1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_log.h" 22 #include "xfs_trans.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_error.h" 27 #include "xfs_log_priv.h" 28 #include "xfs_buf_item.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_log_recover.h" 33 #include "xfs_trans_priv.h" 34 #include "xfs_dinode.h" 35 #include "xfs_inode.h" 36 #include "xfs_trace.h" 37 38 kmem_zone_t *xfs_log_ticket_zone; 39 40 /* Local miscellaneous function prototypes */ 41 STATIC int 42 xlog_commit_record( 43 struct xlog *log, 44 struct xlog_ticket *ticket, 45 struct xlog_in_core **iclog, 46 xfs_lsn_t *commitlsnp); 47 48 STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp, 49 xfs_buftarg_t *log_target, 50 xfs_daddr_t blk_offset, 51 int num_bblks); 52 STATIC int 53 xlog_space_left( 54 struct xlog *log, 55 atomic64_t *head); 56 STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog); 57 STATIC void xlog_dealloc_log(xlog_t *log); 58 59 /* local state machine functions */ 60 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); 61 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog); 62 STATIC int xlog_state_get_iclog_space(xlog_t *log, 63 int len, 64 xlog_in_core_t **iclog, 65 xlog_ticket_t *ticket, 66 int *continued_write, 67 int *logoffsetp); 68 STATIC int xlog_state_release_iclog(xlog_t *log, 69 xlog_in_core_t *iclog); 70 STATIC void xlog_state_switch_iclogs(xlog_t *log, 71 xlog_in_core_t *iclog, 72 int eventual_size); 73 STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog); 74 75 STATIC void 76 xlog_grant_push_ail( 77 struct xlog *log, 78 int need_bytes); 79 STATIC void xlog_regrant_reserve_log_space(xlog_t *log, 80 xlog_ticket_t *ticket); 81 STATIC void xlog_ungrant_log_space(xlog_t *log, 82 xlog_ticket_t *ticket); 83 84 #if defined(DEBUG) 85 STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr); 86 STATIC void 87 xlog_verify_grant_tail( 88 struct xlog *log); 89 STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog, 90 int count, boolean_t syncing); 91 STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog, 92 xfs_lsn_t tail_lsn); 93 #else 94 #define xlog_verify_dest_ptr(a,b) 95 #define xlog_verify_grant_tail(a) 96 #define xlog_verify_iclog(a,b,c,d) 97 #define xlog_verify_tail_lsn(a,b,c) 98 #endif 99 100 STATIC int xlog_iclogs_empty(xlog_t *log); 101 102 static void 103 xlog_grant_sub_space( 104 struct xlog *log, 105 atomic64_t *head, 106 int bytes) 107 { 108 int64_t head_val = atomic64_read(head); 109 int64_t new, old; 110 111 do { 112 int cycle, space; 113 114 xlog_crack_grant_head_val(head_val, &cycle, &space); 115 116 space -= bytes; 117 if (space < 0) { 118 space += log->l_logsize; 119 cycle--; 120 } 121 122 old = head_val; 123 new = xlog_assign_grant_head_val(cycle, space); 124 head_val = atomic64_cmpxchg(head, old, new); 125 } while (head_val != old); 126 } 127 128 static void 129 xlog_grant_add_space( 130 struct xlog *log, 131 atomic64_t *head, 132 int bytes) 133 { 134 int64_t head_val = atomic64_read(head); 135 int64_t new, old; 136 137 do { 138 int tmp; 139 int cycle, space; 140 141 xlog_crack_grant_head_val(head_val, &cycle, &space); 142 143 tmp = log->l_logsize - space; 144 if (tmp > bytes) 145 space += bytes; 146 else { 147 space = bytes - tmp; 148 cycle++; 149 } 150 151 old = head_val; 152 new = xlog_assign_grant_head_val(cycle, space); 153 head_val = atomic64_cmpxchg(head, old, new); 154 } while (head_val != old); 155 } 156 157 STATIC void 158 xlog_grant_head_init( 159 struct xlog_grant_head *head) 160 { 161 xlog_assign_grant_head(&head->grant, 1, 0); 162 INIT_LIST_HEAD(&head->waiters); 163 spin_lock_init(&head->lock); 164 } 165 166 STATIC void 167 xlog_grant_head_wake_all( 168 struct xlog_grant_head *head) 169 { 170 struct xlog_ticket *tic; 171 172 spin_lock(&head->lock); 173 list_for_each_entry(tic, &head->waiters, t_queue) 174 wake_up_process(tic->t_task); 175 spin_unlock(&head->lock); 176 } 177 178 static inline int 179 xlog_ticket_reservation( 180 struct xlog *log, 181 struct xlog_grant_head *head, 182 struct xlog_ticket *tic) 183 { 184 if (head == &log->l_write_head) { 185 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 186 return tic->t_unit_res; 187 } else { 188 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 189 return tic->t_unit_res * tic->t_cnt; 190 else 191 return tic->t_unit_res; 192 } 193 } 194 195 STATIC bool 196 xlog_grant_head_wake( 197 struct xlog *log, 198 struct xlog_grant_head *head, 199 int *free_bytes) 200 { 201 struct xlog_ticket *tic; 202 int need_bytes; 203 204 list_for_each_entry(tic, &head->waiters, t_queue) { 205 need_bytes = xlog_ticket_reservation(log, head, tic); 206 if (*free_bytes < need_bytes) 207 return false; 208 209 *free_bytes -= need_bytes; 210 trace_xfs_log_grant_wake_up(log, tic); 211 wake_up_process(tic->t_task); 212 } 213 214 return true; 215 } 216 217 STATIC int 218 xlog_grant_head_wait( 219 struct xlog *log, 220 struct xlog_grant_head *head, 221 struct xlog_ticket *tic, 222 int need_bytes) 223 { 224 list_add_tail(&tic->t_queue, &head->waiters); 225 226 do { 227 if (XLOG_FORCED_SHUTDOWN(log)) 228 goto shutdown; 229 xlog_grant_push_ail(log, need_bytes); 230 231 __set_current_state(TASK_UNINTERRUPTIBLE); 232 spin_unlock(&head->lock); 233 234 XFS_STATS_INC(xs_sleep_logspace); 235 236 trace_xfs_log_grant_sleep(log, tic); 237 schedule(); 238 trace_xfs_log_grant_wake(log, tic); 239 240 spin_lock(&head->lock); 241 if (XLOG_FORCED_SHUTDOWN(log)) 242 goto shutdown; 243 } while (xlog_space_left(log, &head->grant) < need_bytes); 244 245 list_del_init(&tic->t_queue); 246 return 0; 247 shutdown: 248 list_del_init(&tic->t_queue); 249 return XFS_ERROR(EIO); 250 } 251 252 /* 253 * Atomically get the log space required for a log ticket. 254 * 255 * Once a ticket gets put onto head->waiters, it will only return after the 256 * needed reservation is satisfied. 257 * 258 * This function is structured so that it has a lock free fast path. This is 259 * necessary because every new transaction reservation will come through this 260 * path. Hence any lock will be globally hot if we take it unconditionally on 261 * every pass. 262 * 263 * As tickets are only ever moved on and off head->waiters under head->lock, we 264 * only need to take that lock if we are going to add the ticket to the queue 265 * and sleep. We can avoid taking the lock if the ticket was never added to 266 * head->waiters because the t_queue list head will be empty and we hold the 267 * only reference to it so it can safely be checked unlocked. 268 */ 269 STATIC int 270 xlog_grant_head_check( 271 struct xlog *log, 272 struct xlog_grant_head *head, 273 struct xlog_ticket *tic, 274 int *need_bytes) 275 { 276 int free_bytes; 277 int error = 0; 278 279 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 280 281 /* 282 * If there are other waiters on the queue then give them a chance at 283 * logspace before us. Wake up the first waiters, if we do not wake 284 * up all the waiters then go to sleep waiting for more free space, 285 * otherwise try to get some space for this transaction. 286 */ 287 *need_bytes = xlog_ticket_reservation(log, head, tic); 288 free_bytes = xlog_space_left(log, &head->grant); 289 if (!list_empty_careful(&head->waiters)) { 290 spin_lock(&head->lock); 291 if (!xlog_grant_head_wake(log, head, &free_bytes) || 292 free_bytes < *need_bytes) { 293 error = xlog_grant_head_wait(log, head, tic, 294 *need_bytes); 295 } 296 spin_unlock(&head->lock); 297 } else if (free_bytes < *need_bytes) { 298 spin_lock(&head->lock); 299 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 300 spin_unlock(&head->lock); 301 } 302 303 return error; 304 } 305 306 static void 307 xlog_tic_reset_res(xlog_ticket_t *tic) 308 { 309 tic->t_res_num = 0; 310 tic->t_res_arr_sum = 0; 311 tic->t_res_num_ophdrs = 0; 312 } 313 314 static void 315 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 316 { 317 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 318 /* add to overflow and start again */ 319 tic->t_res_o_flow += tic->t_res_arr_sum; 320 tic->t_res_num = 0; 321 tic->t_res_arr_sum = 0; 322 } 323 324 tic->t_res_arr[tic->t_res_num].r_len = len; 325 tic->t_res_arr[tic->t_res_num].r_type = type; 326 tic->t_res_arr_sum += len; 327 tic->t_res_num++; 328 } 329 330 /* 331 * Replenish the byte reservation required by moving the grant write head. 332 */ 333 int 334 xfs_log_regrant( 335 struct xfs_mount *mp, 336 struct xlog_ticket *tic) 337 { 338 struct xlog *log = mp->m_log; 339 int need_bytes; 340 int error = 0; 341 342 if (XLOG_FORCED_SHUTDOWN(log)) 343 return XFS_ERROR(EIO); 344 345 XFS_STATS_INC(xs_try_logspace); 346 347 /* 348 * This is a new transaction on the ticket, so we need to change the 349 * transaction ID so that the next transaction has a different TID in 350 * the log. Just add one to the existing tid so that we can see chains 351 * of rolling transactions in the log easily. 352 */ 353 tic->t_tid++; 354 355 xlog_grant_push_ail(log, tic->t_unit_res); 356 357 tic->t_curr_res = tic->t_unit_res; 358 xlog_tic_reset_res(tic); 359 360 if (tic->t_cnt > 0) 361 return 0; 362 363 trace_xfs_log_regrant(log, tic); 364 365 error = xlog_grant_head_check(log, &log->l_write_head, tic, 366 &need_bytes); 367 if (error) 368 goto out_error; 369 370 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 371 trace_xfs_log_regrant_exit(log, tic); 372 xlog_verify_grant_tail(log); 373 return 0; 374 375 out_error: 376 /* 377 * If we are failing, make sure the ticket doesn't have any current 378 * reservations. We don't want to add this back when the ticket/ 379 * transaction gets cancelled. 380 */ 381 tic->t_curr_res = 0; 382 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 383 return error; 384 } 385 386 /* 387 * Reserve log space and return a ticket corresponding the reservation. 388 * 389 * Each reservation is going to reserve extra space for a log record header. 390 * When writes happen to the on-disk log, we don't subtract the length of the 391 * log record header from any reservation. By wasting space in each 392 * reservation, we prevent over allocation problems. 393 */ 394 int 395 xfs_log_reserve( 396 struct xfs_mount *mp, 397 int unit_bytes, 398 int cnt, 399 struct xlog_ticket **ticp, 400 __uint8_t client, 401 bool permanent, 402 uint t_type) 403 { 404 struct xlog *log = mp->m_log; 405 struct xlog_ticket *tic; 406 int need_bytes; 407 int error = 0; 408 409 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 410 411 if (XLOG_FORCED_SHUTDOWN(log)) 412 return XFS_ERROR(EIO); 413 414 XFS_STATS_INC(xs_try_logspace); 415 416 ASSERT(*ticp == NULL); 417 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 418 KM_SLEEP | KM_MAYFAIL); 419 if (!tic) 420 return XFS_ERROR(ENOMEM); 421 422 tic->t_trans_type = t_type; 423 *ticp = tic; 424 425 xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt); 426 427 trace_xfs_log_reserve(log, tic); 428 429 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 430 &need_bytes); 431 if (error) 432 goto out_error; 433 434 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 435 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 436 trace_xfs_log_reserve_exit(log, tic); 437 xlog_verify_grant_tail(log); 438 return 0; 439 440 out_error: 441 /* 442 * If we are failing, make sure the ticket doesn't have any current 443 * reservations. We don't want to add this back when the ticket/ 444 * transaction gets cancelled. 445 */ 446 tic->t_curr_res = 0; 447 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 448 return error; 449 } 450 451 452 /* 453 * NOTES: 454 * 455 * 1. currblock field gets updated at startup and after in-core logs 456 * marked as with WANT_SYNC. 457 */ 458 459 /* 460 * This routine is called when a user of a log manager ticket is done with 461 * the reservation. If the ticket was ever used, then a commit record for 462 * the associated transaction is written out as a log operation header with 463 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with 464 * a given ticket. If the ticket was one with a permanent reservation, then 465 * a few operations are done differently. Permanent reservation tickets by 466 * default don't release the reservation. They just commit the current 467 * transaction with the belief that the reservation is still needed. A flag 468 * must be passed in before permanent reservations are actually released. 469 * When these type of tickets are not released, they need to be set into 470 * the inited state again. By doing this, a start record will be written 471 * out when the next write occurs. 472 */ 473 xfs_lsn_t 474 xfs_log_done( 475 struct xfs_mount *mp, 476 struct xlog_ticket *ticket, 477 struct xlog_in_core **iclog, 478 uint flags) 479 { 480 struct xlog *log = mp->m_log; 481 xfs_lsn_t lsn = 0; 482 483 if (XLOG_FORCED_SHUTDOWN(log) || 484 /* 485 * If nothing was ever written, don't write out commit record. 486 * If we get an error, just continue and give back the log ticket. 487 */ 488 (((ticket->t_flags & XLOG_TIC_INITED) == 0) && 489 (xlog_commit_record(log, ticket, iclog, &lsn)))) { 490 lsn = (xfs_lsn_t) -1; 491 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) { 492 flags |= XFS_LOG_REL_PERM_RESERV; 493 } 494 } 495 496 497 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 || 498 (flags & XFS_LOG_REL_PERM_RESERV)) { 499 trace_xfs_log_done_nonperm(log, ticket); 500 501 /* 502 * Release ticket if not permanent reservation or a specific 503 * request has been made to release a permanent reservation. 504 */ 505 xlog_ungrant_log_space(log, ticket); 506 xfs_log_ticket_put(ticket); 507 } else { 508 trace_xfs_log_done_perm(log, ticket); 509 510 xlog_regrant_reserve_log_space(log, ticket); 511 /* If this ticket was a permanent reservation and we aren't 512 * trying to release it, reset the inited flags; so next time 513 * we write, a start record will be written out. 514 */ 515 ticket->t_flags |= XLOG_TIC_INITED; 516 } 517 518 return lsn; 519 } 520 521 /* 522 * Attaches a new iclog I/O completion callback routine during 523 * transaction commit. If the log is in error state, a non-zero 524 * return code is handed back and the caller is responsible for 525 * executing the callback at an appropriate time. 526 */ 527 int 528 xfs_log_notify( 529 struct xfs_mount *mp, 530 struct xlog_in_core *iclog, 531 xfs_log_callback_t *cb) 532 { 533 int abortflg; 534 535 spin_lock(&iclog->ic_callback_lock); 536 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); 537 if (!abortflg) { 538 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || 539 (iclog->ic_state == XLOG_STATE_WANT_SYNC)); 540 cb->cb_next = NULL; 541 *(iclog->ic_callback_tail) = cb; 542 iclog->ic_callback_tail = &(cb->cb_next); 543 } 544 spin_unlock(&iclog->ic_callback_lock); 545 return abortflg; 546 } 547 548 int 549 xfs_log_release_iclog( 550 struct xfs_mount *mp, 551 struct xlog_in_core *iclog) 552 { 553 if (xlog_state_release_iclog(mp->m_log, iclog)) { 554 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 555 return EIO; 556 } 557 558 return 0; 559 } 560 561 /* 562 * Mount a log filesystem 563 * 564 * mp - ubiquitous xfs mount point structure 565 * log_target - buftarg of on-disk log device 566 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 567 * num_bblocks - Number of BBSIZE blocks in on-disk log 568 * 569 * Return error or zero. 570 */ 571 int 572 xfs_log_mount( 573 xfs_mount_t *mp, 574 xfs_buftarg_t *log_target, 575 xfs_daddr_t blk_offset, 576 int num_bblks) 577 { 578 int error; 579 580 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) 581 xfs_notice(mp, "Mounting Filesystem"); 582 else { 583 xfs_notice(mp, 584 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent."); 585 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 586 } 587 588 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 589 if (IS_ERR(mp->m_log)) { 590 error = -PTR_ERR(mp->m_log); 591 goto out; 592 } 593 594 /* 595 * Initialize the AIL now we have a log. 596 */ 597 error = xfs_trans_ail_init(mp); 598 if (error) { 599 xfs_warn(mp, "AIL initialisation failed: error %d", error); 600 goto out_free_log; 601 } 602 mp->m_log->l_ailp = mp->m_ail; 603 604 /* 605 * skip log recovery on a norecovery mount. pretend it all 606 * just worked. 607 */ 608 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 609 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 610 611 if (readonly) 612 mp->m_flags &= ~XFS_MOUNT_RDONLY; 613 614 error = xlog_recover(mp->m_log); 615 616 if (readonly) 617 mp->m_flags |= XFS_MOUNT_RDONLY; 618 if (error) { 619 xfs_warn(mp, "log mount/recovery failed: error %d", 620 error); 621 goto out_destroy_ail; 622 } 623 } 624 625 /* Normal transactions can now occur */ 626 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 627 628 /* 629 * Now the log has been fully initialised and we know were our 630 * space grant counters are, we can initialise the permanent ticket 631 * needed for delayed logging to work. 632 */ 633 xlog_cil_init_post_recovery(mp->m_log); 634 635 return 0; 636 637 out_destroy_ail: 638 xfs_trans_ail_destroy(mp); 639 out_free_log: 640 xlog_dealloc_log(mp->m_log); 641 out: 642 return error; 643 } 644 645 /* 646 * Finish the recovery of the file system. This is separate from 647 * the xfs_log_mount() call, because it depends on the code in 648 * xfs_mountfs() to read in the root and real-time bitmap inodes 649 * between calling xfs_log_mount() and here. 650 * 651 * mp - ubiquitous xfs mount point structure 652 */ 653 int 654 xfs_log_mount_finish(xfs_mount_t *mp) 655 { 656 int error; 657 658 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) 659 error = xlog_recover_finish(mp->m_log); 660 else { 661 error = 0; 662 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 663 } 664 665 return error; 666 } 667 668 /* 669 * Final log writes as part of unmount. 670 * 671 * Mark the filesystem clean as unmount happens. Note that during relocation 672 * this routine needs to be executed as part of source-bag while the 673 * deallocation must not be done until source-end. 674 */ 675 676 /* 677 * Unmount record used to have a string "Unmount filesystem--" in the 678 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 679 * We just write the magic number now since that particular field isn't 680 * currently architecture converted and "nUmount" is a bit foo. 681 * As far as I know, there weren't any dependencies on the old behaviour. 682 */ 683 684 int 685 xfs_log_unmount_write(xfs_mount_t *mp) 686 { 687 xlog_t *log = mp->m_log; 688 xlog_in_core_t *iclog; 689 #ifdef DEBUG 690 xlog_in_core_t *first_iclog; 691 #endif 692 xlog_ticket_t *tic = NULL; 693 xfs_lsn_t lsn; 694 int error; 695 696 /* 697 * Don't write out unmount record on read-only mounts. 698 * Or, if we are doing a forced umount (typically because of IO errors). 699 */ 700 if (mp->m_flags & XFS_MOUNT_RDONLY) 701 return 0; 702 703 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 704 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); 705 706 #ifdef DEBUG 707 first_iclog = iclog = log->l_iclog; 708 do { 709 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 710 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); 711 ASSERT(iclog->ic_offset == 0); 712 } 713 iclog = iclog->ic_next; 714 } while (iclog != first_iclog); 715 #endif 716 if (! (XLOG_FORCED_SHUTDOWN(log))) { 717 error = xfs_log_reserve(mp, 600, 1, &tic, 718 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE); 719 if (!error) { 720 /* the data section must be 32 bit size aligned */ 721 struct { 722 __uint16_t magic; 723 __uint16_t pad1; 724 __uint32_t pad2; /* may as well make it 64 bits */ 725 } magic = { 726 .magic = XLOG_UNMOUNT_TYPE, 727 }; 728 struct xfs_log_iovec reg = { 729 .i_addr = &magic, 730 .i_len = sizeof(magic), 731 .i_type = XLOG_REG_TYPE_UNMOUNT, 732 }; 733 struct xfs_log_vec vec = { 734 .lv_niovecs = 1, 735 .lv_iovecp = ®, 736 }; 737 738 /* remove inited flag, and account for space used */ 739 tic->t_flags = 0; 740 tic->t_curr_res -= sizeof(magic); 741 error = xlog_write(log, &vec, tic, &lsn, 742 NULL, XLOG_UNMOUNT_TRANS); 743 /* 744 * At this point, we're umounting anyway, 745 * so there's no point in transitioning log state 746 * to IOERROR. Just continue... 747 */ 748 } 749 750 if (error) 751 xfs_alert(mp, "%s: unmount record failed", __func__); 752 753 754 spin_lock(&log->l_icloglock); 755 iclog = log->l_iclog; 756 atomic_inc(&iclog->ic_refcnt); 757 xlog_state_want_sync(log, iclog); 758 spin_unlock(&log->l_icloglock); 759 error = xlog_state_release_iclog(log, iclog); 760 761 spin_lock(&log->l_icloglock); 762 if (!(iclog->ic_state == XLOG_STATE_ACTIVE || 763 iclog->ic_state == XLOG_STATE_DIRTY)) { 764 if (!XLOG_FORCED_SHUTDOWN(log)) { 765 xlog_wait(&iclog->ic_force_wait, 766 &log->l_icloglock); 767 } else { 768 spin_unlock(&log->l_icloglock); 769 } 770 } else { 771 spin_unlock(&log->l_icloglock); 772 } 773 if (tic) { 774 trace_xfs_log_umount_write(log, tic); 775 xlog_ungrant_log_space(log, tic); 776 xfs_log_ticket_put(tic); 777 } 778 } else { 779 /* 780 * We're already in forced_shutdown mode, couldn't 781 * even attempt to write out the unmount transaction. 782 * 783 * Go through the motions of sync'ing and releasing 784 * the iclog, even though no I/O will actually happen, 785 * we need to wait for other log I/Os that may already 786 * be in progress. Do this as a separate section of 787 * code so we'll know if we ever get stuck here that 788 * we're in this odd situation of trying to unmount 789 * a file system that went into forced_shutdown as 790 * the result of an unmount.. 791 */ 792 spin_lock(&log->l_icloglock); 793 iclog = log->l_iclog; 794 atomic_inc(&iclog->ic_refcnt); 795 796 xlog_state_want_sync(log, iclog); 797 spin_unlock(&log->l_icloglock); 798 error = xlog_state_release_iclog(log, iclog); 799 800 spin_lock(&log->l_icloglock); 801 802 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE 803 || iclog->ic_state == XLOG_STATE_DIRTY 804 || iclog->ic_state == XLOG_STATE_IOERROR) ) { 805 806 xlog_wait(&iclog->ic_force_wait, 807 &log->l_icloglock); 808 } else { 809 spin_unlock(&log->l_icloglock); 810 } 811 } 812 813 return error; 814 } /* xfs_log_unmount_write */ 815 816 /* 817 * Deallocate log structures for unmount/relocation. 818 * 819 * We need to stop the aild from running before we destroy 820 * and deallocate the log as the aild references the log. 821 */ 822 void 823 xfs_log_unmount(xfs_mount_t *mp) 824 { 825 cancel_delayed_work_sync(&mp->m_sync_work); 826 xfs_trans_ail_destroy(mp); 827 xlog_dealloc_log(mp->m_log); 828 } 829 830 void 831 xfs_log_item_init( 832 struct xfs_mount *mp, 833 struct xfs_log_item *item, 834 int type, 835 const struct xfs_item_ops *ops) 836 { 837 item->li_mountp = mp; 838 item->li_ailp = mp->m_ail; 839 item->li_type = type; 840 item->li_ops = ops; 841 item->li_lv = NULL; 842 843 INIT_LIST_HEAD(&item->li_ail); 844 INIT_LIST_HEAD(&item->li_cil); 845 } 846 847 /* 848 * Wake up processes waiting for log space after we have moved the log tail. 849 */ 850 void 851 xfs_log_space_wake( 852 struct xfs_mount *mp) 853 { 854 struct xlog *log = mp->m_log; 855 int free_bytes; 856 857 if (XLOG_FORCED_SHUTDOWN(log)) 858 return; 859 860 if (!list_empty_careful(&log->l_write_head.waiters)) { 861 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 862 863 spin_lock(&log->l_write_head.lock); 864 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 865 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 866 spin_unlock(&log->l_write_head.lock); 867 } 868 869 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 870 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 871 872 spin_lock(&log->l_reserve_head.lock); 873 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 874 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 875 spin_unlock(&log->l_reserve_head.lock); 876 } 877 } 878 879 /* 880 * Determine if we have a transaction that has gone to disk 881 * that needs to be covered. To begin the transition to the idle state 882 * firstly the log needs to be idle (no AIL and nothing in the iclogs). 883 * If we are then in a state where covering is needed, the caller is informed 884 * that dummy transactions are required to move the log into the idle state. 885 * 886 * Because this is called as part of the sync process, we should also indicate 887 * that dummy transactions should be issued in anything but the covered or 888 * idle states. This ensures that the log tail is accurately reflected in 889 * the log at the end of the sync, hence if a crash occurrs avoids replay 890 * of transactions where the metadata is already on disk. 891 */ 892 int 893 xfs_log_need_covered(xfs_mount_t *mp) 894 { 895 int needed = 0; 896 xlog_t *log = mp->m_log; 897 898 if (!xfs_fs_writable(mp)) 899 return 0; 900 901 spin_lock(&log->l_icloglock); 902 switch (log->l_covered_state) { 903 case XLOG_STATE_COVER_DONE: 904 case XLOG_STATE_COVER_DONE2: 905 case XLOG_STATE_COVER_IDLE: 906 break; 907 case XLOG_STATE_COVER_NEED: 908 case XLOG_STATE_COVER_NEED2: 909 if (!xfs_ail_min_lsn(log->l_ailp) && 910 xlog_iclogs_empty(log)) { 911 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 912 log->l_covered_state = XLOG_STATE_COVER_DONE; 913 else 914 log->l_covered_state = XLOG_STATE_COVER_DONE2; 915 } 916 /* FALLTHRU */ 917 default: 918 needed = 1; 919 break; 920 } 921 spin_unlock(&log->l_icloglock); 922 return needed; 923 } 924 925 /* 926 * We may be holding the log iclog lock upon entering this routine. 927 */ 928 xfs_lsn_t 929 xlog_assign_tail_lsn_locked( 930 struct xfs_mount *mp) 931 { 932 struct xlog *log = mp->m_log; 933 struct xfs_log_item *lip; 934 xfs_lsn_t tail_lsn; 935 936 assert_spin_locked(&mp->m_ail->xa_lock); 937 938 /* 939 * To make sure we always have a valid LSN for the log tail we keep 940 * track of the last LSN which was committed in log->l_last_sync_lsn, 941 * and use that when the AIL was empty. 942 */ 943 lip = xfs_ail_min(mp->m_ail); 944 if (lip) 945 tail_lsn = lip->li_lsn; 946 else 947 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 948 atomic64_set(&log->l_tail_lsn, tail_lsn); 949 return tail_lsn; 950 } 951 952 xfs_lsn_t 953 xlog_assign_tail_lsn( 954 struct xfs_mount *mp) 955 { 956 xfs_lsn_t tail_lsn; 957 958 spin_lock(&mp->m_ail->xa_lock); 959 tail_lsn = xlog_assign_tail_lsn_locked(mp); 960 spin_unlock(&mp->m_ail->xa_lock); 961 962 return tail_lsn; 963 } 964 965 /* 966 * Return the space in the log between the tail and the head. The head 967 * is passed in the cycle/bytes formal parms. In the special case where 968 * the reserve head has wrapped passed the tail, this calculation is no 969 * longer valid. In this case, just return 0 which means there is no space 970 * in the log. This works for all places where this function is called 971 * with the reserve head. Of course, if the write head were to ever 972 * wrap the tail, we should blow up. Rather than catch this case here, 973 * we depend on other ASSERTions in other parts of the code. XXXmiken 974 * 975 * This code also handles the case where the reservation head is behind 976 * the tail. The details of this case are described below, but the end 977 * result is that we return the size of the log as the amount of space left. 978 */ 979 STATIC int 980 xlog_space_left( 981 struct xlog *log, 982 atomic64_t *head) 983 { 984 int free_bytes; 985 int tail_bytes; 986 int tail_cycle; 987 int head_cycle; 988 int head_bytes; 989 990 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 991 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 992 tail_bytes = BBTOB(tail_bytes); 993 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 994 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 995 else if (tail_cycle + 1 < head_cycle) 996 return 0; 997 else if (tail_cycle < head_cycle) { 998 ASSERT(tail_cycle == (head_cycle - 1)); 999 free_bytes = tail_bytes - head_bytes; 1000 } else { 1001 /* 1002 * The reservation head is behind the tail. 1003 * In this case we just want to return the size of the 1004 * log as the amount of space left. 1005 */ 1006 xfs_alert(log->l_mp, 1007 "xlog_space_left: head behind tail\n" 1008 " tail_cycle = %d, tail_bytes = %d\n" 1009 " GH cycle = %d, GH bytes = %d", 1010 tail_cycle, tail_bytes, head_cycle, head_bytes); 1011 ASSERT(0); 1012 free_bytes = log->l_logsize; 1013 } 1014 return free_bytes; 1015 } 1016 1017 1018 /* 1019 * Log function which is called when an io completes. 1020 * 1021 * The log manager needs its own routine, in order to control what 1022 * happens with the buffer after the write completes. 1023 */ 1024 void 1025 xlog_iodone(xfs_buf_t *bp) 1026 { 1027 xlog_in_core_t *iclog = bp->b_fspriv; 1028 xlog_t *l = iclog->ic_log; 1029 int aborted = 0; 1030 1031 /* 1032 * Race to shutdown the filesystem if we see an error. 1033 */ 1034 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp, 1035 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) { 1036 xfs_buf_ioerror_alert(bp, __func__); 1037 xfs_buf_stale(bp); 1038 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); 1039 /* 1040 * This flag will be propagated to the trans-committed 1041 * callback routines to let them know that the log-commit 1042 * didn't succeed. 1043 */ 1044 aborted = XFS_LI_ABORTED; 1045 } else if (iclog->ic_state & XLOG_STATE_IOERROR) { 1046 aborted = XFS_LI_ABORTED; 1047 } 1048 1049 /* log I/O is always issued ASYNC */ 1050 ASSERT(XFS_BUF_ISASYNC(bp)); 1051 xlog_state_done_syncing(iclog, aborted); 1052 /* 1053 * do not reference the buffer (bp) here as we could race 1054 * with it being freed after writing the unmount record to the 1055 * log. 1056 */ 1057 1058 } /* xlog_iodone */ 1059 1060 /* 1061 * Return size of each in-core log record buffer. 1062 * 1063 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1064 * 1065 * If the filesystem blocksize is too large, we may need to choose a 1066 * larger size since the directory code currently logs entire blocks. 1067 */ 1068 1069 STATIC void 1070 xlog_get_iclog_buffer_size(xfs_mount_t *mp, 1071 xlog_t *log) 1072 { 1073 int size; 1074 int xhdrs; 1075 1076 if (mp->m_logbufs <= 0) 1077 log->l_iclog_bufs = XLOG_MAX_ICLOGS; 1078 else 1079 log->l_iclog_bufs = mp->m_logbufs; 1080 1081 /* 1082 * Buffer size passed in from mount system call. 1083 */ 1084 if (mp->m_logbsize > 0) { 1085 size = log->l_iclog_size = mp->m_logbsize; 1086 log->l_iclog_size_log = 0; 1087 while (size != 1) { 1088 log->l_iclog_size_log++; 1089 size >>= 1; 1090 } 1091 1092 if (xfs_sb_version_haslogv2(&mp->m_sb)) { 1093 /* # headers = size / 32k 1094 * one header holds cycles from 32k of data 1095 */ 1096 1097 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; 1098 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) 1099 xhdrs++; 1100 log->l_iclog_hsize = xhdrs << BBSHIFT; 1101 log->l_iclog_heads = xhdrs; 1102 } else { 1103 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); 1104 log->l_iclog_hsize = BBSIZE; 1105 log->l_iclog_heads = 1; 1106 } 1107 goto done; 1108 } 1109 1110 /* All machines use 32kB buffers by default. */ 1111 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; 1112 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; 1113 1114 /* the default log size is 16k or 32k which is one header sector */ 1115 log->l_iclog_hsize = BBSIZE; 1116 log->l_iclog_heads = 1; 1117 1118 done: 1119 /* are we being asked to make the sizes selected above visible? */ 1120 if (mp->m_logbufs == 0) 1121 mp->m_logbufs = log->l_iclog_bufs; 1122 if (mp->m_logbsize == 0) 1123 mp->m_logbsize = log->l_iclog_size; 1124 } /* xlog_get_iclog_buffer_size */ 1125 1126 1127 /* 1128 * This routine initializes some of the log structure for a given mount point. 1129 * Its primary purpose is to fill in enough, so recovery can occur. However, 1130 * some other stuff may be filled in too. 1131 */ 1132 STATIC xlog_t * 1133 xlog_alloc_log(xfs_mount_t *mp, 1134 xfs_buftarg_t *log_target, 1135 xfs_daddr_t blk_offset, 1136 int num_bblks) 1137 { 1138 xlog_t *log; 1139 xlog_rec_header_t *head; 1140 xlog_in_core_t **iclogp; 1141 xlog_in_core_t *iclog, *prev_iclog=NULL; 1142 xfs_buf_t *bp; 1143 int i; 1144 int error = ENOMEM; 1145 uint log2_size = 0; 1146 1147 log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL); 1148 if (!log) { 1149 xfs_warn(mp, "Log allocation failed: No memory!"); 1150 goto out; 1151 } 1152 1153 log->l_mp = mp; 1154 log->l_targ = log_target; 1155 log->l_logsize = BBTOB(num_bblks); 1156 log->l_logBBstart = blk_offset; 1157 log->l_logBBsize = num_bblks; 1158 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1159 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1160 1161 log->l_prev_block = -1; 1162 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1163 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1164 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1165 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1166 1167 xlog_grant_head_init(&log->l_reserve_head); 1168 xlog_grant_head_init(&log->l_write_head); 1169 1170 error = EFSCORRUPTED; 1171 if (xfs_sb_version_hassector(&mp->m_sb)) { 1172 log2_size = mp->m_sb.sb_logsectlog; 1173 if (log2_size < BBSHIFT) { 1174 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1175 log2_size, BBSHIFT); 1176 goto out_free_log; 1177 } 1178 1179 log2_size -= BBSHIFT; 1180 if (log2_size > mp->m_sectbb_log) { 1181 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1182 log2_size, mp->m_sectbb_log); 1183 goto out_free_log; 1184 } 1185 1186 /* for larger sector sizes, must have v2 or external log */ 1187 if (log2_size && log->l_logBBstart > 0 && 1188 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1189 xfs_warn(mp, 1190 "log sector size (0x%x) invalid for configuration.", 1191 log2_size); 1192 goto out_free_log; 1193 } 1194 } 1195 log->l_sectBBsize = 1 << log2_size; 1196 1197 xlog_get_iclog_buffer_size(mp, log); 1198 1199 error = ENOMEM; 1200 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0); 1201 if (!bp) 1202 goto out_free_log; 1203 bp->b_iodone = xlog_iodone; 1204 ASSERT(xfs_buf_islocked(bp)); 1205 log->l_xbuf = bp; 1206 1207 spin_lock_init(&log->l_icloglock); 1208 init_waitqueue_head(&log->l_flush_wait); 1209 1210 iclogp = &log->l_iclog; 1211 /* 1212 * The amount of memory to allocate for the iclog structure is 1213 * rather funky due to the way the structure is defined. It is 1214 * done this way so that we can use different sizes for machines 1215 * with different amounts of memory. See the definition of 1216 * xlog_in_core_t in xfs_log_priv.h for details. 1217 */ 1218 ASSERT(log->l_iclog_size >= 4096); 1219 for (i=0; i < log->l_iclog_bufs; i++) { 1220 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); 1221 if (!*iclogp) 1222 goto out_free_iclog; 1223 1224 iclog = *iclogp; 1225 iclog->ic_prev = prev_iclog; 1226 prev_iclog = iclog; 1227 1228 bp = xfs_buf_get_uncached(mp->m_logdev_targp, 1229 BTOBB(log->l_iclog_size), 0); 1230 if (!bp) 1231 goto out_free_iclog; 1232 1233 bp->b_iodone = xlog_iodone; 1234 iclog->ic_bp = bp; 1235 iclog->ic_data = bp->b_addr; 1236 #ifdef DEBUG 1237 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header); 1238 #endif 1239 head = &iclog->ic_header; 1240 memset(head, 0, sizeof(xlog_rec_header_t)); 1241 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1242 head->h_version = cpu_to_be32( 1243 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1244 head->h_size = cpu_to_be32(log->l_iclog_size); 1245 /* new fields */ 1246 head->h_fmt = cpu_to_be32(XLOG_FMT); 1247 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1248 1249 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize; 1250 iclog->ic_state = XLOG_STATE_ACTIVE; 1251 iclog->ic_log = log; 1252 atomic_set(&iclog->ic_refcnt, 0); 1253 spin_lock_init(&iclog->ic_callback_lock); 1254 iclog->ic_callback_tail = &(iclog->ic_callback); 1255 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1256 1257 ASSERT(xfs_buf_islocked(iclog->ic_bp)); 1258 init_waitqueue_head(&iclog->ic_force_wait); 1259 init_waitqueue_head(&iclog->ic_write_wait); 1260 1261 iclogp = &iclog->ic_next; 1262 } 1263 *iclogp = log->l_iclog; /* complete ring */ 1264 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1265 1266 error = xlog_cil_init(log); 1267 if (error) 1268 goto out_free_iclog; 1269 return log; 1270 1271 out_free_iclog: 1272 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1273 prev_iclog = iclog->ic_next; 1274 if (iclog->ic_bp) 1275 xfs_buf_free(iclog->ic_bp); 1276 kmem_free(iclog); 1277 } 1278 spinlock_destroy(&log->l_icloglock); 1279 xfs_buf_free(log->l_xbuf); 1280 out_free_log: 1281 kmem_free(log); 1282 out: 1283 return ERR_PTR(-error); 1284 } /* xlog_alloc_log */ 1285 1286 1287 /* 1288 * Write out the commit record of a transaction associated with the given 1289 * ticket. Return the lsn of the commit record. 1290 */ 1291 STATIC int 1292 xlog_commit_record( 1293 struct xlog *log, 1294 struct xlog_ticket *ticket, 1295 struct xlog_in_core **iclog, 1296 xfs_lsn_t *commitlsnp) 1297 { 1298 struct xfs_mount *mp = log->l_mp; 1299 int error; 1300 struct xfs_log_iovec reg = { 1301 .i_addr = NULL, 1302 .i_len = 0, 1303 .i_type = XLOG_REG_TYPE_COMMIT, 1304 }; 1305 struct xfs_log_vec vec = { 1306 .lv_niovecs = 1, 1307 .lv_iovecp = ®, 1308 }; 1309 1310 ASSERT_ALWAYS(iclog); 1311 error = xlog_write(log, &vec, ticket, commitlsnp, iclog, 1312 XLOG_COMMIT_TRANS); 1313 if (error) 1314 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); 1315 return error; 1316 } 1317 1318 /* 1319 * Push on the buffer cache code if we ever use more than 75% of the on-disk 1320 * log space. This code pushes on the lsn which would supposedly free up 1321 * the 25% which we want to leave free. We may need to adopt a policy which 1322 * pushes on an lsn which is further along in the log once we reach the high 1323 * water mark. In this manner, we would be creating a low water mark. 1324 */ 1325 STATIC void 1326 xlog_grant_push_ail( 1327 struct xlog *log, 1328 int need_bytes) 1329 { 1330 xfs_lsn_t threshold_lsn = 0; 1331 xfs_lsn_t last_sync_lsn; 1332 int free_blocks; 1333 int free_bytes; 1334 int threshold_block; 1335 int threshold_cycle; 1336 int free_threshold; 1337 1338 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1339 1340 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1341 free_blocks = BTOBBT(free_bytes); 1342 1343 /* 1344 * Set the threshold for the minimum number of free blocks in the 1345 * log to the maximum of what the caller needs, one quarter of the 1346 * log, and 256 blocks. 1347 */ 1348 free_threshold = BTOBB(need_bytes); 1349 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); 1350 free_threshold = MAX(free_threshold, 256); 1351 if (free_blocks >= free_threshold) 1352 return; 1353 1354 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1355 &threshold_block); 1356 threshold_block += free_threshold; 1357 if (threshold_block >= log->l_logBBsize) { 1358 threshold_block -= log->l_logBBsize; 1359 threshold_cycle += 1; 1360 } 1361 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1362 threshold_block); 1363 /* 1364 * Don't pass in an lsn greater than the lsn of the last 1365 * log record known to be on disk. Use a snapshot of the last sync lsn 1366 * so that it doesn't change between the compare and the set. 1367 */ 1368 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1369 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1370 threshold_lsn = last_sync_lsn; 1371 1372 /* 1373 * Get the transaction layer to kick the dirty buffers out to 1374 * disk asynchronously. No point in trying to do this if 1375 * the filesystem is shutting down. 1376 */ 1377 if (!XLOG_FORCED_SHUTDOWN(log)) 1378 xfs_ail_push(log->l_ailp, threshold_lsn); 1379 } 1380 1381 /* 1382 * The bdstrat callback function for log bufs. This gives us a central 1383 * place to trap bufs in case we get hit by a log I/O error and need to 1384 * shutdown. Actually, in practice, even when we didn't get a log error, 1385 * we transition the iclogs to IOERROR state *after* flushing all existing 1386 * iclogs to disk. This is because we don't want anymore new transactions to be 1387 * started or completed afterwards. 1388 */ 1389 STATIC int 1390 xlog_bdstrat( 1391 struct xfs_buf *bp) 1392 { 1393 struct xlog_in_core *iclog = bp->b_fspriv; 1394 1395 if (iclog->ic_state & XLOG_STATE_IOERROR) { 1396 xfs_buf_ioerror(bp, EIO); 1397 xfs_buf_stale(bp); 1398 xfs_buf_ioend(bp, 0); 1399 /* 1400 * It would seem logical to return EIO here, but we rely on 1401 * the log state machine to propagate I/O errors instead of 1402 * doing it here. 1403 */ 1404 return 0; 1405 } 1406 1407 xfs_buf_iorequest(bp); 1408 return 0; 1409 } 1410 1411 /* 1412 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1413 * fashion. Previously, we should have moved the current iclog 1414 * ptr in the log to point to the next available iclog. This allows further 1415 * write to continue while this code syncs out an iclog ready to go. 1416 * Before an in-core log can be written out, the data section must be scanned 1417 * to save away the 1st word of each BBSIZE block into the header. We replace 1418 * it with the current cycle count. Each BBSIZE block is tagged with the 1419 * cycle count because there in an implicit assumption that drives will 1420 * guarantee that entire 512 byte blocks get written at once. In other words, 1421 * we can't have part of a 512 byte block written and part not written. By 1422 * tagging each block, we will know which blocks are valid when recovering 1423 * after an unclean shutdown. 1424 * 1425 * This routine is single threaded on the iclog. No other thread can be in 1426 * this routine with the same iclog. Changing contents of iclog can there- 1427 * fore be done without grabbing the state machine lock. Updating the global 1428 * log will require grabbing the lock though. 1429 * 1430 * The entire log manager uses a logical block numbering scheme. Only 1431 * log_sync (and then only bwrite()) know about the fact that the log may 1432 * not start with block zero on a given device. The log block start offset 1433 * is added immediately before calling bwrite(). 1434 */ 1435 1436 STATIC int 1437 xlog_sync(xlog_t *log, 1438 xlog_in_core_t *iclog) 1439 { 1440 xfs_caddr_t dptr; /* pointer to byte sized element */ 1441 xfs_buf_t *bp; 1442 int i; 1443 uint count; /* byte count of bwrite */ 1444 uint count_init; /* initial count before roundup */ 1445 int roundoff; /* roundoff to BB or stripe */ 1446 int split = 0; /* split write into two regions */ 1447 int error; 1448 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); 1449 1450 XFS_STATS_INC(xs_log_writes); 1451 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1452 1453 /* Add for LR header */ 1454 count_init = log->l_iclog_hsize + iclog->ic_offset; 1455 1456 /* Round out the log write size */ 1457 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { 1458 /* we have a v2 stripe unit to use */ 1459 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1460 } else { 1461 count = BBTOB(BTOBB(count_init)); 1462 } 1463 roundoff = count - count_init; 1464 ASSERT(roundoff >= 0); 1465 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 1466 roundoff < log->l_mp->m_sb.sb_logsunit) 1467 || 1468 (log->l_mp->m_sb.sb_logsunit <= 1 && 1469 roundoff < BBTOB(1))); 1470 1471 /* move grant heads by roundoff in sync */ 1472 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1473 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1474 1475 /* put cycle number in every block */ 1476 xlog_pack_data(log, iclog, roundoff); 1477 1478 /* real byte length */ 1479 if (v2) { 1480 iclog->ic_header.h_len = 1481 cpu_to_be32(iclog->ic_offset + roundoff); 1482 } else { 1483 iclog->ic_header.h_len = 1484 cpu_to_be32(iclog->ic_offset); 1485 } 1486 1487 bp = iclog->ic_bp; 1488 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); 1489 1490 XFS_STATS_ADD(xs_log_blocks, BTOBB(count)); 1491 1492 /* Do we need to split this write into 2 parts? */ 1493 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { 1494 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); 1495 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); 1496 iclog->ic_bwritecnt = 2; /* split into 2 writes */ 1497 } else { 1498 iclog->ic_bwritecnt = 1; 1499 } 1500 bp->b_io_length = BTOBB(count); 1501 bp->b_fspriv = iclog; 1502 XFS_BUF_ZEROFLAGS(bp); 1503 XFS_BUF_ASYNC(bp); 1504 bp->b_flags |= XBF_SYNCIO; 1505 1506 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) { 1507 bp->b_flags |= XBF_FUA; 1508 1509 /* 1510 * Flush the data device before flushing the log to make 1511 * sure all meta data written back from the AIL actually made 1512 * it to disk before stamping the new log tail LSN into the 1513 * log buffer. For an external log we need to issue the 1514 * flush explicitly, and unfortunately synchronously here; 1515 * for an internal log we can simply use the block layer 1516 * state machine for preflushes. 1517 */ 1518 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) 1519 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1520 else 1521 bp->b_flags |= XBF_FLUSH; 1522 } 1523 1524 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1525 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1526 1527 xlog_verify_iclog(log, iclog, count, B_TRUE); 1528 1529 /* account for log which doesn't start at block #0 */ 1530 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1531 /* 1532 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem 1533 * is shutting down. 1534 */ 1535 XFS_BUF_WRITE(bp); 1536 1537 error = xlog_bdstrat(bp); 1538 if (error) { 1539 xfs_buf_ioerror_alert(bp, "xlog_sync"); 1540 return error; 1541 } 1542 if (split) { 1543 bp = iclog->ic_log->l_xbuf; 1544 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ 1545 xfs_buf_associate_memory(bp, 1546 (char *)&iclog->ic_header + count, split); 1547 bp->b_fspriv = iclog; 1548 XFS_BUF_ZEROFLAGS(bp); 1549 XFS_BUF_ASYNC(bp); 1550 bp->b_flags |= XBF_SYNCIO; 1551 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) 1552 bp->b_flags |= XBF_FUA; 1553 dptr = bp->b_addr; 1554 /* 1555 * Bump the cycle numbers at the start of each block 1556 * since this part of the buffer is at the start of 1557 * a new cycle. Watch out for the header magic number 1558 * case, though. 1559 */ 1560 for (i = 0; i < split; i += BBSIZE) { 1561 be32_add_cpu((__be32 *)dptr, 1); 1562 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM) 1563 be32_add_cpu((__be32 *)dptr, 1); 1564 dptr += BBSIZE; 1565 } 1566 1567 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); 1568 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); 1569 1570 /* account for internal log which doesn't start at block #0 */ 1571 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); 1572 XFS_BUF_WRITE(bp); 1573 error = xlog_bdstrat(bp); 1574 if (error) { 1575 xfs_buf_ioerror_alert(bp, "xlog_sync (split)"); 1576 return error; 1577 } 1578 } 1579 return 0; 1580 } /* xlog_sync */ 1581 1582 1583 /* 1584 * Deallocate a log structure 1585 */ 1586 STATIC void 1587 xlog_dealloc_log(xlog_t *log) 1588 { 1589 xlog_in_core_t *iclog, *next_iclog; 1590 int i; 1591 1592 xlog_cil_destroy(log); 1593 1594 /* 1595 * always need to ensure that the extra buffer does not point to memory 1596 * owned by another log buffer before we free it. 1597 */ 1598 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size)); 1599 xfs_buf_free(log->l_xbuf); 1600 1601 iclog = log->l_iclog; 1602 for (i=0; i<log->l_iclog_bufs; i++) { 1603 xfs_buf_free(iclog->ic_bp); 1604 next_iclog = iclog->ic_next; 1605 kmem_free(iclog); 1606 iclog = next_iclog; 1607 } 1608 spinlock_destroy(&log->l_icloglock); 1609 1610 log->l_mp->m_log = NULL; 1611 kmem_free(log); 1612 } /* xlog_dealloc_log */ 1613 1614 /* 1615 * Update counters atomically now that memcpy is done. 1616 */ 1617 /* ARGSUSED */ 1618 static inline void 1619 xlog_state_finish_copy(xlog_t *log, 1620 xlog_in_core_t *iclog, 1621 int record_cnt, 1622 int copy_bytes) 1623 { 1624 spin_lock(&log->l_icloglock); 1625 1626 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1627 iclog->ic_offset += copy_bytes; 1628 1629 spin_unlock(&log->l_icloglock); 1630 } /* xlog_state_finish_copy */ 1631 1632 1633 1634 1635 /* 1636 * print out info relating to regions written which consume 1637 * the reservation 1638 */ 1639 void 1640 xlog_print_tic_res( 1641 struct xfs_mount *mp, 1642 struct xlog_ticket *ticket) 1643 { 1644 uint i; 1645 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 1646 1647 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 1648 static char *res_type_str[XLOG_REG_TYPE_MAX] = { 1649 "bformat", 1650 "bchunk", 1651 "efi_format", 1652 "efd_format", 1653 "iformat", 1654 "icore", 1655 "iext", 1656 "ibroot", 1657 "ilocal", 1658 "iattr_ext", 1659 "iattr_broot", 1660 "iattr_local", 1661 "qformat", 1662 "dquot", 1663 "quotaoff", 1664 "LR header", 1665 "unmount", 1666 "commit", 1667 "trans header" 1668 }; 1669 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = { 1670 "SETATTR_NOT_SIZE", 1671 "SETATTR_SIZE", 1672 "INACTIVE", 1673 "CREATE", 1674 "CREATE_TRUNC", 1675 "TRUNCATE_FILE", 1676 "REMOVE", 1677 "LINK", 1678 "RENAME", 1679 "MKDIR", 1680 "RMDIR", 1681 "SYMLINK", 1682 "SET_DMATTRS", 1683 "GROWFS", 1684 "STRAT_WRITE", 1685 "DIOSTRAT", 1686 "WRITE_SYNC", 1687 "WRITEID", 1688 "ADDAFORK", 1689 "ATTRINVAL", 1690 "ATRUNCATE", 1691 "ATTR_SET", 1692 "ATTR_RM", 1693 "ATTR_FLAG", 1694 "CLEAR_AGI_BUCKET", 1695 "QM_SBCHANGE", 1696 "DUMMY1", 1697 "DUMMY2", 1698 "QM_QUOTAOFF", 1699 "QM_DQALLOC", 1700 "QM_SETQLIM", 1701 "QM_DQCLUSTER", 1702 "QM_QINOCREATE", 1703 "QM_QUOTAOFF_END", 1704 "SB_UNIT", 1705 "FSYNC_TS", 1706 "GROWFSRT_ALLOC", 1707 "GROWFSRT_ZERO", 1708 "GROWFSRT_FREE", 1709 "SWAPEXT" 1710 }; 1711 1712 xfs_warn(mp, 1713 "xlog_write: reservation summary:\n" 1714 " trans type = %s (%u)\n" 1715 " unit res = %d bytes\n" 1716 " current res = %d bytes\n" 1717 " total reg = %u bytes (o/flow = %u bytes)\n" 1718 " ophdrs = %u (ophdr space = %u bytes)\n" 1719 " ophdr + reg = %u bytes\n" 1720 " num regions = %u\n", 1721 ((ticket->t_trans_type <= 0 || 1722 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ? 1723 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]), 1724 ticket->t_trans_type, 1725 ticket->t_unit_res, 1726 ticket->t_curr_res, 1727 ticket->t_res_arr_sum, ticket->t_res_o_flow, 1728 ticket->t_res_num_ophdrs, ophdr_spc, 1729 ticket->t_res_arr_sum + 1730 ticket->t_res_o_flow + ophdr_spc, 1731 ticket->t_res_num); 1732 1733 for (i = 0; i < ticket->t_res_num; i++) { 1734 uint r_type = ticket->t_res_arr[i].r_type; 1735 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i, 1736 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 1737 "bad-rtype" : res_type_str[r_type-1]), 1738 ticket->t_res_arr[i].r_len); 1739 } 1740 1741 xfs_alert_tag(mp, XFS_PTAG_LOGRES, 1742 "xlog_write: reservation ran out. Need to up reservation"); 1743 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1744 } 1745 1746 /* 1747 * Calculate the potential space needed by the log vector. Each region gets 1748 * its own xlog_op_header_t and may need to be double word aligned. 1749 */ 1750 static int 1751 xlog_write_calc_vec_length( 1752 struct xlog_ticket *ticket, 1753 struct xfs_log_vec *log_vector) 1754 { 1755 struct xfs_log_vec *lv; 1756 int headers = 0; 1757 int len = 0; 1758 int i; 1759 1760 /* acct for start rec of xact */ 1761 if (ticket->t_flags & XLOG_TIC_INITED) 1762 headers++; 1763 1764 for (lv = log_vector; lv; lv = lv->lv_next) { 1765 headers += lv->lv_niovecs; 1766 1767 for (i = 0; i < lv->lv_niovecs; i++) { 1768 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 1769 1770 len += vecp->i_len; 1771 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 1772 } 1773 } 1774 1775 ticket->t_res_num_ophdrs += headers; 1776 len += headers * sizeof(struct xlog_op_header); 1777 1778 return len; 1779 } 1780 1781 /* 1782 * If first write for transaction, insert start record We can't be trying to 1783 * commit if we are inited. We can't have any "partial_copy" if we are inited. 1784 */ 1785 static int 1786 xlog_write_start_rec( 1787 struct xlog_op_header *ophdr, 1788 struct xlog_ticket *ticket) 1789 { 1790 if (!(ticket->t_flags & XLOG_TIC_INITED)) 1791 return 0; 1792 1793 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 1794 ophdr->oh_clientid = ticket->t_clientid; 1795 ophdr->oh_len = 0; 1796 ophdr->oh_flags = XLOG_START_TRANS; 1797 ophdr->oh_res2 = 0; 1798 1799 ticket->t_flags &= ~XLOG_TIC_INITED; 1800 1801 return sizeof(struct xlog_op_header); 1802 } 1803 1804 static xlog_op_header_t * 1805 xlog_write_setup_ophdr( 1806 struct xlog *log, 1807 struct xlog_op_header *ophdr, 1808 struct xlog_ticket *ticket, 1809 uint flags) 1810 { 1811 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 1812 ophdr->oh_clientid = ticket->t_clientid; 1813 ophdr->oh_res2 = 0; 1814 1815 /* are we copying a commit or unmount record? */ 1816 ophdr->oh_flags = flags; 1817 1818 /* 1819 * We've seen logs corrupted with bad transaction client ids. This 1820 * makes sure that XFS doesn't generate them on. Turn this into an EIO 1821 * and shut down the filesystem. 1822 */ 1823 switch (ophdr->oh_clientid) { 1824 case XFS_TRANSACTION: 1825 case XFS_VOLUME: 1826 case XFS_LOG: 1827 break; 1828 default: 1829 xfs_warn(log->l_mp, 1830 "Bad XFS transaction clientid 0x%x in ticket 0x%p", 1831 ophdr->oh_clientid, ticket); 1832 return NULL; 1833 } 1834 1835 return ophdr; 1836 } 1837 1838 /* 1839 * Set up the parameters of the region copy into the log. This has 1840 * to handle region write split across multiple log buffers - this 1841 * state is kept external to this function so that this code can 1842 * can be written in an obvious, self documenting manner. 1843 */ 1844 static int 1845 xlog_write_setup_copy( 1846 struct xlog_ticket *ticket, 1847 struct xlog_op_header *ophdr, 1848 int space_available, 1849 int space_required, 1850 int *copy_off, 1851 int *copy_len, 1852 int *last_was_partial_copy, 1853 int *bytes_consumed) 1854 { 1855 int still_to_copy; 1856 1857 still_to_copy = space_required - *bytes_consumed; 1858 *copy_off = *bytes_consumed; 1859 1860 if (still_to_copy <= space_available) { 1861 /* write of region completes here */ 1862 *copy_len = still_to_copy; 1863 ophdr->oh_len = cpu_to_be32(*copy_len); 1864 if (*last_was_partial_copy) 1865 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 1866 *last_was_partial_copy = 0; 1867 *bytes_consumed = 0; 1868 return 0; 1869 } 1870 1871 /* partial write of region, needs extra log op header reservation */ 1872 *copy_len = space_available; 1873 ophdr->oh_len = cpu_to_be32(*copy_len); 1874 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 1875 if (*last_was_partial_copy) 1876 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 1877 *bytes_consumed += *copy_len; 1878 (*last_was_partial_copy)++; 1879 1880 /* account for new log op header */ 1881 ticket->t_curr_res -= sizeof(struct xlog_op_header); 1882 ticket->t_res_num_ophdrs++; 1883 1884 return sizeof(struct xlog_op_header); 1885 } 1886 1887 static int 1888 xlog_write_copy_finish( 1889 struct xlog *log, 1890 struct xlog_in_core *iclog, 1891 uint flags, 1892 int *record_cnt, 1893 int *data_cnt, 1894 int *partial_copy, 1895 int *partial_copy_len, 1896 int log_offset, 1897 struct xlog_in_core **commit_iclog) 1898 { 1899 if (*partial_copy) { 1900 /* 1901 * This iclog has already been marked WANT_SYNC by 1902 * xlog_state_get_iclog_space. 1903 */ 1904 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 1905 *record_cnt = 0; 1906 *data_cnt = 0; 1907 return xlog_state_release_iclog(log, iclog); 1908 } 1909 1910 *partial_copy = 0; 1911 *partial_copy_len = 0; 1912 1913 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 1914 /* no more space in this iclog - push it. */ 1915 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 1916 *record_cnt = 0; 1917 *data_cnt = 0; 1918 1919 spin_lock(&log->l_icloglock); 1920 xlog_state_want_sync(log, iclog); 1921 spin_unlock(&log->l_icloglock); 1922 1923 if (!commit_iclog) 1924 return xlog_state_release_iclog(log, iclog); 1925 ASSERT(flags & XLOG_COMMIT_TRANS); 1926 *commit_iclog = iclog; 1927 } 1928 1929 return 0; 1930 } 1931 1932 /* 1933 * Write some region out to in-core log 1934 * 1935 * This will be called when writing externally provided regions or when 1936 * writing out a commit record for a given transaction. 1937 * 1938 * General algorithm: 1939 * 1. Find total length of this write. This may include adding to the 1940 * lengths passed in. 1941 * 2. Check whether we violate the tickets reservation. 1942 * 3. While writing to this iclog 1943 * A. Reserve as much space in this iclog as can get 1944 * B. If this is first write, save away start lsn 1945 * C. While writing this region: 1946 * 1. If first write of transaction, write start record 1947 * 2. Write log operation header (header per region) 1948 * 3. Find out if we can fit entire region into this iclog 1949 * 4. Potentially, verify destination memcpy ptr 1950 * 5. Memcpy (partial) region 1951 * 6. If partial copy, release iclog; otherwise, continue 1952 * copying more regions into current iclog 1953 * 4. Mark want sync bit (in simulation mode) 1954 * 5. Release iclog for potential flush to on-disk log. 1955 * 1956 * ERRORS: 1957 * 1. Panic if reservation is overrun. This should never happen since 1958 * reservation amounts are generated internal to the filesystem. 1959 * NOTES: 1960 * 1. Tickets are single threaded data structures. 1961 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 1962 * syncing routine. When a single log_write region needs to span 1963 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 1964 * on all log operation writes which don't contain the end of the 1965 * region. The XLOG_END_TRANS bit is used for the in-core log 1966 * operation which contains the end of the continued log_write region. 1967 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 1968 * we don't really know exactly how much space will be used. As a result, 1969 * we don't update ic_offset until the end when we know exactly how many 1970 * bytes have been written out. 1971 */ 1972 int 1973 xlog_write( 1974 struct xlog *log, 1975 struct xfs_log_vec *log_vector, 1976 struct xlog_ticket *ticket, 1977 xfs_lsn_t *start_lsn, 1978 struct xlog_in_core **commit_iclog, 1979 uint flags) 1980 { 1981 struct xlog_in_core *iclog = NULL; 1982 struct xfs_log_iovec *vecp; 1983 struct xfs_log_vec *lv; 1984 int len; 1985 int index; 1986 int partial_copy = 0; 1987 int partial_copy_len = 0; 1988 int contwr = 0; 1989 int record_cnt = 0; 1990 int data_cnt = 0; 1991 int error; 1992 1993 *start_lsn = 0; 1994 1995 len = xlog_write_calc_vec_length(ticket, log_vector); 1996 1997 /* 1998 * Region headers and bytes are already accounted for. 1999 * We only need to take into account start records and 2000 * split regions in this function. 2001 */ 2002 if (ticket->t_flags & XLOG_TIC_INITED) 2003 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2004 2005 /* 2006 * Commit record headers need to be accounted for. These 2007 * come in as separate writes so are easy to detect. 2008 */ 2009 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) 2010 ticket->t_curr_res -= sizeof(xlog_op_header_t); 2011 2012 if (ticket->t_curr_res < 0) 2013 xlog_print_tic_res(log->l_mp, ticket); 2014 2015 index = 0; 2016 lv = log_vector; 2017 vecp = lv->lv_iovecp; 2018 while (lv && index < lv->lv_niovecs) { 2019 void *ptr; 2020 int log_offset; 2021 2022 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2023 &contwr, &log_offset); 2024 if (error) 2025 return error; 2026 2027 ASSERT(log_offset <= iclog->ic_size - 1); 2028 ptr = iclog->ic_datap + log_offset; 2029 2030 /* start_lsn is the first lsn written to. That's all we need. */ 2031 if (!*start_lsn) 2032 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2033 2034 /* 2035 * This loop writes out as many regions as can fit in the amount 2036 * of space which was allocated by xlog_state_get_iclog_space(). 2037 */ 2038 while (lv && index < lv->lv_niovecs) { 2039 struct xfs_log_iovec *reg = &vecp[index]; 2040 struct xlog_op_header *ophdr; 2041 int start_rec_copy; 2042 int copy_len; 2043 int copy_off; 2044 2045 ASSERT(reg->i_len % sizeof(__int32_t) == 0); 2046 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); 2047 2048 start_rec_copy = xlog_write_start_rec(ptr, ticket); 2049 if (start_rec_copy) { 2050 record_cnt++; 2051 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2052 start_rec_copy); 2053 } 2054 2055 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2056 if (!ophdr) 2057 return XFS_ERROR(EIO); 2058 2059 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2060 sizeof(struct xlog_op_header)); 2061 2062 len += xlog_write_setup_copy(ticket, ophdr, 2063 iclog->ic_size-log_offset, 2064 reg->i_len, 2065 ©_off, ©_len, 2066 &partial_copy, 2067 &partial_copy_len); 2068 xlog_verify_dest_ptr(log, ptr); 2069 2070 /* copy region */ 2071 ASSERT(copy_len >= 0); 2072 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2073 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len); 2074 2075 copy_len += start_rec_copy + sizeof(xlog_op_header_t); 2076 record_cnt++; 2077 data_cnt += contwr ? copy_len : 0; 2078 2079 error = xlog_write_copy_finish(log, iclog, flags, 2080 &record_cnt, &data_cnt, 2081 &partial_copy, 2082 &partial_copy_len, 2083 log_offset, 2084 commit_iclog); 2085 if (error) 2086 return error; 2087 2088 /* 2089 * if we had a partial copy, we need to get more iclog 2090 * space but we don't want to increment the region 2091 * index because there is still more is this region to 2092 * write. 2093 * 2094 * If we completed writing this region, and we flushed 2095 * the iclog (indicated by resetting of the record 2096 * count), then we also need to get more log space. If 2097 * this was the last record, though, we are done and 2098 * can just return. 2099 */ 2100 if (partial_copy) 2101 break; 2102 2103 if (++index == lv->lv_niovecs) { 2104 lv = lv->lv_next; 2105 index = 0; 2106 if (lv) 2107 vecp = lv->lv_iovecp; 2108 } 2109 if (record_cnt == 0) { 2110 if (!lv) 2111 return 0; 2112 break; 2113 } 2114 } 2115 } 2116 2117 ASSERT(len == 0); 2118 2119 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2120 if (!commit_iclog) 2121 return xlog_state_release_iclog(log, iclog); 2122 2123 ASSERT(flags & XLOG_COMMIT_TRANS); 2124 *commit_iclog = iclog; 2125 return 0; 2126 } 2127 2128 2129 /***************************************************************************** 2130 * 2131 * State Machine functions 2132 * 2133 ***************************************************************************** 2134 */ 2135 2136 /* Clean iclogs starting from the head. This ordering must be 2137 * maintained, so an iclog doesn't become ACTIVE beyond one that 2138 * is SYNCING. This is also required to maintain the notion that we use 2139 * a ordered wait queue to hold off would be writers to the log when every 2140 * iclog is trying to sync to disk. 2141 * 2142 * State Change: DIRTY -> ACTIVE 2143 */ 2144 STATIC void 2145 xlog_state_clean_log(xlog_t *log) 2146 { 2147 xlog_in_core_t *iclog; 2148 int changed = 0; 2149 2150 iclog = log->l_iclog; 2151 do { 2152 if (iclog->ic_state == XLOG_STATE_DIRTY) { 2153 iclog->ic_state = XLOG_STATE_ACTIVE; 2154 iclog->ic_offset = 0; 2155 ASSERT(iclog->ic_callback == NULL); 2156 /* 2157 * If the number of ops in this iclog indicate it just 2158 * contains the dummy transaction, we can 2159 * change state into IDLE (the second time around). 2160 * Otherwise we should change the state into 2161 * NEED a dummy. 2162 * We don't need to cover the dummy. 2163 */ 2164 if (!changed && 2165 (be32_to_cpu(iclog->ic_header.h_num_logops) == 2166 XLOG_COVER_OPS)) { 2167 changed = 1; 2168 } else { 2169 /* 2170 * We have two dirty iclogs so start over 2171 * This could also be num of ops indicates 2172 * this is not the dummy going out. 2173 */ 2174 changed = 2; 2175 } 2176 iclog->ic_header.h_num_logops = 0; 2177 memset(iclog->ic_header.h_cycle_data, 0, 2178 sizeof(iclog->ic_header.h_cycle_data)); 2179 iclog->ic_header.h_lsn = 0; 2180 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) 2181 /* do nothing */; 2182 else 2183 break; /* stop cleaning */ 2184 iclog = iclog->ic_next; 2185 } while (iclog != log->l_iclog); 2186 2187 /* log is locked when we are called */ 2188 /* 2189 * Change state for the dummy log recording. 2190 * We usually go to NEED. But we go to NEED2 if the changed indicates 2191 * we are done writing the dummy record. 2192 * If we are done with the second dummy recored (DONE2), then 2193 * we go to IDLE. 2194 */ 2195 if (changed) { 2196 switch (log->l_covered_state) { 2197 case XLOG_STATE_COVER_IDLE: 2198 case XLOG_STATE_COVER_NEED: 2199 case XLOG_STATE_COVER_NEED2: 2200 log->l_covered_state = XLOG_STATE_COVER_NEED; 2201 break; 2202 2203 case XLOG_STATE_COVER_DONE: 2204 if (changed == 1) 2205 log->l_covered_state = XLOG_STATE_COVER_NEED2; 2206 else 2207 log->l_covered_state = XLOG_STATE_COVER_NEED; 2208 break; 2209 2210 case XLOG_STATE_COVER_DONE2: 2211 if (changed == 1) 2212 log->l_covered_state = XLOG_STATE_COVER_IDLE; 2213 else 2214 log->l_covered_state = XLOG_STATE_COVER_NEED; 2215 break; 2216 2217 default: 2218 ASSERT(0); 2219 } 2220 } 2221 } /* xlog_state_clean_log */ 2222 2223 STATIC xfs_lsn_t 2224 xlog_get_lowest_lsn( 2225 xlog_t *log) 2226 { 2227 xlog_in_core_t *lsn_log; 2228 xfs_lsn_t lowest_lsn, lsn; 2229 2230 lsn_log = log->l_iclog; 2231 lowest_lsn = 0; 2232 do { 2233 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { 2234 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); 2235 if ((lsn && !lowest_lsn) || 2236 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { 2237 lowest_lsn = lsn; 2238 } 2239 } 2240 lsn_log = lsn_log->ic_next; 2241 } while (lsn_log != log->l_iclog); 2242 return lowest_lsn; 2243 } 2244 2245 2246 STATIC void 2247 xlog_state_do_callback( 2248 xlog_t *log, 2249 int aborted, 2250 xlog_in_core_t *ciclog) 2251 { 2252 xlog_in_core_t *iclog; 2253 xlog_in_core_t *first_iclog; /* used to know when we've 2254 * processed all iclogs once */ 2255 xfs_log_callback_t *cb, *cb_next; 2256 int flushcnt = 0; 2257 xfs_lsn_t lowest_lsn; 2258 int ioerrors; /* counter: iclogs with errors */ 2259 int loopdidcallbacks; /* flag: inner loop did callbacks*/ 2260 int funcdidcallbacks; /* flag: function did callbacks */ 2261 int repeats; /* for issuing console warnings if 2262 * looping too many times */ 2263 int wake = 0; 2264 2265 spin_lock(&log->l_icloglock); 2266 first_iclog = iclog = log->l_iclog; 2267 ioerrors = 0; 2268 funcdidcallbacks = 0; 2269 repeats = 0; 2270 2271 do { 2272 /* 2273 * Scan all iclogs starting with the one pointed to by the 2274 * log. Reset this starting point each time the log is 2275 * unlocked (during callbacks). 2276 * 2277 * Keep looping through iclogs until one full pass is made 2278 * without running any callbacks. 2279 */ 2280 first_iclog = log->l_iclog; 2281 iclog = log->l_iclog; 2282 loopdidcallbacks = 0; 2283 repeats++; 2284 2285 do { 2286 2287 /* skip all iclogs in the ACTIVE & DIRTY states */ 2288 if (iclog->ic_state & 2289 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { 2290 iclog = iclog->ic_next; 2291 continue; 2292 } 2293 2294 /* 2295 * Between marking a filesystem SHUTDOWN and stopping 2296 * the log, we do flush all iclogs to disk (if there 2297 * wasn't a log I/O error). So, we do want things to 2298 * go smoothly in case of just a SHUTDOWN w/o a 2299 * LOG_IO_ERROR. 2300 */ 2301 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { 2302 /* 2303 * Can only perform callbacks in order. Since 2304 * this iclog is not in the DONE_SYNC/ 2305 * DO_CALLBACK state, we skip the rest and 2306 * just try to clean up. If we set our iclog 2307 * to DO_CALLBACK, we will not process it when 2308 * we retry since a previous iclog is in the 2309 * CALLBACK and the state cannot change since 2310 * we are holding the l_icloglock. 2311 */ 2312 if (!(iclog->ic_state & 2313 (XLOG_STATE_DONE_SYNC | 2314 XLOG_STATE_DO_CALLBACK))) { 2315 if (ciclog && (ciclog->ic_state == 2316 XLOG_STATE_DONE_SYNC)) { 2317 ciclog->ic_state = XLOG_STATE_DO_CALLBACK; 2318 } 2319 break; 2320 } 2321 /* 2322 * We now have an iclog that is in either the 2323 * DO_CALLBACK or DONE_SYNC states. The other 2324 * states (WANT_SYNC, SYNCING, or CALLBACK were 2325 * caught by the above if and are going to 2326 * clean (i.e. we aren't doing their callbacks) 2327 * see the above if. 2328 */ 2329 2330 /* 2331 * We will do one more check here to see if we 2332 * have chased our tail around. 2333 */ 2334 2335 lowest_lsn = xlog_get_lowest_lsn(log); 2336 if (lowest_lsn && 2337 XFS_LSN_CMP(lowest_lsn, 2338 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { 2339 iclog = iclog->ic_next; 2340 continue; /* Leave this iclog for 2341 * another thread */ 2342 } 2343 2344 iclog->ic_state = XLOG_STATE_CALLBACK; 2345 2346 2347 /* 2348 * update the last_sync_lsn before we drop the 2349 * icloglock to ensure we are the only one that 2350 * can update it. 2351 */ 2352 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2353 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); 2354 atomic64_set(&log->l_last_sync_lsn, 2355 be64_to_cpu(iclog->ic_header.h_lsn)); 2356 2357 } else 2358 ioerrors++; 2359 2360 spin_unlock(&log->l_icloglock); 2361 2362 /* 2363 * Keep processing entries in the callback list until 2364 * we come around and it is empty. We need to 2365 * atomically see that the list is empty and change the 2366 * state to DIRTY so that we don't miss any more 2367 * callbacks being added. 2368 */ 2369 spin_lock(&iclog->ic_callback_lock); 2370 cb = iclog->ic_callback; 2371 while (cb) { 2372 iclog->ic_callback_tail = &(iclog->ic_callback); 2373 iclog->ic_callback = NULL; 2374 spin_unlock(&iclog->ic_callback_lock); 2375 2376 /* perform callbacks in the order given */ 2377 for (; cb; cb = cb_next) { 2378 cb_next = cb->cb_next; 2379 cb->cb_func(cb->cb_arg, aborted); 2380 } 2381 spin_lock(&iclog->ic_callback_lock); 2382 cb = iclog->ic_callback; 2383 } 2384 2385 loopdidcallbacks++; 2386 funcdidcallbacks++; 2387 2388 spin_lock(&log->l_icloglock); 2389 ASSERT(iclog->ic_callback == NULL); 2390 spin_unlock(&iclog->ic_callback_lock); 2391 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) 2392 iclog->ic_state = XLOG_STATE_DIRTY; 2393 2394 /* 2395 * Transition from DIRTY to ACTIVE if applicable. 2396 * NOP if STATE_IOERROR. 2397 */ 2398 xlog_state_clean_log(log); 2399 2400 /* wake up threads waiting in xfs_log_force() */ 2401 wake_up_all(&iclog->ic_force_wait); 2402 2403 iclog = iclog->ic_next; 2404 } while (first_iclog != iclog); 2405 2406 if (repeats > 5000) { 2407 flushcnt += repeats; 2408 repeats = 0; 2409 xfs_warn(log->l_mp, 2410 "%s: possible infinite loop (%d iterations)", 2411 __func__, flushcnt); 2412 } 2413 } while (!ioerrors && loopdidcallbacks); 2414 2415 /* 2416 * make one last gasp attempt to see if iclogs are being left in 2417 * limbo.. 2418 */ 2419 #ifdef DEBUG 2420 if (funcdidcallbacks) { 2421 first_iclog = iclog = log->l_iclog; 2422 do { 2423 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); 2424 /* 2425 * Terminate the loop if iclogs are found in states 2426 * which will cause other threads to clean up iclogs. 2427 * 2428 * SYNCING - i/o completion will go through logs 2429 * DONE_SYNC - interrupt thread should be waiting for 2430 * l_icloglock 2431 * IOERROR - give up hope all ye who enter here 2432 */ 2433 if (iclog->ic_state == XLOG_STATE_WANT_SYNC || 2434 iclog->ic_state == XLOG_STATE_SYNCING || 2435 iclog->ic_state == XLOG_STATE_DONE_SYNC || 2436 iclog->ic_state == XLOG_STATE_IOERROR ) 2437 break; 2438 iclog = iclog->ic_next; 2439 } while (first_iclog != iclog); 2440 } 2441 #endif 2442 2443 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) 2444 wake = 1; 2445 spin_unlock(&log->l_icloglock); 2446 2447 if (wake) 2448 wake_up_all(&log->l_flush_wait); 2449 } 2450 2451 2452 /* 2453 * Finish transitioning this iclog to the dirty state. 2454 * 2455 * Make sure that we completely execute this routine only when this is 2456 * the last call to the iclog. There is a good chance that iclog flushes, 2457 * when we reach the end of the physical log, get turned into 2 separate 2458 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2459 * routine. By using the reference count bwritecnt, we guarantee that only 2460 * the second completion goes through. 2461 * 2462 * Callbacks could take time, so they are done outside the scope of the 2463 * global state machine log lock. 2464 */ 2465 STATIC void 2466 xlog_state_done_syncing( 2467 xlog_in_core_t *iclog, 2468 int aborted) 2469 { 2470 xlog_t *log = iclog->ic_log; 2471 2472 spin_lock(&log->l_icloglock); 2473 2474 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || 2475 iclog->ic_state == XLOG_STATE_IOERROR); 2476 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2477 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); 2478 2479 2480 /* 2481 * If we got an error, either on the first buffer, or in the case of 2482 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, 2483 * and none should ever be attempted to be written to disk 2484 * again. 2485 */ 2486 if (iclog->ic_state != XLOG_STATE_IOERROR) { 2487 if (--iclog->ic_bwritecnt == 1) { 2488 spin_unlock(&log->l_icloglock); 2489 return; 2490 } 2491 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2492 } 2493 2494 /* 2495 * Someone could be sleeping prior to writing out the next 2496 * iclog buffer, we wake them all, one will get to do the 2497 * I/O, the others get to wait for the result. 2498 */ 2499 wake_up_all(&iclog->ic_write_wait); 2500 spin_unlock(&log->l_icloglock); 2501 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ 2502 } /* xlog_state_done_syncing */ 2503 2504 2505 /* 2506 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2507 * sleep. We wait on the flush queue on the head iclog as that should be 2508 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2509 * we will wait here and all new writes will sleep until a sync completes. 2510 * 2511 * The in-core logs are used in a circular fashion. They are not used 2512 * out-of-order even when an iclog past the head is free. 2513 * 2514 * return: 2515 * * log_offset where xlog_write() can start writing into the in-core 2516 * log's data space. 2517 * * in-core log pointer to which xlog_write() should write. 2518 * * boolean indicating this is a continued write to an in-core log. 2519 * If this is the last write, then the in-core log's offset field 2520 * needs to be incremented, depending on the amount of data which 2521 * is copied. 2522 */ 2523 STATIC int 2524 xlog_state_get_iclog_space(xlog_t *log, 2525 int len, 2526 xlog_in_core_t **iclogp, 2527 xlog_ticket_t *ticket, 2528 int *continued_write, 2529 int *logoffsetp) 2530 { 2531 int log_offset; 2532 xlog_rec_header_t *head; 2533 xlog_in_core_t *iclog; 2534 int error; 2535 2536 restart: 2537 spin_lock(&log->l_icloglock); 2538 if (XLOG_FORCED_SHUTDOWN(log)) { 2539 spin_unlock(&log->l_icloglock); 2540 return XFS_ERROR(EIO); 2541 } 2542 2543 iclog = log->l_iclog; 2544 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2545 XFS_STATS_INC(xs_log_noiclogs); 2546 2547 /* Wait for log writes to have flushed */ 2548 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2549 goto restart; 2550 } 2551 2552 head = &iclog->ic_header; 2553 2554 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2555 log_offset = iclog->ic_offset; 2556 2557 /* On the 1st write to an iclog, figure out lsn. This works 2558 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2559 * committing to. If the offset is set, that's how many blocks 2560 * must be written. 2561 */ 2562 if (log_offset == 0) { 2563 ticket->t_curr_res -= log->l_iclog_hsize; 2564 xlog_tic_add_region(ticket, 2565 log->l_iclog_hsize, 2566 XLOG_REG_TYPE_LRHEADER); 2567 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2568 head->h_lsn = cpu_to_be64( 2569 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2570 ASSERT(log->l_curr_block >= 0); 2571 } 2572 2573 /* If there is enough room to write everything, then do it. Otherwise, 2574 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2575 * bit is on, so this will get flushed out. Don't update ic_offset 2576 * until you know exactly how many bytes get copied. Therefore, wait 2577 * until later to update ic_offset. 2578 * 2579 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2580 * can fit into remaining data section. 2581 */ 2582 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2583 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2584 2585 /* 2586 * If I'm the only one writing to this iclog, sync it to disk. 2587 * We need to do an atomic compare and decrement here to avoid 2588 * racing with concurrent atomic_dec_and_lock() calls in 2589 * xlog_state_release_iclog() when there is more than one 2590 * reference to the iclog. 2591 */ 2592 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { 2593 /* we are the only one */ 2594 spin_unlock(&log->l_icloglock); 2595 error = xlog_state_release_iclog(log, iclog); 2596 if (error) 2597 return error; 2598 } else { 2599 spin_unlock(&log->l_icloglock); 2600 } 2601 goto restart; 2602 } 2603 2604 /* Do we have enough room to write the full amount in the remainder 2605 * of this iclog? Or must we continue a write on the next iclog and 2606 * mark this iclog as completely taken? In the case where we switch 2607 * iclogs (to mark it taken), this particular iclog will release/sync 2608 * to disk in xlog_write(). 2609 */ 2610 if (len <= iclog->ic_size - iclog->ic_offset) { 2611 *continued_write = 0; 2612 iclog->ic_offset += len; 2613 } else { 2614 *continued_write = 1; 2615 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2616 } 2617 *iclogp = iclog; 2618 2619 ASSERT(iclog->ic_offset <= iclog->ic_size); 2620 spin_unlock(&log->l_icloglock); 2621 2622 *logoffsetp = log_offset; 2623 return 0; 2624 } /* xlog_state_get_iclog_space */ 2625 2626 /* The first cnt-1 times through here we don't need to 2627 * move the grant write head because the permanent 2628 * reservation has reserved cnt times the unit amount. 2629 * Release part of current permanent unit reservation and 2630 * reset current reservation to be one units worth. Also 2631 * move grant reservation head forward. 2632 */ 2633 STATIC void 2634 xlog_regrant_reserve_log_space(xlog_t *log, 2635 xlog_ticket_t *ticket) 2636 { 2637 trace_xfs_log_regrant_reserve_enter(log, ticket); 2638 2639 if (ticket->t_cnt > 0) 2640 ticket->t_cnt--; 2641 2642 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 2643 ticket->t_curr_res); 2644 xlog_grant_sub_space(log, &log->l_write_head.grant, 2645 ticket->t_curr_res); 2646 ticket->t_curr_res = ticket->t_unit_res; 2647 xlog_tic_reset_res(ticket); 2648 2649 trace_xfs_log_regrant_reserve_sub(log, ticket); 2650 2651 /* just return if we still have some of the pre-reserved space */ 2652 if (ticket->t_cnt > 0) 2653 return; 2654 2655 xlog_grant_add_space(log, &log->l_reserve_head.grant, 2656 ticket->t_unit_res); 2657 2658 trace_xfs_log_regrant_reserve_exit(log, ticket); 2659 2660 ticket->t_curr_res = ticket->t_unit_res; 2661 xlog_tic_reset_res(ticket); 2662 } /* xlog_regrant_reserve_log_space */ 2663 2664 2665 /* 2666 * Give back the space left from a reservation. 2667 * 2668 * All the information we need to make a correct determination of space left 2669 * is present. For non-permanent reservations, things are quite easy. The 2670 * count should have been decremented to zero. We only need to deal with the 2671 * space remaining in the current reservation part of the ticket. If the 2672 * ticket contains a permanent reservation, there may be left over space which 2673 * needs to be released. A count of N means that N-1 refills of the current 2674 * reservation can be done before we need to ask for more space. The first 2675 * one goes to fill up the first current reservation. Once we run out of 2676 * space, the count will stay at zero and the only space remaining will be 2677 * in the current reservation field. 2678 */ 2679 STATIC void 2680 xlog_ungrant_log_space(xlog_t *log, 2681 xlog_ticket_t *ticket) 2682 { 2683 int bytes; 2684 2685 if (ticket->t_cnt > 0) 2686 ticket->t_cnt--; 2687 2688 trace_xfs_log_ungrant_enter(log, ticket); 2689 trace_xfs_log_ungrant_sub(log, ticket); 2690 2691 /* 2692 * If this is a permanent reservation ticket, we may be able to free 2693 * up more space based on the remaining count. 2694 */ 2695 bytes = ticket->t_curr_res; 2696 if (ticket->t_cnt > 0) { 2697 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 2698 bytes += ticket->t_unit_res*ticket->t_cnt; 2699 } 2700 2701 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 2702 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 2703 2704 trace_xfs_log_ungrant_exit(log, ticket); 2705 2706 xfs_log_space_wake(log->l_mp); 2707 } 2708 2709 /* 2710 * Flush iclog to disk if this is the last reference to the given iclog and 2711 * the WANT_SYNC bit is set. 2712 * 2713 * When this function is entered, the iclog is not necessarily in the 2714 * WANT_SYNC state. It may be sitting around waiting to get filled. 2715 * 2716 * 2717 */ 2718 STATIC int 2719 xlog_state_release_iclog( 2720 xlog_t *log, 2721 xlog_in_core_t *iclog) 2722 { 2723 int sync = 0; /* do we sync? */ 2724 2725 if (iclog->ic_state & XLOG_STATE_IOERROR) 2726 return XFS_ERROR(EIO); 2727 2728 ASSERT(atomic_read(&iclog->ic_refcnt) > 0); 2729 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) 2730 return 0; 2731 2732 if (iclog->ic_state & XLOG_STATE_IOERROR) { 2733 spin_unlock(&log->l_icloglock); 2734 return XFS_ERROR(EIO); 2735 } 2736 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || 2737 iclog->ic_state == XLOG_STATE_WANT_SYNC); 2738 2739 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 2740 /* update tail before writing to iclog */ 2741 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 2742 sync++; 2743 iclog->ic_state = XLOG_STATE_SYNCING; 2744 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 2745 xlog_verify_tail_lsn(log, iclog, tail_lsn); 2746 /* cycle incremented when incrementing curr_block */ 2747 } 2748 spin_unlock(&log->l_icloglock); 2749 2750 /* 2751 * We let the log lock go, so it's possible that we hit a log I/O 2752 * error or some other SHUTDOWN condition that marks the iclog 2753 * as XLOG_STATE_IOERROR before the bwrite. However, we know that 2754 * this iclog has consistent data, so we ignore IOERROR 2755 * flags after this point. 2756 */ 2757 if (sync) 2758 return xlog_sync(log, iclog); 2759 return 0; 2760 } /* xlog_state_release_iclog */ 2761 2762 2763 /* 2764 * This routine will mark the current iclog in the ring as WANT_SYNC 2765 * and move the current iclog pointer to the next iclog in the ring. 2766 * When this routine is called from xlog_state_get_iclog_space(), the 2767 * exact size of the iclog has not yet been determined. All we know is 2768 * that every data block. We have run out of space in this log record. 2769 */ 2770 STATIC void 2771 xlog_state_switch_iclogs(xlog_t *log, 2772 xlog_in_core_t *iclog, 2773 int eventual_size) 2774 { 2775 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 2776 if (!eventual_size) 2777 eventual_size = iclog->ic_offset; 2778 iclog->ic_state = XLOG_STATE_WANT_SYNC; 2779 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 2780 log->l_prev_block = log->l_curr_block; 2781 log->l_prev_cycle = log->l_curr_cycle; 2782 2783 /* roll log?: ic_offset changed later */ 2784 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 2785 2786 /* Round up to next log-sunit */ 2787 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 2788 log->l_mp->m_sb.sb_logsunit > 1) { 2789 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 2790 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 2791 } 2792 2793 if (log->l_curr_block >= log->l_logBBsize) { 2794 log->l_curr_cycle++; 2795 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 2796 log->l_curr_cycle++; 2797 log->l_curr_block -= log->l_logBBsize; 2798 ASSERT(log->l_curr_block >= 0); 2799 } 2800 ASSERT(iclog == log->l_iclog); 2801 log->l_iclog = iclog->ic_next; 2802 } /* xlog_state_switch_iclogs */ 2803 2804 /* 2805 * Write out all data in the in-core log as of this exact moment in time. 2806 * 2807 * Data may be written to the in-core log during this call. However, 2808 * we don't guarantee this data will be written out. A change from past 2809 * implementation means this routine will *not* write out zero length LRs. 2810 * 2811 * Basically, we try and perform an intelligent scan of the in-core logs. 2812 * If we determine there is no flushable data, we just return. There is no 2813 * flushable data if: 2814 * 2815 * 1. the current iclog is active and has no data; the previous iclog 2816 * is in the active or dirty state. 2817 * 2. the current iclog is drity, and the previous iclog is in the 2818 * active or dirty state. 2819 * 2820 * We may sleep if: 2821 * 2822 * 1. the current iclog is not in the active nor dirty state. 2823 * 2. the current iclog dirty, and the previous iclog is not in the 2824 * active nor dirty state. 2825 * 3. the current iclog is active, and there is another thread writing 2826 * to this particular iclog. 2827 * 4. a) the current iclog is active and has no other writers 2828 * b) when we return from flushing out this iclog, it is still 2829 * not in the active nor dirty state. 2830 */ 2831 int 2832 _xfs_log_force( 2833 struct xfs_mount *mp, 2834 uint flags, 2835 int *log_flushed) 2836 { 2837 struct xlog *log = mp->m_log; 2838 struct xlog_in_core *iclog; 2839 xfs_lsn_t lsn; 2840 2841 XFS_STATS_INC(xs_log_force); 2842 2843 xlog_cil_force(log); 2844 2845 spin_lock(&log->l_icloglock); 2846 2847 iclog = log->l_iclog; 2848 if (iclog->ic_state & XLOG_STATE_IOERROR) { 2849 spin_unlock(&log->l_icloglock); 2850 return XFS_ERROR(EIO); 2851 } 2852 2853 /* If the head iclog is not active nor dirty, we just attach 2854 * ourselves to the head and go to sleep. 2855 */ 2856 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2857 iclog->ic_state == XLOG_STATE_DIRTY) { 2858 /* 2859 * If the head is dirty or (active and empty), then 2860 * we need to look at the previous iclog. If the previous 2861 * iclog is active or dirty we are done. There is nothing 2862 * to sync out. Otherwise, we attach ourselves to the 2863 * previous iclog and go to sleep. 2864 */ 2865 if (iclog->ic_state == XLOG_STATE_DIRTY || 2866 (atomic_read(&iclog->ic_refcnt) == 0 2867 && iclog->ic_offset == 0)) { 2868 iclog = iclog->ic_prev; 2869 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2870 iclog->ic_state == XLOG_STATE_DIRTY) 2871 goto no_sleep; 2872 else 2873 goto maybe_sleep; 2874 } else { 2875 if (atomic_read(&iclog->ic_refcnt) == 0) { 2876 /* We are the only one with access to this 2877 * iclog. Flush it out now. There should 2878 * be a roundoff of zero to show that someone 2879 * has already taken care of the roundoff from 2880 * the previous sync. 2881 */ 2882 atomic_inc(&iclog->ic_refcnt); 2883 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2884 xlog_state_switch_iclogs(log, iclog, 0); 2885 spin_unlock(&log->l_icloglock); 2886 2887 if (xlog_state_release_iclog(log, iclog)) 2888 return XFS_ERROR(EIO); 2889 2890 if (log_flushed) 2891 *log_flushed = 1; 2892 spin_lock(&log->l_icloglock); 2893 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && 2894 iclog->ic_state != XLOG_STATE_DIRTY) 2895 goto maybe_sleep; 2896 else 2897 goto no_sleep; 2898 } else { 2899 /* Someone else is writing to this iclog. 2900 * Use its call to flush out the data. However, 2901 * the other thread may not force out this LR, 2902 * so we mark it WANT_SYNC. 2903 */ 2904 xlog_state_switch_iclogs(log, iclog, 0); 2905 goto maybe_sleep; 2906 } 2907 } 2908 } 2909 2910 /* By the time we come around again, the iclog could've been filled 2911 * which would give it another lsn. If we have a new lsn, just 2912 * return because the relevant data has been flushed. 2913 */ 2914 maybe_sleep: 2915 if (flags & XFS_LOG_SYNC) { 2916 /* 2917 * We must check if we're shutting down here, before 2918 * we wait, while we're holding the l_icloglock. 2919 * Then we check again after waking up, in case our 2920 * sleep was disturbed by a bad news. 2921 */ 2922 if (iclog->ic_state & XLOG_STATE_IOERROR) { 2923 spin_unlock(&log->l_icloglock); 2924 return XFS_ERROR(EIO); 2925 } 2926 XFS_STATS_INC(xs_log_force_sleep); 2927 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 2928 /* 2929 * No need to grab the log lock here since we're 2930 * only deciding whether or not to return EIO 2931 * and the memory read should be atomic. 2932 */ 2933 if (iclog->ic_state & XLOG_STATE_IOERROR) 2934 return XFS_ERROR(EIO); 2935 if (log_flushed) 2936 *log_flushed = 1; 2937 } else { 2938 2939 no_sleep: 2940 spin_unlock(&log->l_icloglock); 2941 } 2942 return 0; 2943 } 2944 2945 /* 2946 * Wrapper for _xfs_log_force(), to be used when caller doesn't care 2947 * about errors or whether the log was flushed or not. This is the normal 2948 * interface to use when trying to unpin items or move the log forward. 2949 */ 2950 void 2951 xfs_log_force( 2952 xfs_mount_t *mp, 2953 uint flags) 2954 { 2955 int error; 2956 2957 trace_xfs_log_force(mp, 0); 2958 error = _xfs_log_force(mp, flags, NULL); 2959 if (error) 2960 xfs_warn(mp, "%s: error %d returned.", __func__, error); 2961 } 2962 2963 /* 2964 * Force the in-core log to disk for a specific LSN. 2965 * 2966 * Find in-core log with lsn. 2967 * If it is in the DIRTY state, just return. 2968 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 2969 * state and go to sleep or return. 2970 * If it is in any other state, go to sleep or return. 2971 * 2972 * Synchronous forces are implemented with a signal variable. All callers 2973 * to force a given lsn to disk will wait on a the sv attached to the 2974 * specific in-core log. When given in-core log finally completes its 2975 * write to disk, that thread will wake up all threads waiting on the 2976 * sv. 2977 */ 2978 int 2979 _xfs_log_force_lsn( 2980 struct xfs_mount *mp, 2981 xfs_lsn_t lsn, 2982 uint flags, 2983 int *log_flushed) 2984 { 2985 struct xlog *log = mp->m_log; 2986 struct xlog_in_core *iclog; 2987 int already_slept = 0; 2988 2989 ASSERT(lsn != 0); 2990 2991 XFS_STATS_INC(xs_log_force); 2992 2993 lsn = xlog_cil_force_lsn(log, lsn); 2994 if (lsn == NULLCOMMITLSN) 2995 return 0; 2996 2997 try_again: 2998 spin_lock(&log->l_icloglock); 2999 iclog = log->l_iclog; 3000 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3001 spin_unlock(&log->l_icloglock); 3002 return XFS_ERROR(EIO); 3003 } 3004 3005 do { 3006 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3007 iclog = iclog->ic_next; 3008 continue; 3009 } 3010 3011 if (iclog->ic_state == XLOG_STATE_DIRTY) { 3012 spin_unlock(&log->l_icloglock); 3013 return 0; 3014 } 3015 3016 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3017 /* 3018 * We sleep here if we haven't already slept (e.g. 3019 * this is the first time we've looked at the correct 3020 * iclog buf) and the buffer before us is going to 3021 * be sync'ed. The reason for this is that if we 3022 * are doing sync transactions here, by waiting for 3023 * the previous I/O to complete, we can allow a few 3024 * more transactions into this iclog before we close 3025 * it down. 3026 * 3027 * Otherwise, we mark the buffer WANT_SYNC, and bump 3028 * up the refcnt so we can release the log (which 3029 * drops the ref count). The state switch keeps new 3030 * transaction commits from using this buffer. When 3031 * the current commits finish writing into the buffer, 3032 * the refcount will drop to zero and the buffer will 3033 * go out then. 3034 */ 3035 if (!already_slept && 3036 (iclog->ic_prev->ic_state & 3037 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { 3038 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); 3039 3040 XFS_STATS_INC(xs_log_force_sleep); 3041 3042 xlog_wait(&iclog->ic_prev->ic_write_wait, 3043 &log->l_icloglock); 3044 if (log_flushed) 3045 *log_flushed = 1; 3046 already_slept = 1; 3047 goto try_again; 3048 } 3049 atomic_inc(&iclog->ic_refcnt); 3050 xlog_state_switch_iclogs(log, iclog, 0); 3051 spin_unlock(&log->l_icloglock); 3052 if (xlog_state_release_iclog(log, iclog)) 3053 return XFS_ERROR(EIO); 3054 if (log_flushed) 3055 *log_flushed = 1; 3056 spin_lock(&log->l_icloglock); 3057 } 3058 3059 if ((flags & XFS_LOG_SYNC) && /* sleep */ 3060 !(iclog->ic_state & 3061 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { 3062 /* 3063 * Don't wait on completion if we know that we've 3064 * gotten a log write error. 3065 */ 3066 if (iclog->ic_state & XLOG_STATE_IOERROR) { 3067 spin_unlock(&log->l_icloglock); 3068 return XFS_ERROR(EIO); 3069 } 3070 XFS_STATS_INC(xs_log_force_sleep); 3071 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 3072 /* 3073 * No need to grab the log lock here since we're 3074 * only deciding whether or not to return EIO 3075 * and the memory read should be atomic. 3076 */ 3077 if (iclog->ic_state & XLOG_STATE_IOERROR) 3078 return XFS_ERROR(EIO); 3079 3080 if (log_flushed) 3081 *log_flushed = 1; 3082 } else { /* just return */ 3083 spin_unlock(&log->l_icloglock); 3084 } 3085 3086 return 0; 3087 } while (iclog != log->l_iclog); 3088 3089 spin_unlock(&log->l_icloglock); 3090 return 0; 3091 } 3092 3093 /* 3094 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care 3095 * about errors or whether the log was flushed or not. This is the normal 3096 * interface to use when trying to unpin items or move the log forward. 3097 */ 3098 void 3099 xfs_log_force_lsn( 3100 xfs_mount_t *mp, 3101 xfs_lsn_t lsn, 3102 uint flags) 3103 { 3104 int error; 3105 3106 trace_xfs_log_force(mp, lsn); 3107 error = _xfs_log_force_lsn(mp, lsn, flags, NULL); 3108 if (error) 3109 xfs_warn(mp, "%s: error %d returned.", __func__, error); 3110 } 3111 3112 /* 3113 * Called when we want to mark the current iclog as being ready to sync to 3114 * disk. 3115 */ 3116 STATIC void 3117 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog) 3118 { 3119 assert_spin_locked(&log->l_icloglock); 3120 3121 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3122 xlog_state_switch_iclogs(log, iclog, 0); 3123 } else { 3124 ASSERT(iclog->ic_state & 3125 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); 3126 } 3127 } 3128 3129 3130 /***************************************************************************** 3131 * 3132 * TICKET functions 3133 * 3134 ***************************************************************************** 3135 */ 3136 3137 /* 3138 * Free a used ticket when its refcount falls to zero. 3139 */ 3140 void 3141 xfs_log_ticket_put( 3142 xlog_ticket_t *ticket) 3143 { 3144 ASSERT(atomic_read(&ticket->t_ref) > 0); 3145 if (atomic_dec_and_test(&ticket->t_ref)) 3146 kmem_zone_free(xfs_log_ticket_zone, ticket); 3147 } 3148 3149 xlog_ticket_t * 3150 xfs_log_ticket_get( 3151 xlog_ticket_t *ticket) 3152 { 3153 ASSERT(atomic_read(&ticket->t_ref) > 0); 3154 atomic_inc(&ticket->t_ref); 3155 return ticket; 3156 } 3157 3158 /* 3159 * Allocate and initialise a new log ticket. 3160 */ 3161 xlog_ticket_t * 3162 xlog_ticket_alloc( 3163 struct xlog *log, 3164 int unit_bytes, 3165 int cnt, 3166 char client, 3167 bool permanent, 3168 xfs_km_flags_t alloc_flags) 3169 { 3170 struct xlog_ticket *tic; 3171 uint num_headers; 3172 int iclog_space; 3173 3174 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); 3175 if (!tic) 3176 return NULL; 3177 3178 /* 3179 * Permanent reservations have up to 'cnt'-1 active log operations 3180 * in the log. A unit in this case is the amount of space for one 3181 * of these log operations. Normal reservations have a cnt of 1 3182 * and their unit amount is the total amount of space required. 3183 * 3184 * The following lines of code account for non-transaction data 3185 * which occupy space in the on-disk log. 3186 * 3187 * Normal form of a transaction is: 3188 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3189 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3190 * 3191 * We need to account for all the leadup data and trailer data 3192 * around the transaction data. 3193 * And then we need to account for the worst case in terms of using 3194 * more space. 3195 * The worst case will happen if: 3196 * - the placement of the transaction happens to be such that the 3197 * roundoff is at its maximum 3198 * - the transaction data is synced before the commit record is synced 3199 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3200 * Therefore the commit record is in its own Log Record. 3201 * This can happen as the commit record is called with its 3202 * own region to xlog_write(). 3203 * This then means that in the worst case, roundoff can happen for 3204 * the commit-rec as well. 3205 * The commit-rec is smaller than padding in this scenario and so it is 3206 * not added separately. 3207 */ 3208 3209 /* for trans header */ 3210 unit_bytes += sizeof(xlog_op_header_t); 3211 unit_bytes += sizeof(xfs_trans_header_t); 3212 3213 /* for start-rec */ 3214 unit_bytes += sizeof(xlog_op_header_t); 3215 3216 /* 3217 * for LR headers - the space for data in an iclog is the size minus 3218 * the space used for the headers. If we use the iclog size, then we 3219 * undercalculate the number of headers required. 3220 * 3221 * Furthermore - the addition of op headers for split-recs might 3222 * increase the space required enough to require more log and op 3223 * headers, so take that into account too. 3224 * 3225 * IMPORTANT: This reservation makes the assumption that if this 3226 * transaction is the first in an iclog and hence has the LR headers 3227 * accounted to it, then the remaining space in the iclog is 3228 * exclusively for this transaction. i.e. if the transaction is larger 3229 * than the iclog, it will be the only thing in that iclog. 3230 * Fundamentally, this means we must pass the entire log vector to 3231 * xlog_write to guarantee this. 3232 */ 3233 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3234 num_headers = howmany(unit_bytes, iclog_space); 3235 3236 /* for split-recs - ophdrs added when data split over LRs */ 3237 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3238 3239 /* add extra header reservations if we overrun */ 3240 while (!num_headers || 3241 howmany(unit_bytes, iclog_space) > num_headers) { 3242 unit_bytes += sizeof(xlog_op_header_t); 3243 num_headers++; 3244 } 3245 unit_bytes += log->l_iclog_hsize * num_headers; 3246 3247 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3248 unit_bytes += log->l_iclog_hsize; 3249 3250 /* for roundoff padding for transaction data and one for commit record */ 3251 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3252 log->l_mp->m_sb.sb_logsunit > 1) { 3253 /* log su roundoff */ 3254 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit; 3255 } else { 3256 /* BB roundoff */ 3257 unit_bytes += 2*BBSIZE; 3258 } 3259 3260 atomic_set(&tic->t_ref, 1); 3261 tic->t_task = current; 3262 INIT_LIST_HEAD(&tic->t_queue); 3263 tic->t_unit_res = unit_bytes; 3264 tic->t_curr_res = unit_bytes; 3265 tic->t_cnt = cnt; 3266 tic->t_ocnt = cnt; 3267 tic->t_tid = random32(); 3268 tic->t_clientid = client; 3269 tic->t_flags = XLOG_TIC_INITED; 3270 tic->t_trans_type = 0; 3271 if (permanent) 3272 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3273 3274 xlog_tic_reset_res(tic); 3275 3276 return tic; 3277 } 3278 3279 3280 /****************************************************************************** 3281 * 3282 * Log debug routines 3283 * 3284 ****************************************************************************** 3285 */ 3286 #if defined(DEBUG) 3287 /* 3288 * Make sure that the destination ptr is within the valid data region of 3289 * one of the iclogs. This uses backup pointers stored in a different 3290 * part of the log in case we trash the log structure. 3291 */ 3292 void 3293 xlog_verify_dest_ptr( 3294 struct xlog *log, 3295 char *ptr) 3296 { 3297 int i; 3298 int good_ptr = 0; 3299 3300 for (i = 0; i < log->l_iclog_bufs; i++) { 3301 if (ptr >= log->l_iclog_bak[i] && 3302 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3303 good_ptr++; 3304 } 3305 3306 if (!good_ptr) 3307 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3308 } 3309 3310 /* 3311 * Check to make sure the grant write head didn't just over lap the tail. If 3312 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3313 * the cycles differ by exactly one and check the byte count. 3314 * 3315 * This check is run unlocked, so can give false positives. Rather than assert 3316 * on failures, use a warn-once flag and a panic tag to allow the admin to 3317 * determine if they want to panic the machine when such an error occurs. For 3318 * debug kernels this will have the same effect as using an assert but, unlinke 3319 * an assert, it can be turned off at runtime. 3320 */ 3321 STATIC void 3322 xlog_verify_grant_tail( 3323 struct xlog *log) 3324 { 3325 int tail_cycle, tail_blocks; 3326 int cycle, space; 3327 3328 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3329 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3330 if (tail_cycle != cycle) { 3331 if (cycle - 1 != tail_cycle && 3332 !(log->l_flags & XLOG_TAIL_WARN)) { 3333 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3334 "%s: cycle - 1 != tail_cycle", __func__); 3335 log->l_flags |= XLOG_TAIL_WARN; 3336 } 3337 3338 if (space > BBTOB(tail_blocks) && 3339 !(log->l_flags & XLOG_TAIL_WARN)) { 3340 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3341 "%s: space > BBTOB(tail_blocks)", __func__); 3342 log->l_flags |= XLOG_TAIL_WARN; 3343 } 3344 } 3345 } 3346 3347 /* check if it will fit */ 3348 STATIC void 3349 xlog_verify_tail_lsn(xlog_t *log, 3350 xlog_in_core_t *iclog, 3351 xfs_lsn_t tail_lsn) 3352 { 3353 int blocks; 3354 3355 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3356 blocks = 3357 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3358 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3359 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3360 } else { 3361 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3362 3363 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3364 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3365 3366 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3367 if (blocks < BTOBB(iclog->ic_offset) + 1) 3368 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3369 } 3370 } /* xlog_verify_tail_lsn */ 3371 3372 /* 3373 * Perform a number of checks on the iclog before writing to disk. 3374 * 3375 * 1. Make sure the iclogs are still circular 3376 * 2. Make sure we have a good magic number 3377 * 3. Make sure we don't have magic numbers in the data 3378 * 4. Check fields of each log operation header for: 3379 * A. Valid client identifier 3380 * B. tid ptr value falls in valid ptr space (user space code) 3381 * C. Length in log record header is correct according to the 3382 * individual operation headers within record. 3383 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3384 * log, check the preceding blocks of the physical log to make sure all 3385 * the cycle numbers agree with the current cycle number. 3386 */ 3387 STATIC void 3388 xlog_verify_iclog(xlog_t *log, 3389 xlog_in_core_t *iclog, 3390 int count, 3391 boolean_t syncing) 3392 { 3393 xlog_op_header_t *ophead; 3394 xlog_in_core_t *icptr; 3395 xlog_in_core_2_t *xhdr; 3396 xfs_caddr_t ptr; 3397 xfs_caddr_t base_ptr; 3398 __psint_t field_offset; 3399 __uint8_t clientid; 3400 int len, i, j, k, op_len; 3401 int idx; 3402 3403 /* check validity of iclog pointers */ 3404 spin_lock(&log->l_icloglock); 3405 icptr = log->l_iclog; 3406 for (i=0; i < log->l_iclog_bufs; i++) { 3407 if (icptr == NULL) 3408 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3409 icptr = icptr->ic_next; 3410 } 3411 if (icptr != log->l_iclog) 3412 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3413 spin_unlock(&log->l_icloglock); 3414 3415 /* check log magic numbers */ 3416 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3417 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3418 3419 ptr = (xfs_caddr_t) &iclog->ic_header; 3420 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count; 3421 ptr += BBSIZE) { 3422 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3423 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3424 __func__); 3425 } 3426 3427 /* check fields */ 3428 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3429 ptr = iclog->ic_datap; 3430 base_ptr = ptr; 3431 ophead = (xlog_op_header_t *)ptr; 3432 xhdr = iclog->ic_data; 3433 for (i = 0; i < len; i++) { 3434 ophead = (xlog_op_header_t *)ptr; 3435 3436 /* clientid is only 1 byte */ 3437 field_offset = (__psint_t) 3438 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr); 3439 if (syncing == B_FALSE || (field_offset & 0x1ff)) { 3440 clientid = ophead->oh_clientid; 3441 } else { 3442 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap); 3443 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3444 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3445 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3446 clientid = xlog_get_client_id( 3447 xhdr[j].hic_xheader.xh_cycle_data[k]); 3448 } else { 3449 clientid = xlog_get_client_id( 3450 iclog->ic_header.h_cycle_data[idx]); 3451 } 3452 } 3453 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3454 xfs_warn(log->l_mp, 3455 "%s: invalid clientid %d op 0x%p offset 0x%lx", 3456 __func__, clientid, ophead, 3457 (unsigned long)field_offset); 3458 3459 /* check length */ 3460 field_offset = (__psint_t) 3461 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr); 3462 if (syncing == B_FALSE || (field_offset & 0x1ff)) { 3463 op_len = be32_to_cpu(ophead->oh_len); 3464 } else { 3465 idx = BTOBBT((__psint_t)&ophead->oh_len - 3466 (__psint_t)iclog->ic_datap); 3467 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3468 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3469 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3470 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3471 } else { 3472 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3473 } 3474 } 3475 ptr += sizeof(xlog_op_header_t) + op_len; 3476 } 3477 } /* xlog_verify_iclog */ 3478 #endif 3479 3480 /* 3481 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3482 */ 3483 STATIC int 3484 xlog_state_ioerror( 3485 xlog_t *log) 3486 { 3487 xlog_in_core_t *iclog, *ic; 3488 3489 iclog = log->l_iclog; 3490 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { 3491 /* 3492 * Mark all the incore logs IOERROR. 3493 * From now on, no log flushes will result. 3494 */ 3495 ic = iclog; 3496 do { 3497 ic->ic_state = XLOG_STATE_IOERROR; 3498 ic = ic->ic_next; 3499 } while (ic != iclog); 3500 return 0; 3501 } 3502 /* 3503 * Return non-zero, if state transition has already happened. 3504 */ 3505 return 1; 3506 } 3507 3508 /* 3509 * This is called from xfs_force_shutdown, when we're forcibly 3510 * shutting down the filesystem, typically because of an IO error. 3511 * Our main objectives here are to make sure that: 3512 * a. the filesystem gets marked 'SHUTDOWN' for all interested 3513 * parties to find out, 'atomically'. 3514 * b. those who're sleeping on log reservations, pinned objects and 3515 * other resources get woken up, and be told the bad news. 3516 * c. nothing new gets queued up after (a) and (b) are done. 3517 * d. if !logerror, flush the iclogs to disk, then seal them off 3518 * for business. 3519 * 3520 * Note: for delayed logging the !logerror case needs to flush the regions 3521 * held in memory out to the iclogs before flushing them to disk. This needs 3522 * to be done before the log is marked as shutdown, otherwise the flush to the 3523 * iclogs will fail. 3524 */ 3525 int 3526 xfs_log_force_umount( 3527 struct xfs_mount *mp, 3528 int logerror) 3529 { 3530 xlog_t *log; 3531 int retval; 3532 3533 log = mp->m_log; 3534 3535 /* 3536 * If this happens during log recovery, don't worry about 3537 * locking; the log isn't open for business yet. 3538 */ 3539 if (!log || 3540 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3541 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3542 if (mp->m_sb_bp) 3543 XFS_BUF_DONE(mp->m_sb_bp); 3544 return 0; 3545 } 3546 3547 /* 3548 * Somebody could've already done the hard work for us. 3549 * No need to get locks for this. 3550 */ 3551 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { 3552 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3553 return 1; 3554 } 3555 retval = 0; 3556 3557 /* 3558 * Flush the in memory commit item list before marking the log as 3559 * being shut down. We need to do it in this order to ensure all the 3560 * completed transactions are flushed to disk with the xfs_log_force() 3561 * call below. 3562 */ 3563 if (!logerror) 3564 xlog_cil_force(log); 3565 3566 /* 3567 * mark the filesystem and the as in a shutdown state and wake 3568 * everybody up to tell them the bad news. 3569 */ 3570 spin_lock(&log->l_icloglock); 3571 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3572 if (mp->m_sb_bp) 3573 XFS_BUF_DONE(mp->m_sb_bp); 3574 3575 /* 3576 * This flag is sort of redundant because of the mount flag, but 3577 * it's good to maintain the separation between the log and the rest 3578 * of XFS. 3579 */ 3580 log->l_flags |= XLOG_IO_ERROR; 3581 3582 /* 3583 * If we hit a log error, we want to mark all the iclogs IOERROR 3584 * while we're still holding the loglock. 3585 */ 3586 if (logerror) 3587 retval = xlog_state_ioerror(log); 3588 spin_unlock(&log->l_icloglock); 3589 3590 /* 3591 * We don't want anybody waiting for log reservations after this. That 3592 * means we have to wake up everybody queued up on reserveq as well as 3593 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3594 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3595 * action is protected by the grant locks. 3596 */ 3597 xlog_grant_head_wake_all(&log->l_reserve_head); 3598 xlog_grant_head_wake_all(&log->l_write_head); 3599 3600 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) { 3601 ASSERT(!logerror); 3602 /* 3603 * Force the incore logs to disk before shutting the 3604 * log down completely. 3605 */ 3606 _xfs_log_force(mp, XFS_LOG_SYNC, NULL); 3607 3608 spin_lock(&log->l_icloglock); 3609 retval = xlog_state_ioerror(log); 3610 spin_unlock(&log->l_icloglock); 3611 } 3612 /* 3613 * Wake up everybody waiting on xfs_log_force. 3614 * Callback all log item committed functions as if the 3615 * log writes were completed. 3616 */ 3617 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); 3618 3619 #ifdef XFSERRORDEBUG 3620 { 3621 xlog_in_core_t *iclog; 3622 3623 spin_lock(&log->l_icloglock); 3624 iclog = log->l_iclog; 3625 do { 3626 ASSERT(iclog->ic_callback == 0); 3627 iclog = iclog->ic_next; 3628 } while (iclog != log->l_iclog); 3629 spin_unlock(&log->l_icloglock); 3630 } 3631 #endif 3632 /* return non-zero if log IOERROR transition had already happened */ 3633 return retval; 3634 } 3635 3636 STATIC int 3637 xlog_iclogs_empty(xlog_t *log) 3638 { 3639 xlog_in_core_t *iclog; 3640 3641 iclog = log->l_iclog; 3642 do { 3643 /* endianness does not matter here, zero is zero in 3644 * any language. 3645 */ 3646 if (iclog->ic_header.h_num_logops) 3647 return 0; 3648 iclog = iclog->ic_next; 3649 } while (iclog != log->l_iclog); 3650 return 1; 3651 } 3652