1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trace.h" 20 #include "xfs_sysfs.h" 21 #include "xfs_sb.h" 22 #include "xfs_health.h" 23 24 kmem_zone_t *xfs_log_ticket_zone; 25 26 /* Local miscellaneous function prototypes */ 27 STATIC struct xlog * 28 xlog_alloc_log( 29 struct xfs_mount *mp, 30 struct xfs_buftarg *log_target, 31 xfs_daddr_t blk_offset, 32 int num_bblks); 33 STATIC int 34 xlog_space_left( 35 struct xlog *log, 36 atomic64_t *head); 37 STATIC void 38 xlog_dealloc_log( 39 struct xlog *log); 40 41 /* local state machine functions */ 42 STATIC void xlog_state_done_syncing( 43 struct xlog_in_core *iclog); 44 STATIC int 45 xlog_state_get_iclog_space( 46 struct xlog *log, 47 int len, 48 struct xlog_in_core **iclog, 49 struct xlog_ticket *ticket, 50 int *continued_write, 51 int *logoffsetp); 52 STATIC void 53 xlog_state_switch_iclogs( 54 struct xlog *log, 55 struct xlog_in_core *iclog, 56 int eventual_size); 57 STATIC void 58 xlog_grant_push_ail( 59 struct xlog *log, 60 int need_bytes); 61 STATIC void 62 xlog_sync( 63 struct xlog *log, 64 struct xlog_in_core *iclog); 65 #if defined(DEBUG) 66 STATIC void 67 xlog_verify_dest_ptr( 68 struct xlog *log, 69 void *ptr); 70 STATIC void 71 xlog_verify_grant_tail( 72 struct xlog *log); 73 STATIC void 74 xlog_verify_iclog( 75 struct xlog *log, 76 struct xlog_in_core *iclog, 77 int count); 78 STATIC void 79 xlog_verify_tail_lsn( 80 struct xlog *log, 81 struct xlog_in_core *iclog, 82 xfs_lsn_t tail_lsn); 83 #else 84 #define xlog_verify_dest_ptr(a,b) 85 #define xlog_verify_grant_tail(a) 86 #define xlog_verify_iclog(a,b,c) 87 #define xlog_verify_tail_lsn(a,b,c) 88 #endif 89 90 STATIC int 91 xlog_iclogs_empty( 92 struct xlog *log); 93 94 static int 95 xfs_log_cover(struct xfs_mount *); 96 97 static void 98 xlog_grant_sub_space( 99 struct xlog *log, 100 atomic64_t *head, 101 int bytes) 102 { 103 int64_t head_val = atomic64_read(head); 104 int64_t new, old; 105 106 do { 107 int cycle, space; 108 109 xlog_crack_grant_head_val(head_val, &cycle, &space); 110 111 space -= bytes; 112 if (space < 0) { 113 space += log->l_logsize; 114 cycle--; 115 } 116 117 old = head_val; 118 new = xlog_assign_grant_head_val(cycle, space); 119 head_val = atomic64_cmpxchg(head, old, new); 120 } while (head_val != old); 121 } 122 123 static void 124 xlog_grant_add_space( 125 struct xlog *log, 126 atomic64_t *head, 127 int bytes) 128 { 129 int64_t head_val = atomic64_read(head); 130 int64_t new, old; 131 132 do { 133 int tmp; 134 int cycle, space; 135 136 xlog_crack_grant_head_val(head_val, &cycle, &space); 137 138 tmp = log->l_logsize - space; 139 if (tmp > bytes) 140 space += bytes; 141 else { 142 space = bytes - tmp; 143 cycle++; 144 } 145 146 old = head_val; 147 new = xlog_assign_grant_head_val(cycle, space); 148 head_val = atomic64_cmpxchg(head, old, new); 149 } while (head_val != old); 150 } 151 152 STATIC void 153 xlog_grant_head_init( 154 struct xlog_grant_head *head) 155 { 156 xlog_assign_grant_head(&head->grant, 1, 0); 157 INIT_LIST_HEAD(&head->waiters); 158 spin_lock_init(&head->lock); 159 } 160 161 STATIC void 162 xlog_grant_head_wake_all( 163 struct xlog_grant_head *head) 164 { 165 struct xlog_ticket *tic; 166 167 spin_lock(&head->lock); 168 list_for_each_entry(tic, &head->waiters, t_queue) 169 wake_up_process(tic->t_task); 170 spin_unlock(&head->lock); 171 } 172 173 static inline int 174 xlog_ticket_reservation( 175 struct xlog *log, 176 struct xlog_grant_head *head, 177 struct xlog_ticket *tic) 178 { 179 if (head == &log->l_write_head) { 180 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 181 return tic->t_unit_res; 182 } else { 183 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 184 return tic->t_unit_res * tic->t_cnt; 185 else 186 return tic->t_unit_res; 187 } 188 } 189 190 STATIC bool 191 xlog_grant_head_wake( 192 struct xlog *log, 193 struct xlog_grant_head *head, 194 int *free_bytes) 195 { 196 struct xlog_ticket *tic; 197 int need_bytes; 198 bool woken_task = false; 199 200 list_for_each_entry(tic, &head->waiters, t_queue) { 201 202 /* 203 * There is a chance that the size of the CIL checkpoints in 204 * progress at the last AIL push target calculation resulted in 205 * limiting the target to the log head (l_last_sync_lsn) at the 206 * time. This may not reflect where the log head is now as the 207 * CIL checkpoints may have completed. 208 * 209 * Hence when we are woken here, it may be that the head of the 210 * log that has moved rather than the tail. As the tail didn't 211 * move, there still won't be space available for the 212 * reservation we require. However, if the AIL has already 213 * pushed to the target defined by the old log head location, we 214 * will hang here waiting for something else to update the AIL 215 * push target. 216 * 217 * Therefore, if there isn't space to wake the first waiter on 218 * the grant head, we need to push the AIL again to ensure the 219 * target reflects both the current log tail and log head 220 * position before we wait for the tail to move again. 221 */ 222 223 need_bytes = xlog_ticket_reservation(log, head, tic); 224 if (*free_bytes < need_bytes) { 225 if (!woken_task) 226 xlog_grant_push_ail(log, need_bytes); 227 return false; 228 } 229 230 *free_bytes -= need_bytes; 231 trace_xfs_log_grant_wake_up(log, tic); 232 wake_up_process(tic->t_task); 233 woken_task = true; 234 } 235 236 return true; 237 } 238 239 STATIC int 240 xlog_grant_head_wait( 241 struct xlog *log, 242 struct xlog_grant_head *head, 243 struct xlog_ticket *tic, 244 int need_bytes) __releases(&head->lock) 245 __acquires(&head->lock) 246 { 247 list_add_tail(&tic->t_queue, &head->waiters); 248 249 do { 250 if (XLOG_FORCED_SHUTDOWN(log)) 251 goto shutdown; 252 xlog_grant_push_ail(log, need_bytes); 253 254 __set_current_state(TASK_UNINTERRUPTIBLE); 255 spin_unlock(&head->lock); 256 257 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 258 259 trace_xfs_log_grant_sleep(log, tic); 260 schedule(); 261 trace_xfs_log_grant_wake(log, tic); 262 263 spin_lock(&head->lock); 264 if (XLOG_FORCED_SHUTDOWN(log)) 265 goto shutdown; 266 } while (xlog_space_left(log, &head->grant) < need_bytes); 267 268 list_del_init(&tic->t_queue); 269 return 0; 270 shutdown: 271 list_del_init(&tic->t_queue); 272 return -EIO; 273 } 274 275 /* 276 * Atomically get the log space required for a log ticket. 277 * 278 * Once a ticket gets put onto head->waiters, it will only return after the 279 * needed reservation is satisfied. 280 * 281 * This function is structured so that it has a lock free fast path. This is 282 * necessary because every new transaction reservation will come through this 283 * path. Hence any lock will be globally hot if we take it unconditionally on 284 * every pass. 285 * 286 * As tickets are only ever moved on and off head->waiters under head->lock, we 287 * only need to take that lock if we are going to add the ticket to the queue 288 * and sleep. We can avoid taking the lock if the ticket was never added to 289 * head->waiters because the t_queue list head will be empty and we hold the 290 * only reference to it so it can safely be checked unlocked. 291 */ 292 STATIC int 293 xlog_grant_head_check( 294 struct xlog *log, 295 struct xlog_grant_head *head, 296 struct xlog_ticket *tic, 297 int *need_bytes) 298 { 299 int free_bytes; 300 int error = 0; 301 302 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 303 304 /* 305 * If there are other waiters on the queue then give them a chance at 306 * logspace before us. Wake up the first waiters, if we do not wake 307 * up all the waiters then go to sleep waiting for more free space, 308 * otherwise try to get some space for this transaction. 309 */ 310 *need_bytes = xlog_ticket_reservation(log, head, tic); 311 free_bytes = xlog_space_left(log, &head->grant); 312 if (!list_empty_careful(&head->waiters)) { 313 spin_lock(&head->lock); 314 if (!xlog_grant_head_wake(log, head, &free_bytes) || 315 free_bytes < *need_bytes) { 316 error = xlog_grant_head_wait(log, head, tic, 317 *need_bytes); 318 } 319 spin_unlock(&head->lock); 320 } else if (free_bytes < *need_bytes) { 321 spin_lock(&head->lock); 322 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 323 spin_unlock(&head->lock); 324 } 325 326 return error; 327 } 328 329 static void 330 xlog_tic_reset_res(xlog_ticket_t *tic) 331 { 332 tic->t_res_num = 0; 333 tic->t_res_arr_sum = 0; 334 tic->t_res_num_ophdrs = 0; 335 } 336 337 static void 338 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 339 { 340 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 341 /* add to overflow and start again */ 342 tic->t_res_o_flow += tic->t_res_arr_sum; 343 tic->t_res_num = 0; 344 tic->t_res_arr_sum = 0; 345 } 346 347 tic->t_res_arr[tic->t_res_num].r_len = len; 348 tic->t_res_arr[tic->t_res_num].r_type = type; 349 tic->t_res_arr_sum += len; 350 tic->t_res_num++; 351 } 352 353 bool 354 xfs_log_writable( 355 struct xfs_mount *mp) 356 { 357 /* 358 * Do not write to the log on norecovery mounts, if the data or log 359 * devices are read-only, or if the filesystem is shutdown. Read-only 360 * mounts allow internal writes for log recovery and unmount purposes, 361 * so don't restrict that case. 362 */ 363 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 364 return false; 365 if (xfs_readonly_buftarg(mp->m_ddev_targp)) 366 return false; 367 if (xfs_readonly_buftarg(mp->m_log->l_targ)) 368 return false; 369 if (XFS_FORCED_SHUTDOWN(mp)) 370 return false; 371 return true; 372 } 373 374 /* 375 * Replenish the byte reservation required by moving the grant write head. 376 */ 377 int 378 xfs_log_regrant( 379 struct xfs_mount *mp, 380 struct xlog_ticket *tic) 381 { 382 struct xlog *log = mp->m_log; 383 int need_bytes; 384 int error = 0; 385 386 if (XLOG_FORCED_SHUTDOWN(log)) 387 return -EIO; 388 389 XFS_STATS_INC(mp, xs_try_logspace); 390 391 /* 392 * This is a new transaction on the ticket, so we need to change the 393 * transaction ID so that the next transaction has a different TID in 394 * the log. Just add one to the existing tid so that we can see chains 395 * of rolling transactions in the log easily. 396 */ 397 tic->t_tid++; 398 399 xlog_grant_push_ail(log, tic->t_unit_res); 400 401 tic->t_curr_res = tic->t_unit_res; 402 xlog_tic_reset_res(tic); 403 404 if (tic->t_cnt > 0) 405 return 0; 406 407 trace_xfs_log_regrant(log, tic); 408 409 error = xlog_grant_head_check(log, &log->l_write_head, tic, 410 &need_bytes); 411 if (error) 412 goto out_error; 413 414 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 415 trace_xfs_log_regrant_exit(log, tic); 416 xlog_verify_grant_tail(log); 417 return 0; 418 419 out_error: 420 /* 421 * If we are failing, make sure the ticket doesn't have any current 422 * reservations. We don't want to add this back when the ticket/ 423 * transaction gets cancelled. 424 */ 425 tic->t_curr_res = 0; 426 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 427 return error; 428 } 429 430 /* 431 * Reserve log space and return a ticket corresponding to the reservation. 432 * 433 * Each reservation is going to reserve extra space for a log record header. 434 * When writes happen to the on-disk log, we don't subtract the length of the 435 * log record header from any reservation. By wasting space in each 436 * reservation, we prevent over allocation problems. 437 */ 438 int 439 xfs_log_reserve( 440 struct xfs_mount *mp, 441 int unit_bytes, 442 int cnt, 443 struct xlog_ticket **ticp, 444 uint8_t client, 445 bool permanent) 446 { 447 struct xlog *log = mp->m_log; 448 struct xlog_ticket *tic; 449 int need_bytes; 450 int error = 0; 451 452 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 453 454 if (XLOG_FORCED_SHUTDOWN(log)) 455 return -EIO; 456 457 XFS_STATS_INC(mp, xs_try_logspace); 458 459 ASSERT(*ticp == NULL); 460 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent); 461 *ticp = tic; 462 463 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 464 : tic->t_unit_res); 465 466 trace_xfs_log_reserve(log, tic); 467 468 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 469 &need_bytes); 470 if (error) 471 goto out_error; 472 473 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 474 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 475 trace_xfs_log_reserve_exit(log, tic); 476 xlog_verify_grant_tail(log); 477 return 0; 478 479 out_error: 480 /* 481 * If we are failing, make sure the ticket doesn't have any current 482 * reservations. We don't want to add this back when the ticket/ 483 * transaction gets cancelled. 484 */ 485 tic->t_curr_res = 0; 486 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 487 return error; 488 } 489 490 static bool 491 __xlog_state_release_iclog( 492 struct xlog *log, 493 struct xlog_in_core *iclog) 494 { 495 lockdep_assert_held(&log->l_icloglock); 496 497 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 498 /* update tail before writing to iclog */ 499 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 500 501 iclog->ic_state = XLOG_STATE_SYNCING; 502 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 503 xlog_verify_tail_lsn(log, iclog, tail_lsn); 504 /* cycle incremented when incrementing curr_block */ 505 trace_xlog_iclog_syncing(iclog, _RET_IP_); 506 return true; 507 } 508 509 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 510 return false; 511 } 512 513 /* 514 * Flush iclog to disk if this is the last reference to the given iclog and the 515 * it is in the WANT_SYNC state. 516 */ 517 int 518 xlog_state_release_iclog( 519 struct xlog *log, 520 struct xlog_in_core *iclog) 521 { 522 lockdep_assert_held(&log->l_icloglock); 523 524 trace_xlog_iclog_release(iclog, _RET_IP_); 525 if (iclog->ic_state == XLOG_STATE_IOERROR) 526 return -EIO; 527 528 if (atomic_dec_and_test(&iclog->ic_refcnt) && 529 __xlog_state_release_iclog(log, iclog)) { 530 spin_unlock(&log->l_icloglock); 531 xlog_sync(log, iclog); 532 spin_lock(&log->l_icloglock); 533 } 534 535 return 0; 536 } 537 538 /* 539 * Mount a log filesystem 540 * 541 * mp - ubiquitous xfs mount point structure 542 * log_target - buftarg of on-disk log device 543 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 544 * num_bblocks - Number of BBSIZE blocks in on-disk log 545 * 546 * Return error or zero. 547 */ 548 int 549 xfs_log_mount( 550 xfs_mount_t *mp, 551 xfs_buftarg_t *log_target, 552 xfs_daddr_t blk_offset, 553 int num_bblks) 554 { 555 bool fatal = xfs_sb_version_hascrc(&mp->m_sb); 556 int error = 0; 557 int min_logfsbs; 558 559 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 560 xfs_notice(mp, "Mounting V%d Filesystem", 561 XFS_SB_VERSION_NUM(&mp->m_sb)); 562 } else { 563 xfs_notice(mp, 564 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 565 XFS_SB_VERSION_NUM(&mp->m_sb)); 566 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 567 } 568 569 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 570 if (IS_ERR(mp->m_log)) { 571 error = PTR_ERR(mp->m_log); 572 goto out; 573 } 574 575 /* 576 * Validate the given log space and drop a critical message via syslog 577 * if the log size is too small that would lead to some unexpected 578 * situations in transaction log space reservation stage. 579 * 580 * Note: we can't just reject the mount if the validation fails. This 581 * would mean that people would have to downgrade their kernel just to 582 * remedy the situation as there is no way to grow the log (short of 583 * black magic surgery with xfs_db). 584 * 585 * We can, however, reject mounts for CRC format filesystems, as the 586 * mkfs binary being used to make the filesystem should never create a 587 * filesystem with a log that is too small. 588 */ 589 min_logfsbs = xfs_log_calc_minimum_size(mp); 590 591 if (mp->m_sb.sb_logblocks < min_logfsbs) { 592 xfs_warn(mp, 593 "Log size %d blocks too small, minimum size is %d blocks", 594 mp->m_sb.sb_logblocks, min_logfsbs); 595 error = -EINVAL; 596 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 597 xfs_warn(mp, 598 "Log size %d blocks too large, maximum size is %lld blocks", 599 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 600 error = -EINVAL; 601 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 602 xfs_warn(mp, 603 "log size %lld bytes too large, maximum size is %lld bytes", 604 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 605 XFS_MAX_LOG_BYTES); 606 error = -EINVAL; 607 } else if (mp->m_sb.sb_logsunit > 1 && 608 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) { 609 xfs_warn(mp, 610 "log stripe unit %u bytes must be a multiple of block size", 611 mp->m_sb.sb_logsunit); 612 error = -EINVAL; 613 fatal = true; 614 } 615 if (error) { 616 /* 617 * Log check errors are always fatal on v5; or whenever bad 618 * metadata leads to a crash. 619 */ 620 if (fatal) { 621 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 622 ASSERT(0); 623 goto out_free_log; 624 } 625 xfs_crit(mp, "Log size out of supported range."); 626 xfs_crit(mp, 627 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 628 } 629 630 /* 631 * Initialize the AIL now we have a log. 632 */ 633 error = xfs_trans_ail_init(mp); 634 if (error) { 635 xfs_warn(mp, "AIL initialisation failed: error %d", error); 636 goto out_free_log; 637 } 638 mp->m_log->l_ailp = mp->m_ail; 639 640 /* 641 * skip log recovery on a norecovery mount. pretend it all 642 * just worked. 643 */ 644 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 645 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 646 647 if (readonly) 648 mp->m_flags &= ~XFS_MOUNT_RDONLY; 649 650 error = xlog_recover(mp->m_log); 651 652 if (readonly) 653 mp->m_flags |= XFS_MOUNT_RDONLY; 654 if (error) { 655 xfs_warn(mp, "log mount/recovery failed: error %d", 656 error); 657 xlog_recover_cancel(mp->m_log); 658 goto out_destroy_ail; 659 } 660 } 661 662 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 663 "log"); 664 if (error) 665 goto out_destroy_ail; 666 667 /* Normal transactions can now occur */ 668 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 669 670 /* 671 * Now the log has been fully initialised and we know were our 672 * space grant counters are, we can initialise the permanent ticket 673 * needed for delayed logging to work. 674 */ 675 xlog_cil_init_post_recovery(mp->m_log); 676 677 return 0; 678 679 out_destroy_ail: 680 xfs_trans_ail_destroy(mp); 681 out_free_log: 682 xlog_dealloc_log(mp->m_log); 683 out: 684 return error; 685 } 686 687 /* 688 * Finish the recovery of the file system. This is separate from the 689 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 690 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 691 * here. 692 * 693 * If we finish recovery successfully, start the background log work. If we are 694 * not doing recovery, then we have a RO filesystem and we don't need to start 695 * it. 696 */ 697 int 698 xfs_log_mount_finish( 699 struct xfs_mount *mp) 700 { 701 int error = 0; 702 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 703 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED; 704 705 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 706 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 707 return 0; 708 } else if (readonly) { 709 /* Allow unlinked processing to proceed */ 710 mp->m_flags &= ~XFS_MOUNT_RDONLY; 711 } 712 713 /* 714 * During the second phase of log recovery, we need iget and 715 * iput to behave like they do for an active filesystem. 716 * xfs_fs_drop_inode needs to be able to prevent the deletion 717 * of inodes before we're done replaying log items on those 718 * inodes. Turn it off immediately after recovery finishes 719 * so that we don't leak the quota inodes if subsequent mount 720 * activities fail. 721 * 722 * We let all inodes involved in redo item processing end up on 723 * the LRU instead of being evicted immediately so that if we do 724 * something to an unlinked inode, the irele won't cause 725 * premature truncation and freeing of the inode, which results 726 * in log recovery failure. We have to evict the unreferenced 727 * lru inodes after clearing SB_ACTIVE because we don't 728 * otherwise clean up the lru if there's a subsequent failure in 729 * xfs_mountfs, which leads to us leaking the inodes if nothing 730 * else (e.g. quotacheck) references the inodes before the 731 * mount failure occurs. 732 */ 733 mp->m_super->s_flags |= SB_ACTIVE; 734 error = xlog_recover_finish(mp->m_log); 735 if (!error) 736 xfs_log_work_queue(mp); 737 mp->m_super->s_flags &= ~SB_ACTIVE; 738 evict_inodes(mp->m_super); 739 740 /* 741 * Drain the buffer LRU after log recovery. This is required for v4 742 * filesystems to avoid leaving around buffers with NULL verifier ops, 743 * but we do it unconditionally to make sure we're always in a clean 744 * cache state after mount. 745 * 746 * Don't push in the error case because the AIL may have pending intents 747 * that aren't removed until recovery is cancelled. 748 */ 749 if (!error && recovered) { 750 xfs_log_force(mp, XFS_LOG_SYNC); 751 xfs_ail_push_all_sync(mp->m_ail); 752 } 753 xfs_buftarg_drain(mp->m_ddev_targp); 754 755 if (readonly) 756 mp->m_flags |= XFS_MOUNT_RDONLY; 757 758 /* Make sure the log is dead if we're returning failure. */ 759 ASSERT(!error || (mp->m_log->l_flags & XLOG_IO_ERROR)); 760 761 return error; 762 } 763 764 /* 765 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 766 * the log. 767 */ 768 void 769 xfs_log_mount_cancel( 770 struct xfs_mount *mp) 771 { 772 xlog_recover_cancel(mp->m_log); 773 xfs_log_unmount(mp); 774 } 775 776 /* 777 * Wait for the iclog and all prior iclogs to be written disk as required by the 778 * log force state machine. Waiting on ic_force_wait ensures iclog completions 779 * have been ordered and callbacks run before we are woken here, hence 780 * guaranteeing that all the iclogs up to this one are on stable storage. 781 */ 782 int 783 xlog_wait_on_iclog( 784 struct xlog_in_core *iclog) 785 __releases(iclog->ic_log->l_icloglock) 786 { 787 struct xlog *log = iclog->ic_log; 788 789 trace_xlog_iclog_wait_on(iclog, _RET_IP_); 790 if (!XLOG_FORCED_SHUTDOWN(log) && 791 iclog->ic_state != XLOG_STATE_ACTIVE && 792 iclog->ic_state != XLOG_STATE_DIRTY) { 793 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 794 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 795 } else { 796 spin_unlock(&log->l_icloglock); 797 } 798 799 if (XLOG_FORCED_SHUTDOWN(log)) 800 return -EIO; 801 return 0; 802 } 803 804 /* 805 * Write out an unmount record using the ticket provided. We have to account for 806 * the data space used in the unmount ticket as this write is not done from a 807 * transaction context that has already done the accounting for us. 808 */ 809 static int 810 xlog_write_unmount_record( 811 struct xlog *log, 812 struct xlog_ticket *ticket) 813 { 814 struct xfs_unmount_log_format ulf = { 815 .magic = XLOG_UNMOUNT_TYPE, 816 }; 817 struct xfs_log_iovec reg = { 818 .i_addr = &ulf, 819 .i_len = sizeof(ulf), 820 .i_type = XLOG_REG_TYPE_UNMOUNT, 821 }; 822 struct xfs_log_vec vec = { 823 .lv_niovecs = 1, 824 .lv_iovecp = ®, 825 }; 826 827 /* account for space used by record data */ 828 ticket->t_curr_res -= sizeof(ulf); 829 830 /* 831 * For external log devices, we need to flush the data device cache 832 * first to ensure all metadata writeback is on stable storage before we 833 * stamp the tail LSN into the unmount record. 834 */ 835 if (log->l_targ != log->l_mp->m_ddev_targp) 836 blkdev_issue_flush(log->l_targ->bt_bdev); 837 return xlog_write(log, &vec, ticket, NULL, NULL, XLOG_UNMOUNT_TRANS); 838 } 839 840 /* 841 * Mark the filesystem clean by writing an unmount record to the head of the 842 * log. 843 */ 844 static void 845 xlog_unmount_write( 846 struct xlog *log) 847 { 848 struct xfs_mount *mp = log->l_mp; 849 struct xlog_in_core *iclog; 850 struct xlog_ticket *tic = NULL; 851 int error; 852 853 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0); 854 if (error) 855 goto out_err; 856 857 error = xlog_write_unmount_record(log, tic); 858 /* 859 * At this point, we're umounting anyway, so there's no point in 860 * transitioning log state to IOERROR. Just continue... 861 */ 862 out_err: 863 if (error) 864 xfs_alert(mp, "%s: unmount record failed", __func__); 865 866 spin_lock(&log->l_icloglock); 867 iclog = log->l_iclog; 868 atomic_inc(&iclog->ic_refcnt); 869 if (iclog->ic_state == XLOG_STATE_ACTIVE) 870 xlog_state_switch_iclogs(log, iclog, 0); 871 else 872 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC || 873 iclog->ic_state == XLOG_STATE_IOERROR); 874 /* 875 * Ensure the journal is fully flushed and on stable storage once the 876 * iclog containing the unmount record is written. 877 */ 878 iclog->ic_flags |= (XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA); 879 error = xlog_state_release_iclog(log, iclog); 880 xlog_wait_on_iclog(iclog); 881 882 if (tic) { 883 trace_xfs_log_umount_write(log, tic); 884 xfs_log_ticket_ungrant(log, tic); 885 } 886 } 887 888 static void 889 xfs_log_unmount_verify_iclog( 890 struct xlog *log) 891 { 892 struct xlog_in_core *iclog = log->l_iclog; 893 894 do { 895 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 896 ASSERT(iclog->ic_offset == 0); 897 } while ((iclog = iclog->ic_next) != log->l_iclog); 898 } 899 900 /* 901 * Unmount record used to have a string "Unmount filesystem--" in the 902 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 903 * We just write the magic number now since that particular field isn't 904 * currently architecture converted and "Unmount" is a bit foo. 905 * As far as I know, there weren't any dependencies on the old behaviour. 906 */ 907 static void 908 xfs_log_unmount_write( 909 struct xfs_mount *mp) 910 { 911 struct xlog *log = mp->m_log; 912 913 if (!xfs_log_writable(mp)) 914 return; 915 916 xfs_log_force(mp, XFS_LOG_SYNC); 917 918 if (XLOG_FORCED_SHUTDOWN(log)) 919 return; 920 921 /* 922 * If we think the summary counters are bad, avoid writing the unmount 923 * record to force log recovery at next mount, after which the summary 924 * counters will be recalculated. Refer to xlog_check_unmount_rec for 925 * more details. 926 */ 927 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp, 928 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 929 xfs_alert(mp, "%s: will fix summary counters at next mount", 930 __func__); 931 return; 932 } 933 934 xfs_log_unmount_verify_iclog(log); 935 xlog_unmount_write(log); 936 } 937 938 /* 939 * Empty the log for unmount/freeze. 940 * 941 * To do this, we first need to shut down the background log work so it is not 942 * trying to cover the log as we clean up. We then need to unpin all objects in 943 * the log so we can then flush them out. Once they have completed their IO and 944 * run the callbacks removing themselves from the AIL, we can cover the log. 945 */ 946 int 947 xfs_log_quiesce( 948 struct xfs_mount *mp) 949 { 950 cancel_delayed_work_sync(&mp->m_log->l_work); 951 xfs_log_force(mp, XFS_LOG_SYNC); 952 953 /* 954 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 955 * will push it, xfs_buftarg_wait() will not wait for it. Further, 956 * xfs_buf_iowait() cannot be used because it was pushed with the 957 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 958 * the IO to complete. 959 */ 960 xfs_ail_push_all_sync(mp->m_ail); 961 xfs_buftarg_wait(mp->m_ddev_targp); 962 xfs_buf_lock(mp->m_sb_bp); 963 xfs_buf_unlock(mp->m_sb_bp); 964 965 return xfs_log_cover(mp); 966 } 967 968 void 969 xfs_log_clean( 970 struct xfs_mount *mp) 971 { 972 xfs_log_quiesce(mp); 973 xfs_log_unmount_write(mp); 974 } 975 976 /* 977 * Shut down and release the AIL and Log. 978 * 979 * During unmount, we need to ensure we flush all the dirty metadata objects 980 * from the AIL so that the log is empty before we write the unmount record to 981 * the log. Once this is done, we can tear down the AIL and the log. 982 */ 983 void 984 xfs_log_unmount( 985 struct xfs_mount *mp) 986 { 987 xfs_log_clean(mp); 988 989 xfs_buftarg_drain(mp->m_ddev_targp); 990 991 xfs_trans_ail_destroy(mp); 992 993 xfs_sysfs_del(&mp->m_log->l_kobj); 994 995 xlog_dealloc_log(mp->m_log); 996 } 997 998 void 999 xfs_log_item_init( 1000 struct xfs_mount *mp, 1001 struct xfs_log_item *item, 1002 int type, 1003 const struct xfs_item_ops *ops) 1004 { 1005 item->li_mountp = mp; 1006 item->li_ailp = mp->m_ail; 1007 item->li_type = type; 1008 item->li_ops = ops; 1009 item->li_lv = NULL; 1010 1011 INIT_LIST_HEAD(&item->li_ail); 1012 INIT_LIST_HEAD(&item->li_cil); 1013 INIT_LIST_HEAD(&item->li_bio_list); 1014 INIT_LIST_HEAD(&item->li_trans); 1015 } 1016 1017 /* 1018 * Wake up processes waiting for log space after we have moved the log tail. 1019 */ 1020 void 1021 xfs_log_space_wake( 1022 struct xfs_mount *mp) 1023 { 1024 struct xlog *log = mp->m_log; 1025 int free_bytes; 1026 1027 if (XLOG_FORCED_SHUTDOWN(log)) 1028 return; 1029 1030 if (!list_empty_careful(&log->l_write_head.waiters)) { 1031 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1032 1033 spin_lock(&log->l_write_head.lock); 1034 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1035 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1036 spin_unlock(&log->l_write_head.lock); 1037 } 1038 1039 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1040 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1041 1042 spin_lock(&log->l_reserve_head.lock); 1043 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1044 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1045 spin_unlock(&log->l_reserve_head.lock); 1046 } 1047 } 1048 1049 /* 1050 * Determine if we have a transaction that has gone to disk that needs to be 1051 * covered. To begin the transition to the idle state firstly the log needs to 1052 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1053 * we start attempting to cover the log. 1054 * 1055 * Only if we are then in a state where covering is needed, the caller is 1056 * informed that dummy transactions are required to move the log into the idle 1057 * state. 1058 * 1059 * If there are any items in the AIl or CIL, then we do not want to attempt to 1060 * cover the log as we may be in a situation where there isn't log space 1061 * available to run a dummy transaction and this can lead to deadlocks when the 1062 * tail of the log is pinned by an item that is modified in the CIL. Hence 1063 * there's no point in running a dummy transaction at this point because we 1064 * can't start trying to idle the log until both the CIL and AIL are empty. 1065 */ 1066 static bool 1067 xfs_log_need_covered( 1068 struct xfs_mount *mp) 1069 { 1070 struct xlog *log = mp->m_log; 1071 bool needed = false; 1072 1073 if (!xlog_cil_empty(log)) 1074 return false; 1075 1076 spin_lock(&log->l_icloglock); 1077 switch (log->l_covered_state) { 1078 case XLOG_STATE_COVER_DONE: 1079 case XLOG_STATE_COVER_DONE2: 1080 case XLOG_STATE_COVER_IDLE: 1081 break; 1082 case XLOG_STATE_COVER_NEED: 1083 case XLOG_STATE_COVER_NEED2: 1084 if (xfs_ail_min_lsn(log->l_ailp)) 1085 break; 1086 if (!xlog_iclogs_empty(log)) 1087 break; 1088 1089 needed = true; 1090 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1091 log->l_covered_state = XLOG_STATE_COVER_DONE; 1092 else 1093 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1094 break; 1095 default: 1096 needed = true; 1097 break; 1098 } 1099 spin_unlock(&log->l_icloglock); 1100 return needed; 1101 } 1102 1103 /* 1104 * Explicitly cover the log. This is similar to background log covering but 1105 * intended for usage in quiesce codepaths. The caller is responsible to ensure 1106 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL 1107 * must all be empty. 1108 */ 1109 static int 1110 xfs_log_cover( 1111 struct xfs_mount *mp) 1112 { 1113 int error = 0; 1114 bool need_covered; 1115 1116 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) && 1117 !xfs_ail_min_lsn(mp->m_log->l_ailp)) || 1118 XFS_FORCED_SHUTDOWN(mp)); 1119 1120 if (!xfs_log_writable(mp)) 1121 return 0; 1122 1123 /* 1124 * xfs_log_need_covered() is not idempotent because it progresses the 1125 * state machine if the log requires covering. Therefore, we must call 1126 * this function once and use the result until we've issued an sb sync. 1127 * Do so first to make that abundantly clear. 1128 * 1129 * Fall into the covering sequence if the log needs covering or the 1130 * mount has lazy superblock accounting to sync to disk. The sb sync 1131 * used for covering accumulates the in-core counters, so covering 1132 * handles this for us. 1133 */ 1134 need_covered = xfs_log_need_covered(mp); 1135 if (!need_covered && !xfs_sb_version_haslazysbcount(&mp->m_sb)) 1136 return 0; 1137 1138 /* 1139 * To cover the log, commit the superblock twice (at most) in 1140 * independent checkpoints. The first serves as a reference for the 1141 * tail pointer. The sync transaction and AIL push empties the AIL and 1142 * updates the in-core tail to the LSN of the first checkpoint. The 1143 * second commit updates the on-disk tail with the in-core LSN, 1144 * covering the log. Push the AIL one more time to leave it empty, as 1145 * we found it. 1146 */ 1147 do { 1148 error = xfs_sync_sb(mp, true); 1149 if (error) 1150 break; 1151 xfs_ail_push_all_sync(mp->m_ail); 1152 } while (xfs_log_need_covered(mp)); 1153 1154 return error; 1155 } 1156 1157 /* 1158 * We may be holding the log iclog lock upon entering this routine. 1159 */ 1160 xfs_lsn_t 1161 xlog_assign_tail_lsn_locked( 1162 struct xfs_mount *mp) 1163 { 1164 struct xlog *log = mp->m_log; 1165 struct xfs_log_item *lip; 1166 xfs_lsn_t tail_lsn; 1167 1168 assert_spin_locked(&mp->m_ail->ail_lock); 1169 1170 /* 1171 * To make sure we always have a valid LSN for the log tail we keep 1172 * track of the last LSN which was committed in log->l_last_sync_lsn, 1173 * and use that when the AIL was empty. 1174 */ 1175 lip = xfs_ail_min(mp->m_ail); 1176 if (lip) 1177 tail_lsn = lip->li_lsn; 1178 else 1179 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1180 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1181 atomic64_set(&log->l_tail_lsn, tail_lsn); 1182 return tail_lsn; 1183 } 1184 1185 xfs_lsn_t 1186 xlog_assign_tail_lsn( 1187 struct xfs_mount *mp) 1188 { 1189 xfs_lsn_t tail_lsn; 1190 1191 spin_lock(&mp->m_ail->ail_lock); 1192 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1193 spin_unlock(&mp->m_ail->ail_lock); 1194 1195 return tail_lsn; 1196 } 1197 1198 /* 1199 * Return the space in the log between the tail and the head. The head 1200 * is passed in the cycle/bytes formal parms. In the special case where 1201 * the reserve head has wrapped passed the tail, this calculation is no 1202 * longer valid. In this case, just return 0 which means there is no space 1203 * in the log. This works for all places where this function is called 1204 * with the reserve head. Of course, if the write head were to ever 1205 * wrap the tail, we should blow up. Rather than catch this case here, 1206 * we depend on other ASSERTions in other parts of the code. XXXmiken 1207 * 1208 * This code also handles the case where the reservation head is behind 1209 * the tail. The details of this case are described below, but the end 1210 * result is that we return the size of the log as the amount of space left. 1211 */ 1212 STATIC int 1213 xlog_space_left( 1214 struct xlog *log, 1215 atomic64_t *head) 1216 { 1217 int free_bytes; 1218 int tail_bytes; 1219 int tail_cycle; 1220 int head_cycle; 1221 int head_bytes; 1222 1223 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1224 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1225 tail_bytes = BBTOB(tail_bytes); 1226 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1227 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1228 else if (tail_cycle + 1 < head_cycle) 1229 return 0; 1230 else if (tail_cycle < head_cycle) { 1231 ASSERT(tail_cycle == (head_cycle - 1)); 1232 free_bytes = tail_bytes - head_bytes; 1233 } else { 1234 /* 1235 * The reservation head is behind the tail. 1236 * In this case we just want to return the size of the 1237 * log as the amount of space left. 1238 */ 1239 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1240 xfs_alert(log->l_mp, 1241 " tail_cycle = %d, tail_bytes = %d", 1242 tail_cycle, tail_bytes); 1243 xfs_alert(log->l_mp, 1244 " GH cycle = %d, GH bytes = %d", 1245 head_cycle, head_bytes); 1246 ASSERT(0); 1247 free_bytes = log->l_logsize; 1248 } 1249 return free_bytes; 1250 } 1251 1252 1253 static void 1254 xlog_ioend_work( 1255 struct work_struct *work) 1256 { 1257 struct xlog_in_core *iclog = 1258 container_of(work, struct xlog_in_core, ic_end_io_work); 1259 struct xlog *log = iclog->ic_log; 1260 int error; 1261 1262 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1263 #ifdef DEBUG 1264 /* treat writes with injected CRC errors as failed */ 1265 if (iclog->ic_fail_crc) 1266 error = -EIO; 1267 #endif 1268 1269 /* 1270 * Race to shutdown the filesystem if we see an error. 1271 */ 1272 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1273 xfs_alert(log->l_mp, "log I/O error %d", error); 1274 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 1275 } 1276 1277 xlog_state_done_syncing(iclog); 1278 bio_uninit(&iclog->ic_bio); 1279 1280 /* 1281 * Drop the lock to signal that we are done. Nothing references the 1282 * iclog after this, so an unmount waiting on this lock can now tear it 1283 * down safely. As such, it is unsafe to reference the iclog after the 1284 * unlock as we could race with it being freed. 1285 */ 1286 up(&iclog->ic_sema); 1287 } 1288 1289 /* 1290 * Return size of each in-core log record buffer. 1291 * 1292 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1293 * 1294 * If the filesystem blocksize is too large, we may need to choose a 1295 * larger size since the directory code currently logs entire blocks. 1296 */ 1297 STATIC void 1298 xlog_get_iclog_buffer_size( 1299 struct xfs_mount *mp, 1300 struct xlog *log) 1301 { 1302 if (mp->m_logbufs <= 0) 1303 mp->m_logbufs = XLOG_MAX_ICLOGS; 1304 if (mp->m_logbsize <= 0) 1305 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1306 1307 log->l_iclog_bufs = mp->m_logbufs; 1308 log->l_iclog_size = mp->m_logbsize; 1309 1310 /* 1311 * # headers = size / 32k - one header holds cycles from 32k of data. 1312 */ 1313 log->l_iclog_heads = 1314 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE); 1315 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT; 1316 } 1317 1318 void 1319 xfs_log_work_queue( 1320 struct xfs_mount *mp) 1321 { 1322 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1323 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1324 } 1325 1326 /* 1327 * Every sync period we need to unpin all items in the AIL and push them to 1328 * disk. If there is nothing dirty, then we might need to cover the log to 1329 * indicate that the filesystem is idle. 1330 */ 1331 static void 1332 xfs_log_worker( 1333 struct work_struct *work) 1334 { 1335 struct xlog *log = container_of(to_delayed_work(work), 1336 struct xlog, l_work); 1337 struct xfs_mount *mp = log->l_mp; 1338 1339 /* dgc: errors ignored - not fatal and nowhere to report them */ 1340 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) { 1341 /* 1342 * Dump a transaction into the log that contains no real change. 1343 * This is needed to stamp the current tail LSN into the log 1344 * during the covering operation. 1345 * 1346 * We cannot use an inode here for this - that will push dirty 1347 * state back up into the VFS and then periodic inode flushing 1348 * will prevent log covering from making progress. Hence we 1349 * synchronously log the superblock instead to ensure the 1350 * superblock is immediately unpinned and can be written back. 1351 */ 1352 xfs_sync_sb(mp, true); 1353 } else 1354 xfs_log_force(mp, 0); 1355 1356 /* start pushing all the metadata that is currently dirty */ 1357 xfs_ail_push_all(mp->m_ail); 1358 1359 /* queue us up again */ 1360 xfs_log_work_queue(mp); 1361 } 1362 1363 /* 1364 * This routine initializes some of the log structure for a given mount point. 1365 * Its primary purpose is to fill in enough, so recovery can occur. However, 1366 * some other stuff may be filled in too. 1367 */ 1368 STATIC struct xlog * 1369 xlog_alloc_log( 1370 struct xfs_mount *mp, 1371 struct xfs_buftarg *log_target, 1372 xfs_daddr_t blk_offset, 1373 int num_bblks) 1374 { 1375 struct xlog *log; 1376 xlog_rec_header_t *head; 1377 xlog_in_core_t **iclogp; 1378 xlog_in_core_t *iclog, *prev_iclog=NULL; 1379 int i; 1380 int error = -ENOMEM; 1381 uint log2_size = 0; 1382 1383 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1384 if (!log) { 1385 xfs_warn(mp, "Log allocation failed: No memory!"); 1386 goto out; 1387 } 1388 1389 log->l_mp = mp; 1390 log->l_targ = log_target; 1391 log->l_logsize = BBTOB(num_bblks); 1392 log->l_logBBstart = blk_offset; 1393 log->l_logBBsize = num_bblks; 1394 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1395 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1396 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1397 1398 log->l_prev_block = -1; 1399 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1400 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1401 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1402 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1403 1404 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) 1405 log->l_iclog_roundoff = mp->m_sb.sb_logsunit; 1406 else 1407 log->l_iclog_roundoff = BBSIZE; 1408 1409 xlog_grant_head_init(&log->l_reserve_head); 1410 xlog_grant_head_init(&log->l_write_head); 1411 1412 error = -EFSCORRUPTED; 1413 if (xfs_sb_version_hassector(&mp->m_sb)) { 1414 log2_size = mp->m_sb.sb_logsectlog; 1415 if (log2_size < BBSHIFT) { 1416 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1417 log2_size, BBSHIFT); 1418 goto out_free_log; 1419 } 1420 1421 log2_size -= BBSHIFT; 1422 if (log2_size > mp->m_sectbb_log) { 1423 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1424 log2_size, mp->m_sectbb_log); 1425 goto out_free_log; 1426 } 1427 1428 /* for larger sector sizes, must have v2 or external log */ 1429 if (log2_size && log->l_logBBstart > 0 && 1430 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1431 xfs_warn(mp, 1432 "log sector size (0x%x) invalid for configuration.", 1433 log2_size); 1434 goto out_free_log; 1435 } 1436 } 1437 log->l_sectBBsize = 1 << log2_size; 1438 1439 xlog_get_iclog_buffer_size(mp, log); 1440 1441 spin_lock_init(&log->l_icloglock); 1442 init_waitqueue_head(&log->l_flush_wait); 1443 1444 iclogp = &log->l_iclog; 1445 /* 1446 * The amount of memory to allocate for the iclog structure is 1447 * rather funky due to the way the structure is defined. It is 1448 * done this way so that we can use different sizes for machines 1449 * with different amounts of memory. See the definition of 1450 * xlog_in_core_t in xfs_log_priv.h for details. 1451 */ 1452 ASSERT(log->l_iclog_size >= 4096); 1453 for (i = 0; i < log->l_iclog_bufs; i++) { 1454 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp); 1455 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1456 sizeof(struct bio_vec); 1457 1458 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL); 1459 if (!iclog) 1460 goto out_free_iclog; 1461 1462 *iclogp = iclog; 1463 iclog->ic_prev = prev_iclog; 1464 prev_iclog = iclog; 1465 1466 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask, 1467 KM_MAYFAIL | KM_ZERO); 1468 if (!iclog->ic_data) 1469 goto out_free_iclog; 1470 #ifdef DEBUG 1471 log->l_iclog_bak[i] = &iclog->ic_header; 1472 #endif 1473 head = &iclog->ic_header; 1474 memset(head, 0, sizeof(xlog_rec_header_t)); 1475 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1476 head->h_version = cpu_to_be32( 1477 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1478 head->h_size = cpu_to_be32(log->l_iclog_size); 1479 /* new fields */ 1480 head->h_fmt = cpu_to_be32(XLOG_FMT); 1481 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1482 1483 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1484 iclog->ic_state = XLOG_STATE_ACTIVE; 1485 iclog->ic_log = log; 1486 atomic_set(&iclog->ic_refcnt, 0); 1487 INIT_LIST_HEAD(&iclog->ic_callbacks); 1488 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1489 1490 init_waitqueue_head(&iclog->ic_force_wait); 1491 init_waitqueue_head(&iclog->ic_write_wait); 1492 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1493 sema_init(&iclog->ic_sema, 1); 1494 1495 iclogp = &iclog->ic_next; 1496 } 1497 *iclogp = log->l_iclog; /* complete ring */ 1498 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1499 1500 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1501 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | 1502 WQ_HIGHPRI), 1503 0, mp->m_super->s_id); 1504 if (!log->l_ioend_workqueue) 1505 goto out_free_iclog; 1506 1507 error = xlog_cil_init(log); 1508 if (error) 1509 goto out_destroy_workqueue; 1510 return log; 1511 1512 out_destroy_workqueue: 1513 destroy_workqueue(log->l_ioend_workqueue); 1514 out_free_iclog: 1515 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1516 prev_iclog = iclog->ic_next; 1517 kmem_free(iclog->ic_data); 1518 kmem_free(iclog); 1519 if (prev_iclog == log->l_iclog) 1520 break; 1521 } 1522 out_free_log: 1523 kmem_free(log); 1524 out: 1525 return ERR_PTR(error); 1526 } /* xlog_alloc_log */ 1527 1528 /* 1529 * Write out the commit record of a transaction associated with the given 1530 * ticket to close off a running log write. Return the lsn of the commit record. 1531 */ 1532 int 1533 xlog_commit_record( 1534 struct xlog *log, 1535 struct xlog_ticket *ticket, 1536 struct xlog_in_core **iclog, 1537 xfs_lsn_t *lsn) 1538 { 1539 struct xfs_log_iovec reg = { 1540 .i_addr = NULL, 1541 .i_len = 0, 1542 .i_type = XLOG_REG_TYPE_COMMIT, 1543 }; 1544 struct xfs_log_vec vec = { 1545 .lv_niovecs = 1, 1546 .lv_iovecp = ®, 1547 }; 1548 int error; 1549 1550 if (XLOG_FORCED_SHUTDOWN(log)) 1551 return -EIO; 1552 1553 error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS); 1554 if (error) 1555 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 1556 return error; 1557 } 1558 1559 /* 1560 * Compute the LSN that we'd need to push the log tail towards in order to have 1561 * (a) enough on-disk log space to log the number of bytes specified, (b) at 1562 * least 25% of the log space free, and (c) at least 256 blocks free. If the 1563 * log free space already meets all three thresholds, this function returns 1564 * NULLCOMMITLSN. 1565 */ 1566 xfs_lsn_t 1567 xlog_grant_push_threshold( 1568 struct xlog *log, 1569 int need_bytes) 1570 { 1571 xfs_lsn_t threshold_lsn = 0; 1572 xfs_lsn_t last_sync_lsn; 1573 int free_blocks; 1574 int free_bytes; 1575 int threshold_block; 1576 int threshold_cycle; 1577 int free_threshold; 1578 1579 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1580 1581 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1582 free_blocks = BTOBBT(free_bytes); 1583 1584 /* 1585 * Set the threshold for the minimum number of free blocks in the 1586 * log to the maximum of what the caller needs, one quarter of the 1587 * log, and 256 blocks. 1588 */ 1589 free_threshold = BTOBB(need_bytes); 1590 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1591 free_threshold = max(free_threshold, 256); 1592 if (free_blocks >= free_threshold) 1593 return NULLCOMMITLSN; 1594 1595 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1596 &threshold_block); 1597 threshold_block += free_threshold; 1598 if (threshold_block >= log->l_logBBsize) { 1599 threshold_block -= log->l_logBBsize; 1600 threshold_cycle += 1; 1601 } 1602 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1603 threshold_block); 1604 /* 1605 * Don't pass in an lsn greater than the lsn of the last 1606 * log record known to be on disk. Use a snapshot of the last sync lsn 1607 * so that it doesn't change between the compare and the set. 1608 */ 1609 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1610 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1611 threshold_lsn = last_sync_lsn; 1612 1613 return threshold_lsn; 1614 } 1615 1616 /* 1617 * Push the tail of the log if we need to do so to maintain the free log space 1618 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a 1619 * policy which pushes on an lsn which is further along in the log once we 1620 * reach the high water mark. In this manner, we would be creating a low water 1621 * mark. 1622 */ 1623 STATIC void 1624 xlog_grant_push_ail( 1625 struct xlog *log, 1626 int need_bytes) 1627 { 1628 xfs_lsn_t threshold_lsn; 1629 1630 threshold_lsn = xlog_grant_push_threshold(log, need_bytes); 1631 if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log)) 1632 return; 1633 1634 /* 1635 * Get the transaction layer to kick the dirty buffers out to 1636 * disk asynchronously. No point in trying to do this if 1637 * the filesystem is shutting down. 1638 */ 1639 xfs_ail_push(log->l_ailp, threshold_lsn); 1640 } 1641 1642 /* 1643 * Stamp cycle number in every block 1644 */ 1645 STATIC void 1646 xlog_pack_data( 1647 struct xlog *log, 1648 struct xlog_in_core *iclog, 1649 int roundoff) 1650 { 1651 int i, j, k; 1652 int size = iclog->ic_offset + roundoff; 1653 __be32 cycle_lsn; 1654 char *dp; 1655 1656 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1657 1658 dp = iclog->ic_datap; 1659 for (i = 0; i < BTOBB(size); i++) { 1660 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1661 break; 1662 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1663 *(__be32 *)dp = cycle_lsn; 1664 dp += BBSIZE; 1665 } 1666 1667 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1668 xlog_in_core_2_t *xhdr = iclog->ic_data; 1669 1670 for ( ; i < BTOBB(size); i++) { 1671 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1672 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1673 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1674 *(__be32 *)dp = cycle_lsn; 1675 dp += BBSIZE; 1676 } 1677 1678 for (i = 1; i < log->l_iclog_heads; i++) 1679 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1680 } 1681 } 1682 1683 /* 1684 * Calculate the checksum for a log buffer. 1685 * 1686 * This is a little more complicated than it should be because the various 1687 * headers and the actual data are non-contiguous. 1688 */ 1689 __le32 1690 xlog_cksum( 1691 struct xlog *log, 1692 struct xlog_rec_header *rhead, 1693 char *dp, 1694 int size) 1695 { 1696 uint32_t crc; 1697 1698 /* first generate the crc for the record header ... */ 1699 crc = xfs_start_cksum_update((char *)rhead, 1700 sizeof(struct xlog_rec_header), 1701 offsetof(struct xlog_rec_header, h_crc)); 1702 1703 /* ... then for additional cycle data for v2 logs ... */ 1704 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1705 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1706 int i; 1707 int xheads; 1708 1709 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE); 1710 1711 for (i = 1; i < xheads; i++) { 1712 crc = crc32c(crc, &xhdr[i].hic_xheader, 1713 sizeof(struct xlog_rec_ext_header)); 1714 } 1715 } 1716 1717 /* ... and finally for the payload */ 1718 crc = crc32c(crc, dp, size); 1719 1720 return xfs_end_cksum(crc); 1721 } 1722 1723 static void 1724 xlog_bio_end_io( 1725 struct bio *bio) 1726 { 1727 struct xlog_in_core *iclog = bio->bi_private; 1728 1729 queue_work(iclog->ic_log->l_ioend_workqueue, 1730 &iclog->ic_end_io_work); 1731 } 1732 1733 static int 1734 xlog_map_iclog_data( 1735 struct bio *bio, 1736 void *data, 1737 size_t count) 1738 { 1739 do { 1740 struct page *page = kmem_to_page(data); 1741 unsigned int off = offset_in_page(data); 1742 size_t len = min_t(size_t, count, PAGE_SIZE - off); 1743 1744 if (bio_add_page(bio, page, len, off) != len) 1745 return -EIO; 1746 1747 data += len; 1748 count -= len; 1749 } while (count); 1750 1751 return 0; 1752 } 1753 1754 STATIC void 1755 xlog_write_iclog( 1756 struct xlog *log, 1757 struct xlog_in_core *iclog, 1758 uint64_t bno, 1759 unsigned int count) 1760 { 1761 ASSERT(bno < log->l_logBBsize); 1762 trace_xlog_iclog_write(iclog, _RET_IP_); 1763 1764 /* 1765 * We lock the iclogbufs here so that we can serialise against I/O 1766 * completion during unmount. We might be processing a shutdown 1767 * triggered during unmount, and that can occur asynchronously to the 1768 * unmount thread, and hence we need to ensure that completes before 1769 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1770 * across the log IO to archieve that. 1771 */ 1772 down(&iclog->ic_sema); 1773 if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) { 1774 /* 1775 * It would seem logical to return EIO here, but we rely on 1776 * the log state machine to propagate I/O errors instead of 1777 * doing it here. We kick of the state machine and unlock 1778 * the buffer manually, the code needs to be kept in sync 1779 * with the I/O completion path. 1780 */ 1781 xlog_state_done_syncing(iclog); 1782 up(&iclog->ic_sema); 1783 return; 1784 } 1785 1786 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE)); 1787 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev); 1788 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1789 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1790 iclog->ic_bio.bi_private = iclog; 1791 1792 /* 1793 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more 1794 * IOs coming immediately after this one. This prevents the block layer 1795 * writeback throttle from throttling log writes behind background 1796 * metadata writeback and causing priority inversions. 1797 */ 1798 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE; 1799 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) 1800 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1801 if (iclog->ic_flags & XLOG_ICL_NEED_FUA) 1802 iclog->ic_bio.bi_opf |= REQ_FUA; 1803 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA); 1804 1805 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) { 1806 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 1807 return; 1808 } 1809 if (is_vmalloc_addr(iclog->ic_data)) 1810 flush_kernel_vmap_range(iclog->ic_data, count); 1811 1812 /* 1813 * If this log buffer would straddle the end of the log we will have 1814 * to split it up into two bios, so that we can continue at the start. 1815 */ 1816 if (bno + BTOBB(count) > log->l_logBBsize) { 1817 struct bio *split; 1818 1819 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1820 GFP_NOIO, &fs_bio_set); 1821 bio_chain(split, &iclog->ic_bio); 1822 submit_bio(split); 1823 1824 /* restart at logical offset zero for the remainder */ 1825 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1826 } 1827 1828 submit_bio(&iclog->ic_bio); 1829 } 1830 1831 /* 1832 * We need to bump cycle number for the part of the iclog that is 1833 * written to the start of the log. Watch out for the header magic 1834 * number case, though. 1835 */ 1836 static void 1837 xlog_split_iclog( 1838 struct xlog *log, 1839 void *data, 1840 uint64_t bno, 1841 unsigned int count) 1842 { 1843 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 1844 unsigned int i; 1845 1846 for (i = split_offset; i < count; i += BBSIZE) { 1847 uint32_t cycle = get_unaligned_be32(data + i); 1848 1849 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1850 cycle++; 1851 put_unaligned_be32(cycle, data + i); 1852 } 1853 } 1854 1855 static int 1856 xlog_calc_iclog_size( 1857 struct xlog *log, 1858 struct xlog_in_core *iclog, 1859 uint32_t *roundoff) 1860 { 1861 uint32_t count_init, count; 1862 1863 /* Add for LR header */ 1864 count_init = log->l_iclog_hsize + iclog->ic_offset; 1865 count = roundup(count_init, log->l_iclog_roundoff); 1866 1867 *roundoff = count - count_init; 1868 1869 ASSERT(count >= count_init); 1870 ASSERT(*roundoff < log->l_iclog_roundoff); 1871 return count; 1872 } 1873 1874 /* 1875 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1876 * fashion. Previously, we should have moved the current iclog 1877 * ptr in the log to point to the next available iclog. This allows further 1878 * write to continue while this code syncs out an iclog ready to go. 1879 * Before an in-core log can be written out, the data section must be scanned 1880 * to save away the 1st word of each BBSIZE block into the header. We replace 1881 * it with the current cycle count. Each BBSIZE block is tagged with the 1882 * cycle count because there in an implicit assumption that drives will 1883 * guarantee that entire 512 byte blocks get written at once. In other words, 1884 * we can't have part of a 512 byte block written and part not written. By 1885 * tagging each block, we will know which blocks are valid when recovering 1886 * after an unclean shutdown. 1887 * 1888 * This routine is single threaded on the iclog. No other thread can be in 1889 * this routine with the same iclog. Changing contents of iclog can there- 1890 * fore be done without grabbing the state machine lock. Updating the global 1891 * log will require grabbing the lock though. 1892 * 1893 * The entire log manager uses a logical block numbering scheme. Only 1894 * xlog_write_iclog knows about the fact that the log may not start with 1895 * block zero on a given device. 1896 */ 1897 STATIC void 1898 xlog_sync( 1899 struct xlog *log, 1900 struct xlog_in_core *iclog) 1901 { 1902 unsigned int count; /* byte count of bwrite */ 1903 unsigned int roundoff; /* roundoff to BB or stripe */ 1904 uint64_t bno; 1905 unsigned int size; 1906 1907 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1908 trace_xlog_iclog_sync(iclog, _RET_IP_); 1909 1910 count = xlog_calc_iclog_size(log, iclog, &roundoff); 1911 1912 /* move grant heads by roundoff in sync */ 1913 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1914 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1915 1916 /* put cycle number in every block */ 1917 xlog_pack_data(log, iclog, roundoff); 1918 1919 /* real byte length */ 1920 size = iclog->ic_offset; 1921 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) 1922 size += roundoff; 1923 iclog->ic_header.h_len = cpu_to_be32(size); 1924 1925 XFS_STATS_INC(log->l_mp, xs_log_writes); 1926 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1927 1928 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)); 1929 1930 /* Do we need to split this write into 2 parts? */ 1931 if (bno + BTOBB(count) > log->l_logBBsize) 1932 xlog_split_iclog(log, &iclog->ic_header, bno, count); 1933 1934 /* calculcate the checksum */ 1935 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1936 iclog->ic_datap, size); 1937 /* 1938 * Intentionally corrupt the log record CRC based on the error injection 1939 * frequency, if defined. This facilitates testing log recovery in the 1940 * event of torn writes. Hence, set the IOABORT state to abort the log 1941 * write on I/O completion and shutdown the fs. The subsequent mount 1942 * detects the bad CRC and attempts to recover. 1943 */ 1944 #ifdef DEBUG 1945 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 1946 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 1947 iclog->ic_fail_crc = true; 1948 xfs_warn(log->l_mp, 1949 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1950 be64_to_cpu(iclog->ic_header.h_lsn)); 1951 } 1952 #endif 1953 xlog_verify_iclog(log, iclog, count); 1954 xlog_write_iclog(log, iclog, bno, count); 1955 } 1956 1957 /* 1958 * Deallocate a log structure 1959 */ 1960 STATIC void 1961 xlog_dealloc_log( 1962 struct xlog *log) 1963 { 1964 xlog_in_core_t *iclog, *next_iclog; 1965 int i; 1966 1967 xlog_cil_destroy(log); 1968 1969 /* 1970 * Cycle all the iclogbuf locks to make sure all log IO completion 1971 * is done before we tear down these buffers. 1972 */ 1973 iclog = log->l_iclog; 1974 for (i = 0; i < log->l_iclog_bufs; i++) { 1975 down(&iclog->ic_sema); 1976 up(&iclog->ic_sema); 1977 iclog = iclog->ic_next; 1978 } 1979 1980 iclog = log->l_iclog; 1981 for (i = 0; i < log->l_iclog_bufs; i++) { 1982 next_iclog = iclog->ic_next; 1983 kmem_free(iclog->ic_data); 1984 kmem_free(iclog); 1985 iclog = next_iclog; 1986 } 1987 1988 log->l_mp->m_log = NULL; 1989 destroy_workqueue(log->l_ioend_workqueue); 1990 kmem_free(log); 1991 } 1992 1993 /* 1994 * Update counters atomically now that memcpy is done. 1995 */ 1996 static inline void 1997 xlog_state_finish_copy( 1998 struct xlog *log, 1999 struct xlog_in_core *iclog, 2000 int record_cnt, 2001 int copy_bytes) 2002 { 2003 lockdep_assert_held(&log->l_icloglock); 2004 2005 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2006 iclog->ic_offset += copy_bytes; 2007 } 2008 2009 /* 2010 * print out info relating to regions written which consume 2011 * the reservation 2012 */ 2013 void 2014 xlog_print_tic_res( 2015 struct xfs_mount *mp, 2016 struct xlog_ticket *ticket) 2017 { 2018 uint i; 2019 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 2020 2021 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 2022 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str 2023 static char *res_type_str[] = { 2024 REG_TYPE_STR(BFORMAT, "bformat"), 2025 REG_TYPE_STR(BCHUNK, "bchunk"), 2026 REG_TYPE_STR(EFI_FORMAT, "efi_format"), 2027 REG_TYPE_STR(EFD_FORMAT, "efd_format"), 2028 REG_TYPE_STR(IFORMAT, "iformat"), 2029 REG_TYPE_STR(ICORE, "icore"), 2030 REG_TYPE_STR(IEXT, "iext"), 2031 REG_TYPE_STR(IBROOT, "ibroot"), 2032 REG_TYPE_STR(ILOCAL, "ilocal"), 2033 REG_TYPE_STR(IATTR_EXT, "iattr_ext"), 2034 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"), 2035 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"), 2036 REG_TYPE_STR(QFORMAT, "qformat"), 2037 REG_TYPE_STR(DQUOT, "dquot"), 2038 REG_TYPE_STR(QUOTAOFF, "quotaoff"), 2039 REG_TYPE_STR(LRHEADER, "LR header"), 2040 REG_TYPE_STR(UNMOUNT, "unmount"), 2041 REG_TYPE_STR(COMMIT, "commit"), 2042 REG_TYPE_STR(TRANSHDR, "trans header"), 2043 REG_TYPE_STR(ICREATE, "inode create"), 2044 REG_TYPE_STR(RUI_FORMAT, "rui_format"), 2045 REG_TYPE_STR(RUD_FORMAT, "rud_format"), 2046 REG_TYPE_STR(CUI_FORMAT, "cui_format"), 2047 REG_TYPE_STR(CUD_FORMAT, "cud_format"), 2048 REG_TYPE_STR(BUI_FORMAT, "bui_format"), 2049 REG_TYPE_STR(BUD_FORMAT, "bud_format"), 2050 }; 2051 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1); 2052 #undef REG_TYPE_STR 2053 2054 xfs_warn(mp, "ticket reservation summary:"); 2055 xfs_warn(mp, " unit res = %d bytes", 2056 ticket->t_unit_res); 2057 xfs_warn(mp, " current res = %d bytes", 2058 ticket->t_curr_res); 2059 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2060 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2061 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2062 ticket->t_res_num_ophdrs, ophdr_spc); 2063 xfs_warn(mp, " ophdr + reg = %u bytes", 2064 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2065 xfs_warn(mp, " num regions = %u", 2066 ticket->t_res_num); 2067 2068 for (i = 0; i < ticket->t_res_num; i++) { 2069 uint r_type = ticket->t_res_arr[i].r_type; 2070 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2071 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2072 "bad-rtype" : res_type_str[r_type]), 2073 ticket->t_res_arr[i].r_len); 2074 } 2075 } 2076 2077 /* 2078 * Print a summary of the transaction. 2079 */ 2080 void 2081 xlog_print_trans( 2082 struct xfs_trans *tp) 2083 { 2084 struct xfs_mount *mp = tp->t_mountp; 2085 struct xfs_log_item *lip; 2086 2087 /* dump core transaction and ticket info */ 2088 xfs_warn(mp, "transaction summary:"); 2089 xfs_warn(mp, " log res = %d", tp->t_log_res); 2090 xfs_warn(mp, " log count = %d", tp->t_log_count); 2091 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2092 2093 xlog_print_tic_res(mp, tp->t_ticket); 2094 2095 /* dump each log item */ 2096 list_for_each_entry(lip, &tp->t_items, li_trans) { 2097 struct xfs_log_vec *lv = lip->li_lv; 2098 struct xfs_log_iovec *vec; 2099 int i; 2100 2101 xfs_warn(mp, "log item: "); 2102 xfs_warn(mp, " type = 0x%x", lip->li_type); 2103 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2104 if (!lv) 2105 continue; 2106 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2107 xfs_warn(mp, " size = %d", lv->lv_size); 2108 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2109 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2110 2111 /* dump each iovec for the log item */ 2112 vec = lv->lv_iovecp; 2113 for (i = 0; i < lv->lv_niovecs; i++) { 2114 int dumplen = min(vec->i_len, 32); 2115 2116 xfs_warn(mp, " iovec[%d]", i); 2117 xfs_warn(mp, " type = 0x%x", vec->i_type); 2118 xfs_warn(mp, " len = %d", vec->i_len); 2119 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2120 xfs_hex_dump(vec->i_addr, dumplen); 2121 2122 vec++; 2123 } 2124 } 2125 } 2126 2127 /* 2128 * Calculate the potential space needed by the log vector. We may need a start 2129 * record, and each region gets its own struct xlog_op_header and may need to be 2130 * double word aligned. 2131 */ 2132 static int 2133 xlog_write_calc_vec_length( 2134 struct xlog_ticket *ticket, 2135 struct xfs_log_vec *log_vector, 2136 uint optype) 2137 { 2138 struct xfs_log_vec *lv; 2139 int headers = 0; 2140 int len = 0; 2141 int i; 2142 2143 if (optype & XLOG_START_TRANS) 2144 headers++; 2145 2146 for (lv = log_vector; lv; lv = lv->lv_next) { 2147 /* we don't write ordered log vectors */ 2148 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2149 continue; 2150 2151 headers += lv->lv_niovecs; 2152 2153 for (i = 0; i < lv->lv_niovecs; i++) { 2154 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2155 2156 len += vecp->i_len; 2157 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2158 } 2159 } 2160 2161 ticket->t_res_num_ophdrs += headers; 2162 len += headers * sizeof(struct xlog_op_header); 2163 2164 return len; 2165 } 2166 2167 static void 2168 xlog_write_start_rec( 2169 struct xlog_op_header *ophdr, 2170 struct xlog_ticket *ticket) 2171 { 2172 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2173 ophdr->oh_clientid = ticket->t_clientid; 2174 ophdr->oh_len = 0; 2175 ophdr->oh_flags = XLOG_START_TRANS; 2176 ophdr->oh_res2 = 0; 2177 } 2178 2179 static xlog_op_header_t * 2180 xlog_write_setup_ophdr( 2181 struct xlog *log, 2182 struct xlog_op_header *ophdr, 2183 struct xlog_ticket *ticket, 2184 uint flags) 2185 { 2186 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2187 ophdr->oh_clientid = ticket->t_clientid; 2188 ophdr->oh_res2 = 0; 2189 2190 /* are we copying a commit or unmount record? */ 2191 ophdr->oh_flags = flags; 2192 2193 /* 2194 * We've seen logs corrupted with bad transaction client ids. This 2195 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2196 * and shut down the filesystem. 2197 */ 2198 switch (ophdr->oh_clientid) { 2199 case XFS_TRANSACTION: 2200 case XFS_VOLUME: 2201 case XFS_LOG: 2202 break; 2203 default: 2204 xfs_warn(log->l_mp, 2205 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT, 2206 ophdr->oh_clientid, ticket); 2207 return NULL; 2208 } 2209 2210 return ophdr; 2211 } 2212 2213 /* 2214 * Set up the parameters of the region copy into the log. This has 2215 * to handle region write split across multiple log buffers - this 2216 * state is kept external to this function so that this code can 2217 * be written in an obvious, self documenting manner. 2218 */ 2219 static int 2220 xlog_write_setup_copy( 2221 struct xlog_ticket *ticket, 2222 struct xlog_op_header *ophdr, 2223 int space_available, 2224 int space_required, 2225 int *copy_off, 2226 int *copy_len, 2227 int *last_was_partial_copy, 2228 int *bytes_consumed) 2229 { 2230 int still_to_copy; 2231 2232 still_to_copy = space_required - *bytes_consumed; 2233 *copy_off = *bytes_consumed; 2234 2235 if (still_to_copy <= space_available) { 2236 /* write of region completes here */ 2237 *copy_len = still_to_copy; 2238 ophdr->oh_len = cpu_to_be32(*copy_len); 2239 if (*last_was_partial_copy) 2240 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2241 *last_was_partial_copy = 0; 2242 *bytes_consumed = 0; 2243 return 0; 2244 } 2245 2246 /* partial write of region, needs extra log op header reservation */ 2247 *copy_len = space_available; 2248 ophdr->oh_len = cpu_to_be32(*copy_len); 2249 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2250 if (*last_was_partial_copy) 2251 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2252 *bytes_consumed += *copy_len; 2253 (*last_was_partial_copy)++; 2254 2255 /* account for new log op header */ 2256 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2257 ticket->t_res_num_ophdrs++; 2258 2259 return sizeof(struct xlog_op_header); 2260 } 2261 2262 static int 2263 xlog_write_copy_finish( 2264 struct xlog *log, 2265 struct xlog_in_core *iclog, 2266 uint flags, 2267 int *record_cnt, 2268 int *data_cnt, 2269 int *partial_copy, 2270 int *partial_copy_len, 2271 int log_offset, 2272 struct xlog_in_core **commit_iclog) 2273 { 2274 int error; 2275 2276 if (*partial_copy) { 2277 /* 2278 * This iclog has already been marked WANT_SYNC by 2279 * xlog_state_get_iclog_space. 2280 */ 2281 spin_lock(&log->l_icloglock); 2282 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2283 *record_cnt = 0; 2284 *data_cnt = 0; 2285 goto release_iclog; 2286 } 2287 2288 *partial_copy = 0; 2289 *partial_copy_len = 0; 2290 2291 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2292 /* no more space in this iclog - push it. */ 2293 spin_lock(&log->l_icloglock); 2294 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2295 *record_cnt = 0; 2296 *data_cnt = 0; 2297 2298 if (iclog->ic_state == XLOG_STATE_ACTIVE) 2299 xlog_state_switch_iclogs(log, iclog, 0); 2300 else 2301 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC || 2302 iclog->ic_state == XLOG_STATE_IOERROR); 2303 if (!commit_iclog) 2304 goto release_iclog; 2305 spin_unlock(&log->l_icloglock); 2306 ASSERT(flags & XLOG_COMMIT_TRANS); 2307 *commit_iclog = iclog; 2308 } 2309 2310 return 0; 2311 2312 release_iclog: 2313 error = xlog_state_release_iclog(log, iclog); 2314 spin_unlock(&log->l_icloglock); 2315 return error; 2316 } 2317 2318 /* 2319 * Write some region out to in-core log 2320 * 2321 * This will be called when writing externally provided regions or when 2322 * writing out a commit record for a given transaction. 2323 * 2324 * General algorithm: 2325 * 1. Find total length of this write. This may include adding to the 2326 * lengths passed in. 2327 * 2. Check whether we violate the tickets reservation. 2328 * 3. While writing to this iclog 2329 * A. Reserve as much space in this iclog as can get 2330 * B. If this is first write, save away start lsn 2331 * C. While writing this region: 2332 * 1. If first write of transaction, write start record 2333 * 2. Write log operation header (header per region) 2334 * 3. Find out if we can fit entire region into this iclog 2335 * 4. Potentially, verify destination memcpy ptr 2336 * 5. Memcpy (partial) region 2337 * 6. If partial copy, release iclog; otherwise, continue 2338 * copying more regions into current iclog 2339 * 4. Mark want sync bit (in simulation mode) 2340 * 5. Release iclog for potential flush to on-disk log. 2341 * 2342 * ERRORS: 2343 * 1. Panic if reservation is overrun. This should never happen since 2344 * reservation amounts are generated internal to the filesystem. 2345 * NOTES: 2346 * 1. Tickets are single threaded data structures. 2347 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2348 * syncing routine. When a single log_write region needs to span 2349 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2350 * on all log operation writes which don't contain the end of the 2351 * region. The XLOG_END_TRANS bit is used for the in-core log 2352 * operation which contains the end of the continued log_write region. 2353 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2354 * we don't really know exactly how much space will be used. As a result, 2355 * we don't update ic_offset until the end when we know exactly how many 2356 * bytes have been written out. 2357 */ 2358 int 2359 xlog_write( 2360 struct xlog *log, 2361 struct xfs_log_vec *log_vector, 2362 struct xlog_ticket *ticket, 2363 xfs_lsn_t *start_lsn, 2364 struct xlog_in_core **commit_iclog, 2365 uint optype) 2366 { 2367 struct xlog_in_core *iclog = NULL; 2368 struct xfs_log_vec *lv = log_vector; 2369 struct xfs_log_iovec *vecp = lv->lv_iovecp; 2370 int index = 0; 2371 int len; 2372 int partial_copy = 0; 2373 int partial_copy_len = 0; 2374 int contwr = 0; 2375 int record_cnt = 0; 2376 int data_cnt = 0; 2377 int error = 0; 2378 2379 /* 2380 * If this is a commit or unmount transaction, we don't need a start 2381 * record to be written. We do, however, have to account for the 2382 * commit or unmount header that gets written. Hence we always have 2383 * to account for an extra xlog_op_header here. 2384 */ 2385 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2386 if (ticket->t_curr_res < 0) { 2387 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2388 "ctx ticket reservation ran out. Need to up reservation"); 2389 xlog_print_tic_res(log->l_mp, ticket); 2390 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 2391 } 2392 2393 len = xlog_write_calc_vec_length(ticket, log_vector, optype); 2394 if (start_lsn) 2395 *start_lsn = 0; 2396 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2397 void *ptr; 2398 int log_offset; 2399 2400 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2401 &contwr, &log_offset); 2402 if (error) 2403 return error; 2404 2405 ASSERT(log_offset <= iclog->ic_size - 1); 2406 ptr = iclog->ic_datap + log_offset; 2407 2408 /* Start_lsn is the first lsn written to. */ 2409 if (start_lsn && !*start_lsn) 2410 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2411 2412 /* 2413 * This loop writes out as many regions as can fit in the amount 2414 * of space which was allocated by xlog_state_get_iclog_space(). 2415 */ 2416 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2417 struct xfs_log_iovec *reg; 2418 struct xlog_op_header *ophdr; 2419 int copy_len; 2420 int copy_off; 2421 bool ordered = false; 2422 bool wrote_start_rec = false; 2423 2424 /* ordered log vectors have no regions to write */ 2425 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2426 ASSERT(lv->lv_niovecs == 0); 2427 ordered = true; 2428 goto next_lv; 2429 } 2430 2431 reg = &vecp[index]; 2432 ASSERT(reg->i_len % sizeof(int32_t) == 0); 2433 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0); 2434 2435 /* 2436 * Before we start formatting log vectors, we need to 2437 * write a start record. Only do this for the first 2438 * iclog we write to. 2439 */ 2440 if (optype & XLOG_START_TRANS) { 2441 xlog_write_start_rec(ptr, ticket); 2442 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2443 sizeof(struct xlog_op_header)); 2444 optype &= ~XLOG_START_TRANS; 2445 wrote_start_rec = true; 2446 } 2447 2448 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype); 2449 if (!ophdr) 2450 return -EIO; 2451 2452 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2453 sizeof(struct xlog_op_header)); 2454 2455 len += xlog_write_setup_copy(ticket, ophdr, 2456 iclog->ic_size-log_offset, 2457 reg->i_len, 2458 ©_off, ©_len, 2459 &partial_copy, 2460 &partial_copy_len); 2461 xlog_verify_dest_ptr(log, ptr); 2462 2463 /* 2464 * Copy region. 2465 * 2466 * Unmount records just log an opheader, so can have 2467 * empty payloads with no data region to copy. Hence we 2468 * only copy the payload if the vector says it has data 2469 * to copy. 2470 */ 2471 ASSERT(copy_len >= 0); 2472 if (copy_len > 0) { 2473 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2474 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2475 copy_len); 2476 } 2477 copy_len += sizeof(struct xlog_op_header); 2478 record_cnt++; 2479 if (wrote_start_rec) { 2480 copy_len += sizeof(struct xlog_op_header); 2481 record_cnt++; 2482 } 2483 data_cnt += contwr ? copy_len : 0; 2484 2485 error = xlog_write_copy_finish(log, iclog, optype, 2486 &record_cnt, &data_cnt, 2487 &partial_copy, 2488 &partial_copy_len, 2489 log_offset, 2490 commit_iclog); 2491 if (error) 2492 return error; 2493 2494 /* 2495 * if we had a partial copy, we need to get more iclog 2496 * space but we don't want to increment the region 2497 * index because there is still more is this region to 2498 * write. 2499 * 2500 * If we completed writing this region, and we flushed 2501 * the iclog (indicated by resetting of the record 2502 * count), then we also need to get more log space. If 2503 * this was the last record, though, we are done and 2504 * can just return. 2505 */ 2506 if (partial_copy) 2507 break; 2508 2509 if (++index == lv->lv_niovecs) { 2510 next_lv: 2511 lv = lv->lv_next; 2512 index = 0; 2513 if (lv) 2514 vecp = lv->lv_iovecp; 2515 } 2516 if (record_cnt == 0 && !ordered) { 2517 if (!lv) 2518 return 0; 2519 break; 2520 } 2521 } 2522 } 2523 2524 ASSERT(len == 0); 2525 2526 spin_lock(&log->l_icloglock); 2527 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2528 if (commit_iclog) { 2529 ASSERT(optype & XLOG_COMMIT_TRANS); 2530 *commit_iclog = iclog; 2531 } else { 2532 error = xlog_state_release_iclog(log, iclog); 2533 } 2534 spin_unlock(&log->l_icloglock); 2535 2536 return error; 2537 } 2538 2539 static void 2540 xlog_state_activate_iclog( 2541 struct xlog_in_core *iclog, 2542 int *iclogs_changed) 2543 { 2544 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2545 trace_xlog_iclog_activate(iclog, _RET_IP_); 2546 2547 /* 2548 * If the number of ops in this iclog indicate it just contains the 2549 * dummy transaction, we can change state into IDLE (the second time 2550 * around). Otherwise we should change the state into NEED a dummy. 2551 * We don't need to cover the dummy. 2552 */ 2553 if (*iclogs_changed == 0 && 2554 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) { 2555 *iclogs_changed = 1; 2556 } else { 2557 /* 2558 * We have two dirty iclogs so start over. This could also be 2559 * num of ops indicating this is not the dummy going out. 2560 */ 2561 *iclogs_changed = 2; 2562 } 2563 2564 iclog->ic_state = XLOG_STATE_ACTIVE; 2565 iclog->ic_offset = 0; 2566 iclog->ic_header.h_num_logops = 0; 2567 memset(iclog->ic_header.h_cycle_data, 0, 2568 sizeof(iclog->ic_header.h_cycle_data)); 2569 iclog->ic_header.h_lsn = 0; 2570 } 2571 2572 /* 2573 * Loop through all iclogs and mark all iclogs currently marked DIRTY as 2574 * ACTIVE after iclog I/O has completed. 2575 */ 2576 static void 2577 xlog_state_activate_iclogs( 2578 struct xlog *log, 2579 int *iclogs_changed) 2580 { 2581 struct xlog_in_core *iclog = log->l_iclog; 2582 2583 do { 2584 if (iclog->ic_state == XLOG_STATE_DIRTY) 2585 xlog_state_activate_iclog(iclog, iclogs_changed); 2586 /* 2587 * The ordering of marking iclogs ACTIVE must be maintained, so 2588 * an iclog doesn't become ACTIVE beyond one that is SYNCING. 2589 */ 2590 else if (iclog->ic_state != XLOG_STATE_ACTIVE) 2591 break; 2592 } while ((iclog = iclog->ic_next) != log->l_iclog); 2593 } 2594 2595 static int 2596 xlog_covered_state( 2597 int prev_state, 2598 int iclogs_changed) 2599 { 2600 /* 2601 * We go to NEED for any non-covering writes. We go to NEED2 if we just 2602 * wrote the first covering record (DONE). We go to IDLE if we just 2603 * wrote the second covering record (DONE2) and remain in IDLE until a 2604 * non-covering write occurs. 2605 */ 2606 switch (prev_state) { 2607 case XLOG_STATE_COVER_IDLE: 2608 if (iclogs_changed == 1) 2609 return XLOG_STATE_COVER_IDLE; 2610 fallthrough; 2611 case XLOG_STATE_COVER_NEED: 2612 case XLOG_STATE_COVER_NEED2: 2613 break; 2614 case XLOG_STATE_COVER_DONE: 2615 if (iclogs_changed == 1) 2616 return XLOG_STATE_COVER_NEED2; 2617 break; 2618 case XLOG_STATE_COVER_DONE2: 2619 if (iclogs_changed == 1) 2620 return XLOG_STATE_COVER_IDLE; 2621 break; 2622 default: 2623 ASSERT(0); 2624 } 2625 2626 return XLOG_STATE_COVER_NEED; 2627 } 2628 2629 STATIC void 2630 xlog_state_clean_iclog( 2631 struct xlog *log, 2632 struct xlog_in_core *dirty_iclog) 2633 { 2634 int iclogs_changed = 0; 2635 2636 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_); 2637 2638 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2639 2640 xlog_state_activate_iclogs(log, &iclogs_changed); 2641 wake_up_all(&dirty_iclog->ic_force_wait); 2642 2643 if (iclogs_changed) { 2644 log->l_covered_state = xlog_covered_state(log->l_covered_state, 2645 iclogs_changed); 2646 } 2647 } 2648 2649 STATIC xfs_lsn_t 2650 xlog_get_lowest_lsn( 2651 struct xlog *log) 2652 { 2653 struct xlog_in_core *iclog = log->l_iclog; 2654 xfs_lsn_t lowest_lsn = 0, lsn; 2655 2656 do { 2657 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2658 iclog->ic_state == XLOG_STATE_DIRTY) 2659 continue; 2660 2661 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2662 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2663 lowest_lsn = lsn; 2664 } while ((iclog = iclog->ic_next) != log->l_iclog); 2665 2666 return lowest_lsn; 2667 } 2668 2669 /* 2670 * Completion of a iclog IO does not imply that a transaction has completed, as 2671 * transactions can be large enough to span many iclogs. We cannot change the 2672 * tail of the log half way through a transaction as this may be the only 2673 * transaction in the log and moving the tail to point to the middle of it 2674 * will prevent recovery from finding the start of the transaction. Hence we 2675 * should only update the last_sync_lsn if this iclog contains transaction 2676 * completion callbacks on it. 2677 * 2678 * We have to do this before we drop the icloglock to ensure we are the only one 2679 * that can update it. 2680 * 2681 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick 2682 * the reservation grant head pushing. This is due to the fact that the push 2683 * target is bound by the current last_sync_lsn value. Hence if we have a large 2684 * amount of log space bound up in this committing transaction then the 2685 * last_sync_lsn value may be the limiting factor preventing tail pushing from 2686 * freeing space in the log. Hence once we've updated the last_sync_lsn we 2687 * should push the AIL to ensure the push target (and hence the grant head) is 2688 * no longer bound by the old log head location and can move forwards and make 2689 * progress again. 2690 */ 2691 static void 2692 xlog_state_set_callback( 2693 struct xlog *log, 2694 struct xlog_in_core *iclog, 2695 xfs_lsn_t header_lsn) 2696 { 2697 trace_xlog_iclog_callback(iclog, _RET_IP_); 2698 iclog->ic_state = XLOG_STATE_CALLBACK; 2699 2700 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2701 header_lsn) <= 0); 2702 2703 if (list_empty_careful(&iclog->ic_callbacks)) 2704 return; 2705 2706 atomic64_set(&log->l_last_sync_lsn, header_lsn); 2707 xlog_grant_push_ail(log, 0); 2708 } 2709 2710 /* 2711 * Return true if we need to stop processing, false to continue to the next 2712 * iclog. The caller will need to run callbacks if the iclog is returned in the 2713 * XLOG_STATE_CALLBACK state. 2714 */ 2715 static bool 2716 xlog_state_iodone_process_iclog( 2717 struct xlog *log, 2718 struct xlog_in_core *iclog, 2719 bool *ioerror) 2720 { 2721 xfs_lsn_t lowest_lsn; 2722 xfs_lsn_t header_lsn; 2723 2724 switch (iclog->ic_state) { 2725 case XLOG_STATE_ACTIVE: 2726 case XLOG_STATE_DIRTY: 2727 /* 2728 * Skip all iclogs in the ACTIVE & DIRTY states: 2729 */ 2730 return false; 2731 case XLOG_STATE_IOERROR: 2732 /* 2733 * Between marking a filesystem SHUTDOWN and stopping the log, 2734 * we do flush all iclogs to disk (if there wasn't a log I/O 2735 * error). So, we do want things to go smoothly in case of just 2736 * a SHUTDOWN w/o a LOG_IO_ERROR. 2737 */ 2738 *ioerror = true; 2739 return false; 2740 case XLOG_STATE_DONE_SYNC: 2741 /* 2742 * Now that we have an iclog that is in the DONE_SYNC state, do 2743 * one more check here to see if we have chased our tail around. 2744 * If this is not the lowest lsn iclog, then we will leave it 2745 * for another completion to process. 2746 */ 2747 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2748 lowest_lsn = xlog_get_lowest_lsn(log); 2749 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2750 return false; 2751 xlog_state_set_callback(log, iclog, header_lsn); 2752 return false; 2753 default: 2754 /* 2755 * Can only perform callbacks in order. Since this iclog is not 2756 * in the DONE_SYNC state, we skip the rest and just try to 2757 * clean up. 2758 */ 2759 return true; 2760 } 2761 } 2762 2763 STATIC void 2764 xlog_state_do_callback( 2765 struct xlog *log) 2766 { 2767 struct xlog_in_core *iclog; 2768 struct xlog_in_core *first_iclog; 2769 bool cycled_icloglock; 2770 bool ioerror; 2771 int flushcnt = 0; 2772 int repeats = 0; 2773 2774 spin_lock(&log->l_icloglock); 2775 do { 2776 /* 2777 * Scan all iclogs starting with the one pointed to by the 2778 * log. Reset this starting point each time the log is 2779 * unlocked (during callbacks). 2780 * 2781 * Keep looping through iclogs until one full pass is made 2782 * without running any callbacks. 2783 */ 2784 first_iclog = log->l_iclog; 2785 iclog = log->l_iclog; 2786 cycled_icloglock = false; 2787 ioerror = false; 2788 repeats++; 2789 2790 do { 2791 LIST_HEAD(cb_list); 2792 2793 if (xlog_state_iodone_process_iclog(log, iclog, 2794 &ioerror)) 2795 break; 2796 2797 if (iclog->ic_state != XLOG_STATE_CALLBACK && 2798 iclog->ic_state != XLOG_STATE_IOERROR) { 2799 iclog = iclog->ic_next; 2800 continue; 2801 } 2802 list_splice_init(&iclog->ic_callbacks, &cb_list); 2803 spin_unlock(&log->l_icloglock); 2804 2805 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_); 2806 xlog_cil_process_committed(&cb_list); 2807 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_); 2808 cycled_icloglock = true; 2809 2810 spin_lock(&log->l_icloglock); 2811 if (XLOG_FORCED_SHUTDOWN(log)) 2812 wake_up_all(&iclog->ic_force_wait); 2813 else 2814 xlog_state_clean_iclog(log, iclog); 2815 iclog = iclog->ic_next; 2816 } while (first_iclog != iclog); 2817 2818 if (repeats > 5000) { 2819 flushcnt += repeats; 2820 repeats = 0; 2821 xfs_warn(log->l_mp, 2822 "%s: possible infinite loop (%d iterations)", 2823 __func__, flushcnt); 2824 } 2825 } while (!ioerror && cycled_icloglock); 2826 2827 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE || 2828 log->l_iclog->ic_state == XLOG_STATE_IOERROR) 2829 wake_up_all(&log->l_flush_wait); 2830 2831 spin_unlock(&log->l_icloglock); 2832 } 2833 2834 2835 /* 2836 * Finish transitioning this iclog to the dirty state. 2837 * 2838 * Make sure that we completely execute this routine only when this is 2839 * the last call to the iclog. There is a good chance that iclog flushes, 2840 * when we reach the end of the physical log, get turned into 2 separate 2841 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2842 * routine. By using the reference count bwritecnt, we guarantee that only 2843 * the second completion goes through. 2844 * 2845 * Callbacks could take time, so they are done outside the scope of the 2846 * global state machine log lock. 2847 */ 2848 STATIC void 2849 xlog_state_done_syncing( 2850 struct xlog_in_core *iclog) 2851 { 2852 struct xlog *log = iclog->ic_log; 2853 2854 spin_lock(&log->l_icloglock); 2855 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2856 trace_xlog_iclog_sync_done(iclog, _RET_IP_); 2857 2858 /* 2859 * If we got an error, either on the first buffer, or in the case of 2860 * split log writes, on the second, we shut down the file system and 2861 * no iclogs should ever be attempted to be written to disk again. 2862 */ 2863 if (!XLOG_FORCED_SHUTDOWN(log)) { 2864 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING); 2865 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2866 } 2867 2868 /* 2869 * Someone could be sleeping prior to writing out the next 2870 * iclog buffer, we wake them all, one will get to do the 2871 * I/O, the others get to wait for the result. 2872 */ 2873 wake_up_all(&iclog->ic_write_wait); 2874 spin_unlock(&log->l_icloglock); 2875 xlog_state_do_callback(log); 2876 } 2877 2878 /* 2879 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2880 * sleep. We wait on the flush queue on the head iclog as that should be 2881 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2882 * we will wait here and all new writes will sleep until a sync completes. 2883 * 2884 * The in-core logs are used in a circular fashion. They are not used 2885 * out-of-order even when an iclog past the head is free. 2886 * 2887 * return: 2888 * * log_offset where xlog_write() can start writing into the in-core 2889 * log's data space. 2890 * * in-core log pointer to which xlog_write() should write. 2891 * * boolean indicating this is a continued write to an in-core log. 2892 * If this is the last write, then the in-core log's offset field 2893 * needs to be incremented, depending on the amount of data which 2894 * is copied. 2895 */ 2896 STATIC int 2897 xlog_state_get_iclog_space( 2898 struct xlog *log, 2899 int len, 2900 struct xlog_in_core **iclogp, 2901 struct xlog_ticket *ticket, 2902 int *continued_write, 2903 int *logoffsetp) 2904 { 2905 int log_offset; 2906 xlog_rec_header_t *head; 2907 xlog_in_core_t *iclog; 2908 2909 restart: 2910 spin_lock(&log->l_icloglock); 2911 if (XLOG_FORCED_SHUTDOWN(log)) { 2912 spin_unlock(&log->l_icloglock); 2913 return -EIO; 2914 } 2915 2916 iclog = log->l_iclog; 2917 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2918 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2919 2920 /* Wait for log writes to have flushed */ 2921 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2922 goto restart; 2923 } 2924 2925 head = &iclog->ic_header; 2926 2927 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2928 log_offset = iclog->ic_offset; 2929 2930 trace_xlog_iclog_get_space(iclog, _RET_IP_); 2931 2932 /* On the 1st write to an iclog, figure out lsn. This works 2933 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2934 * committing to. If the offset is set, that's how many blocks 2935 * must be written. 2936 */ 2937 if (log_offset == 0) { 2938 ticket->t_curr_res -= log->l_iclog_hsize; 2939 xlog_tic_add_region(ticket, 2940 log->l_iclog_hsize, 2941 XLOG_REG_TYPE_LRHEADER); 2942 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2943 head->h_lsn = cpu_to_be64( 2944 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2945 ASSERT(log->l_curr_block >= 0); 2946 } 2947 2948 /* If there is enough room to write everything, then do it. Otherwise, 2949 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2950 * bit is on, so this will get flushed out. Don't update ic_offset 2951 * until you know exactly how many bytes get copied. Therefore, wait 2952 * until later to update ic_offset. 2953 * 2954 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2955 * can fit into remaining data section. 2956 */ 2957 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2958 int error = 0; 2959 2960 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2961 2962 /* 2963 * If we are the only one writing to this iclog, sync it to 2964 * disk. We need to do an atomic compare and decrement here to 2965 * avoid racing with concurrent atomic_dec_and_lock() calls in 2966 * xlog_state_release_iclog() when there is more than one 2967 * reference to the iclog. 2968 */ 2969 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 2970 error = xlog_state_release_iclog(log, iclog); 2971 spin_unlock(&log->l_icloglock); 2972 if (error) 2973 return error; 2974 goto restart; 2975 } 2976 2977 /* Do we have enough room to write the full amount in the remainder 2978 * of this iclog? Or must we continue a write on the next iclog and 2979 * mark this iclog as completely taken? In the case where we switch 2980 * iclogs (to mark it taken), this particular iclog will release/sync 2981 * to disk in xlog_write(). 2982 */ 2983 if (len <= iclog->ic_size - iclog->ic_offset) { 2984 *continued_write = 0; 2985 iclog->ic_offset += len; 2986 } else { 2987 *continued_write = 1; 2988 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2989 } 2990 *iclogp = iclog; 2991 2992 ASSERT(iclog->ic_offset <= iclog->ic_size); 2993 spin_unlock(&log->l_icloglock); 2994 2995 *logoffsetp = log_offset; 2996 return 0; 2997 } 2998 2999 /* 3000 * The first cnt-1 times a ticket goes through here we don't need to move the 3001 * grant write head because the permanent reservation has reserved cnt times the 3002 * unit amount. Release part of current permanent unit reservation and reset 3003 * current reservation to be one units worth. Also move grant reservation head 3004 * forward. 3005 */ 3006 void 3007 xfs_log_ticket_regrant( 3008 struct xlog *log, 3009 struct xlog_ticket *ticket) 3010 { 3011 trace_xfs_log_ticket_regrant(log, ticket); 3012 3013 if (ticket->t_cnt > 0) 3014 ticket->t_cnt--; 3015 3016 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3017 ticket->t_curr_res); 3018 xlog_grant_sub_space(log, &log->l_write_head.grant, 3019 ticket->t_curr_res); 3020 ticket->t_curr_res = ticket->t_unit_res; 3021 xlog_tic_reset_res(ticket); 3022 3023 trace_xfs_log_ticket_regrant_sub(log, ticket); 3024 3025 /* just return if we still have some of the pre-reserved space */ 3026 if (!ticket->t_cnt) { 3027 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3028 ticket->t_unit_res); 3029 trace_xfs_log_ticket_regrant_exit(log, ticket); 3030 3031 ticket->t_curr_res = ticket->t_unit_res; 3032 xlog_tic_reset_res(ticket); 3033 } 3034 3035 xfs_log_ticket_put(ticket); 3036 } 3037 3038 /* 3039 * Give back the space left from a reservation. 3040 * 3041 * All the information we need to make a correct determination of space left 3042 * is present. For non-permanent reservations, things are quite easy. The 3043 * count should have been decremented to zero. We only need to deal with the 3044 * space remaining in the current reservation part of the ticket. If the 3045 * ticket contains a permanent reservation, there may be left over space which 3046 * needs to be released. A count of N means that N-1 refills of the current 3047 * reservation can be done before we need to ask for more space. The first 3048 * one goes to fill up the first current reservation. Once we run out of 3049 * space, the count will stay at zero and the only space remaining will be 3050 * in the current reservation field. 3051 */ 3052 void 3053 xfs_log_ticket_ungrant( 3054 struct xlog *log, 3055 struct xlog_ticket *ticket) 3056 { 3057 int bytes; 3058 3059 trace_xfs_log_ticket_ungrant(log, ticket); 3060 3061 if (ticket->t_cnt > 0) 3062 ticket->t_cnt--; 3063 3064 trace_xfs_log_ticket_ungrant_sub(log, ticket); 3065 3066 /* 3067 * If this is a permanent reservation ticket, we may be able to free 3068 * up more space based on the remaining count. 3069 */ 3070 bytes = ticket->t_curr_res; 3071 if (ticket->t_cnt > 0) { 3072 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3073 bytes += ticket->t_unit_res*ticket->t_cnt; 3074 } 3075 3076 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3077 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3078 3079 trace_xfs_log_ticket_ungrant_exit(log, ticket); 3080 3081 xfs_log_space_wake(log->l_mp); 3082 xfs_log_ticket_put(ticket); 3083 } 3084 3085 /* 3086 * This routine will mark the current iclog in the ring as WANT_SYNC and move 3087 * the current iclog pointer to the next iclog in the ring. 3088 */ 3089 STATIC void 3090 xlog_state_switch_iclogs( 3091 struct xlog *log, 3092 struct xlog_in_core *iclog, 3093 int eventual_size) 3094 { 3095 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3096 assert_spin_locked(&log->l_icloglock); 3097 trace_xlog_iclog_switch(iclog, _RET_IP_); 3098 3099 if (!eventual_size) 3100 eventual_size = iclog->ic_offset; 3101 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3102 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3103 log->l_prev_block = log->l_curr_block; 3104 log->l_prev_cycle = log->l_curr_cycle; 3105 3106 /* roll log?: ic_offset changed later */ 3107 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3108 3109 /* Round up to next log-sunit */ 3110 if (log->l_iclog_roundoff > BBSIZE) { 3111 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff); 3112 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3113 } 3114 3115 if (log->l_curr_block >= log->l_logBBsize) { 3116 /* 3117 * Rewind the current block before the cycle is bumped to make 3118 * sure that the combined LSN never transiently moves forward 3119 * when the log wraps to the next cycle. This is to support the 3120 * unlocked sample of these fields from xlog_valid_lsn(). Most 3121 * other cases should acquire l_icloglock. 3122 */ 3123 log->l_curr_block -= log->l_logBBsize; 3124 ASSERT(log->l_curr_block >= 0); 3125 smp_wmb(); 3126 log->l_curr_cycle++; 3127 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3128 log->l_curr_cycle++; 3129 } 3130 ASSERT(iclog == log->l_iclog); 3131 log->l_iclog = iclog->ic_next; 3132 } 3133 3134 /* 3135 * Write out all data in the in-core log as of this exact moment in time. 3136 * 3137 * Data may be written to the in-core log during this call. However, 3138 * we don't guarantee this data will be written out. A change from past 3139 * implementation means this routine will *not* write out zero length LRs. 3140 * 3141 * Basically, we try and perform an intelligent scan of the in-core logs. 3142 * If we determine there is no flushable data, we just return. There is no 3143 * flushable data if: 3144 * 3145 * 1. the current iclog is active and has no data; the previous iclog 3146 * is in the active or dirty state. 3147 * 2. the current iclog is drity, and the previous iclog is in the 3148 * active or dirty state. 3149 * 3150 * We may sleep if: 3151 * 3152 * 1. the current iclog is not in the active nor dirty state. 3153 * 2. the current iclog dirty, and the previous iclog is not in the 3154 * active nor dirty state. 3155 * 3. the current iclog is active, and there is another thread writing 3156 * to this particular iclog. 3157 * 4. a) the current iclog is active and has no other writers 3158 * b) when we return from flushing out this iclog, it is still 3159 * not in the active nor dirty state. 3160 */ 3161 int 3162 xfs_log_force( 3163 struct xfs_mount *mp, 3164 uint flags) 3165 { 3166 struct xlog *log = mp->m_log; 3167 struct xlog_in_core *iclog; 3168 xfs_lsn_t lsn; 3169 3170 XFS_STATS_INC(mp, xs_log_force); 3171 trace_xfs_log_force(mp, 0, _RET_IP_); 3172 3173 xlog_cil_force(log); 3174 3175 spin_lock(&log->l_icloglock); 3176 iclog = log->l_iclog; 3177 if (iclog->ic_state == XLOG_STATE_IOERROR) 3178 goto out_error; 3179 3180 trace_xlog_iclog_force(iclog, _RET_IP_); 3181 3182 if (iclog->ic_state == XLOG_STATE_DIRTY || 3183 (iclog->ic_state == XLOG_STATE_ACTIVE && 3184 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3185 /* 3186 * If the head is dirty or (active and empty), then we need to 3187 * look at the previous iclog. 3188 * 3189 * If the previous iclog is active or dirty we are done. There 3190 * is nothing to sync out. Otherwise, we attach ourselves to the 3191 * previous iclog and go to sleep. 3192 */ 3193 iclog = iclog->ic_prev; 3194 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3195 if (atomic_read(&iclog->ic_refcnt) == 0) { 3196 /* 3197 * We are the only one with access to this iclog. 3198 * 3199 * Flush it out now. There should be a roundoff of zero 3200 * to show that someone has already taken care of the 3201 * roundoff from the previous sync. 3202 */ 3203 atomic_inc(&iclog->ic_refcnt); 3204 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3205 xlog_state_switch_iclogs(log, iclog, 0); 3206 if (xlog_state_release_iclog(log, iclog)) 3207 goto out_error; 3208 3209 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) 3210 goto out_unlock; 3211 } else { 3212 /* 3213 * Someone else is writing to this iclog. 3214 * 3215 * Use its call to flush out the data. However, the 3216 * other thread may not force out this LR, so we mark 3217 * it WANT_SYNC. 3218 */ 3219 xlog_state_switch_iclogs(log, iclog, 0); 3220 } 3221 } else { 3222 /* 3223 * If the head iclog is not active nor dirty, we just attach 3224 * ourselves to the head and go to sleep if necessary. 3225 */ 3226 ; 3227 } 3228 3229 if (flags & XFS_LOG_SYNC) 3230 return xlog_wait_on_iclog(iclog); 3231 out_unlock: 3232 spin_unlock(&log->l_icloglock); 3233 return 0; 3234 out_error: 3235 spin_unlock(&log->l_icloglock); 3236 return -EIO; 3237 } 3238 3239 static int 3240 xlog_force_lsn( 3241 struct xlog *log, 3242 xfs_lsn_t lsn, 3243 uint flags, 3244 int *log_flushed, 3245 bool already_slept) 3246 { 3247 struct xlog_in_core *iclog; 3248 3249 spin_lock(&log->l_icloglock); 3250 iclog = log->l_iclog; 3251 if (iclog->ic_state == XLOG_STATE_IOERROR) 3252 goto out_error; 3253 3254 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3255 trace_xlog_iclog_force_lsn(iclog, _RET_IP_); 3256 iclog = iclog->ic_next; 3257 if (iclog == log->l_iclog) 3258 goto out_unlock; 3259 } 3260 3261 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3262 /* 3263 * We sleep here if we haven't already slept (e.g. this is the 3264 * first time we've looked at the correct iclog buf) and the 3265 * buffer before us is going to be sync'ed. The reason for this 3266 * is that if we are doing sync transactions here, by waiting 3267 * for the previous I/O to complete, we can allow a few more 3268 * transactions into this iclog before we close it down. 3269 * 3270 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3271 * refcnt so we can release the log (which drops the ref count). 3272 * The state switch keeps new transaction commits from using 3273 * this buffer. When the current commits finish writing into 3274 * the buffer, the refcount will drop to zero and the buffer 3275 * will go out then. 3276 */ 3277 if (!already_slept && 3278 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 3279 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 3280 xlog_wait(&iclog->ic_prev->ic_write_wait, 3281 &log->l_icloglock); 3282 return -EAGAIN; 3283 } 3284 atomic_inc(&iclog->ic_refcnt); 3285 xlog_state_switch_iclogs(log, iclog, 0); 3286 if (xlog_state_release_iclog(log, iclog)) 3287 goto out_error; 3288 if (log_flushed) 3289 *log_flushed = 1; 3290 } 3291 3292 if (flags & XFS_LOG_SYNC) 3293 return xlog_wait_on_iclog(iclog); 3294 out_unlock: 3295 spin_unlock(&log->l_icloglock); 3296 return 0; 3297 out_error: 3298 spin_unlock(&log->l_icloglock); 3299 return -EIO; 3300 } 3301 3302 /* 3303 * Force the in-core log to disk for a specific LSN. 3304 * 3305 * Find in-core log with lsn. 3306 * If it is in the DIRTY state, just return. 3307 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3308 * state and go to sleep or return. 3309 * If it is in any other state, go to sleep or return. 3310 * 3311 * Synchronous forces are implemented with a wait queue. All callers trying 3312 * to force a given lsn to disk must wait on the queue attached to the 3313 * specific in-core log. When given in-core log finally completes its write 3314 * to disk, that thread will wake up all threads waiting on the queue. 3315 */ 3316 int 3317 xfs_log_force_seq( 3318 struct xfs_mount *mp, 3319 xfs_csn_t seq, 3320 uint flags, 3321 int *log_flushed) 3322 { 3323 struct xlog *log = mp->m_log; 3324 xfs_lsn_t lsn; 3325 int ret; 3326 ASSERT(seq != 0); 3327 3328 XFS_STATS_INC(mp, xs_log_force); 3329 trace_xfs_log_force(mp, seq, _RET_IP_); 3330 3331 lsn = xlog_cil_force_seq(log, seq); 3332 if (lsn == NULLCOMMITLSN) 3333 return 0; 3334 3335 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false); 3336 if (ret == -EAGAIN) { 3337 XFS_STATS_INC(mp, xs_log_force_sleep); 3338 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true); 3339 } 3340 return ret; 3341 } 3342 3343 /* 3344 * Free a used ticket when its refcount falls to zero. 3345 */ 3346 void 3347 xfs_log_ticket_put( 3348 xlog_ticket_t *ticket) 3349 { 3350 ASSERT(atomic_read(&ticket->t_ref) > 0); 3351 if (atomic_dec_and_test(&ticket->t_ref)) 3352 kmem_cache_free(xfs_log_ticket_zone, ticket); 3353 } 3354 3355 xlog_ticket_t * 3356 xfs_log_ticket_get( 3357 xlog_ticket_t *ticket) 3358 { 3359 ASSERT(atomic_read(&ticket->t_ref) > 0); 3360 atomic_inc(&ticket->t_ref); 3361 return ticket; 3362 } 3363 3364 /* 3365 * Figure out the total log space unit (in bytes) that would be 3366 * required for a log ticket. 3367 */ 3368 static int 3369 xlog_calc_unit_res( 3370 struct xlog *log, 3371 int unit_bytes) 3372 { 3373 int iclog_space; 3374 uint num_headers; 3375 3376 /* 3377 * Permanent reservations have up to 'cnt'-1 active log operations 3378 * in the log. A unit in this case is the amount of space for one 3379 * of these log operations. Normal reservations have a cnt of 1 3380 * and their unit amount is the total amount of space required. 3381 * 3382 * The following lines of code account for non-transaction data 3383 * which occupy space in the on-disk log. 3384 * 3385 * Normal form of a transaction is: 3386 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3387 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3388 * 3389 * We need to account for all the leadup data and trailer data 3390 * around the transaction data. 3391 * And then we need to account for the worst case in terms of using 3392 * more space. 3393 * The worst case will happen if: 3394 * - the placement of the transaction happens to be such that the 3395 * roundoff is at its maximum 3396 * - the transaction data is synced before the commit record is synced 3397 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3398 * Therefore the commit record is in its own Log Record. 3399 * This can happen as the commit record is called with its 3400 * own region to xlog_write(). 3401 * This then means that in the worst case, roundoff can happen for 3402 * the commit-rec as well. 3403 * The commit-rec is smaller than padding in this scenario and so it is 3404 * not added separately. 3405 */ 3406 3407 /* for trans header */ 3408 unit_bytes += sizeof(xlog_op_header_t); 3409 unit_bytes += sizeof(xfs_trans_header_t); 3410 3411 /* for start-rec */ 3412 unit_bytes += sizeof(xlog_op_header_t); 3413 3414 /* 3415 * for LR headers - the space for data in an iclog is the size minus 3416 * the space used for the headers. If we use the iclog size, then we 3417 * undercalculate the number of headers required. 3418 * 3419 * Furthermore - the addition of op headers for split-recs might 3420 * increase the space required enough to require more log and op 3421 * headers, so take that into account too. 3422 * 3423 * IMPORTANT: This reservation makes the assumption that if this 3424 * transaction is the first in an iclog and hence has the LR headers 3425 * accounted to it, then the remaining space in the iclog is 3426 * exclusively for this transaction. i.e. if the transaction is larger 3427 * than the iclog, it will be the only thing in that iclog. 3428 * Fundamentally, this means we must pass the entire log vector to 3429 * xlog_write to guarantee this. 3430 */ 3431 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3432 num_headers = howmany(unit_bytes, iclog_space); 3433 3434 /* for split-recs - ophdrs added when data split over LRs */ 3435 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3436 3437 /* add extra header reservations if we overrun */ 3438 while (!num_headers || 3439 howmany(unit_bytes, iclog_space) > num_headers) { 3440 unit_bytes += sizeof(xlog_op_header_t); 3441 num_headers++; 3442 } 3443 unit_bytes += log->l_iclog_hsize * num_headers; 3444 3445 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3446 unit_bytes += log->l_iclog_hsize; 3447 3448 /* roundoff padding for transaction data and one for commit record */ 3449 unit_bytes += 2 * log->l_iclog_roundoff; 3450 3451 return unit_bytes; 3452 } 3453 3454 int 3455 xfs_log_calc_unit_res( 3456 struct xfs_mount *mp, 3457 int unit_bytes) 3458 { 3459 return xlog_calc_unit_res(mp->m_log, unit_bytes); 3460 } 3461 3462 /* 3463 * Allocate and initialise a new log ticket. 3464 */ 3465 struct xlog_ticket * 3466 xlog_ticket_alloc( 3467 struct xlog *log, 3468 int unit_bytes, 3469 int cnt, 3470 char client, 3471 bool permanent) 3472 { 3473 struct xlog_ticket *tic; 3474 int unit_res; 3475 3476 tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL); 3477 3478 unit_res = xlog_calc_unit_res(log, unit_bytes); 3479 3480 atomic_set(&tic->t_ref, 1); 3481 tic->t_task = current; 3482 INIT_LIST_HEAD(&tic->t_queue); 3483 tic->t_unit_res = unit_res; 3484 tic->t_curr_res = unit_res; 3485 tic->t_cnt = cnt; 3486 tic->t_ocnt = cnt; 3487 tic->t_tid = prandom_u32(); 3488 tic->t_clientid = client; 3489 if (permanent) 3490 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3491 3492 xlog_tic_reset_res(tic); 3493 3494 return tic; 3495 } 3496 3497 #if defined(DEBUG) 3498 /* 3499 * Make sure that the destination ptr is within the valid data region of 3500 * one of the iclogs. This uses backup pointers stored in a different 3501 * part of the log in case we trash the log structure. 3502 */ 3503 STATIC void 3504 xlog_verify_dest_ptr( 3505 struct xlog *log, 3506 void *ptr) 3507 { 3508 int i; 3509 int good_ptr = 0; 3510 3511 for (i = 0; i < log->l_iclog_bufs; i++) { 3512 if (ptr >= log->l_iclog_bak[i] && 3513 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3514 good_ptr++; 3515 } 3516 3517 if (!good_ptr) 3518 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3519 } 3520 3521 /* 3522 * Check to make sure the grant write head didn't just over lap the tail. If 3523 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3524 * the cycles differ by exactly one and check the byte count. 3525 * 3526 * This check is run unlocked, so can give false positives. Rather than assert 3527 * on failures, use a warn-once flag and a panic tag to allow the admin to 3528 * determine if they want to panic the machine when such an error occurs. For 3529 * debug kernels this will have the same effect as using an assert but, unlinke 3530 * an assert, it can be turned off at runtime. 3531 */ 3532 STATIC void 3533 xlog_verify_grant_tail( 3534 struct xlog *log) 3535 { 3536 int tail_cycle, tail_blocks; 3537 int cycle, space; 3538 3539 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3540 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3541 if (tail_cycle != cycle) { 3542 if (cycle - 1 != tail_cycle && 3543 !(log->l_flags & XLOG_TAIL_WARN)) { 3544 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3545 "%s: cycle - 1 != tail_cycle", __func__); 3546 log->l_flags |= XLOG_TAIL_WARN; 3547 } 3548 3549 if (space > BBTOB(tail_blocks) && 3550 !(log->l_flags & XLOG_TAIL_WARN)) { 3551 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3552 "%s: space > BBTOB(tail_blocks)", __func__); 3553 log->l_flags |= XLOG_TAIL_WARN; 3554 } 3555 } 3556 } 3557 3558 /* check if it will fit */ 3559 STATIC void 3560 xlog_verify_tail_lsn( 3561 struct xlog *log, 3562 struct xlog_in_core *iclog, 3563 xfs_lsn_t tail_lsn) 3564 { 3565 int blocks; 3566 3567 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3568 blocks = 3569 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3570 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3571 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3572 } else { 3573 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3574 3575 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3576 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3577 3578 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3579 if (blocks < BTOBB(iclog->ic_offset) + 1) 3580 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3581 } 3582 } 3583 3584 /* 3585 * Perform a number of checks on the iclog before writing to disk. 3586 * 3587 * 1. Make sure the iclogs are still circular 3588 * 2. Make sure we have a good magic number 3589 * 3. Make sure we don't have magic numbers in the data 3590 * 4. Check fields of each log operation header for: 3591 * A. Valid client identifier 3592 * B. tid ptr value falls in valid ptr space (user space code) 3593 * C. Length in log record header is correct according to the 3594 * individual operation headers within record. 3595 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3596 * log, check the preceding blocks of the physical log to make sure all 3597 * the cycle numbers agree with the current cycle number. 3598 */ 3599 STATIC void 3600 xlog_verify_iclog( 3601 struct xlog *log, 3602 struct xlog_in_core *iclog, 3603 int count) 3604 { 3605 xlog_op_header_t *ophead; 3606 xlog_in_core_t *icptr; 3607 xlog_in_core_2_t *xhdr; 3608 void *base_ptr, *ptr, *p; 3609 ptrdiff_t field_offset; 3610 uint8_t clientid; 3611 int len, i, j, k, op_len; 3612 int idx; 3613 3614 /* check validity of iclog pointers */ 3615 spin_lock(&log->l_icloglock); 3616 icptr = log->l_iclog; 3617 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3618 ASSERT(icptr); 3619 3620 if (icptr != log->l_iclog) 3621 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3622 spin_unlock(&log->l_icloglock); 3623 3624 /* check log magic numbers */ 3625 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3626 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3627 3628 base_ptr = ptr = &iclog->ic_header; 3629 p = &iclog->ic_header; 3630 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3631 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3632 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3633 __func__); 3634 } 3635 3636 /* check fields */ 3637 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3638 base_ptr = ptr = iclog->ic_datap; 3639 ophead = ptr; 3640 xhdr = iclog->ic_data; 3641 for (i = 0; i < len; i++) { 3642 ophead = ptr; 3643 3644 /* clientid is only 1 byte */ 3645 p = &ophead->oh_clientid; 3646 field_offset = p - base_ptr; 3647 if (field_offset & 0x1ff) { 3648 clientid = ophead->oh_clientid; 3649 } else { 3650 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3651 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3652 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3653 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3654 clientid = xlog_get_client_id( 3655 xhdr[j].hic_xheader.xh_cycle_data[k]); 3656 } else { 3657 clientid = xlog_get_client_id( 3658 iclog->ic_header.h_cycle_data[idx]); 3659 } 3660 } 3661 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3662 xfs_warn(log->l_mp, 3663 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx", 3664 __func__, clientid, ophead, 3665 (unsigned long)field_offset); 3666 3667 /* check length */ 3668 p = &ophead->oh_len; 3669 field_offset = p - base_ptr; 3670 if (field_offset & 0x1ff) { 3671 op_len = be32_to_cpu(ophead->oh_len); 3672 } else { 3673 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3674 (uintptr_t)iclog->ic_datap); 3675 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3676 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3677 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3678 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3679 } else { 3680 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3681 } 3682 } 3683 ptr += sizeof(xlog_op_header_t) + op_len; 3684 } 3685 } 3686 #endif 3687 3688 /* 3689 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3690 */ 3691 STATIC int 3692 xlog_state_ioerror( 3693 struct xlog *log) 3694 { 3695 xlog_in_core_t *iclog, *ic; 3696 3697 iclog = log->l_iclog; 3698 if (iclog->ic_state != XLOG_STATE_IOERROR) { 3699 /* 3700 * Mark all the incore logs IOERROR. 3701 * From now on, no log flushes will result. 3702 */ 3703 ic = iclog; 3704 do { 3705 ic->ic_state = XLOG_STATE_IOERROR; 3706 ic = ic->ic_next; 3707 } while (ic != iclog); 3708 return 0; 3709 } 3710 /* 3711 * Return non-zero, if state transition has already happened. 3712 */ 3713 return 1; 3714 } 3715 3716 /* 3717 * This is called from xfs_force_shutdown, when we're forcibly 3718 * shutting down the filesystem, typically because of an IO error. 3719 * Our main objectives here are to make sure that: 3720 * a. if !logerror, flush the logs to disk. Anything modified 3721 * after this is ignored. 3722 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3723 * parties to find out, 'atomically'. 3724 * c. those who're sleeping on log reservations, pinned objects and 3725 * other resources get woken up, and be told the bad news. 3726 * d. nothing new gets queued up after (b) and (c) are done. 3727 * 3728 * Note: for the !logerror case we need to flush the regions held in memory out 3729 * to disk first. This needs to be done before the log is marked as shutdown, 3730 * otherwise the iclog writes will fail. 3731 */ 3732 int 3733 xfs_log_force_umount( 3734 struct xfs_mount *mp, 3735 int logerror) 3736 { 3737 struct xlog *log; 3738 int retval; 3739 3740 log = mp->m_log; 3741 3742 /* 3743 * If this happens during log recovery, don't worry about 3744 * locking; the log isn't open for business yet. 3745 */ 3746 if (!log || 3747 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3748 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3749 if (mp->m_sb_bp) 3750 mp->m_sb_bp->b_flags |= XBF_DONE; 3751 return 0; 3752 } 3753 3754 /* 3755 * Somebody could've already done the hard work for us. 3756 * No need to get locks for this. 3757 */ 3758 if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) { 3759 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3760 return 1; 3761 } 3762 3763 /* 3764 * Flush all the completed transactions to disk before marking the log 3765 * being shut down. We need to do it in this order to ensure that 3766 * completed operations are safely on disk before we shut down, and that 3767 * we don't have to issue any buffer IO after the shutdown flags are set 3768 * to guarantee this. 3769 */ 3770 if (!logerror) 3771 xfs_log_force(mp, XFS_LOG_SYNC); 3772 3773 /* 3774 * mark the filesystem and the as in a shutdown state and wake 3775 * everybody up to tell them the bad news. 3776 */ 3777 spin_lock(&log->l_icloglock); 3778 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3779 if (mp->m_sb_bp) 3780 mp->m_sb_bp->b_flags |= XBF_DONE; 3781 3782 /* 3783 * Mark the log and the iclogs with IO error flags to prevent any 3784 * further log IO from being issued or completed. 3785 */ 3786 log->l_flags |= XLOG_IO_ERROR; 3787 retval = xlog_state_ioerror(log); 3788 spin_unlock(&log->l_icloglock); 3789 3790 /* 3791 * We don't want anybody waiting for log reservations after this. That 3792 * means we have to wake up everybody queued up on reserveq as well as 3793 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3794 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3795 * action is protected by the grant locks. 3796 */ 3797 xlog_grant_head_wake_all(&log->l_reserve_head); 3798 xlog_grant_head_wake_all(&log->l_write_head); 3799 3800 /* 3801 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3802 * as if the log writes were completed. The abort handling in the log 3803 * item committed callback functions will do this again under lock to 3804 * avoid races. 3805 */ 3806 spin_lock(&log->l_cilp->xc_push_lock); 3807 wake_up_all(&log->l_cilp->xc_commit_wait); 3808 spin_unlock(&log->l_cilp->xc_push_lock); 3809 xlog_state_do_callback(log); 3810 3811 /* return non-zero if log IOERROR transition had already happened */ 3812 return retval; 3813 } 3814 3815 STATIC int 3816 xlog_iclogs_empty( 3817 struct xlog *log) 3818 { 3819 xlog_in_core_t *iclog; 3820 3821 iclog = log->l_iclog; 3822 do { 3823 /* endianness does not matter here, zero is zero in 3824 * any language. 3825 */ 3826 if (iclog->ic_header.h_num_logops) 3827 return 0; 3828 iclog = iclog->ic_next; 3829 } while (iclog != log->l_iclog); 3830 return 1; 3831 } 3832 3833 /* 3834 * Verify that an LSN stamped into a piece of metadata is valid. This is 3835 * intended for use in read verifiers on v5 superblocks. 3836 */ 3837 bool 3838 xfs_log_check_lsn( 3839 struct xfs_mount *mp, 3840 xfs_lsn_t lsn) 3841 { 3842 struct xlog *log = mp->m_log; 3843 bool valid; 3844 3845 /* 3846 * norecovery mode skips mount-time log processing and unconditionally 3847 * resets the in-core LSN. We can't validate in this mode, but 3848 * modifications are not allowed anyways so just return true. 3849 */ 3850 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 3851 return true; 3852 3853 /* 3854 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3855 * handled by recovery and thus safe to ignore here. 3856 */ 3857 if (lsn == NULLCOMMITLSN) 3858 return true; 3859 3860 valid = xlog_valid_lsn(mp->m_log, lsn); 3861 3862 /* warn the user about what's gone wrong before verifier failure */ 3863 if (!valid) { 3864 spin_lock(&log->l_icloglock); 3865 xfs_warn(mp, 3866 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3867 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 3868 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 3869 log->l_curr_cycle, log->l_curr_block); 3870 spin_unlock(&log->l_icloglock); 3871 } 3872 3873 return valid; 3874 } 3875 3876 bool 3877 xfs_log_in_recovery( 3878 struct xfs_mount *mp) 3879 { 3880 struct xlog *log = mp->m_log; 3881 3882 return log->l_flags & XLOG_ACTIVE_RECOVERY; 3883 } 3884