1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trace.h" 20 #include "xfs_sysfs.h" 21 #include "xfs_sb.h" 22 #include "xfs_health.h" 23 24 kmem_zone_t *xfs_log_ticket_zone; 25 26 /* Local miscellaneous function prototypes */ 27 STATIC int 28 xlog_commit_record( 29 struct xlog *log, 30 struct xlog_ticket *ticket, 31 struct xlog_in_core **iclog, 32 xfs_lsn_t *commitlsnp); 33 34 STATIC struct xlog * 35 xlog_alloc_log( 36 struct xfs_mount *mp, 37 struct xfs_buftarg *log_target, 38 xfs_daddr_t blk_offset, 39 int num_bblks); 40 STATIC int 41 xlog_space_left( 42 struct xlog *log, 43 atomic64_t *head); 44 STATIC void 45 xlog_dealloc_log( 46 struct xlog *log); 47 48 /* local state machine functions */ 49 STATIC void xlog_state_done_syncing( 50 struct xlog_in_core *iclog, 51 bool aborted); 52 STATIC int 53 xlog_state_get_iclog_space( 54 struct xlog *log, 55 int len, 56 struct xlog_in_core **iclog, 57 struct xlog_ticket *ticket, 58 int *continued_write, 59 int *logoffsetp); 60 STATIC void 61 xlog_state_switch_iclogs( 62 struct xlog *log, 63 struct xlog_in_core *iclog, 64 int eventual_size); 65 STATIC void 66 xlog_state_want_sync( 67 struct xlog *log, 68 struct xlog_in_core *iclog); 69 70 STATIC void 71 xlog_grant_push_ail( 72 struct xlog *log, 73 int need_bytes); 74 STATIC void 75 xlog_regrant_reserve_log_space( 76 struct xlog *log, 77 struct xlog_ticket *ticket); 78 STATIC void 79 xlog_ungrant_log_space( 80 struct xlog *log, 81 struct xlog_ticket *ticket); 82 STATIC void 83 xlog_sync( 84 struct xlog *log, 85 struct xlog_in_core *iclog); 86 #if defined(DEBUG) 87 STATIC void 88 xlog_verify_dest_ptr( 89 struct xlog *log, 90 void *ptr); 91 STATIC void 92 xlog_verify_grant_tail( 93 struct xlog *log); 94 STATIC void 95 xlog_verify_iclog( 96 struct xlog *log, 97 struct xlog_in_core *iclog, 98 int count); 99 STATIC void 100 xlog_verify_tail_lsn( 101 struct xlog *log, 102 struct xlog_in_core *iclog, 103 xfs_lsn_t tail_lsn); 104 #else 105 #define xlog_verify_dest_ptr(a,b) 106 #define xlog_verify_grant_tail(a) 107 #define xlog_verify_iclog(a,b,c) 108 #define xlog_verify_tail_lsn(a,b,c) 109 #endif 110 111 STATIC int 112 xlog_iclogs_empty( 113 struct xlog *log); 114 115 static void 116 xlog_grant_sub_space( 117 struct xlog *log, 118 atomic64_t *head, 119 int bytes) 120 { 121 int64_t head_val = atomic64_read(head); 122 int64_t new, old; 123 124 do { 125 int cycle, space; 126 127 xlog_crack_grant_head_val(head_val, &cycle, &space); 128 129 space -= bytes; 130 if (space < 0) { 131 space += log->l_logsize; 132 cycle--; 133 } 134 135 old = head_val; 136 new = xlog_assign_grant_head_val(cycle, space); 137 head_val = atomic64_cmpxchg(head, old, new); 138 } while (head_val != old); 139 } 140 141 static void 142 xlog_grant_add_space( 143 struct xlog *log, 144 atomic64_t *head, 145 int bytes) 146 { 147 int64_t head_val = atomic64_read(head); 148 int64_t new, old; 149 150 do { 151 int tmp; 152 int cycle, space; 153 154 xlog_crack_grant_head_val(head_val, &cycle, &space); 155 156 tmp = log->l_logsize - space; 157 if (tmp > bytes) 158 space += bytes; 159 else { 160 space = bytes - tmp; 161 cycle++; 162 } 163 164 old = head_val; 165 new = xlog_assign_grant_head_val(cycle, space); 166 head_val = atomic64_cmpxchg(head, old, new); 167 } while (head_val != old); 168 } 169 170 STATIC void 171 xlog_grant_head_init( 172 struct xlog_grant_head *head) 173 { 174 xlog_assign_grant_head(&head->grant, 1, 0); 175 INIT_LIST_HEAD(&head->waiters); 176 spin_lock_init(&head->lock); 177 } 178 179 STATIC void 180 xlog_grant_head_wake_all( 181 struct xlog_grant_head *head) 182 { 183 struct xlog_ticket *tic; 184 185 spin_lock(&head->lock); 186 list_for_each_entry(tic, &head->waiters, t_queue) 187 wake_up_process(tic->t_task); 188 spin_unlock(&head->lock); 189 } 190 191 static inline int 192 xlog_ticket_reservation( 193 struct xlog *log, 194 struct xlog_grant_head *head, 195 struct xlog_ticket *tic) 196 { 197 if (head == &log->l_write_head) { 198 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 199 return tic->t_unit_res; 200 } else { 201 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 202 return tic->t_unit_res * tic->t_cnt; 203 else 204 return tic->t_unit_res; 205 } 206 } 207 208 STATIC bool 209 xlog_grant_head_wake( 210 struct xlog *log, 211 struct xlog_grant_head *head, 212 int *free_bytes) 213 { 214 struct xlog_ticket *tic; 215 int need_bytes; 216 bool woken_task = false; 217 218 list_for_each_entry(tic, &head->waiters, t_queue) { 219 220 /* 221 * There is a chance that the size of the CIL checkpoints in 222 * progress at the last AIL push target calculation resulted in 223 * limiting the target to the log head (l_last_sync_lsn) at the 224 * time. This may not reflect where the log head is now as the 225 * CIL checkpoints may have completed. 226 * 227 * Hence when we are woken here, it may be that the head of the 228 * log that has moved rather than the tail. As the tail didn't 229 * move, there still won't be space available for the 230 * reservation we require. However, if the AIL has already 231 * pushed to the target defined by the old log head location, we 232 * will hang here waiting for something else to update the AIL 233 * push target. 234 * 235 * Therefore, if there isn't space to wake the first waiter on 236 * the grant head, we need to push the AIL again to ensure the 237 * target reflects both the current log tail and log head 238 * position before we wait for the tail to move again. 239 */ 240 241 need_bytes = xlog_ticket_reservation(log, head, tic); 242 if (*free_bytes < need_bytes) { 243 if (!woken_task) 244 xlog_grant_push_ail(log, need_bytes); 245 return false; 246 } 247 248 *free_bytes -= need_bytes; 249 trace_xfs_log_grant_wake_up(log, tic); 250 wake_up_process(tic->t_task); 251 woken_task = true; 252 } 253 254 return true; 255 } 256 257 STATIC int 258 xlog_grant_head_wait( 259 struct xlog *log, 260 struct xlog_grant_head *head, 261 struct xlog_ticket *tic, 262 int need_bytes) __releases(&head->lock) 263 __acquires(&head->lock) 264 { 265 list_add_tail(&tic->t_queue, &head->waiters); 266 267 do { 268 if (XLOG_FORCED_SHUTDOWN(log)) 269 goto shutdown; 270 xlog_grant_push_ail(log, need_bytes); 271 272 __set_current_state(TASK_UNINTERRUPTIBLE); 273 spin_unlock(&head->lock); 274 275 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 276 277 trace_xfs_log_grant_sleep(log, tic); 278 schedule(); 279 trace_xfs_log_grant_wake(log, tic); 280 281 spin_lock(&head->lock); 282 if (XLOG_FORCED_SHUTDOWN(log)) 283 goto shutdown; 284 } while (xlog_space_left(log, &head->grant) < need_bytes); 285 286 list_del_init(&tic->t_queue); 287 return 0; 288 shutdown: 289 list_del_init(&tic->t_queue); 290 return -EIO; 291 } 292 293 /* 294 * Atomically get the log space required for a log ticket. 295 * 296 * Once a ticket gets put onto head->waiters, it will only return after the 297 * needed reservation is satisfied. 298 * 299 * This function is structured so that it has a lock free fast path. This is 300 * necessary because every new transaction reservation will come through this 301 * path. Hence any lock will be globally hot if we take it unconditionally on 302 * every pass. 303 * 304 * As tickets are only ever moved on and off head->waiters under head->lock, we 305 * only need to take that lock if we are going to add the ticket to the queue 306 * and sleep. We can avoid taking the lock if the ticket was never added to 307 * head->waiters because the t_queue list head will be empty and we hold the 308 * only reference to it so it can safely be checked unlocked. 309 */ 310 STATIC int 311 xlog_grant_head_check( 312 struct xlog *log, 313 struct xlog_grant_head *head, 314 struct xlog_ticket *tic, 315 int *need_bytes) 316 { 317 int free_bytes; 318 int error = 0; 319 320 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 321 322 /* 323 * If there are other waiters on the queue then give them a chance at 324 * logspace before us. Wake up the first waiters, if we do not wake 325 * up all the waiters then go to sleep waiting for more free space, 326 * otherwise try to get some space for this transaction. 327 */ 328 *need_bytes = xlog_ticket_reservation(log, head, tic); 329 free_bytes = xlog_space_left(log, &head->grant); 330 if (!list_empty_careful(&head->waiters)) { 331 spin_lock(&head->lock); 332 if (!xlog_grant_head_wake(log, head, &free_bytes) || 333 free_bytes < *need_bytes) { 334 error = xlog_grant_head_wait(log, head, tic, 335 *need_bytes); 336 } 337 spin_unlock(&head->lock); 338 } else if (free_bytes < *need_bytes) { 339 spin_lock(&head->lock); 340 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 341 spin_unlock(&head->lock); 342 } 343 344 return error; 345 } 346 347 static void 348 xlog_tic_reset_res(xlog_ticket_t *tic) 349 { 350 tic->t_res_num = 0; 351 tic->t_res_arr_sum = 0; 352 tic->t_res_num_ophdrs = 0; 353 } 354 355 static void 356 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 357 { 358 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 359 /* add to overflow and start again */ 360 tic->t_res_o_flow += tic->t_res_arr_sum; 361 tic->t_res_num = 0; 362 tic->t_res_arr_sum = 0; 363 } 364 365 tic->t_res_arr[tic->t_res_num].r_len = len; 366 tic->t_res_arr[tic->t_res_num].r_type = type; 367 tic->t_res_arr_sum += len; 368 tic->t_res_num++; 369 } 370 371 /* 372 * Replenish the byte reservation required by moving the grant write head. 373 */ 374 int 375 xfs_log_regrant( 376 struct xfs_mount *mp, 377 struct xlog_ticket *tic) 378 { 379 struct xlog *log = mp->m_log; 380 int need_bytes; 381 int error = 0; 382 383 if (XLOG_FORCED_SHUTDOWN(log)) 384 return -EIO; 385 386 XFS_STATS_INC(mp, xs_try_logspace); 387 388 /* 389 * This is a new transaction on the ticket, so we need to change the 390 * transaction ID so that the next transaction has a different TID in 391 * the log. Just add one to the existing tid so that we can see chains 392 * of rolling transactions in the log easily. 393 */ 394 tic->t_tid++; 395 396 xlog_grant_push_ail(log, tic->t_unit_res); 397 398 tic->t_curr_res = tic->t_unit_res; 399 xlog_tic_reset_res(tic); 400 401 if (tic->t_cnt > 0) 402 return 0; 403 404 trace_xfs_log_regrant(log, tic); 405 406 error = xlog_grant_head_check(log, &log->l_write_head, tic, 407 &need_bytes); 408 if (error) 409 goto out_error; 410 411 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 412 trace_xfs_log_regrant_exit(log, tic); 413 xlog_verify_grant_tail(log); 414 return 0; 415 416 out_error: 417 /* 418 * If we are failing, make sure the ticket doesn't have any current 419 * reservations. We don't want to add this back when the ticket/ 420 * transaction gets cancelled. 421 */ 422 tic->t_curr_res = 0; 423 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 424 return error; 425 } 426 427 /* 428 * Reserve log space and return a ticket corresponding to the reservation. 429 * 430 * Each reservation is going to reserve extra space for a log record header. 431 * When writes happen to the on-disk log, we don't subtract the length of the 432 * log record header from any reservation. By wasting space in each 433 * reservation, we prevent over allocation problems. 434 */ 435 int 436 xfs_log_reserve( 437 struct xfs_mount *mp, 438 int unit_bytes, 439 int cnt, 440 struct xlog_ticket **ticp, 441 uint8_t client, 442 bool permanent) 443 { 444 struct xlog *log = mp->m_log; 445 struct xlog_ticket *tic; 446 int need_bytes; 447 int error = 0; 448 449 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 450 451 if (XLOG_FORCED_SHUTDOWN(log)) 452 return -EIO; 453 454 XFS_STATS_INC(mp, xs_try_logspace); 455 456 ASSERT(*ticp == NULL); 457 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0); 458 *ticp = tic; 459 460 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 461 : tic->t_unit_res); 462 463 trace_xfs_log_reserve(log, tic); 464 465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 466 &need_bytes); 467 if (error) 468 goto out_error; 469 470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 472 trace_xfs_log_reserve_exit(log, tic); 473 xlog_verify_grant_tail(log); 474 return 0; 475 476 out_error: 477 /* 478 * If we are failing, make sure the ticket doesn't have any current 479 * reservations. We don't want to add this back when the ticket/ 480 * transaction gets cancelled. 481 */ 482 tic->t_curr_res = 0; 483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 484 return error; 485 } 486 487 488 /* 489 * NOTES: 490 * 491 * 1. currblock field gets updated at startup and after in-core logs 492 * marked as with WANT_SYNC. 493 */ 494 495 /* 496 * This routine is called when a user of a log manager ticket is done with 497 * the reservation. If the ticket was ever used, then a commit record for 498 * the associated transaction is written out as a log operation header with 499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 500 * a given ticket. If the ticket was one with a permanent reservation, then 501 * a few operations are done differently. Permanent reservation tickets by 502 * default don't release the reservation. They just commit the current 503 * transaction with the belief that the reservation is still needed. A flag 504 * must be passed in before permanent reservations are actually released. 505 * When these type of tickets are not released, they need to be set into 506 * the inited state again. By doing this, a start record will be written 507 * out when the next write occurs. 508 */ 509 xfs_lsn_t 510 xfs_log_done( 511 struct xfs_mount *mp, 512 struct xlog_ticket *ticket, 513 struct xlog_in_core **iclog, 514 bool regrant) 515 { 516 struct xlog *log = mp->m_log; 517 xfs_lsn_t lsn = 0; 518 519 if (XLOG_FORCED_SHUTDOWN(log) || 520 /* 521 * If nothing was ever written, don't write out commit record. 522 * If we get an error, just continue and give back the log ticket. 523 */ 524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 525 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 526 lsn = (xfs_lsn_t) -1; 527 regrant = false; 528 } 529 530 531 if (!regrant) { 532 trace_xfs_log_done_nonperm(log, ticket); 533 534 /* 535 * Release ticket if not permanent reservation or a specific 536 * request has been made to release a permanent reservation. 537 */ 538 xlog_ungrant_log_space(log, ticket); 539 } else { 540 trace_xfs_log_done_perm(log, ticket); 541 542 xlog_regrant_reserve_log_space(log, ticket); 543 /* If this ticket was a permanent reservation and we aren't 544 * trying to release it, reset the inited flags; so next time 545 * we write, a start record will be written out. 546 */ 547 ticket->t_flags |= XLOG_TIC_INITED; 548 } 549 550 xfs_log_ticket_put(ticket); 551 return lsn; 552 } 553 554 static bool 555 __xlog_state_release_iclog( 556 struct xlog *log, 557 struct xlog_in_core *iclog) 558 { 559 lockdep_assert_held(&log->l_icloglock); 560 561 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 562 /* update tail before writing to iclog */ 563 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 564 565 iclog->ic_state = XLOG_STATE_SYNCING; 566 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 567 xlog_verify_tail_lsn(log, iclog, tail_lsn); 568 /* cycle incremented when incrementing curr_block */ 569 return true; 570 } 571 572 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 573 return false; 574 } 575 576 /* 577 * Flush iclog to disk if this is the last reference to the given iclog and the 578 * it is in the WANT_SYNC state. 579 */ 580 static int 581 xlog_state_release_iclog( 582 struct xlog *log, 583 struct xlog_in_core *iclog) 584 { 585 lockdep_assert_held(&log->l_icloglock); 586 587 if (iclog->ic_state == XLOG_STATE_IOERROR) 588 return -EIO; 589 590 if (atomic_dec_and_test(&iclog->ic_refcnt) && 591 __xlog_state_release_iclog(log, iclog)) { 592 spin_unlock(&log->l_icloglock); 593 xlog_sync(log, iclog); 594 spin_lock(&log->l_icloglock); 595 } 596 597 return 0; 598 } 599 600 int 601 xfs_log_release_iclog( 602 struct xfs_mount *mp, 603 struct xlog_in_core *iclog) 604 { 605 struct xlog *log = mp->m_log; 606 bool sync; 607 608 if (iclog->ic_state == XLOG_STATE_IOERROR) { 609 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 610 return -EIO; 611 } 612 613 if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) { 614 sync = __xlog_state_release_iclog(log, iclog); 615 spin_unlock(&log->l_icloglock); 616 if (sync) 617 xlog_sync(log, iclog); 618 } 619 return 0; 620 } 621 622 /* 623 * Mount a log filesystem 624 * 625 * mp - ubiquitous xfs mount point structure 626 * log_target - buftarg of on-disk log device 627 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 628 * num_bblocks - Number of BBSIZE blocks in on-disk log 629 * 630 * Return error or zero. 631 */ 632 int 633 xfs_log_mount( 634 xfs_mount_t *mp, 635 xfs_buftarg_t *log_target, 636 xfs_daddr_t blk_offset, 637 int num_bblks) 638 { 639 bool fatal = xfs_sb_version_hascrc(&mp->m_sb); 640 int error = 0; 641 int min_logfsbs; 642 643 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 644 xfs_notice(mp, "Mounting V%d Filesystem", 645 XFS_SB_VERSION_NUM(&mp->m_sb)); 646 } else { 647 xfs_notice(mp, 648 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 649 XFS_SB_VERSION_NUM(&mp->m_sb)); 650 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 651 } 652 653 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 654 if (IS_ERR(mp->m_log)) { 655 error = PTR_ERR(mp->m_log); 656 goto out; 657 } 658 659 /* 660 * Validate the given log space and drop a critical message via syslog 661 * if the log size is too small that would lead to some unexpected 662 * situations in transaction log space reservation stage. 663 * 664 * Note: we can't just reject the mount if the validation fails. This 665 * would mean that people would have to downgrade their kernel just to 666 * remedy the situation as there is no way to grow the log (short of 667 * black magic surgery with xfs_db). 668 * 669 * We can, however, reject mounts for CRC format filesystems, as the 670 * mkfs binary being used to make the filesystem should never create a 671 * filesystem with a log that is too small. 672 */ 673 min_logfsbs = xfs_log_calc_minimum_size(mp); 674 675 if (mp->m_sb.sb_logblocks < min_logfsbs) { 676 xfs_warn(mp, 677 "Log size %d blocks too small, minimum size is %d blocks", 678 mp->m_sb.sb_logblocks, min_logfsbs); 679 error = -EINVAL; 680 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 681 xfs_warn(mp, 682 "Log size %d blocks too large, maximum size is %lld blocks", 683 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 684 error = -EINVAL; 685 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 686 xfs_warn(mp, 687 "log size %lld bytes too large, maximum size is %lld bytes", 688 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 689 XFS_MAX_LOG_BYTES); 690 error = -EINVAL; 691 } else if (mp->m_sb.sb_logsunit > 1 && 692 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) { 693 xfs_warn(mp, 694 "log stripe unit %u bytes must be a multiple of block size", 695 mp->m_sb.sb_logsunit); 696 error = -EINVAL; 697 fatal = true; 698 } 699 if (error) { 700 /* 701 * Log check errors are always fatal on v5; or whenever bad 702 * metadata leads to a crash. 703 */ 704 if (fatal) { 705 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 706 ASSERT(0); 707 goto out_free_log; 708 } 709 xfs_crit(mp, "Log size out of supported range."); 710 xfs_crit(mp, 711 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 712 } 713 714 /* 715 * Initialize the AIL now we have a log. 716 */ 717 error = xfs_trans_ail_init(mp); 718 if (error) { 719 xfs_warn(mp, "AIL initialisation failed: error %d", error); 720 goto out_free_log; 721 } 722 mp->m_log->l_ailp = mp->m_ail; 723 724 /* 725 * skip log recovery on a norecovery mount. pretend it all 726 * just worked. 727 */ 728 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 729 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 730 731 if (readonly) 732 mp->m_flags &= ~XFS_MOUNT_RDONLY; 733 734 error = xlog_recover(mp->m_log); 735 736 if (readonly) 737 mp->m_flags |= XFS_MOUNT_RDONLY; 738 if (error) { 739 xfs_warn(mp, "log mount/recovery failed: error %d", 740 error); 741 xlog_recover_cancel(mp->m_log); 742 goto out_destroy_ail; 743 } 744 } 745 746 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 747 "log"); 748 if (error) 749 goto out_destroy_ail; 750 751 /* Normal transactions can now occur */ 752 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 753 754 /* 755 * Now the log has been fully initialised and we know were our 756 * space grant counters are, we can initialise the permanent ticket 757 * needed for delayed logging to work. 758 */ 759 xlog_cil_init_post_recovery(mp->m_log); 760 761 return 0; 762 763 out_destroy_ail: 764 xfs_trans_ail_destroy(mp); 765 out_free_log: 766 xlog_dealloc_log(mp->m_log); 767 out: 768 return error; 769 } 770 771 /* 772 * Finish the recovery of the file system. This is separate from the 773 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 774 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 775 * here. 776 * 777 * If we finish recovery successfully, start the background log work. If we are 778 * not doing recovery, then we have a RO filesystem and we don't need to start 779 * it. 780 */ 781 int 782 xfs_log_mount_finish( 783 struct xfs_mount *mp) 784 { 785 int error = 0; 786 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 787 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED; 788 789 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 790 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 791 return 0; 792 } else if (readonly) { 793 /* Allow unlinked processing to proceed */ 794 mp->m_flags &= ~XFS_MOUNT_RDONLY; 795 } 796 797 /* 798 * During the second phase of log recovery, we need iget and 799 * iput to behave like they do for an active filesystem. 800 * xfs_fs_drop_inode needs to be able to prevent the deletion 801 * of inodes before we're done replaying log items on those 802 * inodes. Turn it off immediately after recovery finishes 803 * so that we don't leak the quota inodes if subsequent mount 804 * activities fail. 805 * 806 * We let all inodes involved in redo item processing end up on 807 * the LRU instead of being evicted immediately so that if we do 808 * something to an unlinked inode, the irele won't cause 809 * premature truncation and freeing of the inode, which results 810 * in log recovery failure. We have to evict the unreferenced 811 * lru inodes after clearing SB_ACTIVE because we don't 812 * otherwise clean up the lru if there's a subsequent failure in 813 * xfs_mountfs, which leads to us leaking the inodes if nothing 814 * else (e.g. quotacheck) references the inodes before the 815 * mount failure occurs. 816 */ 817 mp->m_super->s_flags |= SB_ACTIVE; 818 error = xlog_recover_finish(mp->m_log); 819 if (!error) 820 xfs_log_work_queue(mp); 821 mp->m_super->s_flags &= ~SB_ACTIVE; 822 evict_inodes(mp->m_super); 823 824 /* 825 * Drain the buffer LRU after log recovery. This is required for v4 826 * filesystems to avoid leaving around buffers with NULL verifier ops, 827 * but we do it unconditionally to make sure we're always in a clean 828 * cache state after mount. 829 * 830 * Don't push in the error case because the AIL may have pending intents 831 * that aren't removed until recovery is cancelled. 832 */ 833 if (!error && recovered) { 834 xfs_log_force(mp, XFS_LOG_SYNC); 835 xfs_ail_push_all_sync(mp->m_ail); 836 } 837 xfs_wait_buftarg(mp->m_ddev_targp); 838 839 if (readonly) 840 mp->m_flags |= XFS_MOUNT_RDONLY; 841 842 return error; 843 } 844 845 /* 846 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 847 * the log. 848 */ 849 void 850 xfs_log_mount_cancel( 851 struct xfs_mount *mp) 852 { 853 xlog_recover_cancel(mp->m_log); 854 xfs_log_unmount(mp); 855 } 856 857 /* 858 * Final log writes as part of unmount. 859 * 860 * Mark the filesystem clean as unmount happens. Note that during relocation 861 * this routine needs to be executed as part of source-bag while the 862 * deallocation must not be done until source-end. 863 */ 864 865 /* Actually write the unmount record to disk. */ 866 static void 867 xfs_log_write_unmount_record( 868 struct xfs_mount *mp) 869 { 870 /* the data section must be 32 bit size aligned */ 871 struct xfs_unmount_log_format magic = { 872 .magic = XLOG_UNMOUNT_TYPE, 873 }; 874 struct xfs_log_iovec reg = { 875 .i_addr = &magic, 876 .i_len = sizeof(magic), 877 .i_type = XLOG_REG_TYPE_UNMOUNT, 878 }; 879 struct xfs_log_vec vec = { 880 .lv_niovecs = 1, 881 .lv_iovecp = ®, 882 }; 883 struct xlog *log = mp->m_log; 884 struct xlog_in_core *iclog; 885 struct xlog_ticket *tic = NULL; 886 xfs_lsn_t lsn; 887 uint flags = XLOG_UNMOUNT_TRANS; 888 int error; 889 890 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0); 891 if (error) 892 goto out_err; 893 894 /* 895 * If we think the summary counters are bad, clear the unmount header 896 * flag in the unmount record so that the summary counters will be 897 * recalculated during log recovery at next mount. Refer to 898 * xlog_check_unmount_rec for more details. 899 */ 900 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp, 901 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 902 xfs_alert(mp, "%s: will fix summary counters at next mount", 903 __func__); 904 flags &= ~XLOG_UNMOUNT_TRANS; 905 } 906 907 /* remove inited flag, and account for space used */ 908 tic->t_flags = 0; 909 tic->t_curr_res -= sizeof(magic); 910 error = xlog_write(log, &vec, tic, &lsn, NULL, flags); 911 /* 912 * At this point, we're umounting anyway, so there's no point in 913 * transitioning log state to IOERROR. Just continue... 914 */ 915 out_err: 916 if (error) 917 xfs_alert(mp, "%s: unmount record failed", __func__); 918 919 spin_lock(&log->l_icloglock); 920 iclog = log->l_iclog; 921 atomic_inc(&iclog->ic_refcnt); 922 xlog_state_want_sync(log, iclog); 923 error = xlog_state_release_iclog(log, iclog); 924 switch (iclog->ic_state) { 925 default: 926 if (!XLOG_FORCED_SHUTDOWN(log)) { 927 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 928 break; 929 } 930 /* fall through */ 931 case XLOG_STATE_ACTIVE: 932 case XLOG_STATE_DIRTY: 933 spin_unlock(&log->l_icloglock); 934 break; 935 } 936 937 if (tic) { 938 trace_xfs_log_umount_write(log, tic); 939 xlog_ungrant_log_space(log, tic); 940 xfs_log_ticket_put(tic); 941 } 942 } 943 944 /* 945 * Unmount record used to have a string "Unmount filesystem--" in the 946 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 947 * We just write the magic number now since that particular field isn't 948 * currently architecture converted and "Unmount" is a bit foo. 949 * As far as I know, there weren't any dependencies on the old behaviour. 950 */ 951 952 static int 953 xfs_log_unmount_write(xfs_mount_t *mp) 954 { 955 struct xlog *log = mp->m_log; 956 xlog_in_core_t *iclog; 957 #ifdef DEBUG 958 xlog_in_core_t *first_iclog; 959 #endif 960 int error; 961 962 /* 963 * Don't write out unmount record on norecovery mounts or ro devices. 964 * Or, if we are doing a forced umount (typically because of IO errors). 965 */ 966 if (mp->m_flags & XFS_MOUNT_NORECOVERY || 967 xfs_readonly_buftarg(log->l_targ)) { 968 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 969 return 0; 970 } 971 972 error = xfs_log_force(mp, XFS_LOG_SYNC); 973 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 974 975 #ifdef DEBUG 976 first_iclog = iclog = log->l_iclog; 977 do { 978 if (iclog->ic_state != XLOG_STATE_IOERROR) { 979 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 980 ASSERT(iclog->ic_offset == 0); 981 } 982 iclog = iclog->ic_next; 983 } while (iclog != first_iclog); 984 #endif 985 if (! (XLOG_FORCED_SHUTDOWN(log))) { 986 xfs_log_write_unmount_record(mp); 987 } else { 988 /* 989 * We're already in forced_shutdown mode, couldn't 990 * even attempt to write out the unmount transaction. 991 * 992 * Go through the motions of sync'ing and releasing 993 * the iclog, even though no I/O will actually happen, 994 * we need to wait for other log I/Os that may already 995 * be in progress. Do this as a separate section of 996 * code so we'll know if we ever get stuck here that 997 * we're in this odd situation of trying to unmount 998 * a file system that went into forced_shutdown as 999 * the result of an unmount.. 1000 */ 1001 spin_lock(&log->l_icloglock); 1002 iclog = log->l_iclog; 1003 atomic_inc(&iclog->ic_refcnt); 1004 xlog_state_want_sync(log, iclog); 1005 error = xlog_state_release_iclog(log, iclog); 1006 switch (iclog->ic_state) { 1007 case XLOG_STATE_ACTIVE: 1008 case XLOG_STATE_DIRTY: 1009 case XLOG_STATE_IOERROR: 1010 spin_unlock(&log->l_icloglock); 1011 break; 1012 default: 1013 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 1014 break; 1015 } 1016 } 1017 1018 return error; 1019 } /* xfs_log_unmount_write */ 1020 1021 /* 1022 * Empty the log for unmount/freeze. 1023 * 1024 * To do this, we first need to shut down the background log work so it is not 1025 * trying to cover the log as we clean up. We then need to unpin all objects in 1026 * the log so we can then flush them out. Once they have completed their IO and 1027 * run the callbacks removing themselves from the AIL, we can write the unmount 1028 * record. 1029 */ 1030 void 1031 xfs_log_quiesce( 1032 struct xfs_mount *mp) 1033 { 1034 cancel_delayed_work_sync(&mp->m_log->l_work); 1035 xfs_log_force(mp, XFS_LOG_SYNC); 1036 1037 /* 1038 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1039 * will push it, xfs_wait_buftarg() will not wait for it. Further, 1040 * xfs_buf_iowait() cannot be used because it was pushed with the 1041 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1042 * the IO to complete. 1043 */ 1044 xfs_ail_push_all_sync(mp->m_ail); 1045 xfs_wait_buftarg(mp->m_ddev_targp); 1046 xfs_buf_lock(mp->m_sb_bp); 1047 xfs_buf_unlock(mp->m_sb_bp); 1048 1049 xfs_log_unmount_write(mp); 1050 } 1051 1052 /* 1053 * Shut down and release the AIL and Log. 1054 * 1055 * During unmount, we need to ensure we flush all the dirty metadata objects 1056 * from the AIL so that the log is empty before we write the unmount record to 1057 * the log. Once this is done, we can tear down the AIL and the log. 1058 */ 1059 void 1060 xfs_log_unmount( 1061 struct xfs_mount *mp) 1062 { 1063 xfs_log_quiesce(mp); 1064 1065 xfs_trans_ail_destroy(mp); 1066 1067 xfs_sysfs_del(&mp->m_log->l_kobj); 1068 1069 xlog_dealloc_log(mp->m_log); 1070 } 1071 1072 void 1073 xfs_log_item_init( 1074 struct xfs_mount *mp, 1075 struct xfs_log_item *item, 1076 int type, 1077 const struct xfs_item_ops *ops) 1078 { 1079 item->li_mountp = mp; 1080 item->li_ailp = mp->m_ail; 1081 item->li_type = type; 1082 item->li_ops = ops; 1083 item->li_lv = NULL; 1084 1085 INIT_LIST_HEAD(&item->li_ail); 1086 INIT_LIST_HEAD(&item->li_cil); 1087 INIT_LIST_HEAD(&item->li_bio_list); 1088 INIT_LIST_HEAD(&item->li_trans); 1089 } 1090 1091 /* 1092 * Wake up processes waiting for log space after we have moved the log tail. 1093 */ 1094 void 1095 xfs_log_space_wake( 1096 struct xfs_mount *mp) 1097 { 1098 struct xlog *log = mp->m_log; 1099 int free_bytes; 1100 1101 if (XLOG_FORCED_SHUTDOWN(log)) 1102 return; 1103 1104 if (!list_empty_careful(&log->l_write_head.waiters)) { 1105 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1106 1107 spin_lock(&log->l_write_head.lock); 1108 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1109 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1110 spin_unlock(&log->l_write_head.lock); 1111 } 1112 1113 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1114 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1115 1116 spin_lock(&log->l_reserve_head.lock); 1117 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1118 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1119 spin_unlock(&log->l_reserve_head.lock); 1120 } 1121 } 1122 1123 /* 1124 * Determine if we have a transaction that has gone to disk that needs to be 1125 * covered. To begin the transition to the idle state firstly the log needs to 1126 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1127 * we start attempting to cover the log. 1128 * 1129 * Only if we are then in a state where covering is needed, the caller is 1130 * informed that dummy transactions are required to move the log into the idle 1131 * state. 1132 * 1133 * If there are any items in the AIl or CIL, then we do not want to attempt to 1134 * cover the log as we may be in a situation where there isn't log space 1135 * available to run a dummy transaction and this can lead to deadlocks when the 1136 * tail of the log is pinned by an item that is modified in the CIL. Hence 1137 * there's no point in running a dummy transaction at this point because we 1138 * can't start trying to idle the log until both the CIL and AIL are empty. 1139 */ 1140 static int 1141 xfs_log_need_covered(xfs_mount_t *mp) 1142 { 1143 struct xlog *log = mp->m_log; 1144 int needed = 0; 1145 1146 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 1147 return 0; 1148 1149 if (!xlog_cil_empty(log)) 1150 return 0; 1151 1152 spin_lock(&log->l_icloglock); 1153 switch (log->l_covered_state) { 1154 case XLOG_STATE_COVER_DONE: 1155 case XLOG_STATE_COVER_DONE2: 1156 case XLOG_STATE_COVER_IDLE: 1157 break; 1158 case XLOG_STATE_COVER_NEED: 1159 case XLOG_STATE_COVER_NEED2: 1160 if (xfs_ail_min_lsn(log->l_ailp)) 1161 break; 1162 if (!xlog_iclogs_empty(log)) 1163 break; 1164 1165 needed = 1; 1166 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1167 log->l_covered_state = XLOG_STATE_COVER_DONE; 1168 else 1169 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1170 break; 1171 default: 1172 needed = 1; 1173 break; 1174 } 1175 spin_unlock(&log->l_icloglock); 1176 return needed; 1177 } 1178 1179 /* 1180 * We may be holding the log iclog lock upon entering this routine. 1181 */ 1182 xfs_lsn_t 1183 xlog_assign_tail_lsn_locked( 1184 struct xfs_mount *mp) 1185 { 1186 struct xlog *log = mp->m_log; 1187 struct xfs_log_item *lip; 1188 xfs_lsn_t tail_lsn; 1189 1190 assert_spin_locked(&mp->m_ail->ail_lock); 1191 1192 /* 1193 * To make sure we always have a valid LSN for the log tail we keep 1194 * track of the last LSN which was committed in log->l_last_sync_lsn, 1195 * and use that when the AIL was empty. 1196 */ 1197 lip = xfs_ail_min(mp->m_ail); 1198 if (lip) 1199 tail_lsn = lip->li_lsn; 1200 else 1201 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1202 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1203 atomic64_set(&log->l_tail_lsn, tail_lsn); 1204 return tail_lsn; 1205 } 1206 1207 xfs_lsn_t 1208 xlog_assign_tail_lsn( 1209 struct xfs_mount *mp) 1210 { 1211 xfs_lsn_t tail_lsn; 1212 1213 spin_lock(&mp->m_ail->ail_lock); 1214 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1215 spin_unlock(&mp->m_ail->ail_lock); 1216 1217 return tail_lsn; 1218 } 1219 1220 /* 1221 * Return the space in the log between the tail and the head. The head 1222 * is passed in the cycle/bytes formal parms. In the special case where 1223 * the reserve head has wrapped passed the tail, this calculation is no 1224 * longer valid. In this case, just return 0 which means there is no space 1225 * in the log. This works for all places where this function is called 1226 * with the reserve head. Of course, if the write head were to ever 1227 * wrap the tail, we should blow up. Rather than catch this case here, 1228 * we depend on other ASSERTions in other parts of the code. XXXmiken 1229 * 1230 * This code also handles the case where the reservation head is behind 1231 * the tail. The details of this case are described below, but the end 1232 * result is that we return the size of the log as the amount of space left. 1233 */ 1234 STATIC int 1235 xlog_space_left( 1236 struct xlog *log, 1237 atomic64_t *head) 1238 { 1239 int free_bytes; 1240 int tail_bytes; 1241 int tail_cycle; 1242 int head_cycle; 1243 int head_bytes; 1244 1245 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1246 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1247 tail_bytes = BBTOB(tail_bytes); 1248 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1249 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1250 else if (tail_cycle + 1 < head_cycle) 1251 return 0; 1252 else if (tail_cycle < head_cycle) { 1253 ASSERT(tail_cycle == (head_cycle - 1)); 1254 free_bytes = tail_bytes - head_bytes; 1255 } else { 1256 /* 1257 * The reservation head is behind the tail. 1258 * In this case we just want to return the size of the 1259 * log as the amount of space left. 1260 */ 1261 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1262 xfs_alert(log->l_mp, 1263 " tail_cycle = %d, tail_bytes = %d", 1264 tail_cycle, tail_bytes); 1265 xfs_alert(log->l_mp, 1266 " GH cycle = %d, GH bytes = %d", 1267 head_cycle, head_bytes); 1268 ASSERT(0); 1269 free_bytes = log->l_logsize; 1270 } 1271 return free_bytes; 1272 } 1273 1274 1275 static void 1276 xlog_ioend_work( 1277 struct work_struct *work) 1278 { 1279 struct xlog_in_core *iclog = 1280 container_of(work, struct xlog_in_core, ic_end_io_work); 1281 struct xlog *log = iclog->ic_log; 1282 bool aborted = false; 1283 int error; 1284 1285 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1286 #ifdef DEBUG 1287 /* treat writes with injected CRC errors as failed */ 1288 if (iclog->ic_fail_crc) 1289 error = -EIO; 1290 #endif 1291 1292 /* 1293 * Race to shutdown the filesystem if we see an error. 1294 */ 1295 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1296 xfs_alert(log->l_mp, "log I/O error %d", error); 1297 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 1298 /* 1299 * This flag will be propagated to the trans-committed 1300 * callback routines to let them know that the log-commit 1301 * didn't succeed. 1302 */ 1303 aborted = true; 1304 } else if (iclog->ic_state == XLOG_STATE_IOERROR) { 1305 aborted = true; 1306 } 1307 1308 xlog_state_done_syncing(iclog, aborted); 1309 bio_uninit(&iclog->ic_bio); 1310 1311 /* 1312 * Drop the lock to signal that we are done. Nothing references the 1313 * iclog after this, so an unmount waiting on this lock can now tear it 1314 * down safely. As such, it is unsafe to reference the iclog after the 1315 * unlock as we could race with it being freed. 1316 */ 1317 up(&iclog->ic_sema); 1318 } 1319 1320 /* 1321 * Return size of each in-core log record buffer. 1322 * 1323 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1324 * 1325 * If the filesystem blocksize is too large, we may need to choose a 1326 * larger size since the directory code currently logs entire blocks. 1327 */ 1328 STATIC void 1329 xlog_get_iclog_buffer_size( 1330 struct xfs_mount *mp, 1331 struct xlog *log) 1332 { 1333 if (mp->m_logbufs <= 0) 1334 mp->m_logbufs = XLOG_MAX_ICLOGS; 1335 if (mp->m_logbsize <= 0) 1336 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1337 1338 log->l_iclog_bufs = mp->m_logbufs; 1339 log->l_iclog_size = mp->m_logbsize; 1340 1341 /* 1342 * # headers = size / 32k - one header holds cycles from 32k of data. 1343 */ 1344 log->l_iclog_heads = 1345 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE); 1346 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT; 1347 } 1348 1349 void 1350 xfs_log_work_queue( 1351 struct xfs_mount *mp) 1352 { 1353 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1354 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1355 } 1356 1357 /* 1358 * Every sync period we need to unpin all items in the AIL and push them to 1359 * disk. If there is nothing dirty, then we might need to cover the log to 1360 * indicate that the filesystem is idle. 1361 */ 1362 static void 1363 xfs_log_worker( 1364 struct work_struct *work) 1365 { 1366 struct xlog *log = container_of(to_delayed_work(work), 1367 struct xlog, l_work); 1368 struct xfs_mount *mp = log->l_mp; 1369 1370 /* dgc: errors ignored - not fatal and nowhere to report them */ 1371 if (xfs_log_need_covered(mp)) { 1372 /* 1373 * Dump a transaction into the log that contains no real change. 1374 * This is needed to stamp the current tail LSN into the log 1375 * during the covering operation. 1376 * 1377 * We cannot use an inode here for this - that will push dirty 1378 * state back up into the VFS and then periodic inode flushing 1379 * will prevent log covering from making progress. Hence we 1380 * synchronously log the superblock instead to ensure the 1381 * superblock is immediately unpinned and can be written back. 1382 */ 1383 xfs_sync_sb(mp, true); 1384 } else 1385 xfs_log_force(mp, 0); 1386 1387 /* start pushing all the metadata that is currently dirty */ 1388 xfs_ail_push_all(mp->m_ail); 1389 1390 /* queue us up again */ 1391 xfs_log_work_queue(mp); 1392 } 1393 1394 /* 1395 * This routine initializes some of the log structure for a given mount point. 1396 * Its primary purpose is to fill in enough, so recovery can occur. However, 1397 * some other stuff may be filled in too. 1398 */ 1399 STATIC struct xlog * 1400 xlog_alloc_log( 1401 struct xfs_mount *mp, 1402 struct xfs_buftarg *log_target, 1403 xfs_daddr_t blk_offset, 1404 int num_bblks) 1405 { 1406 struct xlog *log; 1407 xlog_rec_header_t *head; 1408 xlog_in_core_t **iclogp; 1409 xlog_in_core_t *iclog, *prev_iclog=NULL; 1410 int i; 1411 int error = -ENOMEM; 1412 uint log2_size = 0; 1413 1414 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1415 if (!log) { 1416 xfs_warn(mp, "Log allocation failed: No memory!"); 1417 goto out; 1418 } 1419 1420 log->l_mp = mp; 1421 log->l_targ = log_target; 1422 log->l_logsize = BBTOB(num_bblks); 1423 log->l_logBBstart = blk_offset; 1424 log->l_logBBsize = num_bblks; 1425 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1426 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1427 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1428 1429 log->l_prev_block = -1; 1430 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1431 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1432 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1433 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1434 1435 xlog_grant_head_init(&log->l_reserve_head); 1436 xlog_grant_head_init(&log->l_write_head); 1437 1438 error = -EFSCORRUPTED; 1439 if (xfs_sb_version_hassector(&mp->m_sb)) { 1440 log2_size = mp->m_sb.sb_logsectlog; 1441 if (log2_size < BBSHIFT) { 1442 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1443 log2_size, BBSHIFT); 1444 goto out_free_log; 1445 } 1446 1447 log2_size -= BBSHIFT; 1448 if (log2_size > mp->m_sectbb_log) { 1449 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1450 log2_size, mp->m_sectbb_log); 1451 goto out_free_log; 1452 } 1453 1454 /* for larger sector sizes, must have v2 or external log */ 1455 if (log2_size && log->l_logBBstart > 0 && 1456 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1457 xfs_warn(mp, 1458 "log sector size (0x%x) invalid for configuration.", 1459 log2_size); 1460 goto out_free_log; 1461 } 1462 } 1463 log->l_sectBBsize = 1 << log2_size; 1464 1465 xlog_get_iclog_buffer_size(mp, log); 1466 1467 spin_lock_init(&log->l_icloglock); 1468 init_waitqueue_head(&log->l_flush_wait); 1469 1470 iclogp = &log->l_iclog; 1471 /* 1472 * The amount of memory to allocate for the iclog structure is 1473 * rather funky due to the way the structure is defined. It is 1474 * done this way so that we can use different sizes for machines 1475 * with different amounts of memory. See the definition of 1476 * xlog_in_core_t in xfs_log_priv.h for details. 1477 */ 1478 ASSERT(log->l_iclog_size >= 4096); 1479 for (i = 0; i < log->l_iclog_bufs; i++) { 1480 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp); 1481 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1482 sizeof(struct bio_vec); 1483 1484 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL); 1485 if (!iclog) 1486 goto out_free_iclog; 1487 1488 *iclogp = iclog; 1489 iclog->ic_prev = prev_iclog; 1490 prev_iclog = iclog; 1491 1492 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask, 1493 KM_MAYFAIL | KM_ZERO); 1494 if (!iclog->ic_data) 1495 goto out_free_iclog; 1496 #ifdef DEBUG 1497 log->l_iclog_bak[i] = &iclog->ic_header; 1498 #endif 1499 head = &iclog->ic_header; 1500 memset(head, 0, sizeof(xlog_rec_header_t)); 1501 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1502 head->h_version = cpu_to_be32( 1503 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1504 head->h_size = cpu_to_be32(log->l_iclog_size); 1505 /* new fields */ 1506 head->h_fmt = cpu_to_be32(XLOG_FMT); 1507 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1508 1509 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1510 iclog->ic_state = XLOG_STATE_ACTIVE; 1511 iclog->ic_log = log; 1512 atomic_set(&iclog->ic_refcnt, 0); 1513 spin_lock_init(&iclog->ic_callback_lock); 1514 INIT_LIST_HEAD(&iclog->ic_callbacks); 1515 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1516 1517 init_waitqueue_head(&iclog->ic_force_wait); 1518 init_waitqueue_head(&iclog->ic_write_wait); 1519 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1520 sema_init(&iclog->ic_sema, 1); 1521 1522 iclogp = &iclog->ic_next; 1523 } 1524 *iclogp = log->l_iclog; /* complete ring */ 1525 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1526 1527 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1528 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0, 1529 mp->m_super->s_id); 1530 if (!log->l_ioend_workqueue) 1531 goto out_free_iclog; 1532 1533 error = xlog_cil_init(log); 1534 if (error) 1535 goto out_destroy_workqueue; 1536 return log; 1537 1538 out_destroy_workqueue: 1539 destroy_workqueue(log->l_ioend_workqueue); 1540 out_free_iclog: 1541 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1542 prev_iclog = iclog->ic_next; 1543 kmem_free(iclog->ic_data); 1544 kmem_free(iclog); 1545 if (prev_iclog == log->l_iclog) 1546 break; 1547 } 1548 out_free_log: 1549 kmem_free(log); 1550 out: 1551 return ERR_PTR(error); 1552 } /* xlog_alloc_log */ 1553 1554 1555 /* 1556 * Write out the commit record of a transaction associated with the given 1557 * ticket. Return the lsn of the commit record. 1558 */ 1559 STATIC int 1560 xlog_commit_record( 1561 struct xlog *log, 1562 struct xlog_ticket *ticket, 1563 struct xlog_in_core **iclog, 1564 xfs_lsn_t *commitlsnp) 1565 { 1566 struct xfs_mount *mp = log->l_mp; 1567 int error; 1568 struct xfs_log_iovec reg = { 1569 .i_addr = NULL, 1570 .i_len = 0, 1571 .i_type = XLOG_REG_TYPE_COMMIT, 1572 }; 1573 struct xfs_log_vec vec = { 1574 .lv_niovecs = 1, 1575 .lv_iovecp = ®, 1576 }; 1577 1578 ASSERT_ALWAYS(iclog); 1579 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1580 XLOG_COMMIT_TRANS); 1581 if (error) 1582 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1583 return error; 1584 } 1585 1586 /* 1587 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1588 * log space. This code pushes on the lsn which would supposedly free up 1589 * the 25% which we want to leave free. We may need to adopt a policy which 1590 * pushes on an lsn which is further along in the log once we reach the high 1591 * water mark. In this manner, we would be creating a low water mark. 1592 */ 1593 STATIC void 1594 xlog_grant_push_ail( 1595 struct xlog *log, 1596 int need_bytes) 1597 { 1598 xfs_lsn_t threshold_lsn = 0; 1599 xfs_lsn_t last_sync_lsn; 1600 int free_blocks; 1601 int free_bytes; 1602 int threshold_block; 1603 int threshold_cycle; 1604 int free_threshold; 1605 1606 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1607 1608 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1609 free_blocks = BTOBBT(free_bytes); 1610 1611 /* 1612 * Set the threshold for the minimum number of free blocks in the 1613 * log to the maximum of what the caller needs, one quarter of the 1614 * log, and 256 blocks. 1615 */ 1616 free_threshold = BTOBB(need_bytes); 1617 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1618 free_threshold = max(free_threshold, 256); 1619 if (free_blocks >= free_threshold) 1620 return; 1621 1622 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1623 &threshold_block); 1624 threshold_block += free_threshold; 1625 if (threshold_block >= log->l_logBBsize) { 1626 threshold_block -= log->l_logBBsize; 1627 threshold_cycle += 1; 1628 } 1629 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1630 threshold_block); 1631 /* 1632 * Don't pass in an lsn greater than the lsn of the last 1633 * log record known to be on disk. Use a snapshot of the last sync lsn 1634 * so that it doesn't change between the compare and the set. 1635 */ 1636 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1637 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1638 threshold_lsn = last_sync_lsn; 1639 1640 /* 1641 * Get the transaction layer to kick the dirty buffers out to 1642 * disk asynchronously. No point in trying to do this if 1643 * the filesystem is shutting down. 1644 */ 1645 if (!XLOG_FORCED_SHUTDOWN(log)) 1646 xfs_ail_push(log->l_ailp, threshold_lsn); 1647 } 1648 1649 /* 1650 * Stamp cycle number in every block 1651 */ 1652 STATIC void 1653 xlog_pack_data( 1654 struct xlog *log, 1655 struct xlog_in_core *iclog, 1656 int roundoff) 1657 { 1658 int i, j, k; 1659 int size = iclog->ic_offset + roundoff; 1660 __be32 cycle_lsn; 1661 char *dp; 1662 1663 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1664 1665 dp = iclog->ic_datap; 1666 for (i = 0; i < BTOBB(size); i++) { 1667 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1668 break; 1669 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1670 *(__be32 *)dp = cycle_lsn; 1671 dp += BBSIZE; 1672 } 1673 1674 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1675 xlog_in_core_2_t *xhdr = iclog->ic_data; 1676 1677 for ( ; i < BTOBB(size); i++) { 1678 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1679 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1680 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1681 *(__be32 *)dp = cycle_lsn; 1682 dp += BBSIZE; 1683 } 1684 1685 for (i = 1; i < log->l_iclog_heads; i++) 1686 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1687 } 1688 } 1689 1690 /* 1691 * Calculate the checksum for a log buffer. 1692 * 1693 * This is a little more complicated than it should be because the various 1694 * headers and the actual data are non-contiguous. 1695 */ 1696 __le32 1697 xlog_cksum( 1698 struct xlog *log, 1699 struct xlog_rec_header *rhead, 1700 char *dp, 1701 int size) 1702 { 1703 uint32_t crc; 1704 1705 /* first generate the crc for the record header ... */ 1706 crc = xfs_start_cksum_update((char *)rhead, 1707 sizeof(struct xlog_rec_header), 1708 offsetof(struct xlog_rec_header, h_crc)); 1709 1710 /* ... then for additional cycle data for v2 logs ... */ 1711 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1712 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1713 int i; 1714 int xheads; 1715 1716 xheads = size / XLOG_HEADER_CYCLE_SIZE; 1717 if (size % XLOG_HEADER_CYCLE_SIZE) 1718 xheads++; 1719 1720 for (i = 1; i < xheads; i++) { 1721 crc = crc32c(crc, &xhdr[i].hic_xheader, 1722 sizeof(struct xlog_rec_ext_header)); 1723 } 1724 } 1725 1726 /* ... and finally for the payload */ 1727 crc = crc32c(crc, dp, size); 1728 1729 return xfs_end_cksum(crc); 1730 } 1731 1732 static void 1733 xlog_bio_end_io( 1734 struct bio *bio) 1735 { 1736 struct xlog_in_core *iclog = bio->bi_private; 1737 1738 queue_work(iclog->ic_log->l_ioend_workqueue, 1739 &iclog->ic_end_io_work); 1740 } 1741 1742 static void 1743 xlog_map_iclog_data( 1744 struct bio *bio, 1745 void *data, 1746 size_t count) 1747 { 1748 do { 1749 struct page *page = kmem_to_page(data); 1750 unsigned int off = offset_in_page(data); 1751 size_t len = min_t(size_t, count, PAGE_SIZE - off); 1752 1753 WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len); 1754 1755 data += len; 1756 count -= len; 1757 } while (count); 1758 } 1759 1760 STATIC void 1761 xlog_write_iclog( 1762 struct xlog *log, 1763 struct xlog_in_core *iclog, 1764 uint64_t bno, 1765 unsigned int count, 1766 bool need_flush) 1767 { 1768 ASSERT(bno < log->l_logBBsize); 1769 1770 /* 1771 * We lock the iclogbufs here so that we can serialise against I/O 1772 * completion during unmount. We might be processing a shutdown 1773 * triggered during unmount, and that can occur asynchronously to the 1774 * unmount thread, and hence we need to ensure that completes before 1775 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1776 * across the log IO to archieve that. 1777 */ 1778 down(&iclog->ic_sema); 1779 if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) { 1780 /* 1781 * It would seem logical to return EIO here, but we rely on 1782 * the log state machine to propagate I/O errors instead of 1783 * doing it here. We kick of the state machine and unlock 1784 * the buffer manually, the code needs to be kept in sync 1785 * with the I/O completion path. 1786 */ 1787 xlog_state_done_syncing(iclog, true); 1788 up(&iclog->ic_sema); 1789 return; 1790 } 1791 1792 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE)); 1793 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev); 1794 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1795 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1796 iclog->ic_bio.bi_private = iclog; 1797 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA; 1798 if (need_flush) 1799 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1800 1801 xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count); 1802 if (is_vmalloc_addr(iclog->ic_data)) 1803 flush_kernel_vmap_range(iclog->ic_data, count); 1804 1805 /* 1806 * If this log buffer would straddle the end of the log we will have 1807 * to split it up into two bios, so that we can continue at the start. 1808 */ 1809 if (bno + BTOBB(count) > log->l_logBBsize) { 1810 struct bio *split; 1811 1812 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1813 GFP_NOIO, &fs_bio_set); 1814 bio_chain(split, &iclog->ic_bio); 1815 submit_bio(split); 1816 1817 /* restart at logical offset zero for the remainder */ 1818 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1819 } 1820 1821 submit_bio(&iclog->ic_bio); 1822 } 1823 1824 /* 1825 * We need to bump cycle number for the part of the iclog that is 1826 * written to the start of the log. Watch out for the header magic 1827 * number case, though. 1828 */ 1829 static void 1830 xlog_split_iclog( 1831 struct xlog *log, 1832 void *data, 1833 uint64_t bno, 1834 unsigned int count) 1835 { 1836 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 1837 unsigned int i; 1838 1839 for (i = split_offset; i < count; i += BBSIZE) { 1840 uint32_t cycle = get_unaligned_be32(data + i); 1841 1842 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1843 cycle++; 1844 put_unaligned_be32(cycle, data + i); 1845 } 1846 } 1847 1848 static int 1849 xlog_calc_iclog_size( 1850 struct xlog *log, 1851 struct xlog_in_core *iclog, 1852 uint32_t *roundoff) 1853 { 1854 uint32_t count_init, count; 1855 bool use_lsunit; 1856 1857 use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 1858 log->l_mp->m_sb.sb_logsunit > 1; 1859 1860 /* Add for LR header */ 1861 count_init = log->l_iclog_hsize + iclog->ic_offset; 1862 1863 /* Round out the log write size */ 1864 if (use_lsunit) { 1865 /* we have a v2 stripe unit to use */ 1866 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1867 } else { 1868 count = BBTOB(BTOBB(count_init)); 1869 } 1870 1871 ASSERT(count >= count_init); 1872 *roundoff = count - count_init; 1873 1874 if (use_lsunit) 1875 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit); 1876 else 1877 ASSERT(*roundoff < BBTOB(1)); 1878 return count; 1879 } 1880 1881 /* 1882 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1883 * fashion. Previously, we should have moved the current iclog 1884 * ptr in the log to point to the next available iclog. This allows further 1885 * write to continue while this code syncs out an iclog ready to go. 1886 * Before an in-core log can be written out, the data section must be scanned 1887 * to save away the 1st word of each BBSIZE block into the header. We replace 1888 * it with the current cycle count. Each BBSIZE block is tagged with the 1889 * cycle count because there in an implicit assumption that drives will 1890 * guarantee that entire 512 byte blocks get written at once. In other words, 1891 * we can't have part of a 512 byte block written and part not written. By 1892 * tagging each block, we will know which blocks are valid when recovering 1893 * after an unclean shutdown. 1894 * 1895 * This routine is single threaded on the iclog. No other thread can be in 1896 * this routine with the same iclog. Changing contents of iclog can there- 1897 * fore be done without grabbing the state machine lock. Updating the global 1898 * log will require grabbing the lock though. 1899 * 1900 * The entire log manager uses a logical block numbering scheme. Only 1901 * xlog_write_iclog knows about the fact that the log may not start with 1902 * block zero on a given device. 1903 */ 1904 STATIC void 1905 xlog_sync( 1906 struct xlog *log, 1907 struct xlog_in_core *iclog) 1908 { 1909 unsigned int count; /* byte count of bwrite */ 1910 unsigned int roundoff; /* roundoff to BB or stripe */ 1911 uint64_t bno; 1912 unsigned int size; 1913 bool need_flush = true, split = false; 1914 1915 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1916 1917 count = xlog_calc_iclog_size(log, iclog, &roundoff); 1918 1919 /* move grant heads by roundoff in sync */ 1920 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1921 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1922 1923 /* put cycle number in every block */ 1924 xlog_pack_data(log, iclog, roundoff); 1925 1926 /* real byte length */ 1927 size = iclog->ic_offset; 1928 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) 1929 size += roundoff; 1930 iclog->ic_header.h_len = cpu_to_be32(size); 1931 1932 XFS_STATS_INC(log->l_mp, xs_log_writes); 1933 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1934 1935 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)); 1936 1937 /* Do we need to split this write into 2 parts? */ 1938 if (bno + BTOBB(count) > log->l_logBBsize) { 1939 xlog_split_iclog(log, &iclog->ic_header, bno, count); 1940 split = true; 1941 } 1942 1943 /* calculcate the checksum */ 1944 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1945 iclog->ic_datap, size); 1946 /* 1947 * Intentionally corrupt the log record CRC based on the error injection 1948 * frequency, if defined. This facilitates testing log recovery in the 1949 * event of torn writes. Hence, set the IOABORT state to abort the log 1950 * write on I/O completion and shutdown the fs. The subsequent mount 1951 * detects the bad CRC and attempts to recover. 1952 */ 1953 #ifdef DEBUG 1954 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 1955 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 1956 iclog->ic_fail_crc = true; 1957 xfs_warn(log->l_mp, 1958 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1959 be64_to_cpu(iclog->ic_header.h_lsn)); 1960 } 1961 #endif 1962 1963 /* 1964 * Flush the data device before flushing the log to make sure all meta 1965 * data written back from the AIL actually made it to disk before 1966 * stamping the new log tail LSN into the log buffer. For an external 1967 * log we need to issue the flush explicitly, and unfortunately 1968 * synchronously here; for an internal log we can simply use the block 1969 * layer state machine for preflushes. 1970 */ 1971 if (log->l_targ != log->l_mp->m_ddev_targp || split) { 1972 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1973 need_flush = false; 1974 } 1975 1976 xlog_verify_iclog(log, iclog, count); 1977 xlog_write_iclog(log, iclog, bno, count, need_flush); 1978 } 1979 1980 /* 1981 * Deallocate a log structure 1982 */ 1983 STATIC void 1984 xlog_dealloc_log( 1985 struct xlog *log) 1986 { 1987 xlog_in_core_t *iclog, *next_iclog; 1988 int i; 1989 1990 xlog_cil_destroy(log); 1991 1992 /* 1993 * Cycle all the iclogbuf locks to make sure all log IO completion 1994 * is done before we tear down these buffers. 1995 */ 1996 iclog = log->l_iclog; 1997 for (i = 0; i < log->l_iclog_bufs; i++) { 1998 down(&iclog->ic_sema); 1999 up(&iclog->ic_sema); 2000 iclog = iclog->ic_next; 2001 } 2002 2003 iclog = log->l_iclog; 2004 for (i = 0; i < log->l_iclog_bufs; i++) { 2005 next_iclog = iclog->ic_next; 2006 kmem_free(iclog->ic_data); 2007 kmem_free(iclog); 2008 iclog = next_iclog; 2009 } 2010 2011 log->l_mp->m_log = NULL; 2012 destroy_workqueue(log->l_ioend_workqueue); 2013 kmem_free(log); 2014 } /* xlog_dealloc_log */ 2015 2016 /* 2017 * Update counters atomically now that memcpy is done. 2018 */ 2019 static inline void 2020 xlog_state_finish_copy( 2021 struct xlog *log, 2022 struct xlog_in_core *iclog, 2023 int record_cnt, 2024 int copy_bytes) 2025 { 2026 lockdep_assert_held(&log->l_icloglock); 2027 2028 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 2029 iclog->ic_offset += copy_bytes; 2030 } 2031 2032 /* 2033 * print out info relating to regions written which consume 2034 * the reservation 2035 */ 2036 void 2037 xlog_print_tic_res( 2038 struct xfs_mount *mp, 2039 struct xlog_ticket *ticket) 2040 { 2041 uint i; 2042 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 2043 2044 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 2045 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str 2046 static char *res_type_str[] = { 2047 REG_TYPE_STR(BFORMAT, "bformat"), 2048 REG_TYPE_STR(BCHUNK, "bchunk"), 2049 REG_TYPE_STR(EFI_FORMAT, "efi_format"), 2050 REG_TYPE_STR(EFD_FORMAT, "efd_format"), 2051 REG_TYPE_STR(IFORMAT, "iformat"), 2052 REG_TYPE_STR(ICORE, "icore"), 2053 REG_TYPE_STR(IEXT, "iext"), 2054 REG_TYPE_STR(IBROOT, "ibroot"), 2055 REG_TYPE_STR(ILOCAL, "ilocal"), 2056 REG_TYPE_STR(IATTR_EXT, "iattr_ext"), 2057 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"), 2058 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"), 2059 REG_TYPE_STR(QFORMAT, "qformat"), 2060 REG_TYPE_STR(DQUOT, "dquot"), 2061 REG_TYPE_STR(QUOTAOFF, "quotaoff"), 2062 REG_TYPE_STR(LRHEADER, "LR header"), 2063 REG_TYPE_STR(UNMOUNT, "unmount"), 2064 REG_TYPE_STR(COMMIT, "commit"), 2065 REG_TYPE_STR(TRANSHDR, "trans header"), 2066 REG_TYPE_STR(ICREATE, "inode create"), 2067 REG_TYPE_STR(RUI_FORMAT, "rui_format"), 2068 REG_TYPE_STR(RUD_FORMAT, "rud_format"), 2069 REG_TYPE_STR(CUI_FORMAT, "cui_format"), 2070 REG_TYPE_STR(CUD_FORMAT, "cud_format"), 2071 REG_TYPE_STR(BUI_FORMAT, "bui_format"), 2072 REG_TYPE_STR(BUD_FORMAT, "bud_format"), 2073 }; 2074 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1); 2075 #undef REG_TYPE_STR 2076 2077 xfs_warn(mp, "ticket reservation summary:"); 2078 xfs_warn(mp, " unit res = %d bytes", 2079 ticket->t_unit_res); 2080 xfs_warn(mp, " current res = %d bytes", 2081 ticket->t_curr_res); 2082 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2083 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2084 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2085 ticket->t_res_num_ophdrs, ophdr_spc); 2086 xfs_warn(mp, " ophdr + reg = %u bytes", 2087 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2088 xfs_warn(mp, " num regions = %u", 2089 ticket->t_res_num); 2090 2091 for (i = 0; i < ticket->t_res_num; i++) { 2092 uint r_type = ticket->t_res_arr[i].r_type; 2093 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2094 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2095 "bad-rtype" : res_type_str[r_type]), 2096 ticket->t_res_arr[i].r_len); 2097 } 2098 } 2099 2100 /* 2101 * Print a summary of the transaction. 2102 */ 2103 void 2104 xlog_print_trans( 2105 struct xfs_trans *tp) 2106 { 2107 struct xfs_mount *mp = tp->t_mountp; 2108 struct xfs_log_item *lip; 2109 2110 /* dump core transaction and ticket info */ 2111 xfs_warn(mp, "transaction summary:"); 2112 xfs_warn(mp, " log res = %d", tp->t_log_res); 2113 xfs_warn(mp, " log count = %d", tp->t_log_count); 2114 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2115 2116 xlog_print_tic_res(mp, tp->t_ticket); 2117 2118 /* dump each log item */ 2119 list_for_each_entry(lip, &tp->t_items, li_trans) { 2120 struct xfs_log_vec *lv = lip->li_lv; 2121 struct xfs_log_iovec *vec; 2122 int i; 2123 2124 xfs_warn(mp, "log item: "); 2125 xfs_warn(mp, " type = 0x%x", lip->li_type); 2126 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2127 if (!lv) 2128 continue; 2129 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2130 xfs_warn(mp, " size = %d", lv->lv_size); 2131 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2132 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2133 2134 /* dump each iovec for the log item */ 2135 vec = lv->lv_iovecp; 2136 for (i = 0; i < lv->lv_niovecs; i++) { 2137 int dumplen = min(vec->i_len, 32); 2138 2139 xfs_warn(mp, " iovec[%d]", i); 2140 xfs_warn(mp, " type = 0x%x", vec->i_type); 2141 xfs_warn(mp, " len = %d", vec->i_len); 2142 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2143 xfs_hex_dump(vec->i_addr, dumplen); 2144 2145 vec++; 2146 } 2147 } 2148 } 2149 2150 /* 2151 * Calculate the potential space needed by the log vector. Each region gets 2152 * its own xlog_op_header_t and may need to be double word aligned. 2153 */ 2154 static int 2155 xlog_write_calc_vec_length( 2156 struct xlog_ticket *ticket, 2157 struct xfs_log_vec *log_vector) 2158 { 2159 struct xfs_log_vec *lv; 2160 int headers = 0; 2161 int len = 0; 2162 int i; 2163 2164 /* acct for start rec of xact */ 2165 if (ticket->t_flags & XLOG_TIC_INITED) 2166 headers++; 2167 2168 for (lv = log_vector; lv; lv = lv->lv_next) { 2169 /* we don't write ordered log vectors */ 2170 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2171 continue; 2172 2173 headers += lv->lv_niovecs; 2174 2175 for (i = 0; i < lv->lv_niovecs; i++) { 2176 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2177 2178 len += vecp->i_len; 2179 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2180 } 2181 } 2182 2183 ticket->t_res_num_ophdrs += headers; 2184 len += headers * sizeof(struct xlog_op_header); 2185 2186 return len; 2187 } 2188 2189 /* 2190 * If first write for transaction, insert start record We can't be trying to 2191 * commit if we are inited. We can't have any "partial_copy" if we are inited. 2192 */ 2193 static int 2194 xlog_write_start_rec( 2195 struct xlog_op_header *ophdr, 2196 struct xlog_ticket *ticket) 2197 { 2198 if (!(ticket->t_flags & XLOG_TIC_INITED)) 2199 return 0; 2200 2201 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2202 ophdr->oh_clientid = ticket->t_clientid; 2203 ophdr->oh_len = 0; 2204 ophdr->oh_flags = XLOG_START_TRANS; 2205 ophdr->oh_res2 = 0; 2206 2207 ticket->t_flags &= ~XLOG_TIC_INITED; 2208 2209 return sizeof(struct xlog_op_header); 2210 } 2211 2212 static xlog_op_header_t * 2213 xlog_write_setup_ophdr( 2214 struct xlog *log, 2215 struct xlog_op_header *ophdr, 2216 struct xlog_ticket *ticket, 2217 uint flags) 2218 { 2219 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2220 ophdr->oh_clientid = ticket->t_clientid; 2221 ophdr->oh_res2 = 0; 2222 2223 /* are we copying a commit or unmount record? */ 2224 ophdr->oh_flags = flags; 2225 2226 /* 2227 * We've seen logs corrupted with bad transaction client ids. This 2228 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2229 * and shut down the filesystem. 2230 */ 2231 switch (ophdr->oh_clientid) { 2232 case XFS_TRANSACTION: 2233 case XFS_VOLUME: 2234 case XFS_LOG: 2235 break; 2236 default: 2237 xfs_warn(log->l_mp, 2238 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT, 2239 ophdr->oh_clientid, ticket); 2240 return NULL; 2241 } 2242 2243 return ophdr; 2244 } 2245 2246 /* 2247 * Set up the parameters of the region copy into the log. This has 2248 * to handle region write split across multiple log buffers - this 2249 * state is kept external to this function so that this code can 2250 * be written in an obvious, self documenting manner. 2251 */ 2252 static int 2253 xlog_write_setup_copy( 2254 struct xlog_ticket *ticket, 2255 struct xlog_op_header *ophdr, 2256 int space_available, 2257 int space_required, 2258 int *copy_off, 2259 int *copy_len, 2260 int *last_was_partial_copy, 2261 int *bytes_consumed) 2262 { 2263 int still_to_copy; 2264 2265 still_to_copy = space_required - *bytes_consumed; 2266 *copy_off = *bytes_consumed; 2267 2268 if (still_to_copy <= space_available) { 2269 /* write of region completes here */ 2270 *copy_len = still_to_copy; 2271 ophdr->oh_len = cpu_to_be32(*copy_len); 2272 if (*last_was_partial_copy) 2273 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2274 *last_was_partial_copy = 0; 2275 *bytes_consumed = 0; 2276 return 0; 2277 } 2278 2279 /* partial write of region, needs extra log op header reservation */ 2280 *copy_len = space_available; 2281 ophdr->oh_len = cpu_to_be32(*copy_len); 2282 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2283 if (*last_was_partial_copy) 2284 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2285 *bytes_consumed += *copy_len; 2286 (*last_was_partial_copy)++; 2287 2288 /* account for new log op header */ 2289 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2290 ticket->t_res_num_ophdrs++; 2291 2292 return sizeof(struct xlog_op_header); 2293 } 2294 2295 static int 2296 xlog_write_copy_finish( 2297 struct xlog *log, 2298 struct xlog_in_core *iclog, 2299 uint flags, 2300 int *record_cnt, 2301 int *data_cnt, 2302 int *partial_copy, 2303 int *partial_copy_len, 2304 int log_offset, 2305 struct xlog_in_core **commit_iclog) 2306 { 2307 int error; 2308 2309 if (*partial_copy) { 2310 /* 2311 * This iclog has already been marked WANT_SYNC by 2312 * xlog_state_get_iclog_space. 2313 */ 2314 spin_lock(&log->l_icloglock); 2315 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2316 *record_cnt = 0; 2317 *data_cnt = 0; 2318 goto release_iclog; 2319 } 2320 2321 *partial_copy = 0; 2322 *partial_copy_len = 0; 2323 2324 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2325 /* no more space in this iclog - push it. */ 2326 spin_lock(&log->l_icloglock); 2327 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2328 *record_cnt = 0; 2329 *data_cnt = 0; 2330 2331 xlog_state_want_sync(log, iclog); 2332 if (!commit_iclog) 2333 goto release_iclog; 2334 spin_unlock(&log->l_icloglock); 2335 ASSERT(flags & XLOG_COMMIT_TRANS); 2336 *commit_iclog = iclog; 2337 } 2338 2339 return 0; 2340 2341 release_iclog: 2342 error = xlog_state_release_iclog(log, iclog); 2343 spin_unlock(&log->l_icloglock); 2344 return error; 2345 } 2346 2347 /* 2348 * Write some region out to in-core log 2349 * 2350 * This will be called when writing externally provided regions or when 2351 * writing out a commit record for a given transaction. 2352 * 2353 * General algorithm: 2354 * 1. Find total length of this write. This may include adding to the 2355 * lengths passed in. 2356 * 2. Check whether we violate the tickets reservation. 2357 * 3. While writing to this iclog 2358 * A. Reserve as much space in this iclog as can get 2359 * B. If this is first write, save away start lsn 2360 * C. While writing this region: 2361 * 1. If first write of transaction, write start record 2362 * 2. Write log operation header (header per region) 2363 * 3. Find out if we can fit entire region into this iclog 2364 * 4. Potentially, verify destination memcpy ptr 2365 * 5. Memcpy (partial) region 2366 * 6. If partial copy, release iclog; otherwise, continue 2367 * copying more regions into current iclog 2368 * 4. Mark want sync bit (in simulation mode) 2369 * 5. Release iclog for potential flush to on-disk log. 2370 * 2371 * ERRORS: 2372 * 1. Panic if reservation is overrun. This should never happen since 2373 * reservation amounts are generated internal to the filesystem. 2374 * NOTES: 2375 * 1. Tickets are single threaded data structures. 2376 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2377 * syncing routine. When a single log_write region needs to span 2378 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2379 * on all log operation writes which don't contain the end of the 2380 * region. The XLOG_END_TRANS bit is used for the in-core log 2381 * operation which contains the end of the continued log_write region. 2382 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2383 * we don't really know exactly how much space will be used. As a result, 2384 * we don't update ic_offset until the end when we know exactly how many 2385 * bytes have been written out. 2386 */ 2387 int 2388 xlog_write( 2389 struct xlog *log, 2390 struct xfs_log_vec *log_vector, 2391 struct xlog_ticket *ticket, 2392 xfs_lsn_t *start_lsn, 2393 struct xlog_in_core **commit_iclog, 2394 uint flags) 2395 { 2396 struct xlog_in_core *iclog = NULL; 2397 struct xfs_log_iovec *vecp; 2398 struct xfs_log_vec *lv; 2399 int len; 2400 int index; 2401 int partial_copy = 0; 2402 int partial_copy_len = 0; 2403 int contwr = 0; 2404 int record_cnt = 0; 2405 int data_cnt = 0; 2406 int error = 0; 2407 2408 *start_lsn = 0; 2409 2410 len = xlog_write_calc_vec_length(ticket, log_vector); 2411 2412 /* 2413 * Region headers and bytes are already accounted for. 2414 * We only need to take into account start records and 2415 * split regions in this function. 2416 */ 2417 if (ticket->t_flags & XLOG_TIC_INITED) 2418 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2419 2420 /* 2421 * Commit record headers need to be accounted for. These 2422 * come in as separate writes so are easy to detect. 2423 */ 2424 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2425 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2426 2427 if (ticket->t_curr_res < 0) { 2428 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2429 "ctx ticket reservation ran out. Need to up reservation"); 2430 xlog_print_tic_res(log->l_mp, ticket); 2431 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 2432 } 2433 2434 index = 0; 2435 lv = log_vector; 2436 vecp = lv->lv_iovecp; 2437 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2438 void *ptr; 2439 int log_offset; 2440 2441 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2442 &contwr, &log_offset); 2443 if (error) 2444 return error; 2445 2446 ASSERT(log_offset <= iclog->ic_size - 1); 2447 ptr = iclog->ic_datap + log_offset; 2448 2449 /* start_lsn is the first lsn written to. That's all we need. */ 2450 if (!*start_lsn) 2451 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2452 2453 /* 2454 * This loop writes out as many regions as can fit in the amount 2455 * of space which was allocated by xlog_state_get_iclog_space(). 2456 */ 2457 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2458 struct xfs_log_iovec *reg; 2459 struct xlog_op_header *ophdr; 2460 int start_rec_copy; 2461 int copy_len; 2462 int copy_off; 2463 bool ordered = false; 2464 2465 /* ordered log vectors have no regions to write */ 2466 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2467 ASSERT(lv->lv_niovecs == 0); 2468 ordered = true; 2469 goto next_lv; 2470 } 2471 2472 reg = &vecp[index]; 2473 ASSERT(reg->i_len % sizeof(int32_t) == 0); 2474 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0); 2475 2476 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2477 if (start_rec_copy) { 2478 record_cnt++; 2479 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2480 start_rec_copy); 2481 } 2482 2483 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2484 if (!ophdr) 2485 return -EIO; 2486 2487 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2488 sizeof(struct xlog_op_header)); 2489 2490 len += xlog_write_setup_copy(ticket, ophdr, 2491 iclog->ic_size-log_offset, 2492 reg->i_len, 2493 ©_off, ©_len, 2494 &partial_copy, 2495 &partial_copy_len); 2496 xlog_verify_dest_ptr(log, ptr); 2497 2498 /* 2499 * Copy region. 2500 * 2501 * Unmount records just log an opheader, so can have 2502 * empty payloads with no data region to copy. Hence we 2503 * only copy the payload if the vector says it has data 2504 * to copy. 2505 */ 2506 ASSERT(copy_len >= 0); 2507 if (copy_len > 0) { 2508 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2509 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2510 copy_len); 2511 } 2512 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2513 record_cnt++; 2514 data_cnt += contwr ? copy_len : 0; 2515 2516 error = xlog_write_copy_finish(log, iclog, flags, 2517 &record_cnt, &data_cnt, 2518 &partial_copy, 2519 &partial_copy_len, 2520 log_offset, 2521 commit_iclog); 2522 if (error) 2523 return error; 2524 2525 /* 2526 * if we had a partial copy, we need to get more iclog 2527 * space but we don't want to increment the region 2528 * index because there is still more is this region to 2529 * write. 2530 * 2531 * If we completed writing this region, and we flushed 2532 * the iclog (indicated by resetting of the record 2533 * count), then we also need to get more log space. If 2534 * this was the last record, though, we are done and 2535 * can just return. 2536 */ 2537 if (partial_copy) 2538 break; 2539 2540 if (++index == lv->lv_niovecs) { 2541 next_lv: 2542 lv = lv->lv_next; 2543 index = 0; 2544 if (lv) 2545 vecp = lv->lv_iovecp; 2546 } 2547 if (record_cnt == 0 && !ordered) { 2548 if (!lv) 2549 return 0; 2550 break; 2551 } 2552 } 2553 } 2554 2555 ASSERT(len == 0); 2556 2557 spin_lock(&log->l_icloglock); 2558 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2559 if (commit_iclog) { 2560 ASSERT(flags & XLOG_COMMIT_TRANS); 2561 *commit_iclog = iclog; 2562 } else { 2563 error = xlog_state_release_iclog(log, iclog); 2564 } 2565 spin_unlock(&log->l_icloglock); 2566 2567 return error; 2568 } 2569 2570 2571 /***************************************************************************** 2572 * 2573 * State Machine functions 2574 * 2575 ***************************************************************************** 2576 */ 2577 2578 /* 2579 * An iclog has just finished IO completion processing, so we need to update 2580 * the iclog state and propagate that up into the overall log state. Hence we 2581 * prepare the iclog for cleaning, and then clean all the pending dirty iclogs 2582 * starting from the head, and then wake up any threads that are waiting for the 2583 * iclog to be marked clean. 2584 * 2585 * The ordering of marking iclogs ACTIVE must be maintained, so an iclog 2586 * doesn't become ACTIVE beyond one that is SYNCING. This is also required to 2587 * maintain the notion that we use a ordered wait queue to hold off would be 2588 * writers to the log when every iclog is trying to sync to disk. 2589 * 2590 * Caller must hold the icloglock before calling us. 2591 * 2592 * State Change: !IOERROR -> DIRTY -> ACTIVE 2593 */ 2594 STATIC void 2595 xlog_state_clean_iclog( 2596 struct xlog *log, 2597 struct xlog_in_core *dirty_iclog) 2598 { 2599 struct xlog_in_core *iclog; 2600 int changed = 0; 2601 2602 /* Prepare the completed iclog. */ 2603 if (dirty_iclog->ic_state != XLOG_STATE_IOERROR) 2604 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2605 2606 /* Walk all the iclogs to update the ordered active state. */ 2607 iclog = log->l_iclog; 2608 do { 2609 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2610 iclog->ic_state = XLOG_STATE_ACTIVE; 2611 iclog->ic_offset = 0; 2612 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2613 /* 2614 * If the number of ops in this iclog indicate it just 2615 * contains the dummy transaction, we can 2616 * change state into IDLE (the second time around). 2617 * Otherwise we should change the state into 2618 * NEED a dummy. 2619 * We don't need to cover the dummy. 2620 */ 2621 if (!changed && 2622 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2623 XLOG_COVER_OPS)) { 2624 changed = 1; 2625 } else { 2626 /* 2627 * We have two dirty iclogs so start over 2628 * This could also be num of ops indicates 2629 * this is not the dummy going out. 2630 */ 2631 changed = 2; 2632 } 2633 iclog->ic_header.h_num_logops = 0; 2634 memset(iclog->ic_header.h_cycle_data, 0, 2635 sizeof(iclog->ic_header.h_cycle_data)); 2636 iclog->ic_header.h_lsn = 0; 2637 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2638 /* do nothing */; 2639 else 2640 break; /* stop cleaning */ 2641 iclog = iclog->ic_next; 2642 } while (iclog != log->l_iclog); 2643 2644 2645 /* 2646 * Wake up threads waiting in xfs_log_force() for the dirty iclog 2647 * to be cleaned. 2648 */ 2649 wake_up_all(&dirty_iclog->ic_force_wait); 2650 2651 /* 2652 * Change state for the dummy log recording. 2653 * We usually go to NEED. But we go to NEED2 if the changed indicates 2654 * we are done writing the dummy record. 2655 * If we are done with the second dummy recored (DONE2), then 2656 * we go to IDLE. 2657 */ 2658 if (changed) { 2659 switch (log->l_covered_state) { 2660 case XLOG_STATE_COVER_IDLE: 2661 case XLOG_STATE_COVER_NEED: 2662 case XLOG_STATE_COVER_NEED2: 2663 log->l_covered_state = XLOG_STATE_COVER_NEED; 2664 break; 2665 2666 case XLOG_STATE_COVER_DONE: 2667 if (changed == 1) 2668 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2669 else 2670 log->l_covered_state = XLOG_STATE_COVER_NEED; 2671 break; 2672 2673 case XLOG_STATE_COVER_DONE2: 2674 if (changed == 1) 2675 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2676 else 2677 log->l_covered_state = XLOG_STATE_COVER_NEED; 2678 break; 2679 2680 default: 2681 ASSERT(0); 2682 } 2683 } 2684 } 2685 2686 STATIC xfs_lsn_t 2687 xlog_get_lowest_lsn( 2688 struct xlog *log) 2689 { 2690 struct xlog_in_core *iclog = log->l_iclog; 2691 xfs_lsn_t lowest_lsn = 0, lsn; 2692 2693 do { 2694 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2695 iclog->ic_state == XLOG_STATE_DIRTY) 2696 continue; 2697 2698 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2699 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2700 lowest_lsn = lsn; 2701 } while ((iclog = iclog->ic_next) != log->l_iclog); 2702 2703 return lowest_lsn; 2704 } 2705 2706 /* 2707 * Completion of a iclog IO does not imply that a transaction has completed, as 2708 * transactions can be large enough to span many iclogs. We cannot change the 2709 * tail of the log half way through a transaction as this may be the only 2710 * transaction in the log and moving the tail to point to the middle of it 2711 * will prevent recovery from finding the start of the transaction. Hence we 2712 * should only update the last_sync_lsn if this iclog contains transaction 2713 * completion callbacks on it. 2714 * 2715 * We have to do this before we drop the icloglock to ensure we are the only one 2716 * that can update it. 2717 * 2718 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick 2719 * the reservation grant head pushing. This is due to the fact that the push 2720 * target is bound by the current last_sync_lsn value. Hence if we have a large 2721 * amount of log space bound up in this committing transaction then the 2722 * last_sync_lsn value may be the limiting factor preventing tail pushing from 2723 * freeing space in the log. Hence once we've updated the last_sync_lsn we 2724 * should push the AIL to ensure the push target (and hence the grant head) is 2725 * no longer bound by the old log head location and can move forwards and make 2726 * progress again. 2727 */ 2728 static void 2729 xlog_state_set_callback( 2730 struct xlog *log, 2731 struct xlog_in_core *iclog, 2732 xfs_lsn_t header_lsn) 2733 { 2734 iclog->ic_state = XLOG_STATE_CALLBACK; 2735 2736 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2737 header_lsn) <= 0); 2738 2739 if (list_empty_careful(&iclog->ic_callbacks)) 2740 return; 2741 2742 atomic64_set(&log->l_last_sync_lsn, header_lsn); 2743 xlog_grant_push_ail(log, 0); 2744 } 2745 2746 /* 2747 * Return true if we need to stop processing, false to continue to the next 2748 * iclog. The caller will need to run callbacks if the iclog is returned in the 2749 * XLOG_STATE_CALLBACK state. 2750 */ 2751 static bool 2752 xlog_state_iodone_process_iclog( 2753 struct xlog *log, 2754 struct xlog_in_core *iclog, 2755 bool *ioerror) 2756 { 2757 xfs_lsn_t lowest_lsn; 2758 xfs_lsn_t header_lsn; 2759 2760 switch (iclog->ic_state) { 2761 case XLOG_STATE_ACTIVE: 2762 case XLOG_STATE_DIRTY: 2763 /* 2764 * Skip all iclogs in the ACTIVE & DIRTY states: 2765 */ 2766 return false; 2767 case XLOG_STATE_IOERROR: 2768 /* 2769 * Between marking a filesystem SHUTDOWN and stopping the log, 2770 * we do flush all iclogs to disk (if there wasn't a log I/O 2771 * error). So, we do want things to go smoothly in case of just 2772 * a SHUTDOWN w/o a LOG_IO_ERROR. 2773 */ 2774 *ioerror = true; 2775 return false; 2776 case XLOG_STATE_DONE_SYNC: 2777 /* 2778 * Now that we have an iclog that is in the DONE_SYNC state, do 2779 * one more check here to see if we have chased our tail around. 2780 * If this is not the lowest lsn iclog, then we will leave it 2781 * for another completion to process. 2782 */ 2783 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2784 lowest_lsn = xlog_get_lowest_lsn(log); 2785 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2786 return false; 2787 xlog_state_set_callback(log, iclog, header_lsn); 2788 return false; 2789 default: 2790 /* 2791 * Can only perform callbacks in order. Since this iclog is not 2792 * in the DONE_SYNC state, we skip the rest and just try to 2793 * clean up. 2794 */ 2795 return true; 2796 } 2797 } 2798 2799 /* 2800 * Keep processing entries in the iclog callback list until we come around and 2801 * it is empty. We need to atomically see that the list is empty and change the 2802 * state to DIRTY so that we don't miss any more callbacks being added. 2803 * 2804 * This function is called with the icloglock held and returns with it held. We 2805 * drop it while running callbacks, however, as holding it over thousands of 2806 * callbacks is unnecessary and causes excessive contention if we do. 2807 */ 2808 static void 2809 xlog_state_do_iclog_callbacks( 2810 struct xlog *log, 2811 struct xlog_in_core *iclog, 2812 bool aborted) 2813 __releases(&log->l_icloglock) 2814 __acquires(&log->l_icloglock) 2815 { 2816 spin_unlock(&log->l_icloglock); 2817 spin_lock(&iclog->ic_callback_lock); 2818 while (!list_empty(&iclog->ic_callbacks)) { 2819 LIST_HEAD(tmp); 2820 2821 list_splice_init(&iclog->ic_callbacks, &tmp); 2822 2823 spin_unlock(&iclog->ic_callback_lock); 2824 xlog_cil_process_committed(&tmp, aborted); 2825 spin_lock(&iclog->ic_callback_lock); 2826 } 2827 2828 /* 2829 * Pick up the icloglock while still holding the callback lock so we 2830 * serialise against anyone trying to add more callbacks to this iclog 2831 * now we've finished processing. 2832 */ 2833 spin_lock(&log->l_icloglock); 2834 spin_unlock(&iclog->ic_callback_lock); 2835 } 2836 2837 STATIC void 2838 xlog_state_do_callback( 2839 struct xlog *log, 2840 bool aborted) 2841 { 2842 struct xlog_in_core *iclog; 2843 struct xlog_in_core *first_iclog; 2844 bool cycled_icloglock; 2845 bool ioerror; 2846 int flushcnt = 0; 2847 int repeats = 0; 2848 2849 spin_lock(&log->l_icloglock); 2850 do { 2851 /* 2852 * Scan all iclogs starting with the one pointed to by the 2853 * log. Reset this starting point each time the log is 2854 * unlocked (during callbacks). 2855 * 2856 * Keep looping through iclogs until one full pass is made 2857 * without running any callbacks. 2858 */ 2859 first_iclog = log->l_iclog; 2860 iclog = log->l_iclog; 2861 cycled_icloglock = false; 2862 ioerror = false; 2863 repeats++; 2864 2865 do { 2866 if (xlog_state_iodone_process_iclog(log, iclog, 2867 &ioerror)) 2868 break; 2869 2870 if (iclog->ic_state != XLOG_STATE_CALLBACK && 2871 iclog->ic_state != XLOG_STATE_IOERROR) { 2872 iclog = iclog->ic_next; 2873 continue; 2874 } 2875 2876 /* 2877 * Running callbacks will drop the icloglock which means 2878 * we'll have to run at least one more complete loop. 2879 */ 2880 cycled_icloglock = true; 2881 xlog_state_do_iclog_callbacks(log, iclog, aborted); 2882 2883 xlog_state_clean_iclog(log, iclog); 2884 iclog = iclog->ic_next; 2885 } while (first_iclog != iclog); 2886 2887 if (repeats > 5000) { 2888 flushcnt += repeats; 2889 repeats = 0; 2890 xfs_warn(log->l_mp, 2891 "%s: possible infinite loop (%d iterations)", 2892 __func__, flushcnt); 2893 } 2894 } while (!ioerror && cycled_icloglock); 2895 2896 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE || 2897 log->l_iclog->ic_state == XLOG_STATE_IOERROR) 2898 wake_up_all(&log->l_flush_wait); 2899 2900 spin_unlock(&log->l_icloglock); 2901 } 2902 2903 2904 /* 2905 * Finish transitioning this iclog to the dirty state. 2906 * 2907 * Make sure that we completely execute this routine only when this is 2908 * the last call to the iclog. There is a good chance that iclog flushes, 2909 * when we reach the end of the physical log, get turned into 2 separate 2910 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2911 * routine. By using the reference count bwritecnt, we guarantee that only 2912 * the second completion goes through. 2913 * 2914 * Callbacks could take time, so they are done outside the scope of the 2915 * global state machine log lock. 2916 */ 2917 STATIC void 2918 xlog_state_done_syncing( 2919 struct xlog_in_core *iclog, 2920 bool aborted) 2921 { 2922 struct xlog *log = iclog->ic_log; 2923 2924 spin_lock(&log->l_icloglock); 2925 2926 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2927 2928 /* 2929 * If we got an error, either on the first buffer, or in the case of 2930 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2931 * and none should ever be attempted to be written to disk 2932 * again. 2933 */ 2934 if (iclog->ic_state == XLOG_STATE_SYNCING) 2935 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2936 else 2937 ASSERT(iclog->ic_state == XLOG_STATE_IOERROR); 2938 2939 /* 2940 * Someone could be sleeping prior to writing out the next 2941 * iclog buffer, we wake them all, one will get to do the 2942 * I/O, the others get to wait for the result. 2943 */ 2944 wake_up_all(&iclog->ic_write_wait); 2945 spin_unlock(&log->l_icloglock); 2946 xlog_state_do_callback(log, aborted); /* also cleans log */ 2947 } /* xlog_state_done_syncing */ 2948 2949 2950 /* 2951 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2952 * sleep. We wait on the flush queue on the head iclog as that should be 2953 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2954 * we will wait here and all new writes will sleep until a sync completes. 2955 * 2956 * The in-core logs are used in a circular fashion. They are not used 2957 * out-of-order even when an iclog past the head is free. 2958 * 2959 * return: 2960 * * log_offset where xlog_write() can start writing into the in-core 2961 * log's data space. 2962 * * in-core log pointer to which xlog_write() should write. 2963 * * boolean indicating this is a continued write to an in-core log. 2964 * If this is the last write, then the in-core log's offset field 2965 * needs to be incremented, depending on the amount of data which 2966 * is copied. 2967 */ 2968 STATIC int 2969 xlog_state_get_iclog_space( 2970 struct xlog *log, 2971 int len, 2972 struct xlog_in_core **iclogp, 2973 struct xlog_ticket *ticket, 2974 int *continued_write, 2975 int *logoffsetp) 2976 { 2977 int log_offset; 2978 xlog_rec_header_t *head; 2979 xlog_in_core_t *iclog; 2980 2981 restart: 2982 spin_lock(&log->l_icloglock); 2983 if (XLOG_FORCED_SHUTDOWN(log)) { 2984 spin_unlock(&log->l_icloglock); 2985 return -EIO; 2986 } 2987 2988 iclog = log->l_iclog; 2989 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2990 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2991 2992 /* Wait for log writes to have flushed */ 2993 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2994 goto restart; 2995 } 2996 2997 head = &iclog->ic_header; 2998 2999 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 3000 log_offset = iclog->ic_offset; 3001 3002 /* On the 1st write to an iclog, figure out lsn. This works 3003 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 3004 * committing to. If the offset is set, that's how many blocks 3005 * must be written. 3006 */ 3007 if (log_offset == 0) { 3008 ticket->t_curr_res -= log->l_iclog_hsize; 3009 xlog_tic_add_region(ticket, 3010 log->l_iclog_hsize, 3011 XLOG_REG_TYPE_LRHEADER); 3012 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 3013 head->h_lsn = cpu_to_be64( 3014 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 3015 ASSERT(log->l_curr_block >= 0); 3016 } 3017 3018 /* If there is enough room to write everything, then do it. Otherwise, 3019 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 3020 * bit is on, so this will get flushed out. Don't update ic_offset 3021 * until you know exactly how many bytes get copied. Therefore, wait 3022 * until later to update ic_offset. 3023 * 3024 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 3025 * can fit into remaining data section. 3026 */ 3027 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 3028 int error = 0; 3029 3030 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3031 3032 /* 3033 * If we are the only one writing to this iclog, sync it to 3034 * disk. We need to do an atomic compare and decrement here to 3035 * avoid racing with concurrent atomic_dec_and_lock() calls in 3036 * xlog_state_release_iclog() when there is more than one 3037 * reference to the iclog. 3038 */ 3039 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 3040 error = xlog_state_release_iclog(log, iclog); 3041 spin_unlock(&log->l_icloglock); 3042 if (error) 3043 return error; 3044 goto restart; 3045 } 3046 3047 /* Do we have enough room to write the full amount in the remainder 3048 * of this iclog? Or must we continue a write on the next iclog and 3049 * mark this iclog as completely taken? In the case where we switch 3050 * iclogs (to mark it taken), this particular iclog will release/sync 3051 * to disk in xlog_write(). 3052 */ 3053 if (len <= iclog->ic_size - iclog->ic_offset) { 3054 *continued_write = 0; 3055 iclog->ic_offset += len; 3056 } else { 3057 *continued_write = 1; 3058 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 3059 } 3060 *iclogp = iclog; 3061 3062 ASSERT(iclog->ic_offset <= iclog->ic_size); 3063 spin_unlock(&log->l_icloglock); 3064 3065 *logoffsetp = log_offset; 3066 return 0; 3067 } /* xlog_state_get_iclog_space */ 3068 3069 /* The first cnt-1 times through here we don't need to 3070 * move the grant write head because the permanent 3071 * reservation has reserved cnt times the unit amount. 3072 * Release part of current permanent unit reservation and 3073 * reset current reservation to be one units worth. Also 3074 * move grant reservation head forward. 3075 */ 3076 STATIC void 3077 xlog_regrant_reserve_log_space( 3078 struct xlog *log, 3079 struct xlog_ticket *ticket) 3080 { 3081 trace_xfs_log_regrant_reserve_enter(log, ticket); 3082 3083 if (ticket->t_cnt > 0) 3084 ticket->t_cnt--; 3085 3086 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 3087 ticket->t_curr_res); 3088 xlog_grant_sub_space(log, &log->l_write_head.grant, 3089 ticket->t_curr_res); 3090 ticket->t_curr_res = ticket->t_unit_res; 3091 xlog_tic_reset_res(ticket); 3092 3093 trace_xfs_log_regrant_reserve_sub(log, ticket); 3094 3095 /* just return if we still have some of the pre-reserved space */ 3096 if (ticket->t_cnt > 0) 3097 return; 3098 3099 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3100 ticket->t_unit_res); 3101 3102 trace_xfs_log_regrant_reserve_exit(log, ticket); 3103 3104 ticket->t_curr_res = ticket->t_unit_res; 3105 xlog_tic_reset_res(ticket); 3106 } /* xlog_regrant_reserve_log_space */ 3107 3108 3109 /* 3110 * Give back the space left from a reservation. 3111 * 3112 * All the information we need to make a correct determination of space left 3113 * is present. For non-permanent reservations, things are quite easy. The 3114 * count should have been decremented to zero. We only need to deal with the 3115 * space remaining in the current reservation part of the ticket. If the 3116 * ticket contains a permanent reservation, there may be left over space which 3117 * needs to be released. A count of N means that N-1 refills of the current 3118 * reservation can be done before we need to ask for more space. The first 3119 * one goes to fill up the first current reservation. Once we run out of 3120 * space, the count will stay at zero and the only space remaining will be 3121 * in the current reservation field. 3122 */ 3123 STATIC void 3124 xlog_ungrant_log_space( 3125 struct xlog *log, 3126 struct xlog_ticket *ticket) 3127 { 3128 int bytes; 3129 3130 if (ticket->t_cnt > 0) 3131 ticket->t_cnt--; 3132 3133 trace_xfs_log_ungrant_enter(log, ticket); 3134 trace_xfs_log_ungrant_sub(log, ticket); 3135 3136 /* 3137 * If this is a permanent reservation ticket, we may be able to free 3138 * up more space based on the remaining count. 3139 */ 3140 bytes = ticket->t_curr_res; 3141 if (ticket->t_cnt > 0) { 3142 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3143 bytes += ticket->t_unit_res*ticket->t_cnt; 3144 } 3145 3146 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3147 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3148 3149 trace_xfs_log_ungrant_exit(log, ticket); 3150 3151 xfs_log_space_wake(log->l_mp); 3152 } 3153 3154 /* 3155 * This routine will mark the current iclog in the ring as WANT_SYNC 3156 * and move the current iclog pointer to the next iclog in the ring. 3157 * When this routine is called from xlog_state_get_iclog_space(), the 3158 * exact size of the iclog has not yet been determined. All we know is 3159 * that every data block. We have run out of space in this log record. 3160 */ 3161 STATIC void 3162 xlog_state_switch_iclogs( 3163 struct xlog *log, 3164 struct xlog_in_core *iclog, 3165 int eventual_size) 3166 { 3167 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3168 if (!eventual_size) 3169 eventual_size = iclog->ic_offset; 3170 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3171 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3172 log->l_prev_block = log->l_curr_block; 3173 log->l_prev_cycle = log->l_curr_cycle; 3174 3175 /* roll log?: ic_offset changed later */ 3176 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3177 3178 /* Round up to next log-sunit */ 3179 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3180 log->l_mp->m_sb.sb_logsunit > 1) { 3181 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3182 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3183 } 3184 3185 if (log->l_curr_block >= log->l_logBBsize) { 3186 /* 3187 * Rewind the current block before the cycle is bumped to make 3188 * sure that the combined LSN never transiently moves forward 3189 * when the log wraps to the next cycle. This is to support the 3190 * unlocked sample of these fields from xlog_valid_lsn(). Most 3191 * other cases should acquire l_icloglock. 3192 */ 3193 log->l_curr_block -= log->l_logBBsize; 3194 ASSERT(log->l_curr_block >= 0); 3195 smp_wmb(); 3196 log->l_curr_cycle++; 3197 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3198 log->l_curr_cycle++; 3199 } 3200 ASSERT(iclog == log->l_iclog); 3201 log->l_iclog = iclog->ic_next; 3202 } /* xlog_state_switch_iclogs */ 3203 3204 /* 3205 * Write out all data in the in-core log as of this exact moment in time. 3206 * 3207 * Data may be written to the in-core log during this call. However, 3208 * we don't guarantee this data will be written out. A change from past 3209 * implementation means this routine will *not* write out zero length LRs. 3210 * 3211 * Basically, we try and perform an intelligent scan of the in-core logs. 3212 * If we determine there is no flushable data, we just return. There is no 3213 * flushable data if: 3214 * 3215 * 1. the current iclog is active and has no data; the previous iclog 3216 * is in the active or dirty state. 3217 * 2. the current iclog is drity, and the previous iclog is in the 3218 * active or dirty state. 3219 * 3220 * We may sleep if: 3221 * 3222 * 1. the current iclog is not in the active nor dirty state. 3223 * 2. the current iclog dirty, and the previous iclog is not in the 3224 * active nor dirty state. 3225 * 3. the current iclog is active, and there is another thread writing 3226 * to this particular iclog. 3227 * 4. a) the current iclog is active and has no other writers 3228 * b) when we return from flushing out this iclog, it is still 3229 * not in the active nor dirty state. 3230 */ 3231 int 3232 xfs_log_force( 3233 struct xfs_mount *mp, 3234 uint flags) 3235 { 3236 struct xlog *log = mp->m_log; 3237 struct xlog_in_core *iclog; 3238 xfs_lsn_t lsn; 3239 3240 XFS_STATS_INC(mp, xs_log_force); 3241 trace_xfs_log_force(mp, 0, _RET_IP_); 3242 3243 xlog_cil_force(log); 3244 3245 spin_lock(&log->l_icloglock); 3246 iclog = log->l_iclog; 3247 if (iclog->ic_state == XLOG_STATE_IOERROR) 3248 goto out_error; 3249 3250 if (iclog->ic_state == XLOG_STATE_DIRTY || 3251 (iclog->ic_state == XLOG_STATE_ACTIVE && 3252 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3253 /* 3254 * If the head is dirty or (active and empty), then we need to 3255 * look at the previous iclog. 3256 * 3257 * If the previous iclog is active or dirty we are done. There 3258 * is nothing to sync out. Otherwise, we attach ourselves to the 3259 * previous iclog and go to sleep. 3260 */ 3261 iclog = iclog->ic_prev; 3262 if (iclog->ic_state == XLOG_STATE_ACTIVE || 3263 iclog->ic_state == XLOG_STATE_DIRTY) 3264 goto out_unlock; 3265 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3266 if (atomic_read(&iclog->ic_refcnt) == 0) { 3267 /* 3268 * We are the only one with access to this iclog. 3269 * 3270 * Flush it out now. There should be a roundoff of zero 3271 * to show that someone has already taken care of the 3272 * roundoff from the previous sync. 3273 */ 3274 atomic_inc(&iclog->ic_refcnt); 3275 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3276 xlog_state_switch_iclogs(log, iclog, 0); 3277 if (xlog_state_release_iclog(log, iclog)) 3278 goto out_error; 3279 3280 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn || 3281 iclog->ic_state == XLOG_STATE_DIRTY) 3282 goto out_unlock; 3283 } else { 3284 /* 3285 * Someone else is writing to this iclog. 3286 * 3287 * Use its call to flush out the data. However, the 3288 * other thread may not force out this LR, so we mark 3289 * it WANT_SYNC. 3290 */ 3291 xlog_state_switch_iclogs(log, iclog, 0); 3292 } 3293 } else { 3294 /* 3295 * If the head iclog is not active nor dirty, we just attach 3296 * ourselves to the head and go to sleep if necessary. 3297 */ 3298 ; 3299 } 3300 3301 if (!(flags & XFS_LOG_SYNC)) 3302 goto out_unlock; 3303 3304 if (iclog->ic_state == XLOG_STATE_IOERROR) 3305 goto out_error; 3306 XFS_STATS_INC(mp, xs_log_force_sleep); 3307 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3308 if (iclog->ic_state == XLOG_STATE_IOERROR) 3309 return -EIO; 3310 return 0; 3311 3312 out_unlock: 3313 spin_unlock(&log->l_icloglock); 3314 return 0; 3315 out_error: 3316 spin_unlock(&log->l_icloglock); 3317 return -EIO; 3318 } 3319 3320 static int 3321 __xfs_log_force_lsn( 3322 struct xfs_mount *mp, 3323 xfs_lsn_t lsn, 3324 uint flags, 3325 int *log_flushed, 3326 bool already_slept) 3327 { 3328 struct xlog *log = mp->m_log; 3329 struct xlog_in_core *iclog; 3330 3331 spin_lock(&log->l_icloglock); 3332 iclog = log->l_iclog; 3333 if (iclog->ic_state == XLOG_STATE_IOERROR) 3334 goto out_error; 3335 3336 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3337 iclog = iclog->ic_next; 3338 if (iclog == log->l_iclog) 3339 goto out_unlock; 3340 } 3341 3342 if (iclog->ic_state == XLOG_STATE_DIRTY) 3343 goto out_unlock; 3344 3345 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3346 /* 3347 * We sleep here if we haven't already slept (e.g. this is the 3348 * first time we've looked at the correct iclog buf) and the 3349 * buffer before us is going to be sync'ed. The reason for this 3350 * is that if we are doing sync transactions here, by waiting 3351 * for the previous I/O to complete, we can allow a few more 3352 * transactions into this iclog before we close it down. 3353 * 3354 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3355 * refcnt so we can release the log (which drops the ref count). 3356 * The state switch keeps new transaction commits from using 3357 * this buffer. When the current commits finish writing into 3358 * the buffer, the refcount will drop to zero and the buffer 3359 * will go out then. 3360 */ 3361 if (!already_slept && 3362 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 3363 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 3364 XFS_STATS_INC(mp, xs_log_force_sleep); 3365 3366 xlog_wait(&iclog->ic_prev->ic_write_wait, 3367 &log->l_icloglock); 3368 return -EAGAIN; 3369 } 3370 atomic_inc(&iclog->ic_refcnt); 3371 xlog_state_switch_iclogs(log, iclog, 0); 3372 if (xlog_state_release_iclog(log, iclog)) 3373 goto out_error; 3374 if (log_flushed) 3375 *log_flushed = 1; 3376 } 3377 3378 if (!(flags & XFS_LOG_SYNC) || 3379 (iclog->ic_state == XLOG_STATE_ACTIVE || 3380 iclog->ic_state == XLOG_STATE_DIRTY)) 3381 goto out_unlock; 3382 3383 if (iclog->ic_state == XLOG_STATE_IOERROR) 3384 goto out_error; 3385 3386 XFS_STATS_INC(mp, xs_log_force_sleep); 3387 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3388 if (iclog->ic_state == XLOG_STATE_IOERROR) 3389 return -EIO; 3390 return 0; 3391 3392 out_unlock: 3393 spin_unlock(&log->l_icloglock); 3394 return 0; 3395 out_error: 3396 spin_unlock(&log->l_icloglock); 3397 return -EIO; 3398 } 3399 3400 /* 3401 * Force the in-core log to disk for a specific LSN. 3402 * 3403 * Find in-core log with lsn. 3404 * If it is in the DIRTY state, just return. 3405 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3406 * state and go to sleep or return. 3407 * If it is in any other state, go to sleep or return. 3408 * 3409 * Synchronous forces are implemented with a wait queue. All callers trying 3410 * to force a given lsn to disk must wait on the queue attached to the 3411 * specific in-core log. When given in-core log finally completes its write 3412 * to disk, that thread will wake up all threads waiting on the queue. 3413 */ 3414 int 3415 xfs_log_force_lsn( 3416 struct xfs_mount *mp, 3417 xfs_lsn_t lsn, 3418 uint flags, 3419 int *log_flushed) 3420 { 3421 int ret; 3422 ASSERT(lsn != 0); 3423 3424 XFS_STATS_INC(mp, xs_log_force); 3425 trace_xfs_log_force(mp, lsn, _RET_IP_); 3426 3427 lsn = xlog_cil_force_lsn(mp->m_log, lsn); 3428 if (lsn == NULLCOMMITLSN) 3429 return 0; 3430 3431 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false); 3432 if (ret == -EAGAIN) 3433 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true); 3434 return ret; 3435 } 3436 3437 /* 3438 * Called when we want to mark the current iclog as being ready to sync to 3439 * disk. 3440 */ 3441 STATIC void 3442 xlog_state_want_sync( 3443 struct xlog *log, 3444 struct xlog_in_core *iclog) 3445 { 3446 assert_spin_locked(&log->l_icloglock); 3447 3448 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3449 xlog_state_switch_iclogs(log, iclog, 0); 3450 } else { 3451 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC || 3452 iclog->ic_state == XLOG_STATE_IOERROR); 3453 } 3454 } 3455 3456 3457 /***************************************************************************** 3458 * 3459 * TICKET functions 3460 * 3461 ***************************************************************************** 3462 */ 3463 3464 /* 3465 * Free a used ticket when its refcount falls to zero. 3466 */ 3467 void 3468 xfs_log_ticket_put( 3469 xlog_ticket_t *ticket) 3470 { 3471 ASSERT(atomic_read(&ticket->t_ref) > 0); 3472 if (atomic_dec_and_test(&ticket->t_ref)) 3473 kmem_cache_free(xfs_log_ticket_zone, ticket); 3474 } 3475 3476 xlog_ticket_t * 3477 xfs_log_ticket_get( 3478 xlog_ticket_t *ticket) 3479 { 3480 ASSERT(atomic_read(&ticket->t_ref) > 0); 3481 atomic_inc(&ticket->t_ref); 3482 return ticket; 3483 } 3484 3485 /* 3486 * Figure out the total log space unit (in bytes) that would be 3487 * required for a log ticket. 3488 */ 3489 int 3490 xfs_log_calc_unit_res( 3491 struct xfs_mount *mp, 3492 int unit_bytes) 3493 { 3494 struct xlog *log = mp->m_log; 3495 int iclog_space; 3496 uint num_headers; 3497 3498 /* 3499 * Permanent reservations have up to 'cnt'-1 active log operations 3500 * in the log. A unit in this case is the amount of space for one 3501 * of these log operations. Normal reservations have a cnt of 1 3502 * and their unit amount is the total amount of space required. 3503 * 3504 * The following lines of code account for non-transaction data 3505 * which occupy space in the on-disk log. 3506 * 3507 * Normal form of a transaction is: 3508 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3509 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3510 * 3511 * We need to account for all the leadup data and trailer data 3512 * around the transaction data. 3513 * And then we need to account for the worst case in terms of using 3514 * more space. 3515 * The worst case will happen if: 3516 * - the placement of the transaction happens to be such that the 3517 * roundoff is at its maximum 3518 * - the transaction data is synced before the commit record is synced 3519 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3520 * Therefore the commit record is in its own Log Record. 3521 * This can happen as the commit record is called with its 3522 * own region to xlog_write(). 3523 * This then means that in the worst case, roundoff can happen for 3524 * the commit-rec as well. 3525 * The commit-rec is smaller than padding in this scenario and so it is 3526 * not added separately. 3527 */ 3528 3529 /* for trans header */ 3530 unit_bytes += sizeof(xlog_op_header_t); 3531 unit_bytes += sizeof(xfs_trans_header_t); 3532 3533 /* for start-rec */ 3534 unit_bytes += sizeof(xlog_op_header_t); 3535 3536 /* 3537 * for LR headers - the space for data in an iclog is the size minus 3538 * the space used for the headers. If we use the iclog size, then we 3539 * undercalculate the number of headers required. 3540 * 3541 * Furthermore - the addition of op headers for split-recs might 3542 * increase the space required enough to require more log and op 3543 * headers, so take that into account too. 3544 * 3545 * IMPORTANT: This reservation makes the assumption that if this 3546 * transaction is the first in an iclog and hence has the LR headers 3547 * accounted to it, then the remaining space in the iclog is 3548 * exclusively for this transaction. i.e. if the transaction is larger 3549 * than the iclog, it will be the only thing in that iclog. 3550 * Fundamentally, this means we must pass the entire log vector to 3551 * xlog_write to guarantee this. 3552 */ 3553 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3554 num_headers = howmany(unit_bytes, iclog_space); 3555 3556 /* for split-recs - ophdrs added when data split over LRs */ 3557 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3558 3559 /* add extra header reservations if we overrun */ 3560 while (!num_headers || 3561 howmany(unit_bytes, iclog_space) > num_headers) { 3562 unit_bytes += sizeof(xlog_op_header_t); 3563 num_headers++; 3564 } 3565 unit_bytes += log->l_iclog_hsize * num_headers; 3566 3567 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3568 unit_bytes += log->l_iclog_hsize; 3569 3570 /* for roundoff padding for transaction data and one for commit record */ 3571 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3572 /* log su roundoff */ 3573 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3574 } else { 3575 /* BB roundoff */ 3576 unit_bytes += 2 * BBSIZE; 3577 } 3578 3579 return unit_bytes; 3580 } 3581 3582 /* 3583 * Allocate and initialise a new log ticket. 3584 */ 3585 struct xlog_ticket * 3586 xlog_ticket_alloc( 3587 struct xlog *log, 3588 int unit_bytes, 3589 int cnt, 3590 char client, 3591 bool permanent, 3592 xfs_km_flags_t alloc_flags) 3593 { 3594 struct xlog_ticket *tic; 3595 int unit_res; 3596 3597 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3598 if (!tic) 3599 return NULL; 3600 3601 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3602 3603 atomic_set(&tic->t_ref, 1); 3604 tic->t_task = current; 3605 INIT_LIST_HEAD(&tic->t_queue); 3606 tic->t_unit_res = unit_res; 3607 tic->t_curr_res = unit_res; 3608 tic->t_cnt = cnt; 3609 tic->t_ocnt = cnt; 3610 tic->t_tid = prandom_u32(); 3611 tic->t_clientid = client; 3612 tic->t_flags = XLOG_TIC_INITED; 3613 if (permanent) 3614 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3615 3616 xlog_tic_reset_res(tic); 3617 3618 return tic; 3619 } 3620 3621 3622 /****************************************************************************** 3623 * 3624 * Log debug routines 3625 * 3626 ****************************************************************************** 3627 */ 3628 #if defined(DEBUG) 3629 /* 3630 * Make sure that the destination ptr is within the valid data region of 3631 * one of the iclogs. This uses backup pointers stored in a different 3632 * part of the log in case we trash the log structure. 3633 */ 3634 STATIC void 3635 xlog_verify_dest_ptr( 3636 struct xlog *log, 3637 void *ptr) 3638 { 3639 int i; 3640 int good_ptr = 0; 3641 3642 for (i = 0; i < log->l_iclog_bufs; i++) { 3643 if (ptr >= log->l_iclog_bak[i] && 3644 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3645 good_ptr++; 3646 } 3647 3648 if (!good_ptr) 3649 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3650 } 3651 3652 /* 3653 * Check to make sure the grant write head didn't just over lap the tail. If 3654 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3655 * the cycles differ by exactly one and check the byte count. 3656 * 3657 * This check is run unlocked, so can give false positives. Rather than assert 3658 * on failures, use a warn-once flag and a panic tag to allow the admin to 3659 * determine if they want to panic the machine when such an error occurs. For 3660 * debug kernels this will have the same effect as using an assert but, unlinke 3661 * an assert, it can be turned off at runtime. 3662 */ 3663 STATIC void 3664 xlog_verify_grant_tail( 3665 struct xlog *log) 3666 { 3667 int tail_cycle, tail_blocks; 3668 int cycle, space; 3669 3670 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3671 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3672 if (tail_cycle != cycle) { 3673 if (cycle - 1 != tail_cycle && 3674 !(log->l_flags & XLOG_TAIL_WARN)) { 3675 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3676 "%s: cycle - 1 != tail_cycle", __func__); 3677 log->l_flags |= XLOG_TAIL_WARN; 3678 } 3679 3680 if (space > BBTOB(tail_blocks) && 3681 !(log->l_flags & XLOG_TAIL_WARN)) { 3682 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3683 "%s: space > BBTOB(tail_blocks)", __func__); 3684 log->l_flags |= XLOG_TAIL_WARN; 3685 } 3686 } 3687 } 3688 3689 /* check if it will fit */ 3690 STATIC void 3691 xlog_verify_tail_lsn( 3692 struct xlog *log, 3693 struct xlog_in_core *iclog, 3694 xfs_lsn_t tail_lsn) 3695 { 3696 int blocks; 3697 3698 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3699 blocks = 3700 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3701 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3702 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3703 } else { 3704 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3705 3706 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3707 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3708 3709 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3710 if (blocks < BTOBB(iclog->ic_offset) + 1) 3711 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3712 } 3713 } /* xlog_verify_tail_lsn */ 3714 3715 /* 3716 * Perform a number of checks on the iclog before writing to disk. 3717 * 3718 * 1. Make sure the iclogs are still circular 3719 * 2. Make sure we have a good magic number 3720 * 3. Make sure we don't have magic numbers in the data 3721 * 4. Check fields of each log operation header for: 3722 * A. Valid client identifier 3723 * B. tid ptr value falls in valid ptr space (user space code) 3724 * C. Length in log record header is correct according to the 3725 * individual operation headers within record. 3726 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3727 * log, check the preceding blocks of the physical log to make sure all 3728 * the cycle numbers agree with the current cycle number. 3729 */ 3730 STATIC void 3731 xlog_verify_iclog( 3732 struct xlog *log, 3733 struct xlog_in_core *iclog, 3734 int count) 3735 { 3736 xlog_op_header_t *ophead; 3737 xlog_in_core_t *icptr; 3738 xlog_in_core_2_t *xhdr; 3739 void *base_ptr, *ptr, *p; 3740 ptrdiff_t field_offset; 3741 uint8_t clientid; 3742 int len, i, j, k, op_len; 3743 int idx; 3744 3745 /* check validity of iclog pointers */ 3746 spin_lock(&log->l_icloglock); 3747 icptr = log->l_iclog; 3748 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3749 ASSERT(icptr); 3750 3751 if (icptr != log->l_iclog) 3752 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3753 spin_unlock(&log->l_icloglock); 3754 3755 /* check log magic numbers */ 3756 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3757 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3758 3759 base_ptr = ptr = &iclog->ic_header; 3760 p = &iclog->ic_header; 3761 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3762 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3763 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3764 __func__); 3765 } 3766 3767 /* check fields */ 3768 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3769 base_ptr = ptr = iclog->ic_datap; 3770 ophead = ptr; 3771 xhdr = iclog->ic_data; 3772 for (i = 0; i < len; i++) { 3773 ophead = ptr; 3774 3775 /* clientid is only 1 byte */ 3776 p = &ophead->oh_clientid; 3777 field_offset = p - base_ptr; 3778 if (field_offset & 0x1ff) { 3779 clientid = ophead->oh_clientid; 3780 } else { 3781 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3782 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3783 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3784 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3785 clientid = xlog_get_client_id( 3786 xhdr[j].hic_xheader.xh_cycle_data[k]); 3787 } else { 3788 clientid = xlog_get_client_id( 3789 iclog->ic_header.h_cycle_data[idx]); 3790 } 3791 } 3792 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3793 xfs_warn(log->l_mp, 3794 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx", 3795 __func__, clientid, ophead, 3796 (unsigned long)field_offset); 3797 3798 /* check length */ 3799 p = &ophead->oh_len; 3800 field_offset = p - base_ptr; 3801 if (field_offset & 0x1ff) { 3802 op_len = be32_to_cpu(ophead->oh_len); 3803 } else { 3804 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3805 (uintptr_t)iclog->ic_datap); 3806 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3807 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3808 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3809 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3810 } else { 3811 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3812 } 3813 } 3814 ptr += sizeof(xlog_op_header_t) + op_len; 3815 } 3816 } /* xlog_verify_iclog */ 3817 #endif 3818 3819 /* 3820 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3821 */ 3822 STATIC int 3823 xlog_state_ioerror( 3824 struct xlog *log) 3825 { 3826 xlog_in_core_t *iclog, *ic; 3827 3828 iclog = log->l_iclog; 3829 if (iclog->ic_state != XLOG_STATE_IOERROR) { 3830 /* 3831 * Mark all the incore logs IOERROR. 3832 * From now on, no log flushes will result. 3833 */ 3834 ic = iclog; 3835 do { 3836 ic->ic_state = XLOG_STATE_IOERROR; 3837 ic = ic->ic_next; 3838 } while (ic != iclog); 3839 return 0; 3840 } 3841 /* 3842 * Return non-zero, if state transition has already happened. 3843 */ 3844 return 1; 3845 } 3846 3847 /* 3848 * This is called from xfs_force_shutdown, when we're forcibly 3849 * shutting down the filesystem, typically because of an IO error. 3850 * Our main objectives here are to make sure that: 3851 * a. if !logerror, flush the logs to disk. Anything modified 3852 * after this is ignored. 3853 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3854 * parties to find out, 'atomically'. 3855 * c. those who're sleeping on log reservations, pinned objects and 3856 * other resources get woken up, and be told the bad news. 3857 * d. nothing new gets queued up after (b) and (c) are done. 3858 * 3859 * Note: for the !logerror case we need to flush the regions held in memory out 3860 * to disk first. This needs to be done before the log is marked as shutdown, 3861 * otherwise the iclog writes will fail. 3862 */ 3863 int 3864 xfs_log_force_umount( 3865 struct xfs_mount *mp, 3866 int logerror) 3867 { 3868 struct xlog *log; 3869 int retval; 3870 3871 log = mp->m_log; 3872 3873 /* 3874 * If this happens during log recovery, don't worry about 3875 * locking; the log isn't open for business yet. 3876 */ 3877 if (!log || 3878 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3879 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3880 if (mp->m_sb_bp) 3881 mp->m_sb_bp->b_flags |= XBF_DONE; 3882 return 0; 3883 } 3884 3885 /* 3886 * Somebody could've already done the hard work for us. 3887 * No need to get locks for this. 3888 */ 3889 if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) { 3890 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3891 return 1; 3892 } 3893 3894 /* 3895 * Flush all the completed transactions to disk before marking the log 3896 * being shut down. We need to do it in this order to ensure that 3897 * completed operations are safely on disk before we shut down, and that 3898 * we don't have to issue any buffer IO after the shutdown flags are set 3899 * to guarantee this. 3900 */ 3901 if (!logerror) 3902 xfs_log_force(mp, XFS_LOG_SYNC); 3903 3904 /* 3905 * mark the filesystem and the as in a shutdown state and wake 3906 * everybody up to tell them the bad news. 3907 */ 3908 spin_lock(&log->l_icloglock); 3909 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3910 if (mp->m_sb_bp) 3911 mp->m_sb_bp->b_flags |= XBF_DONE; 3912 3913 /* 3914 * Mark the log and the iclogs with IO error flags to prevent any 3915 * further log IO from being issued or completed. 3916 */ 3917 log->l_flags |= XLOG_IO_ERROR; 3918 retval = xlog_state_ioerror(log); 3919 spin_unlock(&log->l_icloglock); 3920 3921 /* 3922 * We don't want anybody waiting for log reservations after this. That 3923 * means we have to wake up everybody queued up on reserveq as well as 3924 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3925 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3926 * action is protected by the grant locks. 3927 */ 3928 xlog_grant_head_wake_all(&log->l_reserve_head); 3929 xlog_grant_head_wake_all(&log->l_write_head); 3930 3931 /* 3932 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3933 * as if the log writes were completed. The abort handling in the log 3934 * item committed callback functions will do this again under lock to 3935 * avoid races. 3936 */ 3937 spin_lock(&log->l_cilp->xc_push_lock); 3938 wake_up_all(&log->l_cilp->xc_commit_wait); 3939 spin_unlock(&log->l_cilp->xc_push_lock); 3940 xlog_state_do_callback(log, true); 3941 3942 /* return non-zero if log IOERROR transition had already happened */ 3943 return retval; 3944 } 3945 3946 STATIC int 3947 xlog_iclogs_empty( 3948 struct xlog *log) 3949 { 3950 xlog_in_core_t *iclog; 3951 3952 iclog = log->l_iclog; 3953 do { 3954 /* endianness does not matter here, zero is zero in 3955 * any language. 3956 */ 3957 if (iclog->ic_header.h_num_logops) 3958 return 0; 3959 iclog = iclog->ic_next; 3960 } while (iclog != log->l_iclog); 3961 return 1; 3962 } 3963 3964 /* 3965 * Verify that an LSN stamped into a piece of metadata is valid. This is 3966 * intended for use in read verifiers on v5 superblocks. 3967 */ 3968 bool 3969 xfs_log_check_lsn( 3970 struct xfs_mount *mp, 3971 xfs_lsn_t lsn) 3972 { 3973 struct xlog *log = mp->m_log; 3974 bool valid; 3975 3976 /* 3977 * norecovery mode skips mount-time log processing and unconditionally 3978 * resets the in-core LSN. We can't validate in this mode, but 3979 * modifications are not allowed anyways so just return true. 3980 */ 3981 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 3982 return true; 3983 3984 /* 3985 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3986 * handled by recovery and thus safe to ignore here. 3987 */ 3988 if (lsn == NULLCOMMITLSN) 3989 return true; 3990 3991 valid = xlog_valid_lsn(mp->m_log, lsn); 3992 3993 /* warn the user about what's gone wrong before verifier failure */ 3994 if (!valid) { 3995 spin_lock(&log->l_icloglock); 3996 xfs_warn(mp, 3997 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3998 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 3999 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 4000 log->l_curr_cycle, log->l_curr_block); 4001 spin_unlock(&log->l_icloglock); 4002 } 4003 4004 return valid; 4005 } 4006 4007 bool 4008 xfs_log_in_recovery( 4009 struct xfs_mount *mp) 4010 { 4011 struct xlog *log = mp->m_log; 4012 4013 return log->l_flags & XLOG_ACTIVE_RECOVERY; 4014 } 4015