while (!num_headers ||
3577 	       howmany(unit_bytes, iclog_space) > num_headers) {
3578 		unit_bytes += sizeof(xlog_op_header_t);
3579 		num_headers++;
3580 	}
3581 	unit_bytes += log->l_iclog_hsize * num_headers;
3582 
3583 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3584 	unit_bytes += log->l_iclog_hsize;
3585 
3586 	/* roundoff padding for transaction data and one for commit record */
3587 	unit_bytes += 2 * log->l_iclog_roundoff;
3588 
3589 	return unit_bytes;
3590 }
3591 
3592 int
3593 xfs_log_calc_unit_res(
3594 	struct xfs_mount	*mp,
3595 	int			unit_bytes)
3596 {
3597 	return xlog_calc_unit_res(mp->m_log, unit_bytes);
3598 }
3599 
3600 /*
3601  * Allocate and initialise a new log ticket.
3602  */
3603 struct xlog_ticket *
3604 xlog_ticket_alloc(
3605 	struct xlog		*log,
3606 	int			unit_bytes,
3607 	int			cnt,
3608 	char			client,
3609 	bool			permanent)
3610 {
3611 	struct xlog_ticket	*tic;
3612 	int			unit_res;
3613 
3614 	tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL);
3615 
3616 	unit_res = xlog_calc_unit_res(log, unit_bytes);
3617 
3618 	atomic_set(&tic->t_ref, 1);
3619 	tic->t_task		= current;
3620 	INIT_LIST_HEAD(&tic->t_queue);
3621 	tic->t_unit_res		= unit_res;
3622 	tic->t_curr_res		= unit_res;
3623 	tic->t_cnt		= cnt;
3624 	tic->t_ocnt		= cnt;
3625 	tic->t_tid		= prandom_u32();
3626 	tic->t_clientid		= client;
3627 	if (permanent)
3628 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3629 
3630 	xlog_tic_reset_res(tic);
3631 
3632 	return tic;
3633 }
3634 
3635 #if defined(DEBUG)
3636 /*
3637  * Make sure that the destination ptr is within the valid data region of
3638  * one of the iclogs.  This uses backup pointers stored in a different
3639  * part of the log in case we trash the log structure.
3640  */
3641 STATIC void
3642 xlog_verify_dest_ptr(
3643 	struct xlog	*log,
3644 	void		*ptr)
3645 {
3646 	int i;
3647 	int good_ptr = 0;
3648 
3649 	for (i = 0; i < log->l_iclog_bufs; i++) {
3650 		if (ptr >= log->l_iclog_bak[i] &&
3651 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3652 			good_ptr++;
3653 	}
3654 
3655 	if (!good_ptr)
3656 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3657 }
3658 
3659 /*
3660  * Check to make sure the grant write head didn't just over lap the tail.  If
3661  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3662  * the cycles differ by exactly one and check the byte count.
3663  *
3664  * This check is run unlocked, so can give false positives. Rather than assert
3665  * on failures, use a warn-once flag and a panic tag to allow the admin to
3666  * determine if they want to panic the machine when such an error occurs. For
3667  * debug kernels this will have the same effect as using an assert but, unlinke
3668  * an assert, it can be turned off at runtime.
3669  */
3670 STATIC void
3671 xlog_verify_grant_tail(
3672 	struct xlog	*log)
3673 {
3674 	int		tail_cycle, tail_blocks;
3675 	int		cycle, space;
3676 
3677 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3678 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3679 	if (tail_cycle != cycle) {
3680 		if (cycle - 1 != tail_cycle &&
3681 		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3682 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3683 				"%s: cycle - 1 != tail_cycle", __func__);
3684 		}
3685 
3686 		if (space > BBTOB(tail_blocks) &&
3687 		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3688 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3689 				"%s: space > BBTOB(tail_blocks)", __func__);
3690 		}
3691 	}
3692 }
3693 
3694 /* check if it will fit */
3695 STATIC void
3696 xlog_verify_tail_lsn(
3697 	struct xlog		*log,
3698 	struct xlog_in_core	*iclog)
3699 {
3700 	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3701 	int		blocks;
3702 
3703     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3704 	blocks =
3705 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3706 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3707 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3708     } else {
3709 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3710 
3711 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3712 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3713 
3714 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3715 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3716 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3717     }
3718 }
3719 
3720 /*
3721  * Perform a number of checks on the iclog before writing to disk.
3722  *
3723  * 1. Make sure the iclogs are still circular
3724  * 2. Make sure we have a good magic number
3725  * 3. Make sure we don't have magic numbers in the data
3726  * 4. Check fields of each log operation header for:
3727  *	A. Valid client identifier
3728  *	B. tid ptr value falls in valid ptr space (user space code)
3729  *	C. Length in log record header is correct according to the
3730  *		individual operation headers within record.
3731  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3732  *	log, check the preceding blocks of the physical log to make sure all
3733  *	the cycle numbers agree with the current cycle number.
3734  */
3735 STATIC void
3736 xlog_verify_iclog(
3737 	struct xlog		*log,
3738 	struct xlog_in_core	*iclog,
3739 	int			count)
3740 {
3741 	xlog_op_header_t	*ophead;
3742 	xlog_in_core_t		*icptr;
3743 	xlog_in_core_2_t	*xhdr;
3744 	void			*base_ptr, *ptr, *p;
3745 	ptrdiff_t		field_offset;
3746 	uint8_t			clientid;
3747 	int			len, i, j, k, op_len;
3748 	int			idx;
3749 
3750 	/* check validity of iclog pointers */
3751 	spin_lock(&log->l_icloglock);
3752 	icptr = log->l_iclog;
3753 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3754 		ASSERT(icptr);
3755 
3756 	if (icptr != log->l_iclog)
3757 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3758 	spin_unlock(&log->l_icloglock);
3759 
3760 	/* check log magic numbers */
3761 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3762 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3763 
3764 	base_ptr = ptr = &iclog->ic_header;
3765 	p = &iclog->ic_header;
3766 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3767 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3768 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3769 				__func__);
3770 	}
3771 
3772 	/* check fields */
3773 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3774 	base_ptr = ptr = iclog->ic_datap;
3775 	ophead = ptr;
3776 	xhdr = iclog->ic_data;
3777 	for (i = 0; i < len; i++) {
3778 		ophead = ptr;
3779 
3780 		/* clientid is only 1 byte */
3781 		p = &ophead->oh_clientid;
3782 		field_offset = p - base_ptr;
3783 		if (field_offset & 0x1ff) {
3784 			clientid = ophead->oh_clientid;
3785 		} else {
3786 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3787 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3788 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3789 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3790 				clientid = xlog_get_client_id(
3791 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3792 			} else {
3793 				clientid = xlog_get_client_id(
3794 					iclog->ic_header.h_cycle_data[idx]);
3795 			}
3796 		}
3797 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3798 			xfs_warn(log->l_mp,
3799 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3800 				__func__, clientid, ophead,
3801 				(unsigned long)field_offset);
3802 
3803 		/* check length */
3804 		p = &ophead->oh_len;
3805 		field_offset = p - base_ptr;
3806 		if (field_offset & 0x1ff) {
3807 			op_len = be32_to_cpu(ophead->oh_len);
3808 		} else {
3809 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3810 				    (uintptr_t)iclog->ic_datap);
3811 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3812 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3813 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3814 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3815 			} else {
3816 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3817 			}
3818 		}
3819 		ptr += sizeof(xlog_op_header_t) + op_len;
3820 	}
3821 }
3822 #endif
3823 
3824 /*
3825  * Perform a forced shutdown on the log. This should be called once and once
3826  * only by the high level filesystem shutdown code to shut the log subsystem
3827  * down cleanly.
3828  *
3829  * Our main objectives here are to make sure that:
3830  *	a. if the shutdown was not due to a log IO error, flush the logs to
3831  *	   disk. Anything modified after this is ignored.
3832  *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3833  *	   parties to find out. Nothing new gets queued after this is done.
3834  *	c. Tasks sleeping on log reservations, pinned objects and
3835  *	   other resources get woken up.
3836  *
3837  * Return true if the shutdown cause was a log IO error and we actually shut the
3838  * log down.
3839  */
3840 bool
3841 xlog_force_shutdown(
3842 	struct xlog	*log,
3843 	int		shutdown_flags)
3844 {
3845 	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3846 
3847 	/*
3848 	 * If this happens during log recovery then we aren't using the runtime
3849 	 * log mechanisms yet so there's nothing to shut down.
3850 	 */
3851 	if (!log || xlog_in_recovery(log))
3852 		return false;
3853 
3854 	ASSERT(!xlog_is_shutdown(log));
3855 
3856 	/*
3857 	 * Flush all the completed transactions to disk before marking the log
3858 	 * being shut down. We need to do this first as shutting down the log
3859 	 * before the force will prevent the log force from flushing the iclogs
3860 	 * to disk.
3861 	 *
3862 	 * Re-entry due to a log IO error shutdown during the log force is
3863 	 * prevented by the atomicity of higher level shutdown code.
3864 	 */
3865 	if (!log_error)
3866 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3867 
3868 	/*
3869 	 * Atomically set the shutdown state. If the shutdown state is already
3870 	 * set, there someone else is performing the shutdown and so we are done
3871 	 * here. This should never happen because we should only ever get called
3872 	 * once by the first shutdown caller.
3873 	 *
3874 	 * Much of the log state machine transitions assume that shutdown state
3875 	 * cannot change once they hold the log->l_icloglock. Hence we need to
3876 	 * hold that lock here, even though we use the atomic test_and_set_bit()
3877 	 * operation to set the shutdown state.
3878 	 */
3879 	spin_lock(&log->l_icloglock);
3880 	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3881 		spin_unlock(&log->l_icloglock);
3882 		ASSERT(0);
3883 		return false;
3884 	}
3885 	spin_unlock(&log->l_icloglock);
3886 
3887 	/*
3888 	 * We don't want anybody waiting for log reservations after this. That
3889 	 * means we have to wake up everybody queued up on reserveq as well as
3890 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3891 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3892 	 * action is protected by the grant locks.
3893 	 */
3894 	xlog_grant_head_wake_all(&log->l_reserve_head);
3895 	xlog_grant_head_wake_all(&log->l_write_head);
3896 
3897 	/*
3898 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3899 	 * as if the log writes were completed. The abort handling in the log
3900 	 * item committed callback functions will do this again under lock to
3901 	 * avoid races.
3902 	 */
3903 	spin_lock(&log->l_cilp->xc_push_lock);
3904 	wake_up_all(&log->l_cilp->xc_start_wait);
3905 	wake_up_all(&log->l_cilp->xc_commit_wait);
3906 	spin_unlock(&log->l_cilp->xc_push_lock);
3907 	xlog_state_shutdown_callbacks(log);
3908 
3909 	return log_error;
3910 }
3911 
3912 STATIC int
3913 xlog_iclogs_empty(
3914 	struct xlog	*log)
3915 {
3916 	xlog_in_core_t	*iclog;
3917 
3918 	iclog = log->l_iclog;
3919 	do {
3920 		/* endianness does not matter here, zero is zero in
3921 		 * any language.
3922 		 */
3923 		if (iclog->ic_header.h_num_logops)
3924 			return 0;
3925 		iclog = iclog->ic_next;
3926 	} while (iclog != log->l_iclog);
3927 	return 1;
3928 }
3929 
3930 /*
3931  * Verify that an LSN stamped into a piece of metadata is valid. This is
3932  * intended for use in read verifiers on v5 superblocks.
3933  */
3934 bool
3935 xfs_log_check_lsn(
3936 	struct xfs_mount	*mp,
3937 	xfs_lsn_t		lsn)
3938 {
3939 	struct xlog		*log = mp->m_log;
3940 	bool			valid;
3941 
3942 	/*
3943 	 * norecovery mode skips mount-time log processing and unconditionally
3944 	 * resets the in-core LSN. We can't validate in this mode, but
3945 	 * modifications are not allowed anyways so just return true.
3946 	 */
3947 	if (xfs_has_norecovery(mp))
3948 		return true;
3949 
3950 	/*
3951 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3952 	 * handled by recovery and thus safe to ignore here.
3953 	 */
3954 	if (lsn == NULLCOMMITLSN)
3955 		return true;
3956 
3957 	valid = xlog_valid_lsn(mp->m_log, lsn);
3958 
3959 	/* warn the user about what's gone wrong before verifier failure */
3960 	if (!valid) {
3961 		spin_lock(&log->l_icloglock);
3962 		xfs_warn(mp,
3963 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3964 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3965 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3966 			 log->l_curr_cycle, log->l_curr_block);
3967 		spin_unlock(&log->l_icloglock);
3968 	}
3969 
3970 	return valid;
3971 }
3972 
3973 /*
3974  * Notify the log that we're about to start using a feature that is protected
3975  * by a log incompat feature flag.  This will prevent log covering from
3976  * clearing those flags.
3977  */
3978 void
3979 xlog_use_incompat_feat(
3980 	struct xlog		*log)
3981 {
3982 	down_read(&log->l_incompat_users);
3983 }
3984 
3985 /* Notify the log that we've finished using log incompat features. */
3986 void
3987 xlog_drop_incompat_feat(
3988 	struct xlog		*log)
3989 {
3990 	up_read(&log->l_incompat_users);
3991 }
3992