1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2019 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_btree.h" 15 #include "xfs_ialloc.h" 16 #include "xfs_ialloc_btree.h" 17 #include "xfs_iwalk.h" 18 #include "xfs_error.h" 19 #include "xfs_trace.h" 20 #include "xfs_icache.h" 21 #include "xfs_health.h" 22 #include "xfs_trans.h" 23 #include "xfs_pwork.h" 24 #include "xfs_ag.h" 25 #include "xfs_bit.h" 26 27 /* 28 * Walking Inodes in the Filesystem 29 * ================================ 30 * 31 * This iterator function walks a subset of filesystem inodes in increasing 32 * order from @startino until there are no more inodes. For each allocated 33 * inode it finds, it calls a walk function with the relevant inode number and 34 * a pointer to caller-provided data. The walk function can return the usual 35 * negative error code to stop the iteration; 0 to continue the iteration; or 36 * -ECANCELED to stop the iteration. This return value is returned to the 37 * caller. 38 * 39 * Internally, we allow the walk function to do anything, which means that we 40 * cannot maintain the inobt cursor or our lock on the AGI buffer. We 41 * therefore cache the inobt records in kernel memory and only call the walk 42 * function when our memory buffer is full. @nr_recs is the number of records 43 * that we've cached, and @sz_recs is the size of our cache. 44 * 45 * It is the responsibility of the walk function to ensure it accesses 46 * allocated inodes, as the inobt records may be stale by the time they are 47 * acted upon. 48 */ 49 50 struct xfs_iwalk_ag { 51 /* parallel work control data; will be null if single threaded */ 52 struct xfs_pwork pwork; 53 54 struct xfs_mount *mp; 55 struct xfs_trans *tp; 56 struct xfs_perag *pag; 57 58 /* Where do we start the traversal? */ 59 xfs_ino_t startino; 60 61 /* What was the last inode number we saw when iterating the inobt? */ 62 xfs_ino_t lastino; 63 64 /* Array of inobt records we cache. */ 65 struct xfs_inobt_rec_incore *recs; 66 67 /* Number of entries allocated for the @recs array. */ 68 unsigned int sz_recs; 69 70 /* Number of entries in the @recs array that are in use. */ 71 unsigned int nr_recs; 72 73 /* Inode walk function and data pointer. */ 74 xfs_iwalk_fn iwalk_fn; 75 xfs_inobt_walk_fn inobt_walk_fn; 76 void *data; 77 78 /* 79 * Make it look like the inodes up to startino are free so that 80 * bulkstat can start its inode iteration at the correct place without 81 * needing to special case everywhere. 82 */ 83 unsigned int trim_start:1; 84 85 /* Skip empty inobt records? */ 86 unsigned int skip_empty:1; 87 88 /* Drop the (hopefully empty) transaction when calling iwalk_fn. */ 89 unsigned int drop_trans:1; 90 }; 91 92 /* 93 * Loop over all clusters in a chunk for a given incore inode allocation btree 94 * record. Do a readahead if there are any allocated inodes in that cluster. 95 */ 96 STATIC void 97 xfs_iwalk_ichunk_ra( 98 struct xfs_mount *mp, 99 struct xfs_perag *pag, 100 struct xfs_inobt_rec_incore *irec) 101 { 102 struct xfs_ino_geometry *igeo = M_IGEO(mp); 103 xfs_agblock_t agbno; 104 struct blk_plug plug; 105 int i; /* inode chunk index */ 106 107 agbno = XFS_AGINO_TO_AGBNO(mp, irec->ir_startino); 108 109 blk_start_plug(&plug); 110 for (i = 0; i < XFS_INODES_PER_CHUNK; i += igeo->inodes_per_cluster) { 111 xfs_inofree_t imask; 112 113 imask = xfs_inobt_maskn(i, igeo->inodes_per_cluster); 114 if (imask & ~irec->ir_free) { 115 xfs_buf_readahead(mp->m_ddev_targp, 116 xfs_agbno_to_daddr(pag, agbno), 117 igeo->blocks_per_cluster * mp->m_bsize, 118 &xfs_inode_buf_ops); 119 } 120 agbno += igeo->blocks_per_cluster; 121 } 122 blk_finish_plug(&plug); 123 } 124 125 /* 126 * Set the bits in @irec's free mask that correspond to the inodes before 127 * @agino so that we skip them. This is how we restart an inode walk that was 128 * interrupted in the middle of an inode record. 129 */ 130 STATIC void 131 xfs_iwalk_adjust_start( 132 xfs_agino_t agino, /* starting inode of chunk */ 133 struct xfs_inobt_rec_incore *irec) /* btree record */ 134 { 135 int idx; /* index into inode chunk */ 136 137 idx = agino - irec->ir_startino; 138 139 irec->ir_free |= xfs_inobt_maskn(0, idx); 140 irec->ir_freecount = hweight64(irec->ir_free); 141 } 142 143 /* Allocate memory for a walk. */ 144 STATIC int 145 xfs_iwalk_alloc( 146 struct xfs_iwalk_ag *iwag) 147 { 148 size_t size; 149 150 ASSERT(iwag->recs == NULL); 151 iwag->nr_recs = 0; 152 153 /* Allocate a prefetch buffer for inobt records. */ 154 size = iwag->sz_recs * sizeof(struct xfs_inobt_rec_incore); 155 iwag->recs = kmalloc(size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 156 if (iwag->recs == NULL) 157 return -ENOMEM; 158 159 return 0; 160 } 161 162 /* Free memory we allocated for a walk. */ 163 STATIC void 164 xfs_iwalk_free( 165 struct xfs_iwalk_ag *iwag) 166 { 167 kfree(iwag->recs); 168 iwag->recs = NULL; 169 } 170 171 /* For each inuse inode in each cached inobt record, call our function. */ 172 STATIC int 173 xfs_iwalk_ag_recs( 174 struct xfs_iwalk_ag *iwag) 175 { 176 struct xfs_mount *mp = iwag->mp; 177 struct xfs_trans *tp = iwag->tp; 178 struct xfs_perag *pag = iwag->pag; 179 unsigned int i, j; 180 int error; 181 182 for (i = 0; i < iwag->nr_recs; i++) { 183 struct xfs_inobt_rec_incore *irec = &iwag->recs[i]; 184 185 trace_xfs_iwalk_ag_rec(pag, irec); 186 187 if (xfs_pwork_want_abort(&iwag->pwork)) 188 return 0; 189 190 if (iwag->inobt_walk_fn) { 191 error = iwag->inobt_walk_fn(mp, tp, pag_agno(pag), irec, 192 iwag->data); 193 if (error) 194 return error; 195 } 196 197 if (!iwag->iwalk_fn) 198 continue; 199 200 for (j = 0; j < XFS_INODES_PER_CHUNK; j++) { 201 if (xfs_pwork_want_abort(&iwag->pwork)) 202 return 0; 203 204 /* Skip if this inode is free */ 205 if (XFS_INOBT_MASK(j) & irec->ir_free) 206 continue; 207 208 /* Otherwise call our function. */ 209 error = iwag->iwalk_fn(mp, tp, 210 xfs_agino_to_ino(pag, 211 irec->ir_startino + j), 212 iwag->data); 213 if (error) 214 return error; 215 } 216 } 217 218 return 0; 219 } 220 221 /* Delete cursor and let go of AGI. */ 222 static inline void 223 xfs_iwalk_del_inobt( 224 struct xfs_trans *tp, 225 struct xfs_btree_cur **curpp, 226 struct xfs_buf **agi_bpp, 227 int error) 228 { 229 if (*curpp) { 230 xfs_btree_del_cursor(*curpp, error); 231 *curpp = NULL; 232 } 233 if (*agi_bpp) { 234 xfs_trans_brelse(tp, *agi_bpp); 235 *agi_bpp = NULL; 236 } 237 } 238 239 /* 240 * Set ourselves up for walking inobt records starting from a given point in 241 * the filesystem. 242 * 243 * If caller passed in a nonzero start inode number, load the record from the 244 * inobt and make the record look like all the inodes before agino are free so 245 * that we skip them, and then move the cursor to the next inobt record. This 246 * is how we support starting an iwalk in the middle of an inode chunk. 247 * 248 * If the caller passed in a start number of zero, move the cursor to the first 249 * inobt record. 250 * 251 * The caller is responsible for cleaning up the cursor and buffer pointer 252 * regardless of the error status. 253 */ 254 STATIC int 255 xfs_iwalk_ag_start( 256 struct xfs_iwalk_ag *iwag, 257 xfs_agino_t agino, 258 struct xfs_btree_cur **curpp, 259 struct xfs_buf **agi_bpp, 260 int *has_more) 261 { 262 struct xfs_mount *mp = iwag->mp; 263 struct xfs_trans *tp = iwag->tp; 264 struct xfs_perag *pag = iwag->pag; 265 struct xfs_inobt_rec_incore *irec; 266 int error; 267 268 /* Set up a fresh cursor and empty the inobt cache. */ 269 iwag->nr_recs = 0; 270 error = xfs_ialloc_read_agi(pag, tp, 0, agi_bpp); 271 if (error) 272 return error; 273 *curpp = xfs_inobt_init_cursor(pag, tp, *agi_bpp); 274 275 /* Starting at the beginning of the AG? That's easy! */ 276 if (agino == 0) 277 return xfs_inobt_lookup(*curpp, 0, XFS_LOOKUP_GE, has_more); 278 279 /* 280 * Otherwise, we have to grab the inobt record where we left off, stuff 281 * the record into our cache, and then see if there are more records. 282 * We require a lookup cache of at least two elements so that the 283 * caller doesn't have to deal with tearing down the cursor to walk the 284 * records. 285 */ 286 error = xfs_inobt_lookup(*curpp, agino, XFS_LOOKUP_LE, has_more); 287 if (error) 288 return error; 289 290 /* 291 * If the LE lookup at @agino yields no records, jump ahead to the 292 * inobt cursor increment to see if there are more records to process. 293 */ 294 if (!*has_more) 295 goto out_advance; 296 297 /* Get the record, should always work */ 298 irec = &iwag->recs[iwag->nr_recs]; 299 error = xfs_inobt_get_rec(*curpp, irec, has_more); 300 if (error) 301 return error; 302 if (XFS_IS_CORRUPT(mp, *has_more != 1)) { 303 xfs_btree_mark_sick(*curpp); 304 return -EFSCORRUPTED; 305 } 306 307 iwag->lastino = xfs_agino_to_ino(pag, 308 irec->ir_startino + XFS_INODES_PER_CHUNK - 1); 309 310 /* 311 * If the LE lookup yielded an inobt record before the cursor position, 312 * skip it and see if there's another one after it. 313 */ 314 if (irec->ir_startino + XFS_INODES_PER_CHUNK <= agino) 315 goto out_advance; 316 317 /* 318 * If agino fell in the middle of the inode record, make it look like 319 * the inodes up to agino are free so that we don't return them again. 320 */ 321 if (iwag->trim_start) 322 xfs_iwalk_adjust_start(agino, irec); 323 324 /* 325 * The prefetch calculation is supposed to give us a large enough inobt 326 * record cache that grab_ichunk can stage a partial first record and 327 * the loop body can cache a record without having to check for cache 328 * space until after it reads an inobt record. 329 */ 330 iwag->nr_recs++; 331 ASSERT(iwag->nr_recs < iwag->sz_recs); 332 333 out_advance: 334 return xfs_btree_increment(*curpp, 0, has_more); 335 } 336 337 /* 338 * The inobt record cache is full, so preserve the inobt cursor state and 339 * run callbacks on the cached inobt records. When we're done, restore the 340 * cursor state to wherever the cursor would have been had the cache not been 341 * full (and therefore we could've just incremented the cursor) if *@has_more 342 * is true. On exit, *@has_more will indicate whether or not the caller should 343 * try for more inode records. 344 */ 345 STATIC int 346 xfs_iwalk_run_callbacks( 347 struct xfs_iwalk_ag *iwag, 348 struct xfs_btree_cur **curpp, 349 struct xfs_buf **agi_bpp, 350 int *has_more) 351 { 352 struct xfs_mount *mp = iwag->mp; 353 xfs_agino_t next_agino; 354 int error; 355 356 next_agino = XFS_INO_TO_AGINO(mp, iwag->lastino) + 1; 357 358 ASSERT(iwag->nr_recs > 0); 359 360 /* Delete cursor but remember the last record we cached... */ 361 xfs_iwalk_del_inobt(iwag->tp, curpp, agi_bpp, 0); 362 ASSERT(next_agino >= iwag->recs[iwag->nr_recs - 1].ir_startino + 363 XFS_INODES_PER_CHUNK); 364 365 if (iwag->drop_trans) { 366 xfs_trans_cancel(iwag->tp); 367 iwag->tp = NULL; 368 } 369 370 error = xfs_iwalk_ag_recs(iwag); 371 if (error) 372 return error; 373 374 /* ...empty the cache... */ 375 iwag->nr_recs = 0; 376 377 if (!has_more) 378 return 0; 379 380 if (iwag->drop_trans) 381 iwag->tp = xfs_trans_alloc_empty(mp); 382 383 /* ...and recreate the cursor just past where we left off. */ 384 error = xfs_ialloc_read_agi(iwag->pag, iwag->tp, 0, agi_bpp); 385 if (error) 386 return error; 387 *curpp = xfs_inobt_init_cursor(iwag->pag, iwag->tp, *agi_bpp); 388 return xfs_inobt_lookup(*curpp, next_agino, XFS_LOOKUP_GE, has_more); 389 } 390 391 /* Walk all inodes in a single AG, from @iwag->startino to the end of the AG. */ 392 STATIC int 393 xfs_iwalk_ag( 394 struct xfs_iwalk_ag *iwag) 395 { 396 struct xfs_mount *mp = iwag->mp; 397 struct xfs_perag *pag = iwag->pag; 398 struct xfs_buf *agi_bp = NULL; 399 struct xfs_btree_cur *cur = NULL; 400 xfs_agino_t agino; 401 int has_more; 402 int error = 0; 403 404 /* Set up our cursor at the right place in the inode btree. */ 405 ASSERT(pag_agno(pag) == XFS_INO_TO_AGNO(mp, iwag->startino)); 406 agino = XFS_INO_TO_AGINO(mp, iwag->startino); 407 error = xfs_iwalk_ag_start(iwag, agino, &cur, &agi_bp, &has_more); 408 409 while (!error && has_more) { 410 struct xfs_inobt_rec_incore *irec; 411 xfs_ino_t rec_fsino; 412 413 cond_resched(); 414 if (xfs_pwork_want_abort(&iwag->pwork)) 415 goto out; 416 417 /* Fetch the inobt record. */ 418 irec = &iwag->recs[iwag->nr_recs]; 419 error = xfs_inobt_get_rec(cur, irec, &has_more); 420 if (error || !has_more) 421 break; 422 423 /* Make sure that we always move forward. */ 424 rec_fsino = xfs_agino_to_ino(pag, irec->ir_startino); 425 if (iwag->lastino != NULLFSINO && 426 XFS_IS_CORRUPT(mp, iwag->lastino >= rec_fsino)) { 427 xfs_btree_mark_sick(cur); 428 error = -EFSCORRUPTED; 429 goto out; 430 } 431 iwag->lastino = rec_fsino + XFS_INODES_PER_CHUNK - 1; 432 433 /* No allocated inodes in this chunk; skip it. */ 434 if (iwag->skip_empty && irec->ir_freecount == irec->ir_count) { 435 error = xfs_btree_increment(cur, 0, &has_more); 436 if (error) 437 break; 438 continue; 439 } 440 441 /* 442 * Start readahead for this inode chunk in anticipation of 443 * walking the inodes. 444 */ 445 if (iwag->iwalk_fn) 446 xfs_iwalk_ichunk_ra(mp, pag, irec); 447 448 /* 449 * If there's space in the buffer for more records, increment 450 * the btree cursor and grab more. 451 */ 452 if (++iwag->nr_recs < iwag->sz_recs) { 453 error = xfs_btree_increment(cur, 0, &has_more); 454 if (error || !has_more) 455 break; 456 continue; 457 } 458 459 /* 460 * Otherwise, we need to save cursor state and run the callback 461 * function on the cached records. The run_callbacks function 462 * is supposed to return a cursor pointing to the record where 463 * we would be if we had been able to increment like above. 464 */ 465 ASSERT(has_more); 466 error = xfs_iwalk_run_callbacks(iwag, &cur, &agi_bp, &has_more); 467 } 468 469 if (iwag->nr_recs == 0 || error) 470 goto out; 471 472 /* Walk the unprocessed records in the cache. */ 473 error = xfs_iwalk_run_callbacks(iwag, &cur, &agi_bp, &has_more); 474 475 out: 476 xfs_iwalk_del_inobt(iwag->tp, &cur, &agi_bp, error); 477 return error; 478 } 479 480 /* 481 * We experimentally determined that the reduction in ioctl call overhead 482 * diminishes when userspace asks for more than 2048 inodes, so we'll cap 483 * prefetch at this point. 484 */ 485 #define IWALK_MAX_INODE_PREFETCH (2048U) 486 487 /* 488 * Given the number of inodes to prefetch, set the number of inobt records that 489 * we cache in memory, which controls the number of inodes we try to read 490 * ahead. Set the maximum if @inodes == 0. 491 */ 492 static inline unsigned int 493 xfs_iwalk_prefetch( 494 unsigned int inodes) 495 { 496 unsigned int inobt_records; 497 498 /* 499 * If the caller didn't tell us the number of inodes they wanted, 500 * assume the maximum prefetch possible for best performance. 501 * Otherwise, cap prefetch at that maximum so that we don't start an 502 * absurd amount of prefetch. 503 */ 504 if (inodes == 0) 505 inodes = IWALK_MAX_INODE_PREFETCH; 506 inodes = min(inodes, IWALK_MAX_INODE_PREFETCH); 507 508 /* Round the inode count up to a full chunk. */ 509 inodes = round_up(inodes, XFS_INODES_PER_CHUNK); 510 511 /* 512 * In order to convert the number of inodes to prefetch into an 513 * estimate of the number of inobt records to cache, we require a 514 * conversion factor that reflects our expectations of the average 515 * loading factor of an inode chunk. Based on data gathered, most 516 * (but not all) filesystems manage to keep the inode chunks totally 517 * full, so we'll underestimate slightly so that our readahead will 518 * still deliver the performance we want on aging filesystems: 519 * 520 * inobt = inodes / (INODES_PER_CHUNK * (4 / 5)); 521 * 522 * The funny math is to avoid integer division. 523 */ 524 inobt_records = (inodes * 5) / (4 * XFS_INODES_PER_CHUNK); 525 526 /* 527 * Allocate enough space to prefetch at least two inobt records so that 528 * we can cache both the record where the iwalk started and the next 529 * record. This simplifies the AG inode walk loop setup code. 530 */ 531 return max(inobt_records, 2U); 532 } 533 534 static int 535 xfs_iwalk_args( 536 struct xfs_iwalk_ag *iwag, 537 unsigned int flags) 538 { 539 struct xfs_mount *mp = iwag->mp; 540 xfs_agnumber_t start_agno; 541 int error; 542 543 start_agno = XFS_INO_TO_AGNO(iwag->mp, iwag->startino); 544 ASSERT(start_agno < iwag->mp->m_sb.sb_agcount); 545 ASSERT(!(flags & ~XFS_IWALK_FLAGS_ALL)); 546 547 error = xfs_iwalk_alloc(iwag); 548 if (error) 549 return error; 550 551 while ((iwag->pag = xfs_perag_next_from(mp, iwag->pag, start_agno))) { 552 error = xfs_iwalk_ag(iwag); 553 if (error || (flags & XFS_IWALK_SAME_AG)) { 554 xfs_perag_rele(iwag->pag); 555 break; 556 } 557 iwag->startino = 558 XFS_AGINO_TO_INO(mp, pag_agno(iwag->pag) + 1, 0); 559 } 560 561 xfs_iwalk_free(iwag); 562 return error; 563 } 564 565 /* 566 * Walk all inodes in the filesystem starting from @startino. The @iwalk_fn 567 * will be called for each allocated inode, being passed the inode's number and 568 * @data. @max_prefetch controls how many inobt records' worth of inodes we 569 * try to readahead. 570 */ 571 int 572 xfs_iwalk( 573 struct xfs_mount *mp, 574 struct xfs_trans *tp, 575 xfs_ino_t startino, 576 unsigned int flags, 577 xfs_iwalk_fn iwalk_fn, 578 unsigned int inode_records, 579 void *data) 580 { 581 struct xfs_iwalk_ag iwag = { 582 .mp = mp, 583 .tp = tp, 584 .iwalk_fn = iwalk_fn, 585 .data = data, 586 .startino = startino, 587 .sz_recs = xfs_iwalk_prefetch(inode_records), 588 .trim_start = 1, 589 .skip_empty = 1, 590 .pwork = XFS_PWORK_SINGLE_THREADED, 591 .lastino = NULLFSINO, 592 }; 593 594 return xfs_iwalk_args(&iwag, flags); 595 } 596 597 /* Run per-thread iwalk work. */ 598 static int 599 xfs_iwalk_ag_work( 600 struct xfs_mount *mp, 601 struct xfs_pwork *pwork) 602 { 603 struct xfs_iwalk_ag *iwag; 604 int error = 0; 605 606 iwag = container_of(pwork, struct xfs_iwalk_ag, pwork); 607 if (xfs_pwork_want_abort(pwork)) 608 goto out; 609 610 error = xfs_iwalk_alloc(iwag); 611 if (error) 612 goto out; 613 /* 614 * Grab an empty transaction so that we can use its recursive buffer 615 * locking abilities to detect cycles in the inobt without deadlocking. 616 */ 617 iwag->tp = xfs_trans_alloc_empty(mp); 618 iwag->drop_trans = 1; 619 620 error = xfs_iwalk_ag(iwag); 621 if (iwag->tp) 622 xfs_trans_cancel(iwag->tp); 623 xfs_iwalk_free(iwag); 624 out: 625 xfs_perag_put(iwag->pag); 626 kfree(iwag); 627 return error; 628 } 629 630 /* 631 * Walk all the inodes in the filesystem using multiple threads to process each 632 * AG. 633 */ 634 int 635 xfs_iwalk_threaded( 636 struct xfs_mount *mp, 637 xfs_ino_t startino, 638 unsigned int flags, 639 xfs_iwalk_fn iwalk_fn, 640 unsigned int inode_records, 641 bool polled, 642 void *data) 643 { 644 xfs_agnumber_t start_agno = XFS_INO_TO_AGNO(mp, startino); 645 struct xfs_pwork_ctl pctl; 646 struct xfs_perag *pag = NULL; 647 int error; 648 649 ASSERT(start_agno < mp->m_sb.sb_agcount); 650 ASSERT(!(flags & ~XFS_IWALK_FLAGS_ALL)); 651 652 error = xfs_pwork_init(mp, &pctl, xfs_iwalk_ag_work, "xfs_iwalk"); 653 if (error) 654 return error; 655 656 while ((pag = xfs_perag_next_from(mp, pag, start_agno))) { 657 struct xfs_iwalk_ag *iwag; 658 659 if (xfs_pwork_ctl_want_abort(&pctl)) 660 break; 661 662 iwag = kzalloc(sizeof(struct xfs_iwalk_ag), 663 GFP_KERNEL | __GFP_NOFAIL); 664 iwag->mp = mp; 665 666 /* 667 * perag is being handed off to async work, so take a passive 668 * reference for the async work to release. 669 */ 670 iwag->pag = xfs_perag_hold(pag); 671 iwag->iwalk_fn = iwalk_fn; 672 iwag->data = data; 673 iwag->startino = startino; 674 iwag->sz_recs = xfs_iwalk_prefetch(inode_records); 675 iwag->lastino = NULLFSINO; 676 xfs_pwork_queue(&pctl, &iwag->pwork); 677 startino = XFS_AGINO_TO_INO(mp, pag_agno(pag) + 1, 0); 678 if (flags & XFS_IWALK_SAME_AG) 679 break; 680 } 681 if (pag) 682 xfs_perag_rele(pag); 683 if (polled) 684 xfs_pwork_poll(&pctl); 685 return xfs_pwork_destroy(&pctl); 686 } 687 688 /* 689 * Allow callers to cache up to a page's worth of inobt records. This reflects 690 * the existing inumbers prefetching behavior. Since the inobt walk does not 691 * itself do anything with the inobt records, we can set a fairly high limit 692 * here. 693 */ 694 #define MAX_INOBT_WALK_PREFETCH \ 695 (PAGE_SIZE / sizeof(struct xfs_inobt_rec_incore)) 696 697 /* 698 * Given the number of records that the user wanted, set the number of inobt 699 * records that we buffer in memory. Set the maximum if @inobt_records == 0. 700 */ 701 static inline unsigned int 702 xfs_inobt_walk_prefetch( 703 unsigned int inobt_records) 704 { 705 /* 706 * If the caller didn't tell us the number of inobt records they 707 * wanted, assume the maximum prefetch possible for best performance. 708 */ 709 if (inobt_records == 0) 710 inobt_records = MAX_INOBT_WALK_PREFETCH; 711 712 /* 713 * Allocate enough space to prefetch at least two inobt records so that 714 * we can cache both the record where the iwalk started and the next 715 * record. This simplifies the AG inode walk loop setup code. 716 */ 717 inobt_records = max(inobt_records, 2U); 718 719 /* 720 * Cap prefetch at that maximum so that we don't use an absurd amount 721 * of memory. 722 */ 723 return min_t(unsigned int, inobt_records, MAX_INOBT_WALK_PREFETCH); 724 } 725 726 /* 727 * Walk all inode btree records in the filesystem starting from @startino. The 728 * @inobt_walk_fn will be called for each btree record, being passed the incore 729 * record and @data. @max_prefetch controls how many inobt records we try to 730 * cache ahead of time. 731 */ 732 int 733 xfs_inobt_walk( 734 struct xfs_mount *mp, 735 struct xfs_trans *tp, 736 xfs_ino_t startino, 737 unsigned int flags, 738 xfs_inobt_walk_fn inobt_walk_fn, 739 unsigned int inobt_records, 740 void *data) 741 { 742 struct xfs_iwalk_ag iwag = { 743 .mp = mp, 744 .tp = tp, 745 .inobt_walk_fn = inobt_walk_fn, 746 .data = data, 747 .startino = startino, 748 .sz_recs = xfs_inobt_walk_prefetch(inobt_records), 749 .pwork = XFS_PWORK_SINGLE_THREADED, 750 .lastino = NULLFSINO, 751 }; 752 753 return xfs_iwalk_args(&iwag, flags); 754 } 755