1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_acl.h" 15 #include "xfs_quota.h" 16 #include "xfs_da_format.h" 17 #include "xfs_da_btree.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_bmap_btree.h" 22 #include "xfs_trace.h" 23 #include "xfs_icache.h" 24 #include "xfs_symlink.h" 25 #include "xfs_dir2.h" 26 #include "xfs_iomap.h" 27 #include "xfs_error.h" 28 #include "xfs_ioctl.h" 29 #include "xfs_xattr.h" 30 #include "xfs_file.h" 31 #include "xfs_bmap.h" 32 33 #include <linux/posix_acl.h> 34 #include <linux/security.h> 35 #include <linux/iversion.h> 36 #include <linux/fiemap.h> 37 38 /* 39 * Directories have different lock order w.r.t. mmap_lock compared to regular 40 * files. This is due to readdir potentially triggering page faults on a user 41 * buffer inside filldir(), and this happens with the ilock on the directory 42 * held. For regular files, the lock order is the other way around - the 43 * mmap_lock is taken during the page fault, and then we lock the ilock to do 44 * block mapping. Hence we need a different class for the directory ilock so 45 * that lockdep can tell them apart. Directories in the metadata directory 46 * tree get a separate class so that lockdep reports will warn us if someone 47 * ever tries to lock regular directories after locking metadata directories. 48 */ 49 static struct lock_class_key xfs_nondir_ilock_class; 50 static struct lock_class_key xfs_dir_ilock_class; 51 52 static int 53 xfs_initxattrs( 54 struct inode *inode, 55 const struct xattr *xattr_array, 56 void *fs_info) 57 { 58 const struct xattr *xattr; 59 struct xfs_inode *ip = XFS_I(inode); 60 int error = 0; 61 62 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 63 struct xfs_da_args args = { 64 .dp = ip, 65 .attr_filter = XFS_ATTR_SECURE, 66 .name = xattr->name, 67 .namelen = strlen(xattr->name), 68 .value = xattr->value, 69 .valuelen = xattr->value_len, 70 }; 71 error = xfs_attr_change(&args, XFS_ATTRUPDATE_UPSERT); 72 if (error < 0) 73 break; 74 } 75 return error; 76 } 77 78 /* 79 * Hook in SELinux. This is not quite correct yet, what we really need 80 * here (as we do for default ACLs) is a mechanism by which creation of 81 * these attrs can be journalled at inode creation time (along with the 82 * inode, of course, such that log replay can't cause these to be lost). 83 */ 84 int 85 xfs_inode_init_security( 86 struct inode *inode, 87 struct inode *dir, 88 const struct qstr *qstr) 89 { 90 return security_inode_init_security(inode, dir, qstr, 91 &xfs_initxattrs, NULL); 92 } 93 94 static void 95 xfs_dentry_to_name( 96 struct xfs_name *namep, 97 struct dentry *dentry) 98 { 99 namep->name = dentry->d_name.name; 100 namep->len = dentry->d_name.len; 101 namep->type = XFS_DIR3_FT_UNKNOWN; 102 } 103 104 static int 105 xfs_dentry_mode_to_name( 106 struct xfs_name *namep, 107 struct dentry *dentry, 108 int mode) 109 { 110 namep->name = dentry->d_name.name; 111 namep->len = dentry->d_name.len; 112 namep->type = xfs_mode_to_ftype(mode); 113 114 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN)) 115 return -EFSCORRUPTED; 116 117 return 0; 118 } 119 120 STATIC void 121 xfs_cleanup_inode( 122 struct inode *dir, 123 struct inode *inode, 124 struct dentry *dentry) 125 { 126 struct xfs_name teardown; 127 128 /* Oh, the horror. 129 * If we can't add the ACL or we fail in 130 * xfs_inode_init_security we must back out. 131 * ENOSPC can hit here, among other things. 132 */ 133 xfs_dentry_to_name(&teardown, dentry); 134 135 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode)); 136 } 137 138 /* 139 * Check to see if we are likely to need an extended attribute to be added to 140 * the inode we are about to allocate. This allows the attribute fork to be 141 * created during the inode allocation, reducing the number of transactions we 142 * need to do in this fast path. 143 * 144 * The security checks are optimistic, but not guaranteed. The two LSMs that 145 * require xattrs to be added here (selinux and smack) are also the only two 146 * LSMs that add a sb->s_security structure to the superblock. Hence if security 147 * is enabled and sb->s_security is set, we have a pretty good idea that we are 148 * going to be asked to add a security xattr immediately after allocating the 149 * xfs inode and instantiating the VFS inode. 150 */ 151 static inline bool 152 xfs_create_need_xattr( 153 struct inode *dir, 154 struct posix_acl *default_acl, 155 struct posix_acl *acl) 156 { 157 if (acl) 158 return true; 159 if (default_acl) 160 return true; 161 #if IS_ENABLED(CONFIG_SECURITY) 162 if (dir->i_sb->s_security) 163 return true; 164 #endif 165 return false; 166 } 167 168 169 STATIC int 170 xfs_generic_create( 171 struct mnt_idmap *idmap, 172 struct inode *dir, 173 struct dentry *dentry, 174 umode_t mode, 175 dev_t rdev, 176 struct file *tmpfile) /* unnamed file */ 177 { 178 struct xfs_icreate_args args = { 179 .idmap = idmap, 180 .pip = XFS_I(dir), 181 .rdev = rdev, 182 .mode = mode, 183 }; 184 struct inode *inode; 185 struct xfs_inode *ip = NULL; 186 struct posix_acl *default_acl, *acl; 187 struct xfs_name name; 188 int error; 189 190 /* 191 * Irix uses Missed'em'V split, but doesn't want to see 192 * the upper 5 bits of (14bit) major. 193 */ 194 if (S_ISCHR(args.mode) || S_ISBLK(args.mode)) { 195 if (unlikely(!sysv_valid_dev(args.rdev) || 196 MAJOR(args.rdev) & ~0x1ff)) 197 return -EINVAL; 198 } else { 199 args.rdev = 0; 200 } 201 202 error = posix_acl_create(dir, &args.mode, &default_acl, &acl); 203 if (error) 204 return error; 205 206 /* Verify mode is valid also for tmpfile case */ 207 error = xfs_dentry_mode_to_name(&name, dentry, args.mode); 208 if (unlikely(error)) 209 goto out_free_acl; 210 211 if (!tmpfile) { 212 if (xfs_create_need_xattr(dir, default_acl, acl)) 213 args.flags |= XFS_ICREATE_INIT_XATTRS; 214 215 error = xfs_create(&args, &name, &ip); 216 } else { 217 args.flags |= XFS_ICREATE_TMPFILE; 218 219 /* 220 * If this temporary file will not be linkable, don't bother 221 * creating an attr fork to receive a parent pointer. 222 */ 223 if (tmpfile->f_flags & O_EXCL) 224 args.flags |= XFS_ICREATE_UNLINKABLE; 225 226 error = xfs_create_tmpfile(&args, &ip); 227 } 228 if (unlikely(error)) 229 goto out_free_acl; 230 231 inode = VFS_I(ip); 232 233 error = xfs_inode_init_security(inode, dir, &dentry->d_name); 234 if (unlikely(error)) 235 goto out_cleanup_inode; 236 237 if (default_acl) { 238 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT); 239 if (error) 240 goto out_cleanup_inode; 241 } 242 if (acl) { 243 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS); 244 if (error) 245 goto out_cleanup_inode; 246 } 247 248 xfs_setup_iops(ip); 249 250 if (tmpfile) { 251 /* 252 * The VFS requires that any inode fed to d_tmpfile must have 253 * nlink == 1 so that it can decrement the nlink in d_tmpfile. 254 * However, we created the temp file with nlink == 0 because 255 * we're not allowed to put an inode with nlink > 0 on the 256 * unlinked list. Therefore we have to set nlink to 1 so that 257 * d_tmpfile can immediately set it back to zero. 258 */ 259 set_nlink(inode, 1); 260 d_tmpfile(tmpfile, inode); 261 } else 262 d_instantiate(dentry, inode); 263 264 xfs_finish_inode_setup(ip); 265 266 out_free_acl: 267 posix_acl_release(default_acl); 268 posix_acl_release(acl); 269 return error; 270 271 out_cleanup_inode: 272 xfs_finish_inode_setup(ip); 273 if (!tmpfile) 274 xfs_cleanup_inode(dir, inode, dentry); 275 xfs_irele(ip); 276 goto out_free_acl; 277 } 278 279 STATIC int 280 xfs_vn_mknod( 281 struct mnt_idmap *idmap, 282 struct inode *dir, 283 struct dentry *dentry, 284 umode_t mode, 285 dev_t rdev) 286 { 287 return xfs_generic_create(idmap, dir, dentry, mode, rdev, NULL); 288 } 289 290 STATIC int 291 xfs_vn_create( 292 struct mnt_idmap *idmap, 293 struct inode *dir, 294 struct dentry *dentry, 295 umode_t mode, 296 bool flags) 297 { 298 return xfs_generic_create(idmap, dir, dentry, mode, 0, NULL); 299 } 300 301 STATIC int 302 xfs_vn_mkdir( 303 struct mnt_idmap *idmap, 304 struct inode *dir, 305 struct dentry *dentry, 306 umode_t mode) 307 { 308 return xfs_generic_create(idmap, dir, dentry, mode | S_IFDIR, 0, NULL); 309 } 310 311 STATIC struct dentry * 312 xfs_vn_lookup( 313 struct inode *dir, 314 struct dentry *dentry, 315 unsigned int flags) 316 { 317 struct inode *inode; 318 struct xfs_inode *cip; 319 struct xfs_name name; 320 int error; 321 322 if (dentry->d_name.len >= MAXNAMELEN) 323 return ERR_PTR(-ENAMETOOLONG); 324 325 xfs_dentry_to_name(&name, dentry); 326 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL); 327 if (likely(!error)) 328 inode = VFS_I(cip); 329 else if (likely(error == -ENOENT)) 330 inode = NULL; 331 else 332 inode = ERR_PTR(error); 333 return d_splice_alias(inode, dentry); 334 } 335 336 STATIC struct dentry * 337 xfs_vn_ci_lookup( 338 struct inode *dir, 339 struct dentry *dentry, 340 unsigned int flags) 341 { 342 struct xfs_inode *ip; 343 struct xfs_name xname; 344 struct xfs_name ci_name; 345 struct qstr dname; 346 int error; 347 348 if (dentry->d_name.len >= MAXNAMELEN) 349 return ERR_PTR(-ENAMETOOLONG); 350 351 xfs_dentry_to_name(&xname, dentry); 352 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name); 353 if (unlikely(error)) { 354 if (unlikely(error != -ENOENT)) 355 return ERR_PTR(error); 356 /* 357 * call d_add(dentry, NULL) here when d_drop_negative_children 358 * is called in xfs_vn_mknod (ie. allow negative dentries 359 * with CI filesystems). 360 */ 361 return NULL; 362 } 363 364 /* if exact match, just splice and exit */ 365 if (!ci_name.name) 366 return d_splice_alias(VFS_I(ip), dentry); 367 368 /* else case-insensitive match... */ 369 dname.name = ci_name.name; 370 dname.len = ci_name.len; 371 dentry = d_add_ci(dentry, VFS_I(ip), &dname); 372 kfree(ci_name.name); 373 return dentry; 374 } 375 376 STATIC int 377 xfs_vn_link( 378 struct dentry *old_dentry, 379 struct inode *dir, 380 struct dentry *dentry) 381 { 382 struct inode *inode = d_inode(old_dentry); 383 struct xfs_name name; 384 int error; 385 386 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode); 387 if (unlikely(error)) 388 return error; 389 390 if (IS_PRIVATE(inode)) 391 return -EPERM; 392 393 error = xfs_link(XFS_I(dir), XFS_I(inode), &name); 394 if (unlikely(error)) 395 return error; 396 397 ihold(inode); 398 d_instantiate(dentry, inode); 399 return 0; 400 } 401 402 STATIC int 403 xfs_vn_unlink( 404 struct inode *dir, 405 struct dentry *dentry) 406 { 407 struct xfs_name name; 408 int error; 409 410 xfs_dentry_to_name(&name, dentry); 411 412 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry))); 413 if (error) 414 return error; 415 416 /* 417 * With unlink, the VFS makes the dentry "negative": no inode, 418 * but still hashed. This is incompatible with case-insensitive 419 * mode, so invalidate (unhash) the dentry in CI-mode. 420 */ 421 if (xfs_has_asciici(XFS_M(dir->i_sb))) 422 d_invalidate(dentry); 423 return 0; 424 } 425 426 STATIC int 427 xfs_vn_symlink( 428 struct mnt_idmap *idmap, 429 struct inode *dir, 430 struct dentry *dentry, 431 const char *symname) 432 { 433 struct inode *inode; 434 struct xfs_inode *cip = NULL; 435 struct xfs_name name; 436 int error; 437 umode_t mode; 438 439 mode = S_IFLNK | 440 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO); 441 error = xfs_dentry_mode_to_name(&name, dentry, mode); 442 if (unlikely(error)) 443 goto out; 444 445 error = xfs_symlink(idmap, XFS_I(dir), &name, symname, mode, &cip); 446 if (unlikely(error)) 447 goto out; 448 449 inode = VFS_I(cip); 450 451 error = xfs_inode_init_security(inode, dir, &dentry->d_name); 452 if (unlikely(error)) 453 goto out_cleanup_inode; 454 455 xfs_setup_iops(cip); 456 457 d_instantiate(dentry, inode); 458 xfs_finish_inode_setup(cip); 459 return 0; 460 461 out_cleanup_inode: 462 xfs_finish_inode_setup(cip); 463 xfs_cleanup_inode(dir, inode, dentry); 464 xfs_irele(cip); 465 out: 466 return error; 467 } 468 469 STATIC int 470 xfs_vn_rename( 471 struct mnt_idmap *idmap, 472 struct inode *odir, 473 struct dentry *odentry, 474 struct inode *ndir, 475 struct dentry *ndentry, 476 unsigned int flags) 477 { 478 struct inode *new_inode = d_inode(ndentry); 479 int omode = 0; 480 int error; 481 struct xfs_name oname; 482 struct xfs_name nname; 483 484 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 485 return -EINVAL; 486 487 /* if we are exchanging files, we need to set i_mode of both files */ 488 if (flags & RENAME_EXCHANGE) 489 omode = d_inode(ndentry)->i_mode; 490 491 error = xfs_dentry_mode_to_name(&oname, odentry, omode); 492 if (omode && unlikely(error)) 493 return error; 494 495 error = xfs_dentry_mode_to_name(&nname, ndentry, 496 d_inode(odentry)->i_mode); 497 if (unlikely(error)) 498 return error; 499 500 return xfs_rename(idmap, XFS_I(odir), &oname, 501 XFS_I(d_inode(odentry)), XFS_I(ndir), &nname, 502 new_inode ? XFS_I(new_inode) : NULL, flags); 503 } 504 505 /* 506 * careful here - this function can get called recursively, so 507 * we need to be very careful about how much stack we use. 508 * uio is kmalloced for this reason... 509 */ 510 STATIC const char * 511 xfs_vn_get_link( 512 struct dentry *dentry, 513 struct inode *inode, 514 struct delayed_call *done) 515 { 516 char *link; 517 int error = -ENOMEM; 518 519 if (!dentry) 520 return ERR_PTR(-ECHILD); 521 522 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL); 523 if (!link) 524 goto out_err; 525 526 error = xfs_readlink(XFS_I(d_inode(dentry)), link); 527 if (unlikely(error)) 528 goto out_kfree; 529 530 set_delayed_call(done, kfree_link, link); 531 return link; 532 533 out_kfree: 534 kfree(link); 535 out_err: 536 return ERR_PTR(error); 537 } 538 539 static uint32_t 540 xfs_stat_blksize( 541 struct xfs_inode *ip) 542 { 543 struct xfs_mount *mp = ip->i_mount; 544 545 /* 546 * If the file blocks are being allocated from a realtime volume, then 547 * always return the realtime extent size. 548 */ 549 if (XFS_IS_REALTIME_INODE(ip)) 550 return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip) ? : 1); 551 552 /* 553 * Allow large block sizes to be reported to userspace programs if the 554 * "largeio" mount option is used. 555 * 556 * If compatibility mode is specified, simply return the basic unit of 557 * caching so that we don't get inefficient read/modify/write I/O from 558 * user apps. Otherwise.... 559 * 560 * If the underlying volume is a stripe, then return the stripe width in 561 * bytes as the recommended I/O size. It is not a stripe and we've set a 562 * default buffered I/O size, return that, otherwise return the compat 563 * default. 564 */ 565 if (xfs_has_large_iosize(mp)) { 566 if (mp->m_swidth) 567 return XFS_FSB_TO_B(mp, mp->m_swidth); 568 if (xfs_has_allocsize(mp)) 569 return 1U << mp->m_allocsize_log; 570 } 571 572 return max_t(uint32_t, PAGE_SIZE, mp->m_sb.sb_blocksize); 573 } 574 575 static void 576 xfs_report_dioalign( 577 struct xfs_inode *ip, 578 struct kstat *stat) 579 { 580 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 581 struct block_device *bdev = target->bt_bdev; 582 583 stat->result_mask |= STATX_DIOALIGN | STATX_DIO_READ_ALIGN; 584 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 585 586 /* 587 * For COW inodes, we can only perform out of place writes of entire 588 * allocation units (blocks or RT extents). 589 * For writes smaller than the allocation unit, we must fall back to 590 * buffered I/O to perform read-modify-write cycles. At best this is 591 * highly inefficient; at worst it leads to page cache invalidation 592 * races. Tell applications to avoid this by reporting the larger write 593 * alignment in dio_offset_align, and the smaller read alignment in 594 * dio_read_offset_align. 595 */ 596 stat->dio_read_offset_align = bdev_logical_block_size(bdev); 597 if (xfs_is_cow_inode(ip)) 598 stat->dio_offset_align = xfs_inode_alloc_unitsize(ip); 599 else 600 stat->dio_offset_align = stat->dio_read_offset_align; 601 } 602 603 static void 604 xfs_report_atomic_write( 605 struct xfs_inode *ip, 606 struct kstat *stat) 607 { 608 unsigned int unit_min = 0, unit_max = 0; 609 610 if (xfs_inode_can_atomicwrite(ip)) 611 unit_min = unit_max = ip->i_mount->m_sb.sb_blocksize; 612 generic_fill_statx_atomic_writes(stat, unit_min, unit_max); 613 } 614 615 STATIC int 616 xfs_vn_getattr( 617 struct mnt_idmap *idmap, 618 const struct path *path, 619 struct kstat *stat, 620 u32 request_mask, 621 unsigned int query_flags) 622 { 623 struct inode *inode = d_inode(path->dentry); 624 struct xfs_inode *ip = XFS_I(inode); 625 struct xfs_mount *mp = ip->i_mount; 626 vfsuid_t vfsuid = i_uid_into_vfsuid(idmap, inode); 627 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 628 629 trace_xfs_getattr(ip); 630 631 if (xfs_is_shutdown(mp)) 632 return -EIO; 633 634 stat->size = XFS_ISIZE(ip); 635 stat->dev = inode->i_sb->s_dev; 636 stat->mode = inode->i_mode; 637 stat->nlink = inode->i_nlink; 638 stat->uid = vfsuid_into_kuid(vfsuid); 639 stat->gid = vfsgid_into_kgid(vfsgid); 640 stat->ino = ip->i_ino; 641 stat->atime = inode_get_atime(inode); 642 643 fill_mg_cmtime(stat, request_mask, inode); 644 645 stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks); 646 647 if (xfs_has_v3inodes(mp)) { 648 if (request_mask & STATX_BTIME) { 649 stat->result_mask |= STATX_BTIME; 650 stat->btime = ip->i_crtime; 651 } 652 } 653 654 /* 655 * Note: If you add another clause to set an attribute flag, please 656 * update attributes_mask below. 657 */ 658 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 659 stat->attributes |= STATX_ATTR_IMMUTABLE; 660 if (ip->i_diflags & XFS_DIFLAG_APPEND) 661 stat->attributes |= STATX_ATTR_APPEND; 662 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 663 stat->attributes |= STATX_ATTR_NODUMP; 664 665 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE | 666 STATX_ATTR_APPEND | 667 STATX_ATTR_NODUMP); 668 669 switch (inode->i_mode & S_IFMT) { 670 case S_IFBLK: 671 case S_IFCHR: 672 stat->blksize = BLKDEV_IOSIZE; 673 stat->rdev = inode->i_rdev; 674 break; 675 case S_IFREG: 676 if (request_mask & (STATX_DIOALIGN | STATX_DIO_READ_ALIGN)) 677 xfs_report_dioalign(ip, stat); 678 if (request_mask & STATX_WRITE_ATOMIC) 679 xfs_report_atomic_write(ip, stat); 680 fallthrough; 681 default: 682 stat->blksize = xfs_stat_blksize(ip); 683 stat->rdev = 0; 684 break; 685 } 686 687 return 0; 688 } 689 690 static int 691 xfs_vn_change_ok( 692 struct mnt_idmap *idmap, 693 struct dentry *dentry, 694 struct iattr *iattr) 695 { 696 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount; 697 698 if (xfs_is_readonly(mp)) 699 return -EROFS; 700 701 if (xfs_is_shutdown(mp)) 702 return -EIO; 703 704 return setattr_prepare(idmap, dentry, iattr); 705 } 706 707 /* 708 * Set non-size attributes of an inode. 709 * 710 * Caution: The caller of this function is responsible for calling 711 * setattr_prepare() or otherwise verifying the change is fine. 712 */ 713 static int 714 xfs_setattr_nonsize( 715 struct mnt_idmap *idmap, 716 struct dentry *dentry, 717 struct xfs_inode *ip, 718 struct iattr *iattr) 719 { 720 xfs_mount_t *mp = ip->i_mount; 721 struct inode *inode = VFS_I(ip); 722 int mask = iattr->ia_valid; 723 xfs_trans_t *tp; 724 int error; 725 kuid_t uid = GLOBAL_ROOT_UID; 726 kgid_t gid = GLOBAL_ROOT_GID; 727 struct xfs_dquot *udqp = NULL, *gdqp = NULL; 728 struct xfs_dquot *old_udqp = NULL, *old_gdqp = NULL; 729 730 ASSERT((mask & ATTR_SIZE) == 0); 731 732 /* 733 * If disk quotas is on, we make sure that the dquots do exist on disk, 734 * before we start any other transactions. Trying to do this later 735 * is messy. We don't care to take a readlock to look at the ids 736 * in inode here, because we can't hold it across the trans_reserve. 737 * If the IDs do change before we take the ilock, we're covered 738 * because the i_*dquot fields will get updated anyway. 739 */ 740 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) { 741 uint qflags = 0; 742 743 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) { 744 uid = from_vfsuid(idmap, i_user_ns(inode), 745 iattr->ia_vfsuid); 746 qflags |= XFS_QMOPT_UQUOTA; 747 } else { 748 uid = inode->i_uid; 749 } 750 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) { 751 gid = from_vfsgid(idmap, i_user_ns(inode), 752 iattr->ia_vfsgid); 753 qflags |= XFS_QMOPT_GQUOTA; 754 } else { 755 gid = inode->i_gid; 756 } 757 758 /* 759 * We take a reference when we initialize udqp and gdqp, 760 * so it is important that we never blindly double trip on 761 * the same variable. See xfs_create() for an example. 762 */ 763 ASSERT(udqp == NULL); 764 ASSERT(gdqp == NULL); 765 error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid, 766 qflags, &udqp, &gdqp, NULL); 767 if (error) 768 return error; 769 } 770 771 error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL, 772 has_capability_noaudit(current, CAP_FOWNER), &tp); 773 if (error) 774 goto out_dqrele; 775 776 /* 777 * Register quota modifications in the transaction. Must be the owner 778 * or privileged. These IDs could have changed since we last looked at 779 * them. But, we're assured that if the ownership did change while we 780 * didn't have the inode locked, inode's dquot(s) would have changed 781 * also. 782 */ 783 if (XFS_IS_UQUOTA_ON(mp) && 784 i_uid_needs_update(idmap, iattr, inode)) { 785 ASSERT(udqp); 786 old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp); 787 } 788 if (XFS_IS_GQUOTA_ON(mp) && 789 i_gid_needs_update(idmap, iattr, inode)) { 790 ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp)); 791 ASSERT(gdqp); 792 old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp); 793 } 794 795 setattr_copy(idmap, inode, iattr); 796 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 797 798 XFS_STATS_INC(mp, xs_ig_attrchg); 799 800 if (xfs_has_wsync(mp)) 801 xfs_trans_set_sync(tp); 802 error = xfs_trans_commit(tp); 803 804 /* 805 * Release any dquot(s) the inode had kept before chown. 806 */ 807 xfs_qm_dqrele(old_udqp); 808 xfs_qm_dqrele(old_gdqp); 809 xfs_qm_dqrele(udqp); 810 xfs_qm_dqrele(gdqp); 811 812 if (error) 813 return error; 814 815 /* 816 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode 817 * update. We could avoid this with linked transactions 818 * and passing down the transaction pointer all the way 819 * to attr_set. No previous user of the generic 820 * Posix ACL code seems to care about this issue either. 821 */ 822 if (mask & ATTR_MODE) { 823 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 824 if (error) 825 return error; 826 } 827 828 return 0; 829 830 out_dqrele: 831 xfs_qm_dqrele(udqp); 832 xfs_qm_dqrele(gdqp); 833 return error; 834 } 835 836 /* 837 * Truncate file. Must have write permission and not be a directory. 838 * 839 * Caution: The caller of this function is responsible for calling 840 * setattr_prepare() or otherwise verifying the change is fine. 841 */ 842 STATIC int 843 xfs_setattr_size( 844 struct mnt_idmap *idmap, 845 struct dentry *dentry, 846 struct xfs_inode *ip, 847 struct iattr *iattr) 848 { 849 struct xfs_mount *mp = ip->i_mount; 850 struct inode *inode = VFS_I(ip); 851 xfs_off_t oldsize, newsize; 852 struct xfs_trans *tp; 853 int error; 854 uint lock_flags = 0; 855 uint resblks = 0; 856 bool did_zeroing = false; 857 858 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); 859 ASSERT(S_ISREG(inode->i_mode)); 860 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET| 861 ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0); 862 863 oldsize = inode->i_size; 864 newsize = iattr->ia_size; 865 866 /* 867 * Short circuit the truncate case for zero length files. 868 */ 869 if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) { 870 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME))) 871 return 0; 872 873 /* 874 * Use the regular setattr path to update the timestamps. 875 */ 876 iattr->ia_valid &= ~ATTR_SIZE; 877 return xfs_setattr_nonsize(idmap, dentry, ip, iattr); 878 } 879 880 /* 881 * Make sure that the dquots are attached to the inode. 882 */ 883 error = xfs_qm_dqattach(ip); 884 if (error) 885 return error; 886 887 /* 888 * Wait for all direct I/O to complete. 889 */ 890 inode_dio_wait(inode); 891 892 /* 893 * File data changes must be complete before we start the transaction to 894 * modify the inode. This needs to be done before joining the inode to 895 * the transaction because the inode cannot be unlocked once it is a 896 * part of the transaction. 897 * 898 * Start with zeroing any data beyond EOF that we may expose on file 899 * extension, or zeroing out the rest of the block on a downward 900 * truncate. 901 */ 902 if (newsize > oldsize) { 903 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize); 904 error = xfs_zero_range(ip, oldsize, newsize - oldsize, 905 &did_zeroing); 906 } else { 907 error = xfs_truncate_page(ip, newsize, &did_zeroing); 908 } 909 910 if (error) 911 return error; 912 913 /* 914 * We've already locked out new page faults, so now we can safely remove 915 * pages from the page cache knowing they won't get refaulted until we 916 * drop the XFS_MMAP_EXCL lock after the extent manipulations are 917 * complete. The truncate_setsize() call also cleans partial EOF page 918 * PTEs on extending truncates and hence ensures sub-page block size 919 * filesystems are correctly handled, too. 920 * 921 * We have to do all the page cache truncate work outside the 922 * transaction context as the "lock" order is page lock->log space 923 * reservation as defined by extent allocation in the writeback path. 924 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but 925 * having already truncated the in-memory version of the file (i.e. made 926 * user visible changes). There's not much we can do about this, except 927 * to hope that the caller sees ENOMEM and retries the truncate 928 * operation. 929 * 930 * And we update in-core i_size and truncate page cache beyond newsize 931 * before writeback the [i_disk_size, newsize] range, so we're 932 * guaranteed not to write stale data past the new EOF on truncate down. 933 */ 934 truncate_setsize(inode, newsize); 935 936 /* 937 * We are going to log the inode size change in this transaction so 938 * any previous writes that are beyond the on disk EOF and the new 939 * EOF that have not been written out need to be written here. If we 940 * do not write the data out, we expose ourselves to the null files 941 * problem. Note that this includes any block zeroing we did above; 942 * otherwise those blocks may not be zeroed after a crash. 943 */ 944 if (did_zeroing || 945 (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) { 946 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 947 ip->i_disk_size, newsize - 1); 948 if (error) 949 return error; 950 } 951 952 /* 953 * For realtime inode with more than one block rtextsize, we need the 954 * block reservation for bmap btree block allocations/splits that can 955 * happen since it could split the tail written extent and convert the 956 * right beyond EOF one to unwritten. 957 */ 958 if (xfs_inode_has_bigrtalloc(ip)) 959 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 960 961 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 962 0, 0, &tp); 963 if (error) 964 return error; 965 966 lock_flags |= XFS_ILOCK_EXCL; 967 xfs_ilock(ip, XFS_ILOCK_EXCL); 968 xfs_trans_ijoin(tp, ip, 0); 969 970 /* 971 * Only change the c/mtime if we are changing the size or we are 972 * explicitly asked to change it. This handles the semantic difference 973 * between truncate() and ftruncate() as implemented in the VFS. 974 * 975 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 976 * special case where we need to update the times despite not having 977 * these flags set. For all other operations the VFS set these flags 978 * explicitly if it wants a timestamp update. 979 */ 980 if (newsize != oldsize && 981 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) { 982 iattr->ia_ctime = iattr->ia_mtime = 983 current_time(inode); 984 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME; 985 } 986 987 /* 988 * The first thing we do is set the size to new_size permanently on 989 * disk. This way we don't have to worry about anyone ever being able 990 * to look at the data being freed even in the face of a crash. 991 * What we're getting around here is the case where we free a block, it 992 * is allocated to another file, it is written to, and then we crash. 993 * If the new data gets written to the file but the log buffers 994 * containing the free and reallocation don't, then we'd end up with 995 * garbage in the blocks being freed. As long as we make the new size 996 * permanent before actually freeing any blocks it doesn't matter if 997 * they get written to. 998 */ 999 ip->i_disk_size = newsize; 1000 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1001 1002 if (newsize <= oldsize) { 1003 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize); 1004 if (error) 1005 goto out_trans_cancel; 1006 1007 /* 1008 * Truncated "down", so we're removing references to old data 1009 * here - if we delay flushing for a long time, we expose 1010 * ourselves unduly to the notorious NULL files problem. So, 1011 * we mark this inode and flush it when the file is closed, 1012 * and do not wait the usual (long) time for writeout. 1013 */ 1014 xfs_iflags_set(ip, XFS_ITRUNCATED); 1015 1016 /* A truncate down always removes post-EOF blocks. */ 1017 xfs_inode_clear_eofblocks_tag(ip); 1018 } 1019 1020 ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID))); 1021 setattr_copy(idmap, inode, iattr); 1022 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1023 1024 XFS_STATS_INC(mp, xs_ig_attrchg); 1025 1026 if (xfs_has_wsync(mp)) 1027 xfs_trans_set_sync(tp); 1028 1029 error = xfs_trans_commit(tp); 1030 out_unlock: 1031 if (lock_flags) 1032 xfs_iunlock(ip, lock_flags); 1033 return error; 1034 1035 out_trans_cancel: 1036 xfs_trans_cancel(tp); 1037 goto out_unlock; 1038 } 1039 1040 int 1041 xfs_vn_setattr_size( 1042 struct mnt_idmap *idmap, 1043 struct dentry *dentry, 1044 struct iattr *iattr) 1045 { 1046 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 1047 int error; 1048 1049 trace_xfs_setattr(ip); 1050 1051 error = xfs_vn_change_ok(idmap, dentry, iattr); 1052 if (error) 1053 return error; 1054 return xfs_setattr_size(idmap, dentry, ip, iattr); 1055 } 1056 1057 STATIC int 1058 xfs_vn_setattr( 1059 struct mnt_idmap *idmap, 1060 struct dentry *dentry, 1061 struct iattr *iattr) 1062 { 1063 struct inode *inode = d_inode(dentry); 1064 struct xfs_inode *ip = XFS_I(inode); 1065 int error; 1066 1067 if (iattr->ia_valid & ATTR_SIZE) { 1068 uint iolock; 1069 1070 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1071 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 1072 1073 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 1074 if (error) { 1075 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1076 return error; 1077 } 1078 1079 error = xfs_vn_setattr_size(idmap, dentry, iattr); 1080 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1081 } else { 1082 trace_xfs_setattr(ip); 1083 1084 error = xfs_vn_change_ok(idmap, dentry, iattr); 1085 if (!error) 1086 error = xfs_setattr_nonsize(idmap, dentry, ip, iattr); 1087 } 1088 1089 return error; 1090 } 1091 1092 STATIC int 1093 xfs_vn_update_time( 1094 struct inode *inode, 1095 int flags) 1096 { 1097 struct xfs_inode *ip = XFS_I(inode); 1098 struct xfs_mount *mp = ip->i_mount; 1099 int log_flags = XFS_ILOG_TIMESTAMP; 1100 struct xfs_trans *tp; 1101 int error; 1102 struct timespec64 now; 1103 1104 trace_xfs_update_time(ip); 1105 1106 if (inode->i_sb->s_flags & SB_LAZYTIME) { 1107 if (!((flags & S_VERSION) && 1108 inode_maybe_inc_iversion(inode, false))) { 1109 generic_update_time(inode, flags); 1110 return 0; 1111 } 1112 1113 /* Capture the iversion update that just occurred */ 1114 log_flags |= XFS_ILOG_CORE; 1115 } 1116 1117 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 1118 if (error) 1119 return error; 1120 1121 xfs_ilock(ip, XFS_ILOCK_EXCL); 1122 if (flags & (S_CTIME|S_MTIME)) 1123 now = inode_set_ctime_current(inode); 1124 else 1125 now = current_time(inode); 1126 1127 if (flags & S_MTIME) 1128 inode_set_mtime_to_ts(inode, now); 1129 if (flags & S_ATIME) 1130 inode_set_atime_to_ts(inode, now); 1131 1132 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1133 xfs_trans_log_inode(tp, ip, log_flags); 1134 return xfs_trans_commit(tp); 1135 } 1136 1137 STATIC int 1138 xfs_vn_fiemap( 1139 struct inode *inode, 1140 struct fiemap_extent_info *fieinfo, 1141 u64 start, 1142 u64 length) 1143 { 1144 int error; 1145 1146 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED); 1147 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1148 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR; 1149 error = iomap_fiemap(inode, fieinfo, start, length, 1150 &xfs_xattr_iomap_ops); 1151 } else { 1152 error = iomap_fiemap(inode, fieinfo, start, length, 1153 &xfs_read_iomap_ops); 1154 } 1155 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED); 1156 1157 return error; 1158 } 1159 1160 STATIC int 1161 xfs_vn_tmpfile( 1162 struct mnt_idmap *idmap, 1163 struct inode *dir, 1164 struct file *file, 1165 umode_t mode) 1166 { 1167 int err = xfs_generic_create(idmap, dir, file->f_path.dentry, mode, 0, file); 1168 1169 return finish_open_simple(file, err); 1170 } 1171 1172 static const struct inode_operations xfs_inode_operations = { 1173 .get_inode_acl = xfs_get_acl, 1174 .set_acl = xfs_set_acl, 1175 .getattr = xfs_vn_getattr, 1176 .setattr = xfs_vn_setattr, 1177 .listxattr = xfs_vn_listxattr, 1178 .fiemap = xfs_vn_fiemap, 1179 .update_time = xfs_vn_update_time, 1180 .fileattr_get = xfs_fileattr_get, 1181 .fileattr_set = xfs_fileattr_set, 1182 }; 1183 1184 static const struct inode_operations xfs_dir_inode_operations = { 1185 .create = xfs_vn_create, 1186 .lookup = xfs_vn_lookup, 1187 .link = xfs_vn_link, 1188 .unlink = xfs_vn_unlink, 1189 .symlink = xfs_vn_symlink, 1190 .mkdir = xfs_vn_mkdir, 1191 /* 1192 * Yes, XFS uses the same method for rmdir and unlink. 1193 * 1194 * There are some subtile differences deeper in the code, 1195 * but we use S_ISDIR to check for those. 1196 */ 1197 .rmdir = xfs_vn_unlink, 1198 .mknod = xfs_vn_mknod, 1199 .rename = xfs_vn_rename, 1200 .get_inode_acl = xfs_get_acl, 1201 .set_acl = xfs_set_acl, 1202 .getattr = xfs_vn_getattr, 1203 .setattr = xfs_vn_setattr, 1204 .listxattr = xfs_vn_listxattr, 1205 .update_time = xfs_vn_update_time, 1206 .tmpfile = xfs_vn_tmpfile, 1207 .fileattr_get = xfs_fileattr_get, 1208 .fileattr_set = xfs_fileattr_set, 1209 }; 1210 1211 static const struct inode_operations xfs_dir_ci_inode_operations = { 1212 .create = xfs_vn_create, 1213 .lookup = xfs_vn_ci_lookup, 1214 .link = xfs_vn_link, 1215 .unlink = xfs_vn_unlink, 1216 .symlink = xfs_vn_symlink, 1217 .mkdir = xfs_vn_mkdir, 1218 /* 1219 * Yes, XFS uses the same method for rmdir and unlink. 1220 * 1221 * There are some subtile differences deeper in the code, 1222 * but we use S_ISDIR to check for those. 1223 */ 1224 .rmdir = xfs_vn_unlink, 1225 .mknod = xfs_vn_mknod, 1226 .rename = xfs_vn_rename, 1227 .get_inode_acl = xfs_get_acl, 1228 .set_acl = xfs_set_acl, 1229 .getattr = xfs_vn_getattr, 1230 .setattr = xfs_vn_setattr, 1231 .listxattr = xfs_vn_listxattr, 1232 .update_time = xfs_vn_update_time, 1233 .tmpfile = xfs_vn_tmpfile, 1234 .fileattr_get = xfs_fileattr_get, 1235 .fileattr_set = xfs_fileattr_set, 1236 }; 1237 1238 static const struct inode_operations xfs_symlink_inode_operations = { 1239 .get_link = xfs_vn_get_link, 1240 .getattr = xfs_vn_getattr, 1241 .setattr = xfs_vn_setattr, 1242 .listxattr = xfs_vn_listxattr, 1243 .update_time = xfs_vn_update_time, 1244 }; 1245 1246 /* Figure out if this file actually supports DAX. */ 1247 static bool 1248 xfs_inode_supports_dax( 1249 struct xfs_inode *ip) 1250 { 1251 struct xfs_mount *mp = ip->i_mount; 1252 1253 /* Only supported on regular files. */ 1254 if (!S_ISREG(VFS_I(ip)->i_mode)) 1255 return false; 1256 1257 /* Block size must match page size */ 1258 if (mp->m_sb.sb_blocksize != PAGE_SIZE) 1259 return false; 1260 1261 /* Device has to support DAX too. */ 1262 return xfs_inode_buftarg(ip)->bt_daxdev != NULL; 1263 } 1264 1265 static bool 1266 xfs_inode_should_enable_dax( 1267 struct xfs_inode *ip) 1268 { 1269 if (!IS_ENABLED(CONFIG_FS_DAX)) 1270 return false; 1271 if (xfs_has_dax_never(ip->i_mount)) 1272 return false; 1273 if (!xfs_inode_supports_dax(ip)) 1274 return false; 1275 if (xfs_has_dax_always(ip->i_mount)) 1276 return true; 1277 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 1278 return true; 1279 return false; 1280 } 1281 1282 void 1283 xfs_diflags_to_iflags( 1284 struct xfs_inode *ip, 1285 bool init) 1286 { 1287 struct inode *inode = VFS_I(ip); 1288 unsigned int xflags = xfs_ip2xflags(ip); 1289 unsigned int flags = 0; 1290 1291 ASSERT(!(IS_DAX(inode) && init)); 1292 1293 if (xflags & FS_XFLAG_IMMUTABLE) 1294 flags |= S_IMMUTABLE; 1295 if (xflags & FS_XFLAG_APPEND) 1296 flags |= S_APPEND; 1297 if (xflags & FS_XFLAG_SYNC) 1298 flags |= S_SYNC; 1299 if (xflags & FS_XFLAG_NOATIME) 1300 flags |= S_NOATIME; 1301 if (init && xfs_inode_should_enable_dax(ip)) 1302 flags |= S_DAX; 1303 1304 /* 1305 * S_DAX can only be set during inode initialization and is never set by 1306 * the VFS, so we cannot mask off S_DAX in i_flags. 1307 */ 1308 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME); 1309 inode->i_flags |= flags; 1310 } 1311 1312 /* 1313 * Initialize the Linux inode. 1314 * 1315 * When reading existing inodes from disk this is called directly from xfs_iget, 1316 * when creating a new inode it is called from xfs_init_new_inode after setting 1317 * up the inode. These callers have different criteria for clearing XFS_INEW, so 1318 * leave it up to the caller to deal with unlocking the inode appropriately. 1319 */ 1320 void 1321 xfs_setup_inode( 1322 struct xfs_inode *ip) 1323 { 1324 struct inode *inode = &ip->i_vnode; 1325 gfp_t gfp_mask; 1326 bool is_meta = xfs_is_internal_inode(ip); 1327 1328 inode->i_ino = ip->i_ino; 1329 inode->i_state |= I_NEW; 1330 1331 inode_sb_list_add(inode); 1332 /* make the inode look hashed for the writeback code */ 1333 inode_fake_hash(inode); 1334 1335 i_size_write(inode, ip->i_disk_size); 1336 xfs_diflags_to_iflags(ip, true); 1337 1338 /* 1339 * Mark our metadata files as private so that LSMs and the ACL code 1340 * don't try to add their own metadata or reason about these files, 1341 * and users cannot ever obtain file handles to them. 1342 */ 1343 if (is_meta) { 1344 inode->i_flags |= S_PRIVATE; 1345 inode->i_opflags &= ~IOP_XATTR; 1346 } 1347 1348 if (S_ISDIR(inode->i_mode)) { 1349 /* 1350 * We set the i_rwsem class here to avoid potential races with 1351 * lockdep_annotate_inode_mutex_key() reinitialising the lock 1352 * after a filehandle lookup has already found the inode in 1353 * cache before it has been unlocked via unlock_new_inode(). 1354 */ 1355 lockdep_set_class(&inode->i_rwsem, 1356 &inode->i_sb->s_type->i_mutex_dir_key); 1357 lockdep_set_class(&ip->i_lock, &xfs_dir_ilock_class); 1358 } else { 1359 lockdep_set_class(&ip->i_lock, &xfs_nondir_ilock_class); 1360 } 1361 1362 /* 1363 * Ensure all page cache allocations are done from GFP_NOFS context to 1364 * prevent direct reclaim recursion back into the filesystem and blowing 1365 * stacks or deadlocking. 1366 */ 1367 gfp_mask = mapping_gfp_mask(inode->i_mapping); 1368 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS))); 1369 1370 /* 1371 * For real-time inodes update the stable write flags to that of the RT 1372 * device instead of the data device. 1373 */ 1374 if (S_ISREG(inode->i_mode) && XFS_IS_REALTIME_INODE(ip)) 1375 xfs_update_stable_writes(ip); 1376 1377 /* 1378 * If there is no attribute fork no ACL can exist on this inode, 1379 * and it can't have any file capabilities attached to it either. 1380 */ 1381 if (!xfs_inode_has_attr_fork(ip)) { 1382 inode_has_no_xattr(inode); 1383 cache_no_acl(inode); 1384 } 1385 } 1386 1387 void 1388 xfs_setup_iops( 1389 struct xfs_inode *ip) 1390 { 1391 struct inode *inode = &ip->i_vnode; 1392 1393 switch (inode->i_mode & S_IFMT) { 1394 case S_IFREG: 1395 inode->i_op = &xfs_inode_operations; 1396 inode->i_fop = &xfs_file_operations; 1397 if (IS_DAX(inode)) 1398 inode->i_mapping->a_ops = &xfs_dax_aops; 1399 else 1400 inode->i_mapping->a_ops = &xfs_address_space_operations; 1401 break; 1402 case S_IFDIR: 1403 if (xfs_has_asciici(XFS_M(inode->i_sb))) 1404 inode->i_op = &xfs_dir_ci_inode_operations; 1405 else 1406 inode->i_op = &xfs_dir_inode_operations; 1407 inode->i_fop = &xfs_dir_file_operations; 1408 break; 1409 case S_IFLNK: 1410 inode->i_op = &xfs_symlink_inode_operations; 1411 break; 1412 default: 1413 inode->i_op = &xfs_inode_operations; 1414 init_special_inode(inode, inode->i_mode, inode->i_rdev); 1415 break; 1416 } 1417 } 1418