xref: /linux/fs/xfs/xfs_log.c (revision 662fa3d6099374c4615bf64d06895e3573b935b2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 kmem_zone_t	*xfs_log_ticket_zone;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 	struct xfs_mount	*mp,
30 	struct xfs_buftarg	*log_target,
31 	xfs_daddr_t		blk_offset,
32 	int			num_bblks);
33 STATIC int
34 xlog_space_left(
35 	struct xlog		*log,
36 	atomic64_t		*head);
37 STATIC void
38 xlog_dealloc_log(
39 	struct xlog		*log);
40 
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 	struct xlog_in_core	*iclog);
44 STATIC int
45 xlog_state_get_iclog_space(
46 	struct xlog		*log,
47 	int			len,
48 	struct xlog_in_core	**iclog,
49 	struct xlog_ticket	*ticket,
50 	int			*continued_write,
51 	int			*logoffsetp);
52 STATIC void
53 xlog_state_switch_iclogs(
54 	struct xlog		*log,
55 	struct xlog_in_core	*iclog,
56 	int			eventual_size);
57 STATIC void
58 xlog_grant_push_ail(
59 	struct xlog		*log,
60 	int			need_bytes);
61 STATIC void
62 xlog_sync(
63 	struct xlog		*log,
64 	struct xlog_in_core	*iclog);
65 #if defined(DEBUG)
66 STATIC void
67 xlog_verify_dest_ptr(
68 	struct xlog		*log,
69 	void			*ptr);
70 STATIC void
71 xlog_verify_grant_tail(
72 	struct xlog *log);
73 STATIC void
74 xlog_verify_iclog(
75 	struct xlog		*log,
76 	struct xlog_in_core	*iclog,
77 	int			count);
78 STATIC void
79 xlog_verify_tail_lsn(
80 	struct xlog		*log,
81 	struct xlog_in_core	*iclog,
82 	xfs_lsn_t		tail_lsn);
83 #else
84 #define xlog_verify_dest_ptr(a,b)
85 #define xlog_verify_grant_tail(a)
86 #define xlog_verify_iclog(a,b,c)
87 #define xlog_verify_tail_lsn(a,b,c)
88 #endif
89 
90 STATIC int
91 xlog_iclogs_empty(
92 	struct xlog		*log);
93 
94 static int
95 xfs_log_cover(struct xfs_mount *);
96 
97 static void
98 xlog_grant_sub_space(
99 	struct xlog		*log,
100 	atomic64_t		*head,
101 	int			bytes)
102 {
103 	int64_t	head_val = atomic64_read(head);
104 	int64_t new, old;
105 
106 	do {
107 		int	cycle, space;
108 
109 		xlog_crack_grant_head_val(head_val, &cycle, &space);
110 
111 		space -= bytes;
112 		if (space < 0) {
113 			space += log->l_logsize;
114 			cycle--;
115 		}
116 
117 		old = head_val;
118 		new = xlog_assign_grant_head_val(cycle, space);
119 		head_val = atomic64_cmpxchg(head, old, new);
120 	} while (head_val != old);
121 }
122 
123 static void
124 xlog_grant_add_space(
125 	struct xlog		*log,
126 	atomic64_t		*head,
127 	int			bytes)
128 {
129 	int64_t	head_val = atomic64_read(head);
130 	int64_t new, old;
131 
132 	do {
133 		int		tmp;
134 		int		cycle, space;
135 
136 		xlog_crack_grant_head_val(head_val, &cycle, &space);
137 
138 		tmp = log->l_logsize - space;
139 		if (tmp > bytes)
140 			space += bytes;
141 		else {
142 			space = bytes - tmp;
143 			cycle++;
144 		}
145 
146 		old = head_val;
147 		new = xlog_assign_grant_head_val(cycle, space);
148 		head_val = atomic64_cmpxchg(head, old, new);
149 	} while (head_val != old);
150 }
151 
152 STATIC void
153 xlog_grant_head_init(
154 	struct xlog_grant_head	*head)
155 {
156 	xlog_assign_grant_head(&head->grant, 1, 0);
157 	INIT_LIST_HEAD(&head->waiters);
158 	spin_lock_init(&head->lock);
159 }
160 
161 STATIC void
162 xlog_grant_head_wake_all(
163 	struct xlog_grant_head	*head)
164 {
165 	struct xlog_ticket	*tic;
166 
167 	spin_lock(&head->lock);
168 	list_for_each_entry(tic, &head->waiters, t_queue)
169 		wake_up_process(tic->t_task);
170 	spin_unlock(&head->lock);
171 }
172 
173 static inline int
174 xlog_ticket_reservation(
175 	struct xlog		*log,
176 	struct xlog_grant_head	*head,
177 	struct xlog_ticket	*tic)
178 {
179 	if (head == &log->l_write_head) {
180 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
181 		return tic->t_unit_res;
182 	} else {
183 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
184 			return tic->t_unit_res * tic->t_cnt;
185 		else
186 			return tic->t_unit_res;
187 	}
188 }
189 
190 STATIC bool
191 xlog_grant_head_wake(
192 	struct xlog		*log,
193 	struct xlog_grant_head	*head,
194 	int			*free_bytes)
195 {
196 	struct xlog_ticket	*tic;
197 	int			need_bytes;
198 	bool			woken_task = false;
199 
200 	list_for_each_entry(tic, &head->waiters, t_queue) {
201 
202 		/*
203 		 * There is a chance that the size of the CIL checkpoints in
204 		 * progress at the last AIL push target calculation resulted in
205 		 * limiting the target to the log head (l_last_sync_lsn) at the
206 		 * time. This may not reflect where the log head is now as the
207 		 * CIL checkpoints may have completed.
208 		 *
209 		 * Hence when we are woken here, it may be that the head of the
210 		 * log that has moved rather than the tail. As the tail didn't
211 		 * move, there still won't be space available for the
212 		 * reservation we require.  However, if the AIL has already
213 		 * pushed to the target defined by the old log head location, we
214 		 * will hang here waiting for something else to update the AIL
215 		 * push target.
216 		 *
217 		 * Therefore, if there isn't space to wake the first waiter on
218 		 * the grant head, we need to push the AIL again to ensure the
219 		 * target reflects both the current log tail and log head
220 		 * position before we wait for the tail to move again.
221 		 */
222 
223 		need_bytes = xlog_ticket_reservation(log, head, tic);
224 		if (*free_bytes < need_bytes) {
225 			if (!woken_task)
226 				xlog_grant_push_ail(log, need_bytes);
227 			return false;
228 		}
229 
230 		*free_bytes -= need_bytes;
231 		trace_xfs_log_grant_wake_up(log, tic);
232 		wake_up_process(tic->t_task);
233 		woken_task = true;
234 	}
235 
236 	return true;
237 }
238 
239 STATIC int
240 xlog_grant_head_wait(
241 	struct xlog		*log,
242 	struct xlog_grant_head	*head,
243 	struct xlog_ticket	*tic,
244 	int			need_bytes) __releases(&head->lock)
245 					    __acquires(&head->lock)
246 {
247 	list_add_tail(&tic->t_queue, &head->waiters);
248 
249 	do {
250 		if (XLOG_FORCED_SHUTDOWN(log))
251 			goto shutdown;
252 		xlog_grant_push_ail(log, need_bytes);
253 
254 		__set_current_state(TASK_UNINTERRUPTIBLE);
255 		spin_unlock(&head->lock);
256 
257 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
258 
259 		trace_xfs_log_grant_sleep(log, tic);
260 		schedule();
261 		trace_xfs_log_grant_wake(log, tic);
262 
263 		spin_lock(&head->lock);
264 		if (XLOG_FORCED_SHUTDOWN(log))
265 			goto shutdown;
266 	} while (xlog_space_left(log, &head->grant) < need_bytes);
267 
268 	list_del_init(&tic->t_queue);
269 	return 0;
270 shutdown:
271 	list_del_init(&tic->t_queue);
272 	return -EIO;
273 }
274 
275 /*
276  * Atomically get the log space required for a log ticket.
277  *
278  * Once a ticket gets put onto head->waiters, it will only return after the
279  * needed reservation is satisfied.
280  *
281  * This function is structured so that it has a lock free fast path. This is
282  * necessary because every new transaction reservation will come through this
283  * path. Hence any lock will be globally hot if we take it unconditionally on
284  * every pass.
285  *
286  * As tickets are only ever moved on and off head->waiters under head->lock, we
287  * only need to take that lock if we are going to add the ticket to the queue
288  * and sleep. We can avoid taking the lock if the ticket was never added to
289  * head->waiters because the t_queue list head will be empty and we hold the
290  * only reference to it so it can safely be checked unlocked.
291  */
292 STATIC int
293 xlog_grant_head_check(
294 	struct xlog		*log,
295 	struct xlog_grant_head	*head,
296 	struct xlog_ticket	*tic,
297 	int			*need_bytes)
298 {
299 	int			free_bytes;
300 	int			error = 0;
301 
302 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
303 
304 	/*
305 	 * If there are other waiters on the queue then give them a chance at
306 	 * logspace before us.  Wake up the first waiters, if we do not wake
307 	 * up all the waiters then go to sleep waiting for more free space,
308 	 * otherwise try to get some space for this transaction.
309 	 */
310 	*need_bytes = xlog_ticket_reservation(log, head, tic);
311 	free_bytes = xlog_space_left(log, &head->grant);
312 	if (!list_empty_careful(&head->waiters)) {
313 		spin_lock(&head->lock);
314 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
315 		    free_bytes < *need_bytes) {
316 			error = xlog_grant_head_wait(log, head, tic,
317 						     *need_bytes);
318 		}
319 		spin_unlock(&head->lock);
320 	} else if (free_bytes < *need_bytes) {
321 		spin_lock(&head->lock);
322 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
323 		spin_unlock(&head->lock);
324 	}
325 
326 	return error;
327 }
328 
329 static void
330 xlog_tic_reset_res(xlog_ticket_t *tic)
331 {
332 	tic->t_res_num = 0;
333 	tic->t_res_arr_sum = 0;
334 	tic->t_res_num_ophdrs = 0;
335 }
336 
337 static void
338 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
339 {
340 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
341 		/* add to overflow and start again */
342 		tic->t_res_o_flow += tic->t_res_arr_sum;
343 		tic->t_res_num = 0;
344 		tic->t_res_arr_sum = 0;
345 	}
346 
347 	tic->t_res_arr[tic->t_res_num].r_len = len;
348 	tic->t_res_arr[tic->t_res_num].r_type = type;
349 	tic->t_res_arr_sum += len;
350 	tic->t_res_num++;
351 }
352 
353 bool
354 xfs_log_writable(
355 	struct xfs_mount	*mp)
356 {
357 	/*
358 	 * Do not write to the log on norecovery mounts, if the data or log
359 	 * devices are read-only, or if the filesystem is shutdown. Read-only
360 	 * mounts allow internal writes for log recovery and unmount purposes,
361 	 * so don't restrict that case.
362 	 */
363 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
364 		return false;
365 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
366 		return false;
367 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
368 		return false;
369 	if (XFS_FORCED_SHUTDOWN(mp))
370 		return false;
371 	return true;
372 }
373 
374 /*
375  * Replenish the byte reservation required by moving the grant write head.
376  */
377 int
378 xfs_log_regrant(
379 	struct xfs_mount	*mp,
380 	struct xlog_ticket	*tic)
381 {
382 	struct xlog		*log = mp->m_log;
383 	int			need_bytes;
384 	int			error = 0;
385 
386 	if (XLOG_FORCED_SHUTDOWN(log))
387 		return -EIO;
388 
389 	XFS_STATS_INC(mp, xs_try_logspace);
390 
391 	/*
392 	 * This is a new transaction on the ticket, so we need to change the
393 	 * transaction ID so that the next transaction has a different TID in
394 	 * the log. Just add one to the existing tid so that we can see chains
395 	 * of rolling transactions in the log easily.
396 	 */
397 	tic->t_tid++;
398 
399 	xlog_grant_push_ail(log, tic->t_unit_res);
400 
401 	tic->t_curr_res = tic->t_unit_res;
402 	xlog_tic_reset_res(tic);
403 
404 	if (tic->t_cnt > 0)
405 		return 0;
406 
407 	trace_xfs_log_regrant(log, tic);
408 
409 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
410 				      &need_bytes);
411 	if (error)
412 		goto out_error;
413 
414 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
415 	trace_xfs_log_regrant_exit(log, tic);
416 	xlog_verify_grant_tail(log);
417 	return 0;
418 
419 out_error:
420 	/*
421 	 * If we are failing, make sure the ticket doesn't have any current
422 	 * reservations.  We don't want to add this back when the ticket/
423 	 * transaction gets cancelled.
424 	 */
425 	tic->t_curr_res = 0;
426 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
427 	return error;
428 }
429 
430 /*
431  * Reserve log space and return a ticket corresponding to the reservation.
432  *
433  * Each reservation is going to reserve extra space for a log record header.
434  * When writes happen to the on-disk log, we don't subtract the length of the
435  * log record header from any reservation.  By wasting space in each
436  * reservation, we prevent over allocation problems.
437  */
438 int
439 xfs_log_reserve(
440 	struct xfs_mount	*mp,
441 	int		 	unit_bytes,
442 	int		 	cnt,
443 	struct xlog_ticket	**ticp,
444 	uint8_t		 	client,
445 	bool			permanent)
446 {
447 	struct xlog		*log = mp->m_log;
448 	struct xlog_ticket	*tic;
449 	int			need_bytes;
450 	int			error = 0;
451 
452 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
453 
454 	if (XLOG_FORCED_SHUTDOWN(log))
455 		return -EIO;
456 
457 	XFS_STATS_INC(mp, xs_try_logspace);
458 
459 	ASSERT(*ticp == NULL);
460 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
461 	*ticp = tic;
462 
463 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
464 					    : tic->t_unit_res);
465 
466 	trace_xfs_log_reserve(log, tic);
467 
468 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
469 				      &need_bytes);
470 	if (error)
471 		goto out_error;
472 
473 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
474 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
475 	trace_xfs_log_reserve_exit(log, tic);
476 	xlog_verify_grant_tail(log);
477 	return 0;
478 
479 out_error:
480 	/*
481 	 * If we are failing, make sure the ticket doesn't have any current
482 	 * reservations.  We don't want to add this back when the ticket/
483 	 * transaction gets cancelled.
484 	 */
485 	tic->t_curr_res = 0;
486 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
487 	return error;
488 }
489 
490 static bool
491 __xlog_state_release_iclog(
492 	struct xlog		*log,
493 	struct xlog_in_core	*iclog)
494 {
495 	lockdep_assert_held(&log->l_icloglock);
496 
497 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
498 		/* update tail before writing to iclog */
499 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
500 
501 		iclog->ic_state = XLOG_STATE_SYNCING;
502 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
503 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
504 		/* cycle incremented when incrementing curr_block */
505 		trace_xlog_iclog_syncing(iclog, _RET_IP_);
506 		return true;
507 	}
508 
509 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
510 	return false;
511 }
512 
513 /*
514  * Flush iclog to disk if this is the last reference to the given iclog and the
515  * it is in the WANT_SYNC state.
516  */
517 int
518 xlog_state_release_iclog(
519 	struct xlog		*log,
520 	struct xlog_in_core	*iclog)
521 {
522 	lockdep_assert_held(&log->l_icloglock);
523 
524 	trace_xlog_iclog_release(iclog, _RET_IP_);
525 	if (iclog->ic_state == XLOG_STATE_IOERROR)
526 		return -EIO;
527 
528 	if (atomic_dec_and_test(&iclog->ic_refcnt) &&
529 	    __xlog_state_release_iclog(log, iclog)) {
530 		spin_unlock(&log->l_icloglock);
531 		xlog_sync(log, iclog);
532 		spin_lock(&log->l_icloglock);
533 	}
534 
535 	return 0;
536 }
537 
538 /*
539  * Mount a log filesystem
540  *
541  * mp		- ubiquitous xfs mount point structure
542  * log_target	- buftarg of on-disk log device
543  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
544  * num_bblocks	- Number of BBSIZE blocks in on-disk log
545  *
546  * Return error or zero.
547  */
548 int
549 xfs_log_mount(
550 	xfs_mount_t	*mp,
551 	xfs_buftarg_t	*log_target,
552 	xfs_daddr_t	blk_offset,
553 	int		num_bblks)
554 {
555 	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
556 	int		error = 0;
557 	int		min_logfsbs;
558 
559 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
560 		xfs_notice(mp, "Mounting V%d Filesystem",
561 			   XFS_SB_VERSION_NUM(&mp->m_sb));
562 	} else {
563 		xfs_notice(mp,
564 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
565 			   XFS_SB_VERSION_NUM(&mp->m_sb));
566 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
567 	}
568 
569 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
570 	if (IS_ERR(mp->m_log)) {
571 		error = PTR_ERR(mp->m_log);
572 		goto out;
573 	}
574 
575 	/*
576 	 * Validate the given log space and drop a critical message via syslog
577 	 * if the log size is too small that would lead to some unexpected
578 	 * situations in transaction log space reservation stage.
579 	 *
580 	 * Note: we can't just reject the mount if the validation fails.  This
581 	 * would mean that people would have to downgrade their kernel just to
582 	 * remedy the situation as there is no way to grow the log (short of
583 	 * black magic surgery with xfs_db).
584 	 *
585 	 * We can, however, reject mounts for CRC format filesystems, as the
586 	 * mkfs binary being used to make the filesystem should never create a
587 	 * filesystem with a log that is too small.
588 	 */
589 	min_logfsbs = xfs_log_calc_minimum_size(mp);
590 
591 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
592 		xfs_warn(mp,
593 		"Log size %d blocks too small, minimum size is %d blocks",
594 			 mp->m_sb.sb_logblocks, min_logfsbs);
595 		error = -EINVAL;
596 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
597 		xfs_warn(mp,
598 		"Log size %d blocks too large, maximum size is %lld blocks",
599 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
600 		error = -EINVAL;
601 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
602 		xfs_warn(mp,
603 		"log size %lld bytes too large, maximum size is %lld bytes",
604 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
605 			 XFS_MAX_LOG_BYTES);
606 		error = -EINVAL;
607 	} else if (mp->m_sb.sb_logsunit > 1 &&
608 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
609 		xfs_warn(mp,
610 		"log stripe unit %u bytes must be a multiple of block size",
611 			 mp->m_sb.sb_logsunit);
612 		error = -EINVAL;
613 		fatal = true;
614 	}
615 	if (error) {
616 		/*
617 		 * Log check errors are always fatal on v5; or whenever bad
618 		 * metadata leads to a crash.
619 		 */
620 		if (fatal) {
621 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
622 			ASSERT(0);
623 			goto out_free_log;
624 		}
625 		xfs_crit(mp, "Log size out of supported range.");
626 		xfs_crit(mp,
627 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
628 	}
629 
630 	/*
631 	 * Initialize the AIL now we have a log.
632 	 */
633 	error = xfs_trans_ail_init(mp);
634 	if (error) {
635 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
636 		goto out_free_log;
637 	}
638 	mp->m_log->l_ailp = mp->m_ail;
639 
640 	/*
641 	 * skip log recovery on a norecovery mount.  pretend it all
642 	 * just worked.
643 	 */
644 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
645 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
646 
647 		if (readonly)
648 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
649 
650 		error = xlog_recover(mp->m_log);
651 
652 		if (readonly)
653 			mp->m_flags |= XFS_MOUNT_RDONLY;
654 		if (error) {
655 			xfs_warn(mp, "log mount/recovery failed: error %d",
656 				error);
657 			xlog_recover_cancel(mp->m_log);
658 			goto out_destroy_ail;
659 		}
660 	}
661 
662 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
663 			       "log");
664 	if (error)
665 		goto out_destroy_ail;
666 
667 	/* Normal transactions can now occur */
668 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
669 
670 	/*
671 	 * Now the log has been fully initialised and we know were our
672 	 * space grant counters are, we can initialise the permanent ticket
673 	 * needed for delayed logging to work.
674 	 */
675 	xlog_cil_init_post_recovery(mp->m_log);
676 
677 	return 0;
678 
679 out_destroy_ail:
680 	xfs_trans_ail_destroy(mp);
681 out_free_log:
682 	xlog_dealloc_log(mp->m_log);
683 out:
684 	return error;
685 }
686 
687 /*
688  * Finish the recovery of the file system.  This is separate from the
689  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
690  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
691  * here.
692  *
693  * If we finish recovery successfully, start the background log work. If we are
694  * not doing recovery, then we have a RO filesystem and we don't need to start
695  * it.
696  */
697 int
698 xfs_log_mount_finish(
699 	struct xfs_mount	*mp)
700 {
701 	int	error = 0;
702 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
703 	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
704 
705 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
706 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
707 		return 0;
708 	} else if (readonly) {
709 		/* Allow unlinked processing to proceed */
710 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
711 	}
712 
713 	/*
714 	 * During the second phase of log recovery, we need iget and
715 	 * iput to behave like they do for an active filesystem.
716 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
717 	 * of inodes before we're done replaying log items on those
718 	 * inodes.  Turn it off immediately after recovery finishes
719 	 * so that we don't leak the quota inodes if subsequent mount
720 	 * activities fail.
721 	 *
722 	 * We let all inodes involved in redo item processing end up on
723 	 * the LRU instead of being evicted immediately so that if we do
724 	 * something to an unlinked inode, the irele won't cause
725 	 * premature truncation and freeing of the inode, which results
726 	 * in log recovery failure.  We have to evict the unreferenced
727 	 * lru inodes after clearing SB_ACTIVE because we don't
728 	 * otherwise clean up the lru if there's a subsequent failure in
729 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
730 	 * else (e.g. quotacheck) references the inodes before the
731 	 * mount failure occurs.
732 	 */
733 	mp->m_super->s_flags |= SB_ACTIVE;
734 	error = xlog_recover_finish(mp->m_log);
735 	if (!error)
736 		xfs_log_work_queue(mp);
737 	mp->m_super->s_flags &= ~SB_ACTIVE;
738 	evict_inodes(mp->m_super);
739 
740 	/*
741 	 * Drain the buffer LRU after log recovery. This is required for v4
742 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
743 	 * but we do it unconditionally to make sure we're always in a clean
744 	 * cache state after mount.
745 	 *
746 	 * Don't push in the error case because the AIL may have pending intents
747 	 * that aren't removed until recovery is cancelled.
748 	 */
749 	if (!error && recovered) {
750 		xfs_log_force(mp, XFS_LOG_SYNC);
751 		xfs_ail_push_all_sync(mp->m_ail);
752 	}
753 	xfs_buftarg_drain(mp->m_ddev_targp);
754 
755 	if (readonly)
756 		mp->m_flags |= XFS_MOUNT_RDONLY;
757 
758 	/* Make sure the log is dead if we're returning failure. */
759 	ASSERT(!error || (mp->m_log->l_flags & XLOG_IO_ERROR));
760 
761 	return error;
762 }
763 
764 /*
765  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
766  * the log.
767  */
768 void
769 xfs_log_mount_cancel(
770 	struct xfs_mount	*mp)
771 {
772 	xlog_recover_cancel(mp->m_log);
773 	xfs_log_unmount(mp);
774 }
775 
776 /*
777  * Wait for the iclog and all prior iclogs to be written disk as required by the
778  * log force state machine. Waiting on ic_force_wait ensures iclog completions
779  * have been ordered and callbacks run before we are woken here, hence
780  * guaranteeing that all the iclogs up to this one are on stable storage.
781  */
782 int
783 xlog_wait_on_iclog(
784 	struct xlog_in_core	*iclog)
785 		__releases(iclog->ic_log->l_icloglock)
786 {
787 	struct xlog		*log = iclog->ic_log;
788 
789 	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
790 	if (!XLOG_FORCED_SHUTDOWN(log) &&
791 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
792 	    iclog->ic_state != XLOG_STATE_DIRTY) {
793 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
794 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
795 	} else {
796 		spin_unlock(&log->l_icloglock);
797 	}
798 
799 	if (XLOG_FORCED_SHUTDOWN(log))
800 		return -EIO;
801 	return 0;
802 }
803 
804 /*
805  * Write out an unmount record using the ticket provided. We have to account for
806  * the data space used in the unmount ticket as this write is not done from a
807  * transaction context that has already done the accounting for us.
808  */
809 static int
810 xlog_write_unmount_record(
811 	struct xlog		*log,
812 	struct xlog_ticket	*ticket)
813 {
814 	struct xfs_unmount_log_format ulf = {
815 		.magic = XLOG_UNMOUNT_TYPE,
816 	};
817 	struct xfs_log_iovec reg = {
818 		.i_addr = &ulf,
819 		.i_len = sizeof(ulf),
820 		.i_type = XLOG_REG_TYPE_UNMOUNT,
821 	};
822 	struct xfs_log_vec vec = {
823 		.lv_niovecs = 1,
824 		.lv_iovecp = &reg,
825 	};
826 
827 	/* account for space used by record data */
828 	ticket->t_curr_res -= sizeof(ulf);
829 
830 	/*
831 	 * For external log devices, we need to flush the data device cache
832 	 * first to ensure all metadata writeback is on stable storage before we
833 	 * stamp the tail LSN into the unmount record.
834 	 */
835 	if (log->l_targ != log->l_mp->m_ddev_targp)
836 		blkdev_issue_flush(log->l_targ->bt_bdev);
837 	return xlog_write(log, &vec, ticket, NULL, NULL, XLOG_UNMOUNT_TRANS);
838 }
839 
840 /*
841  * Mark the filesystem clean by writing an unmount record to the head of the
842  * log.
843  */
844 static void
845 xlog_unmount_write(
846 	struct xlog		*log)
847 {
848 	struct xfs_mount	*mp = log->l_mp;
849 	struct xlog_in_core	*iclog;
850 	struct xlog_ticket	*tic = NULL;
851 	int			error;
852 
853 	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
854 	if (error)
855 		goto out_err;
856 
857 	error = xlog_write_unmount_record(log, tic);
858 	/*
859 	 * At this point, we're umounting anyway, so there's no point in
860 	 * transitioning log state to IOERROR. Just continue...
861 	 */
862 out_err:
863 	if (error)
864 		xfs_alert(mp, "%s: unmount record failed", __func__);
865 
866 	spin_lock(&log->l_icloglock);
867 	iclog = log->l_iclog;
868 	atomic_inc(&iclog->ic_refcnt);
869 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
870 		xlog_state_switch_iclogs(log, iclog, 0);
871 	else
872 		ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
873 		       iclog->ic_state == XLOG_STATE_IOERROR);
874 	/*
875 	 * Ensure the journal is fully flushed and on stable storage once the
876 	 * iclog containing the unmount record is written.
877 	 */
878 	iclog->ic_flags |= (XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
879 	error = xlog_state_release_iclog(log, iclog);
880 	xlog_wait_on_iclog(iclog);
881 
882 	if (tic) {
883 		trace_xfs_log_umount_write(log, tic);
884 		xfs_log_ticket_ungrant(log, tic);
885 	}
886 }
887 
888 static void
889 xfs_log_unmount_verify_iclog(
890 	struct xlog		*log)
891 {
892 	struct xlog_in_core	*iclog = log->l_iclog;
893 
894 	do {
895 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
896 		ASSERT(iclog->ic_offset == 0);
897 	} while ((iclog = iclog->ic_next) != log->l_iclog);
898 }
899 
900 /*
901  * Unmount record used to have a string "Unmount filesystem--" in the
902  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
903  * We just write the magic number now since that particular field isn't
904  * currently architecture converted and "Unmount" is a bit foo.
905  * As far as I know, there weren't any dependencies on the old behaviour.
906  */
907 static void
908 xfs_log_unmount_write(
909 	struct xfs_mount	*mp)
910 {
911 	struct xlog		*log = mp->m_log;
912 
913 	if (!xfs_log_writable(mp))
914 		return;
915 
916 	xfs_log_force(mp, XFS_LOG_SYNC);
917 
918 	if (XLOG_FORCED_SHUTDOWN(log))
919 		return;
920 
921 	/*
922 	 * If we think the summary counters are bad, avoid writing the unmount
923 	 * record to force log recovery at next mount, after which the summary
924 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
925 	 * more details.
926 	 */
927 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
928 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
929 		xfs_alert(mp, "%s: will fix summary counters at next mount",
930 				__func__);
931 		return;
932 	}
933 
934 	xfs_log_unmount_verify_iclog(log);
935 	xlog_unmount_write(log);
936 }
937 
938 /*
939  * Empty the log for unmount/freeze.
940  *
941  * To do this, we first need to shut down the background log work so it is not
942  * trying to cover the log as we clean up. We then need to unpin all objects in
943  * the log so we can then flush them out. Once they have completed their IO and
944  * run the callbacks removing themselves from the AIL, we can cover the log.
945  */
946 int
947 xfs_log_quiesce(
948 	struct xfs_mount	*mp)
949 {
950 	cancel_delayed_work_sync(&mp->m_log->l_work);
951 	xfs_log_force(mp, XFS_LOG_SYNC);
952 
953 	/*
954 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
955 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
956 	 * xfs_buf_iowait() cannot be used because it was pushed with the
957 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
958 	 * the IO to complete.
959 	 */
960 	xfs_ail_push_all_sync(mp->m_ail);
961 	xfs_buftarg_wait(mp->m_ddev_targp);
962 	xfs_buf_lock(mp->m_sb_bp);
963 	xfs_buf_unlock(mp->m_sb_bp);
964 
965 	return xfs_log_cover(mp);
966 }
967 
968 void
969 xfs_log_clean(
970 	struct xfs_mount	*mp)
971 {
972 	xfs_log_quiesce(mp);
973 	xfs_log_unmount_write(mp);
974 }
975 
976 /*
977  * Shut down and release the AIL and Log.
978  *
979  * During unmount, we need to ensure we flush all the dirty metadata objects
980  * from the AIL so that the log is empty before we write the unmount record to
981  * the log. Once this is done, we can tear down the AIL and the log.
982  */
983 void
984 xfs_log_unmount(
985 	struct xfs_mount	*mp)
986 {
987 	xfs_log_clean(mp);
988 
989 	xfs_buftarg_drain(mp->m_ddev_targp);
990 
991 	xfs_trans_ail_destroy(mp);
992 
993 	xfs_sysfs_del(&mp->m_log->l_kobj);
994 
995 	xlog_dealloc_log(mp->m_log);
996 }
997 
998 void
999 xfs_log_item_init(
1000 	struct xfs_mount	*mp,
1001 	struct xfs_log_item	*item,
1002 	int			type,
1003 	const struct xfs_item_ops *ops)
1004 {
1005 	item->li_mountp = mp;
1006 	item->li_ailp = mp->m_ail;
1007 	item->li_type = type;
1008 	item->li_ops = ops;
1009 	item->li_lv = NULL;
1010 
1011 	INIT_LIST_HEAD(&item->li_ail);
1012 	INIT_LIST_HEAD(&item->li_cil);
1013 	INIT_LIST_HEAD(&item->li_bio_list);
1014 	INIT_LIST_HEAD(&item->li_trans);
1015 }
1016 
1017 /*
1018  * Wake up processes waiting for log space after we have moved the log tail.
1019  */
1020 void
1021 xfs_log_space_wake(
1022 	struct xfs_mount	*mp)
1023 {
1024 	struct xlog		*log = mp->m_log;
1025 	int			free_bytes;
1026 
1027 	if (XLOG_FORCED_SHUTDOWN(log))
1028 		return;
1029 
1030 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1031 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1032 
1033 		spin_lock(&log->l_write_head.lock);
1034 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1035 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1036 		spin_unlock(&log->l_write_head.lock);
1037 	}
1038 
1039 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1040 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1041 
1042 		spin_lock(&log->l_reserve_head.lock);
1043 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1044 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1045 		spin_unlock(&log->l_reserve_head.lock);
1046 	}
1047 }
1048 
1049 /*
1050  * Determine if we have a transaction that has gone to disk that needs to be
1051  * covered. To begin the transition to the idle state firstly the log needs to
1052  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1053  * we start attempting to cover the log.
1054  *
1055  * Only if we are then in a state where covering is needed, the caller is
1056  * informed that dummy transactions are required to move the log into the idle
1057  * state.
1058  *
1059  * If there are any items in the AIl or CIL, then we do not want to attempt to
1060  * cover the log as we may be in a situation where there isn't log space
1061  * available to run a dummy transaction and this can lead to deadlocks when the
1062  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1063  * there's no point in running a dummy transaction at this point because we
1064  * can't start trying to idle the log until both the CIL and AIL are empty.
1065  */
1066 static bool
1067 xfs_log_need_covered(
1068 	struct xfs_mount	*mp)
1069 {
1070 	struct xlog		*log = mp->m_log;
1071 	bool			needed = false;
1072 
1073 	if (!xlog_cil_empty(log))
1074 		return false;
1075 
1076 	spin_lock(&log->l_icloglock);
1077 	switch (log->l_covered_state) {
1078 	case XLOG_STATE_COVER_DONE:
1079 	case XLOG_STATE_COVER_DONE2:
1080 	case XLOG_STATE_COVER_IDLE:
1081 		break;
1082 	case XLOG_STATE_COVER_NEED:
1083 	case XLOG_STATE_COVER_NEED2:
1084 		if (xfs_ail_min_lsn(log->l_ailp))
1085 			break;
1086 		if (!xlog_iclogs_empty(log))
1087 			break;
1088 
1089 		needed = true;
1090 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1091 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1092 		else
1093 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1094 		break;
1095 	default:
1096 		needed = true;
1097 		break;
1098 	}
1099 	spin_unlock(&log->l_icloglock);
1100 	return needed;
1101 }
1102 
1103 /*
1104  * Explicitly cover the log. This is similar to background log covering but
1105  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1106  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1107  * must all be empty.
1108  */
1109 static int
1110 xfs_log_cover(
1111 	struct xfs_mount	*mp)
1112 {
1113 	int			error = 0;
1114 	bool			need_covered;
1115 
1116 	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1117 	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1118 	       XFS_FORCED_SHUTDOWN(mp));
1119 
1120 	if (!xfs_log_writable(mp))
1121 		return 0;
1122 
1123 	/*
1124 	 * xfs_log_need_covered() is not idempotent because it progresses the
1125 	 * state machine if the log requires covering. Therefore, we must call
1126 	 * this function once and use the result until we've issued an sb sync.
1127 	 * Do so first to make that abundantly clear.
1128 	 *
1129 	 * Fall into the covering sequence if the log needs covering or the
1130 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1131 	 * used for covering accumulates the in-core counters, so covering
1132 	 * handles this for us.
1133 	 */
1134 	need_covered = xfs_log_need_covered(mp);
1135 	if (!need_covered && !xfs_sb_version_haslazysbcount(&mp->m_sb))
1136 		return 0;
1137 
1138 	/*
1139 	 * To cover the log, commit the superblock twice (at most) in
1140 	 * independent checkpoints. The first serves as a reference for the
1141 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1142 	 * updates the in-core tail to the LSN of the first checkpoint. The
1143 	 * second commit updates the on-disk tail with the in-core LSN,
1144 	 * covering the log. Push the AIL one more time to leave it empty, as
1145 	 * we found it.
1146 	 */
1147 	do {
1148 		error = xfs_sync_sb(mp, true);
1149 		if (error)
1150 			break;
1151 		xfs_ail_push_all_sync(mp->m_ail);
1152 	} while (xfs_log_need_covered(mp));
1153 
1154 	return error;
1155 }
1156 
1157 /*
1158  * We may be holding the log iclog lock upon entering this routine.
1159  */
1160 xfs_lsn_t
1161 xlog_assign_tail_lsn_locked(
1162 	struct xfs_mount	*mp)
1163 {
1164 	struct xlog		*log = mp->m_log;
1165 	struct xfs_log_item	*lip;
1166 	xfs_lsn_t		tail_lsn;
1167 
1168 	assert_spin_locked(&mp->m_ail->ail_lock);
1169 
1170 	/*
1171 	 * To make sure we always have a valid LSN for the log tail we keep
1172 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1173 	 * and use that when the AIL was empty.
1174 	 */
1175 	lip = xfs_ail_min(mp->m_ail);
1176 	if (lip)
1177 		tail_lsn = lip->li_lsn;
1178 	else
1179 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1180 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1181 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1182 	return tail_lsn;
1183 }
1184 
1185 xfs_lsn_t
1186 xlog_assign_tail_lsn(
1187 	struct xfs_mount	*mp)
1188 {
1189 	xfs_lsn_t		tail_lsn;
1190 
1191 	spin_lock(&mp->m_ail->ail_lock);
1192 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1193 	spin_unlock(&mp->m_ail->ail_lock);
1194 
1195 	return tail_lsn;
1196 }
1197 
1198 /*
1199  * Return the space in the log between the tail and the head.  The head
1200  * is passed in the cycle/bytes formal parms.  In the special case where
1201  * the reserve head has wrapped passed the tail, this calculation is no
1202  * longer valid.  In this case, just return 0 which means there is no space
1203  * in the log.  This works for all places where this function is called
1204  * with the reserve head.  Of course, if the write head were to ever
1205  * wrap the tail, we should blow up.  Rather than catch this case here,
1206  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1207  *
1208  * This code also handles the case where the reservation head is behind
1209  * the tail.  The details of this case are described below, but the end
1210  * result is that we return the size of the log as the amount of space left.
1211  */
1212 STATIC int
1213 xlog_space_left(
1214 	struct xlog	*log,
1215 	atomic64_t	*head)
1216 {
1217 	int		free_bytes;
1218 	int		tail_bytes;
1219 	int		tail_cycle;
1220 	int		head_cycle;
1221 	int		head_bytes;
1222 
1223 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1224 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1225 	tail_bytes = BBTOB(tail_bytes);
1226 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1227 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1228 	else if (tail_cycle + 1 < head_cycle)
1229 		return 0;
1230 	else if (tail_cycle < head_cycle) {
1231 		ASSERT(tail_cycle == (head_cycle - 1));
1232 		free_bytes = tail_bytes - head_bytes;
1233 	} else {
1234 		/*
1235 		 * The reservation head is behind the tail.
1236 		 * In this case we just want to return the size of the
1237 		 * log as the amount of space left.
1238 		 */
1239 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1240 		xfs_alert(log->l_mp,
1241 			  "  tail_cycle = %d, tail_bytes = %d",
1242 			  tail_cycle, tail_bytes);
1243 		xfs_alert(log->l_mp,
1244 			  "  GH   cycle = %d, GH   bytes = %d",
1245 			  head_cycle, head_bytes);
1246 		ASSERT(0);
1247 		free_bytes = log->l_logsize;
1248 	}
1249 	return free_bytes;
1250 }
1251 
1252 
1253 static void
1254 xlog_ioend_work(
1255 	struct work_struct	*work)
1256 {
1257 	struct xlog_in_core     *iclog =
1258 		container_of(work, struct xlog_in_core, ic_end_io_work);
1259 	struct xlog		*log = iclog->ic_log;
1260 	int			error;
1261 
1262 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1263 #ifdef DEBUG
1264 	/* treat writes with injected CRC errors as failed */
1265 	if (iclog->ic_fail_crc)
1266 		error = -EIO;
1267 #endif
1268 
1269 	/*
1270 	 * Race to shutdown the filesystem if we see an error.
1271 	 */
1272 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1273 		xfs_alert(log->l_mp, "log I/O error %d", error);
1274 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1275 	}
1276 
1277 	xlog_state_done_syncing(iclog);
1278 	bio_uninit(&iclog->ic_bio);
1279 
1280 	/*
1281 	 * Drop the lock to signal that we are done. Nothing references the
1282 	 * iclog after this, so an unmount waiting on this lock can now tear it
1283 	 * down safely. As such, it is unsafe to reference the iclog after the
1284 	 * unlock as we could race with it being freed.
1285 	 */
1286 	up(&iclog->ic_sema);
1287 }
1288 
1289 /*
1290  * Return size of each in-core log record buffer.
1291  *
1292  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1293  *
1294  * If the filesystem blocksize is too large, we may need to choose a
1295  * larger size since the directory code currently logs entire blocks.
1296  */
1297 STATIC void
1298 xlog_get_iclog_buffer_size(
1299 	struct xfs_mount	*mp,
1300 	struct xlog		*log)
1301 {
1302 	if (mp->m_logbufs <= 0)
1303 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1304 	if (mp->m_logbsize <= 0)
1305 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1306 
1307 	log->l_iclog_bufs = mp->m_logbufs;
1308 	log->l_iclog_size = mp->m_logbsize;
1309 
1310 	/*
1311 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1312 	 */
1313 	log->l_iclog_heads =
1314 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1315 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1316 }
1317 
1318 void
1319 xfs_log_work_queue(
1320 	struct xfs_mount        *mp)
1321 {
1322 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1323 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1324 }
1325 
1326 /*
1327  * Every sync period we need to unpin all items in the AIL and push them to
1328  * disk. If there is nothing dirty, then we might need to cover the log to
1329  * indicate that the filesystem is idle.
1330  */
1331 static void
1332 xfs_log_worker(
1333 	struct work_struct	*work)
1334 {
1335 	struct xlog		*log = container_of(to_delayed_work(work),
1336 						struct xlog, l_work);
1337 	struct xfs_mount	*mp = log->l_mp;
1338 
1339 	/* dgc: errors ignored - not fatal and nowhere to report them */
1340 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1341 		/*
1342 		 * Dump a transaction into the log that contains no real change.
1343 		 * This is needed to stamp the current tail LSN into the log
1344 		 * during the covering operation.
1345 		 *
1346 		 * We cannot use an inode here for this - that will push dirty
1347 		 * state back up into the VFS and then periodic inode flushing
1348 		 * will prevent log covering from making progress. Hence we
1349 		 * synchronously log the superblock instead to ensure the
1350 		 * superblock is immediately unpinned and can be written back.
1351 		 */
1352 		xfs_sync_sb(mp, true);
1353 	} else
1354 		xfs_log_force(mp, 0);
1355 
1356 	/* start pushing all the metadata that is currently dirty */
1357 	xfs_ail_push_all(mp->m_ail);
1358 
1359 	/* queue us up again */
1360 	xfs_log_work_queue(mp);
1361 }
1362 
1363 /*
1364  * This routine initializes some of the log structure for a given mount point.
1365  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1366  * some other stuff may be filled in too.
1367  */
1368 STATIC struct xlog *
1369 xlog_alloc_log(
1370 	struct xfs_mount	*mp,
1371 	struct xfs_buftarg	*log_target,
1372 	xfs_daddr_t		blk_offset,
1373 	int			num_bblks)
1374 {
1375 	struct xlog		*log;
1376 	xlog_rec_header_t	*head;
1377 	xlog_in_core_t		**iclogp;
1378 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1379 	int			i;
1380 	int			error = -ENOMEM;
1381 	uint			log2_size = 0;
1382 
1383 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1384 	if (!log) {
1385 		xfs_warn(mp, "Log allocation failed: No memory!");
1386 		goto out;
1387 	}
1388 
1389 	log->l_mp	   = mp;
1390 	log->l_targ	   = log_target;
1391 	log->l_logsize     = BBTOB(num_bblks);
1392 	log->l_logBBstart  = blk_offset;
1393 	log->l_logBBsize   = num_bblks;
1394 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1395 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1396 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1397 
1398 	log->l_prev_block  = -1;
1399 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1400 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1401 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1402 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1403 
1404 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1)
1405 		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1406 	else
1407 		log->l_iclog_roundoff = BBSIZE;
1408 
1409 	xlog_grant_head_init(&log->l_reserve_head);
1410 	xlog_grant_head_init(&log->l_write_head);
1411 
1412 	error = -EFSCORRUPTED;
1413 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1414 	        log2_size = mp->m_sb.sb_logsectlog;
1415 		if (log2_size < BBSHIFT) {
1416 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1417 				log2_size, BBSHIFT);
1418 			goto out_free_log;
1419 		}
1420 
1421 	        log2_size -= BBSHIFT;
1422 		if (log2_size > mp->m_sectbb_log) {
1423 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1424 				log2_size, mp->m_sectbb_log);
1425 			goto out_free_log;
1426 		}
1427 
1428 		/* for larger sector sizes, must have v2 or external log */
1429 		if (log2_size && log->l_logBBstart > 0 &&
1430 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1431 			xfs_warn(mp,
1432 		"log sector size (0x%x) invalid for configuration.",
1433 				log2_size);
1434 			goto out_free_log;
1435 		}
1436 	}
1437 	log->l_sectBBsize = 1 << log2_size;
1438 
1439 	xlog_get_iclog_buffer_size(mp, log);
1440 
1441 	spin_lock_init(&log->l_icloglock);
1442 	init_waitqueue_head(&log->l_flush_wait);
1443 
1444 	iclogp = &log->l_iclog;
1445 	/*
1446 	 * The amount of memory to allocate for the iclog structure is
1447 	 * rather funky due to the way the structure is defined.  It is
1448 	 * done this way so that we can use different sizes for machines
1449 	 * with different amounts of memory.  See the definition of
1450 	 * xlog_in_core_t in xfs_log_priv.h for details.
1451 	 */
1452 	ASSERT(log->l_iclog_size >= 4096);
1453 	for (i = 0; i < log->l_iclog_bufs; i++) {
1454 		int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1455 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1456 				sizeof(struct bio_vec);
1457 
1458 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1459 		if (!iclog)
1460 			goto out_free_iclog;
1461 
1462 		*iclogp = iclog;
1463 		iclog->ic_prev = prev_iclog;
1464 		prev_iclog = iclog;
1465 
1466 		iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1467 						KM_MAYFAIL | KM_ZERO);
1468 		if (!iclog->ic_data)
1469 			goto out_free_iclog;
1470 #ifdef DEBUG
1471 		log->l_iclog_bak[i] = &iclog->ic_header;
1472 #endif
1473 		head = &iclog->ic_header;
1474 		memset(head, 0, sizeof(xlog_rec_header_t));
1475 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1476 		head->h_version = cpu_to_be32(
1477 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1478 		head->h_size = cpu_to_be32(log->l_iclog_size);
1479 		/* new fields */
1480 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1481 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1482 
1483 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1484 		iclog->ic_state = XLOG_STATE_ACTIVE;
1485 		iclog->ic_log = log;
1486 		atomic_set(&iclog->ic_refcnt, 0);
1487 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1488 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1489 
1490 		init_waitqueue_head(&iclog->ic_force_wait);
1491 		init_waitqueue_head(&iclog->ic_write_wait);
1492 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1493 		sema_init(&iclog->ic_sema, 1);
1494 
1495 		iclogp = &iclog->ic_next;
1496 	}
1497 	*iclogp = log->l_iclog;			/* complete ring */
1498 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1499 
1500 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1501 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1502 				    WQ_HIGHPRI),
1503 			0, mp->m_super->s_id);
1504 	if (!log->l_ioend_workqueue)
1505 		goto out_free_iclog;
1506 
1507 	error = xlog_cil_init(log);
1508 	if (error)
1509 		goto out_destroy_workqueue;
1510 	return log;
1511 
1512 out_destroy_workqueue:
1513 	destroy_workqueue(log->l_ioend_workqueue);
1514 out_free_iclog:
1515 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1516 		prev_iclog = iclog->ic_next;
1517 		kmem_free(iclog->ic_data);
1518 		kmem_free(iclog);
1519 		if (prev_iclog == log->l_iclog)
1520 			break;
1521 	}
1522 out_free_log:
1523 	kmem_free(log);
1524 out:
1525 	return ERR_PTR(error);
1526 }	/* xlog_alloc_log */
1527 
1528 /*
1529  * Write out the commit record of a transaction associated with the given
1530  * ticket to close off a running log write. Return the lsn of the commit record.
1531  */
1532 int
1533 xlog_commit_record(
1534 	struct xlog		*log,
1535 	struct xlog_ticket	*ticket,
1536 	struct xlog_in_core	**iclog,
1537 	xfs_lsn_t		*lsn)
1538 {
1539 	struct xfs_log_iovec reg = {
1540 		.i_addr = NULL,
1541 		.i_len = 0,
1542 		.i_type = XLOG_REG_TYPE_COMMIT,
1543 	};
1544 	struct xfs_log_vec vec = {
1545 		.lv_niovecs = 1,
1546 		.lv_iovecp = &reg,
1547 	};
1548 	int	error;
1549 
1550 	if (XLOG_FORCED_SHUTDOWN(log))
1551 		return -EIO;
1552 
1553 	error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS);
1554 	if (error)
1555 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1556 	return error;
1557 }
1558 
1559 /*
1560  * Compute the LSN that we'd need to push the log tail towards in order to have
1561  * (a) enough on-disk log space to log the number of bytes specified, (b) at
1562  * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1563  * log free space already meets all three thresholds, this function returns
1564  * NULLCOMMITLSN.
1565  */
1566 xfs_lsn_t
1567 xlog_grant_push_threshold(
1568 	struct xlog	*log,
1569 	int		need_bytes)
1570 {
1571 	xfs_lsn_t	threshold_lsn = 0;
1572 	xfs_lsn_t	last_sync_lsn;
1573 	int		free_blocks;
1574 	int		free_bytes;
1575 	int		threshold_block;
1576 	int		threshold_cycle;
1577 	int		free_threshold;
1578 
1579 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1580 
1581 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1582 	free_blocks = BTOBBT(free_bytes);
1583 
1584 	/*
1585 	 * Set the threshold for the minimum number of free blocks in the
1586 	 * log to the maximum of what the caller needs, one quarter of the
1587 	 * log, and 256 blocks.
1588 	 */
1589 	free_threshold = BTOBB(need_bytes);
1590 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1591 	free_threshold = max(free_threshold, 256);
1592 	if (free_blocks >= free_threshold)
1593 		return NULLCOMMITLSN;
1594 
1595 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1596 						&threshold_block);
1597 	threshold_block += free_threshold;
1598 	if (threshold_block >= log->l_logBBsize) {
1599 		threshold_block -= log->l_logBBsize;
1600 		threshold_cycle += 1;
1601 	}
1602 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1603 					threshold_block);
1604 	/*
1605 	 * Don't pass in an lsn greater than the lsn of the last
1606 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1607 	 * so that it doesn't change between the compare and the set.
1608 	 */
1609 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1610 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1611 		threshold_lsn = last_sync_lsn;
1612 
1613 	return threshold_lsn;
1614 }
1615 
1616 /*
1617  * Push the tail of the log if we need to do so to maintain the free log space
1618  * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1619  * policy which pushes on an lsn which is further along in the log once we
1620  * reach the high water mark.  In this manner, we would be creating a low water
1621  * mark.
1622  */
1623 STATIC void
1624 xlog_grant_push_ail(
1625 	struct xlog	*log,
1626 	int		need_bytes)
1627 {
1628 	xfs_lsn_t	threshold_lsn;
1629 
1630 	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1631 	if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log))
1632 		return;
1633 
1634 	/*
1635 	 * Get the transaction layer to kick the dirty buffers out to
1636 	 * disk asynchronously. No point in trying to do this if
1637 	 * the filesystem is shutting down.
1638 	 */
1639 	xfs_ail_push(log->l_ailp, threshold_lsn);
1640 }
1641 
1642 /*
1643  * Stamp cycle number in every block
1644  */
1645 STATIC void
1646 xlog_pack_data(
1647 	struct xlog		*log,
1648 	struct xlog_in_core	*iclog,
1649 	int			roundoff)
1650 {
1651 	int			i, j, k;
1652 	int			size = iclog->ic_offset + roundoff;
1653 	__be32			cycle_lsn;
1654 	char			*dp;
1655 
1656 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1657 
1658 	dp = iclog->ic_datap;
1659 	for (i = 0; i < BTOBB(size); i++) {
1660 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1661 			break;
1662 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1663 		*(__be32 *)dp = cycle_lsn;
1664 		dp += BBSIZE;
1665 	}
1666 
1667 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1668 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1669 
1670 		for ( ; i < BTOBB(size); i++) {
1671 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1672 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1673 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1674 			*(__be32 *)dp = cycle_lsn;
1675 			dp += BBSIZE;
1676 		}
1677 
1678 		for (i = 1; i < log->l_iclog_heads; i++)
1679 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1680 	}
1681 }
1682 
1683 /*
1684  * Calculate the checksum for a log buffer.
1685  *
1686  * This is a little more complicated than it should be because the various
1687  * headers and the actual data are non-contiguous.
1688  */
1689 __le32
1690 xlog_cksum(
1691 	struct xlog		*log,
1692 	struct xlog_rec_header	*rhead,
1693 	char			*dp,
1694 	int			size)
1695 {
1696 	uint32_t		crc;
1697 
1698 	/* first generate the crc for the record header ... */
1699 	crc = xfs_start_cksum_update((char *)rhead,
1700 			      sizeof(struct xlog_rec_header),
1701 			      offsetof(struct xlog_rec_header, h_crc));
1702 
1703 	/* ... then for additional cycle data for v2 logs ... */
1704 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1705 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1706 		int		i;
1707 		int		xheads;
1708 
1709 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1710 
1711 		for (i = 1; i < xheads; i++) {
1712 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1713 				     sizeof(struct xlog_rec_ext_header));
1714 		}
1715 	}
1716 
1717 	/* ... and finally for the payload */
1718 	crc = crc32c(crc, dp, size);
1719 
1720 	return xfs_end_cksum(crc);
1721 }
1722 
1723 static void
1724 xlog_bio_end_io(
1725 	struct bio		*bio)
1726 {
1727 	struct xlog_in_core	*iclog = bio->bi_private;
1728 
1729 	queue_work(iclog->ic_log->l_ioend_workqueue,
1730 		   &iclog->ic_end_io_work);
1731 }
1732 
1733 static int
1734 xlog_map_iclog_data(
1735 	struct bio		*bio,
1736 	void			*data,
1737 	size_t			count)
1738 {
1739 	do {
1740 		struct page	*page = kmem_to_page(data);
1741 		unsigned int	off = offset_in_page(data);
1742 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1743 
1744 		if (bio_add_page(bio, page, len, off) != len)
1745 			return -EIO;
1746 
1747 		data += len;
1748 		count -= len;
1749 	} while (count);
1750 
1751 	return 0;
1752 }
1753 
1754 STATIC void
1755 xlog_write_iclog(
1756 	struct xlog		*log,
1757 	struct xlog_in_core	*iclog,
1758 	uint64_t		bno,
1759 	unsigned int		count)
1760 {
1761 	ASSERT(bno < log->l_logBBsize);
1762 	trace_xlog_iclog_write(iclog, _RET_IP_);
1763 
1764 	/*
1765 	 * We lock the iclogbufs here so that we can serialise against I/O
1766 	 * completion during unmount.  We might be processing a shutdown
1767 	 * triggered during unmount, and that can occur asynchronously to the
1768 	 * unmount thread, and hence we need to ensure that completes before
1769 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1770 	 * across the log IO to archieve that.
1771 	 */
1772 	down(&iclog->ic_sema);
1773 	if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1774 		/*
1775 		 * It would seem logical to return EIO here, but we rely on
1776 		 * the log state machine to propagate I/O errors instead of
1777 		 * doing it here.  We kick of the state machine and unlock
1778 		 * the buffer manually, the code needs to be kept in sync
1779 		 * with the I/O completion path.
1780 		 */
1781 		xlog_state_done_syncing(iclog);
1782 		up(&iclog->ic_sema);
1783 		return;
1784 	}
1785 
1786 	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1787 	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1788 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1789 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1790 	iclog->ic_bio.bi_private = iclog;
1791 
1792 	/*
1793 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1794 	 * IOs coming immediately after this one. This prevents the block layer
1795 	 * writeback throttle from throttling log writes behind background
1796 	 * metadata writeback and causing priority inversions.
1797 	 */
1798 	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE;
1799 	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH)
1800 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1801 	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1802 		iclog->ic_bio.bi_opf |= REQ_FUA;
1803 	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1804 
1805 	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1806 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1807 		return;
1808 	}
1809 	if (is_vmalloc_addr(iclog->ic_data))
1810 		flush_kernel_vmap_range(iclog->ic_data, count);
1811 
1812 	/*
1813 	 * If this log buffer would straddle the end of the log we will have
1814 	 * to split it up into two bios, so that we can continue at the start.
1815 	 */
1816 	if (bno + BTOBB(count) > log->l_logBBsize) {
1817 		struct bio *split;
1818 
1819 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1820 				  GFP_NOIO, &fs_bio_set);
1821 		bio_chain(split, &iclog->ic_bio);
1822 		submit_bio(split);
1823 
1824 		/* restart at logical offset zero for the remainder */
1825 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1826 	}
1827 
1828 	submit_bio(&iclog->ic_bio);
1829 }
1830 
1831 /*
1832  * We need to bump cycle number for the part of the iclog that is
1833  * written to the start of the log. Watch out for the header magic
1834  * number case, though.
1835  */
1836 static void
1837 xlog_split_iclog(
1838 	struct xlog		*log,
1839 	void			*data,
1840 	uint64_t		bno,
1841 	unsigned int		count)
1842 {
1843 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1844 	unsigned int		i;
1845 
1846 	for (i = split_offset; i < count; i += BBSIZE) {
1847 		uint32_t cycle = get_unaligned_be32(data + i);
1848 
1849 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1850 			cycle++;
1851 		put_unaligned_be32(cycle, data + i);
1852 	}
1853 }
1854 
1855 static int
1856 xlog_calc_iclog_size(
1857 	struct xlog		*log,
1858 	struct xlog_in_core	*iclog,
1859 	uint32_t		*roundoff)
1860 {
1861 	uint32_t		count_init, count;
1862 
1863 	/* Add for LR header */
1864 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1865 	count = roundup(count_init, log->l_iclog_roundoff);
1866 
1867 	*roundoff = count - count_init;
1868 
1869 	ASSERT(count >= count_init);
1870 	ASSERT(*roundoff < log->l_iclog_roundoff);
1871 	return count;
1872 }
1873 
1874 /*
1875  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1876  * fashion.  Previously, we should have moved the current iclog
1877  * ptr in the log to point to the next available iclog.  This allows further
1878  * write to continue while this code syncs out an iclog ready to go.
1879  * Before an in-core log can be written out, the data section must be scanned
1880  * to save away the 1st word of each BBSIZE block into the header.  We replace
1881  * it with the current cycle count.  Each BBSIZE block is tagged with the
1882  * cycle count because there in an implicit assumption that drives will
1883  * guarantee that entire 512 byte blocks get written at once.  In other words,
1884  * we can't have part of a 512 byte block written and part not written.  By
1885  * tagging each block, we will know which blocks are valid when recovering
1886  * after an unclean shutdown.
1887  *
1888  * This routine is single threaded on the iclog.  No other thread can be in
1889  * this routine with the same iclog.  Changing contents of iclog can there-
1890  * fore be done without grabbing the state machine lock.  Updating the global
1891  * log will require grabbing the lock though.
1892  *
1893  * The entire log manager uses a logical block numbering scheme.  Only
1894  * xlog_write_iclog knows about the fact that the log may not start with
1895  * block zero on a given device.
1896  */
1897 STATIC void
1898 xlog_sync(
1899 	struct xlog		*log,
1900 	struct xlog_in_core	*iclog)
1901 {
1902 	unsigned int		count;		/* byte count of bwrite */
1903 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1904 	uint64_t		bno;
1905 	unsigned int		size;
1906 
1907 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1908 	trace_xlog_iclog_sync(iclog, _RET_IP_);
1909 
1910 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1911 
1912 	/* move grant heads by roundoff in sync */
1913 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1914 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1915 
1916 	/* put cycle number in every block */
1917 	xlog_pack_data(log, iclog, roundoff);
1918 
1919 	/* real byte length */
1920 	size = iclog->ic_offset;
1921 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1922 		size += roundoff;
1923 	iclog->ic_header.h_len = cpu_to_be32(size);
1924 
1925 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1926 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1927 
1928 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1929 
1930 	/* Do we need to split this write into 2 parts? */
1931 	if (bno + BTOBB(count) > log->l_logBBsize)
1932 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1933 
1934 	/* calculcate the checksum */
1935 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1936 					    iclog->ic_datap, size);
1937 	/*
1938 	 * Intentionally corrupt the log record CRC based on the error injection
1939 	 * frequency, if defined. This facilitates testing log recovery in the
1940 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1941 	 * write on I/O completion and shutdown the fs. The subsequent mount
1942 	 * detects the bad CRC and attempts to recover.
1943 	 */
1944 #ifdef DEBUG
1945 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1946 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1947 		iclog->ic_fail_crc = true;
1948 		xfs_warn(log->l_mp,
1949 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1950 			 be64_to_cpu(iclog->ic_header.h_lsn));
1951 	}
1952 #endif
1953 	xlog_verify_iclog(log, iclog, count);
1954 	xlog_write_iclog(log, iclog, bno, count);
1955 }
1956 
1957 /*
1958  * Deallocate a log structure
1959  */
1960 STATIC void
1961 xlog_dealloc_log(
1962 	struct xlog	*log)
1963 {
1964 	xlog_in_core_t	*iclog, *next_iclog;
1965 	int		i;
1966 
1967 	xlog_cil_destroy(log);
1968 
1969 	/*
1970 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1971 	 * is done before we tear down these buffers.
1972 	 */
1973 	iclog = log->l_iclog;
1974 	for (i = 0; i < log->l_iclog_bufs; i++) {
1975 		down(&iclog->ic_sema);
1976 		up(&iclog->ic_sema);
1977 		iclog = iclog->ic_next;
1978 	}
1979 
1980 	iclog = log->l_iclog;
1981 	for (i = 0; i < log->l_iclog_bufs; i++) {
1982 		next_iclog = iclog->ic_next;
1983 		kmem_free(iclog->ic_data);
1984 		kmem_free(iclog);
1985 		iclog = next_iclog;
1986 	}
1987 
1988 	log->l_mp->m_log = NULL;
1989 	destroy_workqueue(log->l_ioend_workqueue);
1990 	kmem_free(log);
1991 }
1992 
1993 /*
1994  * Update counters atomically now that memcpy is done.
1995  */
1996 static inline void
1997 xlog_state_finish_copy(
1998 	struct xlog		*log,
1999 	struct xlog_in_core	*iclog,
2000 	int			record_cnt,
2001 	int			copy_bytes)
2002 {
2003 	lockdep_assert_held(&log->l_icloglock);
2004 
2005 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2006 	iclog->ic_offset += copy_bytes;
2007 }
2008 
2009 /*
2010  * print out info relating to regions written which consume
2011  * the reservation
2012  */
2013 void
2014 xlog_print_tic_res(
2015 	struct xfs_mount	*mp,
2016 	struct xlog_ticket	*ticket)
2017 {
2018 	uint i;
2019 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2020 
2021 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2022 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2023 	static char *res_type_str[] = {
2024 	    REG_TYPE_STR(BFORMAT, "bformat"),
2025 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2026 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2027 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2028 	    REG_TYPE_STR(IFORMAT, "iformat"),
2029 	    REG_TYPE_STR(ICORE, "icore"),
2030 	    REG_TYPE_STR(IEXT, "iext"),
2031 	    REG_TYPE_STR(IBROOT, "ibroot"),
2032 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2033 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2034 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2035 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2036 	    REG_TYPE_STR(QFORMAT, "qformat"),
2037 	    REG_TYPE_STR(DQUOT, "dquot"),
2038 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2039 	    REG_TYPE_STR(LRHEADER, "LR header"),
2040 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2041 	    REG_TYPE_STR(COMMIT, "commit"),
2042 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2043 	    REG_TYPE_STR(ICREATE, "inode create"),
2044 	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2045 	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2046 	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2047 	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2048 	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2049 	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2050 	};
2051 	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2052 #undef REG_TYPE_STR
2053 
2054 	xfs_warn(mp, "ticket reservation summary:");
2055 	xfs_warn(mp, "  unit res    = %d bytes",
2056 		 ticket->t_unit_res);
2057 	xfs_warn(mp, "  current res = %d bytes",
2058 		 ticket->t_curr_res);
2059 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2060 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2061 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2062 		 ticket->t_res_num_ophdrs, ophdr_spc);
2063 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2064 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2065 	xfs_warn(mp, "  num regions = %u",
2066 		 ticket->t_res_num);
2067 
2068 	for (i = 0; i < ticket->t_res_num; i++) {
2069 		uint r_type = ticket->t_res_arr[i].r_type;
2070 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2071 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2072 			    "bad-rtype" : res_type_str[r_type]),
2073 			    ticket->t_res_arr[i].r_len);
2074 	}
2075 }
2076 
2077 /*
2078  * Print a summary of the transaction.
2079  */
2080 void
2081 xlog_print_trans(
2082 	struct xfs_trans	*tp)
2083 {
2084 	struct xfs_mount	*mp = tp->t_mountp;
2085 	struct xfs_log_item	*lip;
2086 
2087 	/* dump core transaction and ticket info */
2088 	xfs_warn(mp, "transaction summary:");
2089 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2090 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2091 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2092 
2093 	xlog_print_tic_res(mp, tp->t_ticket);
2094 
2095 	/* dump each log item */
2096 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2097 		struct xfs_log_vec	*lv = lip->li_lv;
2098 		struct xfs_log_iovec	*vec;
2099 		int			i;
2100 
2101 		xfs_warn(mp, "log item: ");
2102 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2103 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2104 		if (!lv)
2105 			continue;
2106 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2107 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2108 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2109 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2110 
2111 		/* dump each iovec for the log item */
2112 		vec = lv->lv_iovecp;
2113 		for (i = 0; i < lv->lv_niovecs; i++) {
2114 			int dumplen = min(vec->i_len, 32);
2115 
2116 			xfs_warn(mp, "  iovec[%d]", i);
2117 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2118 			xfs_warn(mp, "    len	= %d", vec->i_len);
2119 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2120 			xfs_hex_dump(vec->i_addr, dumplen);
2121 
2122 			vec++;
2123 		}
2124 	}
2125 }
2126 
2127 /*
2128  * Calculate the potential space needed by the log vector.  We may need a start
2129  * record, and each region gets its own struct xlog_op_header and may need to be
2130  * double word aligned.
2131  */
2132 static int
2133 xlog_write_calc_vec_length(
2134 	struct xlog_ticket	*ticket,
2135 	struct xfs_log_vec	*log_vector,
2136 	uint			optype)
2137 {
2138 	struct xfs_log_vec	*lv;
2139 	int			headers = 0;
2140 	int			len = 0;
2141 	int			i;
2142 
2143 	if (optype & XLOG_START_TRANS)
2144 		headers++;
2145 
2146 	for (lv = log_vector; lv; lv = lv->lv_next) {
2147 		/* we don't write ordered log vectors */
2148 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2149 			continue;
2150 
2151 		headers += lv->lv_niovecs;
2152 
2153 		for (i = 0; i < lv->lv_niovecs; i++) {
2154 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2155 
2156 			len += vecp->i_len;
2157 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2158 		}
2159 	}
2160 
2161 	ticket->t_res_num_ophdrs += headers;
2162 	len += headers * sizeof(struct xlog_op_header);
2163 
2164 	return len;
2165 }
2166 
2167 static void
2168 xlog_write_start_rec(
2169 	struct xlog_op_header	*ophdr,
2170 	struct xlog_ticket	*ticket)
2171 {
2172 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2173 	ophdr->oh_clientid = ticket->t_clientid;
2174 	ophdr->oh_len = 0;
2175 	ophdr->oh_flags = XLOG_START_TRANS;
2176 	ophdr->oh_res2 = 0;
2177 }
2178 
2179 static xlog_op_header_t *
2180 xlog_write_setup_ophdr(
2181 	struct xlog		*log,
2182 	struct xlog_op_header	*ophdr,
2183 	struct xlog_ticket	*ticket,
2184 	uint			flags)
2185 {
2186 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2187 	ophdr->oh_clientid = ticket->t_clientid;
2188 	ophdr->oh_res2 = 0;
2189 
2190 	/* are we copying a commit or unmount record? */
2191 	ophdr->oh_flags = flags;
2192 
2193 	/*
2194 	 * We've seen logs corrupted with bad transaction client ids.  This
2195 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2196 	 * and shut down the filesystem.
2197 	 */
2198 	switch (ophdr->oh_clientid)  {
2199 	case XFS_TRANSACTION:
2200 	case XFS_VOLUME:
2201 	case XFS_LOG:
2202 		break;
2203 	default:
2204 		xfs_warn(log->l_mp,
2205 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2206 			ophdr->oh_clientid, ticket);
2207 		return NULL;
2208 	}
2209 
2210 	return ophdr;
2211 }
2212 
2213 /*
2214  * Set up the parameters of the region copy into the log. This has
2215  * to handle region write split across multiple log buffers - this
2216  * state is kept external to this function so that this code can
2217  * be written in an obvious, self documenting manner.
2218  */
2219 static int
2220 xlog_write_setup_copy(
2221 	struct xlog_ticket	*ticket,
2222 	struct xlog_op_header	*ophdr,
2223 	int			space_available,
2224 	int			space_required,
2225 	int			*copy_off,
2226 	int			*copy_len,
2227 	int			*last_was_partial_copy,
2228 	int			*bytes_consumed)
2229 {
2230 	int			still_to_copy;
2231 
2232 	still_to_copy = space_required - *bytes_consumed;
2233 	*copy_off = *bytes_consumed;
2234 
2235 	if (still_to_copy <= space_available) {
2236 		/* write of region completes here */
2237 		*copy_len = still_to_copy;
2238 		ophdr->oh_len = cpu_to_be32(*copy_len);
2239 		if (*last_was_partial_copy)
2240 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2241 		*last_was_partial_copy = 0;
2242 		*bytes_consumed = 0;
2243 		return 0;
2244 	}
2245 
2246 	/* partial write of region, needs extra log op header reservation */
2247 	*copy_len = space_available;
2248 	ophdr->oh_len = cpu_to_be32(*copy_len);
2249 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2250 	if (*last_was_partial_copy)
2251 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2252 	*bytes_consumed += *copy_len;
2253 	(*last_was_partial_copy)++;
2254 
2255 	/* account for new log op header */
2256 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2257 	ticket->t_res_num_ophdrs++;
2258 
2259 	return sizeof(struct xlog_op_header);
2260 }
2261 
2262 static int
2263 xlog_write_copy_finish(
2264 	struct xlog		*log,
2265 	struct xlog_in_core	*iclog,
2266 	uint			flags,
2267 	int			*record_cnt,
2268 	int			*data_cnt,
2269 	int			*partial_copy,
2270 	int			*partial_copy_len,
2271 	int			log_offset,
2272 	struct xlog_in_core	**commit_iclog)
2273 {
2274 	int			error;
2275 
2276 	if (*partial_copy) {
2277 		/*
2278 		 * This iclog has already been marked WANT_SYNC by
2279 		 * xlog_state_get_iclog_space.
2280 		 */
2281 		spin_lock(&log->l_icloglock);
2282 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2283 		*record_cnt = 0;
2284 		*data_cnt = 0;
2285 		goto release_iclog;
2286 	}
2287 
2288 	*partial_copy = 0;
2289 	*partial_copy_len = 0;
2290 
2291 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2292 		/* no more space in this iclog - push it. */
2293 		spin_lock(&log->l_icloglock);
2294 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2295 		*record_cnt = 0;
2296 		*data_cnt = 0;
2297 
2298 		if (iclog->ic_state == XLOG_STATE_ACTIVE)
2299 			xlog_state_switch_iclogs(log, iclog, 0);
2300 		else
2301 			ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2302 			       iclog->ic_state == XLOG_STATE_IOERROR);
2303 		if (!commit_iclog)
2304 			goto release_iclog;
2305 		spin_unlock(&log->l_icloglock);
2306 		ASSERT(flags & XLOG_COMMIT_TRANS);
2307 		*commit_iclog = iclog;
2308 	}
2309 
2310 	return 0;
2311 
2312 release_iclog:
2313 	error = xlog_state_release_iclog(log, iclog);
2314 	spin_unlock(&log->l_icloglock);
2315 	return error;
2316 }
2317 
2318 /*
2319  * Write some region out to in-core log
2320  *
2321  * This will be called when writing externally provided regions or when
2322  * writing out a commit record for a given transaction.
2323  *
2324  * General algorithm:
2325  *	1. Find total length of this write.  This may include adding to the
2326  *		lengths passed in.
2327  *	2. Check whether we violate the tickets reservation.
2328  *	3. While writing to this iclog
2329  *	    A. Reserve as much space in this iclog as can get
2330  *	    B. If this is first write, save away start lsn
2331  *	    C. While writing this region:
2332  *		1. If first write of transaction, write start record
2333  *		2. Write log operation header (header per region)
2334  *		3. Find out if we can fit entire region into this iclog
2335  *		4. Potentially, verify destination memcpy ptr
2336  *		5. Memcpy (partial) region
2337  *		6. If partial copy, release iclog; otherwise, continue
2338  *			copying more regions into current iclog
2339  *	4. Mark want sync bit (in simulation mode)
2340  *	5. Release iclog for potential flush to on-disk log.
2341  *
2342  * ERRORS:
2343  * 1.	Panic if reservation is overrun.  This should never happen since
2344  *	reservation amounts are generated internal to the filesystem.
2345  * NOTES:
2346  * 1. Tickets are single threaded data structures.
2347  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2348  *	syncing routine.  When a single log_write region needs to span
2349  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2350  *	on all log operation writes which don't contain the end of the
2351  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2352  *	operation which contains the end of the continued log_write region.
2353  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2354  *	we don't really know exactly how much space will be used.  As a result,
2355  *	we don't update ic_offset until the end when we know exactly how many
2356  *	bytes have been written out.
2357  */
2358 int
2359 xlog_write(
2360 	struct xlog		*log,
2361 	struct xfs_log_vec	*log_vector,
2362 	struct xlog_ticket	*ticket,
2363 	xfs_lsn_t		*start_lsn,
2364 	struct xlog_in_core	**commit_iclog,
2365 	uint			optype)
2366 {
2367 	struct xlog_in_core	*iclog = NULL;
2368 	struct xfs_log_vec	*lv = log_vector;
2369 	struct xfs_log_iovec	*vecp = lv->lv_iovecp;
2370 	int			index = 0;
2371 	int			len;
2372 	int			partial_copy = 0;
2373 	int			partial_copy_len = 0;
2374 	int			contwr = 0;
2375 	int			record_cnt = 0;
2376 	int			data_cnt = 0;
2377 	int			error = 0;
2378 
2379 	/*
2380 	 * If this is a commit or unmount transaction, we don't need a start
2381 	 * record to be written.  We do, however, have to account for the
2382 	 * commit or unmount header that gets written. Hence we always have
2383 	 * to account for an extra xlog_op_header here.
2384 	 */
2385 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2386 	if (ticket->t_curr_res < 0) {
2387 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2388 		     "ctx ticket reservation ran out. Need to up reservation");
2389 		xlog_print_tic_res(log->l_mp, ticket);
2390 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2391 	}
2392 
2393 	len = xlog_write_calc_vec_length(ticket, log_vector, optype);
2394 	if (start_lsn)
2395 		*start_lsn = 0;
2396 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2397 		void		*ptr;
2398 		int		log_offset;
2399 
2400 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2401 						   &contwr, &log_offset);
2402 		if (error)
2403 			return error;
2404 
2405 		ASSERT(log_offset <= iclog->ic_size - 1);
2406 		ptr = iclog->ic_datap + log_offset;
2407 
2408 		/* Start_lsn is the first lsn written to. */
2409 		if (start_lsn && !*start_lsn)
2410 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2411 
2412 		/*
2413 		 * This loop writes out as many regions as can fit in the amount
2414 		 * of space which was allocated by xlog_state_get_iclog_space().
2415 		 */
2416 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2417 			struct xfs_log_iovec	*reg;
2418 			struct xlog_op_header	*ophdr;
2419 			int			copy_len;
2420 			int			copy_off;
2421 			bool			ordered = false;
2422 			bool			wrote_start_rec = false;
2423 
2424 			/* ordered log vectors have no regions to write */
2425 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2426 				ASSERT(lv->lv_niovecs == 0);
2427 				ordered = true;
2428 				goto next_lv;
2429 			}
2430 
2431 			reg = &vecp[index];
2432 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2433 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2434 
2435 			/*
2436 			 * Before we start formatting log vectors, we need to
2437 			 * write a start record. Only do this for the first
2438 			 * iclog we write to.
2439 			 */
2440 			if (optype & XLOG_START_TRANS) {
2441 				xlog_write_start_rec(ptr, ticket);
2442 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2443 						sizeof(struct xlog_op_header));
2444 				optype &= ~XLOG_START_TRANS;
2445 				wrote_start_rec = true;
2446 			}
2447 
2448 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype);
2449 			if (!ophdr)
2450 				return -EIO;
2451 
2452 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2453 					   sizeof(struct xlog_op_header));
2454 
2455 			len += xlog_write_setup_copy(ticket, ophdr,
2456 						     iclog->ic_size-log_offset,
2457 						     reg->i_len,
2458 						     &copy_off, &copy_len,
2459 						     &partial_copy,
2460 						     &partial_copy_len);
2461 			xlog_verify_dest_ptr(log, ptr);
2462 
2463 			/*
2464 			 * Copy region.
2465 			 *
2466 			 * Unmount records just log an opheader, so can have
2467 			 * empty payloads with no data region to copy. Hence we
2468 			 * only copy the payload if the vector says it has data
2469 			 * to copy.
2470 			 */
2471 			ASSERT(copy_len >= 0);
2472 			if (copy_len > 0) {
2473 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2474 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2475 						   copy_len);
2476 			}
2477 			copy_len += sizeof(struct xlog_op_header);
2478 			record_cnt++;
2479 			if (wrote_start_rec) {
2480 				copy_len += sizeof(struct xlog_op_header);
2481 				record_cnt++;
2482 			}
2483 			data_cnt += contwr ? copy_len : 0;
2484 
2485 			error = xlog_write_copy_finish(log, iclog, optype,
2486 						       &record_cnt, &data_cnt,
2487 						       &partial_copy,
2488 						       &partial_copy_len,
2489 						       log_offset,
2490 						       commit_iclog);
2491 			if (error)
2492 				return error;
2493 
2494 			/*
2495 			 * if we had a partial copy, we need to get more iclog
2496 			 * space but we don't want to increment the region
2497 			 * index because there is still more is this region to
2498 			 * write.
2499 			 *
2500 			 * If we completed writing this region, and we flushed
2501 			 * the iclog (indicated by resetting of the record
2502 			 * count), then we also need to get more log space. If
2503 			 * this was the last record, though, we are done and
2504 			 * can just return.
2505 			 */
2506 			if (partial_copy)
2507 				break;
2508 
2509 			if (++index == lv->lv_niovecs) {
2510 next_lv:
2511 				lv = lv->lv_next;
2512 				index = 0;
2513 				if (lv)
2514 					vecp = lv->lv_iovecp;
2515 			}
2516 			if (record_cnt == 0 && !ordered) {
2517 				if (!lv)
2518 					return 0;
2519 				break;
2520 			}
2521 		}
2522 	}
2523 
2524 	ASSERT(len == 0);
2525 
2526 	spin_lock(&log->l_icloglock);
2527 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2528 	if (commit_iclog) {
2529 		ASSERT(optype & XLOG_COMMIT_TRANS);
2530 		*commit_iclog = iclog;
2531 	} else {
2532 		error = xlog_state_release_iclog(log, iclog);
2533 	}
2534 	spin_unlock(&log->l_icloglock);
2535 
2536 	return error;
2537 }
2538 
2539 static void
2540 xlog_state_activate_iclog(
2541 	struct xlog_in_core	*iclog,
2542 	int			*iclogs_changed)
2543 {
2544 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2545 	trace_xlog_iclog_activate(iclog, _RET_IP_);
2546 
2547 	/*
2548 	 * If the number of ops in this iclog indicate it just contains the
2549 	 * dummy transaction, we can change state into IDLE (the second time
2550 	 * around). Otherwise we should change the state into NEED a dummy.
2551 	 * We don't need to cover the dummy.
2552 	 */
2553 	if (*iclogs_changed == 0 &&
2554 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2555 		*iclogs_changed = 1;
2556 	} else {
2557 		/*
2558 		 * We have two dirty iclogs so start over.  This could also be
2559 		 * num of ops indicating this is not the dummy going out.
2560 		 */
2561 		*iclogs_changed = 2;
2562 	}
2563 
2564 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2565 	iclog->ic_offset = 0;
2566 	iclog->ic_header.h_num_logops = 0;
2567 	memset(iclog->ic_header.h_cycle_data, 0,
2568 		sizeof(iclog->ic_header.h_cycle_data));
2569 	iclog->ic_header.h_lsn = 0;
2570 }
2571 
2572 /*
2573  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2574  * ACTIVE after iclog I/O has completed.
2575  */
2576 static void
2577 xlog_state_activate_iclogs(
2578 	struct xlog		*log,
2579 	int			*iclogs_changed)
2580 {
2581 	struct xlog_in_core	*iclog = log->l_iclog;
2582 
2583 	do {
2584 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2585 			xlog_state_activate_iclog(iclog, iclogs_changed);
2586 		/*
2587 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2588 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2589 		 */
2590 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2591 			break;
2592 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2593 }
2594 
2595 static int
2596 xlog_covered_state(
2597 	int			prev_state,
2598 	int			iclogs_changed)
2599 {
2600 	/*
2601 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2602 	 * wrote the first covering record (DONE). We go to IDLE if we just
2603 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2604 	 * non-covering write occurs.
2605 	 */
2606 	switch (prev_state) {
2607 	case XLOG_STATE_COVER_IDLE:
2608 		if (iclogs_changed == 1)
2609 			return XLOG_STATE_COVER_IDLE;
2610 		fallthrough;
2611 	case XLOG_STATE_COVER_NEED:
2612 	case XLOG_STATE_COVER_NEED2:
2613 		break;
2614 	case XLOG_STATE_COVER_DONE:
2615 		if (iclogs_changed == 1)
2616 			return XLOG_STATE_COVER_NEED2;
2617 		break;
2618 	case XLOG_STATE_COVER_DONE2:
2619 		if (iclogs_changed == 1)
2620 			return XLOG_STATE_COVER_IDLE;
2621 		break;
2622 	default:
2623 		ASSERT(0);
2624 	}
2625 
2626 	return XLOG_STATE_COVER_NEED;
2627 }
2628 
2629 STATIC void
2630 xlog_state_clean_iclog(
2631 	struct xlog		*log,
2632 	struct xlog_in_core	*dirty_iclog)
2633 {
2634 	int			iclogs_changed = 0;
2635 
2636 	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2637 
2638 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2639 
2640 	xlog_state_activate_iclogs(log, &iclogs_changed);
2641 	wake_up_all(&dirty_iclog->ic_force_wait);
2642 
2643 	if (iclogs_changed) {
2644 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2645 				iclogs_changed);
2646 	}
2647 }
2648 
2649 STATIC xfs_lsn_t
2650 xlog_get_lowest_lsn(
2651 	struct xlog		*log)
2652 {
2653 	struct xlog_in_core	*iclog = log->l_iclog;
2654 	xfs_lsn_t		lowest_lsn = 0, lsn;
2655 
2656 	do {
2657 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2658 		    iclog->ic_state == XLOG_STATE_DIRTY)
2659 			continue;
2660 
2661 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2662 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2663 			lowest_lsn = lsn;
2664 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2665 
2666 	return lowest_lsn;
2667 }
2668 
2669 /*
2670  * Completion of a iclog IO does not imply that a transaction has completed, as
2671  * transactions can be large enough to span many iclogs. We cannot change the
2672  * tail of the log half way through a transaction as this may be the only
2673  * transaction in the log and moving the tail to point to the middle of it
2674  * will prevent recovery from finding the start of the transaction. Hence we
2675  * should only update the last_sync_lsn if this iclog contains transaction
2676  * completion callbacks on it.
2677  *
2678  * We have to do this before we drop the icloglock to ensure we are the only one
2679  * that can update it.
2680  *
2681  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2682  * the reservation grant head pushing. This is due to the fact that the push
2683  * target is bound by the current last_sync_lsn value. Hence if we have a large
2684  * amount of log space bound up in this committing transaction then the
2685  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2686  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2687  * should push the AIL to ensure the push target (and hence the grant head) is
2688  * no longer bound by the old log head location and can move forwards and make
2689  * progress again.
2690  */
2691 static void
2692 xlog_state_set_callback(
2693 	struct xlog		*log,
2694 	struct xlog_in_core	*iclog,
2695 	xfs_lsn_t		header_lsn)
2696 {
2697 	trace_xlog_iclog_callback(iclog, _RET_IP_);
2698 	iclog->ic_state = XLOG_STATE_CALLBACK;
2699 
2700 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2701 			   header_lsn) <= 0);
2702 
2703 	if (list_empty_careful(&iclog->ic_callbacks))
2704 		return;
2705 
2706 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2707 	xlog_grant_push_ail(log, 0);
2708 }
2709 
2710 /*
2711  * Return true if we need to stop processing, false to continue to the next
2712  * iclog. The caller will need to run callbacks if the iclog is returned in the
2713  * XLOG_STATE_CALLBACK state.
2714  */
2715 static bool
2716 xlog_state_iodone_process_iclog(
2717 	struct xlog		*log,
2718 	struct xlog_in_core	*iclog,
2719 	bool			*ioerror)
2720 {
2721 	xfs_lsn_t		lowest_lsn;
2722 	xfs_lsn_t		header_lsn;
2723 
2724 	switch (iclog->ic_state) {
2725 	case XLOG_STATE_ACTIVE:
2726 	case XLOG_STATE_DIRTY:
2727 		/*
2728 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2729 		 */
2730 		return false;
2731 	case XLOG_STATE_IOERROR:
2732 		/*
2733 		 * Between marking a filesystem SHUTDOWN and stopping the log,
2734 		 * we do flush all iclogs to disk (if there wasn't a log I/O
2735 		 * error). So, we do want things to go smoothly in case of just
2736 		 * a SHUTDOWN w/o a LOG_IO_ERROR.
2737 		 */
2738 		*ioerror = true;
2739 		return false;
2740 	case XLOG_STATE_DONE_SYNC:
2741 		/*
2742 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2743 		 * one more check here to see if we have chased our tail around.
2744 		 * If this is not the lowest lsn iclog, then we will leave it
2745 		 * for another completion to process.
2746 		 */
2747 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2748 		lowest_lsn = xlog_get_lowest_lsn(log);
2749 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2750 			return false;
2751 		xlog_state_set_callback(log, iclog, header_lsn);
2752 		return false;
2753 	default:
2754 		/*
2755 		 * Can only perform callbacks in order.  Since this iclog is not
2756 		 * in the DONE_SYNC state, we skip the rest and just try to
2757 		 * clean up.
2758 		 */
2759 		return true;
2760 	}
2761 }
2762 
2763 STATIC void
2764 xlog_state_do_callback(
2765 	struct xlog		*log)
2766 {
2767 	struct xlog_in_core	*iclog;
2768 	struct xlog_in_core	*first_iclog;
2769 	bool			cycled_icloglock;
2770 	bool			ioerror;
2771 	int			flushcnt = 0;
2772 	int			repeats = 0;
2773 
2774 	spin_lock(&log->l_icloglock);
2775 	do {
2776 		/*
2777 		 * Scan all iclogs starting with the one pointed to by the
2778 		 * log.  Reset this starting point each time the log is
2779 		 * unlocked (during callbacks).
2780 		 *
2781 		 * Keep looping through iclogs until one full pass is made
2782 		 * without running any callbacks.
2783 		 */
2784 		first_iclog = log->l_iclog;
2785 		iclog = log->l_iclog;
2786 		cycled_icloglock = false;
2787 		ioerror = false;
2788 		repeats++;
2789 
2790 		do {
2791 			LIST_HEAD(cb_list);
2792 
2793 			if (xlog_state_iodone_process_iclog(log, iclog,
2794 							&ioerror))
2795 				break;
2796 
2797 			if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2798 			    iclog->ic_state != XLOG_STATE_IOERROR) {
2799 				iclog = iclog->ic_next;
2800 				continue;
2801 			}
2802 			list_splice_init(&iclog->ic_callbacks, &cb_list);
2803 			spin_unlock(&log->l_icloglock);
2804 
2805 			trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2806 			xlog_cil_process_committed(&cb_list);
2807 			trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2808 			cycled_icloglock = true;
2809 
2810 			spin_lock(&log->l_icloglock);
2811 			if (XLOG_FORCED_SHUTDOWN(log))
2812 				wake_up_all(&iclog->ic_force_wait);
2813 			else
2814 				xlog_state_clean_iclog(log, iclog);
2815 			iclog = iclog->ic_next;
2816 		} while (first_iclog != iclog);
2817 
2818 		if (repeats > 5000) {
2819 			flushcnt += repeats;
2820 			repeats = 0;
2821 			xfs_warn(log->l_mp,
2822 				"%s: possible infinite loop (%d iterations)",
2823 				__func__, flushcnt);
2824 		}
2825 	} while (!ioerror && cycled_icloglock);
2826 
2827 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2828 	    log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2829 		wake_up_all(&log->l_flush_wait);
2830 
2831 	spin_unlock(&log->l_icloglock);
2832 }
2833 
2834 
2835 /*
2836  * Finish transitioning this iclog to the dirty state.
2837  *
2838  * Make sure that we completely execute this routine only when this is
2839  * the last call to the iclog.  There is a good chance that iclog flushes,
2840  * when we reach the end of the physical log, get turned into 2 separate
2841  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2842  * routine.  By using the reference count bwritecnt, we guarantee that only
2843  * the second completion goes through.
2844  *
2845  * Callbacks could take time, so they are done outside the scope of the
2846  * global state machine log lock.
2847  */
2848 STATIC void
2849 xlog_state_done_syncing(
2850 	struct xlog_in_core	*iclog)
2851 {
2852 	struct xlog		*log = iclog->ic_log;
2853 
2854 	spin_lock(&log->l_icloglock);
2855 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2856 	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2857 
2858 	/*
2859 	 * If we got an error, either on the first buffer, or in the case of
2860 	 * split log writes, on the second, we shut down the file system and
2861 	 * no iclogs should ever be attempted to be written to disk again.
2862 	 */
2863 	if (!XLOG_FORCED_SHUTDOWN(log)) {
2864 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2865 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2866 	}
2867 
2868 	/*
2869 	 * Someone could be sleeping prior to writing out the next
2870 	 * iclog buffer, we wake them all, one will get to do the
2871 	 * I/O, the others get to wait for the result.
2872 	 */
2873 	wake_up_all(&iclog->ic_write_wait);
2874 	spin_unlock(&log->l_icloglock);
2875 	xlog_state_do_callback(log);
2876 }
2877 
2878 /*
2879  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2880  * sleep.  We wait on the flush queue on the head iclog as that should be
2881  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2882  * we will wait here and all new writes will sleep until a sync completes.
2883  *
2884  * The in-core logs are used in a circular fashion. They are not used
2885  * out-of-order even when an iclog past the head is free.
2886  *
2887  * return:
2888  *	* log_offset where xlog_write() can start writing into the in-core
2889  *		log's data space.
2890  *	* in-core log pointer to which xlog_write() should write.
2891  *	* boolean indicating this is a continued write to an in-core log.
2892  *		If this is the last write, then the in-core log's offset field
2893  *		needs to be incremented, depending on the amount of data which
2894  *		is copied.
2895  */
2896 STATIC int
2897 xlog_state_get_iclog_space(
2898 	struct xlog		*log,
2899 	int			len,
2900 	struct xlog_in_core	**iclogp,
2901 	struct xlog_ticket	*ticket,
2902 	int			*continued_write,
2903 	int			*logoffsetp)
2904 {
2905 	int		  log_offset;
2906 	xlog_rec_header_t *head;
2907 	xlog_in_core_t	  *iclog;
2908 
2909 restart:
2910 	spin_lock(&log->l_icloglock);
2911 	if (XLOG_FORCED_SHUTDOWN(log)) {
2912 		spin_unlock(&log->l_icloglock);
2913 		return -EIO;
2914 	}
2915 
2916 	iclog = log->l_iclog;
2917 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2918 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2919 
2920 		/* Wait for log writes to have flushed */
2921 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2922 		goto restart;
2923 	}
2924 
2925 	head = &iclog->ic_header;
2926 
2927 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2928 	log_offset = iclog->ic_offset;
2929 
2930 	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2931 
2932 	/* On the 1st write to an iclog, figure out lsn.  This works
2933 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2934 	 * committing to.  If the offset is set, that's how many blocks
2935 	 * must be written.
2936 	 */
2937 	if (log_offset == 0) {
2938 		ticket->t_curr_res -= log->l_iclog_hsize;
2939 		xlog_tic_add_region(ticket,
2940 				    log->l_iclog_hsize,
2941 				    XLOG_REG_TYPE_LRHEADER);
2942 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2943 		head->h_lsn = cpu_to_be64(
2944 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2945 		ASSERT(log->l_curr_block >= 0);
2946 	}
2947 
2948 	/* If there is enough room to write everything, then do it.  Otherwise,
2949 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2950 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2951 	 * until you know exactly how many bytes get copied.  Therefore, wait
2952 	 * until later to update ic_offset.
2953 	 *
2954 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2955 	 * can fit into remaining data section.
2956 	 */
2957 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2958 		int		error = 0;
2959 
2960 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2961 
2962 		/*
2963 		 * If we are the only one writing to this iclog, sync it to
2964 		 * disk.  We need to do an atomic compare and decrement here to
2965 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2966 		 * xlog_state_release_iclog() when there is more than one
2967 		 * reference to the iclog.
2968 		 */
2969 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2970 			error = xlog_state_release_iclog(log, iclog);
2971 		spin_unlock(&log->l_icloglock);
2972 		if (error)
2973 			return error;
2974 		goto restart;
2975 	}
2976 
2977 	/* Do we have enough room to write the full amount in the remainder
2978 	 * of this iclog?  Or must we continue a write on the next iclog and
2979 	 * mark this iclog as completely taken?  In the case where we switch
2980 	 * iclogs (to mark it taken), this particular iclog will release/sync
2981 	 * to disk in xlog_write().
2982 	 */
2983 	if (len <= iclog->ic_size - iclog->ic_offset) {
2984 		*continued_write = 0;
2985 		iclog->ic_offset += len;
2986 	} else {
2987 		*continued_write = 1;
2988 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2989 	}
2990 	*iclogp = iclog;
2991 
2992 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2993 	spin_unlock(&log->l_icloglock);
2994 
2995 	*logoffsetp = log_offset;
2996 	return 0;
2997 }
2998 
2999 /*
3000  * The first cnt-1 times a ticket goes through here we don't need to move the
3001  * grant write head because the permanent reservation has reserved cnt times the
3002  * unit amount.  Release part of current permanent unit reservation and reset
3003  * current reservation to be one units worth.  Also move grant reservation head
3004  * forward.
3005  */
3006 void
3007 xfs_log_ticket_regrant(
3008 	struct xlog		*log,
3009 	struct xlog_ticket	*ticket)
3010 {
3011 	trace_xfs_log_ticket_regrant(log, ticket);
3012 
3013 	if (ticket->t_cnt > 0)
3014 		ticket->t_cnt--;
3015 
3016 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3017 					ticket->t_curr_res);
3018 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3019 					ticket->t_curr_res);
3020 	ticket->t_curr_res = ticket->t_unit_res;
3021 	xlog_tic_reset_res(ticket);
3022 
3023 	trace_xfs_log_ticket_regrant_sub(log, ticket);
3024 
3025 	/* just return if we still have some of the pre-reserved space */
3026 	if (!ticket->t_cnt) {
3027 		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3028 				     ticket->t_unit_res);
3029 		trace_xfs_log_ticket_regrant_exit(log, ticket);
3030 
3031 		ticket->t_curr_res = ticket->t_unit_res;
3032 		xlog_tic_reset_res(ticket);
3033 	}
3034 
3035 	xfs_log_ticket_put(ticket);
3036 }
3037 
3038 /*
3039  * Give back the space left from a reservation.
3040  *
3041  * All the information we need to make a correct determination of space left
3042  * is present.  For non-permanent reservations, things are quite easy.  The
3043  * count should have been decremented to zero.  We only need to deal with the
3044  * space remaining in the current reservation part of the ticket.  If the
3045  * ticket contains a permanent reservation, there may be left over space which
3046  * needs to be released.  A count of N means that N-1 refills of the current
3047  * reservation can be done before we need to ask for more space.  The first
3048  * one goes to fill up the first current reservation.  Once we run out of
3049  * space, the count will stay at zero and the only space remaining will be
3050  * in the current reservation field.
3051  */
3052 void
3053 xfs_log_ticket_ungrant(
3054 	struct xlog		*log,
3055 	struct xlog_ticket	*ticket)
3056 {
3057 	int			bytes;
3058 
3059 	trace_xfs_log_ticket_ungrant(log, ticket);
3060 
3061 	if (ticket->t_cnt > 0)
3062 		ticket->t_cnt--;
3063 
3064 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3065 
3066 	/*
3067 	 * If this is a permanent reservation ticket, we may be able to free
3068 	 * up more space based on the remaining count.
3069 	 */
3070 	bytes = ticket->t_curr_res;
3071 	if (ticket->t_cnt > 0) {
3072 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3073 		bytes += ticket->t_unit_res*ticket->t_cnt;
3074 	}
3075 
3076 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3077 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3078 
3079 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3080 
3081 	xfs_log_space_wake(log->l_mp);
3082 	xfs_log_ticket_put(ticket);
3083 }
3084 
3085 /*
3086  * This routine will mark the current iclog in the ring as WANT_SYNC and move
3087  * the current iclog pointer to the next iclog in the ring.
3088  */
3089 STATIC void
3090 xlog_state_switch_iclogs(
3091 	struct xlog		*log,
3092 	struct xlog_in_core	*iclog,
3093 	int			eventual_size)
3094 {
3095 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3096 	assert_spin_locked(&log->l_icloglock);
3097 	trace_xlog_iclog_switch(iclog, _RET_IP_);
3098 
3099 	if (!eventual_size)
3100 		eventual_size = iclog->ic_offset;
3101 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3102 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3103 	log->l_prev_block = log->l_curr_block;
3104 	log->l_prev_cycle = log->l_curr_cycle;
3105 
3106 	/* roll log?: ic_offset changed later */
3107 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3108 
3109 	/* Round up to next log-sunit */
3110 	if (log->l_iclog_roundoff > BBSIZE) {
3111 		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3112 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3113 	}
3114 
3115 	if (log->l_curr_block >= log->l_logBBsize) {
3116 		/*
3117 		 * Rewind the current block before the cycle is bumped to make
3118 		 * sure that the combined LSN never transiently moves forward
3119 		 * when the log wraps to the next cycle. This is to support the
3120 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3121 		 * other cases should acquire l_icloglock.
3122 		 */
3123 		log->l_curr_block -= log->l_logBBsize;
3124 		ASSERT(log->l_curr_block >= 0);
3125 		smp_wmb();
3126 		log->l_curr_cycle++;
3127 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3128 			log->l_curr_cycle++;
3129 	}
3130 	ASSERT(iclog == log->l_iclog);
3131 	log->l_iclog = iclog->ic_next;
3132 }
3133 
3134 /*
3135  * Write out all data in the in-core log as of this exact moment in time.
3136  *
3137  * Data may be written to the in-core log during this call.  However,
3138  * we don't guarantee this data will be written out.  A change from past
3139  * implementation means this routine will *not* write out zero length LRs.
3140  *
3141  * Basically, we try and perform an intelligent scan of the in-core logs.
3142  * If we determine there is no flushable data, we just return.  There is no
3143  * flushable data if:
3144  *
3145  *	1. the current iclog is active and has no data; the previous iclog
3146  *		is in the active or dirty state.
3147  *	2. the current iclog is drity, and the previous iclog is in the
3148  *		active or dirty state.
3149  *
3150  * We may sleep if:
3151  *
3152  *	1. the current iclog is not in the active nor dirty state.
3153  *	2. the current iclog dirty, and the previous iclog is not in the
3154  *		active nor dirty state.
3155  *	3. the current iclog is active, and there is another thread writing
3156  *		to this particular iclog.
3157  *	4. a) the current iclog is active and has no other writers
3158  *	   b) when we return from flushing out this iclog, it is still
3159  *		not in the active nor dirty state.
3160  */
3161 int
3162 xfs_log_force(
3163 	struct xfs_mount	*mp,
3164 	uint			flags)
3165 {
3166 	struct xlog		*log = mp->m_log;
3167 	struct xlog_in_core	*iclog;
3168 	xfs_lsn_t		lsn;
3169 
3170 	XFS_STATS_INC(mp, xs_log_force);
3171 	trace_xfs_log_force(mp, 0, _RET_IP_);
3172 
3173 	xlog_cil_force(log);
3174 
3175 	spin_lock(&log->l_icloglock);
3176 	iclog = log->l_iclog;
3177 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3178 		goto out_error;
3179 
3180 	trace_xlog_iclog_force(iclog, _RET_IP_);
3181 
3182 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3183 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3184 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3185 		/*
3186 		 * If the head is dirty or (active and empty), then we need to
3187 		 * look at the previous iclog.
3188 		 *
3189 		 * If the previous iclog is active or dirty we are done.  There
3190 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3191 		 * previous iclog and go to sleep.
3192 		 */
3193 		iclog = iclog->ic_prev;
3194 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3195 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3196 			/*
3197 			 * We are the only one with access to this iclog.
3198 			 *
3199 			 * Flush it out now.  There should be a roundoff of zero
3200 			 * to show that someone has already taken care of the
3201 			 * roundoff from the previous sync.
3202 			 */
3203 			atomic_inc(&iclog->ic_refcnt);
3204 			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3205 			xlog_state_switch_iclogs(log, iclog, 0);
3206 			if (xlog_state_release_iclog(log, iclog))
3207 				goto out_error;
3208 
3209 			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3210 				goto out_unlock;
3211 		} else {
3212 			/*
3213 			 * Someone else is writing to this iclog.
3214 			 *
3215 			 * Use its call to flush out the data.  However, the
3216 			 * other thread may not force out this LR, so we mark
3217 			 * it WANT_SYNC.
3218 			 */
3219 			xlog_state_switch_iclogs(log, iclog, 0);
3220 		}
3221 	} else {
3222 		/*
3223 		 * If the head iclog is not active nor dirty, we just attach
3224 		 * ourselves to the head and go to sleep if necessary.
3225 		 */
3226 		;
3227 	}
3228 
3229 	if (flags & XFS_LOG_SYNC)
3230 		return xlog_wait_on_iclog(iclog);
3231 out_unlock:
3232 	spin_unlock(&log->l_icloglock);
3233 	return 0;
3234 out_error:
3235 	spin_unlock(&log->l_icloglock);
3236 	return -EIO;
3237 }
3238 
3239 static int
3240 xlog_force_lsn(
3241 	struct xlog		*log,
3242 	xfs_lsn_t		lsn,
3243 	uint			flags,
3244 	int			*log_flushed,
3245 	bool			already_slept)
3246 {
3247 	struct xlog_in_core	*iclog;
3248 
3249 	spin_lock(&log->l_icloglock);
3250 	iclog = log->l_iclog;
3251 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3252 		goto out_error;
3253 
3254 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3255 		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3256 		iclog = iclog->ic_next;
3257 		if (iclog == log->l_iclog)
3258 			goto out_unlock;
3259 	}
3260 
3261 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3262 		/*
3263 		 * We sleep here if we haven't already slept (e.g. this is the
3264 		 * first time we've looked at the correct iclog buf) and the
3265 		 * buffer before us is going to be sync'ed.  The reason for this
3266 		 * is that if we are doing sync transactions here, by waiting
3267 		 * for the previous I/O to complete, we can allow a few more
3268 		 * transactions into this iclog before we close it down.
3269 		 *
3270 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3271 		 * refcnt so we can release the log (which drops the ref count).
3272 		 * The state switch keeps new transaction commits from using
3273 		 * this buffer.  When the current commits finish writing into
3274 		 * the buffer, the refcount will drop to zero and the buffer
3275 		 * will go out then.
3276 		 */
3277 		if (!already_slept &&
3278 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3279 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3280 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3281 					&log->l_icloglock);
3282 			return -EAGAIN;
3283 		}
3284 		atomic_inc(&iclog->ic_refcnt);
3285 		xlog_state_switch_iclogs(log, iclog, 0);
3286 		if (xlog_state_release_iclog(log, iclog))
3287 			goto out_error;
3288 		if (log_flushed)
3289 			*log_flushed = 1;
3290 	}
3291 
3292 	if (flags & XFS_LOG_SYNC)
3293 		return xlog_wait_on_iclog(iclog);
3294 out_unlock:
3295 	spin_unlock(&log->l_icloglock);
3296 	return 0;
3297 out_error:
3298 	spin_unlock(&log->l_icloglock);
3299 	return -EIO;
3300 }
3301 
3302 /*
3303  * Force the in-core log to disk for a specific LSN.
3304  *
3305  * Find in-core log with lsn.
3306  *	If it is in the DIRTY state, just return.
3307  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3308  *		state and go to sleep or return.
3309  *	If it is in any other state, go to sleep or return.
3310  *
3311  * Synchronous forces are implemented with a wait queue.  All callers trying
3312  * to force a given lsn to disk must wait on the queue attached to the
3313  * specific in-core log.  When given in-core log finally completes its write
3314  * to disk, that thread will wake up all threads waiting on the queue.
3315  */
3316 int
3317 xfs_log_force_seq(
3318 	struct xfs_mount	*mp,
3319 	xfs_csn_t		seq,
3320 	uint			flags,
3321 	int			*log_flushed)
3322 {
3323 	struct xlog		*log = mp->m_log;
3324 	xfs_lsn_t		lsn;
3325 	int			ret;
3326 	ASSERT(seq != 0);
3327 
3328 	XFS_STATS_INC(mp, xs_log_force);
3329 	trace_xfs_log_force(mp, seq, _RET_IP_);
3330 
3331 	lsn = xlog_cil_force_seq(log, seq);
3332 	if (lsn == NULLCOMMITLSN)
3333 		return 0;
3334 
3335 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3336 	if (ret == -EAGAIN) {
3337 		XFS_STATS_INC(mp, xs_log_force_sleep);
3338 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3339 	}
3340 	return ret;
3341 }
3342 
3343 /*
3344  * Free a used ticket when its refcount falls to zero.
3345  */
3346 void
3347 xfs_log_ticket_put(
3348 	xlog_ticket_t	*ticket)
3349 {
3350 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3351 	if (atomic_dec_and_test(&ticket->t_ref))
3352 		kmem_cache_free(xfs_log_ticket_zone, ticket);
3353 }
3354 
3355 xlog_ticket_t *
3356 xfs_log_ticket_get(
3357 	xlog_ticket_t	*ticket)
3358 {
3359 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3360 	atomic_inc(&ticket->t_ref);
3361 	return ticket;
3362 }
3363 
3364 /*
3365  * Figure out the total log space unit (in bytes) that would be
3366  * required for a log ticket.
3367  */
3368 static int
3369 xlog_calc_unit_res(
3370 	struct xlog		*log,
3371 	int			unit_bytes)
3372 {
3373 	int			iclog_space;
3374 	uint			num_headers;
3375 
3376 	/*
3377 	 * Permanent reservations have up to 'cnt'-1 active log operations
3378 	 * in the log.  A unit in this case is the amount of space for one
3379 	 * of these log operations.  Normal reservations have a cnt of 1
3380 	 * and their unit amount is the total amount of space required.
3381 	 *
3382 	 * The following lines of code account for non-transaction data
3383 	 * which occupy space in the on-disk log.
3384 	 *
3385 	 * Normal form of a transaction is:
3386 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3387 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3388 	 *
3389 	 * We need to account for all the leadup data and trailer data
3390 	 * around the transaction data.
3391 	 * And then we need to account for the worst case in terms of using
3392 	 * more space.
3393 	 * The worst case will happen if:
3394 	 * - the placement of the transaction happens to be such that the
3395 	 *   roundoff is at its maximum
3396 	 * - the transaction data is synced before the commit record is synced
3397 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3398 	 *   Therefore the commit record is in its own Log Record.
3399 	 *   This can happen as the commit record is called with its
3400 	 *   own region to xlog_write().
3401 	 *   This then means that in the worst case, roundoff can happen for
3402 	 *   the commit-rec as well.
3403 	 *   The commit-rec is smaller than padding in this scenario and so it is
3404 	 *   not added separately.
3405 	 */
3406 
3407 	/* for trans header */
3408 	unit_bytes += sizeof(xlog_op_header_t);
3409 	unit_bytes += sizeof(xfs_trans_header_t);
3410 
3411 	/* for start-rec */
3412 	unit_bytes += sizeof(xlog_op_header_t);
3413 
3414 	/*
3415 	 * for LR headers - the space for data in an iclog is the size minus
3416 	 * the space used for the headers. If we use the iclog size, then we
3417 	 * undercalculate the number of headers required.
3418 	 *
3419 	 * Furthermore - the addition of op headers for split-recs might
3420 	 * increase the space required enough to require more log and op
3421 	 * headers, so take that into account too.
3422 	 *
3423 	 * IMPORTANT: This reservation makes the assumption that if this
3424 	 * transaction is the first in an iclog and hence has the LR headers
3425 	 * accounted to it, then the remaining space in the iclog is
3426 	 * exclusively for this transaction.  i.e. if the transaction is larger
3427 	 * than the iclog, it will be the only thing in that iclog.
3428 	 * Fundamentally, this means we must pass the entire log vector to
3429 	 * xlog_write to guarantee this.
3430 	 */
3431 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3432 	num_headers = howmany(unit_bytes, iclog_space);
3433 
3434 	/* for split-recs - ophdrs added when data split over LRs */
3435 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3436 
3437 	/* add extra header reservations if we overrun */
3438 	while (!num_headers ||
3439 	       howmany(unit_bytes, iclog_space) > num_headers) {
3440 		unit_bytes += sizeof(xlog_op_header_t);
3441 		num_headers++;
3442 	}
3443 	unit_bytes += log->l_iclog_hsize * num_headers;
3444 
3445 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3446 	unit_bytes += log->l_iclog_hsize;
3447 
3448 	/* roundoff padding for transaction data and one for commit record */
3449 	unit_bytes += 2 * log->l_iclog_roundoff;
3450 
3451 	return unit_bytes;
3452 }
3453 
3454 int
3455 xfs_log_calc_unit_res(
3456 	struct xfs_mount	*mp,
3457 	int			unit_bytes)
3458 {
3459 	return xlog_calc_unit_res(mp->m_log, unit_bytes);
3460 }
3461 
3462 /*
3463  * Allocate and initialise a new log ticket.
3464  */
3465 struct xlog_ticket *
3466 xlog_ticket_alloc(
3467 	struct xlog		*log,
3468 	int			unit_bytes,
3469 	int			cnt,
3470 	char			client,
3471 	bool			permanent)
3472 {
3473 	struct xlog_ticket	*tic;
3474 	int			unit_res;
3475 
3476 	tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
3477 
3478 	unit_res = xlog_calc_unit_res(log, unit_bytes);
3479 
3480 	atomic_set(&tic->t_ref, 1);
3481 	tic->t_task		= current;
3482 	INIT_LIST_HEAD(&tic->t_queue);
3483 	tic->t_unit_res		= unit_res;
3484 	tic->t_curr_res		= unit_res;
3485 	tic->t_cnt		= cnt;
3486 	tic->t_ocnt		= cnt;
3487 	tic->t_tid		= prandom_u32();
3488 	tic->t_clientid		= client;
3489 	if (permanent)
3490 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3491 
3492 	xlog_tic_reset_res(tic);
3493 
3494 	return tic;
3495 }
3496 
3497 #if defined(DEBUG)
3498 /*
3499  * Make sure that the destination ptr is within the valid data region of
3500  * one of the iclogs.  This uses backup pointers stored in a different
3501  * part of the log in case we trash the log structure.
3502  */
3503 STATIC void
3504 xlog_verify_dest_ptr(
3505 	struct xlog	*log,
3506 	void		*ptr)
3507 {
3508 	int i;
3509 	int good_ptr = 0;
3510 
3511 	for (i = 0; i < log->l_iclog_bufs; i++) {
3512 		if (ptr >= log->l_iclog_bak[i] &&
3513 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3514 			good_ptr++;
3515 	}
3516 
3517 	if (!good_ptr)
3518 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3519 }
3520 
3521 /*
3522  * Check to make sure the grant write head didn't just over lap the tail.  If
3523  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3524  * the cycles differ by exactly one and check the byte count.
3525  *
3526  * This check is run unlocked, so can give false positives. Rather than assert
3527  * on failures, use a warn-once flag and a panic tag to allow the admin to
3528  * determine if they want to panic the machine when such an error occurs. For
3529  * debug kernels this will have the same effect as using an assert but, unlinke
3530  * an assert, it can be turned off at runtime.
3531  */
3532 STATIC void
3533 xlog_verify_grant_tail(
3534 	struct xlog	*log)
3535 {
3536 	int		tail_cycle, tail_blocks;
3537 	int		cycle, space;
3538 
3539 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3540 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3541 	if (tail_cycle != cycle) {
3542 		if (cycle - 1 != tail_cycle &&
3543 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3544 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3545 				"%s: cycle - 1 != tail_cycle", __func__);
3546 			log->l_flags |= XLOG_TAIL_WARN;
3547 		}
3548 
3549 		if (space > BBTOB(tail_blocks) &&
3550 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3551 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3552 				"%s: space > BBTOB(tail_blocks)", __func__);
3553 			log->l_flags |= XLOG_TAIL_WARN;
3554 		}
3555 	}
3556 }
3557 
3558 /* check if it will fit */
3559 STATIC void
3560 xlog_verify_tail_lsn(
3561 	struct xlog		*log,
3562 	struct xlog_in_core	*iclog,
3563 	xfs_lsn_t		tail_lsn)
3564 {
3565     int blocks;
3566 
3567     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3568 	blocks =
3569 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3570 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3571 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3572     } else {
3573 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3574 
3575 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3576 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3577 
3578 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3579 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3580 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3581     }
3582 }
3583 
3584 /*
3585  * Perform a number of checks on the iclog before writing to disk.
3586  *
3587  * 1. Make sure the iclogs are still circular
3588  * 2. Make sure we have a good magic number
3589  * 3. Make sure we don't have magic numbers in the data
3590  * 4. Check fields of each log operation header for:
3591  *	A. Valid client identifier
3592  *	B. tid ptr value falls in valid ptr space (user space code)
3593  *	C. Length in log record header is correct according to the
3594  *		individual operation headers within record.
3595  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3596  *	log, check the preceding blocks of the physical log to make sure all
3597  *	the cycle numbers agree with the current cycle number.
3598  */
3599 STATIC void
3600 xlog_verify_iclog(
3601 	struct xlog		*log,
3602 	struct xlog_in_core	*iclog,
3603 	int			count)
3604 {
3605 	xlog_op_header_t	*ophead;
3606 	xlog_in_core_t		*icptr;
3607 	xlog_in_core_2_t	*xhdr;
3608 	void			*base_ptr, *ptr, *p;
3609 	ptrdiff_t		field_offset;
3610 	uint8_t			clientid;
3611 	int			len, i, j, k, op_len;
3612 	int			idx;
3613 
3614 	/* check validity of iclog pointers */
3615 	spin_lock(&log->l_icloglock);
3616 	icptr = log->l_iclog;
3617 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3618 		ASSERT(icptr);
3619 
3620 	if (icptr != log->l_iclog)
3621 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3622 	spin_unlock(&log->l_icloglock);
3623 
3624 	/* check log magic numbers */
3625 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3626 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3627 
3628 	base_ptr = ptr = &iclog->ic_header;
3629 	p = &iclog->ic_header;
3630 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3631 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3632 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3633 				__func__);
3634 	}
3635 
3636 	/* check fields */
3637 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3638 	base_ptr = ptr = iclog->ic_datap;
3639 	ophead = ptr;
3640 	xhdr = iclog->ic_data;
3641 	for (i = 0; i < len; i++) {
3642 		ophead = ptr;
3643 
3644 		/* clientid is only 1 byte */
3645 		p = &ophead->oh_clientid;
3646 		field_offset = p - base_ptr;
3647 		if (field_offset & 0x1ff) {
3648 			clientid = ophead->oh_clientid;
3649 		} else {
3650 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3651 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3652 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3653 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3654 				clientid = xlog_get_client_id(
3655 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3656 			} else {
3657 				clientid = xlog_get_client_id(
3658 					iclog->ic_header.h_cycle_data[idx]);
3659 			}
3660 		}
3661 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3662 			xfs_warn(log->l_mp,
3663 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3664 				__func__, clientid, ophead,
3665 				(unsigned long)field_offset);
3666 
3667 		/* check length */
3668 		p = &ophead->oh_len;
3669 		field_offset = p - base_ptr;
3670 		if (field_offset & 0x1ff) {
3671 			op_len = be32_to_cpu(ophead->oh_len);
3672 		} else {
3673 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3674 				    (uintptr_t)iclog->ic_datap);
3675 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3676 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3677 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3678 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3679 			} else {
3680 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3681 			}
3682 		}
3683 		ptr += sizeof(xlog_op_header_t) + op_len;
3684 	}
3685 }
3686 #endif
3687 
3688 /*
3689  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3690  */
3691 STATIC int
3692 xlog_state_ioerror(
3693 	struct xlog	*log)
3694 {
3695 	xlog_in_core_t	*iclog, *ic;
3696 
3697 	iclog = log->l_iclog;
3698 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
3699 		/*
3700 		 * Mark all the incore logs IOERROR.
3701 		 * From now on, no log flushes will result.
3702 		 */
3703 		ic = iclog;
3704 		do {
3705 			ic->ic_state = XLOG_STATE_IOERROR;
3706 			ic = ic->ic_next;
3707 		} while (ic != iclog);
3708 		return 0;
3709 	}
3710 	/*
3711 	 * Return non-zero, if state transition has already happened.
3712 	 */
3713 	return 1;
3714 }
3715 
3716 /*
3717  * This is called from xfs_force_shutdown, when we're forcibly
3718  * shutting down the filesystem, typically because of an IO error.
3719  * Our main objectives here are to make sure that:
3720  *	a. if !logerror, flush the logs to disk. Anything modified
3721  *	   after this is ignored.
3722  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3723  *	   parties to find out, 'atomically'.
3724  *	c. those who're sleeping on log reservations, pinned objects and
3725  *	    other resources get woken up, and be told the bad news.
3726  *	d. nothing new gets queued up after (b) and (c) are done.
3727  *
3728  * Note: for the !logerror case we need to flush the regions held in memory out
3729  * to disk first. This needs to be done before the log is marked as shutdown,
3730  * otherwise the iclog writes will fail.
3731  */
3732 int
3733 xfs_log_force_umount(
3734 	struct xfs_mount	*mp,
3735 	int			logerror)
3736 {
3737 	struct xlog	*log;
3738 	int		retval;
3739 
3740 	log = mp->m_log;
3741 
3742 	/*
3743 	 * If this happens during log recovery, don't worry about
3744 	 * locking; the log isn't open for business yet.
3745 	 */
3746 	if (!log ||
3747 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3748 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3749 		if (mp->m_sb_bp)
3750 			mp->m_sb_bp->b_flags |= XBF_DONE;
3751 		return 0;
3752 	}
3753 
3754 	/*
3755 	 * Somebody could've already done the hard work for us.
3756 	 * No need to get locks for this.
3757 	 */
3758 	if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3759 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3760 		return 1;
3761 	}
3762 
3763 	/*
3764 	 * Flush all the completed transactions to disk before marking the log
3765 	 * being shut down. We need to do it in this order to ensure that
3766 	 * completed operations are safely on disk before we shut down, and that
3767 	 * we don't have to issue any buffer IO after the shutdown flags are set
3768 	 * to guarantee this.
3769 	 */
3770 	if (!logerror)
3771 		xfs_log_force(mp, XFS_LOG_SYNC);
3772 
3773 	/*
3774 	 * mark the filesystem and the as in a shutdown state and wake
3775 	 * everybody up to tell them the bad news.
3776 	 */
3777 	spin_lock(&log->l_icloglock);
3778 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3779 	if (mp->m_sb_bp)
3780 		mp->m_sb_bp->b_flags |= XBF_DONE;
3781 
3782 	/*
3783 	 * Mark the log and the iclogs with IO error flags to prevent any
3784 	 * further log IO from being issued or completed.
3785 	 */
3786 	log->l_flags |= XLOG_IO_ERROR;
3787 	retval = xlog_state_ioerror(log);
3788 	spin_unlock(&log->l_icloglock);
3789 
3790 	/*
3791 	 * We don't want anybody waiting for log reservations after this. That
3792 	 * means we have to wake up everybody queued up on reserveq as well as
3793 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3794 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3795 	 * action is protected by the grant locks.
3796 	 */
3797 	xlog_grant_head_wake_all(&log->l_reserve_head);
3798 	xlog_grant_head_wake_all(&log->l_write_head);
3799 
3800 	/*
3801 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3802 	 * as if the log writes were completed. The abort handling in the log
3803 	 * item committed callback functions will do this again under lock to
3804 	 * avoid races.
3805 	 */
3806 	spin_lock(&log->l_cilp->xc_push_lock);
3807 	wake_up_all(&log->l_cilp->xc_commit_wait);
3808 	spin_unlock(&log->l_cilp->xc_push_lock);
3809 	xlog_state_do_callback(log);
3810 
3811 	/* return non-zero if log IOERROR transition had already happened */
3812 	return retval;
3813 }
3814 
3815 STATIC int
3816 xlog_iclogs_empty(
3817 	struct xlog	*log)
3818 {
3819 	xlog_in_core_t	*iclog;
3820 
3821 	iclog = log->l_iclog;
3822 	do {
3823 		/* endianness does not matter here, zero is zero in
3824 		 * any language.
3825 		 */
3826 		if (iclog->ic_header.h_num_logops)
3827 			return 0;
3828 		iclog = iclog->ic_next;
3829 	} while (iclog != log->l_iclog);
3830 	return 1;
3831 }
3832 
3833 /*
3834  * Verify that an LSN stamped into a piece of metadata is valid. This is
3835  * intended for use in read verifiers on v5 superblocks.
3836  */
3837 bool
3838 xfs_log_check_lsn(
3839 	struct xfs_mount	*mp,
3840 	xfs_lsn_t		lsn)
3841 {
3842 	struct xlog		*log = mp->m_log;
3843 	bool			valid;
3844 
3845 	/*
3846 	 * norecovery mode skips mount-time log processing and unconditionally
3847 	 * resets the in-core LSN. We can't validate in this mode, but
3848 	 * modifications are not allowed anyways so just return true.
3849 	 */
3850 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3851 		return true;
3852 
3853 	/*
3854 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3855 	 * handled by recovery and thus safe to ignore here.
3856 	 */
3857 	if (lsn == NULLCOMMITLSN)
3858 		return true;
3859 
3860 	valid = xlog_valid_lsn(mp->m_log, lsn);
3861 
3862 	/* warn the user about what's gone wrong before verifier failure */
3863 	if (!valid) {
3864 		spin_lock(&log->l_icloglock);
3865 		xfs_warn(mp,
3866 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3867 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3868 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3869 			 log->l_curr_cycle, log->l_curr_block);
3870 		spin_unlock(&log->l_icloglock);
3871 	}
3872 
3873 	return valid;
3874 }
3875 
3876 bool
3877 xfs_log_in_recovery(
3878 	struct xfs_mount	*mp)
3879 {
3880 	struct xlog		*log = mp->m_log;
3881 
3882 	return log->l_flags & XLOG_ACTIVE_RECOVERY;
3883 }
3884