1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_errortag.h" 14 #include "xfs_error.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_log.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trace.h" 20 #include "xfs_sysfs.h" 21 #include "xfs_sb.h" 22 #include "xfs_health.h" 23 24 struct kmem_cache *xfs_log_ticket_cache; 25 26 /* Local miscellaneous function prototypes */ 27 STATIC struct xlog * 28 xlog_alloc_log( 29 struct xfs_mount *mp, 30 struct xfs_buftarg *log_target, 31 xfs_daddr_t blk_offset, 32 int num_bblks); 33 STATIC void 34 xlog_dealloc_log( 35 struct xlog *log); 36 37 /* local state machine functions */ 38 STATIC void xlog_state_done_syncing( 39 struct xlog_in_core *iclog); 40 STATIC void xlog_state_do_callback( 41 struct xlog *log); 42 STATIC int 43 xlog_state_get_iclog_space( 44 struct xlog *log, 45 int len, 46 struct xlog_in_core **iclog, 47 struct xlog_ticket *ticket, 48 int *logoffsetp); 49 STATIC void 50 xlog_sync( 51 struct xlog *log, 52 struct xlog_in_core *iclog, 53 struct xlog_ticket *ticket); 54 #if defined(DEBUG) 55 STATIC void 56 xlog_verify_iclog( 57 struct xlog *log, 58 struct xlog_in_core *iclog, 59 int count); 60 STATIC void 61 xlog_verify_tail_lsn( 62 struct xlog *log, 63 struct xlog_in_core *iclog); 64 #else 65 #define xlog_verify_iclog(a,b,c) 66 #define xlog_verify_tail_lsn(a,b) 67 #endif 68 69 STATIC int 70 xlog_iclogs_empty( 71 struct xlog *log); 72 73 static int 74 xfs_log_cover(struct xfs_mount *); 75 76 /* 77 * We need to make sure the buffer pointer returned is naturally aligned for the 78 * biggest basic data type we put into it. We have already accounted for this 79 * padding when sizing the buffer. 80 * 81 * However, this padding does not get written into the log, and hence we have to 82 * track the space used by the log vectors separately to prevent log space hangs 83 * due to inaccurate accounting (i.e. a leak) of the used log space through the 84 * CIL context ticket. 85 * 86 * We also add space for the xlog_op_header that describes this region in the 87 * log. This prepends the data region we return to the caller to copy their data 88 * into, so do all the static initialisation of the ophdr now. Because the ophdr 89 * is not 8 byte aligned, we have to be careful to ensure that we align the 90 * start of the buffer such that the region we return to the call is 8 byte 91 * aligned and packed against the tail of the ophdr. 92 */ 93 void * 94 xlog_prepare_iovec( 95 struct xfs_log_vec *lv, 96 struct xfs_log_iovec **vecp, 97 uint type) 98 { 99 struct xfs_log_iovec *vec = *vecp; 100 struct xlog_op_header *oph; 101 uint32_t len; 102 void *buf; 103 104 if (vec) { 105 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs); 106 vec++; 107 } else { 108 vec = &lv->lv_iovecp[0]; 109 } 110 111 len = lv->lv_buf_len + sizeof(struct xlog_op_header); 112 if (!IS_ALIGNED(len, sizeof(uint64_t))) { 113 lv->lv_buf_len = round_up(len, sizeof(uint64_t)) - 114 sizeof(struct xlog_op_header); 115 } 116 117 vec->i_type = type; 118 vec->i_addr = lv->lv_buf + lv->lv_buf_len; 119 120 oph = vec->i_addr; 121 oph->oh_clientid = XFS_TRANSACTION; 122 oph->oh_res2 = 0; 123 oph->oh_flags = 0; 124 125 buf = vec->i_addr + sizeof(struct xlog_op_header); 126 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t))); 127 128 *vecp = vec; 129 return buf; 130 } 131 132 static inline void 133 xlog_grant_sub_space( 134 struct xlog_grant_head *head, 135 int64_t bytes) 136 { 137 atomic64_sub(bytes, &head->grant); 138 } 139 140 static inline void 141 xlog_grant_add_space( 142 struct xlog_grant_head *head, 143 int64_t bytes) 144 { 145 atomic64_add(bytes, &head->grant); 146 } 147 148 static void 149 xlog_grant_head_init( 150 struct xlog_grant_head *head) 151 { 152 atomic64_set(&head->grant, 0); 153 INIT_LIST_HEAD(&head->waiters); 154 spin_lock_init(&head->lock); 155 } 156 157 void 158 xlog_grant_return_space( 159 struct xlog *log, 160 xfs_lsn_t old_head, 161 xfs_lsn_t new_head) 162 { 163 int64_t diff = xlog_lsn_sub(log, new_head, old_head); 164 165 xlog_grant_sub_space(&log->l_reserve_head, diff); 166 xlog_grant_sub_space(&log->l_write_head, diff); 167 } 168 169 /* 170 * Return the space in the log between the tail and the head. In the case where 171 * we have overrun available reservation space, return 0. The memory barrier 172 * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head 173 * vs tail space updates are seen in the correct order and hence avoid 174 * transients as space is transferred from the grant heads to the AIL on commit 175 * completion. 176 */ 177 static uint64_t 178 xlog_grant_space_left( 179 struct xlog *log, 180 struct xlog_grant_head *head) 181 { 182 int64_t free_bytes; 183 184 smp_rmb(); /* paired with smp_wmb in xlog_cil_ail_insert() */ 185 free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) - 186 atomic64_read(&head->grant); 187 if (free_bytes > 0) 188 return free_bytes; 189 return 0; 190 } 191 192 STATIC void 193 xlog_grant_head_wake_all( 194 struct xlog_grant_head *head) 195 { 196 struct xlog_ticket *tic; 197 198 spin_lock(&head->lock); 199 list_for_each_entry(tic, &head->waiters, t_queue) 200 wake_up_process(tic->t_task); 201 spin_unlock(&head->lock); 202 } 203 204 static inline int 205 xlog_ticket_reservation( 206 struct xlog *log, 207 struct xlog_grant_head *head, 208 struct xlog_ticket *tic) 209 { 210 if (head == &log->l_write_head) { 211 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 212 return tic->t_unit_res; 213 } 214 215 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 216 return tic->t_unit_res * tic->t_cnt; 217 218 return tic->t_unit_res; 219 } 220 221 STATIC bool 222 xlog_grant_head_wake( 223 struct xlog *log, 224 struct xlog_grant_head *head, 225 int *free_bytes) 226 { 227 struct xlog_ticket *tic; 228 int need_bytes; 229 230 list_for_each_entry(tic, &head->waiters, t_queue) { 231 need_bytes = xlog_ticket_reservation(log, head, tic); 232 if (*free_bytes < need_bytes) 233 return false; 234 235 *free_bytes -= need_bytes; 236 trace_xfs_log_grant_wake_up(log, tic); 237 wake_up_process(tic->t_task); 238 } 239 240 return true; 241 } 242 243 STATIC int 244 xlog_grant_head_wait( 245 struct xlog *log, 246 struct xlog_grant_head *head, 247 struct xlog_ticket *tic, 248 int need_bytes) __releases(&head->lock) 249 __acquires(&head->lock) 250 { 251 list_add_tail(&tic->t_queue, &head->waiters); 252 253 do { 254 if (xlog_is_shutdown(log)) 255 goto shutdown; 256 257 __set_current_state(TASK_UNINTERRUPTIBLE); 258 spin_unlock(&head->lock); 259 260 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 261 262 /* Push on the AIL to free up all the log space. */ 263 xfs_ail_push_all(log->l_ailp); 264 265 trace_xfs_log_grant_sleep(log, tic); 266 schedule(); 267 trace_xfs_log_grant_wake(log, tic); 268 269 spin_lock(&head->lock); 270 if (xlog_is_shutdown(log)) 271 goto shutdown; 272 } while (xlog_grant_space_left(log, head) < need_bytes); 273 274 list_del_init(&tic->t_queue); 275 return 0; 276 shutdown: 277 list_del_init(&tic->t_queue); 278 return -EIO; 279 } 280 281 /* 282 * Atomically get the log space required for a log ticket. 283 * 284 * Once a ticket gets put onto head->waiters, it will only return after the 285 * needed reservation is satisfied. 286 * 287 * This function is structured so that it has a lock free fast path. This is 288 * necessary because every new transaction reservation will come through this 289 * path. Hence any lock will be globally hot if we take it unconditionally on 290 * every pass. 291 * 292 * As tickets are only ever moved on and off head->waiters under head->lock, we 293 * only need to take that lock if we are going to add the ticket to the queue 294 * and sleep. We can avoid taking the lock if the ticket was never added to 295 * head->waiters because the t_queue list head will be empty and we hold the 296 * only reference to it so it can safely be checked unlocked. 297 */ 298 STATIC int 299 xlog_grant_head_check( 300 struct xlog *log, 301 struct xlog_grant_head *head, 302 struct xlog_ticket *tic, 303 int *need_bytes) 304 { 305 int free_bytes; 306 int error = 0; 307 308 ASSERT(!xlog_in_recovery(log)); 309 310 /* 311 * If there are other waiters on the queue then give them a chance at 312 * logspace before us. Wake up the first waiters, if we do not wake 313 * up all the waiters then go to sleep waiting for more free space, 314 * otherwise try to get some space for this transaction. 315 */ 316 *need_bytes = xlog_ticket_reservation(log, head, tic); 317 free_bytes = xlog_grant_space_left(log, head); 318 if (!list_empty_careful(&head->waiters)) { 319 spin_lock(&head->lock); 320 if (!xlog_grant_head_wake(log, head, &free_bytes) || 321 free_bytes < *need_bytes) { 322 error = xlog_grant_head_wait(log, head, tic, 323 *need_bytes); 324 } 325 spin_unlock(&head->lock); 326 } else if (free_bytes < *need_bytes) { 327 spin_lock(&head->lock); 328 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 329 spin_unlock(&head->lock); 330 } 331 332 return error; 333 } 334 335 bool 336 xfs_log_writable( 337 struct xfs_mount *mp) 338 { 339 /* 340 * Do not write to the log on norecovery mounts, if the data or log 341 * devices are read-only, or if the filesystem is shutdown. Read-only 342 * mounts allow internal writes for log recovery and unmount purposes, 343 * so don't restrict that case. 344 */ 345 if (xfs_has_norecovery(mp)) 346 return false; 347 if (xfs_readonly_buftarg(mp->m_ddev_targp)) 348 return false; 349 if (xfs_readonly_buftarg(mp->m_log->l_targ)) 350 return false; 351 if (xlog_is_shutdown(mp->m_log)) 352 return false; 353 return true; 354 } 355 356 /* 357 * Replenish the byte reservation required by moving the grant write head. 358 */ 359 int 360 xfs_log_regrant( 361 struct xfs_mount *mp, 362 struct xlog_ticket *tic) 363 { 364 struct xlog *log = mp->m_log; 365 int need_bytes; 366 int error = 0; 367 368 if (xlog_is_shutdown(log)) 369 return -EIO; 370 371 XFS_STATS_INC(mp, xs_try_logspace); 372 373 /* 374 * This is a new transaction on the ticket, so we need to change the 375 * transaction ID so that the next transaction has a different TID in 376 * the log. Just add one to the existing tid so that we can see chains 377 * of rolling transactions in the log easily. 378 */ 379 tic->t_tid++; 380 tic->t_curr_res = tic->t_unit_res; 381 if (tic->t_cnt > 0) 382 return 0; 383 384 trace_xfs_log_regrant(log, tic); 385 386 error = xlog_grant_head_check(log, &log->l_write_head, tic, 387 &need_bytes); 388 if (error) 389 goto out_error; 390 391 xlog_grant_add_space(&log->l_write_head, need_bytes); 392 trace_xfs_log_regrant_exit(log, tic); 393 return 0; 394 395 out_error: 396 /* 397 * If we are failing, make sure the ticket doesn't have any current 398 * reservations. We don't want to add this back when the ticket/ 399 * transaction gets cancelled. 400 */ 401 tic->t_curr_res = 0; 402 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 403 return error; 404 } 405 406 /* 407 * Reserve log space and return a ticket corresponding to the reservation. 408 * 409 * Each reservation is going to reserve extra space for a log record header. 410 * When writes happen to the on-disk log, we don't subtract the length of the 411 * log record header from any reservation. By wasting space in each 412 * reservation, we prevent over allocation problems. 413 */ 414 int 415 xfs_log_reserve( 416 struct xfs_mount *mp, 417 int unit_bytes, 418 int cnt, 419 struct xlog_ticket **ticp, 420 bool permanent) 421 { 422 struct xlog *log = mp->m_log; 423 struct xlog_ticket *tic; 424 int need_bytes; 425 int error = 0; 426 427 if (xlog_is_shutdown(log)) 428 return -EIO; 429 430 XFS_STATS_INC(mp, xs_try_logspace); 431 432 ASSERT(*ticp == NULL); 433 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent); 434 *ticp = tic; 435 trace_xfs_log_reserve(log, tic); 436 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 437 &need_bytes); 438 if (error) 439 goto out_error; 440 441 xlog_grant_add_space(&log->l_reserve_head, need_bytes); 442 xlog_grant_add_space(&log->l_write_head, need_bytes); 443 trace_xfs_log_reserve_exit(log, tic); 444 return 0; 445 446 out_error: 447 /* 448 * If we are failing, make sure the ticket doesn't have any current 449 * reservations. We don't want to add this back when the ticket/ 450 * transaction gets cancelled. 451 */ 452 tic->t_curr_res = 0; 453 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 454 return error; 455 } 456 457 /* 458 * Run all the pending iclog callbacks and wake log force waiters and iclog 459 * space waiters so they can process the newly set shutdown state. We really 460 * don't care what order we process callbacks here because the log is shut down 461 * and so state cannot change on disk anymore. However, we cannot wake waiters 462 * until the callbacks have been processed because we may be in unmount and 463 * we must ensure that all AIL operations the callbacks perform have completed 464 * before we tear down the AIL. 465 * 466 * We avoid processing actively referenced iclogs so that we don't run callbacks 467 * while the iclog owner might still be preparing the iclog for IO submssion. 468 * These will be caught by xlog_state_iclog_release() and call this function 469 * again to process any callbacks that may have been added to that iclog. 470 */ 471 static void 472 xlog_state_shutdown_callbacks( 473 struct xlog *log) 474 { 475 struct xlog_in_core *iclog; 476 LIST_HEAD(cb_list); 477 478 iclog = log->l_iclog; 479 do { 480 if (atomic_read(&iclog->ic_refcnt)) { 481 /* Reference holder will re-run iclog callbacks. */ 482 continue; 483 } 484 list_splice_init(&iclog->ic_callbacks, &cb_list); 485 spin_unlock(&log->l_icloglock); 486 487 xlog_cil_process_committed(&cb_list); 488 489 spin_lock(&log->l_icloglock); 490 wake_up_all(&iclog->ic_write_wait); 491 wake_up_all(&iclog->ic_force_wait); 492 } while ((iclog = iclog->ic_next) != log->l_iclog); 493 494 wake_up_all(&log->l_flush_wait); 495 } 496 497 /* 498 * Flush iclog to disk if this is the last reference to the given iclog and the 499 * it is in the WANT_SYNC state. 500 * 501 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the 502 * log tail is updated correctly. NEED_FUA indicates that the iclog will be 503 * written to stable storage, and implies that a commit record is contained 504 * within the iclog. We need to ensure that the log tail does not move beyond 505 * the tail that the first commit record in the iclog ordered against, otherwise 506 * correct recovery of that checkpoint becomes dependent on future operations 507 * performed on this iclog. 508 * 509 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the 510 * current tail into iclog. Once the iclog tail is set, future operations must 511 * not modify it, otherwise they potentially violate ordering constraints for 512 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in 513 * the iclog will get zeroed on activation of the iclog after sync, so we 514 * always capture the tail lsn on the iclog on the first NEED_FUA release 515 * regardless of the number of active reference counts on this iclog. 516 */ 517 int 518 xlog_state_release_iclog( 519 struct xlog *log, 520 struct xlog_in_core *iclog, 521 struct xlog_ticket *ticket) 522 { 523 bool last_ref; 524 525 lockdep_assert_held(&log->l_icloglock); 526 527 trace_xlog_iclog_release(iclog, _RET_IP_); 528 /* 529 * Grabbing the current log tail needs to be atomic w.r.t. the writing 530 * of the tail LSN into the iclog so we guarantee that the log tail does 531 * not move between the first time we know that the iclog needs to be 532 * made stable and when we eventually submit it. 533 */ 534 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC || 535 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) && 536 !iclog->ic_header.h_tail_lsn) { 537 iclog->ic_header.h_tail_lsn = 538 cpu_to_be64(atomic64_read(&log->l_tail_lsn)); 539 } 540 541 last_ref = atomic_dec_and_test(&iclog->ic_refcnt); 542 543 if (xlog_is_shutdown(log)) { 544 /* 545 * If there are no more references to this iclog, process the 546 * pending iclog callbacks that were waiting on the release of 547 * this iclog. 548 */ 549 if (last_ref) 550 xlog_state_shutdown_callbacks(log); 551 return -EIO; 552 } 553 554 if (!last_ref) 555 return 0; 556 557 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) { 558 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 559 return 0; 560 } 561 562 iclog->ic_state = XLOG_STATE_SYNCING; 563 xlog_verify_tail_lsn(log, iclog); 564 trace_xlog_iclog_syncing(iclog, _RET_IP_); 565 566 spin_unlock(&log->l_icloglock); 567 xlog_sync(log, iclog, ticket); 568 spin_lock(&log->l_icloglock); 569 return 0; 570 } 571 572 /* 573 * Mount a log filesystem 574 * 575 * mp - ubiquitous xfs mount point structure 576 * log_target - buftarg of on-disk log device 577 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 578 * num_bblocks - Number of BBSIZE blocks in on-disk log 579 * 580 * Return error or zero. 581 */ 582 int 583 xfs_log_mount( 584 xfs_mount_t *mp, 585 struct xfs_buftarg *log_target, 586 xfs_daddr_t blk_offset, 587 int num_bblks) 588 { 589 struct xlog *log; 590 int error = 0; 591 int min_logfsbs; 592 593 if (!xfs_has_norecovery(mp)) { 594 xfs_notice(mp, "Mounting V%d Filesystem %pU", 595 XFS_SB_VERSION_NUM(&mp->m_sb), 596 &mp->m_sb.sb_uuid); 597 } else { 598 xfs_notice(mp, 599 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.", 600 XFS_SB_VERSION_NUM(&mp->m_sb), 601 &mp->m_sb.sb_uuid); 602 ASSERT(xfs_is_readonly(mp)); 603 } 604 605 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 606 if (IS_ERR(log)) { 607 error = PTR_ERR(log); 608 goto out; 609 } 610 mp->m_log = log; 611 612 /* 613 * Now that we have set up the log and it's internal geometry 614 * parameters, we can validate the given log space and drop a critical 615 * message via syslog if the log size is too small. A log that is too 616 * small can lead to unexpected situations in transaction log space 617 * reservation stage. The superblock verifier has already validated all 618 * the other log geometry constraints, so we don't have to check those 619 * here. 620 * 621 * Note: For v4 filesystems, we can't just reject the mount if the 622 * validation fails. This would mean that people would have to 623 * downgrade their kernel just to remedy the situation as there is no 624 * way to grow the log (short of black magic surgery with xfs_db). 625 * 626 * We can, however, reject mounts for V5 format filesystems, as the 627 * mkfs binary being used to make the filesystem should never create a 628 * filesystem with a log that is too small. 629 */ 630 min_logfsbs = xfs_log_calc_minimum_size(mp); 631 if (mp->m_sb.sb_logblocks < min_logfsbs) { 632 xfs_warn(mp, 633 "Log size %d blocks too small, minimum size is %d blocks", 634 mp->m_sb.sb_logblocks, min_logfsbs); 635 636 /* 637 * Log check errors are always fatal on v5; or whenever bad 638 * metadata leads to a crash. 639 */ 640 if (xfs_has_crc(mp)) { 641 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 642 ASSERT(0); 643 error = -EINVAL; 644 goto out_free_log; 645 } 646 xfs_crit(mp, "Log size out of supported range."); 647 xfs_crit(mp, 648 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 649 } 650 651 /* 652 * Initialize the AIL now we have a log. 653 */ 654 error = xfs_trans_ail_init(mp); 655 if (error) { 656 xfs_warn(mp, "AIL initialisation failed: error %d", error); 657 goto out_free_log; 658 } 659 log->l_ailp = mp->m_ail; 660 661 /* 662 * skip log recovery on a norecovery mount. pretend it all 663 * just worked. 664 */ 665 if (!xfs_has_norecovery(mp)) { 666 error = xlog_recover(log); 667 if (error) { 668 xfs_warn(mp, "log mount/recovery failed: error %d", 669 error); 670 xlog_recover_cancel(log); 671 goto out_destroy_ail; 672 } 673 } 674 675 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 676 "log"); 677 if (error) 678 goto out_destroy_ail; 679 680 /* Normal transactions can now occur */ 681 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 682 683 /* 684 * Now the log has been fully initialised and we know were our 685 * space grant counters are, we can initialise the permanent ticket 686 * needed for delayed logging to work. 687 */ 688 xlog_cil_init_post_recovery(log); 689 690 return 0; 691 692 out_destroy_ail: 693 xfs_trans_ail_destroy(mp); 694 out_free_log: 695 xlog_dealloc_log(log); 696 out: 697 return error; 698 } 699 700 /* 701 * Finish the recovery of the file system. This is separate from the 702 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 703 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 704 * here. 705 * 706 * If we finish recovery successfully, start the background log work. If we are 707 * not doing recovery, then we have a RO filesystem and we don't need to start 708 * it. 709 */ 710 int 711 xfs_log_mount_finish( 712 struct xfs_mount *mp) 713 { 714 struct xlog *log = mp->m_log; 715 int error = 0; 716 717 if (xfs_has_norecovery(mp)) { 718 ASSERT(xfs_is_readonly(mp)); 719 return 0; 720 } 721 722 /* 723 * During the second phase of log recovery, we need iget and 724 * iput to behave like they do for an active filesystem. 725 * xfs_fs_drop_inode needs to be able to prevent the deletion 726 * of inodes before we're done replaying log items on those 727 * inodes. Turn it off immediately after recovery finishes 728 * so that we don't leak the quota inodes if subsequent mount 729 * activities fail. 730 * 731 * We let all inodes involved in redo item processing end up on 732 * the LRU instead of being evicted immediately so that if we do 733 * something to an unlinked inode, the irele won't cause 734 * premature truncation and freeing of the inode, which results 735 * in log recovery failure. We have to evict the unreferenced 736 * lru inodes after clearing SB_ACTIVE because we don't 737 * otherwise clean up the lru if there's a subsequent failure in 738 * xfs_mountfs, which leads to us leaking the inodes if nothing 739 * else (e.g. quotacheck) references the inodes before the 740 * mount failure occurs. 741 */ 742 mp->m_super->s_flags |= SB_ACTIVE; 743 xfs_log_work_queue(mp); 744 if (xlog_recovery_needed(log)) 745 error = xlog_recover_finish(log); 746 mp->m_super->s_flags &= ~SB_ACTIVE; 747 evict_inodes(mp->m_super); 748 749 /* 750 * Drain the buffer LRU after log recovery. This is required for v4 751 * filesystems to avoid leaving around buffers with NULL verifier ops, 752 * but we do it unconditionally to make sure we're always in a clean 753 * cache state after mount. 754 * 755 * Don't push in the error case because the AIL may have pending intents 756 * that aren't removed until recovery is cancelled. 757 */ 758 if (xlog_recovery_needed(log)) { 759 if (!error) { 760 xfs_log_force(mp, XFS_LOG_SYNC); 761 xfs_ail_push_all_sync(mp->m_ail); 762 } 763 xfs_notice(mp, "Ending recovery (logdev: %s)", 764 mp->m_logname ? mp->m_logname : "internal"); 765 } else { 766 xfs_info(mp, "Ending clean mount"); 767 } 768 xfs_buftarg_drain(mp->m_ddev_targp); 769 770 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 771 772 /* Make sure the log is dead if we're returning failure. */ 773 ASSERT(!error || xlog_is_shutdown(log)); 774 775 return error; 776 } 777 778 /* 779 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 780 * the log. 781 */ 782 void 783 xfs_log_mount_cancel( 784 struct xfs_mount *mp) 785 { 786 xlog_recover_cancel(mp->m_log); 787 xfs_log_unmount(mp); 788 } 789 790 /* 791 * Flush out the iclog to disk ensuring that device caches are flushed and 792 * the iclog hits stable storage before any completion waiters are woken. 793 */ 794 static inline int 795 xlog_force_iclog( 796 struct xlog_in_core *iclog) 797 { 798 atomic_inc(&iclog->ic_refcnt); 799 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 800 if (iclog->ic_state == XLOG_STATE_ACTIVE) 801 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0); 802 return xlog_state_release_iclog(iclog->ic_log, iclog, NULL); 803 } 804 805 /* 806 * Cycle all the iclogbuf locks to make sure all log IO completion 807 * is done before we tear down these buffers. 808 */ 809 static void 810 xlog_wait_iclog_completion(struct xlog *log) 811 { 812 int i; 813 struct xlog_in_core *iclog = log->l_iclog; 814 815 for (i = 0; i < log->l_iclog_bufs; i++) { 816 down(&iclog->ic_sema); 817 up(&iclog->ic_sema); 818 iclog = iclog->ic_next; 819 } 820 } 821 822 /* 823 * Wait for the iclog and all prior iclogs to be written disk as required by the 824 * log force state machine. Waiting on ic_force_wait ensures iclog completions 825 * have been ordered and callbacks run before we are woken here, hence 826 * guaranteeing that all the iclogs up to this one are on stable storage. 827 */ 828 int 829 xlog_wait_on_iclog( 830 struct xlog_in_core *iclog) 831 __releases(iclog->ic_log->l_icloglock) 832 { 833 struct xlog *log = iclog->ic_log; 834 835 trace_xlog_iclog_wait_on(iclog, _RET_IP_); 836 if (!xlog_is_shutdown(log) && 837 iclog->ic_state != XLOG_STATE_ACTIVE && 838 iclog->ic_state != XLOG_STATE_DIRTY) { 839 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 840 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 841 } else { 842 spin_unlock(&log->l_icloglock); 843 } 844 845 if (xlog_is_shutdown(log)) 846 return -EIO; 847 return 0; 848 } 849 850 /* 851 * Write out an unmount record using the ticket provided. We have to account for 852 * the data space used in the unmount ticket as this write is not done from a 853 * transaction context that has already done the accounting for us. 854 */ 855 static int 856 xlog_write_unmount_record( 857 struct xlog *log, 858 struct xlog_ticket *ticket) 859 { 860 struct { 861 struct xlog_op_header ophdr; 862 struct xfs_unmount_log_format ulf; 863 } unmount_rec = { 864 .ophdr = { 865 .oh_clientid = XFS_LOG, 866 .oh_tid = cpu_to_be32(ticket->t_tid), 867 .oh_flags = XLOG_UNMOUNT_TRANS, 868 }, 869 .ulf = { 870 .magic = XLOG_UNMOUNT_TYPE, 871 }, 872 }; 873 struct xfs_log_iovec reg = { 874 .i_addr = &unmount_rec, 875 .i_len = sizeof(unmount_rec), 876 .i_type = XLOG_REG_TYPE_UNMOUNT, 877 }; 878 struct xfs_log_vec vec = { 879 .lv_niovecs = 1, 880 .lv_iovecp = ®, 881 }; 882 LIST_HEAD(lv_chain); 883 list_add(&vec.lv_list, &lv_chain); 884 885 BUILD_BUG_ON((sizeof(struct xlog_op_header) + 886 sizeof(struct xfs_unmount_log_format)) != 887 sizeof(unmount_rec)); 888 889 /* account for space used by record data */ 890 ticket->t_curr_res -= sizeof(unmount_rec); 891 892 return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len); 893 } 894 895 /* 896 * Mark the filesystem clean by writing an unmount record to the head of the 897 * log. 898 */ 899 static void 900 xlog_unmount_write( 901 struct xlog *log) 902 { 903 struct xfs_mount *mp = log->l_mp; 904 struct xlog_in_core *iclog; 905 struct xlog_ticket *tic = NULL; 906 int error; 907 908 error = xfs_log_reserve(mp, 600, 1, &tic, 0); 909 if (error) 910 goto out_err; 911 912 error = xlog_write_unmount_record(log, tic); 913 /* 914 * At this point, we're umounting anyway, so there's no point in 915 * transitioning log state to shutdown. Just continue... 916 */ 917 out_err: 918 if (error) 919 xfs_alert(mp, "%s: unmount record failed", __func__); 920 921 spin_lock(&log->l_icloglock); 922 iclog = log->l_iclog; 923 error = xlog_force_iclog(iclog); 924 xlog_wait_on_iclog(iclog); 925 926 if (tic) { 927 trace_xfs_log_umount_write(log, tic); 928 xfs_log_ticket_ungrant(log, tic); 929 } 930 } 931 932 static void 933 xfs_log_unmount_verify_iclog( 934 struct xlog *log) 935 { 936 struct xlog_in_core *iclog = log->l_iclog; 937 938 do { 939 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 940 ASSERT(iclog->ic_offset == 0); 941 } while ((iclog = iclog->ic_next) != log->l_iclog); 942 } 943 944 /* 945 * Unmount record used to have a string "Unmount filesystem--" in the 946 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 947 * We just write the magic number now since that particular field isn't 948 * currently architecture converted and "Unmount" is a bit foo. 949 * As far as I know, there weren't any dependencies on the old behaviour. 950 */ 951 static void 952 xfs_log_unmount_write( 953 struct xfs_mount *mp) 954 { 955 struct xlog *log = mp->m_log; 956 957 if (!xfs_log_writable(mp)) 958 return; 959 960 xfs_log_force(mp, XFS_LOG_SYNC); 961 962 if (xlog_is_shutdown(log)) 963 return; 964 965 /* 966 * If we think the summary counters are bad, avoid writing the unmount 967 * record to force log recovery at next mount, after which the summary 968 * counters will be recalculated. Refer to xlog_check_unmount_rec for 969 * more details. 970 */ 971 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp, 972 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 973 xfs_alert(mp, "%s: will fix summary counters at next mount", 974 __func__); 975 return; 976 } 977 978 xfs_log_unmount_verify_iclog(log); 979 xlog_unmount_write(log); 980 } 981 982 /* 983 * Empty the log for unmount/freeze. 984 * 985 * To do this, we first need to shut down the background log work so it is not 986 * trying to cover the log as we clean up. We then need to unpin all objects in 987 * the log so we can then flush them out. Once they have completed their IO and 988 * run the callbacks removing themselves from the AIL, we can cover the log. 989 */ 990 int 991 xfs_log_quiesce( 992 struct xfs_mount *mp) 993 { 994 /* 995 * Clear log incompat features since we're quiescing the log. Report 996 * failures, though it's not fatal to have a higher log feature 997 * protection level than the log contents actually require. 998 */ 999 if (xfs_clear_incompat_log_features(mp)) { 1000 int error; 1001 1002 error = xfs_sync_sb(mp, false); 1003 if (error) 1004 xfs_warn(mp, 1005 "Failed to clear log incompat features on quiesce"); 1006 } 1007 1008 cancel_delayed_work_sync(&mp->m_log->l_work); 1009 xfs_log_force(mp, XFS_LOG_SYNC); 1010 1011 /* 1012 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 1013 * will push it, xfs_buftarg_wait() will not wait for it. Further, 1014 * xfs_buf_iowait() cannot be used because it was pushed with the 1015 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 1016 * the IO to complete. 1017 */ 1018 xfs_ail_push_all_sync(mp->m_ail); 1019 xfs_buftarg_wait(mp->m_ddev_targp); 1020 xfs_buf_lock(mp->m_sb_bp); 1021 xfs_buf_unlock(mp->m_sb_bp); 1022 1023 return xfs_log_cover(mp); 1024 } 1025 1026 void 1027 xfs_log_clean( 1028 struct xfs_mount *mp) 1029 { 1030 xfs_log_quiesce(mp); 1031 xfs_log_unmount_write(mp); 1032 } 1033 1034 /* 1035 * Shut down and release the AIL and Log. 1036 * 1037 * During unmount, we need to ensure we flush all the dirty metadata objects 1038 * from the AIL so that the log is empty before we write the unmount record to 1039 * the log. Once this is done, we can tear down the AIL and the log. 1040 */ 1041 void 1042 xfs_log_unmount( 1043 struct xfs_mount *mp) 1044 { 1045 xfs_log_clean(mp); 1046 1047 /* 1048 * If shutdown has come from iclog IO context, the log 1049 * cleaning will have been skipped and so we need to wait 1050 * for the iclog to complete shutdown processing before we 1051 * tear anything down. 1052 */ 1053 xlog_wait_iclog_completion(mp->m_log); 1054 1055 xfs_buftarg_drain(mp->m_ddev_targp); 1056 1057 xfs_trans_ail_destroy(mp); 1058 1059 xfs_sysfs_del(&mp->m_log->l_kobj); 1060 1061 xlog_dealloc_log(mp->m_log); 1062 } 1063 1064 void 1065 xfs_log_item_init( 1066 struct xfs_mount *mp, 1067 struct xfs_log_item *item, 1068 int type, 1069 const struct xfs_item_ops *ops) 1070 { 1071 item->li_log = mp->m_log; 1072 item->li_ailp = mp->m_ail; 1073 item->li_type = type; 1074 item->li_ops = ops; 1075 item->li_lv = NULL; 1076 1077 INIT_LIST_HEAD(&item->li_ail); 1078 INIT_LIST_HEAD(&item->li_cil); 1079 INIT_LIST_HEAD(&item->li_bio_list); 1080 INIT_LIST_HEAD(&item->li_trans); 1081 } 1082 1083 /* 1084 * Wake up processes waiting for log space after we have moved the log tail. 1085 */ 1086 void 1087 xfs_log_space_wake( 1088 struct xfs_mount *mp) 1089 { 1090 struct xlog *log = mp->m_log; 1091 int free_bytes; 1092 1093 if (xlog_is_shutdown(log)) 1094 return; 1095 1096 if (!list_empty_careful(&log->l_write_head.waiters)) { 1097 ASSERT(!xlog_in_recovery(log)); 1098 1099 spin_lock(&log->l_write_head.lock); 1100 free_bytes = xlog_grant_space_left(log, &log->l_write_head); 1101 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1102 spin_unlock(&log->l_write_head.lock); 1103 } 1104 1105 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1106 ASSERT(!xlog_in_recovery(log)); 1107 1108 spin_lock(&log->l_reserve_head.lock); 1109 free_bytes = xlog_grant_space_left(log, &log->l_reserve_head); 1110 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1111 spin_unlock(&log->l_reserve_head.lock); 1112 } 1113 } 1114 1115 /* 1116 * Determine if we have a transaction that has gone to disk that needs to be 1117 * covered. To begin the transition to the idle state firstly the log needs to 1118 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1119 * we start attempting to cover the log. 1120 * 1121 * Only if we are then in a state where covering is needed, the caller is 1122 * informed that dummy transactions are required to move the log into the idle 1123 * state. 1124 * 1125 * If there are any items in the AIl or CIL, then we do not want to attempt to 1126 * cover the log as we may be in a situation where there isn't log space 1127 * available to run a dummy transaction and this can lead to deadlocks when the 1128 * tail of the log is pinned by an item that is modified in the CIL. Hence 1129 * there's no point in running a dummy transaction at this point because we 1130 * can't start trying to idle the log until both the CIL and AIL are empty. 1131 */ 1132 static bool 1133 xfs_log_need_covered( 1134 struct xfs_mount *mp) 1135 { 1136 struct xlog *log = mp->m_log; 1137 bool needed = false; 1138 1139 if (!xlog_cil_empty(log)) 1140 return false; 1141 1142 spin_lock(&log->l_icloglock); 1143 switch (log->l_covered_state) { 1144 case XLOG_STATE_COVER_DONE: 1145 case XLOG_STATE_COVER_DONE2: 1146 case XLOG_STATE_COVER_IDLE: 1147 break; 1148 case XLOG_STATE_COVER_NEED: 1149 case XLOG_STATE_COVER_NEED2: 1150 if (xfs_ail_min_lsn(log->l_ailp)) 1151 break; 1152 if (!xlog_iclogs_empty(log)) 1153 break; 1154 1155 needed = true; 1156 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1157 log->l_covered_state = XLOG_STATE_COVER_DONE; 1158 else 1159 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1160 break; 1161 default: 1162 needed = true; 1163 break; 1164 } 1165 spin_unlock(&log->l_icloglock); 1166 return needed; 1167 } 1168 1169 /* 1170 * Explicitly cover the log. This is similar to background log covering but 1171 * intended for usage in quiesce codepaths. The caller is responsible to ensure 1172 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL 1173 * must all be empty. 1174 */ 1175 static int 1176 xfs_log_cover( 1177 struct xfs_mount *mp) 1178 { 1179 int error = 0; 1180 bool need_covered; 1181 1182 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) && 1183 !xfs_ail_min_lsn(mp->m_log->l_ailp)) || 1184 xlog_is_shutdown(mp->m_log)); 1185 1186 if (!xfs_log_writable(mp)) 1187 return 0; 1188 1189 /* 1190 * xfs_log_need_covered() is not idempotent because it progresses the 1191 * state machine if the log requires covering. Therefore, we must call 1192 * this function once and use the result until we've issued an sb sync. 1193 * Do so first to make that abundantly clear. 1194 * 1195 * Fall into the covering sequence if the log needs covering or the 1196 * mount has lazy superblock accounting to sync to disk. The sb sync 1197 * used for covering accumulates the in-core counters, so covering 1198 * handles this for us. 1199 */ 1200 need_covered = xfs_log_need_covered(mp); 1201 if (!need_covered && !xfs_has_lazysbcount(mp)) 1202 return 0; 1203 1204 /* 1205 * To cover the log, commit the superblock twice (at most) in 1206 * independent checkpoints. The first serves as a reference for the 1207 * tail pointer. The sync transaction and AIL push empties the AIL and 1208 * updates the in-core tail to the LSN of the first checkpoint. The 1209 * second commit updates the on-disk tail with the in-core LSN, 1210 * covering the log. Push the AIL one more time to leave it empty, as 1211 * we found it. 1212 */ 1213 do { 1214 error = xfs_sync_sb(mp, true); 1215 if (error) 1216 break; 1217 xfs_ail_push_all_sync(mp->m_ail); 1218 } while (xfs_log_need_covered(mp)); 1219 1220 return error; 1221 } 1222 1223 static void 1224 xlog_ioend_work( 1225 struct work_struct *work) 1226 { 1227 struct xlog_in_core *iclog = 1228 container_of(work, struct xlog_in_core, ic_end_io_work); 1229 struct xlog *log = iclog->ic_log; 1230 int error; 1231 1232 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1233 #ifdef DEBUG 1234 /* treat writes with injected CRC errors as failed */ 1235 if (iclog->ic_fail_crc) 1236 error = -EIO; 1237 #endif 1238 1239 /* 1240 * Race to shutdown the filesystem if we see an error. 1241 */ 1242 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1243 xfs_alert(log->l_mp, "log I/O error %d", error); 1244 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1245 } 1246 1247 xlog_state_done_syncing(iclog); 1248 bio_uninit(&iclog->ic_bio); 1249 1250 /* 1251 * Drop the lock to signal that we are done. Nothing references the 1252 * iclog after this, so an unmount waiting on this lock can now tear it 1253 * down safely. As such, it is unsafe to reference the iclog after the 1254 * unlock as we could race with it being freed. 1255 */ 1256 up(&iclog->ic_sema); 1257 } 1258 1259 /* 1260 * Return size of each in-core log record buffer. 1261 * 1262 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1263 * 1264 * If the filesystem blocksize is too large, we may need to choose a 1265 * larger size since the directory code currently logs entire blocks. 1266 */ 1267 STATIC void 1268 xlog_get_iclog_buffer_size( 1269 struct xfs_mount *mp, 1270 struct xlog *log) 1271 { 1272 if (mp->m_logbufs <= 0) 1273 mp->m_logbufs = XLOG_MAX_ICLOGS; 1274 if (mp->m_logbsize <= 0) 1275 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1276 1277 log->l_iclog_bufs = mp->m_logbufs; 1278 log->l_iclog_size = mp->m_logbsize; 1279 1280 /* 1281 * # headers = size / 32k - one header holds cycles from 32k of data. 1282 */ 1283 log->l_iclog_heads = 1284 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE); 1285 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT; 1286 } 1287 1288 void 1289 xfs_log_work_queue( 1290 struct xfs_mount *mp) 1291 { 1292 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1293 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1294 } 1295 1296 /* 1297 * Clear the log incompat flags if we have the opportunity. 1298 * 1299 * This only happens if we're about to log the second dummy transaction as part 1300 * of covering the log. 1301 */ 1302 static inline void 1303 xlog_clear_incompat( 1304 struct xlog *log) 1305 { 1306 struct xfs_mount *mp = log->l_mp; 1307 1308 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb, 1309 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) 1310 return; 1311 1312 if (log->l_covered_state != XLOG_STATE_COVER_DONE2) 1313 return; 1314 1315 xfs_clear_incompat_log_features(mp); 1316 } 1317 1318 /* 1319 * Every sync period we need to unpin all items in the AIL and push them to 1320 * disk. If there is nothing dirty, then we might need to cover the log to 1321 * indicate that the filesystem is idle. 1322 */ 1323 static void 1324 xfs_log_worker( 1325 struct work_struct *work) 1326 { 1327 struct xlog *log = container_of(to_delayed_work(work), 1328 struct xlog, l_work); 1329 struct xfs_mount *mp = log->l_mp; 1330 1331 /* dgc: errors ignored - not fatal and nowhere to report them */ 1332 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) { 1333 /* 1334 * Dump a transaction into the log that contains no real change. 1335 * This is needed to stamp the current tail LSN into the log 1336 * during the covering operation. 1337 * 1338 * We cannot use an inode here for this - that will push dirty 1339 * state back up into the VFS and then periodic inode flushing 1340 * will prevent log covering from making progress. Hence we 1341 * synchronously log the superblock instead to ensure the 1342 * superblock is immediately unpinned and can be written back. 1343 */ 1344 xlog_clear_incompat(log); 1345 xfs_sync_sb(mp, true); 1346 } else 1347 xfs_log_force(mp, 0); 1348 1349 /* start pushing all the metadata that is currently dirty */ 1350 xfs_ail_push_all(mp->m_ail); 1351 1352 /* queue us up again */ 1353 xfs_log_work_queue(mp); 1354 } 1355 1356 /* 1357 * This routine initializes some of the log structure for a given mount point. 1358 * Its primary purpose is to fill in enough, so recovery can occur. However, 1359 * some other stuff may be filled in too. 1360 */ 1361 STATIC struct xlog * 1362 xlog_alloc_log( 1363 struct xfs_mount *mp, 1364 struct xfs_buftarg *log_target, 1365 xfs_daddr_t blk_offset, 1366 int num_bblks) 1367 { 1368 struct xlog *log; 1369 xlog_rec_header_t *head; 1370 xlog_in_core_t **iclogp; 1371 xlog_in_core_t *iclog, *prev_iclog=NULL; 1372 int i; 1373 int error = -ENOMEM; 1374 uint log2_size = 0; 1375 1376 log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1377 if (!log) { 1378 xfs_warn(mp, "Log allocation failed: No memory!"); 1379 goto out; 1380 } 1381 1382 log->l_mp = mp; 1383 log->l_targ = log_target; 1384 log->l_logsize = BBTOB(num_bblks); 1385 log->l_logBBstart = blk_offset; 1386 log->l_logBBsize = num_bblks; 1387 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1388 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 1389 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1390 INIT_LIST_HEAD(&log->r_dfops); 1391 1392 log->l_prev_block = -1; 1393 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1394 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1395 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1396 1397 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1) 1398 log->l_iclog_roundoff = mp->m_sb.sb_logsunit; 1399 else 1400 log->l_iclog_roundoff = BBSIZE; 1401 1402 xlog_grant_head_init(&log->l_reserve_head); 1403 xlog_grant_head_init(&log->l_write_head); 1404 1405 error = -EFSCORRUPTED; 1406 if (xfs_has_sector(mp)) { 1407 log2_size = mp->m_sb.sb_logsectlog; 1408 if (log2_size < BBSHIFT) { 1409 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1410 log2_size, BBSHIFT); 1411 goto out_free_log; 1412 } 1413 1414 log2_size -= BBSHIFT; 1415 if (log2_size > mp->m_sectbb_log) { 1416 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1417 log2_size, mp->m_sectbb_log); 1418 goto out_free_log; 1419 } 1420 1421 /* for larger sector sizes, must have v2 or external log */ 1422 if (log2_size && log->l_logBBstart > 0 && 1423 !xfs_has_logv2(mp)) { 1424 xfs_warn(mp, 1425 "log sector size (0x%x) invalid for configuration.", 1426 log2_size); 1427 goto out_free_log; 1428 } 1429 } 1430 log->l_sectBBsize = 1 << log2_size; 1431 1432 xlog_get_iclog_buffer_size(mp, log); 1433 1434 spin_lock_init(&log->l_icloglock); 1435 init_waitqueue_head(&log->l_flush_wait); 1436 1437 iclogp = &log->l_iclog; 1438 /* 1439 * The amount of memory to allocate for the iclog structure is 1440 * rather funky due to the way the structure is defined. It is 1441 * done this way so that we can use different sizes for machines 1442 * with different amounts of memory. See the definition of 1443 * xlog_in_core_t in xfs_log_priv.h for details. 1444 */ 1445 ASSERT(log->l_iclog_size >= 4096); 1446 for (i = 0; i < log->l_iclog_bufs; i++) { 1447 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1448 sizeof(struct bio_vec); 1449 1450 iclog = kzalloc(sizeof(*iclog) + bvec_size, 1451 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1452 if (!iclog) 1453 goto out_free_iclog; 1454 1455 *iclogp = iclog; 1456 iclog->ic_prev = prev_iclog; 1457 prev_iclog = iclog; 1458 1459 iclog->ic_data = kvzalloc(log->l_iclog_size, 1460 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1461 if (!iclog->ic_data) 1462 goto out_free_iclog; 1463 head = &iclog->ic_header; 1464 memset(head, 0, sizeof(xlog_rec_header_t)); 1465 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1466 head->h_version = cpu_to_be32( 1467 xfs_has_logv2(log->l_mp) ? 2 : 1); 1468 head->h_size = cpu_to_be32(log->l_iclog_size); 1469 /* new fields */ 1470 head->h_fmt = cpu_to_be32(XLOG_FMT); 1471 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1472 1473 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1474 iclog->ic_state = XLOG_STATE_ACTIVE; 1475 iclog->ic_log = log; 1476 atomic_set(&iclog->ic_refcnt, 0); 1477 INIT_LIST_HEAD(&iclog->ic_callbacks); 1478 iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize; 1479 1480 init_waitqueue_head(&iclog->ic_force_wait); 1481 init_waitqueue_head(&iclog->ic_write_wait); 1482 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1483 sema_init(&iclog->ic_sema, 1); 1484 1485 iclogp = &iclog->ic_next; 1486 } 1487 *iclogp = log->l_iclog; /* complete ring */ 1488 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1489 1490 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1491 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | 1492 WQ_HIGHPRI), 1493 0, mp->m_super->s_id); 1494 if (!log->l_ioend_workqueue) 1495 goto out_free_iclog; 1496 1497 error = xlog_cil_init(log); 1498 if (error) 1499 goto out_destroy_workqueue; 1500 return log; 1501 1502 out_destroy_workqueue: 1503 destroy_workqueue(log->l_ioend_workqueue); 1504 out_free_iclog: 1505 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1506 prev_iclog = iclog->ic_next; 1507 kvfree(iclog->ic_data); 1508 kfree(iclog); 1509 if (prev_iclog == log->l_iclog) 1510 break; 1511 } 1512 out_free_log: 1513 kfree(log); 1514 out: 1515 return ERR_PTR(error); 1516 } /* xlog_alloc_log */ 1517 1518 /* 1519 * Stamp cycle number in every block 1520 */ 1521 STATIC void 1522 xlog_pack_data( 1523 struct xlog *log, 1524 struct xlog_in_core *iclog, 1525 int roundoff) 1526 { 1527 int i, j, k; 1528 int size = iclog->ic_offset + roundoff; 1529 __be32 cycle_lsn; 1530 char *dp; 1531 1532 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1533 1534 dp = iclog->ic_datap; 1535 for (i = 0; i < BTOBB(size); i++) { 1536 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1537 break; 1538 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1539 *(__be32 *)dp = cycle_lsn; 1540 dp += BBSIZE; 1541 } 1542 1543 if (xfs_has_logv2(log->l_mp)) { 1544 xlog_in_core_2_t *xhdr = iclog->ic_data; 1545 1546 for ( ; i < BTOBB(size); i++) { 1547 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1548 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1549 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1550 *(__be32 *)dp = cycle_lsn; 1551 dp += BBSIZE; 1552 } 1553 1554 for (i = 1; i < log->l_iclog_heads; i++) 1555 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1556 } 1557 } 1558 1559 /* 1560 * Calculate the checksum for a log buffer. 1561 * 1562 * This is a little more complicated than it should be because the various 1563 * headers and the actual data are non-contiguous. 1564 */ 1565 __le32 1566 xlog_cksum( 1567 struct xlog *log, 1568 struct xlog_rec_header *rhead, 1569 char *dp, 1570 int size) 1571 { 1572 uint32_t crc; 1573 1574 /* first generate the crc for the record header ... */ 1575 crc = xfs_start_cksum_update((char *)rhead, 1576 sizeof(struct xlog_rec_header), 1577 offsetof(struct xlog_rec_header, h_crc)); 1578 1579 /* ... then for additional cycle data for v2 logs ... */ 1580 if (xfs_has_logv2(log->l_mp)) { 1581 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1582 int i; 1583 int xheads; 1584 1585 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE); 1586 1587 for (i = 1; i < xheads; i++) { 1588 crc = crc32c(crc, &xhdr[i].hic_xheader, 1589 sizeof(struct xlog_rec_ext_header)); 1590 } 1591 } 1592 1593 /* ... and finally for the payload */ 1594 crc = crc32c(crc, dp, size); 1595 1596 return xfs_end_cksum(crc); 1597 } 1598 1599 static void 1600 xlog_bio_end_io( 1601 struct bio *bio) 1602 { 1603 struct xlog_in_core *iclog = bio->bi_private; 1604 1605 queue_work(iclog->ic_log->l_ioend_workqueue, 1606 &iclog->ic_end_io_work); 1607 } 1608 1609 static int 1610 xlog_map_iclog_data( 1611 struct bio *bio, 1612 void *data, 1613 size_t count) 1614 { 1615 do { 1616 struct page *page = kmem_to_page(data); 1617 unsigned int off = offset_in_page(data); 1618 size_t len = min_t(size_t, count, PAGE_SIZE - off); 1619 1620 if (bio_add_page(bio, page, len, off) != len) 1621 return -EIO; 1622 1623 data += len; 1624 count -= len; 1625 } while (count); 1626 1627 return 0; 1628 } 1629 1630 STATIC void 1631 xlog_write_iclog( 1632 struct xlog *log, 1633 struct xlog_in_core *iclog, 1634 uint64_t bno, 1635 unsigned int count) 1636 { 1637 ASSERT(bno < log->l_logBBsize); 1638 trace_xlog_iclog_write(iclog, _RET_IP_); 1639 1640 /* 1641 * We lock the iclogbufs here so that we can serialise against I/O 1642 * completion during unmount. We might be processing a shutdown 1643 * triggered during unmount, and that can occur asynchronously to the 1644 * unmount thread, and hence we need to ensure that completes before 1645 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1646 * across the log IO to archieve that. 1647 */ 1648 down(&iclog->ic_sema); 1649 if (xlog_is_shutdown(log)) { 1650 /* 1651 * It would seem logical to return EIO here, but we rely on 1652 * the log state machine to propagate I/O errors instead of 1653 * doing it here. We kick of the state machine and unlock 1654 * the buffer manually, the code needs to be kept in sync 1655 * with the I/O completion path. 1656 */ 1657 goto sync; 1658 } 1659 1660 /* 1661 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more 1662 * IOs coming immediately after this one. This prevents the block layer 1663 * writeback throttle from throttling log writes behind background 1664 * metadata writeback and causing priority inversions. 1665 */ 1666 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec, 1667 howmany(count, PAGE_SIZE), 1668 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE); 1669 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1670 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1671 iclog->ic_bio.bi_private = iclog; 1672 1673 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) { 1674 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1675 /* 1676 * For external log devices, we also need to flush the data 1677 * device cache first to ensure all metadata writeback covered 1678 * by the LSN in this iclog is on stable storage. This is slow, 1679 * but it *must* complete before we issue the external log IO. 1680 * 1681 * If the flush fails, we cannot conclude that past metadata 1682 * writeback from the log succeeded. Repeating the flush is 1683 * not possible, hence we must shut down with log IO error to 1684 * avoid shutdown re-entering this path and erroring out again. 1685 */ 1686 if (log->l_targ != log->l_mp->m_ddev_targp && 1687 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev)) 1688 goto shutdown; 1689 } 1690 if (iclog->ic_flags & XLOG_ICL_NEED_FUA) 1691 iclog->ic_bio.bi_opf |= REQ_FUA; 1692 1693 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA); 1694 1695 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) 1696 goto shutdown; 1697 1698 if (is_vmalloc_addr(iclog->ic_data)) 1699 flush_kernel_vmap_range(iclog->ic_data, count); 1700 1701 /* 1702 * If this log buffer would straddle the end of the log we will have 1703 * to split it up into two bios, so that we can continue at the start. 1704 */ 1705 if (bno + BTOBB(count) > log->l_logBBsize) { 1706 struct bio *split; 1707 1708 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1709 GFP_NOIO, &fs_bio_set); 1710 bio_chain(split, &iclog->ic_bio); 1711 submit_bio(split); 1712 1713 /* restart at logical offset zero for the remainder */ 1714 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1715 } 1716 1717 submit_bio(&iclog->ic_bio); 1718 return; 1719 shutdown: 1720 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1721 sync: 1722 xlog_state_done_syncing(iclog); 1723 up(&iclog->ic_sema); 1724 } 1725 1726 /* 1727 * We need to bump cycle number for the part of the iclog that is 1728 * written to the start of the log. Watch out for the header magic 1729 * number case, though. 1730 */ 1731 static void 1732 xlog_split_iclog( 1733 struct xlog *log, 1734 void *data, 1735 uint64_t bno, 1736 unsigned int count) 1737 { 1738 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 1739 unsigned int i; 1740 1741 for (i = split_offset; i < count; i += BBSIZE) { 1742 uint32_t cycle = get_unaligned_be32(data + i); 1743 1744 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1745 cycle++; 1746 put_unaligned_be32(cycle, data + i); 1747 } 1748 } 1749 1750 static int 1751 xlog_calc_iclog_size( 1752 struct xlog *log, 1753 struct xlog_in_core *iclog, 1754 uint32_t *roundoff) 1755 { 1756 uint32_t count_init, count; 1757 1758 /* Add for LR header */ 1759 count_init = log->l_iclog_hsize + iclog->ic_offset; 1760 count = roundup(count_init, log->l_iclog_roundoff); 1761 1762 *roundoff = count - count_init; 1763 1764 ASSERT(count >= count_init); 1765 ASSERT(*roundoff < log->l_iclog_roundoff); 1766 return count; 1767 } 1768 1769 /* 1770 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1771 * fashion. Previously, we should have moved the current iclog 1772 * ptr in the log to point to the next available iclog. This allows further 1773 * write to continue while this code syncs out an iclog ready to go. 1774 * Before an in-core log can be written out, the data section must be scanned 1775 * to save away the 1st word of each BBSIZE block into the header. We replace 1776 * it with the current cycle count. Each BBSIZE block is tagged with the 1777 * cycle count because there in an implicit assumption that drives will 1778 * guarantee that entire 512 byte blocks get written at once. In other words, 1779 * we can't have part of a 512 byte block written and part not written. By 1780 * tagging each block, we will know which blocks are valid when recovering 1781 * after an unclean shutdown. 1782 * 1783 * This routine is single threaded on the iclog. No other thread can be in 1784 * this routine with the same iclog. Changing contents of iclog can there- 1785 * fore be done without grabbing the state machine lock. Updating the global 1786 * log will require grabbing the lock though. 1787 * 1788 * The entire log manager uses a logical block numbering scheme. Only 1789 * xlog_write_iclog knows about the fact that the log may not start with 1790 * block zero on a given device. 1791 */ 1792 STATIC void 1793 xlog_sync( 1794 struct xlog *log, 1795 struct xlog_in_core *iclog, 1796 struct xlog_ticket *ticket) 1797 { 1798 unsigned int count; /* byte count of bwrite */ 1799 unsigned int roundoff; /* roundoff to BB or stripe */ 1800 uint64_t bno; 1801 unsigned int size; 1802 1803 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1804 trace_xlog_iclog_sync(iclog, _RET_IP_); 1805 1806 count = xlog_calc_iclog_size(log, iclog, &roundoff); 1807 1808 /* 1809 * If we have a ticket, account for the roundoff via the ticket 1810 * reservation to avoid touching the hot grant heads needlessly. 1811 * Otherwise, we have to move grant heads directly. 1812 */ 1813 if (ticket) { 1814 ticket->t_curr_res -= roundoff; 1815 } else { 1816 xlog_grant_add_space(&log->l_reserve_head, roundoff); 1817 xlog_grant_add_space(&log->l_write_head, roundoff); 1818 } 1819 1820 /* put cycle number in every block */ 1821 xlog_pack_data(log, iclog, roundoff); 1822 1823 /* real byte length */ 1824 size = iclog->ic_offset; 1825 if (xfs_has_logv2(log->l_mp)) 1826 size += roundoff; 1827 iclog->ic_header.h_len = cpu_to_be32(size); 1828 1829 XFS_STATS_INC(log->l_mp, xs_log_writes); 1830 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1831 1832 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)); 1833 1834 /* Do we need to split this write into 2 parts? */ 1835 if (bno + BTOBB(count) > log->l_logBBsize) 1836 xlog_split_iclog(log, &iclog->ic_header, bno, count); 1837 1838 /* calculcate the checksum */ 1839 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1840 iclog->ic_datap, size); 1841 /* 1842 * Intentionally corrupt the log record CRC based on the error injection 1843 * frequency, if defined. This facilitates testing log recovery in the 1844 * event of torn writes. Hence, set the IOABORT state to abort the log 1845 * write on I/O completion and shutdown the fs. The subsequent mount 1846 * detects the bad CRC and attempts to recover. 1847 */ 1848 #ifdef DEBUG 1849 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 1850 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 1851 iclog->ic_fail_crc = true; 1852 xfs_warn(log->l_mp, 1853 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1854 be64_to_cpu(iclog->ic_header.h_lsn)); 1855 } 1856 #endif 1857 xlog_verify_iclog(log, iclog, count); 1858 xlog_write_iclog(log, iclog, bno, count); 1859 } 1860 1861 /* 1862 * Deallocate a log structure 1863 */ 1864 STATIC void 1865 xlog_dealloc_log( 1866 struct xlog *log) 1867 { 1868 xlog_in_core_t *iclog, *next_iclog; 1869 int i; 1870 1871 /* 1872 * Destroy the CIL after waiting for iclog IO completion because an 1873 * iclog EIO error will try to shut down the log, which accesses the 1874 * CIL to wake up the waiters. 1875 */ 1876 xlog_cil_destroy(log); 1877 1878 iclog = log->l_iclog; 1879 for (i = 0; i < log->l_iclog_bufs; i++) { 1880 next_iclog = iclog->ic_next; 1881 kvfree(iclog->ic_data); 1882 kfree(iclog); 1883 iclog = next_iclog; 1884 } 1885 1886 log->l_mp->m_log = NULL; 1887 destroy_workqueue(log->l_ioend_workqueue); 1888 kfree(log); 1889 } 1890 1891 /* 1892 * Update counters atomically now that memcpy is done. 1893 */ 1894 static inline void 1895 xlog_state_finish_copy( 1896 struct xlog *log, 1897 struct xlog_in_core *iclog, 1898 int record_cnt, 1899 int copy_bytes) 1900 { 1901 lockdep_assert_held(&log->l_icloglock); 1902 1903 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1904 iclog->ic_offset += copy_bytes; 1905 } 1906 1907 /* 1908 * print out info relating to regions written which consume 1909 * the reservation 1910 */ 1911 void 1912 xlog_print_tic_res( 1913 struct xfs_mount *mp, 1914 struct xlog_ticket *ticket) 1915 { 1916 xfs_warn(mp, "ticket reservation summary:"); 1917 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res); 1918 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res); 1919 xfs_warn(mp, " original count = %d", ticket->t_ocnt); 1920 xfs_warn(mp, " remaining count = %d", ticket->t_cnt); 1921 } 1922 1923 /* 1924 * Print a summary of the transaction. 1925 */ 1926 void 1927 xlog_print_trans( 1928 struct xfs_trans *tp) 1929 { 1930 struct xfs_mount *mp = tp->t_mountp; 1931 struct xfs_log_item *lip; 1932 1933 /* dump core transaction and ticket info */ 1934 xfs_warn(mp, "transaction summary:"); 1935 xfs_warn(mp, " log res = %d", tp->t_log_res); 1936 xfs_warn(mp, " log count = %d", tp->t_log_count); 1937 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 1938 1939 xlog_print_tic_res(mp, tp->t_ticket); 1940 1941 /* dump each log item */ 1942 list_for_each_entry(lip, &tp->t_items, li_trans) { 1943 struct xfs_log_vec *lv = lip->li_lv; 1944 struct xfs_log_iovec *vec; 1945 int i; 1946 1947 xfs_warn(mp, "log item: "); 1948 xfs_warn(mp, " type = 0x%x", lip->li_type); 1949 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 1950 if (!lv) 1951 continue; 1952 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 1953 xfs_warn(mp, " size = %d", lv->lv_size); 1954 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 1955 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 1956 1957 /* dump each iovec for the log item */ 1958 vec = lv->lv_iovecp; 1959 for (i = 0; i < lv->lv_niovecs; i++) { 1960 int dumplen = min(vec->i_len, 32); 1961 1962 xfs_warn(mp, " iovec[%d]", i); 1963 xfs_warn(mp, " type = 0x%x", vec->i_type); 1964 xfs_warn(mp, " len = %d", vec->i_len); 1965 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 1966 xfs_hex_dump(vec->i_addr, dumplen); 1967 1968 vec++; 1969 } 1970 } 1971 } 1972 1973 static inline void 1974 xlog_write_iovec( 1975 struct xlog_in_core *iclog, 1976 uint32_t *log_offset, 1977 void *data, 1978 uint32_t write_len, 1979 int *bytes_left, 1980 uint32_t *record_cnt, 1981 uint32_t *data_cnt) 1982 { 1983 ASSERT(*log_offset < iclog->ic_log->l_iclog_size); 1984 ASSERT(*log_offset % sizeof(int32_t) == 0); 1985 ASSERT(write_len % sizeof(int32_t) == 0); 1986 1987 memcpy(iclog->ic_datap + *log_offset, data, write_len); 1988 *log_offset += write_len; 1989 *bytes_left -= write_len; 1990 (*record_cnt)++; 1991 *data_cnt += write_len; 1992 } 1993 1994 /* 1995 * Write log vectors into a single iclog which is guaranteed by the caller 1996 * to have enough space to write the entire log vector into. 1997 */ 1998 static void 1999 xlog_write_full( 2000 struct xfs_log_vec *lv, 2001 struct xlog_ticket *ticket, 2002 struct xlog_in_core *iclog, 2003 uint32_t *log_offset, 2004 uint32_t *len, 2005 uint32_t *record_cnt, 2006 uint32_t *data_cnt) 2007 { 2008 int index; 2009 2010 ASSERT(*log_offset + *len <= iclog->ic_size || 2011 iclog->ic_state == XLOG_STATE_WANT_SYNC); 2012 2013 /* 2014 * Ordered log vectors have no regions to write so this 2015 * loop will naturally skip them. 2016 */ 2017 for (index = 0; index < lv->lv_niovecs; index++) { 2018 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2019 struct xlog_op_header *ophdr = reg->i_addr; 2020 2021 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2022 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2023 reg->i_len, len, record_cnt, data_cnt); 2024 } 2025 } 2026 2027 static int 2028 xlog_write_get_more_iclog_space( 2029 struct xlog_ticket *ticket, 2030 struct xlog_in_core **iclogp, 2031 uint32_t *log_offset, 2032 uint32_t len, 2033 uint32_t *record_cnt, 2034 uint32_t *data_cnt) 2035 { 2036 struct xlog_in_core *iclog = *iclogp; 2037 struct xlog *log = iclog->ic_log; 2038 int error; 2039 2040 spin_lock(&log->l_icloglock); 2041 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC); 2042 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2043 error = xlog_state_release_iclog(log, iclog, ticket); 2044 spin_unlock(&log->l_icloglock); 2045 if (error) 2046 return error; 2047 2048 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2049 log_offset); 2050 if (error) 2051 return error; 2052 *record_cnt = 0; 2053 *data_cnt = 0; 2054 *iclogp = iclog; 2055 return 0; 2056 } 2057 2058 /* 2059 * Write log vectors into a single iclog which is smaller than the current chain 2060 * length. We write until we cannot fit a full record into the remaining space 2061 * and then stop. We return the log vector that is to be written that cannot 2062 * wholly fit in the iclog. 2063 */ 2064 static int 2065 xlog_write_partial( 2066 struct xfs_log_vec *lv, 2067 struct xlog_ticket *ticket, 2068 struct xlog_in_core **iclogp, 2069 uint32_t *log_offset, 2070 uint32_t *len, 2071 uint32_t *record_cnt, 2072 uint32_t *data_cnt) 2073 { 2074 struct xlog_in_core *iclog = *iclogp; 2075 struct xlog_op_header *ophdr; 2076 int index = 0; 2077 uint32_t rlen; 2078 int error; 2079 2080 /* walk the logvec, copying until we run out of space in the iclog */ 2081 for (index = 0; index < lv->lv_niovecs; index++) { 2082 struct xfs_log_iovec *reg = &lv->lv_iovecp[index]; 2083 uint32_t reg_offset = 0; 2084 2085 /* 2086 * The first region of a continuation must have a non-zero 2087 * length otherwise log recovery will just skip over it and 2088 * start recovering from the next opheader it finds. Because we 2089 * mark the next opheader as a continuation, recovery will then 2090 * incorrectly add the continuation to the previous region and 2091 * that breaks stuff. 2092 * 2093 * Hence if there isn't space for region data after the 2094 * opheader, then we need to start afresh with a new iclog. 2095 */ 2096 if (iclog->ic_size - *log_offset <= 2097 sizeof(struct xlog_op_header)) { 2098 error = xlog_write_get_more_iclog_space(ticket, 2099 &iclog, log_offset, *len, record_cnt, 2100 data_cnt); 2101 if (error) 2102 return error; 2103 } 2104 2105 ophdr = reg->i_addr; 2106 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset); 2107 2108 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2109 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header)); 2110 if (rlen != reg->i_len) 2111 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2112 2113 xlog_write_iovec(iclog, log_offset, reg->i_addr, 2114 rlen, len, record_cnt, data_cnt); 2115 2116 /* If we wrote the whole region, move to the next. */ 2117 if (rlen == reg->i_len) 2118 continue; 2119 2120 /* 2121 * We now have a partially written iovec, but it can span 2122 * multiple iclogs so we loop here. First we release the iclog 2123 * we currently have, then we get a new iclog and add a new 2124 * opheader. Then we continue copying from where we were until 2125 * we either complete the iovec or fill the iclog. If we 2126 * complete the iovec, then we increment the index and go right 2127 * back to the top of the outer loop. if we fill the iclog, we 2128 * run the inner loop again. 2129 * 2130 * This is complicated by the tail of a region using all the 2131 * space in an iclog and hence requiring us to release the iclog 2132 * and get a new one before returning to the outer loop. We must 2133 * always guarantee that we exit this inner loop with at least 2134 * space for log transaction opheaders left in the current 2135 * iclog, hence we cannot just terminate the loop at the end 2136 * of the of the continuation. So we loop while there is no 2137 * space left in the current iclog, and check for the end of the 2138 * continuation after getting a new iclog. 2139 */ 2140 do { 2141 /* 2142 * Ensure we include the continuation opheader in the 2143 * space we need in the new iclog by adding that size 2144 * to the length we require. This continuation opheader 2145 * needs to be accounted to the ticket as the space it 2146 * consumes hasn't been accounted to the lv we are 2147 * writing. 2148 */ 2149 error = xlog_write_get_more_iclog_space(ticket, 2150 &iclog, log_offset, 2151 *len + sizeof(struct xlog_op_header), 2152 record_cnt, data_cnt); 2153 if (error) 2154 return error; 2155 2156 ophdr = iclog->ic_datap + *log_offset; 2157 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2158 ophdr->oh_clientid = XFS_TRANSACTION; 2159 ophdr->oh_res2 = 0; 2160 ophdr->oh_flags = XLOG_WAS_CONT_TRANS; 2161 2162 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2163 *log_offset += sizeof(struct xlog_op_header); 2164 *data_cnt += sizeof(struct xlog_op_header); 2165 2166 /* 2167 * If rlen fits in the iclog, then end the region 2168 * continuation. Otherwise we're going around again. 2169 */ 2170 reg_offset += rlen; 2171 rlen = reg->i_len - reg_offset; 2172 if (rlen <= iclog->ic_size - *log_offset) 2173 ophdr->oh_flags |= XLOG_END_TRANS; 2174 else 2175 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2176 2177 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset); 2178 ophdr->oh_len = cpu_to_be32(rlen); 2179 2180 xlog_write_iovec(iclog, log_offset, 2181 reg->i_addr + reg_offset, 2182 rlen, len, record_cnt, data_cnt); 2183 2184 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS); 2185 } 2186 2187 /* 2188 * No more iovecs remain in this logvec so return the next log vec to 2189 * the caller so it can go back to fast path copying. 2190 */ 2191 *iclogp = iclog; 2192 return 0; 2193 } 2194 2195 /* 2196 * Write some region out to in-core log 2197 * 2198 * This will be called when writing externally provided regions or when 2199 * writing out a commit record for a given transaction. 2200 * 2201 * General algorithm: 2202 * 1. Find total length of this write. This may include adding to the 2203 * lengths passed in. 2204 * 2. Check whether we violate the tickets reservation. 2205 * 3. While writing to this iclog 2206 * A. Reserve as much space in this iclog as can get 2207 * B. If this is first write, save away start lsn 2208 * C. While writing this region: 2209 * 1. If first write of transaction, write start record 2210 * 2. Write log operation header (header per region) 2211 * 3. Find out if we can fit entire region into this iclog 2212 * 4. Potentially, verify destination memcpy ptr 2213 * 5. Memcpy (partial) region 2214 * 6. If partial copy, release iclog; otherwise, continue 2215 * copying more regions into current iclog 2216 * 4. Mark want sync bit (in simulation mode) 2217 * 5. Release iclog for potential flush to on-disk log. 2218 * 2219 * ERRORS: 2220 * 1. Panic if reservation is overrun. This should never happen since 2221 * reservation amounts are generated internal to the filesystem. 2222 * NOTES: 2223 * 1. Tickets are single threaded data structures. 2224 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2225 * syncing routine. When a single log_write region needs to span 2226 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2227 * on all log operation writes which don't contain the end of the 2228 * region. The XLOG_END_TRANS bit is used for the in-core log 2229 * operation which contains the end of the continued log_write region. 2230 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2231 * we don't really know exactly how much space will be used. As a result, 2232 * we don't update ic_offset until the end when we know exactly how many 2233 * bytes have been written out. 2234 */ 2235 int 2236 xlog_write( 2237 struct xlog *log, 2238 struct xfs_cil_ctx *ctx, 2239 struct list_head *lv_chain, 2240 struct xlog_ticket *ticket, 2241 uint32_t len) 2242 2243 { 2244 struct xlog_in_core *iclog = NULL; 2245 struct xfs_log_vec *lv; 2246 uint32_t record_cnt = 0; 2247 uint32_t data_cnt = 0; 2248 int error = 0; 2249 int log_offset; 2250 2251 if (ticket->t_curr_res < 0) { 2252 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2253 "ctx ticket reservation ran out. Need to up reservation"); 2254 xlog_print_tic_res(log->l_mp, ticket); 2255 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 2256 } 2257 2258 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2259 &log_offset); 2260 if (error) 2261 return error; 2262 2263 ASSERT(log_offset <= iclog->ic_size - 1); 2264 2265 /* 2266 * If we have a context pointer, pass it the first iclog we are 2267 * writing to so it can record state needed for iclog write 2268 * ordering. 2269 */ 2270 if (ctx) 2271 xlog_cil_set_ctx_write_state(ctx, iclog); 2272 2273 list_for_each_entry(lv, lv_chain, lv_list) { 2274 /* 2275 * If the entire log vec does not fit in the iclog, punt it to 2276 * the partial copy loop which can handle this case. 2277 */ 2278 if (lv->lv_niovecs && 2279 lv->lv_bytes > iclog->ic_size - log_offset) { 2280 error = xlog_write_partial(lv, ticket, &iclog, 2281 &log_offset, &len, &record_cnt, 2282 &data_cnt); 2283 if (error) { 2284 /* 2285 * We have no iclog to release, so just return 2286 * the error immediately. 2287 */ 2288 return error; 2289 } 2290 } else { 2291 xlog_write_full(lv, ticket, iclog, &log_offset, 2292 &len, &record_cnt, &data_cnt); 2293 } 2294 } 2295 ASSERT(len == 0); 2296 2297 /* 2298 * We've already been guaranteed that the last writes will fit inside 2299 * the current iclog, and hence it will already have the space used by 2300 * those writes accounted to it. Hence we do not need to update the 2301 * iclog with the number of bytes written here. 2302 */ 2303 spin_lock(&log->l_icloglock); 2304 xlog_state_finish_copy(log, iclog, record_cnt, 0); 2305 error = xlog_state_release_iclog(log, iclog, ticket); 2306 spin_unlock(&log->l_icloglock); 2307 2308 return error; 2309 } 2310 2311 static void 2312 xlog_state_activate_iclog( 2313 struct xlog_in_core *iclog, 2314 int *iclogs_changed) 2315 { 2316 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2317 trace_xlog_iclog_activate(iclog, _RET_IP_); 2318 2319 /* 2320 * If the number of ops in this iclog indicate it just contains the 2321 * dummy transaction, we can change state into IDLE (the second time 2322 * around). Otherwise we should change the state into NEED a dummy. 2323 * We don't need to cover the dummy. 2324 */ 2325 if (*iclogs_changed == 0 && 2326 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) { 2327 *iclogs_changed = 1; 2328 } else { 2329 /* 2330 * We have two dirty iclogs so start over. This could also be 2331 * num of ops indicating this is not the dummy going out. 2332 */ 2333 *iclogs_changed = 2; 2334 } 2335 2336 iclog->ic_state = XLOG_STATE_ACTIVE; 2337 iclog->ic_offset = 0; 2338 iclog->ic_header.h_num_logops = 0; 2339 memset(iclog->ic_header.h_cycle_data, 0, 2340 sizeof(iclog->ic_header.h_cycle_data)); 2341 iclog->ic_header.h_lsn = 0; 2342 iclog->ic_header.h_tail_lsn = 0; 2343 } 2344 2345 /* 2346 * Loop through all iclogs and mark all iclogs currently marked DIRTY as 2347 * ACTIVE after iclog I/O has completed. 2348 */ 2349 static void 2350 xlog_state_activate_iclogs( 2351 struct xlog *log, 2352 int *iclogs_changed) 2353 { 2354 struct xlog_in_core *iclog = log->l_iclog; 2355 2356 do { 2357 if (iclog->ic_state == XLOG_STATE_DIRTY) 2358 xlog_state_activate_iclog(iclog, iclogs_changed); 2359 /* 2360 * The ordering of marking iclogs ACTIVE must be maintained, so 2361 * an iclog doesn't become ACTIVE beyond one that is SYNCING. 2362 */ 2363 else if (iclog->ic_state != XLOG_STATE_ACTIVE) 2364 break; 2365 } while ((iclog = iclog->ic_next) != log->l_iclog); 2366 } 2367 2368 static int 2369 xlog_covered_state( 2370 int prev_state, 2371 int iclogs_changed) 2372 { 2373 /* 2374 * We go to NEED for any non-covering writes. We go to NEED2 if we just 2375 * wrote the first covering record (DONE). We go to IDLE if we just 2376 * wrote the second covering record (DONE2) and remain in IDLE until a 2377 * non-covering write occurs. 2378 */ 2379 switch (prev_state) { 2380 case XLOG_STATE_COVER_IDLE: 2381 if (iclogs_changed == 1) 2382 return XLOG_STATE_COVER_IDLE; 2383 fallthrough; 2384 case XLOG_STATE_COVER_NEED: 2385 case XLOG_STATE_COVER_NEED2: 2386 break; 2387 case XLOG_STATE_COVER_DONE: 2388 if (iclogs_changed == 1) 2389 return XLOG_STATE_COVER_NEED2; 2390 break; 2391 case XLOG_STATE_COVER_DONE2: 2392 if (iclogs_changed == 1) 2393 return XLOG_STATE_COVER_IDLE; 2394 break; 2395 default: 2396 ASSERT(0); 2397 } 2398 2399 return XLOG_STATE_COVER_NEED; 2400 } 2401 2402 STATIC void 2403 xlog_state_clean_iclog( 2404 struct xlog *log, 2405 struct xlog_in_core *dirty_iclog) 2406 { 2407 int iclogs_changed = 0; 2408 2409 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_); 2410 2411 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2412 2413 xlog_state_activate_iclogs(log, &iclogs_changed); 2414 wake_up_all(&dirty_iclog->ic_force_wait); 2415 2416 if (iclogs_changed) { 2417 log->l_covered_state = xlog_covered_state(log->l_covered_state, 2418 iclogs_changed); 2419 } 2420 } 2421 2422 STATIC xfs_lsn_t 2423 xlog_get_lowest_lsn( 2424 struct xlog *log) 2425 { 2426 struct xlog_in_core *iclog = log->l_iclog; 2427 xfs_lsn_t lowest_lsn = 0, lsn; 2428 2429 do { 2430 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2431 iclog->ic_state == XLOG_STATE_DIRTY) 2432 continue; 2433 2434 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2435 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2436 lowest_lsn = lsn; 2437 } while ((iclog = iclog->ic_next) != log->l_iclog); 2438 2439 return lowest_lsn; 2440 } 2441 2442 /* 2443 * Return true if we need to stop processing, false to continue to the next 2444 * iclog. The caller will need to run callbacks if the iclog is returned in the 2445 * XLOG_STATE_CALLBACK state. 2446 */ 2447 static bool 2448 xlog_state_iodone_process_iclog( 2449 struct xlog *log, 2450 struct xlog_in_core *iclog) 2451 { 2452 xfs_lsn_t lowest_lsn; 2453 xfs_lsn_t header_lsn; 2454 2455 switch (iclog->ic_state) { 2456 case XLOG_STATE_ACTIVE: 2457 case XLOG_STATE_DIRTY: 2458 /* 2459 * Skip all iclogs in the ACTIVE & DIRTY states: 2460 */ 2461 return false; 2462 case XLOG_STATE_DONE_SYNC: 2463 /* 2464 * Now that we have an iclog that is in the DONE_SYNC state, do 2465 * one more check here to see if we have chased our tail around. 2466 * If this is not the lowest lsn iclog, then we will leave it 2467 * for another completion to process. 2468 */ 2469 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2470 lowest_lsn = xlog_get_lowest_lsn(log); 2471 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2472 return false; 2473 /* 2474 * If there are no callbacks on this iclog, we can mark it clean 2475 * immediately and return. Otherwise we need to run the 2476 * callbacks. 2477 */ 2478 if (list_empty(&iclog->ic_callbacks)) { 2479 xlog_state_clean_iclog(log, iclog); 2480 return false; 2481 } 2482 trace_xlog_iclog_callback(iclog, _RET_IP_); 2483 iclog->ic_state = XLOG_STATE_CALLBACK; 2484 return false; 2485 default: 2486 /* 2487 * Can only perform callbacks in order. Since this iclog is not 2488 * in the DONE_SYNC state, we skip the rest and just try to 2489 * clean up. 2490 */ 2491 return true; 2492 } 2493 } 2494 2495 /* 2496 * Loop over all the iclogs, running attached callbacks on them. Return true if 2497 * we ran any callbacks, indicating that we dropped the icloglock. We don't need 2498 * to handle transient shutdown state here at all because 2499 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown 2500 * cleanup of the callbacks. 2501 */ 2502 static bool 2503 xlog_state_do_iclog_callbacks( 2504 struct xlog *log) 2505 __releases(&log->l_icloglock) 2506 __acquires(&log->l_icloglock) 2507 { 2508 struct xlog_in_core *first_iclog = log->l_iclog; 2509 struct xlog_in_core *iclog = first_iclog; 2510 bool ran_callback = false; 2511 2512 do { 2513 LIST_HEAD(cb_list); 2514 2515 if (xlog_state_iodone_process_iclog(log, iclog)) 2516 break; 2517 if (iclog->ic_state != XLOG_STATE_CALLBACK) { 2518 iclog = iclog->ic_next; 2519 continue; 2520 } 2521 list_splice_init(&iclog->ic_callbacks, &cb_list); 2522 spin_unlock(&log->l_icloglock); 2523 2524 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_); 2525 xlog_cil_process_committed(&cb_list); 2526 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_); 2527 ran_callback = true; 2528 2529 spin_lock(&log->l_icloglock); 2530 xlog_state_clean_iclog(log, iclog); 2531 iclog = iclog->ic_next; 2532 } while (iclog != first_iclog); 2533 2534 return ran_callback; 2535 } 2536 2537 2538 /* 2539 * Loop running iclog completion callbacks until there are no more iclogs in a 2540 * state that can run callbacks. 2541 */ 2542 STATIC void 2543 xlog_state_do_callback( 2544 struct xlog *log) 2545 { 2546 int flushcnt = 0; 2547 int repeats = 0; 2548 2549 spin_lock(&log->l_icloglock); 2550 while (xlog_state_do_iclog_callbacks(log)) { 2551 if (xlog_is_shutdown(log)) 2552 break; 2553 2554 if (++repeats > 5000) { 2555 flushcnt += repeats; 2556 repeats = 0; 2557 xfs_warn(log->l_mp, 2558 "%s: possible infinite loop (%d iterations)", 2559 __func__, flushcnt); 2560 } 2561 } 2562 2563 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE) 2564 wake_up_all(&log->l_flush_wait); 2565 2566 spin_unlock(&log->l_icloglock); 2567 } 2568 2569 2570 /* 2571 * Finish transitioning this iclog to the dirty state. 2572 * 2573 * Callbacks could take time, so they are done outside the scope of the 2574 * global state machine log lock. 2575 */ 2576 STATIC void 2577 xlog_state_done_syncing( 2578 struct xlog_in_core *iclog) 2579 { 2580 struct xlog *log = iclog->ic_log; 2581 2582 spin_lock(&log->l_icloglock); 2583 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2584 trace_xlog_iclog_sync_done(iclog, _RET_IP_); 2585 2586 /* 2587 * If we got an error, either on the first buffer, or in the case of 2588 * split log writes, on the second, we shut down the file system and 2589 * no iclogs should ever be attempted to be written to disk again. 2590 */ 2591 if (!xlog_is_shutdown(log)) { 2592 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING); 2593 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2594 } 2595 2596 /* 2597 * Someone could be sleeping prior to writing out the next 2598 * iclog buffer, we wake them all, one will get to do the 2599 * I/O, the others get to wait for the result. 2600 */ 2601 wake_up_all(&iclog->ic_write_wait); 2602 spin_unlock(&log->l_icloglock); 2603 xlog_state_do_callback(log); 2604 } 2605 2606 /* 2607 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2608 * sleep. We wait on the flush queue on the head iclog as that should be 2609 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2610 * we will wait here and all new writes will sleep until a sync completes. 2611 * 2612 * The in-core logs are used in a circular fashion. They are not used 2613 * out-of-order even when an iclog past the head is free. 2614 * 2615 * return: 2616 * * log_offset where xlog_write() can start writing into the in-core 2617 * log's data space. 2618 * * in-core log pointer to which xlog_write() should write. 2619 * * boolean indicating this is a continued write to an in-core log. 2620 * If this is the last write, then the in-core log's offset field 2621 * needs to be incremented, depending on the amount of data which 2622 * is copied. 2623 */ 2624 STATIC int 2625 xlog_state_get_iclog_space( 2626 struct xlog *log, 2627 int len, 2628 struct xlog_in_core **iclogp, 2629 struct xlog_ticket *ticket, 2630 int *logoffsetp) 2631 { 2632 int log_offset; 2633 xlog_rec_header_t *head; 2634 xlog_in_core_t *iclog; 2635 2636 restart: 2637 spin_lock(&log->l_icloglock); 2638 if (xlog_is_shutdown(log)) { 2639 spin_unlock(&log->l_icloglock); 2640 return -EIO; 2641 } 2642 2643 iclog = log->l_iclog; 2644 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2645 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2646 2647 /* Wait for log writes to have flushed */ 2648 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2649 goto restart; 2650 } 2651 2652 head = &iclog->ic_header; 2653 2654 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2655 log_offset = iclog->ic_offset; 2656 2657 trace_xlog_iclog_get_space(iclog, _RET_IP_); 2658 2659 /* On the 1st write to an iclog, figure out lsn. This works 2660 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2661 * committing to. If the offset is set, that's how many blocks 2662 * must be written. 2663 */ 2664 if (log_offset == 0) { 2665 ticket->t_curr_res -= log->l_iclog_hsize; 2666 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2667 head->h_lsn = cpu_to_be64( 2668 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2669 ASSERT(log->l_curr_block >= 0); 2670 } 2671 2672 /* If there is enough room to write everything, then do it. Otherwise, 2673 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2674 * bit is on, so this will get flushed out. Don't update ic_offset 2675 * until you know exactly how many bytes get copied. Therefore, wait 2676 * until later to update ic_offset. 2677 * 2678 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2679 * can fit into remaining data section. 2680 */ 2681 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2682 int error = 0; 2683 2684 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2685 2686 /* 2687 * If we are the only one writing to this iclog, sync it to 2688 * disk. We need to do an atomic compare and decrement here to 2689 * avoid racing with concurrent atomic_dec_and_lock() calls in 2690 * xlog_state_release_iclog() when there is more than one 2691 * reference to the iclog. 2692 */ 2693 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 2694 error = xlog_state_release_iclog(log, iclog, ticket); 2695 spin_unlock(&log->l_icloglock); 2696 if (error) 2697 return error; 2698 goto restart; 2699 } 2700 2701 /* Do we have enough room to write the full amount in the remainder 2702 * of this iclog? Or must we continue a write on the next iclog and 2703 * mark this iclog as completely taken? In the case where we switch 2704 * iclogs (to mark it taken), this particular iclog will release/sync 2705 * to disk in xlog_write(). 2706 */ 2707 if (len <= iclog->ic_size - iclog->ic_offset) 2708 iclog->ic_offset += len; 2709 else 2710 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2711 *iclogp = iclog; 2712 2713 ASSERT(iclog->ic_offset <= iclog->ic_size); 2714 spin_unlock(&log->l_icloglock); 2715 2716 *logoffsetp = log_offset; 2717 return 0; 2718 } 2719 2720 /* 2721 * The first cnt-1 times a ticket goes through here we don't need to move the 2722 * grant write head because the permanent reservation has reserved cnt times the 2723 * unit amount. Release part of current permanent unit reservation and reset 2724 * current reservation to be one units worth. Also move grant reservation head 2725 * forward. 2726 */ 2727 void 2728 xfs_log_ticket_regrant( 2729 struct xlog *log, 2730 struct xlog_ticket *ticket) 2731 { 2732 trace_xfs_log_ticket_regrant(log, ticket); 2733 2734 if (ticket->t_cnt > 0) 2735 ticket->t_cnt--; 2736 2737 xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res); 2738 xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res); 2739 ticket->t_curr_res = ticket->t_unit_res; 2740 2741 trace_xfs_log_ticket_regrant_sub(log, ticket); 2742 2743 /* just return if we still have some of the pre-reserved space */ 2744 if (!ticket->t_cnt) { 2745 xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res); 2746 trace_xfs_log_ticket_regrant_exit(log, ticket); 2747 2748 ticket->t_curr_res = ticket->t_unit_res; 2749 } 2750 2751 xfs_log_ticket_put(ticket); 2752 } 2753 2754 /* 2755 * Give back the space left from a reservation. 2756 * 2757 * All the information we need to make a correct determination of space left 2758 * is present. For non-permanent reservations, things are quite easy. The 2759 * count should have been decremented to zero. We only need to deal with the 2760 * space remaining in the current reservation part of the ticket. If the 2761 * ticket contains a permanent reservation, there may be left over space which 2762 * needs to be released. A count of N means that N-1 refills of the current 2763 * reservation can be done before we need to ask for more space. The first 2764 * one goes to fill up the first current reservation. Once we run out of 2765 * space, the count will stay at zero and the only space remaining will be 2766 * in the current reservation field. 2767 */ 2768 void 2769 xfs_log_ticket_ungrant( 2770 struct xlog *log, 2771 struct xlog_ticket *ticket) 2772 { 2773 int bytes; 2774 2775 trace_xfs_log_ticket_ungrant(log, ticket); 2776 2777 if (ticket->t_cnt > 0) 2778 ticket->t_cnt--; 2779 2780 trace_xfs_log_ticket_ungrant_sub(log, ticket); 2781 2782 /* 2783 * If this is a permanent reservation ticket, we may be able to free 2784 * up more space based on the remaining count. 2785 */ 2786 bytes = ticket->t_curr_res; 2787 if (ticket->t_cnt > 0) { 2788 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 2789 bytes += ticket->t_unit_res*ticket->t_cnt; 2790 } 2791 2792 xlog_grant_sub_space(&log->l_reserve_head, bytes); 2793 xlog_grant_sub_space(&log->l_write_head, bytes); 2794 2795 trace_xfs_log_ticket_ungrant_exit(log, ticket); 2796 2797 xfs_log_space_wake(log->l_mp); 2798 xfs_log_ticket_put(ticket); 2799 } 2800 2801 /* 2802 * This routine will mark the current iclog in the ring as WANT_SYNC and move 2803 * the current iclog pointer to the next iclog in the ring. 2804 */ 2805 void 2806 xlog_state_switch_iclogs( 2807 struct xlog *log, 2808 struct xlog_in_core *iclog, 2809 int eventual_size) 2810 { 2811 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 2812 assert_spin_locked(&log->l_icloglock); 2813 trace_xlog_iclog_switch(iclog, _RET_IP_); 2814 2815 if (!eventual_size) 2816 eventual_size = iclog->ic_offset; 2817 iclog->ic_state = XLOG_STATE_WANT_SYNC; 2818 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 2819 log->l_prev_block = log->l_curr_block; 2820 log->l_prev_cycle = log->l_curr_cycle; 2821 2822 /* roll log?: ic_offset changed later */ 2823 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 2824 2825 /* Round up to next log-sunit */ 2826 if (log->l_iclog_roundoff > BBSIZE) { 2827 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff); 2828 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 2829 } 2830 2831 if (log->l_curr_block >= log->l_logBBsize) { 2832 /* 2833 * Rewind the current block before the cycle is bumped to make 2834 * sure that the combined LSN never transiently moves forward 2835 * when the log wraps to the next cycle. This is to support the 2836 * unlocked sample of these fields from xlog_valid_lsn(). Most 2837 * other cases should acquire l_icloglock. 2838 */ 2839 log->l_curr_block -= log->l_logBBsize; 2840 ASSERT(log->l_curr_block >= 0); 2841 smp_wmb(); 2842 log->l_curr_cycle++; 2843 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 2844 log->l_curr_cycle++; 2845 } 2846 ASSERT(iclog == log->l_iclog); 2847 log->l_iclog = iclog->ic_next; 2848 } 2849 2850 /* 2851 * Force the iclog to disk and check if the iclog has been completed before 2852 * xlog_force_iclog() returns. This can happen on synchronous (e.g. 2853 * pmem) or fast async storage because we drop the icloglock to issue the IO. 2854 * If completion has already occurred, tell the caller so that it can avoid an 2855 * unnecessary wait on the iclog. 2856 */ 2857 static int 2858 xlog_force_and_check_iclog( 2859 struct xlog_in_core *iclog, 2860 bool *completed) 2861 { 2862 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2863 int error; 2864 2865 *completed = false; 2866 error = xlog_force_iclog(iclog); 2867 if (error) 2868 return error; 2869 2870 /* 2871 * If the iclog has already been completed and reused the header LSN 2872 * will have been rewritten by completion 2873 */ 2874 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) 2875 *completed = true; 2876 return 0; 2877 } 2878 2879 /* 2880 * Write out all data in the in-core log as of this exact moment in time. 2881 * 2882 * Data may be written to the in-core log during this call. However, 2883 * we don't guarantee this data will be written out. A change from past 2884 * implementation means this routine will *not* write out zero length LRs. 2885 * 2886 * Basically, we try and perform an intelligent scan of the in-core logs. 2887 * If we determine there is no flushable data, we just return. There is no 2888 * flushable data if: 2889 * 2890 * 1. the current iclog is active and has no data; the previous iclog 2891 * is in the active or dirty state. 2892 * 2. the current iclog is drity, and the previous iclog is in the 2893 * active or dirty state. 2894 * 2895 * We may sleep if: 2896 * 2897 * 1. the current iclog is not in the active nor dirty state. 2898 * 2. the current iclog dirty, and the previous iclog is not in the 2899 * active nor dirty state. 2900 * 3. the current iclog is active, and there is another thread writing 2901 * to this particular iclog. 2902 * 4. a) the current iclog is active and has no other writers 2903 * b) when we return from flushing out this iclog, it is still 2904 * not in the active nor dirty state. 2905 */ 2906 int 2907 xfs_log_force( 2908 struct xfs_mount *mp, 2909 uint flags) 2910 { 2911 struct xlog *log = mp->m_log; 2912 struct xlog_in_core *iclog; 2913 2914 XFS_STATS_INC(mp, xs_log_force); 2915 trace_xfs_log_force(mp, 0, _RET_IP_); 2916 2917 xlog_cil_force(log); 2918 2919 spin_lock(&log->l_icloglock); 2920 if (xlog_is_shutdown(log)) 2921 goto out_error; 2922 2923 iclog = log->l_iclog; 2924 trace_xlog_iclog_force(iclog, _RET_IP_); 2925 2926 if (iclog->ic_state == XLOG_STATE_DIRTY || 2927 (iclog->ic_state == XLOG_STATE_ACTIVE && 2928 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 2929 /* 2930 * If the head is dirty or (active and empty), then we need to 2931 * look at the previous iclog. 2932 * 2933 * If the previous iclog is active or dirty we are done. There 2934 * is nothing to sync out. Otherwise, we attach ourselves to the 2935 * previous iclog and go to sleep. 2936 */ 2937 iclog = iclog->ic_prev; 2938 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 2939 if (atomic_read(&iclog->ic_refcnt) == 0) { 2940 /* We have exclusive access to this iclog. */ 2941 bool completed; 2942 2943 if (xlog_force_and_check_iclog(iclog, &completed)) 2944 goto out_error; 2945 2946 if (completed) 2947 goto out_unlock; 2948 } else { 2949 /* 2950 * Someone else is still writing to this iclog, so we 2951 * need to ensure that when they release the iclog it 2952 * gets synced immediately as we may be waiting on it. 2953 */ 2954 xlog_state_switch_iclogs(log, iclog, 0); 2955 } 2956 } 2957 2958 /* 2959 * The iclog we are about to wait on may contain the checkpoint pushed 2960 * by the above xlog_cil_force() call, but it may not have been pushed 2961 * to disk yet. Like the ACTIVE case above, we need to make sure caches 2962 * are flushed when this iclog is written. 2963 */ 2964 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) 2965 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 2966 2967 if (flags & XFS_LOG_SYNC) 2968 return xlog_wait_on_iclog(iclog); 2969 out_unlock: 2970 spin_unlock(&log->l_icloglock); 2971 return 0; 2972 out_error: 2973 spin_unlock(&log->l_icloglock); 2974 return -EIO; 2975 } 2976 2977 /* 2978 * Force the log to a specific LSN. 2979 * 2980 * If an iclog with that lsn can be found: 2981 * If it is in the DIRTY state, just return. 2982 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 2983 * state and go to sleep or return. 2984 * If it is in any other state, go to sleep or return. 2985 * 2986 * Synchronous forces are implemented with a wait queue. All callers trying 2987 * to force a given lsn to disk must wait on the queue attached to the 2988 * specific in-core log. When given in-core log finally completes its write 2989 * to disk, that thread will wake up all threads waiting on the queue. 2990 */ 2991 static int 2992 xlog_force_lsn( 2993 struct xlog *log, 2994 xfs_lsn_t lsn, 2995 uint flags, 2996 int *log_flushed, 2997 bool already_slept) 2998 { 2999 struct xlog_in_core *iclog; 3000 bool completed; 3001 3002 spin_lock(&log->l_icloglock); 3003 if (xlog_is_shutdown(log)) 3004 goto out_error; 3005 3006 iclog = log->l_iclog; 3007 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3008 trace_xlog_iclog_force_lsn(iclog, _RET_IP_); 3009 iclog = iclog->ic_next; 3010 if (iclog == log->l_iclog) 3011 goto out_unlock; 3012 } 3013 3014 switch (iclog->ic_state) { 3015 case XLOG_STATE_ACTIVE: 3016 /* 3017 * We sleep here if we haven't already slept (e.g. this is the 3018 * first time we've looked at the correct iclog buf) and the 3019 * buffer before us is going to be sync'ed. The reason for this 3020 * is that if we are doing sync transactions here, by waiting 3021 * for the previous I/O to complete, we can allow a few more 3022 * transactions into this iclog before we close it down. 3023 * 3024 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3025 * refcnt so we can release the log (which drops the ref count). 3026 * The state switch keeps new transaction commits from using 3027 * this buffer. When the current commits finish writing into 3028 * the buffer, the refcount will drop to zero and the buffer 3029 * will go out then. 3030 */ 3031 if (!already_slept && 3032 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 3033 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 3034 xlog_wait(&iclog->ic_prev->ic_write_wait, 3035 &log->l_icloglock); 3036 return -EAGAIN; 3037 } 3038 if (xlog_force_and_check_iclog(iclog, &completed)) 3039 goto out_error; 3040 if (log_flushed) 3041 *log_flushed = 1; 3042 if (completed) 3043 goto out_unlock; 3044 break; 3045 case XLOG_STATE_WANT_SYNC: 3046 /* 3047 * This iclog may contain the checkpoint pushed by the 3048 * xlog_cil_force_seq() call, but there are other writers still 3049 * accessing it so it hasn't been pushed to disk yet. Like the 3050 * ACTIVE case above, we need to make sure caches are flushed 3051 * when this iclog is written. 3052 */ 3053 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA; 3054 break; 3055 default: 3056 /* 3057 * The entire checkpoint was written by the CIL force and is on 3058 * its way to disk already. It will be stable when it 3059 * completes, so we don't need to manipulate caches here at all. 3060 * We just need to wait for completion if necessary. 3061 */ 3062 break; 3063 } 3064 3065 if (flags & XFS_LOG_SYNC) 3066 return xlog_wait_on_iclog(iclog); 3067 out_unlock: 3068 spin_unlock(&log->l_icloglock); 3069 return 0; 3070 out_error: 3071 spin_unlock(&log->l_icloglock); 3072 return -EIO; 3073 } 3074 3075 /* 3076 * Force the log to a specific checkpoint sequence. 3077 * 3078 * First force the CIL so that all the required changes have been flushed to the 3079 * iclogs. If the CIL force completed it will return a commit LSN that indicates 3080 * the iclog that needs to be flushed to stable storage. If the caller needs 3081 * a synchronous log force, we will wait on the iclog with the LSN returned by 3082 * xlog_cil_force_seq() to be completed. 3083 */ 3084 int 3085 xfs_log_force_seq( 3086 struct xfs_mount *mp, 3087 xfs_csn_t seq, 3088 uint flags, 3089 int *log_flushed) 3090 { 3091 struct xlog *log = mp->m_log; 3092 xfs_lsn_t lsn; 3093 int ret; 3094 ASSERT(seq != 0); 3095 3096 XFS_STATS_INC(mp, xs_log_force); 3097 trace_xfs_log_force(mp, seq, _RET_IP_); 3098 3099 lsn = xlog_cil_force_seq(log, seq); 3100 if (lsn == NULLCOMMITLSN) 3101 return 0; 3102 3103 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false); 3104 if (ret == -EAGAIN) { 3105 XFS_STATS_INC(mp, xs_log_force_sleep); 3106 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true); 3107 } 3108 return ret; 3109 } 3110 3111 /* 3112 * Free a used ticket when its refcount falls to zero. 3113 */ 3114 void 3115 xfs_log_ticket_put( 3116 xlog_ticket_t *ticket) 3117 { 3118 ASSERT(atomic_read(&ticket->t_ref) > 0); 3119 if (atomic_dec_and_test(&ticket->t_ref)) 3120 kmem_cache_free(xfs_log_ticket_cache, ticket); 3121 } 3122 3123 xlog_ticket_t * 3124 xfs_log_ticket_get( 3125 xlog_ticket_t *ticket) 3126 { 3127 ASSERT(atomic_read(&ticket->t_ref) > 0); 3128 atomic_inc(&ticket->t_ref); 3129 return ticket; 3130 } 3131 3132 /* 3133 * Figure out the total log space unit (in bytes) that would be 3134 * required for a log ticket. 3135 */ 3136 static int 3137 xlog_calc_unit_res( 3138 struct xlog *log, 3139 int unit_bytes, 3140 int *niclogs) 3141 { 3142 int iclog_space; 3143 uint num_headers; 3144 3145 /* 3146 * Permanent reservations have up to 'cnt'-1 active log operations 3147 * in the log. A unit in this case is the amount of space for one 3148 * of these log operations. Normal reservations have a cnt of 1 3149 * and their unit amount is the total amount of space required. 3150 * 3151 * The following lines of code account for non-transaction data 3152 * which occupy space in the on-disk log. 3153 * 3154 * Normal form of a transaction is: 3155 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3156 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3157 * 3158 * We need to account for all the leadup data and trailer data 3159 * around the transaction data. 3160 * And then we need to account for the worst case in terms of using 3161 * more space. 3162 * The worst case will happen if: 3163 * - the placement of the transaction happens to be such that the 3164 * roundoff is at its maximum 3165 * - the transaction data is synced before the commit record is synced 3166 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3167 * Therefore the commit record is in its own Log Record. 3168 * This can happen as the commit record is called with its 3169 * own region to xlog_write(). 3170 * This then means that in the worst case, roundoff can happen for 3171 * the commit-rec as well. 3172 * The commit-rec is smaller than padding in this scenario and so it is 3173 * not added separately. 3174 */ 3175 3176 /* for trans header */ 3177 unit_bytes += sizeof(xlog_op_header_t); 3178 unit_bytes += sizeof(xfs_trans_header_t); 3179 3180 /* for start-rec */ 3181 unit_bytes += sizeof(xlog_op_header_t); 3182 3183 /* 3184 * for LR headers - the space for data in an iclog is the size minus 3185 * the space used for the headers. If we use the iclog size, then we 3186 * undercalculate the number of headers required. 3187 * 3188 * Furthermore - the addition of op headers for split-recs might 3189 * increase the space required enough to require more log and op 3190 * headers, so take that into account too. 3191 * 3192 * IMPORTANT: This reservation makes the assumption that if this 3193 * transaction is the first in an iclog and hence has the LR headers 3194 * accounted to it, then the remaining space in the iclog is 3195 * exclusively for this transaction. i.e. if the transaction is larger 3196 * than the iclog, it will be the only thing in that iclog. 3197 * Fundamentally, this means we must pass the entire log vector to 3198 * xlog_write to guarantee this. 3199 */ 3200 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3201 num_headers = howmany(unit_bytes, iclog_space); 3202 3203 /* for split-recs - ophdrs added when data split over LRs */ 3204 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3205 3206 /* add extra header reservations if we overrun */ 3207 while (!num_headers || 3208 howmany(unit_bytes, iclog_space) > num_headers) { 3209 unit_bytes += sizeof(xlog_op_header_t); 3210 num_headers++; 3211 } 3212 unit_bytes += log->l_iclog_hsize * num_headers; 3213 3214 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3215 unit_bytes += log->l_iclog_hsize; 3216 3217 /* roundoff padding for transaction data and one for commit record */ 3218 unit_bytes += 2 * log->l_iclog_roundoff; 3219 3220 if (niclogs) 3221 *niclogs = num_headers; 3222 return unit_bytes; 3223 } 3224 3225 int 3226 xfs_log_calc_unit_res( 3227 struct xfs_mount *mp, 3228 int unit_bytes) 3229 { 3230 return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL); 3231 } 3232 3233 /* 3234 * Allocate and initialise a new log ticket. 3235 */ 3236 struct xlog_ticket * 3237 xlog_ticket_alloc( 3238 struct xlog *log, 3239 int unit_bytes, 3240 int cnt, 3241 bool permanent) 3242 { 3243 struct xlog_ticket *tic; 3244 int unit_res; 3245 3246 tic = kmem_cache_zalloc(xfs_log_ticket_cache, 3247 GFP_KERNEL | __GFP_NOFAIL); 3248 3249 unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs); 3250 3251 atomic_set(&tic->t_ref, 1); 3252 tic->t_task = current; 3253 INIT_LIST_HEAD(&tic->t_queue); 3254 tic->t_unit_res = unit_res; 3255 tic->t_curr_res = unit_res; 3256 tic->t_cnt = cnt; 3257 tic->t_ocnt = cnt; 3258 tic->t_tid = get_random_u32(); 3259 if (permanent) 3260 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3261 3262 return tic; 3263 } 3264 3265 #if defined(DEBUG) 3266 static void 3267 xlog_verify_dump_tail( 3268 struct xlog *log, 3269 struct xlog_in_core *iclog) 3270 { 3271 xfs_alert(log->l_mp, 3272 "ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x", 3273 iclog ? be64_to_cpu(iclog->ic_header.h_tail_lsn) : -1, 3274 atomic64_read(&log->l_tail_lsn), 3275 log->l_ailp->ail_head_lsn, 3276 log->l_curr_cycle, log->l_curr_block, 3277 log->l_prev_cycle, log->l_prev_block); 3278 xfs_alert(log->l_mp, 3279 "write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x", 3280 atomic64_read(&log->l_write_head.grant), 3281 atomic64_read(&log->l_reserve_head.grant), 3282 log->l_tail_space, log->l_logsize, 3283 iclog ? iclog->ic_flags : -1); 3284 } 3285 3286 /* Check if the new iclog will fit in the log. */ 3287 STATIC void 3288 xlog_verify_tail_lsn( 3289 struct xlog *log, 3290 struct xlog_in_core *iclog) 3291 { 3292 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn); 3293 int blocks; 3294 3295 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3296 blocks = log->l_logBBsize - 3297 (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3298 if (blocks < BTOBB(iclog->ic_offset) + 3299 BTOBB(log->l_iclog_hsize)) { 3300 xfs_emerg(log->l_mp, 3301 "%s: ran out of log space", __func__); 3302 xlog_verify_dump_tail(log, iclog); 3303 } 3304 return; 3305 } 3306 3307 if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) { 3308 xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__); 3309 xlog_verify_dump_tail(log, iclog); 3310 return; 3311 } 3312 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) { 3313 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3314 xlog_verify_dump_tail(log, iclog); 3315 return; 3316 } 3317 3318 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3319 if (blocks < BTOBB(iclog->ic_offset) + 1) { 3320 xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__); 3321 xlog_verify_dump_tail(log, iclog); 3322 } 3323 } 3324 3325 /* 3326 * Perform a number of checks on the iclog before writing to disk. 3327 * 3328 * 1. Make sure the iclogs are still circular 3329 * 2. Make sure we have a good magic number 3330 * 3. Make sure we don't have magic numbers in the data 3331 * 4. Check fields of each log operation header for: 3332 * A. Valid client identifier 3333 * B. tid ptr value falls in valid ptr space (user space code) 3334 * C. Length in log record header is correct according to the 3335 * individual operation headers within record. 3336 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3337 * log, check the preceding blocks of the physical log to make sure all 3338 * the cycle numbers agree with the current cycle number. 3339 */ 3340 STATIC void 3341 xlog_verify_iclog( 3342 struct xlog *log, 3343 struct xlog_in_core *iclog, 3344 int count) 3345 { 3346 xlog_op_header_t *ophead; 3347 xlog_in_core_t *icptr; 3348 xlog_in_core_2_t *xhdr; 3349 void *base_ptr, *ptr, *p; 3350 ptrdiff_t field_offset; 3351 uint8_t clientid; 3352 int len, i, j, k, op_len; 3353 int idx; 3354 3355 /* check validity of iclog pointers */ 3356 spin_lock(&log->l_icloglock); 3357 icptr = log->l_iclog; 3358 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3359 ASSERT(icptr); 3360 3361 if (icptr != log->l_iclog) 3362 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3363 spin_unlock(&log->l_icloglock); 3364 3365 /* check log magic numbers */ 3366 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3367 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3368 3369 base_ptr = ptr = &iclog->ic_header; 3370 p = &iclog->ic_header; 3371 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3372 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3373 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3374 __func__); 3375 } 3376 3377 /* check fields */ 3378 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3379 base_ptr = ptr = iclog->ic_datap; 3380 ophead = ptr; 3381 xhdr = iclog->ic_data; 3382 for (i = 0; i < len; i++) { 3383 ophead = ptr; 3384 3385 /* clientid is only 1 byte */ 3386 p = &ophead->oh_clientid; 3387 field_offset = p - base_ptr; 3388 if (field_offset & 0x1ff) { 3389 clientid = ophead->oh_clientid; 3390 } else { 3391 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap); 3392 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3393 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3394 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3395 clientid = xlog_get_client_id( 3396 xhdr[j].hic_xheader.xh_cycle_data[k]); 3397 } else { 3398 clientid = xlog_get_client_id( 3399 iclog->ic_header.h_cycle_data[idx]); 3400 } 3401 } 3402 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) { 3403 xfs_warn(log->l_mp, 3404 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx", 3405 __func__, i, clientid, ophead, 3406 (unsigned long)field_offset); 3407 } 3408 3409 /* check length */ 3410 p = &ophead->oh_len; 3411 field_offset = p - base_ptr; 3412 if (field_offset & 0x1ff) { 3413 op_len = be32_to_cpu(ophead->oh_len); 3414 } else { 3415 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap); 3416 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3417 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3418 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3419 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3420 } else { 3421 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3422 } 3423 } 3424 ptr += sizeof(xlog_op_header_t) + op_len; 3425 } 3426 } 3427 #endif 3428 3429 /* 3430 * Perform a forced shutdown on the log. 3431 * 3432 * This can be called from low level log code to trigger a shutdown, or from the 3433 * high level mount shutdown code when the mount shuts down. 3434 * 3435 * Our main objectives here are to make sure that: 3436 * a. if the shutdown was not due to a log IO error, flush the logs to 3437 * disk. Anything modified after this is ignored. 3438 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested 3439 * parties to find out. Nothing new gets queued after this is done. 3440 * c. Tasks sleeping on log reservations, pinned objects and 3441 * other resources get woken up. 3442 * d. The mount is also marked as shut down so that log triggered shutdowns 3443 * still behave the same as if they called xfs_forced_shutdown(). 3444 * 3445 * Return true if the shutdown cause was a log IO error and we actually shut the 3446 * log down. 3447 */ 3448 bool 3449 xlog_force_shutdown( 3450 struct xlog *log, 3451 uint32_t shutdown_flags) 3452 { 3453 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR); 3454 3455 if (!log) 3456 return false; 3457 3458 /* 3459 * Flush all the completed transactions to disk before marking the log 3460 * being shut down. We need to do this first as shutting down the log 3461 * before the force will prevent the log force from flushing the iclogs 3462 * to disk. 3463 * 3464 * When we are in recovery, there are no transactions to flush, and 3465 * we don't want to touch the log because we don't want to perturb the 3466 * current head/tail for future recovery attempts. Hence we need to 3467 * avoid a log force in this case. 3468 * 3469 * If we are shutting down due to a log IO error, then we must avoid 3470 * trying to write the log as that may just result in more IO errors and 3471 * an endless shutdown/force loop. 3472 */ 3473 if (!log_error && !xlog_in_recovery(log)) 3474 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3475 3476 /* 3477 * Atomically set the shutdown state. If the shutdown state is already 3478 * set, there someone else is performing the shutdown and so we are done 3479 * here. This should never happen because we should only ever get called 3480 * once by the first shutdown caller. 3481 * 3482 * Much of the log state machine transitions assume that shutdown state 3483 * cannot change once they hold the log->l_icloglock. Hence we need to 3484 * hold that lock here, even though we use the atomic test_and_set_bit() 3485 * operation to set the shutdown state. 3486 */ 3487 spin_lock(&log->l_icloglock); 3488 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) { 3489 spin_unlock(&log->l_icloglock); 3490 return false; 3491 } 3492 spin_unlock(&log->l_icloglock); 3493 3494 /* 3495 * If this log shutdown also sets the mount shutdown state, issue a 3496 * shutdown warning message. 3497 */ 3498 if (!xfs_set_shutdown(log->l_mp)) { 3499 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR, 3500 "Filesystem has been shut down due to log error (0x%x).", 3501 shutdown_flags); 3502 xfs_alert(log->l_mp, 3503 "Please unmount the filesystem and rectify the problem(s)."); 3504 if (xfs_error_level >= XFS_ERRLEVEL_HIGH) 3505 xfs_stack_trace(); 3506 } 3507 3508 /* 3509 * We don't want anybody waiting for log reservations after this. That 3510 * means we have to wake up everybody queued up on reserveq as well as 3511 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3512 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3513 * action is protected by the grant locks. 3514 */ 3515 xlog_grant_head_wake_all(&log->l_reserve_head); 3516 xlog_grant_head_wake_all(&log->l_write_head); 3517 3518 /* 3519 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3520 * as if the log writes were completed. The abort handling in the log 3521 * item committed callback functions will do this again under lock to 3522 * avoid races. 3523 */ 3524 spin_lock(&log->l_cilp->xc_push_lock); 3525 wake_up_all(&log->l_cilp->xc_start_wait); 3526 wake_up_all(&log->l_cilp->xc_commit_wait); 3527 spin_unlock(&log->l_cilp->xc_push_lock); 3528 3529 spin_lock(&log->l_icloglock); 3530 xlog_state_shutdown_callbacks(log); 3531 spin_unlock(&log->l_icloglock); 3532 3533 wake_up_var(&log->l_opstate); 3534 return log_error; 3535 } 3536 3537 STATIC int 3538 xlog_iclogs_empty( 3539 struct xlog *log) 3540 { 3541 xlog_in_core_t *iclog; 3542 3543 iclog = log->l_iclog; 3544 do { 3545 /* endianness does not matter here, zero is zero in 3546 * any language. 3547 */ 3548 if (iclog->ic_header.h_num_logops) 3549 return 0; 3550 iclog = iclog->ic_next; 3551 } while (iclog != log->l_iclog); 3552 return 1; 3553 } 3554 3555 /* 3556 * Verify that an LSN stamped into a piece of metadata is valid. This is 3557 * intended for use in read verifiers on v5 superblocks. 3558 */ 3559 bool 3560 xfs_log_check_lsn( 3561 struct xfs_mount *mp, 3562 xfs_lsn_t lsn) 3563 { 3564 struct xlog *log = mp->m_log; 3565 bool valid; 3566 3567 /* 3568 * norecovery mode skips mount-time log processing and unconditionally 3569 * resets the in-core LSN. We can't validate in this mode, but 3570 * modifications are not allowed anyways so just return true. 3571 */ 3572 if (xfs_has_norecovery(mp)) 3573 return true; 3574 3575 /* 3576 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3577 * handled by recovery and thus safe to ignore here. 3578 */ 3579 if (lsn == NULLCOMMITLSN) 3580 return true; 3581 3582 valid = xlog_valid_lsn(mp->m_log, lsn); 3583 3584 /* warn the user about what's gone wrong before verifier failure */ 3585 if (!valid) { 3586 spin_lock(&log->l_icloglock); 3587 xfs_warn(mp, 3588 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3589 "Please unmount and run xfs_repair (>= v4.3) to resolve.", 3590 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 3591 log->l_curr_cycle, log->l_curr_block); 3592 spin_unlock(&log->l_icloglock); 3593 } 3594 3595 return valid; 3596 } 3597