xref: /linux/fs/xfs/xfs_log.c (revision 06bd48b6cd97ef3889b68c8e09014d81dbc463f1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 kmem_zone_t	*xfs_log_ticket_zone;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC int
28 xlog_commit_record(
29 	struct xlog		*log,
30 	struct xlog_ticket	*ticket,
31 	struct xlog_in_core	**iclog,
32 	xfs_lsn_t		*commitlsnp);
33 
34 STATIC struct xlog *
35 xlog_alloc_log(
36 	struct xfs_mount	*mp,
37 	struct xfs_buftarg	*log_target,
38 	xfs_daddr_t		blk_offset,
39 	int			num_bblks);
40 STATIC int
41 xlog_space_left(
42 	struct xlog		*log,
43 	atomic64_t		*head);
44 STATIC void
45 xlog_dealloc_log(
46 	struct xlog		*log);
47 
48 /* local state machine functions */
49 STATIC void xlog_state_done_syncing(
50 	struct xlog_in_core	*iclog);
51 STATIC int
52 xlog_state_get_iclog_space(
53 	struct xlog		*log,
54 	int			len,
55 	struct xlog_in_core	**iclog,
56 	struct xlog_ticket	*ticket,
57 	int			*continued_write,
58 	int			*logoffsetp);
59 STATIC void
60 xlog_state_switch_iclogs(
61 	struct xlog		*log,
62 	struct xlog_in_core	*iclog,
63 	int			eventual_size);
64 STATIC void
65 xlog_grant_push_ail(
66 	struct xlog		*log,
67 	int			need_bytes);
68 STATIC void
69 xlog_regrant_reserve_log_space(
70 	struct xlog		*log,
71 	struct xlog_ticket	*ticket);
72 STATIC void
73 xlog_ungrant_log_space(
74 	struct xlog		*log,
75 	struct xlog_ticket	*ticket);
76 STATIC void
77 xlog_sync(
78 	struct xlog		*log,
79 	struct xlog_in_core	*iclog);
80 #if defined(DEBUG)
81 STATIC void
82 xlog_verify_dest_ptr(
83 	struct xlog		*log,
84 	void			*ptr);
85 STATIC void
86 xlog_verify_grant_tail(
87 	struct xlog *log);
88 STATIC void
89 xlog_verify_iclog(
90 	struct xlog		*log,
91 	struct xlog_in_core	*iclog,
92 	int			count);
93 STATIC void
94 xlog_verify_tail_lsn(
95 	struct xlog		*log,
96 	struct xlog_in_core	*iclog,
97 	xfs_lsn_t		tail_lsn);
98 #else
99 #define xlog_verify_dest_ptr(a,b)
100 #define xlog_verify_grant_tail(a)
101 #define xlog_verify_iclog(a,b,c)
102 #define xlog_verify_tail_lsn(a,b,c)
103 #endif
104 
105 STATIC int
106 xlog_iclogs_empty(
107 	struct xlog		*log);
108 
109 static void
110 xlog_grant_sub_space(
111 	struct xlog		*log,
112 	atomic64_t		*head,
113 	int			bytes)
114 {
115 	int64_t	head_val = atomic64_read(head);
116 	int64_t new, old;
117 
118 	do {
119 		int	cycle, space;
120 
121 		xlog_crack_grant_head_val(head_val, &cycle, &space);
122 
123 		space -= bytes;
124 		if (space < 0) {
125 			space += log->l_logsize;
126 			cycle--;
127 		}
128 
129 		old = head_val;
130 		new = xlog_assign_grant_head_val(cycle, space);
131 		head_val = atomic64_cmpxchg(head, old, new);
132 	} while (head_val != old);
133 }
134 
135 static void
136 xlog_grant_add_space(
137 	struct xlog		*log,
138 	atomic64_t		*head,
139 	int			bytes)
140 {
141 	int64_t	head_val = atomic64_read(head);
142 	int64_t new, old;
143 
144 	do {
145 		int		tmp;
146 		int		cycle, space;
147 
148 		xlog_crack_grant_head_val(head_val, &cycle, &space);
149 
150 		tmp = log->l_logsize - space;
151 		if (tmp > bytes)
152 			space += bytes;
153 		else {
154 			space = bytes - tmp;
155 			cycle++;
156 		}
157 
158 		old = head_val;
159 		new = xlog_assign_grant_head_val(cycle, space);
160 		head_val = atomic64_cmpxchg(head, old, new);
161 	} while (head_val != old);
162 }
163 
164 STATIC void
165 xlog_grant_head_init(
166 	struct xlog_grant_head	*head)
167 {
168 	xlog_assign_grant_head(&head->grant, 1, 0);
169 	INIT_LIST_HEAD(&head->waiters);
170 	spin_lock_init(&head->lock);
171 }
172 
173 STATIC void
174 xlog_grant_head_wake_all(
175 	struct xlog_grant_head	*head)
176 {
177 	struct xlog_ticket	*tic;
178 
179 	spin_lock(&head->lock);
180 	list_for_each_entry(tic, &head->waiters, t_queue)
181 		wake_up_process(tic->t_task);
182 	spin_unlock(&head->lock);
183 }
184 
185 static inline int
186 xlog_ticket_reservation(
187 	struct xlog		*log,
188 	struct xlog_grant_head	*head,
189 	struct xlog_ticket	*tic)
190 {
191 	if (head == &log->l_write_head) {
192 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
193 		return tic->t_unit_res;
194 	} else {
195 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
196 			return tic->t_unit_res * tic->t_cnt;
197 		else
198 			return tic->t_unit_res;
199 	}
200 }
201 
202 STATIC bool
203 xlog_grant_head_wake(
204 	struct xlog		*log,
205 	struct xlog_grant_head	*head,
206 	int			*free_bytes)
207 {
208 	struct xlog_ticket	*tic;
209 	int			need_bytes;
210 	bool			woken_task = false;
211 
212 	list_for_each_entry(tic, &head->waiters, t_queue) {
213 
214 		/*
215 		 * There is a chance that the size of the CIL checkpoints in
216 		 * progress at the last AIL push target calculation resulted in
217 		 * limiting the target to the log head (l_last_sync_lsn) at the
218 		 * time. This may not reflect where the log head is now as the
219 		 * CIL checkpoints may have completed.
220 		 *
221 		 * Hence when we are woken here, it may be that the head of the
222 		 * log that has moved rather than the tail. As the tail didn't
223 		 * move, there still won't be space available for the
224 		 * reservation we require.  However, if the AIL has already
225 		 * pushed to the target defined by the old log head location, we
226 		 * will hang here waiting for something else to update the AIL
227 		 * push target.
228 		 *
229 		 * Therefore, if there isn't space to wake the first waiter on
230 		 * the grant head, we need to push the AIL again to ensure the
231 		 * target reflects both the current log tail and log head
232 		 * position before we wait for the tail to move again.
233 		 */
234 
235 		need_bytes = xlog_ticket_reservation(log, head, tic);
236 		if (*free_bytes < need_bytes) {
237 			if (!woken_task)
238 				xlog_grant_push_ail(log, need_bytes);
239 			return false;
240 		}
241 
242 		*free_bytes -= need_bytes;
243 		trace_xfs_log_grant_wake_up(log, tic);
244 		wake_up_process(tic->t_task);
245 		woken_task = true;
246 	}
247 
248 	return true;
249 }
250 
251 STATIC int
252 xlog_grant_head_wait(
253 	struct xlog		*log,
254 	struct xlog_grant_head	*head,
255 	struct xlog_ticket	*tic,
256 	int			need_bytes) __releases(&head->lock)
257 					    __acquires(&head->lock)
258 {
259 	list_add_tail(&tic->t_queue, &head->waiters);
260 
261 	do {
262 		if (XLOG_FORCED_SHUTDOWN(log))
263 			goto shutdown;
264 		xlog_grant_push_ail(log, need_bytes);
265 
266 		__set_current_state(TASK_UNINTERRUPTIBLE);
267 		spin_unlock(&head->lock);
268 
269 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
270 
271 		trace_xfs_log_grant_sleep(log, tic);
272 		schedule();
273 		trace_xfs_log_grant_wake(log, tic);
274 
275 		spin_lock(&head->lock);
276 		if (XLOG_FORCED_SHUTDOWN(log))
277 			goto shutdown;
278 	} while (xlog_space_left(log, &head->grant) < need_bytes);
279 
280 	list_del_init(&tic->t_queue);
281 	return 0;
282 shutdown:
283 	list_del_init(&tic->t_queue);
284 	return -EIO;
285 }
286 
287 /*
288  * Atomically get the log space required for a log ticket.
289  *
290  * Once a ticket gets put onto head->waiters, it will only return after the
291  * needed reservation is satisfied.
292  *
293  * This function is structured so that it has a lock free fast path. This is
294  * necessary because every new transaction reservation will come through this
295  * path. Hence any lock will be globally hot if we take it unconditionally on
296  * every pass.
297  *
298  * As tickets are only ever moved on and off head->waiters under head->lock, we
299  * only need to take that lock if we are going to add the ticket to the queue
300  * and sleep. We can avoid taking the lock if the ticket was never added to
301  * head->waiters because the t_queue list head will be empty and we hold the
302  * only reference to it so it can safely be checked unlocked.
303  */
304 STATIC int
305 xlog_grant_head_check(
306 	struct xlog		*log,
307 	struct xlog_grant_head	*head,
308 	struct xlog_ticket	*tic,
309 	int			*need_bytes)
310 {
311 	int			free_bytes;
312 	int			error = 0;
313 
314 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
315 
316 	/*
317 	 * If there are other waiters on the queue then give them a chance at
318 	 * logspace before us.  Wake up the first waiters, if we do not wake
319 	 * up all the waiters then go to sleep waiting for more free space,
320 	 * otherwise try to get some space for this transaction.
321 	 */
322 	*need_bytes = xlog_ticket_reservation(log, head, tic);
323 	free_bytes = xlog_space_left(log, &head->grant);
324 	if (!list_empty_careful(&head->waiters)) {
325 		spin_lock(&head->lock);
326 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
327 		    free_bytes < *need_bytes) {
328 			error = xlog_grant_head_wait(log, head, tic,
329 						     *need_bytes);
330 		}
331 		spin_unlock(&head->lock);
332 	} else if (free_bytes < *need_bytes) {
333 		spin_lock(&head->lock);
334 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
335 		spin_unlock(&head->lock);
336 	}
337 
338 	return error;
339 }
340 
341 static void
342 xlog_tic_reset_res(xlog_ticket_t *tic)
343 {
344 	tic->t_res_num = 0;
345 	tic->t_res_arr_sum = 0;
346 	tic->t_res_num_ophdrs = 0;
347 }
348 
349 static void
350 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
351 {
352 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
353 		/* add to overflow and start again */
354 		tic->t_res_o_flow += tic->t_res_arr_sum;
355 		tic->t_res_num = 0;
356 		tic->t_res_arr_sum = 0;
357 	}
358 
359 	tic->t_res_arr[tic->t_res_num].r_len = len;
360 	tic->t_res_arr[tic->t_res_num].r_type = type;
361 	tic->t_res_arr_sum += len;
362 	tic->t_res_num++;
363 }
364 
365 /*
366  * Replenish the byte reservation required by moving the grant write head.
367  */
368 int
369 xfs_log_regrant(
370 	struct xfs_mount	*mp,
371 	struct xlog_ticket	*tic)
372 {
373 	struct xlog		*log = mp->m_log;
374 	int			need_bytes;
375 	int			error = 0;
376 
377 	if (XLOG_FORCED_SHUTDOWN(log))
378 		return -EIO;
379 
380 	XFS_STATS_INC(mp, xs_try_logspace);
381 
382 	/*
383 	 * This is a new transaction on the ticket, so we need to change the
384 	 * transaction ID so that the next transaction has a different TID in
385 	 * the log. Just add one to the existing tid so that we can see chains
386 	 * of rolling transactions in the log easily.
387 	 */
388 	tic->t_tid++;
389 
390 	xlog_grant_push_ail(log, tic->t_unit_res);
391 
392 	tic->t_curr_res = tic->t_unit_res;
393 	xlog_tic_reset_res(tic);
394 
395 	if (tic->t_cnt > 0)
396 		return 0;
397 
398 	trace_xfs_log_regrant(log, tic);
399 
400 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
401 				      &need_bytes);
402 	if (error)
403 		goto out_error;
404 
405 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
406 	trace_xfs_log_regrant_exit(log, tic);
407 	xlog_verify_grant_tail(log);
408 	return 0;
409 
410 out_error:
411 	/*
412 	 * If we are failing, make sure the ticket doesn't have any current
413 	 * reservations.  We don't want to add this back when the ticket/
414 	 * transaction gets cancelled.
415 	 */
416 	tic->t_curr_res = 0;
417 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
418 	return error;
419 }
420 
421 /*
422  * Reserve log space and return a ticket corresponding to the reservation.
423  *
424  * Each reservation is going to reserve extra space for a log record header.
425  * When writes happen to the on-disk log, we don't subtract the length of the
426  * log record header from any reservation.  By wasting space in each
427  * reservation, we prevent over allocation problems.
428  */
429 int
430 xfs_log_reserve(
431 	struct xfs_mount	*mp,
432 	int		 	unit_bytes,
433 	int		 	cnt,
434 	struct xlog_ticket	**ticp,
435 	uint8_t		 	client,
436 	bool			permanent)
437 {
438 	struct xlog		*log = mp->m_log;
439 	struct xlog_ticket	*tic;
440 	int			need_bytes;
441 	int			error = 0;
442 
443 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
444 
445 	if (XLOG_FORCED_SHUTDOWN(log))
446 		return -EIO;
447 
448 	XFS_STATS_INC(mp, xs_try_logspace);
449 
450 	ASSERT(*ticp == NULL);
451 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
452 	*ticp = tic;
453 
454 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
455 					    : tic->t_unit_res);
456 
457 	trace_xfs_log_reserve(log, tic);
458 
459 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
460 				      &need_bytes);
461 	if (error)
462 		goto out_error;
463 
464 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
465 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
466 	trace_xfs_log_reserve_exit(log, tic);
467 	xlog_verify_grant_tail(log);
468 	return 0;
469 
470 out_error:
471 	/*
472 	 * If we are failing, make sure the ticket doesn't have any current
473 	 * reservations.  We don't want to add this back when the ticket/
474 	 * transaction gets cancelled.
475 	 */
476 	tic->t_curr_res = 0;
477 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
478 	return error;
479 }
480 
481 
482 /*
483  * NOTES:
484  *
485  *	1. currblock field gets updated at startup and after in-core logs
486  *		marked as with WANT_SYNC.
487  */
488 
489 /*
490  * This routine is called when a user of a log manager ticket is done with
491  * the reservation.  If the ticket was ever used, then a commit record for
492  * the associated transaction is written out as a log operation header with
493  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
494  * a given ticket.  If the ticket was one with a permanent reservation, then
495  * a few operations are done differently.  Permanent reservation tickets by
496  * default don't release the reservation.  They just commit the current
497  * transaction with the belief that the reservation is still needed.  A flag
498  * must be passed in before permanent reservations are actually released.
499  * When these type of tickets are not released, they need to be set into
500  * the inited state again.  By doing this, a start record will be written
501  * out when the next write occurs.
502  */
503 xfs_lsn_t
504 xfs_log_done(
505 	struct xfs_mount	*mp,
506 	struct xlog_ticket	*ticket,
507 	struct xlog_in_core	**iclog,
508 	bool			regrant)
509 {
510 	struct xlog		*log = mp->m_log;
511 	xfs_lsn_t		lsn = 0;
512 
513 	if (XLOG_FORCED_SHUTDOWN(log) ||
514 	    /*
515 	     * If nothing was ever written, don't write out commit record.
516 	     * If we get an error, just continue and give back the log ticket.
517 	     */
518 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
519 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
520 		lsn = (xfs_lsn_t) -1;
521 		regrant = false;
522 	}
523 
524 
525 	if (!regrant) {
526 		trace_xfs_log_done_nonperm(log, ticket);
527 
528 		/*
529 		 * Release ticket if not permanent reservation or a specific
530 		 * request has been made to release a permanent reservation.
531 		 */
532 		xlog_ungrant_log_space(log, ticket);
533 	} else {
534 		trace_xfs_log_done_perm(log, ticket);
535 
536 		xlog_regrant_reserve_log_space(log, ticket);
537 		/* If this ticket was a permanent reservation and we aren't
538 		 * trying to release it, reset the inited flags; so next time
539 		 * we write, a start record will be written out.
540 		 */
541 		ticket->t_flags |= XLOG_TIC_INITED;
542 	}
543 
544 	xfs_log_ticket_put(ticket);
545 	return lsn;
546 }
547 
548 static bool
549 __xlog_state_release_iclog(
550 	struct xlog		*log,
551 	struct xlog_in_core	*iclog)
552 {
553 	lockdep_assert_held(&log->l_icloglock);
554 
555 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
556 		/* update tail before writing to iclog */
557 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
558 
559 		iclog->ic_state = XLOG_STATE_SYNCING;
560 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
561 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
562 		/* cycle incremented when incrementing curr_block */
563 		return true;
564 	}
565 
566 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
567 	return false;
568 }
569 
570 /*
571  * Flush iclog to disk if this is the last reference to the given iclog and the
572  * it is in the WANT_SYNC state.
573  */
574 static int
575 xlog_state_release_iclog(
576 	struct xlog		*log,
577 	struct xlog_in_core	*iclog)
578 {
579 	lockdep_assert_held(&log->l_icloglock);
580 
581 	if (iclog->ic_state == XLOG_STATE_IOERROR)
582 		return -EIO;
583 
584 	if (atomic_dec_and_test(&iclog->ic_refcnt) &&
585 	    __xlog_state_release_iclog(log, iclog)) {
586 		spin_unlock(&log->l_icloglock);
587 		xlog_sync(log, iclog);
588 		spin_lock(&log->l_icloglock);
589 	}
590 
591 	return 0;
592 }
593 
594 void
595 xfs_log_release_iclog(
596 	struct xlog_in_core	*iclog)
597 {
598 	struct xlog		*log = iclog->ic_log;
599 	bool			sync = false;
600 
601 	if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
602 		if (iclog->ic_state != XLOG_STATE_IOERROR)
603 			sync = __xlog_state_release_iclog(log, iclog);
604 		spin_unlock(&log->l_icloglock);
605 	}
606 
607 	if (sync)
608 		xlog_sync(log, iclog);
609 }
610 
611 /*
612  * Mount a log filesystem
613  *
614  * mp		- ubiquitous xfs mount point structure
615  * log_target	- buftarg of on-disk log device
616  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
617  * num_bblocks	- Number of BBSIZE blocks in on-disk log
618  *
619  * Return error or zero.
620  */
621 int
622 xfs_log_mount(
623 	xfs_mount_t	*mp,
624 	xfs_buftarg_t	*log_target,
625 	xfs_daddr_t	blk_offset,
626 	int		num_bblks)
627 {
628 	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
629 	int		error = 0;
630 	int		min_logfsbs;
631 
632 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
633 		xfs_notice(mp, "Mounting V%d Filesystem",
634 			   XFS_SB_VERSION_NUM(&mp->m_sb));
635 	} else {
636 		xfs_notice(mp,
637 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
638 			   XFS_SB_VERSION_NUM(&mp->m_sb));
639 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
640 	}
641 
642 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
643 	if (IS_ERR(mp->m_log)) {
644 		error = PTR_ERR(mp->m_log);
645 		goto out;
646 	}
647 
648 	/*
649 	 * Validate the given log space and drop a critical message via syslog
650 	 * if the log size is too small that would lead to some unexpected
651 	 * situations in transaction log space reservation stage.
652 	 *
653 	 * Note: we can't just reject the mount if the validation fails.  This
654 	 * would mean that people would have to downgrade their kernel just to
655 	 * remedy the situation as there is no way to grow the log (short of
656 	 * black magic surgery with xfs_db).
657 	 *
658 	 * We can, however, reject mounts for CRC format filesystems, as the
659 	 * mkfs binary being used to make the filesystem should never create a
660 	 * filesystem with a log that is too small.
661 	 */
662 	min_logfsbs = xfs_log_calc_minimum_size(mp);
663 
664 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
665 		xfs_warn(mp,
666 		"Log size %d blocks too small, minimum size is %d blocks",
667 			 mp->m_sb.sb_logblocks, min_logfsbs);
668 		error = -EINVAL;
669 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
670 		xfs_warn(mp,
671 		"Log size %d blocks too large, maximum size is %lld blocks",
672 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
673 		error = -EINVAL;
674 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
675 		xfs_warn(mp,
676 		"log size %lld bytes too large, maximum size is %lld bytes",
677 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
678 			 XFS_MAX_LOG_BYTES);
679 		error = -EINVAL;
680 	} else if (mp->m_sb.sb_logsunit > 1 &&
681 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
682 		xfs_warn(mp,
683 		"log stripe unit %u bytes must be a multiple of block size",
684 			 mp->m_sb.sb_logsunit);
685 		error = -EINVAL;
686 		fatal = true;
687 	}
688 	if (error) {
689 		/*
690 		 * Log check errors are always fatal on v5; or whenever bad
691 		 * metadata leads to a crash.
692 		 */
693 		if (fatal) {
694 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
695 			ASSERT(0);
696 			goto out_free_log;
697 		}
698 		xfs_crit(mp, "Log size out of supported range.");
699 		xfs_crit(mp,
700 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
701 	}
702 
703 	/*
704 	 * Initialize the AIL now we have a log.
705 	 */
706 	error = xfs_trans_ail_init(mp);
707 	if (error) {
708 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
709 		goto out_free_log;
710 	}
711 	mp->m_log->l_ailp = mp->m_ail;
712 
713 	/*
714 	 * skip log recovery on a norecovery mount.  pretend it all
715 	 * just worked.
716 	 */
717 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
718 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
719 
720 		if (readonly)
721 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
722 
723 		error = xlog_recover(mp->m_log);
724 
725 		if (readonly)
726 			mp->m_flags |= XFS_MOUNT_RDONLY;
727 		if (error) {
728 			xfs_warn(mp, "log mount/recovery failed: error %d",
729 				error);
730 			xlog_recover_cancel(mp->m_log);
731 			goto out_destroy_ail;
732 		}
733 	}
734 
735 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
736 			       "log");
737 	if (error)
738 		goto out_destroy_ail;
739 
740 	/* Normal transactions can now occur */
741 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
742 
743 	/*
744 	 * Now the log has been fully initialised and we know were our
745 	 * space grant counters are, we can initialise the permanent ticket
746 	 * needed for delayed logging to work.
747 	 */
748 	xlog_cil_init_post_recovery(mp->m_log);
749 
750 	return 0;
751 
752 out_destroy_ail:
753 	xfs_trans_ail_destroy(mp);
754 out_free_log:
755 	xlog_dealloc_log(mp->m_log);
756 out:
757 	return error;
758 }
759 
760 /*
761  * Finish the recovery of the file system.  This is separate from the
762  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
763  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
764  * here.
765  *
766  * If we finish recovery successfully, start the background log work. If we are
767  * not doing recovery, then we have a RO filesystem and we don't need to start
768  * it.
769  */
770 int
771 xfs_log_mount_finish(
772 	struct xfs_mount	*mp)
773 {
774 	int	error = 0;
775 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
776 	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
777 
778 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
779 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
780 		return 0;
781 	} else if (readonly) {
782 		/* Allow unlinked processing to proceed */
783 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
784 	}
785 
786 	/*
787 	 * During the second phase of log recovery, we need iget and
788 	 * iput to behave like they do for an active filesystem.
789 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
790 	 * of inodes before we're done replaying log items on those
791 	 * inodes.  Turn it off immediately after recovery finishes
792 	 * so that we don't leak the quota inodes if subsequent mount
793 	 * activities fail.
794 	 *
795 	 * We let all inodes involved in redo item processing end up on
796 	 * the LRU instead of being evicted immediately so that if we do
797 	 * something to an unlinked inode, the irele won't cause
798 	 * premature truncation and freeing of the inode, which results
799 	 * in log recovery failure.  We have to evict the unreferenced
800 	 * lru inodes after clearing SB_ACTIVE because we don't
801 	 * otherwise clean up the lru if there's a subsequent failure in
802 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
803 	 * else (e.g. quotacheck) references the inodes before the
804 	 * mount failure occurs.
805 	 */
806 	mp->m_super->s_flags |= SB_ACTIVE;
807 	error = xlog_recover_finish(mp->m_log);
808 	if (!error)
809 		xfs_log_work_queue(mp);
810 	mp->m_super->s_flags &= ~SB_ACTIVE;
811 	evict_inodes(mp->m_super);
812 
813 	/*
814 	 * Drain the buffer LRU after log recovery. This is required for v4
815 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
816 	 * but we do it unconditionally to make sure we're always in a clean
817 	 * cache state after mount.
818 	 *
819 	 * Don't push in the error case because the AIL may have pending intents
820 	 * that aren't removed until recovery is cancelled.
821 	 */
822 	if (!error && recovered) {
823 		xfs_log_force(mp, XFS_LOG_SYNC);
824 		xfs_ail_push_all_sync(mp->m_ail);
825 	}
826 	xfs_wait_buftarg(mp->m_ddev_targp);
827 
828 	if (readonly)
829 		mp->m_flags |= XFS_MOUNT_RDONLY;
830 
831 	return error;
832 }
833 
834 /*
835  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
836  * the log.
837  */
838 void
839 xfs_log_mount_cancel(
840 	struct xfs_mount	*mp)
841 {
842 	xlog_recover_cancel(mp->m_log);
843 	xfs_log_unmount(mp);
844 }
845 
846 /*
847  * Wait for the iclog to be written disk, or return an error if the log has been
848  * shut down.
849  */
850 static int
851 xlog_wait_on_iclog(
852 	struct xlog_in_core	*iclog)
853 		__releases(iclog->ic_log->l_icloglock)
854 {
855 	struct xlog		*log = iclog->ic_log;
856 
857 	if (!XLOG_FORCED_SHUTDOWN(log) &&
858 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
859 	    iclog->ic_state != XLOG_STATE_DIRTY) {
860 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
861 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
862 	} else {
863 		spin_unlock(&log->l_icloglock);
864 	}
865 
866 	if (XLOG_FORCED_SHUTDOWN(log))
867 		return -EIO;
868 	return 0;
869 }
870 
871 /*
872  * Final log writes as part of unmount.
873  *
874  * Mark the filesystem clean as unmount happens.  Note that during relocation
875  * this routine needs to be executed as part of source-bag while the
876  * deallocation must not be done until source-end.
877  */
878 
879 /* Actually write the unmount record to disk. */
880 static void
881 xfs_log_write_unmount_record(
882 	struct xfs_mount	*mp)
883 {
884 	/* the data section must be 32 bit size aligned */
885 	struct xfs_unmount_log_format magic = {
886 		.magic = XLOG_UNMOUNT_TYPE,
887 	};
888 	struct xfs_log_iovec reg = {
889 		.i_addr = &magic,
890 		.i_len = sizeof(magic),
891 		.i_type = XLOG_REG_TYPE_UNMOUNT,
892 	};
893 	struct xfs_log_vec vec = {
894 		.lv_niovecs = 1,
895 		.lv_iovecp = &reg,
896 	};
897 	struct xlog		*log = mp->m_log;
898 	struct xlog_in_core	*iclog;
899 	struct xlog_ticket	*tic = NULL;
900 	xfs_lsn_t		lsn;
901 	uint			flags = XLOG_UNMOUNT_TRANS;
902 	int			error;
903 
904 	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
905 	if (error)
906 		goto out_err;
907 
908 	/*
909 	 * If we think the summary counters are bad, clear the unmount header
910 	 * flag in the unmount record so that the summary counters will be
911 	 * recalculated during log recovery at next mount.  Refer to
912 	 * xlog_check_unmount_rec for more details.
913 	 */
914 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
915 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
916 		xfs_alert(mp, "%s: will fix summary counters at next mount",
917 				__func__);
918 		flags &= ~XLOG_UNMOUNT_TRANS;
919 	}
920 
921 	/* remove inited flag, and account for space used */
922 	tic->t_flags = 0;
923 	tic->t_curr_res -= sizeof(magic);
924 	error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
925 	/*
926 	 * At this point, we're umounting anyway, so there's no point in
927 	 * transitioning log state to IOERROR. Just continue...
928 	 */
929 out_err:
930 	if (error)
931 		xfs_alert(mp, "%s: unmount record failed", __func__);
932 
933 	spin_lock(&log->l_icloglock);
934 	iclog = log->l_iclog;
935 	atomic_inc(&iclog->ic_refcnt);
936 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
937 		xlog_state_switch_iclogs(log, iclog, 0);
938 	else
939 		ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
940 		       iclog->ic_state == XLOG_STATE_IOERROR);
941 	error = xlog_state_release_iclog(log, iclog);
942 	xlog_wait_on_iclog(iclog);
943 
944 	if (tic) {
945 		trace_xfs_log_umount_write(log, tic);
946 		xlog_ungrant_log_space(log, tic);
947 		xfs_log_ticket_put(tic);
948 	}
949 }
950 
951 static void
952 xfs_log_unmount_verify_iclog(
953 	struct xlog		*log)
954 {
955 	struct xlog_in_core	*iclog = log->l_iclog;
956 
957 	do {
958 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
959 		ASSERT(iclog->ic_offset == 0);
960 	} while ((iclog = iclog->ic_next) != log->l_iclog);
961 }
962 
963 /*
964  * Unmount record used to have a string "Unmount filesystem--" in the
965  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
966  * We just write the magic number now since that particular field isn't
967  * currently architecture converted and "Unmount" is a bit foo.
968  * As far as I know, there weren't any dependencies on the old behaviour.
969  */
970 static void
971 xfs_log_unmount_write(
972 	struct xfs_mount	*mp)
973 {
974 	struct xlog		*log = mp->m_log;
975 
976 	/*
977 	 * Don't write out unmount record on norecovery mounts or ro devices.
978 	 * Or, if we are doing a forced umount (typically because of IO errors).
979 	 */
980 	if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
981 	    xfs_readonly_buftarg(log->l_targ)) {
982 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
983 		return;
984 	}
985 
986 	xfs_log_force(mp, XFS_LOG_SYNC);
987 
988 	if (XLOG_FORCED_SHUTDOWN(log))
989 		return;
990 	xfs_log_unmount_verify_iclog(log);
991 	xfs_log_write_unmount_record(mp);
992 }
993 
994 /*
995  * Empty the log for unmount/freeze.
996  *
997  * To do this, we first need to shut down the background log work so it is not
998  * trying to cover the log as we clean up. We then need to unpin all objects in
999  * the log so we can then flush them out. Once they have completed their IO and
1000  * run the callbacks removing themselves from the AIL, we can write the unmount
1001  * record.
1002  */
1003 void
1004 xfs_log_quiesce(
1005 	struct xfs_mount	*mp)
1006 {
1007 	cancel_delayed_work_sync(&mp->m_log->l_work);
1008 	xfs_log_force(mp, XFS_LOG_SYNC);
1009 
1010 	/*
1011 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1012 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1013 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1014 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1015 	 * the IO to complete.
1016 	 */
1017 	xfs_ail_push_all_sync(mp->m_ail);
1018 	xfs_wait_buftarg(mp->m_ddev_targp);
1019 	xfs_buf_lock(mp->m_sb_bp);
1020 	xfs_buf_unlock(mp->m_sb_bp);
1021 
1022 	xfs_log_unmount_write(mp);
1023 }
1024 
1025 /*
1026  * Shut down and release the AIL and Log.
1027  *
1028  * During unmount, we need to ensure we flush all the dirty metadata objects
1029  * from the AIL so that the log is empty before we write the unmount record to
1030  * the log. Once this is done, we can tear down the AIL and the log.
1031  */
1032 void
1033 xfs_log_unmount(
1034 	struct xfs_mount	*mp)
1035 {
1036 	xfs_log_quiesce(mp);
1037 
1038 	xfs_trans_ail_destroy(mp);
1039 
1040 	xfs_sysfs_del(&mp->m_log->l_kobj);
1041 
1042 	xlog_dealloc_log(mp->m_log);
1043 }
1044 
1045 void
1046 xfs_log_item_init(
1047 	struct xfs_mount	*mp,
1048 	struct xfs_log_item	*item,
1049 	int			type,
1050 	const struct xfs_item_ops *ops)
1051 {
1052 	item->li_mountp = mp;
1053 	item->li_ailp = mp->m_ail;
1054 	item->li_type = type;
1055 	item->li_ops = ops;
1056 	item->li_lv = NULL;
1057 
1058 	INIT_LIST_HEAD(&item->li_ail);
1059 	INIT_LIST_HEAD(&item->li_cil);
1060 	INIT_LIST_HEAD(&item->li_bio_list);
1061 	INIT_LIST_HEAD(&item->li_trans);
1062 }
1063 
1064 /*
1065  * Wake up processes waiting for log space after we have moved the log tail.
1066  */
1067 void
1068 xfs_log_space_wake(
1069 	struct xfs_mount	*mp)
1070 {
1071 	struct xlog		*log = mp->m_log;
1072 	int			free_bytes;
1073 
1074 	if (XLOG_FORCED_SHUTDOWN(log))
1075 		return;
1076 
1077 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1078 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1079 
1080 		spin_lock(&log->l_write_head.lock);
1081 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1082 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1083 		spin_unlock(&log->l_write_head.lock);
1084 	}
1085 
1086 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1087 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1088 
1089 		spin_lock(&log->l_reserve_head.lock);
1090 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1091 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1092 		spin_unlock(&log->l_reserve_head.lock);
1093 	}
1094 }
1095 
1096 /*
1097  * Determine if we have a transaction that has gone to disk that needs to be
1098  * covered. To begin the transition to the idle state firstly the log needs to
1099  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1100  * we start attempting to cover the log.
1101  *
1102  * Only if we are then in a state where covering is needed, the caller is
1103  * informed that dummy transactions are required to move the log into the idle
1104  * state.
1105  *
1106  * If there are any items in the AIl or CIL, then we do not want to attempt to
1107  * cover the log as we may be in a situation where there isn't log space
1108  * available to run a dummy transaction and this can lead to deadlocks when the
1109  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1110  * there's no point in running a dummy transaction at this point because we
1111  * can't start trying to idle the log until both the CIL and AIL are empty.
1112  */
1113 static int
1114 xfs_log_need_covered(xfs_mount_t *mp)
1115 {
1116 	struct xlog	*log = mp->m_log;
1117 	int		needed = 0;
1118 
1119 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1120 		return 0;
1121 
1122 	if (!xlog_cil_empty(log))
1123 		return 0;
1124 
1125 	spin_lock(&log->l_icloglock);
1126 	switch (log->l_covered_state) {
1127 	case XLOG_STATE_COVER_DONE:
1128 	case XLOG_STATE_COVER_DONE2:
1129 	case XLOG_STATE_COVER_IDLE:
1130 		break;
1131 	case XLOG_STATE_COVER_NEED:
1132 	case XLOG_STATE_COVER_NEED2:
1133 		if (xfs_ail_min_lsn(log->l_ailp))
1134 			break;
1135 		if (!xlog_iclogs_empty(log))
1136 			break;
1137 
1138 		needed = 1;
1139 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1140 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1141 		else
1142 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1143 		break;
1144 	default:
1145 		needed = 1;
1146 		break;
1147 	}
1148 	spin_unlock(&log->l_icloglock);
1149 	return needed;
1150 }
1151 
1152 /*
1153  * We may be holding the log iclog lock upon entering this routine.
1154  */
1155 xfs_lsn_t
1156 xlog_assign_tail_lsn_locked(
1157 	struct xfs_mount	*mp)
1158 {
1159 	struct xlog		*log = mp->m_log;
1160 	struct xfs_log_item	*lip;
1161 	xfs_lsn_t		tail_lsn;
1162 
1163 	assert_spin_locked(&mp->m_ail->ail_lock);
1164 
1165 	/*
1166 	 * To make sure we always have a valid LSN for the log tail we keep
1167 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1168 	 * and use that when the AIL was empty.
1169 	 */
1170 	lip = xfs_ail_min(mp->m_ail);
1171 	if (lip)
1172 		tail_lsn = lip->li_lsn;
1173 	else
1174 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1175 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1176 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1177 	return tail_lsn;
1178 }
1179 
1180 xfs_lsn_t
1181 xlog_assign_tail_lsn(
1182 	struct xfs_mount	*mp)
1183 {
1184 	xfs_lsn_t		tail_lsn;
1185 
1186 	spin_lock(&mp->m_ail->ail_lock);
1187 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1188 	spin_unlock(&mp->m_ail->ail_lock);
1189 
1190 	return tail_lsn;
1191 }
1192 
1193 /*
1194  * Return the space in the log between the tail and the head.  The head
1195  * is passed in the cycle/bytes formal parms.  In the special case where
1196  * the reserve head has wrapped passed the tail, this calculation is no
1197  * longer valid.  In this case, just return 0 which means there is no space
1198  * in the log.  This works for all places where this function is called
1199  * with the reserve head.  Of course, if the write head were to ever
1200  * wrap the tail, we should blow up.  Rather than catch this case here,
1201  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1202  *
1203  * This code also handles the case where the reservation head is behind
1204  * the tail.  The details of this case are described below, but the end
1205  * result is that we return the size of the log as the amount of space left.
1206  */
1207 STATIC int
1208 xlog_space_left(
1209 	struct xlog	*log,
1210 	atomic64_t	*head)
1211 {
1212 	int		free_bytes;
1213 	int		tail_bytes;
1214 	int		tail_cycle;
1215 	int		head_cycle;
1216 	int		head_bytes;
1217 
1218 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1219 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1220 	tail_bytes = BBTOB(tail_bytes);
1221 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1222 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1223 	else if (tail_cycle + 1 < head_cycle)
1224 		return 0;
1225 	else if (tail_cycle < head_cycle) {
1226 		ASSERT(tail_cycle == (head_cycle - 1));
1227 		free_bytes = tail_bytes - head_bytes;
1228 	} else {
1229 		/*
1230 		 * The reservation head is behind the tail.
1231 		 * In this case we just want to return the size of the
1232 		 * log as the amount of space left.
1233 		 */
1234 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1235 		xfs_alert(log->l_mp,
1236 			  "  tail_cycle = %d, tail_bytes = %d",
1237 			  tail_cycle, tail_bytes);
1238 		xfs_alert(log->l_mp,
1239 			  "  GH   cycle = %d, GH   bytes = %d",
1240 			  head_cycle, head_bytes);
1241 		ASSERT(0);
1242 		free_bytes = log->l_logsize;
1243 	}
1244 	return free_bytes;
1245 }
1246 
1247 
1248 static void
1249 xlog_ioend_work(
1250 	struct work_struct	*work)
1251 {
1252 	struct xlog_in_core     *iclog =
1253 		container_of(work, struct xlog_in_core, ic_end_io_work);
1254 	struct xlog		*log = iclog->ic_log;
1255 	int			error;
1256 
1257 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1258 #ifdef DEBUG
1259 	/* treat writes with injected CRC errors as failed */
1260 	if (iclog->ic_fail_crc)
1261 		error = -EIO;
1262 #endif
1263 
1264 	/*
1265 	 * Race to shutdown the filesystem if we see an error.
1266 	 */
1267 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1268 		xfs_alert(log->l_mp, "log I/O error %d", error);
1269 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1270 	}
1271 
1272 	xlog_state_done_syncing(iclog);
1273 	bio_uninit(&iclog->ic_bio);
1274 
1275 	/*
1276 	 * Drop the lock to signal that we are done. Nothing references the
1277 	 * iclog after this, so an unmount waiting on this lock can now tear it
1278 	 * down safely. As such, it is unsafe to reference the iclog after the
1279 	 * unlock as we could race with it being freed.
1280 	 */
1281 	up(&iclog->ic_sema);
1282 }
1283 
1284 /*
1285  * Return size of each in-core log record buffer.
1286  *
1287  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1288  *
1289  * If the filesystem blocksize is too large, we may need to choose a
1290  * larger size since the directory code currently logs entire blocks.
1291  */
1292 STATIC void
1293 xlog_get_iclog_buffer_size(
1294 	struct xfs_mount	*mp,
1295 	struct xlog		*log)
1296 {
1297 	if (mp->m_logbufs <= 0)
1298 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1299 	if (mp->m_logbsize <= 0)
1300 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1301 
1302 	log->l_iclog_bufs = mp->m_logbufs;
1303 	log->l_iclog_size = mp->m_logbsize;
1304 
1305 	/*
1306 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1307 	 */
1308 	log->l_iclog_heads =
1309 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1310 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1311 }
1312 
1313 void
1314 xfs_log_work_queue(
1315 	struct xfs_mount        *mp)
1316 {
1317 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1318 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1319 }
1320 
1321 /*
1322  * Every sync period we need to unpin all items in the AIL and push them to
1323  * disk. If there is nothing dirty, then we might need to cover the log to
1324  * indicate that the filesystem is idle.
1325  */
1326 static void
1327 xfs_log_worker(
1328 	struct work_struct	*work)
1329 {
1330 	struct xlog		*log = container_of(to_delayed_work(work),
1331 						struct xlog, l_work);
1332 	struct xfs_mount	*mp = log->l_mp;
1333 
1334 	/* dgc: errors ignored - not fatal and nowhere to report them */
1335 	if (xfs_log_need_covered(mp)) {
1336 		/*
1337 		 * Dump a transaction into the log that contains no real change.
1338 		 * This is needed to stamp the current tail LSN into the log
1339 		 * during the covering operation.
1340 		 *
1341 		 * We cannot use an inode here for this - that will push dirty
1342 		 * state back up into the VFS and then periodic inode flushing
1343 		 * will prevent log covering from making progress. Hence we
1344 		 * synchronously log the superblock instead to ensure the
1345 		 * superblock is immediately unpinned and can be written back.
1346 		 */
1347 		xfs_sync_sb(mp, true);
1348 	} else
1349 		xfs_log_force(mp, 0);
1350 
1351 	/* start pushing all the metadata that is currently dirty */
1352 	xfs_ail_push_all(mp->m_ail);
1353 
1354 	/* queue us up again */
1355 	xfs_log_work_queue(mp);
1356 }
1357 
1358 /*
1359  * This routine initializes some of the log structure for a given mount point.
1360  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1361  * some other stuff may be filled in too.
1362  */
1363 STATIC struct xlog *
1364 xlog_alloc_log(
1365 	struct xfs_mount	*mp,
1366 	struct xfs_buftarg	*log_target,
1367 	xfs_daddr_t		blk_offset,
1368 	int			num_bblks)
1369 {
1370 	struct xlog		*log;
1371 	xlog_rec_header_t	*head;
1372 	xlog_in_core_t		**iclogp;
1373 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1374 	int			i;
1375 	int			error = -ENOMEM;
1376 	uint			log2_size = 0;
1377 
1378 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1379 	if (!log) {
1380 		xfs_warn(mp, "Log allocation failed: No memory!");
1381 		goto out;
1382 	}
1383 
1384 	log->l_mp	   = mp;
1385 	log->l_targ	   = log_target;
1386 	log->l_logsize     = BBTOB(num_bblks);
1387 	log->l_logBBstart  = blk_offset;
1388 	log->l_logBBsize   = num_bblks;
1389 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1390 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1391 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1392 
1393 	log->l_prev_block  = -1;
1394 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1395 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1396 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1397 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1398 
1399 	xlog_grant_head_init(&log->l_reserve_head);
1400 	xlog_grant_head_init(&log->l_write_head);
1401 
1402 	error = -EFSCORRUPTED;
1403 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1404 	        log2_size = mp->m_sb.sb_logsectlog;
1405 		if (log2_size < BBSHIFT) {
1406 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1407 				log2_size, BBSHIFT);
1408 			goto out_free_log;
1409 		}
1410 
1411 	        log2_size -= BBSHIFT;
1412 		if (log2_size > mp->m_sectbb_log) {
1413 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1414 				log2_size, mp->m_sectbb_log);
1415 			goto out_free_log;
1416 		}
1417 
1418 		/* for larger sector sizes, must have v2 or external log */
1419 		if (log2_size && log->l_logBBstart > 0 &&
1420 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1421 			xfs_warn(mp,
1422 		"log sector size (0x%x) invalid for configuration.",
1423 				log2_size);
1424 			goto out_free_log;
1425 		}
1426 	}
1427 	log->l_sectBBsize = 1 << log2_size;
1428 
1429 	xlog_get_iclog_buffer_size(mp, log);
1430 
1431 	spin_lock_init(&log->l_icloglock);
1432 	init_waitqueue_head(&log->l_flush_wait);
1433 
1434 	iclogp = &log->l_iclog;
1435 	/*
1436 	 * The amount of memory to allocate for the iclog structure is
1437 	 * rather funky due to the way the structure is defined.  It is
1438 	 * done this way so that we can use different sizes for machines
1439 	 * with different amounts of memory.  See the definition of
1440 	 * xlog_in_core_t in xfs_log_priv.h for details.
1441 	 */
1442 	ASSERT(log->l_iclog_size >= 4096);
1443 	for (i = 0; i < log->l_iclog_bufs; i++) {
1444 		int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1445 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1446 				sizeof(struct bio_vec);
1447 
1448 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1449 		if (!iclog)
1450 			goto out_free_iclog;
1451 
1452 		*iclogp = iclog;
1453 		iclog->ic_prev = prev_iclog;
1454 		prev_iclog = iclog;
1455 
1456 		iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1457 						KM_MAYFAIL | KM_ZERO);
1458 		if (!iclog->ic_data)
1459 			goto out_free_iclog;
1460 #ifdef DEBUG
1461 		log->l_iclog_bak[i] = &iclog->ic_header;
1462 #endif
1463 		head = &iclog->ic_header;
1464 		memset(head, 0, sizeof(xlog_rec_header_t));
1465 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1466 		head->h_version = cpu_to_be32(
1467 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1468 		head->h_size = cpu_to_be32(log->l_iclog_size);
1469 		/* new fields */
1470 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1471 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1472 
1473 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1474 		iclog->ic_state = XLOG_STATE_ACTIVE;
1475 		iclog->ic_log = log;
1476 		atomic_set(&iclog->ic_refcnt, 0);
1477 		spin_lock_init(&iclog->ic_callback_lock);
1478 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1479 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1480 
1481 		init_waitqueue_head(&iclog->ic_force_wait);
1482 		init_waitqueue_head(&iclog->ic_write_wait);
1483 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1484 		sema_init(&iclog->ic_sema, 1);
1485 
1486 		iclogp = &iclog->ic_next;
1487 	}
1488 	*iclogp = log->l_iclog;			/* complete ring */
1489 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1490 
1491 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1492 			WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1493 			mp->m_super->s_id);
1494 	if (!log->l_ioend_workqueue)
1495 		goto out_free_iclog;
1496 
1497 	error = xlog_cil_init(log);
1498 	if (error)
1499 		goto out_destroy_workqueue;
1500 	return log;
1501 
1502 out_destroy_workqueue:
1503 	destroy_workqueue(log->l_ioend_workqueue);
1504 out_free_iclog:
1505 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1506 		prev_iclog = iclog->ic_next;
1507 		kmem_free(iclog->ic_data);
1508 		kmem_free(iclog);
1509 		if (prev_iclog == log->l_iclog)
1510 			break;
1511 	}
1512 out_free_log:
1513 	kmem_free(log);
1514 out:
1515 	return ERR_PTR(error);
1516 }	/* xlog_alloc_log */
1517 
1518 
1519 /*
1520  * Write out the commit record of a transaction associated with the given
1521  * ticket.  Return the lsn of the commit record.
1522  */
1523 STATIC int
1524 xlog_commit_record(
1525 	struct xlog		*log,
1526 	struct xlog_ticket	*ticket,
1527 	struct xlog_in_core	**iclog,
1528 	xfs_lsn_t		*commitlsnp)
1529 {
1530 	struct xfs_mount *mp = log->l_mp;
1531 	int	error;
1532 	struct xfs_log_iovec reg = {
1533 		.i_addr = NULL,
1534 		.i_len = 0,
1535 		.i_type = XLOG_REG_TYPE_COMMIT,
1536 	};
1537 	struct xfs_log_vec vec = {
1538 		.lv_niovecs = 1,
1539 		.lv_iovecp = &reg,
1540 	};
1541 
1542 	ASSERT_ALWAYS(iclog);
1543 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1544 					XLOG_COMMIT_TRANS);
1545 	if (error)
1546 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1547 	return error;
1548 }
1549 
1550 /*
1551  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1552  * log space.  This code pushes on the lsn which would supposedly free up
1553  * the 25% which we want to leave free.  We may need to adopt a policy which
1554  * pushes on an lsn which is further along in the log once we reach the high
1555  * water mark.  In this manner, we would be creating a low water mark.
1556  */
1557 STATIC void
1558 xlog_grant_push_ail(
1559 	struct xlog	*log,
1560 	int		need_bytes)
1561 {
1562 	xfs_lsn_t	threshold_lsn = 0;
1563 	xfs_lsn_t	last_sync_lsn;
1564 	int		free_blocks;
1565 	int		free_bytes;
1566 	int		threshold_block;
1567 	int		threshold_cycle;
1568 	int		free_threshold;
1569 
1570 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1571 
1572 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1573 	free_blocks = BTOBBT(free_bytes);
1574 
1575 	/*
1576 	 * Set the threshold for the minimum number of free blocks in the
1577 	 * log to the maximum of what the caller needs, one quarter of the
1578 	 * log, and 256 blocks.
1579 	 */
1580 	free_threshold = BTOBB(need_bytes);
1581 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1582 	free_threshold = max(free_threshold, 256);
1583 	if (free_blocks >= free_threshold)
1584 		return;
1585 
1586 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1587 						&threshold_block);
1588 	threshold_block += free_threshold;
1589 	if (threshold_block >= log->l_logBBsize) {
1590 		threshold_block -= log->l_logBBsize;
1591 		threshold_cycle += 1;
1592 	}
1593 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1594 					threshold_block);
1595 	/*
1596 	 * Don't pass in an lsn greater than the lsn of the last
1597 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1598 	 * so that it doesn't change between the compare and the set.
1599 	 */
1600 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1601 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1602 		threshold_lsn = last_sync_lsn;
1603 
1604 	/*
1605 	 * Get the transaction layer to kick the dirty buffers out to
1606 	 * disk asynchronously. No point in trying to do this if
1607 	 * the filesystem is shutting down.
1608 	 */
1609 	if (!XLOG_FORCED_SHUTDOWN(log))
1610 		xfs_ail_push(log->l_ailp, threshold_lsn);
1611 }
1612 
1613 /*
1614  * Stamp cycle number in every block
1615  */
1616 STATIC void
1617 xlog_pack_data(
1618 	struct xlog		*log,
1619 	struct xlog_in_core	*iclog,
1620 	int			roundoff)
1621 {
1622 	int			i, j, k;
1623 	int			size = iclog->ic_offset + roundoff;
1624 	__be32			cycle_lsn;
1625 	char			*dp;
1626 
1627 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1628 
1629 	dp = iclog->ic_datap;
1630 	for (i = 0; i < BTOBB(size); i++) {
1631 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1632 			break;
1633 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1634 		*(__be32 *)dp = cycle_lsn;
1635 		dp += BBSIZE;
1636 	}
1637 
1638 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1639 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1640 
1641 		for ( ; i < BTOBB(size); i++) {
1642 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1643 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1644 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1645 			*(__be32 *)dp = cycle_lsn;
1646 			dp += BBSIZE;
1647 		}
1648 
1649 		for (i = 1; i < log->l_iclog_heads; i++)
1650 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1651 	}
1652 }
1653 
1654 /*
1655  * Calculate the checksum for a log buffer.
1656  *
1657  * This is a little more complicated than it should be because the various
1658  * headers and the actual data are non-contiguous.
1659  */
1660 __le32
1661 xlog_cksum(
1662 	struct xlog		*log,
1663 	struct xlog_rec_header	*rhead,
1664 	char			*dp,
1665 	int			size)
1666 {
1667 	uint32_t		crc;
1668 
1669 	/* first generate the crc for the record header ... */
1670 	crc = xfs_start_cksum_update((char *)rhead,
1671 			      sizeof(struct xlog_rec_header),
1672 			      offsetof(struct xlog_rec_header, h_crc));
1673 
1674 	/* ... then for additional cycle data for v2 logs ... */
1675 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1676 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1677 		int		i;
1678 		int		xheads;
1679 
1680 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1681 		if (size % XLOG_HEADER_CYCLE_SIZE)
1682 			xheads++;
1683 
1684 		for (i = 1; i < xheads; i++) {
1685 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1686 				     sizeof(struct xlog_rec_ext_header));
1687 		}
1688 	}
1689 
1690 	/* ... and finally for the payload */
1691 	crc = crc32c(crc, dp, size);
1692 
1693 	return xfs_end_cksum(crc);
1694 }
1695 
1696 static void
1697 xlog_bio_end_io(
1698 	struct bio		*bio)
1699 {
1700 	struct xlog_in_core	*iclog = bio->bi_private;
1701 
1702 	queue_work(iclog->ic_log->l_ioend_workqueue,
1703 		   &iclog->ic_end_io_work);
1704 }
1705 
1706 static int
1707 xlog_map_iclog_data(
1708 	struct bio		*bio,
1709 	void			*data,
1710 	size_t			count)
1711 {
1712 	do {
1713 		struct page	*page = kmem_to_page(data);
1714 		unsigned int	off = offset_in_page(data);
1715 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1716 
1717 		if (bio_add_page(bio, page, len, off) != len)
1718 			return -EIO;
1719 
1720 		data += len;
1721 		count -= len;
1722 	} while (count);
1723 
1724 	return 0;
1725 }
1726 
1727 STATIC void
1728 xlog_write_iclog(
1729 	struct xlog		*log,
1730 	struct xlog_in_core	*iclog,
1731 	uint64_t		bno,
1732 	unsigned int		count,
1733 	bool			need_flush)
1734 {
1735 	ASSERT(bno < log->l_logBBsize);
1736 
1737 	/*
1738 	 * We lock the iclogbufs here so that we can serialise against I/O
1739 	 * completion during unmount.  We might be processing a shutdown
1740 	 * triggered during unmount, and that can occur asynchronously to the
1741 	 * unmount thread, and hence we need to ensure that completes before
1742 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1743 	 * across the log IO to archieve that.
1744 	 */
1745 	down(&iclog->ic_sema);
1746 	if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1747 		/*
1748 		 * It would seem logical to return EIO here, but we rely on
1749 		 * the log state machine to propagate I/O errors instead of
1750 		 * doing it here.  We kick of the state machine and unlock
1751 		 * the buffer manually, the code needs to be kept in sync
1752 		 * with the I/O completion path.
1753 		 */
1754 		xlog_state_done_syncing(iclog);
1755 		up(&iclog->ic_sema);
1756 		return;
1757 	}
1758 
1759 	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1760 	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1761 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1762 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1763 	iclog->ic_bio.bi_private = iclog;
1764 	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1765 	if (need_flush)
1766 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1767 
1768 	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1769 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1770 		return;
1771 	}
1772 	if (is_vmalloc_addr(iclog->ic_data))
1773 		flush_kernel_vmap_range(iclog->ic_data, count);
1774 
1775 	/*
1776 	 * If this log buffer would straddle the end of the log we will have
1777 	 * to split it up into two bios, so that we can continue at the start.
1778 	 */
1779 	if (bno + BTOBB(count) > log->l_logBBsize) {
1780 		struct bio *split;
1781 
1782 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1783 				  GFP_NOIO, &fs_bio_set);
1784 		bio_chain(split, &iclog->ic_bio);
1785 		submit_bio(split);
1786 
1787 		/* restart at logical offset zero for the remainder */
1788 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1789 	}
1790 
1791 	submit_bio(&iclog->ic_bio);
1792 }
1793 
1794 /*
1795  * We need to bump cycle number for the part of the iclog that is
1796  * written to the start of the log. Watch out for the header magic
1797  * number case, though.
1798  */
1799 static void
1800 xlog_split_iclog(
1801 	struct xlog		*log,
1802 	void			*data,
1803 	uint64_t		bno,
1804 	unsigned int		count)
1805 {
1806 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1807 	unsigned int		i;
1808 
1809 	for (i = split_offset; i < count; i += BBSIZE) {
1810 		uint32_t cycle = get_unaligned_be32(data + i);
1811 
1812 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1813 			cycle++;
1814 		put_unaligned_be32(cycle, data + i);
1815 	}
1816 }
1817 
1818 static int
1819 xlog_calc_iclog_size(
1820 	struct xlog		*log,
1821 	struct xlog_in_core	*iclog,
1822 	uint32_t		*roundoff)
1823 {
1824 	uint32_t		count_init, count;
1825 	bool			use_lsunit;
1826 
1827 	use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1828 			log->l_mp->m_sb.sb_logsunit > 1;
1829 
1830 	/* Add for LR header */
1831 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1832 
1833 	/* Round out the log write size */
1834 	if (use_lsunit) {
1835 		/* we have a v2 stripe unit to use */
1836 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1837 	} else {
1838 		count = BBTOB(BTOBB(count_init));
1839 	}
1840 
1841 	ASSERT(count >= count_init);
1842 	*roundoff = count - count_init;
1843 
1844 	if (use_lsunit)
1845 		ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1846 	else
1847 		ASSERT(*roundoff < BBTOB(1));
1848 	return count;
1849 }
1850 
1851 /*
1852  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1853  * fashion.  Previously, we should have moved the current iclog
1854  * ptr in the log to point to the next available iclog.  This allows further
1855  * write to continue while this code syncs out an iclog ready to go.
1856  * Before an in-core log can be written out, the data section must be scanned
1857  * to save away the 1st word of each BBSIZE block into the header.  We replace
1858  * it with the current cycle count.  Each BBSIZE block is tagged with the
1859  * cycle count because there in an implicit assumption that drives will
1860  * guarantee that entire 512 byte blocks get written at once.  In other words,
1861  * we can't have part of a 512 byte block written and part not written.  By
1862  * tagging each block, we will know which blocks are valid when recovering
1863  * after an unclean shutdown.
1864  *
1865  * This routine is single threaded on the iclog.  No other thread can be in
1866  * this routine with the same iclog.  Changing contents of iclog can there-
1867  * fore be done without grabbing the state machine lock.  Updating the global
1868  * log will require grabbing the lock though.
1869  *
1870  * The entire log manager uses a logical block numbering scheme.  Only
1871  * xlog_write_iclog knows about the fact that the log may not start with
1872  * block zero on a given device.
1873  */
1874 STATIC void
1875 xlog_sync(
1876 	struct xlog		*log,
1877 	struct xlog_in_core	*iclog)
1878 {
1879 	unsigned int		count;		/* byte count of bwrite */
1880 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1881 	uint64_t		bno;
1882 	unsigned int		size;
1883 	bool			need_flush = true, split = false;
1884 
1885 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1886 
1887 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1888 
1889 	/* move grant heads by roundoff in sync */
1890 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1891 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1892 
1893 	/* put cycle number in every block */
1894 	xlog_pack_data(log, iclog, roundoff);
1895 
1896 	/* real byte length */
1897 	size = iclog->ic_offset;
1898 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1899 		size += roundoff;
1900 	iclog->ic_header.h_len = cpu_to_be32(size);
1901 
1902 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1903 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1904 
1905 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1906 
1907 	/* Do we need to split this write into 2 parts? */
1908 	if (bno + BTOBB(count) > log->l_logBBsize) {
1909 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1910 		split = true;
1911 	}
1912 
1913 	/* calculcate the checksum */
1914 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1915 					    iclog->ic_datap, size);
1916 	/*
1917 	 * Intentionally corrupt the log record CRC based on the error injection
1918 	 * frequency, if defined. This facilitates testing log recovery in the
1919 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1920 	 * write on I/O completion and shutdown the fs. The subsequent mount
1921 	 * detects the bad CRC and attempts to recover.
1922 	 */
1923 #ifdef DEBUG
1924 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1925 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1926 		iclog->ic_fail_crc = true;
1927 		xfs_warn(log->l_mp,
1928 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1929 			 be64_to_cpu(iclog->ic_header.h_lsn));
1930 	}
1931 #endif
1932 
1933 	/*
1934 	 * Flush the data device before flushing the log to make sure all meta
1935 	 * data written back from the AIL actually made it to disk before
1936 	 * stamping the new log tail LSN into the log buffer.  For an external
1937 	 * log we need to issue the flush explicitly, and unfortunately
1938 	 * synchronously here; for an internal log we can simply use the block
1939 	 * layer state machine for preflushes.
1940 	 */
1941 	if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1942 		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1943 		need_flush = false;
1944 	}
1945 
1946 	xlog_verify_iclog(log, iclog, count);
1947 	xlog_write_iclog(log, iclog, bno, count, need_flush);
1948 }
1949 
1950 /*
1951  * Deallocate a log structure
1952  */
1953 STATIC void
1954 xlog_dealloc_log(
1955 	struct xlog	*log)
1956 {
1957 	xlog_in_core_t	*iclog, *next_iclog;
1958 	int		i;
1959 
1960 	xlog_cil_destroy(log);
1961 
1962 	/*
1963 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1964 	 * is done before we tear down these buffers.
1965 	 */
1966 	iclog = log->l_iclog;
1967 	for (i = 0; i < log->l_iclog_bufs; i++) {
1968 		down(&iclog->ic_sema);
1969 		up(&iclog->ic_sema);
1970 		iclog = iclog->ic_next;
1971 	}
1972 
1973 	iclog = log->l_iclog;
1974 	for (i = 0; i < log->l_iclog_bufs; i++) {
1975 		next_iclog = iclog->ic_next;
1976 		kmem_free(iclog->ic_data);
1977 		kmem_free(iclog);
1978 		iclog = next_iclog;
1979 	}
1980 
1981 	log->l_mp->m_log = NULL;
1982 	destroy_workqueue(log->l_ioend_workqueue);
1983 	kmem_free(log);
1984 }	/* xlog_dealloc_log */
1985 
1986 /*
1987  * Update counters atomically now that memcpy is done.
1988  */
1989 static inline void
1990 xlog_state_finish_copy(
1991 	struct xlog		*log,
1992 	struct xlog_in_core	*iclog,
1993 	int			record_cnt,
1994 	int			copy_bytes)
1995 {
1996 	lockdep_assert_held(&log->l_icloglock);
1997 
1998 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1999 	iclog->ic_offset += copy_bytes;
2000 }
2001 
2002 /*
2003  * print out info relating to regions written which consume
2004  * the reservation
2005  */
2006 void
2007 xlog_print_tic_res(
2008 	struct xfs_mount	*mp,
2009 	struct xlog_ticket	*ticket)
2010 {
2011 	uint i;
2012 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2013 
2014 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2015 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2016 	static char *res_type_str[] = {
2017 	    REG_TYPE_STR(BFORMAT, "bformat"),
2018 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2019 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2020 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2021 	    REG_TYPE_STR(IFORMAT, "iformat"),
2022 	    REG_TYPE_STR(ICORE, "icore"),
2023 	    REG_TYPE_STR(IEXT, "iext"),
2024 	    REG_TYPE_STR(IBROOT, "ibroot"),
2025 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2026 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2027 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2028 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2029 	    REG_TYPE_STR(QFORMAT, "qformat"),
2030 	    REG_TYPE_STR(DQUOT, "dquot"),
2031 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2032 	    REG_TYPE_STR(LRHEADER, "LR header"),
2033 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2034 	    REG_TYPE_STR(COMMIT, "commit"),
2035 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2036 	    REG_TYPE_STR(ICREATE, "inode create"),
2037 	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2038 	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2039 	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2040 	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2041 	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2042 	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2043 	};
2044 	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2045 #undef REG_TYPE_STR
2046 
2047 	xfs_warn(mp, "ticket reservation summary:");
2048 	xfs_warn(mp, "  unit res    = %d bytes",
2049 		 ticket->t_unit_res);
2050 	xfs_warn(mp, "  current res = %d bytes",
2051 		 ticket->t_curr_res);
2052 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2053 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2054 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2055 		 ticket->t_res_num_ophdrs, ophdr_spc);
2056 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2057 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2058 	xfs_warn(mp, "  num regions = %u",
2059 		 ticket->t_res_num);
2060 
2061 	for (i = 0; i < ticket->t_res_num; i++) {
2062 		uint r_type = ticket->t_res_arr[i].r_type;
2063 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2064 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2065 			    "bad-rtype" : res_type_str[r_type]),
2066 			    ticket->t_res_arr[i].r_len);
2067 	}
2068 }
2069 
2070 /*
2071  * Print a summary of the transaction.
2072  */
2073 void
2074 xlog_print_trans(
2075 	struct xfs_trans	*tp)
2076 {
2077 	struct xfs_mount	*mp = tp->t_mountp;
2078 	struct xfs_log_item	*lip;
2079 
2080 	/* dump core transaction and ticket info */
2081 	xfs_warn(mp, "transaction summary:");
2082 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2083 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2084 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2085 
2086 	xlog_print_tic_res(mp, tp->t_ticket);
2087 
2088 	/* dump each log item */
2089 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2090 		struct xfs_log_vec	*lv = lip->li_lv;
2091 		struct xfs_log_iovec	*vec;
2092 		int			i;
2093 
2094 		xfs_warn(mp, "log item: ");
2095 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2096 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2097 		if (!lv)
2098 			continue;
2099 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2100 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2101 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2102 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2103 
2104 		/* dump each iovec for the log item */
2105 		vec = lv->lv_iovecp;
2106 		for (i = 0; i < lv->lv_niovecs; i++) {
2107 			int dumplen = min(vec->i_len, 32);
2108 
2109 			xfs_warn(mp, "  iovec[%d]", i);
2110 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2111 			xfs_warn(mp, "    len	= %d", vec->i_len);
2112 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2113 			xfs_hex_dump(vec->i_addr, dumplen);
2114 
2115 			vec++;
2116 		}
2117 	}
2118 }
2119 
2120 /*
2121  * Calculate the potential space needed by the log vector.  Each region gets
2122  * its own xlog_op_header_t and may need to be double word aligned.
2123  */
2124 static int
2125 xlog_write_calc_vec_length(
2126 	struct xlog_ticket	*ticket,
2127 	struct xfs_log_vec	*log_vector)
2128 {
2129 	struct xfs_log_vec	*lv;
2130 	int			headers = 0;
2131 	int			len = 0;
2132 	int			i;
2133 
2134 	/* acct for start rec of xact */
2135 	if (ticket->t_flags & XLOG_TIC_INITED)
2136 		headers++;
2137 
2138 	for (lv = log_vector; lv; lv = lv->lv_next) {
2139 		/* we don't write ordered log vectors */
2140 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2141 			continue;
2142 
2143 		headers += lv->lv_niovecs;
2144 
2145 		for (i = 0; i < lv->lv_niovecs; i++) {
2146 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2147 
2148 			len += vecp->i_len;
2149 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2150 		}
2151 	}
2152 
2153 	ticket->t_res_num_ophdrs += headers;
2154 	len += headers * sizeof(struct xlog_op_header);
2155 
2156 	return len;
2157 }
2158 
2159 /*
2160  * If first write for transaction, insert start record  We can't be trying to
2161  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2162  */
2163 static int
2164 xlog_write_start_rec(
2165 	struct xlog_op_header	*ophdr,
2166 	struct xlog_ticket	*ticket)
2167 {
2168 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2169 		return 0;
2170 
2171 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2172 	ophdr->oh_clientid = ticket->t_clientid;
2173 	ophdr->oh_len = 0;
2174 	ophdr->oh_flags = XLOG_START_TRANS;
2175 	ophdr->oh_res2 = 0;
2176 
2177 	ticket->t_flags &= ~XLOG_TIC_INITED;
2178 
2179 	return sizeof(struct xlog_op_header);
2180 }
2181 
2182 static xlog_op_header_t *
2183 xlog_write_setup_ophdr(
2184 	struct xlog		*log,
2185 	struct xlog_op_header	*ophdr,
2186 	struct xlog_ticket	*ticket,
2187 	uint			flags)
2188 {
2189 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2190 	ophdr->oh_clientid = ticket->t_clientid;
2191 	ophdr->oh_res2 = 0;
2192 
2193 	/* are we copying a commit or unmount record? */
2194 	ophdr->oh_flags = flags;
2195 
2196 	/*
2197 	 * We've seen logs corrupted with bad transaction client ids.  This
2198 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2199 	 * and shut down the filesystem.
2200 	 */
2201 	switch (ophdr->oh_clientid)  {
2202 	case XFS_TRANSACTION:
2203 	case XFS_VOLUME:
2204 	case XFS_LOG:
2205 		break;
2206 	default:
2207 		xfs_warn(log->l_mp,
2208 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2209 			ophdr->oh_clientid, ticket);
2210 		return NULL;
2211 	}
2212 
2213 	return ophdr;
2214 }
2215 
2216 /*
2217  * Set up the parameters of the region copy into the log. This has
2218  * to handle region write split across multiple log buffers - this
2219  * state is kept external to this function so that this code can
2220  * be written in an obvious, self documenting manner.
2221  */
2222 static int
2223 xlog_write_setup_copy(
2224 	struct xlog_ticket	*ticket,
2225 	struct xlog_op_header	*ophdr,
2226 	int			space_available,
2227 	int			space_required,
2228 	int			*copy_off,
2229 	int			*copy_len,
2230 	int			*last_was_partial_copy,
2231 	int			*bytes_consumed)
2232 {
2233 	int			still_to_copy;
2234 
2235 	still_to_copy = space_required - *bytes_consumed;
2236 	*copy_off = *bytes_consumed;
2237 
2238 	if (still_to_copy <= space_available) {
2239 		/* write of region completes here */
2240 		*copy_len = still_to_copy;
2241 		ophdr->oh_len = cpu_to_be32(*copy_len);
2242 		if (*last_was_partial_copy)
2243 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2244 		*last_was_partial_copy = 0;
2245 		*bytes_consumed = 0;
2246 		return 0;
2247 	}
2248 
2249 	/* partial write of region, needs extra log op header reservation */
2250 	*copy_len = space_available;
2251 	ophdr->oh_len = cpu_to_be32(*copy_len);
2252 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2253 	if (*last_was_partial_copy)
2254 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2255 	*bytes_consumed += *copy_len;
2256 	(*last_was_partial_copy)++;
2257 
2258 	/* account for new log op header */
2259 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2260 	ticket->t_res_num_ophdrs++;
2261 
2262 	return sizeof(struct xlog_op_header);
2263 }
2264 
2265 static int
2266 xlog_write_copy_finish(
2267 	struct xlog		*log,
2268 	struct xlog_in_core	*iclog,
2269 	uint			flags,
2270 	int			*record_cnt,
2271 	int			*data_cnt,
2272 	int			*partial_copy,
2273 	int			*partial_copy_len,
2274 	int			log_offset,
2275 	struct xlog_in_core	**commit_iclog)
2276 {
2277 	int			error;
2278 
2279 	if (*partial_copy) {
2280 		/*
2281 		 * This iclog has already been marked WANT_SYNC by
2282 		 * xlog_state_get_iclog_space.
2283 		 */
2284 		spin_lock(&log->l_icloglock);
2285 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2286 		*record_cnt = 0;
2287 		*data_cnt = 0;
2288 		goto release_iclog;
2289 	}
2290 
2291 	*partial_copy = 0;
2292 	*partial_copy_len = 0;
2293 
2294 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2295 		/* no more space in this iclog - push it. */
2296 		spin_lock(&log->l_icloglock);
2297 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2298 		*record_cnt = 0;
2299 		*data_cnt = 0;
2300 
2301 		if (iclog->ic_state == XLOG_STATE_ACTIVE)
2302 			xlog_state_switch_iclogs(log, iclog, 0);
2303 		else
2304 			ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2305 			       iclog->ic_state == XLOG_STATE_IOERROR);
2306 		if (!commit_iclog)
2307 			goto release_iclog;
2308 		spin_unlock(&log->l_icloglock);
2309 		ASSERT(flags & XLOG_COMMIT_TRANS);
2310 		*commit_iclog = iclog;
2311 	}
2312 
2313 	return 0;
2314 
2315 release_iclog:
2316 	error = xlog_state_release_iclog(log, iclog);
2317 	spin_unlock(&log->l_icloglock);
2318 	return error;
2319 }
2320 
2321 /*
2322  * Write some region out to in-core log
2323  *
2324  * This will be called when writing externally provided regions or when
2325  * writing out a commit record for a given transaction.
2326  *
2327  * General algorithm:
2328  *	1. Find total length of this write.  This may include adding to the
2329  *		lengths passed in.
2330  *	2. Check whether we violate the tickets reservation.
2331  *	3. While writing to this iclog
2332  *	    A. Reserve as much space in this iclog as can get
2333  *	    B. If this is first write, save away start lsn
2334  *	    C. While writing this region:
2335  *		1. If first write of transaction, write start record
2336  *		2. Write log operation header (header per region)
2337  *		3. Find out if we can fit entire region into this iclog
2338  *		4. Potentially, verify destination memcpy ptr
2339  *		5. Memcpy (partial) region
2340  *		6. If partial copy, release iclog; otherwise, continue
2341  *			copying more regions into current iclog
2342  *	4. Mark want sync bit (in simulation mode)
2343  *	5. Release iclog for potential flush to on-disk log.
2344  *
2345  * ERRORS:
2346  * 1.	Panic if reservation is overrun.  This should never happen since
2347  *	reservation amounts are generated internal to the filesystem.
2348  * NOTES:
2349  * 1. Tickets are single threaded data structures.
2350  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2351  *	syncing routine.  When a single log_write region needs to span
2352  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2353  *	on all log operation writes which don't contain the end of the
2354  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2355  *	operation which contains the end of the continued log_write region.
2356  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2357  *	we don't really know exactly how much space will be used.  As a result,
2358  *	we don't update ic_offset until the end when we know exactly how many
2359  *	bytes have been written out.
2360  */
2361 int
2362 xlog_write(
2363 	struct xlog		*log,
2364 	struct xfs_log_vec	*log_vector,
2365 	struct xlog_ticket	*ticket,
2366 	xfs_lsn_t		*start_lsn,
2367 	struct xlog_in_core	**commit_iclog,
2368 	uint			flags)
2369 {
2370 	struct xlog_in_core	*iclog = NULL;
2371 	struct xfs_log_iovec	*vecp;
2372 	struct xfs_log_vec	*lv;
2373 	int			len;
2374 	int			index;
2375 	int			partial_copy = 0;
2376 	int			partial_copy_len = 0;
2377 	int			contwr = 0;
2378 	int			record_cnt = 0;
2379 	int			data_cnt = 0;
2380 	int			error = 0;
2381 
2382 	*start_lsn = 0;
2383 
2384 	len = xlog_write_calc_vec_length(ticket, log_vector);
2385 
2386 	/*
2387 	 * Region headers and bytes are already accounted for.
2388 	 * We only need to take into account start records and
2389 	 * split regions in this function.
2390 	 */
2391 	if (ticket->t_flags & XLOG_TIC_INITED)
2392 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2393 
2394 	/*
2395 	 * Commit record headers need to be accounted for. These
2396 	 * come in as separate writes so are easy to detect.
2397 	 */
2398 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2399 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2400 
2401 	if (ticket->t_curr_res < 0) {
2402 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2403 		     "ctx ticket reservation ran out. Need to up reservation");
2404 		xlog_print_tic_res(log->l_mp, ticket);
2405 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2406 	}
2407 
2408 	index = 0;
2409 	lv = log_vector;
2410 	vecp = lv->lv_iovecp;
2411 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2412 		void		*ptr;
2413 		int		log_offset;
2414 
2415 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2416 						   &contwr, &log_offset);
2417 		if (error)
2418 			return error;
2419 
2420 		ASSERT(log_offset <= iclog->ic_size - 1);
2421 		ptr = iclog->ic_datap + log_offset;
2422 
2423 		/* start_lsn is the first lsn written to. That's all we need. */
2424 		if (!*start_lsn)
2425 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2426 
2427 		/*
2428 		 * This loop writes out as many regions as can fit in the amount
2429 		 * of space which was allocated by xlog_state_get_iclog_space().
2430 		 */
2431 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2432 			struct xfs_log_iovec	*reg;
2433 			struct xlog_op_header	*ophdr;
2434 			int			start_rec_copy;
2435 			int			copy_len;
2436 			int			copy_off;
2437 			bool			ordered = false;
2438 
2439 			/* ordered log vectors have no regions to write */
2440 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2441 				ASSERT(lv->lv_niovecs == 0);
2442 				ordered = true;
2443 				goto next_lv;
2444 			}
2445 
2446 			reg = &vecp[index];
2447 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2448 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2449 
2450 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2451 			if (start_rec_copy) {
2452 				record_cnt++;
2453 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2454 						   start_rec_copy);
2455 			}
2456 
2457 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2458 			if (!ophdr)
2459 				return -EIO;
2460 
2461 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2462 					   sizeof(struct xlog_op_header));
2463 
2464 			len += xlog_write_setup_copy(ticket, ophdr,
2465 						     iclog->ic_size-log_offset,
2466 						     reg->i_len,
2467 						     &copy_off, &copy_len,
2468 						     &partial_copy,
2469 						     &partial_copy_len);
2470 			xlog_verify_dest_ptr(log, ptr);
2471 
2472 			/*
2473 			 * Copy region.
2474 			 *
2475 			 * Unmount records just log an opheader, so can have
2476 			 * empty payloads with no data region to copy. Hence we
2477 			 * only copy the payload if the vector says it has data
2478 			 * to copy.
2479 			 */
2480 			ASSERT(copy_len >= 0);
2481 			if (copy_len > 0) {
2482 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2483 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2484 						   copy_len);
2485 			}
2486 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2487 			record_cnt++;
2488 			data_cnt += contwr ? copy_len : 0;
2489 
2490 			error = xlog_write_copy_finish(log, iclog, flags,
2491 						       &record_cnt, &data_cnt,
2492 						       &partial_copy,
2493 						       &partial_copy_len,
2494 						       log_offset,
2495 						       commit_iclog);
2496 			if (error)
2497 				return error;
2498 
2499 			/*
2500 			 * if we had a partial copy, we need to get more iclog
2501 			 * space but we don't want to increment the region
2502 			 * index because there is still more is this region to
2503 			 * write.
2504 			 *
2505 			 * If we completed writing this region, and we flushed
2506 			 * the iclog (indicated by resetting of the record
2507 			 * count), then we also need to get more log space. If
2508 			 * this was the last record, though, we are done and
2509 			 * can just return.
2510 			 */
2511 			if (partial_copy)
2512 				break;
2513 
2514 			if (++index == lv->lv_niovecs) {
2515 next_lv:
2516 				lv = lv->lv_next;
2517 				index = 0;
2518 				if (lv)
2519 					vecp = lv->lv_iovecp;
2520 			}
2521 			if (record_cnt == 0 && !ordered) {
2522 				if (!lv)
2523 					return 0;
2524 				break;
2525 			}
2526 		}
2527 	}
2528 
2529 	ASSERT(len == 0);
2530 
2531 	spin_lock(&log->l_icloglock);
2532 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2533 	if (commit_iclog) {
2534 		ASSERT(flags & XLOG_COMMIT_TRANS);
2535 		*commit_iclog = iclog;
2536 	} else {
2537 		error = xlog_state_release_iclog(log, iclog);
2538 	}
2539 	spin_unlock(&log->l_icloglock);
2540 
2541 	return error;
2542 }
2543 
2544 
2545 /*****************************************************************************
2546  *
2547  *		State Machine functions
2548  *
2549  *****************************************************************************
2550  */
2551 
2552 static void
2553 xlog_state_activate_iclog(
2554 	struct xlog_in_core	*iclog,
2555 	int			*iclogs_changed)
2556 {
2557 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2558 
2559 	/*
2560 	 * If the number of ops in this iclog indicate it just contains the
2561 	 * dummy transaction, we can change state into IDLE (the second time
2562 	 * around). Otherwise we should change the state into NEED a dummy.
2563 	 * We don't need to cover the dummy.
2564 	 */
2565 	if (*iclogs_changed == 0 &&
2566 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2567 		*iclogs_changed = 1;
2568 	} else {
2569 		/*
2570 		 * We have two dirty iclogs so start over.  This could also be
2571 		 * num of ops indicating this is not the dummy going out.
2572 		 */
2573 		*iclogs_changed = 2;
2574 	}
2575 
2576 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2577 	iclog->ic_offset = 0;
2578 	iclog->ic_header.h_num_logops = 0;
2579 	memset(iclog->ic_header.h_cycle_data, 0,
2580 		sizeof(iclog->ic_header.h_cycle_data));
2581 	iclog->ic_header.h_lsn = 0;
2582 }
2583 
2584 /*
2585  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2586  * ACTIVE after iclog I/O has completed.
2587  */
2588 static void
2589 xlog_state_activate_iclogs(
2590 	struct xlog		*log,
2591 	int			*iclogs_changed)
2592 {
2593 	struct xlog_in_core	*iclog = log->l_iclog;
2594 
2595 	do {
2596 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2597 			xlog_state_activate_iclog(iclog, iclogs_changed);
2598 		/*
2599 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2600 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2601 		 */
2602 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2603 			break;
2604 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2605 }
2606 
2607 static int
2608 xlog_covered_state(
2609 	int			prev_state,
2610 	int			iclogs_changed)
2611 {
2612 	/*
2613 	 * We usually go to NEED. But we go to NEED2 if the changed indicates we
2614 	 * are done writing the dummy record.  If we are done with the second
2615 	 * dummy recored (DONE2), then we go to IDLE.
2616 	 */
2617 	switch (prev_state) {
2618 	case XLOG_STATE_COVER_IDLE:
2619 	case XLOG_STATE_COVER_NEED:
2620 	case XLOG_STATE_COVER_NEED2:
2621 		break;
2622 	case XLOG_STATE_COVER_DONE:
2623 		if (iclogs_changed == 1)
2624 			return XLOG_STATE_COVER_NEED2;
2625 		break;
2626 	case XLOG_STATE_COVER_DONE2:
2627 		if (iclogs_changed == 1)
2628 			return XLOG_STATE_COVER_IDLE;
2629 		break;
2630 	default:
2631 		ASSERT(0);
2632 	}
2633 
2634 	return XLOG_STATE_COVER_NEED;
2635 }
2636 
2637 STATIC void
2638 xlog_state_clean_iclog(
2639 	struct xlog		*log,
2640 	struct xlog_in_core	*dirty_iclog)
2641 {
2642 	int			iclogs_changed = 0;
2643 
2644 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2645 
2646 	xlog_state_activate_iclogs(log, &iclogs_changed);
2647 	wake_up_all(&dirty_iclog->ic_force_wait);
2648 
2649 	if (iclogs_changed) {
2650 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2651 				iclogs_changed);
2652 	}
2653 }
2654 
2655 STATIC xfs_lsn_t
2656 xlog_get_lowest_lsn(
2657 	struct xlog		*log)
2658 {
2659 	struct xlog_in_core	*iclog = log->l_iclog;
2660 	xfs_lsn_t		lowest_lsn = 0, lsn;
2661 
2662 	do {
2663 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2664 		    iclog->ic_state == XLOG_STATE_DIRTY)
2665 			continue;
2666 
2667 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2668 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2669 			lowest_lsn = lsn;
2670 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2671 
2672 	return lowest_lsn;
2673 }
2674 
2675 /*
2676  * Completion of a iclog IO does not imply that a transaction has completed, as
2677  * transactions can be large enough to span many iclogs. We cannot change the
2678  * tail of the log half way through a transaction as this may be the only
2679  * transaction in the log and moving the tail to point to the middle of it
2680  * will prevent recovery from finding the start of the transaction. Hence we
2681  * should only update the last_sync_lsn if this iclog contains transaction
2682  * completion callbacks on it.
2683  *
2684  * We have to do this before we drop the icloglock to ensure we are the only one
2685  * that can update it.
2686  *
2687  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2688  * the reservation grant head pushing. This is due to the fact that the push
2689  * target is bound by the current last_sync_lsn value. Hence if we have a large
2690  * amount of log space bound up in this committing transaction then the
2691  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2692  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2693  * should push the AIL to ensure the push target (and hence the grant head) is
2694  * no longer bound by the old log head location and can move forwards and make
2695  * progress again.
2696  */
2697 static void
2698 xlog_state_set_callback(
2699 	struct xlog		*log,
2700 	struct xlog_in_core	*iclog,
2701 	xfs_lsn_t		header_lsn)
2702 {
2703 	iclog->ic_state = XLOG_STATE_CALLBACK;
2704 
2705 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2706 			   header_lsn) <= 0);
2707 
2708 	if (list_empty_careful(&iclog->ic_callbacks))
2709 		return;
2710 
2711 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2712 	xlog_grant_push_ail(log, 0);
2713 }
2714 
2715 /*
2716  * Return true if we need to stop processing, false to continue to the next
2717  * iclog. The caller will need to run callbacks if the iclog is returned in the
2718  * XLOG_STATE_CALLBACK state.
2719  */
2720 static bool
2721 xlog_state_iodone_process_iclog(
2722 	struct xlog		*log,
2723 	struct xlog_in_core	*iclog,
2724 	bool			*ioerror)
2725 {
2726 	xfs_lsn_t		lowest_lsn;
2727 	xfs_lsn_t		header_lsn;
2728 
2729 	switch (iclog->ic_state) {
2730 	case XLOG_STATE_ACTIVE:
2731 	case XLOG_STATE_DIRTY:
2732 		/*
2733 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2734 		 */
2735 		return false;
2736 	case XLOG_STATE_IOERROR:
2737 		/*
2738 		 * Between marking a filesystem SHUTDOWN and stopping the log,
2739 		 * we do flush all iclogs to disk (if there wasn't a log I/O
2740 		 * error). So, we do want things to go smoothly in case of just
2741 		 * a SHUTDOWN w/o a LOG_IO_ERROR.
2742 		 */
2743 		*ioerror = true;
2744 		return false;
2745 	case XLOG_STATE_DONE_SYNC:
2746 		/*
2747 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2748 		 * one more check here to see if we have chased our tail around.
2749 		 * If this is not the lowest lsn iclog, then we will leave it
2750 		 * for another completion to process.
2751 		 */
2752 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2753 		lowest_lsn = xlog_get_lowest_lsn(log);
2754 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2755 			return false;
2756 		xlog_state_set_callback(log, iclog, header_lsn);
2757 		return false;
2758 	default:
2759 		/*
2760 		 * Can only perform callbacks in order.  Since this iclog is not
2761 		 * in the DONE_SYNC state, we skip the rest and just try to
2762 		 * clean up.
2763 		 */
2764 		return true;
2765 	}
2766 }
2767 
2768 /*
2769  * Keep processing entries in the iclog callback list until we come around and
2770  * it is empty.  We need to atomically see that the list is empty and change the
2771  * state to DIRTY so that we don't miss any more callbacks being added.
2772  *
2773  * This function is called with the icloglock held and returns with it held. We
2774  * drop it while running callbacks, however, as holding it over thousands of
2775  * callbacks is unnecessary and causes excessive contention if we do.
2776  */
2777 static void
2778 xlog_state_do_iclog_callbacks(
2779 	struct xlog		*log,
2780 	struct xlog_in_core	*iclog)
2781 		__releases(&log->l_icloglock)
2782 		__acquires(&log->l_icloglock)
2783 {
2784 	spin_unlock(&log->l_icloglock);
2785 	spin_lock(&iclog->ic_callback_lock);
2786 	while (!list_empty(&iclog->ic_callbacks)) {
2787 		LIST_HEAD(tmp);
2788 
2789 		list_splice_init(&iclog->ic_callbacks, &tmp);
2790 
2791 		spin_unlock(&iclog->ic_callback_lock);
2792 		xlog_cil_process_committed(&tmp);
2793 		spin_lock(&iclog->ic_callback_lock);
2794 	}
2795 
2796 	/*
2797 	 * Pick up the icloglock while still holding the callback lock so we
2798 	 * serialise against anyone trying to add more callbacks to this iclog
2799 	 * now we've finished processing.
2800 	 */
2801 	spin_lock(&log->l_icloglock);
2802 	spin_unlock(&iclog->ic_callback_lock);
2803 }
2804 
2805 STATIC void
2806 xlog_state_do_callback(
2807 	struct xlog		*log)
2808 {
2809 	struct xlog_in_core	*iclog;
2810 	struct xlog_in_core	*first_iclog;
2811 	bool			cycled_icloglock;
2812 	bool			ioerror;
2813 	int			flushcnt = 0;
2814 	int			repeats = 0;
2815 
2816 	spin_lock(&log->l_icloglock);
2817 	do {
2818 		/*
2819 		 * Scan all iclogs starting with the one pointed to by the
2820 		 * log.  Reset this starting point each time the log is
2821 		 * unlocked (during callbacks).
2822 		 *
2823 		 * Keep looping through iclogs until one full pass is made
2824 		 * without running any callbacks.
2825 		 */
2826 		first_iclog = log->l_iclog;
2827 		iclog = log->l_iclog;
2828 		cycled_icloglock = false;
2829 		ioerror = false;
2830 		repeats++;
2831 
2832 		do {
2833 			if (xlog_state_iodone_process_iclog(log, iclog,
2834 							&ioerror))
2835 				break;
2836 
2837 			if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2838 			    iclog->ic_state != XLOG_STATE_IOERROR) {
2839 				iclog = iclog->ic_next;
2840 				continue;
2841 			}
2842 
2843 			/*
2844 			 * Running callbacks will drop the icloglock which means
2845 			 * we'll have to run at least one more complete loop.
2846 			 */
2847 			cycled_icloglock = true;
2848 			xlog_state_do_iclog_callbacks(log, iclog);
2849 			if (XLOG_FORCED_SHUTDOWN(log))
2850 				wake_up_all(&iclog->ic_force_wait);
2851 			else
2852 				xlog_state_clean_iclog(log, iclog);
2853 			iclog = iclog->ic_next;
2854 		} while (first_iclog != iclog);
2855 
2856 		if (repeats > 5000) {
2857 			flushcnt += repeats;
2858 			repeats = 0;
2859 			xfs_warn(log->l_mp,
2860 				"%s: possible infinite loop (%d iterations)",
2861 				__func__, flushcnt);
2862 		}
2863 	} while (!ioerror && cycled_icloglock);
2864 
2865 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2866 	    log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2867 		wake_up_all(&log->l_flush_wait);
2868 
2869 	spin_unlock(&log->l_icloglock);
2870 }
2871 
2872 
2873 /*
2874  * Finish transitioning this iclog to the dirty state.
2875  *
2876  * Make sure that we completely execute this routine only when this is
2877  * the last call to the iclog.  There is a good chance that iclog flushes,
2878  * when we reach the end of the physical log, get turned into 2 separate
2879  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2880  * routine.  By using the reference count bwritecnt, we guarantee that only
2881  * the second completion goes through.
2882  *
2883  * Callbacks could take time, so they are done outside the scope of the
2884  * global state machine log lock.
2885  */
2886 STATIC void
2887 xlog_state_done_syncing(
2888 	struct xlog_in_core	*iclog)
2889 {
2890 	struct xlog		*log = iclog->ic_log;
2891 
2892 	spin_lock(&log->l_icloglock);
2893 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2894 
2895 	/*
2896 	 * If we got an error, either on the first buffer, or in the case of
2897 	 * split log writes, on the second, we shut down the file system and
2898 	 * no iclogs should ever be attempted to be written to disk again.
2899 	 */
2900 	if (!XLOG_FORCED_SHUTDOWN(log)) {
2901 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2902 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2903 	}
2904 
2905 	/*
2906 	 * Someone could be sleeping prior to writing out the next
2907 	 * iclog buffer, we wake them all, one will get to do the
2908 	 * I/O, the others get to wait for the result.
2909 	 */
2910 	wake_up_all(&iclog->ic_write_wait);
2911 	spin_unlock(&log->l_icloglock);
2912 	xlog_state_do_callback(log);	/* also cleans log */
2913 }
2914 
2915 /*
2916  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2917  * sleep.  We wait on the flush queue on the head iclog as that should be
2918  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2919  * we will wait here and all new writes will sleep until a sync completes.
2920  *
2921  * The in-core logs are used in a circular fashion. They are not used
2922  * out-of-order even when an iclog past the head is free.
2923  *
2924  * return:
2925  *	* log_offset where xlog_write() can start writing into the in-core
2926  *		log's data space.
2927  *	* in-core log pointer to which xlog_write() should write.
2928  *	* boolean indicating this is a continued write to an in-core log.
2929  *		If this is the last write, then the in-core log's offset field
2930  *		needs to be incremented, depending on the amount of data which
2931  *		is copied.
2932  */
2933 STATIC int
2934 xlog_state_get_iclog_space(
2935 	struct xlog		*log,
2936 	int			len,
2937 	struct xlog_in_core	**iclogp,
2938 	struct xlog_ticket	*ticket,
2939 	int			*continued_write,
2940 	int			*logoffsetp)
2941 {
2942 	int		  log_offset;
2943 	xlog_rec_header_t *head;
2944 	xlog_in_core_t	  *iclog;
2945 
2946 restart:
2947 	spin_lock(&log->l_icloglock);
2948 	if (XLOG_FORCED_SHUTDOWN(log)) {
2949 		spin_unlock(&log->l_icloglock);
2950 		return -EIO;
2951 	}
2952 
2953 	iclog = log->l_iclog;
2954 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2955 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2956 
2957 		/* Wait for log writes to have flushed */
2958 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2959 		goto restart;
2960 	}
2961 
2962 	head = &iclog->ic_header;
2963 
2964 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2965 	log_offset = iclog->ic_offset;
2966 
2967 	/* On the 1st write to an iclog, figure out lsn.  This works
2968 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2969 	 * committing to.  If the offset is set, that's how many blocks
2970 	 * must be written.
2971 	 */
2972 	if (log_offset == 0) {
2973 		ticket->t_curr_res -= log->l_iclog_hsize;
2974 		xlog_tic_add_region(ticket,
2975 				    log->l_iclog_hsize,
2976 				    XLOG_REG_TYPE_LRHEADER);
2977 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2978 		head->h_lsn = cpu_to_be64(
2979 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2980 		ASSERT(log->l_curr_block >= 0);
2981 	}
2982 
2983 	/* If there is enough room to write everything, then do it.  Otherwise,
2984 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2985 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2986 	 * until you know exactly how many bytes get copied.  Therefore, wait
2987 	 * until later to update ic_offset.
2988 	 *
2989 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2990 	 * can fit into remaining data section.
2991 	 */
2992 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2993 		int		error = 0;
2994 
2995 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2996 
2997 		/*
2998 		 * If we are the only one writing to this iclog, sync it to
2999 		 * disk.  We need to do an atomic compare and decrement here to
3000 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
3001 		 * xlog_state_release_iclog() when there is more than one
3002 		 * reference to the iclog.
3003 		 */
3004 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3005 			error = xlog_state_release_iclog(log, iclog);
3006 		spin_unlock(&log->l_icloglock);
3007 		if (error)
3008 			return error;
3009 		goto restart;
3010 	}
3011 
3012 	/* Do we have enough room to write the full amount in the remainder
3013 	 * of this iclog?  Or must we continue a write on the next iclog and
3014 	 * mark this iclog as completely taken?  In the case where we switch
3015 	 * iclogs (to mark it taken), this particular iclog will release/sync
3016 	 * to disk in xlog_write().
3017 	 */
3018 	if (len <= iclog->ic_size - iclog->ic_offset) {
3019 		*continued_write = 0;
3020 		iclog->ic_offset += len;
3021 	} else {
3022 		*continued_write = 1;
3023 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3024 	}
3025 	*iclogp = iclog;
3026 
3027 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3028 	spin_unlock(&log->l_icloglock);
3029 
3030 	*logoffsetp = log_offset;
3031 	return 0;
3032 }	/* xlog_state_get_iclog_space */
3033 
3034 /* The first cnt-1 times through here we don't need to
3035  * move the grant write head because the permanent
3036  * reservation has reserved cnt times the unit amount.
3037  * Release part of current permanent unit reservation and
3038  * reset current reservation to be one units worth.  Also
3039  * move grant reservation head forward.
3040  */
3041 STATIC void
3042 xlog_regrant_reserve_log_space(
3043 	struct xlog		*log,
3044 	struct xlog_ticket	*ticket)
3045 {
3046 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3047 
3048 	if (ticket->t_cnt > 0)
3049 		ticket->t_cnt--;
3050 
3051 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3052 					ticket->t_curr_res);
3053 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3054 					ticket->t_curr_res);
3055 	ticket->t_curr_res = ticket->t_unit_res;
3056 	xlog_tic_reset_res(ticket);
3057 
3058 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3059 
3060 	/* just return if we still have some of the pre-reserved space */
3061 	if (ticket->t_cnt > 0)
3062 		return;
3063 
3064 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3065 					ticket->t_unit_res);
3066 
3067 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3068 
3069 	ticket->t_curr_res = ticket->t_unit_res;
3070 	xlog_tic_reset_res(ticket);
3071 }	/* xlog_regrant_reserve_log_space */
3072 
3073 
3074 /*
3075  * Give back the space left from a reservation.
3076  *
3077  * All the information we need to make a correct determination of space left
3078  * is present.  For non-permanent reservations, things are quite easy.  The
3079  * count should have been decremented to zero.  We only need to deal with the
3080  * space remaining in the current reservation part of the ticket.  If the
3081  * ticket contains a permanent reservation, there may be left over space which
3082  * needs to be released.  A count of N means that N-1 refills of the current
3083  * reservation can be done before we need to ask for more space.  The first
3084  * one goes to fill up the first current reservation.  Once we run out of
3085  * space, the count will stay at zero and the only space remaining will be
3086  * in the current reservation field.
3087  */
3088 STATIC void
3089 xlog_ungrant_log_space(
3090 	struct xlog		*log,
3091 	struct xlog_ticket	*ticket)
3092 {
3093 	int	bytes;
3094 
3095 	if (ticket->t_cnt > 0)
3096 		ticket->t_cnt--;
3097 
3098 	trace_xfs_log_ungrant_enter(log, ticket);
3099 	trace_xfs_log_ungrant_sub(log, ticket);
3100 
3101 	/*
3102 	 * If this is a permanent reservation ticket, we may be able to free
3103 	 * up more space based on the remaining count.
3104 	 */
3105 	bytes = ticket->t_curr_res;
3106 	if (ticket->t_cnt > 0) {
3107 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3108 		bytes += ticket->t_unit_res*ticket->t_cnt;
3109 	}
3110 
3111 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3112 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3113 
3114 	trace_xfs_log_ungrant_exit(log, ticket);
3115 
3116 	xfs_log_space_wake(log->l_mp);
3117 }
3118 
3119 /*
3120  * Mark the current iclog in the ring as WANT_SYNC and move the current iclog
3121  * pointer to the next iclog in the ring.
3122  *
3123  * When called from xlog_state_get_iclog_space(), the exact size of the iclog
3124  * has not yet been determined, all we know is that we have run out of space in
3125  * the current iclog.
3126  */
3127 STATIC void
3128 xlog_state_switch_iclogs(
3129 	struct xlog		*log,
3130 	struct xlog_in_core	*iclog,
3131 	int			eventual_size)
3132 {
3133 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3134 	assert_spin_locked(&log->l_icloglock);
3135 
3136 	if (!eventual_size)
3137 		eventual_size = iclog->ic_offset;
3138 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3139 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3140 	log->l_prev_block = log->l_curr_block;
3141 	log->l_prev_cycle = log->l_curr_cycle;
3142 
3143 	/* roll log?: ic_offset changed later */
3144 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3145 
3146 	/* Round up to next log-sunit */
3147 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3148 	    log->l_mp->m_sb.sb_logsunit > 1) {
3149 		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3150 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3151 	}
3152 
3153 	if (log->l_curr_block >= log->l_logBBsize) {
3154 		/*
3155 		 * Rewind the current block before the cycle is bumped to make
3156 		 * sure that the combined LSN never transiently moves forward
3157 		 * when the log wraps to the next cycle. This is to support the
3158 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3159 		 * other cases should acquire l_icloglock.
3160 		 */
3161 		log->l_curr_block -= log->l_logBBsize;
3162 		ASSERT(log->l_curr_block >= 0);
3163 		smp_wmb();
3164 		log->l_curr_cycle++;
3165 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3166 			log->l_curr_cycle++;
3167 	}
3168 	ASSERT(iclog == log->l_iclog);
3169 	log->l_iclog = iclog->ic_next;
3170 }	/* xlog_state_switch_iclogs */
3171 
3172 /*
3173  * Write out all data in the in-core log as of this exact moment in time.
3174  *
3175  * Data may be written to the in-core log during this call.  However,
3176  * we don't guarantee this data will be written out.  A change from past
3177  * implementation means this routine will *not* write out zero length LRs.
3178  *
3179  * Basically, we try and perform an intelligent scan of the in-core logs.
3180  * If we determine there is no flushable data, we just return.  There is no
3181  * flushable data if:
3182  *
3183  *	1. the current iclog is active and has no data; the previous iclog
3184  *		is in the active or dirty state.
3185  *	2. the current iclog is drity, and the previous iclog is in the
3186  *		active or dirty state.
3187  *
3188  * We may sleep if:
3189  *
3190  *	1. the current iclog is not in the active nor dirty state.
3191  *	2. the current iclog dirty, and the previous iclog is not in the
3192  *		active nor dirty state.
3193  *	3. the current iclog is active, and there is another thread writing
3194  *		to this particular iclog.
3195  *	4. a) the current iclog is active and has no other writers
3196  *	   b) when we return from flushing out this iclog, it is still
3197  *		not in the active nor dirty state.
3198  */
3199 int
3200 xfs_log_force(
3201 	struct xfs_mount	*mp,
3202 	uint			flags)
3203 {
3204 	struct xlog		*log = mp->m_log;
3205 	struct xlog_in_core	*iclog;
3206 	xfs_lsn_t		lsn;
3207 
3208 	XFS_STATS_INC(mp, xs_log_force);
3209 	trace_xfs_log_force(mp, 0, _RET_IP_);
3210 
3211 	xlog_cil_force(log);
3212 
3213 	spin_lock(&log->l_icloglock);
3214 	iclog = log->l_iclog;
3215 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3216 		goto out_error;
3217 
3218 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3219 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3220 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3221 		/*
3222 		 * If the head is dirty or (active and empty), then we need to
3223 		 * look at the previous iclog.
3224 		 *
3225 		 * If the previous iclog is active or dirty we are done.  There
3226 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3227 		 * previous iclog and go to sleep.
3228 		 */
3229 		iclog = iclog->ic_prev;
3230 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3231 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3232 			/*
3233 			 * We are the only one with access to this iclog.
3234 			 *
3235 			 * Flush it out now.  There should be a roundoff of zero
3236 			 * to show that someone has already taken care of the
3237 			 * roundoff from the previous sync.
3238 			 */
3239 			atomic_inc(&iclog->ic_refcnt);
3240 			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3241 			xlog_state_switch_iclogs(log, iclog, 0);
3242 			if (xlog_state_release_iclog(log, iclog))
3243 				goto out_error;
3244 
3245 			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3246 				goto out_unlock;
3247 		} else {
3248 			/*
3249 			 * Someone else is writing to this iclog.
3250 			 *
3251 			 * Use its call to flush out the data.  However, the
3252 			 * other thread may not force out this LR, so we mark
3253 			 * it WANT_SYNC.
3254 			 */
3255 			xlog_state_switch_iclogs(log, iclog, 0);
3256 		}
3257 	} else {
3258 		/*
3259 		 * If the head iclog is not active nor dirty, we just attach
3260 		 * ourselves to the head and go to sleep if necessary.
3261 		 */
3262 		;
3263 	}
3264 
3265 	if (flags & XFS_LOG_SYNC)
3266 		return xlog_wait_on_iclog(iclog);
3267 out_unlock:
3268 	spin_unlock(&log->l_icloglock);
3269 	return 0;
3270 out_error:
3271 	spin_unlock(&log->l_icloglock);
3272 	return -EIO;
3273 }
3274 
3275 static int
3276 __xfs_log_force_lsn(
3277 	struct xfs_mount	*mp,
3278 	xfs_lsn_t		lsn,
3279 	uint			flags,
3280 	int			*log_flushed,
3281 	bool			already_slept)
3282 {
3283 	struct xlog		*log = mp->m_log;
3284 	struct xlog_in_core	*iclog;
3285 
3286 	spin_lock(&log->l_icloglock);
3287 	iclog = log->l_iclog;
3288 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3289 		goto out_error;
3290 
3291 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3292 		iclog = iclog->ic_next;
3293 		if (iclog == log->l_iclog)
3294 			goto out_unlock;
3295 	}
3296 
3297 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3298 		/*
3299 		 * We sleep here if we haven't already slept (e.g. this is the
3300 		 * first time we've looked at the correct iclog buf) and the
3301 		 * buffer before us is going to be sync'ed.  The reason for this
3302 		 * is that if we are doing sync transactions here, by waiting
3303 		 * for the previous I/O to complete, we can allow a few more
3304 		 * transactions into this iclog before we close it down.
3305 		 *
3306 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3307 		 * refcnt so we can release the log (which drops the ref count).
3308 		 * The state switch keeps new transaction commits from using
3309 		 * this buffer.  When the current commits finish writing into
3310 		 * the buffer, the refcount will drop to zero and the buffer
3311 		 * will go out then.
3312 		 */
3313 		if (!already_slept &&
3314 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3315 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3316 			XFS_STATS_INC(mp, xs_log_force_sleep);
3317 
3318 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3319 					&log->l_icloglock);
3320 			return -EAGAIN;
3321 		}
3322 		atomic_inc(&iclog->ic_refcnt);
3323 		xlog_state_switch_iclogs(log, iclog, 0);
3324 		if (xlog_state_release_iclog(log, iclog))
3325 			goto out_error;
3326 		if (log_flushed)
3327 			*log_flushed = 1;
3328 	}
3329 
3330 	if (flags & XFS_LOG_SYNC)
3331 		return xlog_wait_on_iclog(iclog);
3332 out_unlock:
3333 	spin_unlock(&log->l_icloglock);
3334 	return 0;
3335 out_error:
3336 	spin_unlock(&log->l_icloglock);
3337 	return -EIO;
3338 }
3339 
3340 /*
3341  * Force the in-core log to disk for a specific LSN.
3342  *
3343  * Find in-core log with lsn.
3344  *	If it is in the DIRTY state, just return.
3345  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3346  *		state and go to sleep or return.
3347  *	If it is in any other state, go to sleep or return.
3348  *
3349  * Synchronous forces are implemented with a wait queue.  All callers trying
3350  * to force a given lsn to disk must wait on the queue attached to the
3351  * specific in-core log.  When given in-core log finally completes its write
3352  * to disk, that thread will wake up all threads waiting on the queue.
3353  */
3354 int
3355 xfs_log_force_lsn(
3356 	struct xfs_mount	*mp,
3357 	xfs_lsn_t		lsn,
3358 	uint			flags,
3359 	int			*log_flushed)
3360 {
3361 	int			ret;
3362 	ASSERT(lsn != 0);
3363 
3364 	XFS_STATS_INC(mp, xs_log_force);
3365 	trace_xfs_log_force(mp, lsn, _RET_IP_);
3366 
3367 	lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3368 	if (lsn == NULLCOMMITLSN)
3369 		return 0;
3370 
3371 	ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3372 	if (ret == -EAGAIN)
3373 		ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3374 	return ret;
3375 }
3376 
3377 /*****************************************************************************
3378  *
3379  *		TICKET functions
3380  *
3381  *****************************************************************************
3382  */
3383 
3384 /*
3385  * Free a used ticket when its refcount falls to zero.
3386  */
3387 void
3388 xfs_log_ticket_put(
3389 	xlog_ticket_t	*ticket)
3390 {
3391 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3392 	if (atomic_dec_and_test(&ticket->t_ref))
3393 		kmem_cache_free(xfs_log_ticket_zone, ticket);
3394 }
3395 
3396 xlog_ticket_t *
3397 xfs_log_ticket_get(
3398 	xlog_ticket_t	*ticket)
3399 {
3400 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3401 	atomic_inc(&ticket->t_ref);
3402 	return ticket;
3403 }
3404 
3405 /*
3406  * Figure out the total log space unit (in bytes) that would be
3407  * required for a log ticket.
3408  */
3409 int
3410 xfs_log_calc_unit_res(
3411 	struct xfs_mount	*mp,
3412 	int			unit_bytes)
3413 {
3414 	struct xlog		*log = mp->m_log;
3415 	int			iclog_space;
3416 	uint			num_headers;
3417 
3418 	/*
3419 	 * Permanent reservations have up to 'cnt'-1 active log operations
3420 	 * in the log.  A unit in this case is the amount of space for one
3421 	 * of these log operations.  Normal reservations have a cnt of 1
3422 	 * and their unit amount is the total amount of space required.
3423 	 *
3424 	 * The following lines of code account for non-transaction data
3425 	 * which occupy space in the on-disk log.
3426 	 *
3427 	 * Normal form of a transaction is:
3428 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3429 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3430 	 *
3431 	 * We need to account for all the leadup data and trailer data
3432 	 * around the transaction data.
3433 	 * And then we need to account for the worst case in terms of using
3434 	 * more space.
3435 	 * The worst case will happen if:
3436 	 * - the placement of the transaction happens to be such that the
3437 	 *   roundoff is at its maximum
3438 	 * - the transaction data is synced before the commit record is synced
3439 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3440 	 *   Therefore the commit record is in its own Log Record.
3441 	 *   This can happen as the commit record is called with its
3442 	 *   own region to xlog_write().
3443 	 *   This then means that in the worst case, roundoff can happen for
3444 	 *   the commit-rec as well.
3445 	 *   The commit-rec is smaller than padding in this scenario and so it is
3446 	 *   not added separately.
3447 	 */
3448 
3449 	/* for trans header */
3450 	unit_bytes += sizeof(xlog_op_header_t);
3451 	unit_bytes += sizeof(xfs_trans_header_t);
3452 
3453 	/* for start-rec */
3454 	unit_bytes += sizeof(xlog_op_header_t);
3455 
3456 	/*
3457 	 * for LR headers - the space for data in an iclog is the size minus
3458 	 * the space used for the headers. If we use the iclog size, then we
3459 	 * undercalculate the number of headers required.
3460 	 *
3461 	 * Furthermore - the addition of op headers for split-recs might
3462 	 * increase the space required enough to require more log and op
3463 	 * headers, so take that into account too.
3464 	 *
3465 	 * IMPORTANT: This reservation makes the assumption that if this
3466 	 * transaction is the first in an iclog and hence has the LR headers
3467 	 * accounted to it, then the remaining space in the iclog is
3468 	 * exclusively for this transaction.  i.e. if the transaction is larger
3469 	 * than the iclog, it will be the only thing in that iclog.
3470 	 * Fundamentally, this means we must pass the entire log vector to
3471 	 * xlog_write to guarantee this.
3472 	 */
3473 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3474 	num_headers = howmany(unit_bytes, iclog_space);
3475 
3476 	/* for split-recs - ophdrs added when data split over LRs */
3477 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3478 
3479 	/* add extra header reservations if we overrun */
3480 	while (!num_headers ||
3481 	       howmany(unit_bytes, iclog_space) > num_headers) {
3482 		unit_bytes += sizeof(xlog_op_header_t);
3483 		num_headers++;
3484 	}
3485 	unit_bytes += log->l_iclog_hsize * num_headers;
3486 
3487 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3488 	unit_bytes += log->l_iclog_hsize;
3489 
3490 	/* for roundoff padding for transaction data and one for commit record */
3491 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3492 		/* log su roundoff */
3493 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3494 	} else {
3495 		/* BB roundoff */
3496 		unit_bytes += 2 * BBSIZE;
3497         }
3498 
3499 	return unit_bytes;
3500 }
3501 
3502 /*
3503  * Allocate and initialise a new log ticket.
3504  */
3505 struct xlog_ticket *
3506 xlog_ticket_alloc(
3507 	struct xlog		*log,
3508 	int			unit_bytes,
3509 	int			cnt,
3510 	char			client,
3511 	bool			permanent,
3512 	xfs_km_flags_t		alloc_flags)
3513 {
3514 	struct xlog_ticket	*tic;
3515 	int			unit_res;
3516 
3517 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3518 	if (!tic)
3519 		return NULL;
3520 
3521 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3522 
3523 	atomic_set(&tic->t_ref, 1);
3524 	tic->t_task		= current;
3525 	INIT_LIST_HEAD(&tic->t_queue);
3526 	tic->t_unit_res		= unit_res;
3527 	tic->t_curr_res		= unit_res;
3528 	tic->t_cnt		= cnt;
3529 	tic->t_ocnt		= cnt;
3530 	tic->t_tid		= prandom_u32();
3531 	tic->t_clientid		= client;
3532 	tic->t_flags		= XLOG_TIC_INITED;
3533 	if (permanent)
3534 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3535 
3536 	xlog_tic_reset_res(tic);
3537 
3538 	return tic;
3539 }
3540 
3541 
3542 /******************************************************************************
3543  *
3544  *		Log debug routines
3545  *
3546  ******************************************************************************
3547  */
3548 #if defined(DEBUG)
3549 /*
3550  * Make sure that the destination ptr is within the valid data region of
3551  * one of the iclogs.  This uses backup pointers stored in a different
3552  * part of the log in case we trash the log structure.
3553  */
3554 STATIC void
3555 xlog_verify_dest_ptr(
3556 	struct xlog	*log,
3557 	void		*ptr)
3558 {
3559 	int i;
3560 	int good_ptr = 0;
3561 
3562 	for (i = 0; i < log->l_iclog_bufs; i++) {
3563 		if (ptr >= log->l_iclog_bak[i] &&
3564 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3565 			good_ptr++;
3566 	}
3567 
3568 	if (!good_ptr)
3569 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3570 }
3571 
3572 /*
3573  * Check to make sure the grant write head didn't just over lap the tail.  If
3574  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3575  * the cycles differ by exactly one and check the byte count.
3576  *
3577  * This check is run unlocked, so can give false positives. Rather than assert
3578  * on failures, use a warn-once flag and a panic tag to allow the admin to
3579  * determine if they want to panic the machine when such an error occurs. For
3580  * debug kernels this will have the same effect as using an assert but, unlinke
3581  * an assert, it can be turned off at runtime.
3582  */
3583 STATIC void
3584 xlog_verify_grant_tail(
3585 	struct xlog	*log)
3586 {
3587 	int		tail_cycle, tail_blocks;
3588 	int		cycle, space;
3589 
3590 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3591 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3592 	if (tail_cycle != cycle) {
3593 		if (cycle - 1 != tail_cycle &&
3594 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3595 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3596 				"%s: cycle - 1 != tail_cycle", __func__);
3597 			log->l_flags |= XLOG_TAIL_WARN;
3598 		}
3599 
3600 		if (space > BBTOB(tail_blocks) &&
3601 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3602 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3603 				"%s: space > BBTOB(tail_blocks)", __func__);
3604 			log->l_flags |= XLOG_TAIL_WARN;
3605 		}
3606 	}
3607 }
3608 
3609 /* check if it will fit */
3610 STATIC void
3611 xlog_verify_tail_lsn(
3612 	struct xlog		*log,
3613 	struct xlog_in_core	*iclog,
3614 	xfs_lsn_t		tail_lsn)
3615 {
3616     int blocks;
3617 
3618     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3619 	blocks =
3620 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3621 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3622 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3623     } else {
3624 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3625 
3626 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3627 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3628 
3629 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3630 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3631 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3632     }
3633 }	/* xlog_verify_tail_lsn */
3634 
3635 /*
3636  * Perform a number of checks on the iclog before writing to disk.
3637  *
3638  * 1. Make sure the iclogs are still circular
3639  * 2. Make sure we have a good magic number
3640  * 3. Make sure we don't have magic numbers in the data
3641  * 4. Check fields of each log operation header for:
3642  *	A. Valid client identifier
3643  *	B. tid ptr value falls in valid ptr space (user space code)
3644  *	C. Length in log record header is correct according to the
3645  *		individual operation headers within record.
3646  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3647  *	log, check the preceding blocks of the physical log to make sure all
3648  *	the cycle numbers agree with the current cycle number.
3649  */
3650 STATIC void
3651 xlog_verify_iclog(
3652 	struct xlog		*log,
3653 	struct xlog_in_core	*iclog,
3654 	int			count)
3655 {
3656 	xlog_op_header_t	*ophead;
3657 	xlog_in_core_t		*icptr;
3658 	xlog_in_core_2_t	*xhdr;
3659 	void			*base_ptr, *ptr, *p;
3660 	ptrdiff_t		field_offset;
3661 	uint8_t			clientid;
3662 	int			len, i, j, k, op_len;
3663 	int			idx;
3664 
3665 	/* check validity of iclog pointers */
3666 	spin_lock(&log->l_icloglock);
3667 	icptr = log->l_iclog;
3668 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3669 		ASSERT(icptr);
3670 
3671 	if (icptr != log->l_iclog)
3672 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3673 	spin_unlock(&log->l_icloglock);
3674 
3675 	/* check log magic numbers */
3676 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3677 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3678 
3679 	base_ptr = ptr = &iclog->ic_header;
3680 	p = &iclog->ic_header;
3681 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3682 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3683 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3684 				__func__);
3685 	}
3686 
3687 	/* check fields */
3688 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3689 	base_ptr = ptr = iclog->ic_datap;
3690 	ophead = ptr;
3691 	xhdr = iclog->ic_data;
3692 	for (i = 0; i < len; i++) {
3693 		ophead = ptr;
3694 
3695 		/* clientid is only 1 byte */
3696 		p = &ophead->oh_clientid;
3697 		field_offset = p - base_ptr;
3698 		if (field_offset & 0x1ff) {
3699 			clientid = ophead->oh_clientid;
3700 		} else {
3701 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3702 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3703 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3704 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3705 				clientid = xlog_get_client_id(
3706 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3707 			} else {
3708 				clientid = xlog_get_client_id(
3709 					iclog->ic_header.h_cycle_data[idx]);
3710 			}
3711 		}
3712 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3713 			xfs_warn(log->l_mp,
3714 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3715 				__func__, clientid, ophead,
3716 				(unsigned long)field_offset);
3717 
3718 		/* check length */
3719 		p = &ophead->oh_len;
3720 		field_offset = p - base_ptr;
3721 		if (field_offset & 0x1ff) {
3722 			op_len = be32_to_cpu(ophead->oh_len);
3723 		} else {
3724 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3725 				    (uintptr_t)iclog->ic_datap);
3726 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3727 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3728 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3729 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3730 			} else {
3731 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3732 			}
3733 		}
3734 		ptr += sizeof(xlog_op_header_t) + op_len;
3735 	}
3736 }	/* xlog_verify_iclog */
3737 #endif
3738 
3739 /*
3740  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3741  */
3742 STATIC int
3743 xlog_state_ioerror(
3744 	struct xlog	*log)
3745 {
3746 	xlog_in_core_t	*iclog, *ic;
3747 
3748 	iclog = log->l_iclog;
3749 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
3750 		/*
3751 		 * Mark all the incore logs IOERROR.
3752 		 * From now on, no log flushes will result.
3753 		 */
3754 		ic = iclog;
3755 		do {
3756 			ic->ic_state = XLOG_STATE_IOERROR;
3757 			ic = ic->ic_next;
3758 		} while (ic != iclog);
3759 		return 0;
3760 	}
3761 	/*
3762 	 * Return non-zero, if state transition has already happened.
3763 	 */
3764 	return 1;
3765 }
3766 
3767 /*
3768  * This is called from xfs_force_shutdown, when we're forcibly
3769  * shutting down the filesystem, typically because of an IO error.
3770  * Our main objectives here are to make sure that:
3771  *	a. if !logerror, flush the logs to disk. Anything modified
3772  *	   after this is ignored.
3773  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3774  *	   parties to find out, 'atomically'.
3775  *	c. those who're sleeping on log reservations, pinned objects and
3776  *	    other resources get woken up, and be told the bad news.
3777  *	d. nothing new gets queued up after (b) and (c) are done.
3778  *
3779  * Note: for the !logerror case we need to flush the regions held in memory out
3780  * to disk first. This needs to be done before the log is marked as shutdown,
3781  * otherwise the iclog writes will fail.
3782  */
3783 int
3784 xfs_log_force_umount(
3785 	struct xfs_mount	*mp,
3786 	int			logerror)
3787 {
3788 	struct xlog	*log;
3789 	int		retval;
3790 
3791 	log = mp->m_log;
3792 
3793 	/*
3794 	 * If this happens during log recovery, don't worry about
3795 	 * locking; the log isn't open for business yet.
3796 	 */
3797 	if (!log ||
3798 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3799 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3800 		if (mp->m_sb_bp)
3801 			mp->m_sb_bp->b_flags |= XBF_DONE;
3802 		return 0;
3803 	}
3804 
3805 	/*
3806 	 * Somebody could've already done the hard work for us.
3807 	 * No need to get locks for this.
3808 	 */
3809 	if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3810 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3811 		return 1;
3812 	}
3813 
3814 	/*
3815 	 * Flush all the completed transactions to disk before marking the log
3816 	 * being shut down. We need to do it in this order to ensure that
3817 	 * completed operations are safely on disk before we shut down, and that
3818 	 * we don't have to issue any buffer IO after the shutdown flags are set
3819 	 * to guarantee this.
3820 	 */
3821 	if (!logerror)
3822 		xfs_log_force(mp, XFS_LOG_SYNC);
3823 
3824 	/*
3825 	 * mark the filesystem and the as in a shutdown state and wake
3826 	 * everybody up to tell them the bad news.
3827 	 */
3828 	spin_lock(&log->l_icloglock);
3829 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3830 	if (mp->m_sb_bp)
3831 		mp->m_sb_bp->b_flags |= XBF_DONE;
3832 
3833 	/*
3834 	 * Mark the log and the iclogs with IO error flags to prevent any
3835 	 * further log IO from being issued or completed.
3836 	 */
3837 	log->l_flags |= XLOG_IO_ERROR;
3838 	retval = xlog_state_ioerror(log);
3839 	spin_unlock(&log->l_icloglock);
3840 
3841 	/*
3842 	 * We don't want anybody waiting for log reservations after this. That
3843 	 * means we have to wake up everybody queued up on reserveq as well as
3844 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3845 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3846 	 * action is protected by the grant locks.
3847 	 */
3848 	xlog_grant_head_wake_all(&log->l_reserve_head);
3849 	xlog_grant_head_wake_all(&log->l_write_head);
3850 
3851 	/*
3852 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3853 	 * as if the log writes were completed. The abort handling in the log
3854 	 * item committed callback functions will do this again under lock to
3855 	 * avoid races.
3856 	 */
3857 	spin_lock(&log->l_cilp->xc_push_lock);
3858 	wake_up_all(&log->l_cilp->xc_commit_wait);
3859 	spin_unlock(&log->l_cilp->xc_push_lock);
3860 	xlog_state_do_callback(log);
3861 
3862 	/* return non-zero if log IOERROR transition had already happened */
3863 	return retval;
3864 }
3865 
3866 STATIC int
3867 xlog_iclogs_empty(
3868 	struct xlog	*log)
3869 {
3870 	xlog_in_core_t	*iclog;
3871 
3872 	iclog = log->l_iclog;
3873 	do {
3874 		/* endianness does not matter here, zero is zero in
3875 		 * any language.
3876 		 */
3877 		if (iclog->ic_header.h_num_logops)
3878 			return 0;
3879 		iclog = iclog->ic_next;
3880 	} while (iclog != log->l_iclog);
3881 	return 1;
3882 }
3883 
3884 /*
3885  * Verify that an LSN stamped into a piece of metadata is valid. This is
3886  * intended for use in read verifiers on v5 superblocks.
3887  */
3888 bool
3889 xfs_log_check_lsn(
3890 	struct xfs_mount	*mp,
3891 	xfs_lsn_t		lsn)
3892 {
3893 	struct xlog		*log = mp->m_log;
3894 	bool			valid;
3895 
3896 	/*
3897 	 * norecovery mode skips mount-time log processing and unconditionally
3898 	 * resets the in-core LSN. We can't validate in this mode, but
3899 	 * modifications are not allowed anyways so just return true.
3900 	 */
3901 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3902 		return true;
3903 
3904 	/*
3905 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3906 	 * handled by recovery and thus safe to ignore here.
3907 	 */
3908 	if (lsn == NULLCOMMITLSN)
3909 		return true;
3910 
3911 	valid = xlog_valid_lsn(mp->m_log, lsn);
3912 
3913 	/* warn the user about what's gone wrong before verifier failure */
3914 	if (!valid) {
3915 		spin_lock(&log->l_icloglock);
3916 		xfs_warn(mp,
3917 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3918 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3919 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3920 			 log->l_curr_cycle, log->l_curr_block);
3921 		spin_unlock(&log->l_icloglock);
3922 	}
3923 
3924 	return valid;
3925 }
3926 
3927 bool
3928 xfs_log_in_recovery(
3929 	struct xfs_mount	*mp)
3930 {
3931 	struct xlog		*log = mp->m_log;
3932 
3933 	return log->l_flags & XLOG_ACTIVE_RECOVERY;
3934 }
3935