xref: /linux/fs/xfs/xfs_log.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 struct kmem_cache	*xfs_log_ticket_cache;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 	struct xfs_mount	*mp,
30 	struct xfs_buftarg	*log_target,
31 	xfs_daddr_t		blk_offset,
32 	int			num_bblks);
33 STATIC void
34 xlog_dealloc_log(
35 	struct xlog		*log);
36 
37 /* local state machine functions */
38 STATIC void xlog_state_done_syncing(
39 	struct xlog_in_core	*iclog);
40 STATIC void xlog_state_do_callback(
41 	struct xlog		*log);
42 STATIC int
43 xlog_state_get_iclog_space(
44 	struct xlog		*log,
45 	int			len,
46 	struct xlog_in_core	**iclog,
47 	struct xlog_ticket	*ticket,
48 	int			*logoffsetp);
49 STATIC void
50 xlog_sync(
51 	struct xlog		*log,
52 	struct xlog_in_core	*iclog,
53 	struct xlog_ticket	*ticket);
54 #if defined(DEBUG)
55 STATIC void
56 xlog_verify_iclog(
57 	struct xlog		*log,
58 	struct xlog_in_core	*iclog,
59 	int			count);
60 STATIC void
61 xlog_verify_tail_lsn(
62 	struct xlog		*log,
63 	struct xlog_in_core	*iclog);
64 #else
65 #define xlog_verify_iclog(a,b,c)
66 #define xlog_verify_tail_lsn(a,b)
67 #endif
68 
69 STATIC int
70 xlog_iclogs_empty(
71 	struct xlog		*log);
72 
73 static int
74 xfs_log_cover(struct xfs_mount *);
75 
76 /*
77  * We need to make sure the buffer pointer returned is naturally aligned for the
78  * biggest basic data type we put into it. We have already accounted for this
79  * padding when sizing the buffer.
80  *
81  * However, this padding does not get written into the log, and hence we have to
82  * track the space used by the log vectors separately to prevent log space hangs
83  * due to inaccurate accounting (i.e. a leak) of the used log space through the
84  * CIL context ticket.
85  *
86  * We also add space for the xlog_op_header that describes this region in the
87  * log. This prepends the data region we return to the caller to copy their data
88  * into, so do all the static initialisation of the ophdr now. Because the ophdr
89  * is not 8 byte aligned, we have to be careful to ensure that we align the
90  * start of the buffer such that the region we return to the call is 8 byte
91  * aligned and packed against the tail of the ophdr.
92  */
93 void *
94 xlog_prepare_iovec(
95 	struct xfs_log_vec	*lv,
96 	struct xfs_log_iovec	**vecp,
97 	uint			type)
98 {
99 	struct xfs_log_iovec	*vec = *vecp;
100 	struct xlog_op_header	*oph;
101 	uint32_t		len;
102 	void			*buf;
103 
104 	if (vec) {
105 		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
106 		vec++;
107 	} else {
108 		vec = &lv->lv_iovecp[0];
109 	}
110 
111 	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
112 	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
113 		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
114 					sizeof(struct xlog_op_header);
115 	}
116 
117 	vec->i_type = type;
118 	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
119 
120 	oph = vec->i_addr;
121 	oph->oh_clientid = XFS_TRANSACTION;
122 	oph->oh_res2 = 0;
123 	oph->oh_flags = 0;
124 
125 	buf = vec->i_addr + sizeof(struct xlog_op_header);
126 	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
127 
128 	*vecp = vec;
129 	return buf;
130 }
131 
132 static inline void
133 xlog_grant_sub_space(
134 	struct xlog_grant_head	*head,
135 	int64_t			bytes)
136 {
137 	atomic64_sub(bytes, &head->grant);
138 }
139 
140 static inline void
141 xlog_grant_add_space(
142 	struct xlog_grant_head	*head,
143 	int64_t			bytes)
144 {
145 	atomic64_add(bytes, &head->grant);
146 }
147 
148 static void
149 xlog_grant_head_init(
150 	struct xlog_grant_head	*head)
151 {
152 	atomic64_set(&head->grant, 0);
153 	INIT_LIST_HEAD(&head->waiters);
154 	spin_lock_init(&head->lock);
155 }
156 
157 void
158 xlog_grant_return_space(
159 	struct xlog	*log,
160 	xfs_lsn_t	old_head,
161 	xfs_lsn_t	new_head)
162 {
163 	int64_t		diff = xlog_lsn_sub(log, new_head, old_head);
164 
165 	xlog_grant_sub_space(&log->l_reserve_head, diff);
166 	xlog_grant_sub_space(&log->l_write_head, diff);
167 }
168 
169 /*
170  * Return the space in the log between the tail and the head.  In the case where
171  * we have overrun available reservation space, return 0. The memory barrier
172  * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head
173  * vs tail space updates are seen in the correct order and hence avoid
174  * transients as space is transferred from the grant heads to the AIL on commit
175  * completion.
176  */
177 static uint64_t
178 xlog_grant_space_left(
179 	struct xlog		*log,
180 	struct xlog_grant_head	*head)
181 {
182 	int64_t			free_bytes;
183 
184 	smp_rmb();	/* paired with smp_wmb in xlog_cil_ail_insert() */
185 	free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) -
186 			atomic64_read(&head->grant);
187 	if (free_bytes > 0)
188 		return free_bytes;
189 	return 0;
190 }
191 
192 STATIC void
193 xlog_grant_head_wake_all(
194 	struct xlog_grant_head	*head)
195 {
196 	struct xlog_ticket	*tic;
197 
198 	spin_lock(&head->lock);
199 	list_for_each_entry(tic, &head->waiters, t_queue)
200 		wake_up_process(tic->t_task);
201 	spin_unlock(&head->lock);
202 }
203 
204 static inline int
205 xlog_ticket_reservation(
206 	struct xlog		*log,
207 	struct xlog_grant_head	*head,
208 	struct xlog_ticket	*tic)
209 {
210 	if (head == &log->l_write_head) {
211 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
212 		return tic->t_unit_res;
213 	}
214 
215 	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
216 		return tic->t_unit_res * tic->t_cnt;
217 
218 	return tic->t_unit_res;
219 }
220 
221 STATIC bool
222 xlog_grant_head_wake(
223 	struct xlog		*log,
224 	struct xlog_grant_head	*head,
225 	int			*free_bytes)
226 {
227 	struct xlog_ticket	*tic;
228 	int			need_bytes;
229 
230 	list_for_each_entry(tic, &head->waiters, t_queue) {
231 		need_bytes = xlog_ticket_reservation(log, head, tic);
232 		if (*free_bytes < need_bytes)
233 			return false;
234 
235 		*free_bytes -= need_bytes;
236 		trace_xfs_log_grant_wake_up(log, tic);
237 		wake_up_process(tic->t_task);
238 	}
239 
240 	return true;
241 }
242 
243 STATIC int
244 xlog_grant_head_wait(
245 	struct xlog		*log,
246 	struct xlog_grant_head	*head,
247 	struct xlog_ticket	*tic,
248 	int			need_bytes) __releases(&head->lock)
249 					    __acquires(&head->lock)
250 {
251 	list_add_tail(&tic->t_queue, &head->waiters);
252 
253 	do {
254 		if (xlog_is_shutdown(log))
255 			goto shutdown;
256 
257 		__set_current_state(TASK_UNINTERRUPTIBLE);
258 		spin_unlock(&head->lock);
259 
260 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
261 
262 		/* Push on the AIL to free up all the log space. */
263 		xfs_ail_push_all(log->l_ailp);
264 
265 		trace_xfs_log_grant_sleep(log, tic);
266 		schedule();
267 		trace_xfs_log_grant_wake(log, tic);
268 
269 		spin_lock(&head->lock);
270 		if (xlog_is_shutdown(log))
271 			goto shutdown;
272 	} while (xlog_grant_space_left(log, head) < need_bytes);
273 
274 	list_del_init(&tic->t_queue);
275 	return 0;
276 shutdown:
277 	list_del_init(&tic->t_queue);
278 	return -EIO;
279 }
280 
281 /*
282  * Atomically get the log space required for a log ticket.
283  *
284  * Once a ticket gets put onto head->waiters, it will only return after the
285  * needed reservation is satisfied.
286  *
287  * This function is structured so that it has a lock free fast path. This is
288  * necessary because every new transaction reservation will come through this
289  * path. Hence any lock will be globally hot if we take it unconditionally on
290  * every pass.
291  *
292  * As tickets are only ever moved on and off head->waiters under head->lock, we
293  * only need to take that lock if we are going to add the ticket to the queue
294  * and sleep. We can avoid taking the lock if the ticket was never added to
295  * head->waiters because the t_queue list head will be empty and we hold the
296  * only reference to it so it can safely be checked unlocked.
297  */
298 STATIC int
299 xlog_grant_head_check(
300 	struct xlog		*log,
301 	struct xlog_grant_head	*head,
302 	struct xlog_ticket	*tic,
303 	int			*need_bytes)
304 {
305 	int			free_bytes;
306 	int			error = 0;
307 
308 	ASSERT(!xlog_in_recovery(log));
309 
310 	/*
311 	 * If there are other waiters on the queue then give them a chance at
312 	 * logspace before us.  Wake up the first waiters, if we do not wake
313 	 * up all the waiters then go to sleep waiting for more free space,
314 	 * otherwise try to get some space for this transaction.
315 	 */
316 	*need_bytes = xlog_ticket_reservation(log, head, tic);
317 	free_bytes = xlog_grant_space_left(log, head);
318 	if (!list_empty_careful(&head->waiters)) {
319 		spin_lock(&head->lock);
320 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
321 		    free_bytes < *need_bytes) {
322 			error = xlog_grant_head_wait(log, head, tic,
323 						     *need_bytes);
324 		}
325 		spin_unlock(&head->lock);
326 	} else if (free_bytes < *need_bytes) {
327 		spin_lock(&head->lock);
328 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
329 		spin_unlock(&head->lock);
330 	}
331 
332 	return error;
333 }
334 
335 bool
336 xfs_log_writable(
337 	struct xfs_mount	*mp)
338 {
339 	/*
340 	 * Do not write to the log on norecovery mounts, if the data or log
341 	 * devices are read-only, or if the filesystem is shutdown. Read-only
342 	 * mounts allow internal writes for log recovery and unmount purposes,
343 	 * so don't restrict that case.
344 	 */
345 	if (xfs_has_norecovery(mp))
346 		return false;
347 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
348 		return false;
349 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
350 		return false;
351 	if (xlog_is_shutdown(mp->m_log))
352 		return false;
353 	return true;
354 }
355 
356 /*
357  * Replenish the byte reservation required by moving the grant write head.
358  */
359 int
360 xfs_log_regrant(
361 	struct xfs_mount	*mp,
362 	struct xlog_ticket	*tic)
363 {
364 	struct xlog		*log = mp->m_log;
365 	int			need_bytes;
366 	int			error = 0;
367 
368 	if (xlog_is_shutdown(log))
369 		return -EIO;
370 
371 	XFS_STATS_INC(mp, xs_try_logspace);
372 
373 	/*
374 	 * This is a new transaction on the ticket, so we need to change the
375 	 * transaction ID so that the next transaction has a different TID in
376 	 * the log. Just add one to the existing tid so that we can see chains
377 	 * of rolling transactions in the log easily.
378 	 */
379 	tic->t_tid++;
380 	tic->t_curr_res = tic->t_unit_res;
381 	if (tic->t_cnt > 0)
382 		return 0;
383 
384 	trace_xfs_log_regrant(log, tic);
385 
386 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
387 				      &need_bytes);
388 	if (error)
389 		goto out_error;
390 
391 	xlog_grant_add_space(&log->l_write_head, need_bytes);
392 	trace_xfs_log_regrant_exit(log, tic);
393 	return 0;
394 
395 out_error:
396 	/*
397 	 * If we are failing, make sure the ticket doesn't have any current
398 	 * reservations.  We don't want to add this back when the ticket/
399 	 * transaction gets cancelled.
400 	 */
401 	tic->t_curr_res = 0;
402 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
403 	return error;
404 }
405 
406 /*
407  * Reserve log space and return a ticket corresponding to the reservation.
408  *
409  * Each reservation is going to reserve extra space for a log record header.
410  * When writes happen to the on-disk log, we don't subtract the length of the
411  * log record header from any reservation.  By wasting space in each
412  * reservation, we prevent over allocation problems.
413  */
414 int
415 xfs_log_reserve(
416 	struct xfs_mount	*mp,
417 	int			unit_bytes,
418 	int			cnt,
419 	struct xlog_ticket	**ticp,
420 	bool			permanent)
421 {
422 	struct xlog		*log = mp->m_log;
423 	struct xlog_ticket	*tic;
424 	int			need_bytes;
425 	int			error = 0;
426 
427 	if (xlog_is_shutdown(log))
428 		return -EIO;
429 
430 	XFS_STATS_INC(mp, xs_try_logspace);
431 
432 	ASSERT(*ticp == NULL);
433 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
434 	*ticp = tic;
435 	trace_xfs_log_reserve(log, tic);
436 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
437 				      &need_bytes);
438 	if (error)
439 		goto out_error;
440 
441 	xlog_grant_add_space(&log->l_reserve_head, need_bytes);
442 	xlog_grant_add_space(&log->l_write_head, need_bytes);
443 	trace_xfs_log_reserve_exit(log, tic);
444 	return 0;
445 
446 out_error:
447 	/*
448 	 * If we are failing, make sure the ticket doesn't have any current
449 	 * reservations.  We don't want to add this back when the ticket/
450 	 * transaction gets cancelled.
451 	 */
452 	tic->t_curr_res = 0;
453 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
454 	return error;
455 }
456 
457 /*
458  * Run all the pending iclog callbacks and wake log force waiters and iclog
459  * space waiters so they can process the newly set shutdown state. We really
460  * don't care what order we process callbacks here because the log is shut down
461  * and so state cannot change on disk anymore. However, we cannot wake waiters
462  * until the callbacks have been processed because we may be in unmount and
463  * we must ensure that all AIL operations the callbacks perform have completed
464  * before we tear down the AIL.
465  *
466  * We avoid processing actively referenced iclogs so that we don't run callbacks
467  * while the iclog owner might still be preparing the iclog for IO submssion.
468  * These will be caught by xlog_state_iclog_release() and call this function
469  * again to process any callbacks that may have been added to that iclog.
470  */
471 static void
472 xlog_state_shutdown_callbacks(
473 	struct xlog		*log)
474 {
475 	struct xlog_in_core	*iclog;
476 	LIST_HEAD(cb_list);
477 
478 	iclog = log->l_iclog;
479 	do {
480 		if (atomic_read(&iclog->ic_refcnt)) {
481 			/* Reference holder will re-run iclog callbacks. */
482 			continue;
483 		}
484 		list_splice_init(&iclog->ic_callbacks, &cb_list);
485 		spin_unlock(&log->l_icloglock);
486 
487 		xlog_cil_process_committed(&cb_list);
488 
489 		spin_lock(&log->l_icloglock);
490 		wake_up_all(&iclog->ic_write_wait);
491 		wake_up_all(&iclog->ic_force_wait);
492 	} while ((iclog = iclog->ic_next) != log->l_iclog);
493 
494 	wake_up_all(&log->l_flush_wait);
495 }
496 
497 /*
498  * Flush iclog to disk if this is the last reference to the given iclog and the
499  * it is in the WANT_SYNC state.
500  *
501  * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
502  * log tail is updated correctly. NEED_FUA indicates that the iclog will be
503  * written to stable storage, and implies that a commit record is contained
504  * within the iclog. We need to ensure that the log tail does not move beyond
505  * the tail that the first commit record in the iclog ordered against, otherwise
506  * correct recovery of that checkpoint becomes dependent on future operations
507  * performed on this iclog.
508  *
509  * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
510  * current tail into iclog. Once the iclog tail is set, future operations must
511  * not modify it, otherwise they potentially violate ordering constraints for
512  * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
513  * the iclog will get zeroed on activation of the iclog after sync, so we
514  * always capture the tail lsn on the iclog on the first NEED_FUA release
515  * regardless of the number of active reference counts on this iclog.
516  */
517 int
518 xlog_state_release_iclog(
519 	struct xlog		*log,
520 	struct xlog_in_core	*iclog,
521 	struct xlog_ticket	*ticket)
522 {
523 	bool			last_ref;
524 
525 	lockdep_assert_held(&log->l_icloglock);
526 
527 	trace_xlog_iclog_release(iclog, _RET_IP_);
528 	/*
529 	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
530 	 * of the tail LSN into the iclog so we guarantee that the log tail does
531 	 * not move between the first time we know that the iclog needs to be
532 	 * made stable and when we eventually submit it.
533 	 */
534 	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
535 	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
536 	    !iclog->ic_header.h_tail_lsn) {
537 		iclog->ic_header.h_tail_lsn =
538 				cpu_to_be64(atomic64_read(&log->l_tail_lsn));
539 	}
540 
541 	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
542 
543 	if (xlog_is_shutdown(log)) {
544 		/*
545 		 * If there are no more references to this iclog, process the
546 		 * pending iclog callbacks that were waiting on the release of
547 		 * this iclog.
548 		 */
549 		if (last_ref)
550 			xlog_state_shutdown_callbacks(log);
551 		return -EIO;
552 	}
553 
554 	if (!last_ref)
555 		return 0;
556 
557 	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
558 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
559 		return 0;
560 	}
561 
562 	iclog->ic_state = XLOG_STATE_SYNCING;
563 	xlog_verify_tail_lsn(log, iclog);
564 	trace_xlog_iclog_syncing(iclog, _RET_IP_);
565 
566 	spin_unlock(&log->l_icloglock);
567 	xlog_sync(log, iclog, ticket);
568 	spin_lock(&log->l_icloglock);
569 	return 0;
570 }
571 
572 /*
573  * Mount a log filesystem
574  *
575  * mp		- ubiquitous xfs mount point structure
576  * log_target	- buftarg of on-disk log device
577  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
578  * num_bblocks	- Number of BBSIZE blocks in on-disk log
579  *
580  * Return error or zero.
581  */
582 int
583 xfs_log_mount(
584 	xfs_mount_t		*mp,
585 	struct xfs_buftarg	*log_target,
586 	xfs_daddr_t		blk_offset,
587 	int			num_bblks)
588 {
589 	struct xlog		*log;
590 	int			error = 0;
591 	int			min_logfsbs;
592 
593 	if (!xfs_has_norecovery(mp)) {
594 		xfs_notice(mp, "Mounting V%d Filesystem %pU",
595 			   XFS_SB_VERSION_NUM(&mp->m_sb),
596 			   &mp->m_sb.sb_uuid);
597 	} else {
598 		xfs_notice(mp,
599 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
600 			   XFS_SB_VERSION_NUM(&mp->m_sb),
601 			   &mp->m_sb.sb_uuid);
602 		ASSERT(xfs_is_readonly(mp));
603 	}
604 
605 	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
606 	if (IS_ERR(log)) {
607 		error = PTR_ERR(log);
608 		goto out;
609 	}
610 	mp->m_log = log;
611 
612 	/*
613 	 * Now that we have set up the log and it's internal geometry
614 	 * parameters, we can validate the given log space and drop a critical
615 	 * message via syslog if the log size is too small. A log that is too
616 	 * small can lead to unexpected situations in transaction log space
617 	 * reservation stage. The superblock verifier has already validated all
618 	 * the other log geometry constraints, so we don't have to check those
619 	 * here.
620 	 *
621 	 * Note: For v4 filesystems, we can't just reject the mount if the
622 	 * validation fails.  This would mean that people would have to
623 	 * downgrade their kernel just to remedy the situation as there is no
624 	 * way to grow the log (short of black magic surgery with xfs_db).
625 	 *
626 	 * We can, however, reject mounts for V5 format filesystems, as the
627 	 * mkfs binary being used to make the filesystem should never create a
628 	 * filesystem with a log that is too small.
629 	 */
630 	min_logfsbs = xfs_log_calc_minimum_size(mp);
631 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
632 		xfs_warn(mp,
633 		"Log size %d blocks too small, minimum size is %d blocks",
634 			 mp->m_sb.sb_logblocks, min_logfsbs);
635 
636 		/*
637 		 * Log check errors are always fatal on v5; or whenever bad
638 		 * metadata leads to a crash.
639 		 */
640 		if (xfs_has_crc(mp)) {
641 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
642 			ASSERT(0);
643 			error = -EINVAL;
644 			goto out_free_log;
645 		}
646 		xfs_crit(mp, "Log size out of supported range.");
647 		xfs_crit(mp,
648 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
649 	}
650 
651 	/*
652 	 * Initialize the AIL now we have a log.
653 	 */
654 	error = xfs_trans_ail_init(mp);
655 	if (error) {
656 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
657 		goto out_free_log;
658 	}
659 	log->l_ailp = mp->m_ail;
660 
661 	/*
662 	 * skip log recovery on a norecovery mount.  pretend it all
663 	 * just worked.
664 	 */
665 	if (!xfs_has_norecovery(mp)) {
666 		error = xlog_recover(log);
667 		if (error) {
668 			xfs_warn(mp, "log mount/recovery failed: error %d",
669 				error);
670 			xlog_recover_cancel(log);
671 			goto out_destroy_ail;
672 		}
673 	}
674 
675 	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
676 			       "log");
677 	if (error)
678 		goto out_destroy_ail;
679 
680 	/* Normal transactions can now occur */
681 	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
682 
683 	/*
684 	 * Now the log has been fully initialised and we know were our
685 	 * space grant counters are, we can initialise the permanent ticket
686 	 * needed for delayed logging to work.
687 	 */
688 	xlog_cil_init_post_recovery(log);
689 
690 	return 0;
691 
692 out_destroy_ail:
693 	xfs_trans_ail_destroy(mp);
694 out_free_log:
695 	xlog_dealloc_log(log);
696 out:
697 	return error;
698 }
699 
700 /*
701  * Finish the recovery of the file system.  This is separate from the
702  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
703  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
704  * here.
705  *
706  * If we finish recovery successfully, start the background log work. If we are
707  * not doing recovery, then we have a RO filesystem and we don't need to start
708  * it.
709  */
710 int
711 xfs_log_mount_finish(
712 	struct xfs_mount	*mp)
713 {
714 	struct xlog		*log = mp->m_log;
715 	int			error = 0;
716 
717 	if (xfs_has_norecovery(mp)) {
718 		ASSERT(xfs_is_readonly(mp));
719 		return 0;
720 	}
721 
722 	/*
723 	 * During the second phase of log recovery, we need iget and
724 	 * iput to behave like they do for an active filesystem.
725 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
726 	 * of inodes before we're done replaying log items on those
727 	 * inodes.  Turn it off immediately after recovery finishes
728 	 * so that we don't leak the quota inodes if subsequent mount
729 	 * activities fail.
730 	 *
731 	 * We let all inodes involved in redo item processing end up on
732 	 * the LRU instead of being evicted immediately so that if we do
733 	 * something to an unlinked inode, the irele won't cause
734 	 * premature truncation and freeing of the inode, which results
735 	 * in log recovery failure.  We have to evict the unreferenced
736 	 * lru inodes after clearing SB_ACTIVE because we don't
737 	 * otherwise clean up the lru if there's a subsequent failure in
738 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
739 	 * else (e.g. quotacheck) references the inodes before the
740 	 * mount failure occurs.
741 	 */
742 	mp->m_super->s_flags |= SB_ACTIVE;
743 	xfs_log_work_queue(mp);
744 	if (xlog_recovery_needed(log))
745 		error = xlog_recover_finish(log);
746 	mp->m_super->s_flags &= ~SB_ACTIVE;
747 	evict_inodes(mp->m_super);
748 
749 	/*
750 	 * Drain the buffer LRU after log recovery. This is required for v4
751 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
752 	 * but we do it unconditionally to make sure we're always in a clean
753 	 * cache state after mount.
754 	 *
755 	 * Don't push in the error case because the AIL may have pending intents
756 	 * that aren't removed until recovery is cancelled.
757 	 */
758 	if (xlog_recovery_needed(log)) {
759 		if (!error) {
760 			xfs_log_force(mp, XFS_LOG_SYNC);
761 			xfs_ail_push_all_sync(mp->m_ail);
762 		}
763 		xfs_notice(mp, "Ending recovery (logdev: %s)",
764 				mp->m_logname ? mp->m_logname : "internal");
765 	} else {
766 		xfs_info(mp, "Ending clean mount");
767 	}
768 	xfs_buftarg_drain(mp->m_ddev_targp);
769 
770 	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
771 
772 	/* Make sure the log is dead if we're returning failure. */
773 	ASSERT(!error || xlog_is_shutdown(log));
774 
775 	return error;
776 }
777 
778 /*
779  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
780  * the log.
781  */
782 void
783 xfs_log_mount_cancel(
784 	struct xfs_mount	*mp)
785 {
786 	xlog_recover_cancel(mp->m_log);
787 	xfs_log_unmount(mp);
788 }
789 
790 /*
791  * Flush out the iclog to disk ensuring that device caches are flushed and
792  * the iclog hits stable storage before any completion waiters are woken.
793  */
794 static inline int
795 xlog_force_iclog(
796 	struct xlog_in_core	*iclog)
797 {
798 	atomic_inc(&iclog->ic_refcnt);
799 	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
800 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
801 		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
802 	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
803 }
804 
805 /*
806  * Cycle all the iclogbuf locks to make sure all log IO completion
807  * is done before we tear down these buffers.
808  */
809 static void
810 xlog_wait_iclog_completion(struct xlog *log)
811 {
812 	int		i;
813 	struct xlog_in_core	*iclog = log->l_iclog;
814 
815 	for (i = 0; i < log->l_iclog_bufs; i++) {
816 		down(&iclog->ic_sema);
817 		up(&iclog->ic_sema);
818 		iclog = iclog->ic_next;
819 	}
820 }
821 
822 /*
823  * Wait for the iclog and all prior iclogs to be written disk as required by the
824  * log force state machine. Waiting on ic_force_wait ensures iclog completions
825  * have been ordered and callbacks run before we are woken here, hence
826  * guaranteeing that all the iclogs up to this one are on stable storage.
827  */
828 int
829 xlog_wait_on_iclog(
830 	struct xlog_in_core	*iclog)
831 		__releases(iclog->ic_log->l_icloglock)
832 {
833 	struct xlog		*log = iclog->ic_log;
834 
835 	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
836 	if (!xlog_is_shutdown(log) &&
837 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
838 	    iclog->ic_state != XLOG_STATE_DIRTY) {
839 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
840 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
841 	} else {
842 		spin_unlock(&log->l_icloglock);
843 	}
844 
845 	if (xlog_is_shutdown(log))
846 		return -EIO;
847 	return 0;
848 }
849 
850 /*
851  * Write out an unmount record using the ticket provided. We have to account for
852  * the data space used in the unmount ticket as this write is not done from a
853  * transaction context that has already done the accounting for us.
854  */
855 static int
856 xlog_write_unmount_record(
857 	struct xlog		*log,
858 	struct xlog_ticket	*ticket)
859 {
860 	struct  {
861 		struct xlog_op_header ophdr;
862 		struct xfs_unmount_log_format ulf;
863 	} unmount_rec = {
864 		.ophdr = {
865 			.oh_clientid = XFS_LOG,
866 			.oh_tid = cpu_to_be32(ticket->t_tid),
867 			.oh_flags = XLOG_UNMOUNT_TRANS,
868 		},
869 		.ulf = {
870 			.magic = XLOG_UNMOUNT_TYPE,
871 		},
872 	};
873 	struct xfs_log_iovec reg = {
874 		.i_addr = &unmount_rec,
875 		.i_len = sizeof(unmount_rec),
876 		.i_type = XLOG_REG_TYPE_UNMOUNT,
877 	};
878 	struct xfs_log_vec vec = {
879 		.lv_niovecs = 1,
880 		.lv_iovecp = &reg,
881 	};
882 	LIST_HEAD(lv_chain);
883 	list_add(&vec.lv_list, &lv_chain);
884 
885 	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
886 		      sizeof(struct xfs_unmount_log_format)) !=
887 							sizeof(unmount_rec));
888 
889 	/* account for space used by record data */
890 	ticket->t_curr_res -= sizeof(unmount_rec);
891 
892 	return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
893 }
894 
895 /*
896  * Mark the filesystem clean by writing an unmount record to the head of the
897  * log.
898  */
899 static void
900 xlog_unmount_write(
901 	struct xlog		*log)
902 {
903 	struct xfs_mount	*mp = log->l_mp;
904 	struct xlog_in_core	*iclog;
905 	struct xlog_ticket	*tic = NULL;
906 	int			error;
907 
908 	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
909 	if (error)
910 		goto out_err;
911 
912 	error = xlog_write_unmount_record(log, tic);
913 	/*
914 	 * At this point, we're umounting anyway, so there's no point in
915 	 * transitioning log state to shutdown. Just continue...
916 	 */
917 out_err:
918 	if (error)
919 		xfs_alert(mp, "%s: unmount record failed", __func__);
920 
921 	spin_lock(&log->l_icloglock);
922 	iclog = log->l_iclog;
923 	error = xlog_force_iclog(iclog);
924 	xlog_wait_on_iclog(iclog);
925 
926 	if (tic) {
927 		trace_xfs_log_umount_write(log, tic);
928 		xfs_log_ticket_ungrant(log, tic);
929 	}
930 }
931 
932 static void
933 xfs_log_unmount_verify_iclog(
934 	struct xlog		*log)
935 {
936 	struct xlog_in_core	*iclog = log->l_iclog;
937 
938 	do {
939 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
940 		ASSERT(iclog->ic_offset == 0);
941 	} while ((iclog = iclog->ic_next) != log->l_iclog);
942 }
943 
944 /*
945  * Unmount record used to have a string "Unmount filesystem--" in the
946  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
947  * We just write the magic number now since that particular field isn't
948  * currently architecture converted and "Unmount" is a bit foo.
949  * As far as I know, there weren't any dependencies on the old behaviour.
950  */
951 static void
952 xfs_log_unmount_write(
953 	struct xfs_mount	*mp)
954 {
955 	struct xlog		*log = mp->m_log;
956 
957 	if (!xfs_log_writable(mp))
958 		return;
959 
960 	xfs_log_force(mp, XFS_LOG_SYNC);
961 
962 	if (xlog_is_shutdown(log))
963 		return;
964 
965 	/*
966 	 * If we think the summary counters are bad, avoid writing the unmount
967 	 * record to force log recovery at next mount, after which the summary
968 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
969 	 * more details.
970 	 */
971 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
972 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
973 		xfs_alert(mp, "%s: will fix summary counters at next mount",
974 				__func__);
975 		return;
976 	}
977 
978 	xfs_log_unmount_verify_iclog(log);
979 	xlog_unmount_write(log);
980 }
981 
982 /*
983  * Empty the log for unmount/freeze.
984  *
985  * To do this, we first need to shut down the background log work so it is not
986  * trying to cover the log as we clean up. We then need to unpin all objects in
987  * the log so we can then flush them out. Once they have completed their IO and
988  * run the callbacks removing themselves from the AIL, we can cover the log.
989  */
990 int
991 xfs_log_quiesce(
992 	struct xfs_mount	*mp)
993 {
994 	/*
995 	 * Clear log incompat features since we're quiescing the log.  Report
996 	 * failures, though it's not fatal to have a higher log feature
997 	 * protection level than the log contents actually require.
998 	 */
999 	if (xfs_clear_incompat_log_features(mp)) {
1000 		int error;
1001 
1002 		error = xfs_sync_sb(mp, false);
1003 		if (error)
1004 			xfs_warn(mp,
1005 	"Failed to clear log incompat features on quiesce");
1006 	}
1007 
1008 	cancel_delayed_work_sync(&mp->m_log->l_work);
1009 	xfs_log_force(mp, XFS_LOG_SYNC);
1010 
1011 	/*
1012 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1013 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1014 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1015 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1016 	 * the IO to complete.
1017 	 */
1018 	xfs_ail_push_all_sync(mp->m_ail);
1019 	xfs_buftarg_wait(mp->m_ddev_targp);
1020 	xfs_buf_lock(mp->m_sb_bp);
1021 	xfs_buf_unlock(mp->m_sb_bp);
1022 
1023 	return xfs_log_cover(mp);
1024 }
1025 
1026 void
1027 xfs_log_clean(
1028 	struct xfs_mount	*mp)
1029 {
1030 	xfs_log_quiesce(mp);
1031 	xfs_log_unmount_write(mp);
1032 }
1033 
1034 /*
1035  * Shut down and release the AIL and Log.
1036  *
1037  * During unmount, we need to ensure we flush all the dirty metadata objects
1038  * from the AIL so that the log is empty before we write the unmount record to
1039  * the log. Once this is done, we can tear down the AIL and the log.
1040  */
1041 void
1042 xfs_log_unmount(
1043 	struct xfs_mount	*mp)
1044 {
1045 	xfs_log_clean(mp);
1046 
1047 	/*
1048 	 * If shutdown has come from iclog IO context, the log
1049 	 * cleaning will have been skipped and so we need to wait
1050 	 * for the iclog to complete shutdown processing before we
1051 	 * tear anything down.
1052 	 */
1053 	xlog_wait_iclog_completion(mp->m_log);
1054 
1055 	xfs_buftarg_drain(mp->m_ddev_targp);
1056 
1057 	xfs_trans_ail_destroy(mp);
1058 
1059 	xfs_sysfs_del(&mp->m_log->l_kobj);
1060 
1061 	xlog_dealloc_log(mp->m_log);
1062 }
1063 
1064 void
1065 xfs_log_item_init(
1066 	struct xfs_mount	*mp,
1067 	struct xfs_log_item	*item,
1068 	int			type,
1069 	const struct xfs_item_ops *ops)
1070 {
1071 	item->li_log = mp->m_log;
1072 	item->li_ailp = mp->m_ail;
1073 	item->li_type = type;
1074 	item->li_ops = ops;
1075 	item->li_lv = NULL;
1076 
1077 	INIT_LIST_HEAD(&item->li_ail);
1078 	INIT_LIST_HEAD(&item->li_cil);
1079 	INIT_LIST_HEAD(&item->li_bio_list);
1080 	INIT_LIST_HEAD(&item->li_trans);
1081 }
1082 
1083 /*
1084  * Wake up processes waiting for log space after we have moved the log tail.
1085  */
1086 void
1087 xfs_log_space_wake(
1088 	struct xfs_mount	*mp)
1089 {
1090 	struct xlog		*log = mp->m_log;
1091 	int			free_bytes;
1092 
1093 	if (xlog_is_shutdown(log))
1094 		return;
1095 
1096 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1097 		ASSERT(!xlog_in_recovery(log));
1098 
1099 		spin_lock(&log->l_write_head.lock);
1100 		free_bytes = xlog_grant_space_left(log, &log->l_write_head);
1101 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1102 		spin_unlock(&log->l_write_head.lock);
1103 	}
1104 
1105 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1106 		ASSERT(!xlog_in_recovery(log));
1107 
1108 		spin_lock(&log->l_reserve_head.lock);
1109 		free_bytes = xlog_grant_space_left(log, &log->l_reserve_head);
1110 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1111 		spin_unlock(&log->l_reserve_head.lock);
1112 	}
1113 }
1114 
1115 /*
1116  * Determine if we have a transaction that has gone to disk that needs to be
1117  * covered. To begin the transition to the idle state firstly the log needs to
1118  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1119  * we start attempting to cover the log.
1120  *
1121  * Only if we are then in a state where covering is needed, the caller is
1122  * informed that dummy transactions are required to move the log into the idle
1123  * state.
1124  *
1125  * If there are any items in the AIl or CIL, then we do not want to attempt to
1126  * cover the log as we may be in a situation where there isn't log space
1127  * available to run a dummy transaction and this can lead to deadlocks when the
1128  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1129  * there's no point in running a dummy transaction at this point because we
1130  * can't start trying to idle the log until both the CIL and AIL are empty.
1131  */
1132 static bool
1133 xfs_log_need_covered(
1134 	struct xfs_mount	*mp)
1135 {
1136 	struct xlog		*log = mp->m_log;
1137 	bool			needed = false;
1138 
1139 	if (!xlog_cil_empty(log))
1140 		return false;
1141 
1142 	spin_lock(&log->l_icloglock);
1143 	switch (log->l_covered_state) {
1144 	case XLOG_STATE_COVER_DONE:
1145 	case XLOG_STATE_COVER_DONE2:
1146 	case XLOG_STATE_COVER_IDLE:
1147 		break;
1148 	case XLOG_STATE_COVER_NEED:
1149 	case XLOG_STATE_COVER_NEED2:
1150 		if (xfs_ail_min_lsn(log->l_ailp))
1151 			break;
1152 		if (!xlog_iclogs_empty(log))
1153 			break;
1154 
1155 		needed = true;
1156 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1157 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1158 		else
1159 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1160 		break;
1161 	default:
1162 		needed = true;
1163 		break;
1164 	}
1165 	spin_unlock(&log->l_icloglock);
1166 	return needed;
1167 }
1168 
1169 /*
1170  * Explicitly cover the log. This is similar to background log covering but
1171  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1172  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1173  * must all be empty.
1174  */
1175 static int
1176 xfs_log_cover(
1177 	struct xfs_mount	*mp)
1178 {
1179 	int			error = 0;
1180 	bool			need_covered;
1181 
1182 	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1183 	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1184 		xlog_is_shutdown(mp->m_log));
1185 
1186 	if (!xfs_log_writable(mp))
1187 		return 0;
1188 
1189 	/*
1190 	 * xfs_log_need_covered() is not idempotent because it progresses the
1191 	 * state machine if the log requires covering. Therefore, we must call
1192 	 * this function once and use the result until we've issued an sb sync.
1193 	 * Do so first to make that abundantly clear.
1194 	 *
1195 	 * Fall into the covering sequence if the log needs covering or the
1196 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1197 	 * used for covering accumulates the in-core counters, so covering
1198 	 * handles this for us.
1199 	 */
1200 	need_covered = xfs_log_need_covered(mp);
1201 	if (!need_covered && !xfs_has_lazysbcount(mp))
1202 		return 0;
1203 
1204 	/*
1205 	 * To cover the log, commit the superblock twice (at most) in
1206 	 * independent checkpoints. The first serves as a reference for the
1207 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1208 	 * updates the in-core tail to the LSN of the first checkpoint. The
1209 	 * second commit updates the on-disk tail with the in-core LSN,
1210 	 * covering the log. Push the AIL one more time to leave it empty, as
1211 	 * we found it.
1212 	 */
1213 	do {
1214 		error = xfs_sync_sb(mp, true);
1215 		if (error)
1216 			break;
1217 		xfs_ail_push_all_sync(mp->m_ail);
1218 	} while (xfs_log_need_covered(mp));
1219 
1220 	return error;
1221 }
1222 
1223 static void
1224 xlog_ioend_work(
1225 	struct work_struct	*work)
1226 {
1227 	struct xlog_in_core     *iclog =
1228 		container_of(work, struct xlog_in_core, ic_end_io_work);
1229 	struct xlog		*log = iclog->ic_log;
1230 	int			error;
1231 
1232 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1233 #ifdef DEBUG
1234 	/* treat writes with injected CRC errors as failed */
1235 	if (iclog->ic_fail_crc)
1236 		error = -EIO;
1237 #endif
1238 
1239 	/*
1240 	 * Race to shutdown the filesystem if we see an error.
1241 	 */
1242 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1243 		xfs_alert(log->l_mp, "log I/O error %d", error);
1244 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1245 	}
1246 
1247 	xlog_state_done_syncing(iclog);
1248 	bio_uninit(&iclog->ic_bio);
1249 
1250 	/*
1251 	 * Drop the lock to signal that we are done. Nothing references the
1252 	 * iclog after this, so an unmount waiting on this lock can now tear it
1253 	 * down safely. As such, it is unsafe to reference the iclog after the
1254 	 * unlock as we could race with it being freed.
1255 	 */
1256 	up(&iclog->ic_sema);
1257 }
1258 
1259 /*
1260  * Return size of each in-core log record buffer.
1261  *
1262  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1263  *
1264  * If the filesystem blocksize is too large, we may need to choose a
1265  * larger size since the directory code currently logs entire blocks.
1266  */
1267 STATIC void
1268 xlog_get_iclog_buffer_size(
1269 	struct xfs_mount	*mp,
1270 	struct xlog		*log)
1271 {
1272 	if (mp->m_logbufs <= 0)
1273 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1274 	if (mp->m_logbsize <= 0)
1275 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1276 
1277 	log->l_iclog_bufs = mp->m_logbufs;
1278 	log->l_iclog_size = mp->m_logbsize;
1279 
1280 	/*
1281 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1282 	 */
1283 	log->l_iclog_heads =
1284 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1285 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1286 }
1287 
1288 void
1289 xfs_log_work_queue(
1290 	struct xfs_mount        *mp)
1291 {
1292 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1293 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1294 }
1295 
1296 /*
1297  * Clear the log incompat flags if we have the opportunity.
1298  *
1299  * This only happens if we're about to log the second dummy transaction as part
1300  * of covering the log.
1301  */
1302 static inline void
1303 xlog_clear_incompat(
1304 	struct xlog		*log)
1305 {
1306 	struct xfs_mount	*mp = log->l_mp;
1307 
1308 	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1309 				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1310 		return;
1311 
1312 	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1313 		return;
1314 
1315 	xfs_clear_incompat_log_features(mp);
1316 }
1317 
1318 /*
1319  * Every sync period we need to unpin all items in the AIL and push them to
1320  * disk. If there is nothing dirty, then we might need to cover the log to
1321  * indicate that the filesystem is idle.
1322  */
1323 static void
1324 xfs_log_worker(
1325 	struct work_struct	*work)
1326 {
1327 	struct xlog		*log = container_of(to_delayed_work(work),
1328 						struct xlog, l_work);
1329 	struct xfs_mount	*mp = log->l_mp;
1330 
1331 	/* dgc: errors ignored - not fatal and nowhere to report them */
1332 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1333 		/*
1334 		 * Dump a transaction into the log that contains no real change.
1335 		 * This is needed to stamp the current tail LSN into the log
1336 		 * during the covering operation.
1337 		 *
1338 		 * We cannot use an inode here for this - that will push dirty
1339 		 * state back up into the VFS and then periodic inode flushing
1340 		 * will prevent log covering from making progress. Hence we
1341 		 * synchronously log the superblock instead to ensure the
1342 		 * superblock is immediately unpinned and can be written back.
1343 		 */
1344 		xlog_clear_incompat(log);
1345 		xfs_sync_sb(mp, true);
1346 	} else
1347 		xfs_log_force(mp, 0);
1348 
1349 	/* start pushing all the metadata that is currently dirty */
1350 	xfs_ail_push_all(mp->m_ail);
1351 
1352 	/* queue us up again */
1353 	xfs_log_work_queue(mp);
1354 }
1355 
1356 /*
1357  * This routine initializes some of the log structure for a given mount point.
1358  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1359  * some other stuff may be filled in too.
1360  */
1361 STATIC struct xlog *
1362 xlog_alloc_log(
1363 	struct xfs_mount	*mp,
1364 	struct xfs_buftarg	*log_target,
1365 	xfs_daddr_t		blk_offset,
1366 	int			num_bblks)
1367 {
1368 	struct xlog		*log;
1369 	xlog_rec_header_t	*head;
1370 	xlog_in_core_t		**iclogp;
1371 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1372 	int			i;
1373 	int			error = -ENOMEM;
1374 	uint			log2_size = 0;
1375 
1376 	log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1377 	if (!log) {
1378 		xfs_warn(mp, "Log allocation failed: No memory!");
1379 		goto out;
1380 	}
1381 
1382 	log->l_mp	   = mp;
1383 	log->l_targ	   = log_target;
1384 	log->l_logsize     = BBTOB(num_bblks);
1385 	log->l_logBBstart  = blk_offset;
1386 	log->l_logBBsize   = num_bblks;
1387 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1388 	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1389 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1390 	INIT_LIST_HEAD(&log->r_dfops);
1391 
1392 	log->l_prev_block  = -1;
1393 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1394 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1395 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1396 
1397 	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1398 		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1399 	else
1400 		log->l_iclog_roundoff = BBSIZE;
1401 
1402 	xlog_grant_head_init(&log->l_reserve_head);
1403 	xlog_grant_head_init(&log->l_write_head);
1404 
1405 	error = -EFSCORRUPTED;
1406 	if (xfs_has_sector(mp)) {
1407 	        log2_size = mp->m_sb.sb_logsectlog;
1408 		if (log2_size < BBSHIFT) {
1409 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1410 				log2_size, BBSHIFT);
1411 			goto out_free_log;
1412 		}
1413 
1414 	        log2_size -= BBSHIFT;
1415 		if (log2_size > mp->m_sectbb_log) {
1416 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1417 				log2_size, mp->m_sectbb_log);
1418 			goto out_free_log;
1419 		}
1420 
1421 		/* for larger sector sizes, must have v2 or external log */
1422 		if (log2_size && log->l_logBBstart > 0 &&
1423 			    !xfs_has_logv2(mp)) {
1424 			xfs_warn(mp,
1425 		"log sector size (0x%x) invalid for configuration.",
1426 				log2_size);
1427 			goto out_free_log;
1428 		}
1429 	}
1430 	log->l_sectBBsize = 1 << log2_size;
1431 
1432 	xlog_get_iclog_buffer_size(mp, log);
1433 
1434 	spin_lock_init(&log->l_icloglock);
1435 	init_waitqueue_head(&log->l_flush_wait);
1436 
1437 	iclogp = &log->l_iclog;
1438 	/*
1439 	 * The amount of memory to allocate for the iclog structure is
1440 	 * rather funky due to the way the structure is defined.  It is
1441 	 * done this way so that we can use different sizes for machines
1442 	 * with different amounts of memory.  See the definition of
1443 	 * xlog_in_core_t in xfs_log_priv.h for details.
1444 	 */
1445 	ASSERT(log->l_iclog_size >= 4096);
1446 	for (i = 0; i < log->l_iclog_bufs; i++) {
1447 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1448 				sizeof(struct bio_vec);
1449 
1450 		iclog = kzalloc(sizeof(*iclog) + bvec_size,
1451 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1452 		if (!iclog)
1453 			goto out_free_iclog;
1454 
1455 		*iclogp = iclog;
1456 		iclog->ic_prev = prev_iclog;
1457 		prev_iclog = iclog;
1458 
1459 		iclog->ic_data = kvzalloc(log->l_iclog_size,
1460 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1461 		if (!iclog->ic_data)
1462 			goto out_free_iclog;
1463 		head = &iclog->ic_header;
1464 		memset(head, 0, sizeof(xlog_rec_header_t));
1465 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1466 		head->h_version = cpu_to_be32(
1467 			xfs_has_logv2(log->l_mp) ? 2 : 1);
1468 		head->h_size = cpu_to_be32(log->l_iclog_size);
1469 		/* new fields */
1470 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1471 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1472 
1473 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1474 		iclog->ic_state = XLOG_STATE_ACTIVE;
1475 		iclog->ic_log = log;
1476 		atomic_set(&iclog->ic_refcnt, 0);
1477 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1478 		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1479 
1480 		init_waitqueue_head(&iclog->ic_force_wait);
1481 		init_waitqueue_head(&iclog->ic_write_wait);
1482 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1483 		sema_init(&iclog->ic_sema, 1);
1484 
1485 		iclogp = &iclog->ic_next;
1486 	}
1487 	*iclogp = log->l_iclog;			/* complete ring */
1488 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1489 
1490 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1491 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1492 				    WQ_HIGHPRI),
1493 			0, mp->m_super->s_id);
1494 	if (!log->l_ioend_workqueue)
1495 		goto out_free_iclog;
1496 
1497 	error = xlog_cil_init(log);
1498 	if (error)
1499 		goto out_destroy_workqueue;
1500 	return log;
1501 
1502 out_destroy_workqueue:
1503 	destroy_workqueue(log->l_ioend_workqueue);
1504 out_free_iclog:
1505 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1506 		prev_iclog = iclog->ic_next;
1507 		kvfree(iclog->ic_data);
1508 		kfree(iclog);
1509 		if (prev_iclog == log->l_iclog)
1510 			break;
1511 	}
1512 out_free_log:
1513 	kfree(log);
1514 out:
1515 	return ERR_PTR(error);
1516 }	/* xlog_alloc_log */
1517 
1518 /*
1519  * Stamp cycle number in every block
1520  */
1521 STATIC void
1522 xlog_pack_data(
1523 	struct xlog		*log,
1524 	struct xlog_in_core	*iclog,
1525 	int			roundoff)
1526 {
1527 	int			i, j, k;
1528 	int			size = iclog->ic_offset + roundoff;
1529 	__be32			cycle_lsn;
1530 	char			*dp;
1531 
1532 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1533 
1534 	dp = iclog->ic_datap;
1535 	for (i = 0; i < BTOBB(size); i++) {
1536 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1537 			break;
1538 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1539 		*(__be32 *)dp = cycle_lsn;
1540 		dp += BBSIZE;
1541 	}
1542 
1543 	if (xfs_has_logv2(log->l_mp)) {
1544 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1545 
1546 		for ( ; i < BTOBB(size); i++) {
1547 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1548 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1549 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1550 			*(__be32 *)dp = cycle_lsn;
1551 			dp += BBSIZE;
1552 		}
1553 
1554 		for (i = 1; i < log->l_iclog_heads; i++)
1555 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1556 	}
1557 }
1558 
1559 /*
1560  * Calculate the checksum for a log buffer.
1561  *
1562  * This is a little more complicated than it should be because the various
1563  * headers and the actual data are non-contiguous.
1564  */
1565 __le32
1566 xlog_cksum(
1567 	struct xlog		*log,
1568 	struct xlog_rec_header	*rhead,
1569 	char			*dp,
1570 	int			size)
1571 {
1572 	uint32_t		crc;
1573 
1574 	/* first generate the crc for the record header ... */
1575 	crc = xfs_start_cksum_update((char *)rhead,
1576 			      sizeof(struct xlog_rec_header),
1577 			      offsetof(struct xlog_rec_header, h_crc));
1578 
1579 	/* ... then for additional cycle data for v2 logs ... */
1580 	if (xfs_has_logv2(log->l_mp)) {
1581 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1582 		int		i;
1583 		int		xheads;
1584 
1585 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1586 
1587 		for (i = 1; i < xheads; i++) {
1588 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1589 				     sizeof(struct xlog_rec_ext_header));
1590 		}
1591 	}
1592 
1593 	/* ... and finally for the payload */
1594 	crc = crc32c(crc, dp, size);
1595 
1596 	return xfs_end_cksum(crc);
1597 }
1598 
1599 static void
1600 xlog_bio_end_io(
1601 	struct bio		*bio)
1602 {
1603 	struct xlog_in_core	*iclog = bio->bi_private;
1604 
1605 	queue_work(iclog->ic_log->l_ioend_workqueue,
1606 		   &iclog->ic_end_io_work);
1607 }
1608 
1609 static int
1610 xlog_map_iclog_data(
1611 	struct bio		*bio,
1612 	void			*data,
1613 	size_t			count)
1614 {
1615 	do {
1616 		struct page	*page = kmem_to_page(data);
1617 		unsigned int	off = offset_in_page(data);
1618 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1619 
1620 		if (bio_add_page(bio, page, len, off) != len)
1621 			return -EIO;
1622 
1623 		data += len;
1624 		count -= len;
1625 	} while (count);
1626 
1627 	return 0;
1628 }
1629 
1630 STATIC void
1631 xlog_write_iclog(
1632 	struct xlog		*log,
1633 	struct xlog_in_core	*iclog,
1634 	uint64_t		bno,
1635 	unsigned int		count)
1636 {
1637 	ASSERT(bno < log->l_logBBsize);
1638 	trace_xlog_iclog_write(iclog, _RET_IP_);
1639 
1640 	/*
1641 	 * We lock the iclogbufs here so that we can serialise against I/O
1642 	 * completion during unmount.  We might be processing a shutdown
1643 	 * triggered during unmount, and that can occur asynchronously to the
1644 	 * unmount thread, and hence we need to ensure that completes before
1645 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1646 	 * across the log IO to archieve that.
1647 	 */
1648 	down(&iclog->ic_sema);
1649 	if (xlog_is_shutdown(log)) {
1650 		/*
1651 		 * It would seem logical to return EIO here, but we rely on
1652 		 * the log state machine to propagate I/O errors instead of
1653 		 * doing it here.  We kick of the state machine and unlock
1654 		 * the buffer manually, the code needs to be kept in sync
1655 		 * with the I/O completion path.
1656 		 */
1657 		goto sync;
1658 	}
1659 
1660 	/*
1661 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1662 	 * IOs coming immediately after this one. This prevents the block layer
1663 	 * writeback throttle from throttling log writes behind background
1664 	 * metadata writeback and causing priority inversions.
1665 	 */
1666 	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1667 		 howmany(count, PAGE_SIZE),
1668 		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1669 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1670 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1671 	iclog->ic_bio.bi_private = iclog;
1672 
1673 	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1674 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1675 		/*
1676 		 * For external log devices, we also need to flush the data
1677 		 * device cache first to ensure all metadata writeback covered
1678 		 * by the LSN in this iclog is on stable storage. This is slow,
1679 		 * but it *must* complete before we issue the external log IO.
1680 		 *
1681 		 * If the flush fails, we cannot conclude that past metadata
1682 		 * writeback from the log succeeded.  Repeating the flush is
1683 		 * not possible, hence we must shut down with log IO error to
1684 		 * avoid shutdown re-entering this path and erroring out again.
1685 		 */
1686 		if (log->l_targ != log->l_mp->m_ddev_targp &&
1687 		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1688 			goto shutdown;
1689 	}
1690 	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1691 		iclog->ic_bio.bi_opf |= REQ_FUA;
1692 
1693 	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1694 
1695 	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count))
1696 		goto shutdown;
1697 
1698 	if (is_vmalloc_addr(iclog->ic_data))
1699 		flush_kernel_vmap_range(iclog->ic_data, count);
1700 
1701 	/*
1702 	 * If this log buffer would straddle the end of the log we will have
1703 	 * to split it up into two bios, so that we can continue at the start.
1704 	 */
1705 	if (bno + BTOBB(count) > log->l_logBBsize) {
1706 		struct bio *split;
1707 
1708 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1709 				  GFP_NOIO, &fs_bio_set);
1710 		bio_chain(split, &iclog->ic_bio);
1711 		submit_bio(split);
1712 
1713 		/* restart at logical offset zero for the remainder */
1714 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1715 	}
1716 
1717 	submit_bio(&iclog->ic_bio);
1718 	return;
1719 shutdown:
1720 	xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1721 sync:
1722 	xlog_state_done_syncing(iclog);
1723 	up(&iclog->ic_sema);
1724 }
1725 
1726 /*
1727  * We need to bump cycle number for the part of the iclog that is
1728  * written to the start of the log. Watch out for the header magic
1729  * number case, though.
1730  */
1731 static void
1732 xlog_split_iclog(
1733 	struct xlog		*log,
1734 	void			*data,
1735 	uint64_t		bno,
1736 	unsigned int		count)
1737 {
1738 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1739 	unsigned int		i;
1740 
1741 	for (i = split_offset; i < count; i += BBSIZE) {
1742 		uint32_t cycle = get_unaligned_be32(data + i);
1743 
1744 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1745 			cycle++;
1746 		put_unaligned_be32(cycle, data + i);
1747 	}
1748 }
1749 
1750 static int
1751 xlog_calc_iclog_size(
1752 	struct xlog		*log,
1753 	struct xlog_in_core	*iclog,
1754 	uint32_t		*roundoff)
1755 {
1756 	uint32_t		count_init, count;
1757 
1758 	/* Add for LR header */
1759 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1760 	count = roundup(count_init, log->l_iclog_roundoff);
1761 
1762 	*roundoff = count - count_init;
1763 
1764 	ASSERT(count >= count_init);
1765 	ASSERT(*roundoff < log->l_iclog_roundoff);
1766 	return count;
1767 }
1768 
1769 /*
1770  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1771  * fashion.  Previously, we should have moved the current iclog
1772  * ptr in the log to point to the next available iclog.  This allows further
1773  * write to continue while this code syncs out an iclog ready to go.
1774  * Before an in-core log can be written out, the data section must be scanned
1775  * to save away the 1st word of each BBSIZE block into the header.  We replace
1776  * it with the current cycle count.  Each BBSIZE block is tagged with the
1777  * cycle count because there in an implicit assumption that drives will
1778  * guarantee that entire 512 byte blocks get written at once.  In other words,
1779  * we can't have part of a 512 byte block written and part not written.  By
1780  * tagging each block, we will know which blocks are valid when recovering
1781  * after an unclean shutdown.
1782  *
1783  * This routine is single threaded on the iclog.  No other thread can be in
1784  * this routine with the same iclog.  Changing contents of iclog can there-
1785  * fore be done without grabbing the state machine lock.  Updating the global
1786  * log will require grabbing the lock though.
1787  *
1788  * The entire log manager uses a logical block numbering scheme.  Only
1789  * xlog_write_iclog knows about the fact that the log may not start with
1790  * block zero on a given device.
1791  */
1792 STATIC void
1793 xlog_sync(
1794 	struct xlog		*log,
1795 	struct xlog_in_core	*iclog,
1796 	struct xlog_ticket	*ticket)
1797 {
1798 	unsigned int		count;		/* byte count of bwrite */
1799 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1800 	uint64_t		bno;
1801 	unsigned int		size;
1802 
1803 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1804 	trace_xlog_iclog_sync(iclog, _RET_IP_);
1805 
1806 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1807 
1808 	/*
1809 	 * If we have a ticket, account for the roundoff via the ticket
1810 	 * reservation to avoid touching the hot grant heads needlessly.
1811 	 * Otherwise, we have to move grant heads directly.
1812 	 */
1813 	if (ticket) {
1814 		ticket->t_curr_res -= roundoff;
1815 	} else {
1816 		xlog_grant_add_space(&log->l_reserve_head, roundoff);
1817 		xlog_grant_add_space(&log->l_write_head, roundoff);
1818 	}
1819 
1820 	/* put cycle number in every block */
1821 	xlog_pack_data(log, iclog, roundoff);
1822 
1823 	/* real byte length */
1824 	size = iclog->ic_offset;
1825 	if (xfs_has_logv2(log->l_mp))
1826 		size += roundoff;
1827 	iclog->ic_header.h_len = cpu_to_be32(size);
1828 
1829 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1830 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1831 
1832 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1833 
1834 	/* Do we need to split this write into 2 parts? */
1835 	if (bno + BTOBB(count) > log->l_logBBsize)
1836 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1837 
1838 	/* calculcate the checksum */
1839 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1840 					    iclog->ic_datap, size);
1841 	/*
1842 	 * Intentionally corrupt the log record CRC based on the error injection
1843 	 * frequency, if defined. This facilitates testing log recovery in the
1844 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1845 	 * write on I/O completion and shutdown the fs. The subsequent mount
1846 	 * detects the bad CRC and attempts to recover.
1847 	 */
1848 #ifdef DEBUG
1849 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1850 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1851 		iclog->ic_fail_crc = true;
1852 		xfs_warn(log->l_mp,
1853 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1854 			 be64_to_cpu(iclog->ic_header.h_lsn));
1855 	}
1856 #endif
1857 	xlog_verify_iclog(log, iclog, count);
1858 	xlog_write_iclog(log, iclog, bno, count);
1859 }
1860 
1861 /*
1862  * Deallocate a log structure
1863  */
1864 STATIC void
1865 xlog_dealloc_log(
1866 	struct xlog	*log)
1867 {
1868 	xlog_in_core_t	*iclog, *next_iclog;
1869 	int		i;
1870 
1871 	/*
1872 	 * Destroy the CIL after waiting for iclog IO completion because an
1873 	 * iclog EIO error will try to shut down the log, which accesses the
1874 	 * CIL to wake up the waiters.
1875 	 */
1876 	xlog_cil_destroy(log);
1877 
1878 	iclog = log->l_iclog;
1879 	for (i = 0; i < log->l_iclog_bufs; i++) {
1880 		next_iclog = iclog->ic_next;
1881 		kvfree(iclog->ic_data);
1882 		kfree(iclog);
1883 		iclog = next_iclog;
1884 	}
1885 
1886 	log->l_mp->m_log = NULL;
1887 	destroy_workqueue(log->l_ioend_workqueue);
1888 	kfree(log);
1889 }
1890 
1891 /*
1892  * Update counters atomically now that memcpy is done.
1893  */
1894 static inline void
1895 xlog_state_finish_copy(
1896 	struct xlog		*log,
1897 	struct xlog_in_core	*iclog,
1898 	int			record_cnt,
1899 	int			copy_bytes)
1900 {
1901 	lockdep_assert_held(&log->l_icloglock);
1902 
1903 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1904 	iclog->ic_offset += copy_bytes;
1905 }
1906 
1907 /*
1908  * print out info relating to regions written which consume
1909  * the reservation
1910  */
1911 void
1912 xlog_print_tic_res(
1913 	struct xfs_mount	*mp,
1914 	struct xlog_ticket	*ticket)
1915 {
1916 	xfs_warn(mp, "ticket reservation summary:");
1917 	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
1918 	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
1919 	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
1920 	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
1921 }
1922 
1923 /*
1924  * Print a summary of the transaction.
1925  */
1926 void
1927 xlog_print_trans(
1928 	struct xfs_trans	*tp)
1929 {
1930 	struct xfs_mount	*mp = tp->t_mountp;
1931 	struct xfs_log_item	*lip;
1932 
1933 	/* dump core transaction and ticket info */
1934 	xfs_warn(mp, "transaction summary:");
1935 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
1936 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
1937 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
1938 
1939 	xlog_print_tic_res(mp, tp->t_ticket);
1940 
1941 	/* dump each log item */
1942 	list_for_each_entry(lip, &tp->t_items, li_trans) {
1943 		struct xfs_log_vec	*lv = lip->li_lv;
1944 		struct xfs_log_iovec	*vec;
1945 		int			i;
1946 
1947 		xfs_warn(mp, "log item: ");
1948 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
1949 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
1950 		if (!lv)
1951 			continue;
1952 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
1953 		xfs_warn(mp, "  size	= %d", lv->lv_size);
1954 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
1955 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
1956 
1957 		/* dump each iovec for the log item */
1958 		vec = lv->lv_iovecp;
1959 		for (i = 0; i < lv->lv_niovecs; i++) {
1960 			int dumplen = min(vec->i_len, 32);
1961 
1962 			xfs_warn(mp, "  iovec[%d]", i);
1963 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
1964 			xfs_warn(mp, "    len	= %d", vec->i_len);
1965 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
1966 			xfs_hex_dump(vec->i_addr, dumplen);
1967 
1968 			vec++;
1969 		}
1970 	}
1971 }
1972 
1973 static inline void
1974 xlog_write_iovec(
1975 	struct xlog_in_core	*iclog,
1976 	uint32_t		*log_offset,
1977 	void			*data,
1978 	uint32_t		write_len,
1979 	int			*bytes_left,
1980 	uint32_t		*record_cnt,
1981 	uint32_t		*data_cnt)
1982 {
1983 	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
1984 	ASSERT(*log_offset % sizeof(int32_t) == 0);
1985 	ASSERT(write_len % sizeof(int32_t) == 0);
1986 
1987 	memcpy(iclog->ic_datap + *log_offset, data, write_len);
1988 	*log_offset += write_len;
1989 	*bytes_left -= write_len;
1990 	(*record_cnt)++;
1991 	*data_cnt += write_len;
1992 }
1993 
1994 /*
1995  * Write log vectors into a single iclog which is guaranteed by the caller
1996  * to have enough space to write the entire log vector into.
1997  */
1998 static void
1999 xlog_write_full(
2000 	struct xfs_log_vec	*lv,
2001 	struct xlog_ticket	*ticket,
2002 	struct xlog_in_core	*iclog,
2003 	uint32_t		*log_offset,
2004 	uint32_t		*len,
2005 	uint32_t		*record_cnt,
2006 	uint32_t		*data_cnt)
2007 {
2008 	int			index;
2009 
2010 	ASSERT(*log_offset + *len <= iclog->ic_size ||
2011 		iclog->ic_state == XLOG_STATE_WANT_SYNC);
2012 
2013 	/*
2014 	 * Ordered log vectors have no regions to write so this
2015 	 * loop will naturally skip them.
2016 	 */
2017 	for (index = 0; index < lv->lv_niovecs; index++) {
2018 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2019 		struct xlog_op_header	*ophdr = reg->i_addr;
2020 
2021 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2022 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2023 				reg->i_len, len, record_cnt, data_cnt);
2024 	}
2025 }
2026 
2027 static int
2028 xlog_write_get_more_iclog_space(
2029 	struct xlog_ticket	*ticket,
2030 	struct xlog_in_core	**iclogp,
2031 	uint32_t		*log_offset,
2032 	uint32_t		len,
2033 	uint32_t		*record_cnt,
2034 	uint32_t		*data_cnt)
2035 {
2036 	struct xlog_in_core	*iclog = *iclogp;
2037 	struct xlog		*log = iclog->ic_log;
2038 	int			error;
2039 
2040 	spin_lock(&log->l_icloglock);
2041 	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2042 	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2043 	error = xlog_state_release_iclog(log, iclog, ticket);
2044 	spin_unlock(&log->l_icloglock);
2045 	if (error)
2046 		return error;
2047 
2048 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2049 					log_offset);
2050 	if (error)
2051 		return error;
2052 	*record_cnt = 0;
2053 	*data_cnt = 0;
2054 	*iclogp = iclog;
2055 	return 0;
2056 }
2057 
2058 /*
2059  * Write log vectors into a single iclog which is smaller than the current chain
2060  * length. We write until we cannot fit a full record into the remaining space
2061  * and then stop. We return the log vector that is to be written that cannot
2062  * wholly fit in the iclog.
2063  */
2064 static int
2065 xlog_write_partial(
2066 	struct xfs_log_vec	*lv,
2067 	struct xlog_ticket	*ticket,
2068 	struct xlog_in_core	**iclogp,
2069 	uint32_t		*log_offset,
2070 	uint32_t		*len,
2071 	uint32_t		*record_cnt,
2072 	uint32_t		*data_cnt)
2073 {
2074 	struct xlog_in_core	*iclog = *iclogp;
2075 	struct xlog_op_header	*ophdr;
2076 	int			index = 0;
2077 	uint32_t		rlen;
2078 	int			error;
2079 
2080 	/* walk the logvec, copying until we run out of space in the iclog */
2081 	for (index = 0; index < lv->lv_niovecs; index++) {
2082 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2083 		uint32_t		reg_offset = 0;
2084 
2085 		/*
2086 		 * The first region of a continuation must have a non-zero
2087 		 * length otherwise log recovery will just skip over it and
2088 		 * start recovering from the next opheader it finds. Because we
2089 		 * mark the next opheader as a continuation, recovery will then
2090 		 * incorrectly add the continuation to the previous region and
2091 		 * that breaks stuff.
2092 		 *
2093 		 * Hence if there isn't space for region data after the
2094 		 * opheader, then we need to start afresh with a new iclog.
2095 		 */
2096 		if (iclog->ic_size - *log_offset <=
2097 					sizeof(struct xlog_op_header)) {
2098 			error = xlog_write_get_more_iclog_space(ticket,
2099 					&iclog, log_offset, *len, record_cnt,
2100 					data_cnt);
2101 			if (error)
2102 				return error;
2103 		}
2104 
2105 		ophdr = reg->i_addr;
2106 		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2107 
2108 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2109 		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2110 		if (rlen != reg->i_len)
2111 			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2112 
2113 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2114 				rlen, len, record_cnt, data_cnt);
2115 
2116 		/* If we wrote the whole region, move to the next. */
2117 		if (rlen == reg->i_len)
2118 			continue;
2119 
2120 		/*
2121 		 * We now have a partially written iovec, but it can span
2122 		 * multiple iclogs so we loop here. First we release the iclog
2123 		 * we currently have, then we get a new iclog and add a new
2124 		 * opheader. Then we continue copying from where we were until
2125 		 * we either complete the iovec or fill the iclog. If we
2126 		 * complete the iovec, then we increment the index and go right
2127 		 * back to the top of the outer loop. if we fill the iclog, we
2128 		 * run the inner loop again.
2129 		 *
2130 		 * This is complicated by the tail of a region using all the
2131 		 * space in an iclog and hence requiring us to release the iclog
2132 		 * and get a new one before returning to the outer loop. We must
2133 		 * always guarantee that we exit this inner loop with at least
2134 		 * space for log transaction opheaders left in the current
2135 		 * iclog, hence we cannot just terminate the loop at the end
2136 		 * of the of the continuation. So we loop while there is no
2137 		 * space left in the current iclog, and check for the end of the
2138 		 * continuation after getting a new iclog.
2139 		 */
2140 		do {
2141 			/*
2142 			 * Ensure we include the continuation opheader in the
2143 			 * space we need in the new iclog by adding that size
2144 			 * to the length we require. This continuation opheader
2145 			 * needs to be accounted to the ticket as the space it
2146 			 * consumes hasn't been accounted to the lv we are
2147 			 * writing.
2148 			 */
2149 			error = xlog_write_get_more_iclog_space(ticket,
2150 					&iclog, log_offset,
2151 					*len + sizeof(struct xlog_op_header),
2152 					record_cnt, data_cnt);
2153 			if (error)
2154 				return error;
2155 
2156 			ophdr = iclog->ic_datap + *log_offset;
2157 			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2158 			ophdr->oh_clientid = XFS_TRANSACTION;
2159 			ophdr->oh_res2 = 0;
2160 			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2161 
2162 			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2163 			*log_offset += sizeof(struct xlog_op_header);
2164 			*data_cnt += sizeof(struct xlog_op_header);
2165 
2166 			/*
2167 			 * If rlen fits in the iclog, then end the region
2168 			 * continuation. Otherwise we're going around again.
2169 			 */
2170 			reg_offset += rlen;
2171 			rlen = reg->i_len - reg_offset;
2172 			if (rlen <= iclog->ic_size - *log_offset)
2173 				ophdr->oh_flags |= XLOG_END_TRANS;
2174 			else
2175 				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2176 
2177 			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2178 			ophdr->oh_len = cpu_to_be32(rlen);
2179 
2180 			xlog_write_iovec(iclog, log_offset,
2181 					reg->i_addr + reg_offset,
2182 					rlen, len, record_cnt, data_cnt);
2183 
2184 		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2185 	}
2186 
2187 	/*
2188 	 * No more iovecs remain in this logvec so return the next log vec to
2189 	 * the caller so it can go back to fast path copying.
2190 	 */
2191 	*iclogp = iclog;
2192 	return 0;
2193 }
2194 
2195 /*
2196  * Write some region out to in-core log
2197  *
2198  * This will be called when writing externally provided regions or when
2199  * writing out a commit record for a given transaction.
2200  *
2201  * General algorithm:
2202  *	1. Find total length of this write.  This may include adding to the
2203  *		lengths passed in.
2204  *	2. Check whether we violate the tickets reservation.
2205  *	3. While writing to this iclog
2206  *	    A. Reserve as much space in this iclog as can get
2207  *	    B. If this is first write, save away start lsn
2208  *	    C. While writing this region:
2209  *		1. If first write of transaction, write start record
2210  *		2. Write log operation header (header per region)
2211  *		3. Find out if we can fit entire region into this iclog
2212  *		4. Potentially, verify destination memcpy ptr
2213  *		5. Memcpy (partial) region
2214  *		6. If partial copy, release iclog; otherwise, continue
2215  *			copying more regions into current iclog
2216  *	4. Mark want sync bit (in simulation mode)
2217  *	5. Release iclog for potential flush to on-disk log.
2218  *
2219  * ERRORS:
2220  * 1.	Panic if reservation is overrun.  This should never happen since
2221  *	reservation amounts are generated internal to the filesystem.
2222  * NOTES:
2223  * 1. Tickets are single threaded data structures.
2224  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2225  *	syncing routine.  When a single log_write region needs to span
2226  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2227  *	on all log operation writes which don't contain the end of the
2228  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2229  *	operation which contains the end of the continued log_write region.
2230  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2231  *	we don't really know exactly how much space will be used.  As a result,
2232  *	we don't update ic_offset until the end when we know exactly how many
2233  *	bytes have been written out.
2234  */
2235 int
2236 xlog_write(
2237 	struct xlog		*log,
2238 	struct xfs_cil_ctx	*ctx,
2239 	struct list_head	*lv_chain,
2240 	struct xlog_ticket	*ticket,
2241 	uint32_t		len)
2242 
2243 {
2244 	struct xlog_in_core	*iclog = NULL;
2245 	struct xfs_log_vec	*lv;
2246 	uint32_t		record_cnt = 0;
2247 	uint32_t		data_cnt = 0;
2248 	int			error = 0;
2249 	int			log_offset;
2250 
2251 	if (ticket->t_curr_res < 0) {
2252 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2253 		     "ctx ticket reservation ran out. Need to up reservation");
2254 		xlog_print_tic_res(log->l_mp, ticket);
2255 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2256 	}
2257 
2258 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2259 					   &log_offset);
2260 	if (error)
2261 		return error;
2262 
2263 	ASSERT(log_offset <= iclog->ic_size - 1);
2264 
2265 	/*
2266 	 * If we have a context pointer, pass it the first iclog we are
2267 	 * writing to so it can record state needed for iclog write
2268 	 * ordering.
2269 	 */
2270 	if (ctx)
2271 		xlog_cil_set_ctx_write_state(ctx, iclog);
2272 
2273 	list_for_each_entry(lv, lv_chain, lv_list) {
2274 		/*
2275 		 * If the entire log vec does not fit in the iclog, punt it to
2276 		 * the partial copy loop which can handle this case.
2277 		 */
2278 		if (lv->lv_niovecs &&
2279 		    lv->lv_bytes > iclog->ic_size - log_offset) {
2280 			error = xlog_write_partial(lv, ticket, &iclog,
2281 					&log_offset, &len, &record_cnt,
2282 					&data_cnt);
2283 			if (error) {
2284 				/*
2285 				 * We have no iclog to release, so just return
2286 				 * the error immediately.
2287 				 */
2288 				return error;
2289 			}
2290 		} else {
2291 			xlog_write_full(lv, ticket, iclog, &log_offset,
2292 					 &len, &record_cnt, &data_cnt);
2293 		}
2294 	}
2295 	ASSERT(len == 0);
2296 
2297 	/*
2298 	 * We've already been guaranteed that the last writes will fit inside
2299 	 * the current iclog, and hence it will already have the space used by
2300 	 * those writes accounted to it. Hence we do not need to update the
2301 	 * iclog with the number of bytes written here.
2302 	 */
2303 	spin_lock(&log->l_icloglock);
2304 	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2305 	error = xlog_state_release_iclog(log, iclog, ticket);
2306 	spin_unlock(&log->l_icloglock);
2307 
2308 	return error;
2309 }
2310 
2311 static void
2312 xlog_state_activate_iclog(
2313 	struct xlog_in_core	*iclog,
2314 	int			*iclogs_changed)
2315 {
2316 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2317 	trace_xlog_iclog_activate(iclog, _RET_IP_);
2318 
2319 	/*
2320 	 * If the number of ops in this iclog indicate it just contains the
2321 	 * dummy transaction, we can change state into IDLE (the second time
2322 	 * around). Otherwise we should change the state into NEED a dummy.
2323 	 * We don't need to cover the dummy.
2324 	 */
2325 	if (*iclogs_changed == 0 &&
2326 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2327 		*iclogs_changed = 1;
2328 	} else {
2329 		/*
2330 		 * We have two dirty iclogs so start over.  This could also be
2331 		 * num of ops indicating this is not the dummy going out.
2332 		 */
2333 		*iclogs_changed = 2;
2334 	}
2335 
2336 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2337 	iclog->ic_offset = 0;
2338 	iclog->ic_header.h_num_logops = 0;
2339 	memset(iclog->ic_header.h_cycle_data, 0,
2340 		sizeof(iclog->ic_header.h_cycle_data));
2341 	iclog->ic_header.h_lsn = 0;
2342 	iclog->ic_header.h_tail_lsn = 0;
2343 }
2344 
2345 /*
2346  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2347  * ACTIVE after iclog I/O has completed.
2348  */
2349 static void
2350 xlog_state_activate_iclogs(
2351 	struct xlog		*log,
2352 	int			*iclogs_changed)
2353 {
2354 	struct xlog_in_core	*iclog = log->l_iclog;
2355 
2356 	do {
2357 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2358 			xlog_state_activate_iclog(iclog, iclogs_changed);
2359 		/*
2360 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2361 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2362 		 */
2363 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2364 			break;
2365 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2366 }
2367 
2368 static int
2369 xlog_covered_state(
2370 	int			prev_state,
2371 	int			iclogs_changed)
2372 {
2373 	/*
2374 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2375 	 * wrote the first covering record (DONE). We go to IDLE if we just
2376 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2377 	 * non-covering write occurs.
2378 	 */
2379 	switch (prev_state) {
2380 	case XLOG_STATE_COVER_IDLE:
2381 		if (iclogs_changed == 1)
2382 			return XLOG_STATE_COVER_IDLE;
2383 		fallthrough;
2384 	case XLOG_STATE_COVER_NEED:
2385 	case XLOG_STATE_COVER_NEED2:
2386 		break;
2387 	case XLOG_STATE_COVER_DONE:
2388 		if (iclogs_changed == 1)
2389 			return XLOG_STATE_COVER_NEED2;
2390 		break;
2391 	case XLOG_STATE_COVER_DONE2:
2392 		if (iclogs_changed == 1)
2393 			return XLOG_STATE_COVER_IDLE;
2394 		break;
2395 	default:
2396 		ASSERT(0);
2397 	}
2398 
2399 	return XLOG_STATE_COVER_NEED;
2400 }
2401 
2402 STATIC void
2403 xlog_state_clean_iclog(
2404 	struct xlog		*log,
2405 	struct xlog_in_core	*dirty_iclog)
2406 {
2407 	int			iclogs_changed = 0;
2408 
2409 	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2410 
2411 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2412 
2413 	xlog_state_activate_iclogs(log, &iclogs_changed);
2414 	wake_up_all(&dirty_iclog->ic_force_wait);
2415 
2416 	if (iclogs_changed) {
2417 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2418 				iclogs_changed);
2419 	}
2420 }
2421 
2422 STATIC xfs_lsn_t
2423 xlog_get_lowest_lsn(
2424 	struct xlog		*log)
2425 {
2426 	struct xlog_in_core	*iclog = log->l_iclog;
2427 	xfs_lsn_t		lowest_lsn = 0, lsn;
2428 
2429 	do {
2430 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2431 		    iclog->ic_state == XLOG_STATE_DIRTY)
2432 			continue;
2433 
2434 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2435 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2436 			lowest_lsn = lsn;
2437 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2438 
2439 	return lowest_lsn;
2440 }
2441 
2442 /*
2443  * Return true if we need to stop processing, false to continue to the next
2444  * iclog. The caller will need to run callbacks if the iclog is returned in the
2445  * XLOG_STATE_CALLBACK state.
2446  */
2447 static bool
2448 xlog_state_iodone_process_iclog(
2449 	struct xlog		*log,
2450 	struct xlog_in_core	*iclog)
2451 {
2452 	xfs_lsn_t		lowest_lsn;
2453 	xfs_lsn_t		header_lsn;
2454 
2455 	switch (iclog->ic_state) {
2456 	case XLOG_STATE_ACTIVE:
2457 	case XLOG_STATE_DIRTY:
2458 		/*
2459 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2460 		 */
2461 		return false;
2462 	case XLOG_STATE_DONE_SYNC:
2463 		/*
2464 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2465 		 * one more check here to see if we have chased our tail around.
2466 		 * If this is not the lowest lsn iclog, then we will leave it
2467 		 * for another completion to process.
2468 		 */
2469 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2470 		lowest_lsn = xlog_get_lowest_lsn(log);
2471 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2472 			return false;
2473 		/*
2474 		 * If there are no callbacks on this iclog, we can mark it clean
2475 		 * immediately and return. Otherwise we need to run the
2476 		 * callbacks.
2477 		 */
2478 		if (list_empty(&iclog->ic_callbacks)) {
2479 			xlog_state_clean_iclog(log, iclog);
2480 			return false;
2481 		}
2482 		trace_xlog_iclog_callback(iclog, _RET_IP_);
2483 		iclog->ic_state = XLOG_STATE_CALLBACK;
2484 		return false;
2485 	default:
2486 		/*
2487 		 * Can only perform callbacks in order.  Since this iclog is not
2488 		 * in the DONE_SYNC state, we skip the rest and just try to
2489 		 * clean up.
2490 		 */
2491 		return true;
2492 	}
2493 }
2494 
2495 /*
2496  * Loop over all the iclogs, running attached callbacks on them. Return true if
2497  * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2498  * to handle transient shutdown state here at all because
2499  * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2500  * cleanup of the callbacks.
2501  */
2502 static bool
2503 xlog_state_do_iclog_callbacks(
2504 	struct xlog		*log)
2505 		__releases(&log->l_icloglock)
2506 		__acquires(&log->l_icloglock)
2507 {
2508 	struct xlog_in_core	*first_iclog = log->l_iclog;
2509 	struct xlog_in_core	*iclog = first_iclog;
2510 	bool			ran_callback = false;
2511 
2512 	do {
2513 		LIST_HEAD(cb_list);
2514 
2515 		if (xlog_state_iodone_process_iclog(log, iclog))
2516 			break;
2517 		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2518 			iclog = iclog->ic_next;
2519 			continue;
2520 		}
2521 		list_splice_init(&iclog->ic_callbacks, &cb_list);
2522 		spin_unlock(&log->l_icloglock);
2523 
2524 		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2525 		xlog_cil_process_committed(&cb_list);
2526 		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2527 		ran_callback = true;
2528 
2529 		spin_lock(&log->l_icloglock);
2530 		xlog_state_clean_iclog(log, iclog);
2531 		iclog = iclog->ic_next;
2532 	} while (iclog != first_iclog);
2533 
2534 	return ran_callback;
2535 }
2536 
2537 
2538 /*
2539  * Loop running iclog completion callbacks until there are no more iclogs in a
2540  * state that can run callbacks.
2541  */
2542 STATIC void
2543 xlog_state_do_callback(
2544 	struct xlog		*log)
2545 {
2546 	int			flushcnt = 0;
2547 	int			repeats = 0;
2548 
2549 	spin_lock(&log->l_icloglock);
2550 	while (xlog_state_do_iclog_callbacks(log)) {
2551 		if (xlog_is_shutdown(log))
2552 			break;
2553 
2554 		if (++repeats > 5000) {
2555 			flushcnt += repeats;
2556 			repeats = 0;
2557 			xfs_warn(log->l_mp,
2558 				"%s: possible infinite loop (%d iterations)",
2559 				__func__, flushcnt);
2560 		}
2561 	}
2562 
2563 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2564 		wake_up_all(&log->l_flush_wait);
2565 
2566 	spin_unlock(&log->l_icloglock);
2567 }
2568 
2569 
2570 /*
2571  * Finish transitioning this iclog to the dirty state.
2572  *
2573  * Callbacks could take time, so they are done outside the scope of the
2574  * global state machine log lock.
2575  */
2576 STATIC void
2577 xlog_state_done_syncing(
2578 	struct xlog_in_core	*iclog)
2579 {
2580 	struct xlog		*log = iclog->ic_log;
2581 
2582 	spin_lock(&log->l_icloglock);
2583 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2584 	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2585 
2586 	/*
2587 	 * If we got an error, either on the first buffer, or in the case of
2588 	 * split log writes, on the second, we shut down the file system and
2589 	 * no iclogs should ever be attempted to be written to disk again.
2590 	 */
2591 	if (!xlog_is_shutdown(log)) {
2592 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2593 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2594 	}
2595 
2596 	/*
2597 	 * Someone could be sleeping prior to writing out the next
2598 	 * iclog buffer, we wake them all, one will get to do the
2599 	 * I/O, the others get to wait for the result.
2600 	 */
2601 	wake_up_all(&iclog->ic_write_wait);
2602 	spin_unlock(&log->l_icloglock);
2603 	xlog_state_do_callback(log);
2604 }
2605 
2606 /*
2607  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2608  * sleep.  We wait on the flush queue on the head iclog as that should be
2609  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2610  * we will wait here and all new writes will sleep until a sync completes.
2611  *
2612  * The in-core logs are used in a circular fashion. They are not used
2613  * out-of-order even when an iclog past the head is free.
2614  *
2615  * return:
2616  *	* log_offset where xlog_write() can start writing into the in-core
2617  *		log's data space.
2618  *	* in-core log pointer to which xlog_write() should write.
2619  *	* boolean indicating this is a continued write to an in-core log.
2620  *		If this is the last write, then the in-core log's offset field
2621  *		needs to be incremented, depending on the amount of data which
2622  *		is copied.
2623  */
2624 STATIC int
2625 xlog_state_get_iclog_space(
2626 	struct xlog		*log,
2627 	int			len,
2628 	struct xlog_in_core	**iclogp,
2629 	struct xlog_ticket	*ticket,
2630 	int			*logoffsetp)
2631 {
2632 	int		  log_offset;
2633 	xlog_rec_header_t *head;
2634 	xlog_in_core_t	  *iclog;
2635 
2636 restart:
2637 	spin_lock(&log->l_icloglock);
2638 	if (xlog_is_shutdown(log)) {
2639 		spin_unlock(&log->l_icloglock);
2640 		return -EIO;
2641 	}
2642 
2643 	iclog = log->l_iclog;
2644 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2645 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2646 
2647 		/* Wait for log writes to have flushed */
2648 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2649 		goto restart;
2650 	}
2651 
2652 	head = &iclog->ic_header;
2653 
2654 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2655 	log_offset = iclog->ic_offset;
2656 
2657 	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2658 
2659 	/* On the 1st write to an iclog, figure out lsn.  This works
2660 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2661 	 * committing to.  If the offset is set, that's how many blocks
2662 	 * must be written.
2663 	 */
2664 	if (log_offset == 0) {
2665 		ticket->t_curr_res -= log->l_iclog_hsize;
2666 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2667 		head->h_lsn = cpu_to_be64(
2668 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2669 		ASSERT(log->l_curr_block >= 0);
2670 	}
2671 
2672 	/* If there is enough room to write everything, then do it.  Otherwise,
2673 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2674 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2675 	 * until you know exactly how many bytes get copied.  Therefore, wait
2676 	 * until later to update ic_offset.
2677 	 *
2678 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2679 	 * can fit into remaining data section.
2680 	 */
2681 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2682 		int		error = 0;
2683 
2684 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2685 
2686 		/*
2687 		 * If we are the only one writing to this iclog, sync it to
2688 		 * disk.  We need to do an atomic compare and decrement here to
2689 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2690 		 * xlog_state_release_iclog() when there is more than one
2691 		 * reference to the iclog.
2692 		 */
2693 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2694 			error = xlog_state_release_iclog(log, iclog, ticket);
2695 		spin_unlock(&log->l_icloglock);
2696 		if (error)
2697 			return error;
2698 		goto restart;
2699 	}
2700 
2701 	/* Do we have enough room to write the full amount in the remainder
2702 	 * of this iclog?  Or must we continue a write on the next iclog and
2703 	 * mark this iclog as completely taken?  In the case where we switch
2704 	 * iclogs (to mark it taken), this particular iclog will release/sync
2705 	 * to disk in xlog_write().
2706 	 */
2707 	if (len <= iclog->ic_size - iclog->ic_offset)
2708 		iclog->ic_offset += len;
2709 	else
2710 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2711 	*iclogp = iclog;
2712 
2713 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2714 	spin_unlock(&log->l_icloglock);
2715 
2716 	*logoffsetp = log_offset;
2717 	return 0;
2718 }
2719 
2720 /*
2721  * The first cnt-1 times a ticket goes through here we don't need to move the
2722  * grant write head because the permanent reservation has reserved cnt times the
2723  * unit amount.  Release part of current permanent unit reservation and reset
2724  * current reservation to be one units worth.  Also move grant reservation head
2725  * forward.
2726  */
2727 void
2728 xfs_log_ticket_regrant(
2729 	struct xlog		*log,
2730 	struct xlog_ticket	*ticket)
2731 {
2732 	trace_xfs_log_ticket_regrant(log, ticket);
2733 
2734 	if (ticket->t_cnt > 0)
2735 		ticket->t_cnt--;
2736 
2737 	xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res);
2738 	xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res);
2739 	ticket->t_curr_res = ticket->t_unit_res;
2740 
2741 	trace_xfs_log_ticket_regrant_sub(log, ticket);
2742 
2743 	/* just return if we still have some of the pre-reserved space */
2744 	if (!ticket->t_cnt) {
2745 		xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res);
2746 		trace_xfs_log_ticket_regrant_exit(log, ticket);
2747 
2748 		ticket->t_curr_res = ticket->t_unit_res;
2749 	}
2750 
2751 	xfs_log_ticket_put(ticket);
2752 }
2753 
2754 /*
2755  * Give back the space left from a reservation.
2756  *
2757  * All the information we need to make a correct determination of space left
2758  * is present.  For non-permanent reservations, things are quite easy.  The
2759  * count should have been decremented to zero.  We only need to deal with the
2760  * space remaining in the current reservation part of the ticket.  If the
2761  * ticket contains a permanent reservation, there may be left over space which
2762  * needs to be released.  A count of N means that N-1 refills of the current
2763  * reservation can be done before we need to ask for more space.  The first
2764  * one goes to fill up the first current reservation.  Once we run out of
2765  * space, the count will stay at zero and the only space remaining will be
2766  * in the current reservation field.
2767  */
2768 void
2769 xfs_log_ticket_ungrant(
2770 	struct xlog		*log,
2771 	struct xlog_ticket	*ticket)
2772 {
2773 	int			bytes;
2774 
2775 	trace_xfs_log_ticket_ungrant(log, ticket);
2776 
2777 	if (ticket->t_cnt > 0)
2778 		ticket->t_cnt--;
2779 
2780 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
2781 
2782 	/*
2783 	 * If this is a permanent reservation ticket, we may be able to free
2784 	 * up more space based on the remaining count.
2785 	 */
2786 	bytes = ticket->t_curr_res;
2787 	if (ticket->t_cnt > 0) {
2788 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2789 		bytes += ticket->t_unit_res*ticket->t_cnt;
2790 	}
2791 
2792 	xlog_grant_sub_space(&log->l_reserve_head, bytes);
2793 	xlog_grant_sub_space(&log->l_write_head, bytes);
2794 
2795 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
2796 
2797 	xfs_log_space_wake(log->l_mp);
2798 	xfs_log_ticket_put(ticket);
2799 }
2800 
2801 /*
2802  * This routine will mark the current iclog in the ring as WANT_SYNC and move
2803  * the current iclog pointer to the next iclog in the ring.
2804  */
2805 void
2806 xlog_state_switch_iclogs(
2807 	struct xlog		*log,
2808 	struct xlog_in_core	*iclog,
2809 	int			eventual_size)
2810 {
2811 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2812 	assert_spin_locked(&log->l_icloglock);
2813 	trace_xlog_iclog_switch(iclog, _RET_IP_);
2814 
2815 	if (!eventual_size)
2816 		eventual_size = iclog->ic_offset;
2817 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2818 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2819 	log->l_prev_block = log->l_curr_block;
2820 	log->l_prev_cycle = log->l_curr_cycle;
2821 
2822 	/* roll log?: ic_offset changed later */
2823 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2824 
2825 	/* Round up to next log-sunit */
2826 	if (log->l_iclog_roundoff > BBSIZE) {
2827 		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
2828 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2829 	}
2830 
2831 	if (log->l_curr_block >= log->l_logBBsize) {
2832 		/*
2833 		 * Rewind the current block before the cycle is bumped to make
2834 		 * sure that the combined LSN never transiently moves forward
2835 		 * when the log wraps to the next cycle. This is to support the
2836 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
2837 		 * other cases should acquire l_icloglock.
2838 		 */
2839 		log->l_curr_block -= log->l_logBBsize;
2840 		ASSERT(log->l_curr_block >= 0);
2841 		smp_wmb();
2842 		log->l_curr_cycle++;
2843 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2844 			log->l_curr_cycle++;
2845 	}
2846 	ASSERT(iclog == log->l_iclog);
2847 	log->l_iclog = iclog->ic_next;
2848 }
2849 
2850 /*
2851  * Force the iclog to disk and check if the iclog has been completed before
2852  * xlog_force_iclog() returns. This can happen on synchronous (e.g.
2853  * pmem) or fast async storage because we drop the icloglock to issue the IO.
2854  * If completion has already occurred, tell the caller so that it can avoid an
2855  * unnecessary wait on the iclog.
2856  */
2857 static int
2858 xlog_force_and_check_iclog(
2859 	struct xlog_in_core	*iclog,
2860 	bool			*completed)
2861 {
2862 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2863 	int			error;
2864 
2865 	*completed = false;
2866 	error = xlog_force_iclog(iclog);
2867 	if (error)
2868 		return error;
2869 
2870 	/*
2871 	 * If the iclog has already been completed and reused the header LSN
2872 	 * will have been rewritten by completion
2873 	 */
2874 	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
2875 		*completed = true;
2876 	return 0;
2877 }
2878 
2879 /*
2880  * Write out all data in the in-core log as of this exact moment in time.
2881  *
2882  * Data may be written to the in-core log during this call.  However,
2883  * we don't guarantee this data will be written out.  A change from past
2884  * implementation means this routine will *not* write out zero length LRs.
2885  *
2886  * Basically, we try and perform an intelligent scan of the in-core logs.
2887  * If we determine there is no flushable data, we just return.  There is no
2888  * flushable data if:
2889  *
2890  *	1. the current iclog is active and has no data; the previous iclog
2891  *		is in the active or dirty state.
2892  *	2. the current iclog is drity, and the previous iclog is in the
2893  *		active or dirty state.
2894  *
2895  * We may sleep if:
2896  *
2897  *	1. the current iclog is not in the active nor dirty state.
2898  *	2. the current iclog dirty, and the previous iclog is not in the
2899  *		active nor dirty state.
2900  *	3. the current iclog is active, and there is another thread writing
2901  *		to this particular iclog.
2902  *	4. a) the current iclog is active and has no other writers
2903  *	   b) when we return from flushing out this iclog, it is still
2904  *		not in the active nor dirty state.
2905  */
2906 int
2907 xfs_log_force(
2908 	struct xfs_mount	*mp,
2909 	uint			flags)
2910 {
2911 	struct xlog		*log = mp->m_log;
2912 	struct xlog_in_core	*iclog;
2913 
2914 	XFS_STATS_INC(mp, xs_log_force);
2915 	trace_xfs_log_force(mp, 0, _RET_IP_);
2916 
2917 	xlog_cil_force(log);
2918 
2919 	spin_lock(&log->l_icloglock);
2920 	if (xlog_is_shutdown(log))
2921 		goto out_error;
2922 
2923 	iclog = log->l_iclog;
2924 	trace_xlog_iclog_force(iclog, _RET_IP_);
2925 
2926 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
2927 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
2928 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
2929 		/*
2930 		 * If the head is dirty or (active and empty), then we need to
2931 		 * look at the previous iclog.
2932 		 *
2933 		 * If the previous iclog is active or dirty we are done.  There
2934 		 * is nothing to sync out. Otherwise, we attach ourselves to the
2935 		 * previous iclog and go to sleep.
2936 		 */
2937 		iclog = iclog->ic_prev;
2938 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2939 		if (atomic_read(&iclog->ic_refcnt) == 0) {
2940 			/* We have exclusive access to this iclog. */
2941 			bool	completed;
2942 
2943 			if (xlog_force_and_check_iclog(iclog, &completed))
2944 				goto out_error;
2945 
2946 			if (completed)
2947 				goto out_unlock;
2948 		} else {
2949 			/*
2950 			 * Someone else is still writing to this iclog, so we
2951 			 * need to ensure that when they release the iclog it
2952 			 * gets synced immediately as we may be waiting on it.
2953 			 */
2954 			xlog_state_switch_iclogs(log, iclog, 0);
2955 		}
2956 	}
2957 
2958 	/*
2959 	 * The iclog we are about to wait on may contain the checkpoint pushed
2960 	 * by the above xlog_cil_force() call, but it may not have been pushed
2961 	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
2962 	 * are flushed when this iclog is written.
2963 	 */
2964 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
2965 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
2966 
2967 	if (flags & XFS_LOG_SYNC)
2968 		return xlog_wait_on_iclog(iclog);
2969 out_unlock:
2970 	spin_unlock(&log->l_icloglock);
2971 	return 0;
2972 out_error:
2973 	spin_unlock(&log->l_icloglock);
2974 	return -EIO;
2975 }
2976 
2977 /*
2978  * Force the log to a specific LSN.
2979  *
2980  * If an iclog with that lsn can be found:
2981  *	If it is in the DIRTY state, just return.
2982  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2983  *		state and go to sleep or return.
2984  *	If it is in any other state, go to sleep or return.
2985  *
2986  * Synchronous forces are implemented with a wait queue.  All callers trying
2987  * to force a given lsn to disk must wait on the queue attached to the
2988  * specific in-core log.  When given in-core log finally completes its write
2989  * to disk, that thread will wake up all threads waiting on the queue.
2990  */
2991 static int
2992 xlog_force_lsn(
2993 	struct xlog		*log,
2994 	xfs_lsn_t		lsn,
2995 	uint			flags,
2996 	int			*log_flushed,
2997 	bool			already_slept)
2998 {
2999 	struct xlog_in_core	*iclog;
3000 	bool			completed;
3001 
3002 	spin_lock(&log->l_icloglock);
3003 	if (xlog_is_shutdown(log))
3004 		goto out_error;
3005 
3006 	iclog = log->l_iclog;
3007 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3008 		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3009 		iclog = iclog->ic_next;
3010 		if (iclog == log->l_iclog)
3011 			goto out_unlock;
3012 	}
3013 
3014 	switch (iclog->ic_state) {
3015 	case XLOG_STATE_ACTIVE:
3016 		/*
3017 		 * We sleep here if we haven't already slept (e.g. this is the
3018 		 * first time we've looked at the correct iclog buf) and the
3019 		 * buffer before us is going to be sync'ed.  The reason for this
3020 		 * is that if we are doing sync transactions here, by waiting
3021 		 * for the previous I/O to complete, we can allow a few more
3022 		 * transactions into this iclog before we close it down.
3023 		 *
3024 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3025 		 * refcnt so we can release the log (which drops the ref count).
3026 		 * The state switch keeps new transaction commits from using
3027 		 * this buffer.  When the current commits finish writing into
3028 		 * the buffer, the refcount will drop to zero and the buffer
3029 		 * will go out then.
3030 		 */
3031 		if (!already_slept &&
3032 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3033 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3034 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3035 					&log->l_icloglock);
3036 			return -EAGAIN;
3037 		}
3038 		if (xlog_force_and_check_iclog(iclog, &completed))
3039 			goto out_error;
3040 		if (log_flushed)
3041 			*log_flushed = 1;
3042 		if (completed)
3043 			goto out_unlock;
3044 		break;
3045 	case XLOG_STATE_WANT_SYNC:
3046 		/*
3047 		 * This iclog may contain the checkpoint pushed by the
3048 		 * xlog_cil_force_seq() call, but there are other writers still
3049 		 * accessing it so it hasn't been pushed to disk yet. Like the
3050 		 * ACTIVE case above, we need to make sure caches are flushed
3051 		 * when this iclog is written.
3052 		 */
3053 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3054 		break;
3055 	default:
3056 		/*
3057 		 * The entire checkpoint was written by the CIL force and is on
3058 		 * its way to disk already. It will be stable when it
3059 		 * completes, so we don't need to manipulate caches here at all.
3060 		 * We just need to wait for completion if necessary.
3061 		 */
3062 		break;
3063 	}
3064 
3065 	if (flags & XFS_LOG_SYNC)
3066 		return xlog_wait_on_iclog(iclog);
3067 out_unlock:
3068 	spin_unlock(&log->l_icloglock);
3069 	return 0;
3070 out_error:
3071 	spin_unlock(&log->l_icloglock);
3072 	return -EIO;
3073 }
3074 
3075 /*
3076  * Force the log to a specific checkpoint sequence.
3077  *
3078  * First force the CIL so that all the required changes have been flushed to the
3079  * iclogs. If the CIL force completed it will return a commit LSN that indicates
3080  * the iclog that needs to be flushed to stable storage. If the caller needs
3081  * a synchronous log force, we will wait on the iclog with the LSN returned by
3082  * xlog_cil_force_seq() to be completed.
3083  */
3084 int
3085 xfs_log_force_seq(
3086 	struct xfs_mount	*mp,
3087 	xfs_csn_t		seq,
3088 	uint			flags,
3089 	int			*log_flushed)
3090 {
3091 	struct xlog		*log = mp->m_log;
3092 	xfs_lsn_t		lsn;
3093 	int			ret;
3094 	ASSERT(seq != 0);
3095 
3096 	XFS_STATS_INC(mp, xs_log_force);
3097 	trace_xfs_log_force(mp, seq, _RET_IP_);
3098 
3099 	lsn = xlog_cil_force_seq(log, seq);
3100 	if (lsn == NULLCOMMITLSN)
3101 		return 0;
3102 
3103 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3104 	if (ret == -EAGAIN) {
3105 		XFS_STATS_INC(mp, xs_log_force_sleep);
3106 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3107 	}
3108 	return ret;
3109 }
3110 
3111 /*
3112  * Free a used ticket when its refcount falls to zero.
3113  */
3114 void
3115 xfs_log_ticket_put(
3116 	xlog_ticket_t	*ticket)
3117 {
3118 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3119 	if (atomic_dec_and_test(&ticket->t_ref))
3120 		kmem_cache_free(xfs_log_ticket_cache, ticket);
3121 }
3122 
3123 xlog_ticket_t *
3124 xfs_log_ticket_get(
3125 	xlog_ticket_t	*ticket)
3126 {
3127 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3128 	atomic_inc(&ticket->t_ref);
3129 	return ticket;
3130 }
3131 
3132 /*
3133  * Figure out the total log space unit (in bytes) that would be
3134  * required for a log ticket.
3135  */
3136 static int
3137 xlog_calc_unit_res(
3138 	struct xlog		*log,
3139 	int			unit_bytes,
3140 	int			*niclogs)
3141 {
3142 	int			iclog_space;
3143 	uint			num_headers;
3144 
3145 	/*
3146 	 * Permanent reservations have up to 'cnt'-1 active log operations
3147 	 * in the log.  A unit in this case is the amount of space for one
3148 	 * of these log operations.  Normal reservations have a cnt of 1
3149 	 * and their unit amount is the total amount of space required.
3150 	 *
3151 	 * The following lines of code account for non-transaction data
3152 	 * which occupy space in the on-disk log.
3153 	 *
3154 	 * Normal form of a transaction is:
3155 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3156 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3157 	 *
3158 	 * We need to account for all the leadup data and trailer data
3159 	 * around the transaction data.
3160 	 * And then we need to account for the worst case in terms of using
3161 	 * more space.
3162 	 * The worst case will happen if:
3163 	 * - the placement of the transaction happens to be such that the
3164 	 *   roundoff is at its maximum
3165 	 * - the transaction data is synced before the commit record is synced
3166 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3167 	 *   Therefore the commit record is in its own Log Record.
3168 	 *   This can happen as the commit record is called with its
3169 	 *   own region to xlog_write().
3170 	 *   This then means that in the worst case, roundoff can happen for
3171 	 *   the commit-rec as well.
3172 	 *   The commit-rec is smaller than padding in this scenario and so it is
3173 	 *   not added separately.
3174 	 */
3175 
3176 	/* for trans header */
3177 	unit_bytes += sizeof(xlog_op_header_t);
3178 	unit_bytes += sizeof(xfs_trans_header_t);
3179 
3180 	/* for start-rec */
3181 	unit_bytes += sizeof(xlog_op_header_t);
3182 
3183 	/*
3184 	 * for LR headers - the space for data in an iclog is the size minus
3185 	 * the space used for the headers. If we use the iclog size, then we
3186 	 * undercalculate the number of headers required.
3187 	 *
3188 	 * Furthermore - the addition of op headers for split-recs might
3189 	 * increase the space required enough to require more log and op
3190 	 * headers, so take that into account too.
3191 	 *
3192 	 * IMPORTANT: This reservation makes the assumption that if this
3193 	 * transaction is the first in an iclog and hence has the LR headers
3194 	 * accounted to it, then the remaining space in the iclog is
3195 	 * exclusively for this transaction.  i.e. if the transaction is larger
3196 	 * than the iclog, it will be the only thing in that iclog.
3197 	 * Fundamentally, this means we must pass the entire log vector to
3198 	 * xlog_write to guarantee this.
3199 	 */
3200 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3201 	num_headers = howmany(unit_bytes, iclog_space);
3202 
3203 	/* for split-recs - ophdrs added when data split over LRs */
3204 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3205 
3206 	/* add extra header reservations if we overrun */
3207 	while (!num_headers ||
3208 	       howmany(unit_bytes, iclog_space) > num_headers) {
3209 		unit_bytes += sizeof(xlog_op_header_t);
3210 		num_headers++;
3211 	}
3212 	unit_bytes += log->l_iclog_hsize * num_headers;
3213 
3214 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3215 	unit_bytes += log->l_iclog_hsize;
3216 
3217 	/* roundoff padding for transaction data and one for commit record */
3218 	unit_bytes += 2 * log->l_iclog_roundoff;
3219 
3220 	if (niclogs)
3221 		*niclogs = num_headers;
3222 	return unit_bytes;
3223 }
3224 
3225 int
3226 xfs_log_calc_unit_res(
3227 	struct xfs_mount	*mp,
3228 	int			unit_bytes)
3229 {
3230 	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3231 }
3232 
3233 /*
3234  * Allocate and initialise a new log ticket.
3235  */
3236 struct xlog_ticket *
3237 xlog_ticket_alloc(
3238 	struct xlog		*log,
3239 	int			unit_bytes,
3240 	int			cnt,
3241 	bool			permanent)
3242 {
3243 	struct xlog_ticket	*tic;
3244 	int			unit_res;
3245 
3246 	tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3247 			GFP_KERNEL | __GFP_NOFAIL);
3248 
3249 	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3250 
3251 	atomic_set(&tic->t_ref, 1);
3252 	tic->t_task		= current;
3253 	INIT_LIST_HEAD(&tic->t_queue);
3254 	tic->t_unit_res		= unit_res;
3255 	tic->t_curr_res		= unit_res;
3256 	tic->t_cnt		= cnt;
3257 	tic->t_ocnt		= cnt;
3258 	tic->t_tid		= get_random_u32();
3259 	if (permanent)
3260 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3261 
3262 	return tic;
3263 }
3264 
3265 #if defined(DEBUG)
3266 static void
3267 xlog_verify_dump_tail(
3268 	struct xlog		*log,
3269 	struct xlog_in_core	*iclog)
3270 {
3271 	xfs_alert(log->l_mp,
3272 "ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x",
3273 			iclog ? be64_to_cpu(iclog->ic_header.h_tail_lsn) : -1,
3274 			atomic64_read(&log->l_tail_lsn),
3275 			log->l_ailp->ail_head_lsn,
3276 			log->l_curr_cycle, log->l_curr_block,
3277 			log->l_prev_cycle, log->l_prev_block);
3278 	xfs_alert(log->l_mp,
3279 "write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x",
3280 			atomic64_read(&log->l_write_head.grant),
3281 			atomic64_read(&log->l_reserve_head.grant),
3282 			log->l_tail_space, log->l_logsize,
3283 			iclog ? iclog->ic_flags : -1);
3284 }
3285 
3286 /* Check if the new iclog will fit in the log. */
3287 STATIC void
3288 xlog_verify_tail_lsn(
3289 	struct xlog		*log,
3290 	struct xlog_in_core	*iclog)
3291 {
3292 	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3293 	int		blocks;
3294 
3295 	if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3296 		blocks = log->l_logBBsize -
3297 				(log->l_prev_block - BLOCK_LSN(tail_lsn));
3298 		if (blocks < BTOBB(iclog->ic_offset) +
3299 					BTOBB(log->l_iclog_hsize)) {
3300 			xfs_emerg(log->l_mp,
3301 					"%s: ran out of log space", __func__);
3302 			xlog_verify_dump_tail(log, iclog);
3303 		}
3304 		return;
3305 	}
3306 
3307 	if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) {
3308 		xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__);
3309 		xlog_verify_dump_tail(log, iclog);
3310 		return;
3311 	}
3312 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block) {
3313 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3314 		xlog_verify_dump_tail(log, iclog);
3315 		return;
3316 	}
3317 
3318 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3319 	if (blocks < BTOBB(iclog->ic_offset) + 1) {
3320 		xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__);
3321 		xlog_verify_dump_tail(log, iclog);
3322 	}
3323 }
3324 
3325 /*
3326  * Perform a number of checks on the iclog before writing to disk.
3327  *
3328  * 1. Make sure the iclogs are still circular
3329  * 2. Make sure we have a good magic number
3330  * 3. Make sure we don't have magic numbers in the data
3331  * 4. Check fields of each log operation header for:
3332  *	A. Valid client identifier
3333  *	B. tid ptr value falls in valid ptr space (user space code)
3334  *	C. Length in log record header is correct according to the
3335  *		individual operation headers within record.
3336  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3337  *	log, check the preceding blocks of the physical log to make sure all
3338  *	the cycle numbers agree with the current cycle number.
3339  */
3340 STATIC void
3341 xlog_verify_iclog(
3342 	struct xlog		*log,
3343 	struct xlog_in_core	*iclog,
3344 	int			count)
3345 {
3346 	xlog_op_header_t	*ophead;
3347 	xlog_in_core_t		*icptr;
3348 	xlog_in_core_2_t	*xhdr;
3349 	void			*base_ptr, *ptr, *p;
3350 	ptrdiff_t		field_offset;
3351 	uint8_t			clientid;
3352 	int			len, i, j, k, op_len;
3353 	int			idx;
3354 
3355 	/* check validity of iclog pointers */
3356 	spin_lock(&log->l_icloglock);
3357 	icptr = log->l_iclog;
3358 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3359 		ASSERT(icptr);
3360 
3361 	if (icptr != log->l_iclog)
3362 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3363 	spin_unlock(&log->l_icloglock);
3364 
3365 	/* check log magic numbers */
3366 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3367 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3368 
3369 	base_ptr = ptr = &iclog->ic_header;
3370 	p = &iclog->ic_header;
3371 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3372 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3373 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3374 				__func__);
3375 	}
3376 
3377 	/* check fields */
3378 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3379 	base_ptr = ptr = iclog->ic_datap;
3380 	ophead = ptr;
3381 	xhdr = iclog->ic_data;
3382 	for (i = 0; i < len; i++) {
3383 		ophead = ptr;
3384 
3385 		/* clientid is only 1 byte */
3386 		p = &ophead->oh_clientid;
3387 		field_offset = p - base_ptr;
3388 		if (field_offset & 0x1ff) {
3389 			clientid = ophead->oh_clientid;
3390 		} else {
3391 			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3392 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3393 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3394 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3395 				clientid = xlog_get_client_id(
3396 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3397 			} else {
3398 				clientid = xlog_get_client_id(
3399 					iclog->ic_header.h_cycle_data[idx]);
3400 			}
3401 		}
3402 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3403 			xfs_warn(log->l_mp,
3404 				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3405 				__func__, i, clientid, ophead,
3406 				(unsigned long)field_offset);
3407 		}
3408 
3409 		/* check length */
3410 		p = &ophead->oh_len;
3411 		field_offset = p - base_ptr;
3412 		if (field_offset & 0x1ff) {
3413 			op_len = be32_to_cpu(ophead->oh_len);
3414 		} else {
3415 			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3416 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3417 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3418 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3419 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3420 			} else {
3421 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3422 			}
3423 		}
3424 		ptr += sizeof(xlog_op_header_t) + op_len;
3425 	}
3426 }
3427 #endif
3428 
3429 /*
3430  * Perform a forced shutdown on the log.
3431  *
3432  * This can be called from low level log code to trigger a shutdown, or from the
3433  * high level mount shutdown code when the mount shuts down.
3434  *
3435  * Our main objectives here are to make sure that:
3436  *	a. if the shutdown was not due to a log IO error, flush the logs to
3437  *	   disk. Anything modified after this is ignored.
3438  *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3439  *	   parties to find out. Nothing new gets queued after this is done.
3440  *	c. Tasks sleeping on log reservations, pinned objects and
3441  *	   other resources get woken up.
3442  *	d. The mount is also marked as shut down so that log triggered shutdowns
3443  *	   still behave the same as if they called xfs_forced_shutdown().
3444  *
3445  * Return true if the shutdown cause was a log IO error and we actually shut the
3446  * log down.
3447  */
3448 bool
3449 xlog_force_shutdown(
3450 	struct xlog	*log,
3451 	uint32_t	shutdown_flags)
3452 {
3453 	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3454 
3455 	if (!log)
3456 		return false;
3457 
3458 	/*
3459 	 * Flush all the completed transactions to disk before marking the log
3460 	 * being shut down. We need to do this first as shutting down the log
3461 	 * before the force will prevent the log force from flushing the iclogs
3462 	 * to disk.
3463 	 *
3464 	 * When we are in recovery, there are no transactions to flush, and
3465 	 * we don't want to touch the log because we don't want to perturb the
3466 	 * current head/tail for future recovery attempts. Hence we need to
3467 	 * avoid a log force in this case.
3468 	 *
3469 	 * If we are shutting down due to a log IO error, then we must avoid
3470 	 * trying to write the log as that may just result in more IO errors and
3471 	 * an endless shutdown/force loop.
3472 	 */
3473 	if (!log_error && !xlog_in_recovery(log))
3474 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3475 
3476 	/*
3477 	 * Atomically set the shutdown state. If the shutdown state is already
3478 	 * set, there someone else is performing the shutdown and so we are done
3479 	 * here. This should never happen because we should only ever get called
3480 	 * once by the first shutdown caller.
3481 	 *
3482 	 * Much of the log state machine transitions assume that shutdown state
3483 	 * cannot change once they hold the log->l_icloglock. Hence we need to
3484 	 * hold that lock here, even though we use the atomic test_and_set_bit()
3485 	 * operation to set the shutdown state.
3486 	 */
3487 	spin_lock(&log->l_icloglock);
3488 	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3489 		spin_unlock(&log->l_icloglock);
3490 		return false;
3491 	}
3492 	spin_unlock(&log->l_icloglock);
3493 
3494 	/*
3495 	 * If this log shutdown also sets the mount shutdown state, issue a
3496 	 * shutdown warning message.
3497 	 */
3498 	if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) {
3499 		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3500 "Filesystem has been shut down due to log error (0x%x).",
3501 				shutdown_flags);
3502 		xfs_alert(log->l_mp,
3503 "Please unmount the filesystem and rectify the problem(s).");
3504 		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3505 			xfs_stack_trace();
3506 	}
3507 
3508 	/*
3509 	 * We don't want anybody waiting for log reservations after this. That
3510 	 * means we have to wake up everybody queued up on reserveq as well as
3511 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3512 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3513 	 * action is protected by the grant locks.
3514 	 */
3515 	xlog_grant_head_wake_all(&log->l_reserve_head);
3516 	xlog_grant_head_wake_all(&log->l_write_head);
3517 
3518 	/*
3519 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3520 	 * as if the log writes were completed. The abort handling in the log
3521 	 * item committed callback functions will do this again under lock to
3522 	 * avoid races.
3523 	 */
3524 	spin_lock(&log->l_cilp->xc_push_lock);
3525 	wake_up_all(&log->l_cilp->xc_start_wait);
3526 	wake_up_all(&log->l_cilp->xc_commit_wait);
3527 	spin_unlock(&log->l_cilp->xc_push_lock);
3528 
3529 	spin_lock(&log->l_icloglock);
3530 	xlog_state_shutdown_callbacks(log);
3531 	spin_unlock(&log->l_icloglock);
3532 
3533 	wake_up_var(&log->l_opstate);
3534 	return log_error;
3535 }
3536 
3537 STATIC int
3538 xlog_iclogs_empty(
3539 	struct xlog	*log)
3540 {
3541 	xlog_in_core_t	*iclog;
3542 
3543 	iclog = log->l_iclog;
3544 	do {
3545 		/* endianness does not matter here, zero is zero in
3546 		 * any language.
3547 		 */
3548 		if (iclog->ic_header.h_num_logops)
3549 			return 0;
3550 		iclog = iclog->ic_next;
3551 	} while (iclog != log->l_iclog);
3552 	return 1;
3553 }
3554 
3555 /*
3556  * Verify that an LSN stamped into a piece of metadata is valid. This is
3557  * intended for use in read verifiers on v5 superblocks.
3558  */
3559 bool
3560 xfs_log_check_lsn(
3561 	struct xfs_mount	*mp,
3562 	xfs_lsn_t		lsn)
3563 {
3564 	struct xlog		*log = mp->m_log;
3565 	bool			valid;
3566 
3567 	/*
3568 	 * norecovery mode skips mount-time log processing and unconditionally
3569 	 * resets the in-core LSN. We can't validate in this mode, but
3570 	 * modifications are not allowed anyways so just return true.
3571 	 */
3572 	if (xfs_has_norecovery(mp))
3573 		return true;
3574 
3575 	/*
3576 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3577 	 * handled by recovery and thus safe to ignore here.
3578 	 */
3579 	if (lsn == NULLCOMMITLSN)
3580 		return true;
3581 
3582 	valid = xlog_valid_lsn(mp->m_log, lsn);
3583 
3584 	/* warn the user about what's gone wrong before verifier failure */
3585 	if (!valid) {
3586 		spin_lock(&log->l_icloglock);
3587 		xfs_warn(mp,
3588 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3589 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3590 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3591 			 log->l_curr_cycle, log->l_curr_block);
3592 		spin_unlock(&log->l_icloglock);
3593 	}
3594 
3595 	return valid;
3596 }
3597