1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_acl.h" 15 #include "xfs_quota.h" 16 #include "xfs_da_format.h" 17 #include "xfs_da_btree.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans.h" 20 #include "xfs_trace.h" 21 #include "xfs_icache.h" 22 #include "xfs_symlink.h" 23 #include "xfs_dir2.h" 24 #include "xfs_iomap.h" 25 #include "xfs_error.h" 26 #include "xfs_ioctl.h" 27 #include "xfs_xattr.h" 28 #include "xfs_file.h" 29 30 #include <linux/posix_acl.h> 31 #include <linux/security.h> 32 #include <linux/iversion.h> 33 #include <linux/fiemap.h> 34 35 /* 36 * Directories have different lock order w.r.t. mmap_lock compared to regular 37 * files. This is due to readdir potentially triggering page faults on a user 38 * buffer inside filldir(), and this happens with the ilock on the directory 39 * held. For regular files, the lock order is the other way around - the 40 * mmap_lock is taken during the page fault, and then we lock the ilock to do 41 * block mapping. Hence we need a different class for the directory ilock so 42 * that lockdep can tell them apart. 43 */ 44 static struct lock_class_key xfs_nondir_ilock_class; 45 static struct lock_class_key xfs_dir_ilock_class; 46 47 static int 48 xfs_initxattrs( 49 struct inode *inode, 50 const struct xattr *xattr_array, 51 void *fs_info) 52 { 53 const struct xattr *xattr; 54 struct xfs_inode *ip = XFS_I(inode); 55 int error = 0; 56 57 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 58 struct xfs_da_args args = { 59 .dp = ip, 60 .attr_filter = XFS_ATTR_SECURE, 61 .name = xattr->name, 62 .namelen = strlen(xattr->name), 63 .value = xattr->value, 64 .valuelen = xattr->value_len, 65 }; 66 error = xfs_attr_change(&args); 67 if (error < 0) 68 break; 69 } 70 return error; 71 } 72 73 /* 74 * Hook in SELinux. This is not quite correct yet, what we really need 75 * here (as we do for default ACLs) is a mechanism by which creation of 76 * these attrs can be journalled at inode creation time (along with the 77 * inode, of course, such that log replay can't cause these to be lost). 78 */ 79 int 80 xfs_inode_init_security( 81 struct inode *inode, 82 struct inode *dir, 83 const struct qstr *qstr) 84 { 85 return security_inode_init_security(inode, dir, qstr, 86 &xfs_initxattrs, NULL); 87 } 88 89 static void 90 xfs_dentry_to_name( 91 struct xfs_name *namep, 92 struct dentry *dentry) 93 { 94 namep->name = dentry->d_name.name; 95 namep->len = dentry->d_name.len; 96 namep->type = XFS_DIR3_FT_UNKNOWN; 97 } 98 99 static int 100 xfs_dentry_mode_to_name( 101 struct xfs_name *namep, 102 struct dentry *dentry, 103 int mode) 104 { 105 namep->name = dentry->d_name.name; 106 namep->len = dentry->d_name.len; 107 namep->type = xfs_mode_to_ftype(mode); 108 109 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN)) 110 return -EFSCORRUPTED; 111 112 return 0; 113 } 114 115 STATIC void 116 xfs_cleanup_inode( 117 struct inode *dir, 118 struct inode *inode, 119 struct dentry *dentry) 120 { 121 struct xfs_name teardown; 122 123 /* Oh, the horror. 124 * If we can't add the ACL or we fail in 125 * xfs_inode_init_security we must back out. 126 * ENOSPC can hit here, among other things. 127 */ 128 xfs_dentry_to_name(&teardown, dentry); 129 130 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode)); 131 } 132 133 /* 134 * Check to see if we are likely to need an extended attribute to be added to 135 * the inode we are about to allocate. This allows the attribute fork to be 136 * created during the inode allocation, reducing the number of transactions we 137 * need to do in this fast path. 138 * 139 * The security checks are optimistic, but not guaranteed. The two LSMs that 140 * require xattrs to be added here (selinux and smack) are also the only two 141 * LSMs that add a sb->s_security structure to the superblock. Hence if security 142 * is enabled and sb->s_security is set, we have a pretty good idea that we are 143 * going to be asked to add a security xattr immediately after allocating the 144 * xfs inode and instantiating the VFS inode. 145 */ 146 static inline bool 147 xfs_create_need_xattr( 148 struct inode *dir, 149 struct posix_acl *default_acl, 150 struct posix_acl *acl) 151 { 152 if (acl) 153 return true; 154 if (default_acl) 155 return true; 156 #if IS_ENABLED(CONFIG_SECURITY) 157 if (dir->i_sb->s_security) 158 return true; 159 #endif 160 return false; 161 } 162 163 164 STATIC int 165 xfs_generic_create( 166 struct mnt_idmap *idmap, 167 struct inode *dir, 168 struct dentry *dentry, 169 umode_t mode, 170 dev_t rdev, 171 struct file *tmpfile) /* unnamed file */ 172 { 173 struct inode *inode; 174 struct xfs_inode *ip = NULL; 175 struct posix_acl *default_acl, *acl; 176 struct xfs_name name; 177 int error; 178 179 /* 180 * Irix uses Missed'em'V split, but doesn't want to see 181 * the upper 5 bits of (14bit) major. 182 */ 183 if (S_ISCHR(mode) || S_ISBLK(mode)) { 184 if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff)) 185 return -EINVAL; 186 } else { 187 rdev = 0; 188 } 189 190 error = posix_acl_create(dir, &mode, &default_acl, &acl); 191 if (error) 192 return error; 193 194 /* Verify mode is valid also for tmpfile case */ 195 error = xfs_dentry_mode_to_name(&name, dentry, mode); 196 if (unlikely(error)) 197 goto out_free_acl; 198 199 if (!tmpfile) { 200 error = xfs_create(idmap, XFS_I(dir), &name, mode, rdev, 201 xfs_create_need_xattr(dir, default_acl, acl), 202 &ip); 203 } else { 204 error = xfs_create_tmpfile(idmap, XFS_I(dir), mode, &ip); 205 } 206 if (unlikely(error)) 207 goto out_free_acl; 208 209 inode = VFS_I(ip); 210 211 error = xfs_inode_init_security(inode, dir, &dentry->d_name); 212 if (unlikely(error)) 213 goto out_cleanup_inode; 214 215 if (default_acl) { 216 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT); 217 if (error) 218 goto out_cleanup_inode; 219 } 220 if (acl) { 221 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS); 222 if (error) 223 goto out_cleanup_inode; 224 } 225 226 xfs_setup_iops(ip); 227 228 if (tmpfile) { 229 /* 230 * The VFS requires that any inode fed to d_tmpfile must have 231 * nlink == 1 so that it can decrement the nlink in d_tmpfile. 232 * However, we created the temp file with nlink == 0 because 233 * we're not allowed to put an inode with nlink > 0 on the 234 * unlinked list. Therefore we have to set nlink to 1 so that 235 * d_tmpfile can immediately set it back to zero. 236 */ 237 set_nlink(inode, 1); 238 d_tmpfile(tmpfile, inode); 239 } else 240 d_instantiate(dentry, inode); 241 242 xfs_finish_inode_setup(ip); 243 244 out_free_acl: 245 posix_acl_release(default_acl); 246 posix_acl_release(acl); 247 return error; 248 249 out_cleanup_inode: 250 xfs_finish_inode_setup(ip); 251 if (!tmpfile) 252 xfs_cleanup_inode(dir, inode, dentry); 253 xfs_irele(ip); 254 goto out_free_acl; 255 } 256 257 STATIC int 258 xfs_vn_mknod( 259 struct mnt_idmap *idmap, 260 struct inode *dir, 261 struct dentry *dentry, 262 umode_t mode, 263 dev_t rdev) 264 { 265 return xfs_generic_create(idmap, dir, dentry, mode, rdev, NULL); 266 } 267 268 STATIC int 269 xfs_vn_create( 270 struct mnt_idmap *idmap, 271 struct inode *dir, 272 struct dentry *dentry, 273 umode_t mode, 274 bool flags) 275 { 276 return xfs_generic_create(idmap, dir, dentry, mode, 0, NULL); 277 } 278 279 STATIC int 280 xfs_vn_mkdir( 281 struct mnt_idmap *idmap, 282 struct inode *dir, 283 struct dentry *dentry, 284 umode_t mode) 285 { 286 return xfs_generic_create(idmap, dir, dentry, mode | S_IFDIR, 0, NULL); 287 } 288 289 STATIC struct dentry * 290 xfs_vn_lookup( 291 struct inode *dir, 292 struct dentry *dentry, 293 unsigned int flags) 294 { 295 struct inode *inode; 296 struct xfs_inode *cip; 297 struct xfs_name name; 298 int error; 299 300 if (dentry->d_name.len >= MAXNAMELEN) 301 return ERR_PTR(-ENAMETOOLONG); 302 303 xfs_dentry_to_name(&name, dentry); 304 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL); 305 if (likely(!error)) 306 inode = VFS_I(cip); 307 else if (likely(error == -ENOENT)) 308 inode = NULL; 309 else 310 inode = ERR_PTR(error); 311 return d_splice_alias(inode, dentry); 312 } 313 314 STATIC struct dentry * 315 xfs_vn_ci_lookup( 316 struct inode *dir, 317 struct dentry *dentry, 318 unsigned int flags) 319 { 320 struct xfs_inode *ip; 321 struct xfs_name xname; 322 struct xfs_name ci_name; 323 struct qstr dname; 324 int error; 325 326 if (dentry->d_name.len >= MAXNAMELEN) 327 return ERR_PTR(-ENAMETOOLONG); 328 329 xfs_dentry_to_name(&xname, dentry); 330 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name); 331 if (unlikely(error)) { 332 if (unlikely(error != -ENOENT)) 333 return ERR_PTR(error); 334 /* 335 * call d_add(dentry, NULL) here when d_drop_negative_children 336 * is called in xfs_vn_mknod (ie. allow negative dentries 337 * with CI filesystems). 338 */ 339 return NULL; 340 } 341 342 /* if exact match, just splice and exit */ 343 if (!ci_name.name) 344 return d_splice_alias(VFS_I(ip), dentry); 345 346 /* else case-insensitive match... */ 347 dname.name = ci_name.name; 348 dname.len = ci_name.len; 349 dentry = d_add_ci(dentry, VFS_I(ip), &dname); 350 kfree(ci_name.name); 351 return dentry; 352 } 353 354 STATIC int 355 xfs_vn_link( 356 struct dentry *old_dentry, 357 struct inode *dir, 358 struct dentry *dentry) 359 { 360 struct inode *inode = d_inode(old_dentry); 361 struct xfs_name name; 362 int error; 363 364 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode); 365 if (unlikely(error)) 366 return error; 367 368 error = xfs_link(XFS_I(dir), XFS_I(inode), &name); 369 if (unlikely(error)) 370 return error; 371 372 ihold(inode); 373 d_instantiate(dentry, inode); 374 return 0; 375 } 376 377 STATIC int 378 xfs_vn_unlink( 379 struct inode *dir, 380 struct dentry *dentry) 381 { 382 struct xfs_name name; 383 int error; 384 385 xfs_dentry_to_name(&name, dentry); 386 387 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry))); 388 if (error) 389 return error; 390 391 /* 392 * With unlink, the VFS makes the dentry "negative": no inode, 393 * but still hashed. This is incompatible with case-insensitive 394 * mode, so invalidate (unhash) the dentry in CI-mode. 395 */ 396 if (xfs_has_asciici(XFS_M(dir->i_sb))) 397 d_invalidate(dentry); 398 return 0; 399 } 400 401 STATIC int 402 xfs_vn_symlink( 403 struct mnt_idmap *idmap, 404 struct inode *dir, 405 struct dentry *dentry, 406 const char *symname) 407 { 408 struct inode *inode; 409 struct xfs_inode *cip = NULL; 410 struct xfs_name name; 411 int error; 412 umode_t mode; 413 414 mode = S_IFLNK | 415 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO); 416 error = xfs_dentry_mode_to_name(&name, dentry, mode); 417 if (unlikely(error)) 418 goto out; 419 420 error = xfs_symlink(idmap, XFS_I(dir), &name, symname, mode, &cip); 421 if (unlikely(error)) 422 goto out; 423 424 inode = VFS_I(cip); 425 426 error = xfs_inode_init_security(inode, dir, &dentry->d_name); 427 if (unlikely(error)) 428 goto out_cleanup_inode; 429 430 xfs_setup_iops(cip); 431 432 d_instantiate(dentry, inode); 433 xfs_finish_inode_setup(cip); 434 return 0; 435 436 out_cleanup_inode: 437 xfs_finish_inode_setup(cip); 438 xfs_cleanup_inode(dir, inode, dentry); 439 xfs_irele(cip); 440 out: 441 return error; 442 } 443 444 STATIC int 445 xfs_vn_rename( 446 struct mnt_idmap *idmap, 447 struct inode *odir, 448 struct dentry *odentry, 449 struct inode *ndir, 450 struct dentry *ndentry, 451 unsigned int flags) 452 { 453 struct inode *new_inode = d_inode(ndentry); 454 int omode = 0; 455 int error; 456 struct xfs_name oname; 457 struct xfs_name nname; 458 459 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 460 return -EINVAL; 461 462 /* if we are exchanging files, we need to set i_mode of both files */ 463 if (flags & RENAME_EXCHANGE) 464 omode = d_inode(ndentry)->i_mode; 465 466 error = xfs_dentry_mode_to_name(&oname, odentry, omode); 467 if (omode && unlikely(error)) 468 return error; 469 470 error = xfs_dentry_mode_to_name(&nname, ndentry, 471 d_inode(odentry)->i_mode); 472 if (unlikely(error)) 473 return error; 474 475 return xfs_rename(idmap, XFS_I(odir), &oname, 476 XFS_I(d_inode(odentry)), XFS_I(ndir), &nname, 477 new_inode ? XFS_I(new_inode) : NULL, flags); 478 } 479 480 /* 481 * careful here - this function can get called recursively, so 482 * we need to be very careful about how much stack we use. 483 * uio is kmalloced for this reason... 484 */ 485 STATIC const char * 486 xfs_vn_get_link( 487 struct dentry *dentry, 488 struct inode *inode, 489 struct delayed_call *done) 490 { 491 char *link; 492 int error = -ENOMEM; 493 494 if (!dentry) 495 return ERR_PTR(-ECHILD); 496 497 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL); 498 if (!link) 499 goto out_err; 500 501 error = xfs_readlink(XFS_I(d_inode(dentry)), link); 502 if (unlikely(error)) 503 goto out_kfree; 504 505 set_delayed_call(done, kfree_link, link); 506 return link; 507 508 out_kfree: 509 kfree(link); 510 out_err: 511 return ERR_PTR(error); 512 } 513 514 static uint32_t 515 xfs_stat_blksize( 516 struct xfs_inode *ip) 517 { 518 struct xfs_mount *mp = ip->i_mount; 519 520 /* 521 * If the file blocks are being allocated from a realtime volume, then 522 * always return the realtime extent size. 523 */ 524 if (XFS_IS_REALTIME_INODE(ip)) 525 return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip)); 526 527 /* 528 * Allow large block sizes to be reported to userspace programs if the 529 * "largeio" mount option is used. 530 * 531 * If compatibility mode is specified, simply return the basic unit of 532 * caching so that we don't get inefficient read/modify/write I/O from 533 * user apps. Otherwise.... 534 * 535 * If the underlying volume is a stripe, then return the stripe width in 536 * bytes as the recommended I/O size. It is not a stripe and we've set a 537 * default buffered I/O size, return that, otherwise return the compat 538 * default. 539 */ 540 if (xfs_has_large_iosize(mp)) { 541 if (mp->m_swidth) 542 return XFS_FSB_TO_B(mp, mp->m_swidth); 543 if (xfs_has_allocsize(mp)) 544 return 1U << mp->m_allocsize_log; 545 } 546 547 return PAGE_SIZE; 548 } 549 550 STATIC int 551 xfs_vn_getattr( 552 struct mnt_idmap *idmap, 553 const struct path *path, 554 struct kstat *stat, 555 u32 request_mask, 556 unsigned int query_flags) 557 { 558 struct inode *inode = d_inode(path->dentry); 559 struct xfs_inode *ip = XFS_I(inode); 560 struct xfs_mount *mp = ip->i_mount; 561 vfsuid_t vfsuid = i_uid_into_vfsuid(idmap, inode); 562 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 563 564 trace_xfs_getattr(ip); 565 566 if (xfs_is_shutdown(mp)) 567 return -EIO; 568 569 stat->size = XFS_ISIZE(ip); 570 stat->dev = inode->i_sb->s_dev; 571 stat->mode = inode->i_mode; 572 stat->nlink = inode->i_nlink; 573 stat->uid = vfsuid_into_kuid(vfsuid); 574 stat->gid = vfsgid_into_kgid(vfsgid); 575 stat->ino = ip->i_ino; 576 stat->atime = inode_get_atime(inode); 577 stat->mtime = inode_get_mtime(inode); 578 stat->ctime = inode_get_ctime(inode); 579 stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks); 580 581 if (xfs_has_v3inodes(mp)) { 582 if (request_mask & STATX_BTIME) { 583 stat->result_mask |= STATX_BTIME; 584 stat->btime = ip->i_crtime; 585 } 586 } 587 588 if ((request_mask & STATX_CHANGE_COOKIE) && IS_I_VERSION(inode)) { 589 stat->change_cookie = inode_query_iversion(inode); 590 stat->result_mask |= STATX_CHANGE_COOKIE; 591 } 592 593 /* 594 * Note: If you add another clause to set an attribute flag, please 595 * update attributes_mask below. 596 */ 597 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 598 stat->attributes |= STATX_ATTR_IMMUTABLE; 599 if (ip->i_diflags & XFS_DIFLAG_APPEND) 600 stat->attributes |= STATX_ATTR_APPEND; 601 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 602 stat->attributes |= STATX_ATTR_NODUMP; 603 604 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE | 605 STATX_ATTR_APPEND | 606 STATX_ATTR_NODUMP); 607 608 switch (inode->i_mode & S_IFMT) { 609 case S_IFBLK: 610 case S_IFCHR: 611 stat->blksize = BLKDEV_IOSIZE; 612 stat->rdev = inode->i_rdev; 613 break; 614 case S_IFREG: 615 if (request_mask & STATX_DIOALIGN) { 616 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 617 struct block_device *bdev = target->bt_bdev; 618 619 stat->result_mask |= STATX_DIOALIGN; 620 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 621 stat->dio_offset_align = bdev_logical_block_size(bdev); 622 } 623 fallthrough; 624 default: 625 stat->blksize = xfs_stat_blksize(ip); 626 stat->rdev = 0; 627 break; 628 } 629 630 return 0; 631 } 632 633 static int 634 xfs_vn_change_ok( 635 struct mnt_idmap *idmap, 636 struct dentry *dentry, 637 struct iattr *iattr) 638 { 639 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount; 640 641 if (xfs_is_readonly(mp)) 642 return -EROFS; 643 644 if (xfs_is_shutdown(mp)) 645 return -EIO; 646 647 return setattr_prepare(idmap, dentry, iattr); 648 } 649 650 /* 651 * Set non-size attributes of an inode. 652 * 653 * Caution: The caller of this function is responsible for calling 654 * setattr_prepare() or otherwise verifying the change is fine. 655 */ 656 static int 657 xfs_setattr_nonsize( 658 struct mnt_idmap *idmap, 659 struct dentry *dentry, 660 struct xfs_inode *ip, 661 struct iattr *iattr) 662 { 663 xfs_mount_t *mp = ip->i_mount; 664 struct inode *inode = VFS_I(ip); 665 int mask = iattr->ia_valid; 666 xfs_trans_t *tp; 667 int error; 668 kuid_t uid = GLOBAL_ROOT_UID; 669 kgid_t gid = GLOBAL_ROOT_GID; 670 struct xfs_dquot *udqp = NULL, *gdqp = NULL; 671 struct xfs_dquot *old_udqp = NULL, *old_gdqp = NULL; 672 673 ASSERT((mask & ATTR_SIZE) == 0); 674 675 /* 676 * If disk quotas is on, we make sure that the dquots do exist on disk, 677 * before we start any other transactions. Trying to do this later 678 * is messy. We don't care to take a readlock to look at the ids 679 * in inode here, because we can't hold it across the trans_reserve. 680 * If the IDs do change before we take the ilock, we're covered 681 * because the i_*dquot fields will get updated anyway. 682 */ 683 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) { 684 uint qflags = 0; 685 686 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) { 687 uid = from_vfsuid(idmap, i_user_ns(inode), 688 iattr->ia_vfsuid); 689 qflags |= XFS_QMOPT_UQUOTA; 690 } else { 691 uid = inode->i_uid; 692 } 693 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) { 694 gid = from_vfsgid(idmap, i_user_ns(inode), 695 iattr->ia_vfsgid); 696 qflags |= XFS_QMOPT_GQUOTA; 697 } else { 698 gid = inode->i_gid; 699 } 700 701 /* 702 * We take a reference when we initialize udqp and gdqp, 703 * so it is important that we never blindly double trip on 704 * the same variable. See xfs_create() for an example. 705 */ 706 ASSERT(udqp == NULL); 707 ASSERT(gdqp == NULL); 708 error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid, 709 qflags, &udqp, &gdqp, NULL); 710 if (error) 711 return error; 712 } 713 714 error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL, 715 has_capability_noaudit(current, CAP_FOWNER), &tp); 716 if (error) 717 goto out_dqrele; 718 719 /* 720 * Register quota modifications in the transaction. Must be the owner 721 * or privileged. These IDs could have changed since we last looked at 722 * them. But, we're assured that if the ownership did change while we 723 * didn't have the inode locked, inode's dquot(s) would have changed 724 * also. 725 */ 726 if (XFS_IS_UQUOTA_ON(mp) && 727 i_uid_needs_update(idmap, iattr, inode)) { 728 ASSERT(udqp); 729 old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp); 730 } 731 if (XFS_IS_GQUOTA_ON(mp) && 732 i_gid_needs_update(idmap, iattr, inode)) { 733 ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp)); 734 ASSERT(gdqp); 735 old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp); 736 } 737 738 setattr_copy(idmap, inode, iattr); 739 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 740 741 XFS_STATS_INC(mp, xs_ig_attrchg); 742 743 if (xfs_has_wsync(mp)) 744 xfs_trans_set_sync(tp); 745 error = xfs_trans_commit(tp); 746 747 /* 748 * Release any dquot(s) the inode had kept before chown. 749 */ 750 xfs_qm_dqrele(old_udqp); 751 xfs_qm_dqrele(old_gdqp); 752 xfs_qm_dqrele(udqp); 753 xfs_qm_dqrele(gdqp); 754 755 if (error) 756 return error; 757 758 /* 759 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode 760 * update. We could avoid this with linked transactions 761 * and passing down the transaction pointer all the way 762 * to attr_set. No previous user of the generic 763 * Posix ACL code seems to care about this issue either. 764 */ 765 if (mask & ATTR_MODE) { 766 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 767 if (error) 768 return error; 769 } 770 771 return 0; 772 773 out_dqrele: 774 xfs_qm_dqrele(udqp); 775 xfs_qm_dqrele(gdqp); 776 return error; 777 } 778 779 /* 780 * Truncate file. Must have write permission and not be a directory. 781 * 782 * Caution: The caller of this function is responsible for calling 783 * setattr_prepare() or otherwise verifying the change is fine. 784 */ 785 STATIC int 786 xfs_setattr_size( 787 struct mnt_idmap *idmap, 788 struct dentry *dentry, 789 struct xfs_inode *ip, 790 struct iattr *iattr) 791 { 792 struct xfs_mount *mp = ip->i_mount; 793 struct inode *inode = VFS_I(ip); 794 xfs_off_t oldsize, newsize; 795 struct xfs_trans *tp; 796 int error; 797 uint lock_flags = 0; 798 bool did_zeroing = false; 799 800 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); 801 ASSERT(S_ISREG(inode->i_mode)); 802 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET| 803 ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0); 804 805 oldsize = inode->i_size; 806 newsize = iattr->ia_size; 807 808 /* 809 * Short circuit the truncate case for zero length files. 810 */ 811 if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) { 812 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME))) 813 return 0; 814 815 /* 816 * Use the regular setattr path to update the timestamps. 817 */ 818 iattr->ia_valid &= ~ATTR_SIZE; 819 return xfs_setattr_nonsize(idmap, dentry, ip, iattr); 820 } 821 822 /* 823 * Make sure that the dquots are attached to the inode. 824 */ 825 error = xfs_qm_dqattach(ip); 826 if (error) 827 return error; 828 829 /* 830 * Wait for all direct I/O to complete. 831 */ 832 inode_dio_wait(inode); 833 834 /* 835 * File data changes must be complete before we start the transaction to 836 * modify the inode. This needs to be done before joining the inode to 837 * the transaction because the inode cannot be unlocked once it is a 838 * part of the transaction. 839 * 840 * Start with zeroing any data beyond EOF that we may expose on file 841 * extension, or zeroing out the rest of the block on a downward 842 * truncate. 843 */ 844 if (newsize > oldsize) { 845 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize); 846 error = xfs_zero_range(ip, oldsize, newsize - oldsize, 847 &did_zeroing); 848 } else { 849 /* 850 * iomap won't detect a dirty page over an unwritten block (or a 851 * cow block over a hole) and subsequently skips zeroing the 852 * newly post-EOF portion of the page. Flush the new EOF to 853 * convert the block before the pagecache truncate. 854 */ 855 error = filemap_write_and_wait_range(inode->i_mapping, newsize, 856 newsize); 857 if (error) 858 return error; 859 error = xfs_truncate_page(ip, newsize, &did_zeroing); 860 } 861 862 if (error) 863 return error; 864 865 /* 866 * We've already locked out new page faults, so now we can safely remove 867 * pages from the page cache knowing they won't get refaulted until we 868 * drop the XFS_MMAP_EXCL lock after the extent manipulations are 869 * complete. The truncate_setsize() call also cleans partial EOF page 870 * PTEs on extending truncates and hence ensures sub-page block size 871 * filesystems are correctly handled, too. 872 * 873 * We have to do all the page cache truncate work outside the 874 * transaction context as the "lock" order is page lock->log space 875 * reservation as defined by extent allocation in the writeback path. 876 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but 877 * having already truncated the in-memory version of the file (i.e. made 878 * user visible changes). There's not much we can do about this, except 879 * to hope that the caller sees ENOMEM and retries the truncate 880 * operation. 881 * 882 * And we update in-core i_size and truncate page cache beyond newsize 883 * before writeback the [i_disk_size, newsize] range, so we're 884 * guaranteed not to write stale data past the new EOF on truncate down. 885 */ 886 truncate_setsize(inode, newsize); 887 888 /* 889 * We are going to log the inode size change in this transaction so 890 * any previous writes that are beyond the on disk EOF and the new 891 * EOF that have not been written out need to be written here. If we 892 * do not write the data out, we expose ourselves to the null files 893 * problem. Note that this includes any block zeroing we did above; 894 * otherwise those blocks may not be zeroed after a crash. 895 */ 896 if (did_zeroing || 897 (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) { 898 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 899 ip->i_disk_size, newsize - 1); 900 if (error) 901 return error; 902 } 903 904 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 905 if (error) 906 return error; 907 908 lock_flags |= XFS_ILOCK_EXCL; 909 xfs_ilock(ip, XFS_ILOCK_EXCL); 910 xfs_trans_ijoin(tp, ip, 0); 911 912 /* 913 * Only change the c/mtime if we are changing the size or we are 914 * explicitly asked to change it. This handles the semantic difference 915 * between truncate() and ftruncate() as implemented in the VFS. 916 * 917 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 918 * special case where we need to update the times despite not having 919 * these flags set. For all other operations the VFS set these flags 920 * explicitly if it wants a timestamp update. 921 */ 922 if (newsize != oldsize && 923 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) { 924 iattr->ia_ctime = iattr->ia_mtime = 925 current_time(inode); 926 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME; 927 } 928 929 /* 930 * The first thing we do is set the size to new_size permanently on 931 * disk. This way we don't have to worry about anyone ever being able 932 * to look at the data being freed even in the face of a crash. 933 * What we're getting around here is the case where we free a block, it 934 * is allocated to another file, it is written to, and then we crash. 935 * If the new data gets written to the file but the log buffers 936 * containing the free and reallocation don't, then we'd end up with 937 * garbage in the blocks being freed. As long as we make the new size 938 * permanent before actually freeing any blocks it doesn't matter if 939 * they get written to. 940 */ 941 ip->i_disk_size = newsize; 942 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 943 944 if (newsize <= oldsize) { 945 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize); 946 if (error) 947 goto out_trans_cancel; 948 949 /* 950 * Truncated "down", so we're removing references to old data 951 * here - if we delay flushing for a long time, we expose 952 * ourselves unduly to the notorious NULL files problem. So, 953 * we mark this inode and flush it when the file is closed, 954 * and do not wait the usual (long) time for writeout. 955 */ 956 xfs_iflags_set(ip, XFS_ITRUNCATED); 957 958 /* A truncate down always removes post-EOF blocks. */ 959 xfs_inode_clear_eofblocks_tag(ip); 960 } 961 962 ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID))); 963 setattr_copy(idmap, inode, iattr); 964 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 965 966 XFS_STATS_INC(mp, xs_ig_attrchg); 967 968 if (xfs_has_wsync(mp)) 969 xfs_trans_set_sync(tp); 970 971 error = xfs_trans_commit(tp); 972 out_unlock: 973 if (lock_flags) 974 xfs_iunlock(ip, lock_flags); 975 return error; 976 977 out_trans_cancel: 978 xfs_trans_cancel(tp); 979 goto out_unlock; 980 } 981 982 int 983 xfs_vn_setattr_size( 984 struct mnt_idmap *idmap, 985 struct dentry *dentry, 986 struct iattr *iattr) 987 { 988 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 989 int error; 990 991 trace_xfs_setattr(ip); 992 993 error = xfs_vn_change_ok(idmap, dentry, iattr); 994 if (error) 995 return error; 996 return xfs_setattr_size(idmap, dentry, ip, iattr); 997 } 998 999 STATIC int 1000 xfs_vn_setattr( 1001 struct mnt_idmap *idmap, 1002 struct dentry *dentry, 1003 struct iattr *iattr) 1004 { 1005 struct inode *inode = d_inode(dentry); 1006 struct xfs_inode *ip = XFS_I(inode); 1007 int error; 1008 1009 if (iattr->ia_valid & ATTR_SIZE) { 1010 uint iolock; 1011 1012 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1013 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 1014 1015 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 1016 if (error) { 1017 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1018 return error; 1019 } 1020 1021 error = xfs_vn_setattr_size(idmap, dentry, iattr); 1022 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1023 } else { 1024 trace_xfs_setattr(ip); 1025 1026 error = xfs_vn_change_ok(idmap, dentry, iattr); 1027 if (!error) 1028 error = xfs_setattr_nonsize(idmap, dentry, ip, iattr); 1029 } 1030 1031 return error; 1032 } 1033 1034 STATIC int 1035 xfs_vn_update_time( 1036 struct inode *inode, 1037 int flags) 1038 { 1039 struct xfs_inode *ip = XFS_I(inode); 1040 struct xfs_mount *mp = ip->i_mount; 1041 int log_flags = XFS_ILOG_TIMESTAMP; 1042 struct xfs_trans *tp; 1043 int error; 1044 struct timespec64 now; 1045 1046 trace_xfs_update_time(ip); 1047 1048 if (inode->i_sb->s_flags & SB_LAZYTIME) { 1049 if (!((flags & S_VERSION) && 1050 inode_maybe_inc_iversion(inode, false))) { 1051 generic_update_time(inode, flags); 1052 return 0; 1053 } 1054 1055 /* Capture the iversion update that just occurred */ 1056 log_flags |= XFS_ILOG_CORE; 1057 } 1058 1059 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 1060 if (error) 1061 return error; 1062 1063 xfs_ilock(ip, XFS_ILOCK_EXCL); 1064 if (flags & (S_CTIME|S_MTIME)) 1065 now = inode_set_ctime_current(inode); 1066 else 1067 now = current_time(inode); 1068 1069 if (flags & S_MTIME) 1070 inode_set_mtime_to_ts(inode, now); 1071 if (flags & S_ATIME) 1072 inode_set_atime_to_ts(inode, now); 1073 1074 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1075 xfs_trans_log_inode(tp, ip, log_flags); 1076 return xfs_trans_commit(tp); 1077 } 1078 1079 STATIC int 1080 xfs_vn_fiemap( 1081 struct inode *inode, 1082 struct fiemap_extent_info *fieinfo, 1083 u64 start, 1084 u64 length) 1085 { 1086 int error; 1087 1088 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED); 1089 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1090 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR; 1091 error = iomap_fiemap(inode, fieinfo, start, length, 1092 &xfs_xattr_iomap_ops); 1093 } else { 1094 error = iomap_fiemap(inode, fieinfo, start, length, 1095 &xfs_read_iomap_ops); 1096 } 1097 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED); 1098 1099 return error; 1100 } 1101 1102 STATIC int 1103 xfs_vn_tmpfile( 1104 struct mnt_idmap *idmap, 1105 struct inode *dir, 1106 struct file *file, 1107 umode_t mode) 1108 { 1109 int err = xfs_generic_create(idmap, dir, file->f_path.dentry, mode, 0, file); 1110 1111 return finish_open_simple(file, err); 1112 } 1113 1114 static const struct inode_operations xfs_inode_operations = { 1115 .get_inode_acl = xfs_get_acl, 1116 .set_acl = xfs_set_acl, 1117 .getattr = xfs_vn_getattr, 1118 .setattr = xfs_vn_setattr, 1119 .listxattr = xfs_vn_listxattr, 1120 .fiemap = xfs_vn_fiemap, 1121 .update_time = xfs_vn_update_time, 1122 .fileattr_get = xfs_fileattr_get, 1123 .fileattr_set = xfs_fileattr_set, 1124 }; 1125 1126 static const struct inode_operations xfs_dir_inode_operations = { 1127 .create = xfs_vn_create, 1128 .lookup = xfs_vn_lookup, 1129 .link = xfs_vn_link, 1130 .unlink = xfs_vn_unlink, 1131 .symlink = xfs_vn_symlink, 1132 .mkdir = xfs_vn_mkdir, 1133 /* 1134 * Yes, XFS uses the same method for rmdir and unlink. 1135 * 1136 * There are some subtile differences deeper in the code, 1137 * but we use S_ISDIR to check for those. 1138 */ 1139 .rmdir = xfs_vn_unlink, 1140 .mknod = xfs_vn_mknod, 1141 .rename = xfs_vn_rename, 1142 .get_inode_acl = xfs_get_acl, 1143 .set_acl = xfs_set_acl, 1144 .getattr = xfs_vn_getattr, 1145 .setattr = xfs_vn_setattr, 1146 .listxattr = xfs_vn_listxattr, 1147 .update_time = xfs_vn_update_time, 1148 .tmpfile = xfs_vn_tmpfile, 1149 .fileattr_get = xfs_fileattr_get, 1150 .fileattr_set = xfs_fileattr_set, 1151 }; 1152 1153 static const struct inode_operations xfs_dir_ci_inode_operations = { 1154 .create = xfs_vn_create, 1155 .lookup = xfs_vn_ci_lookup, 1156 .link = xfs_vn_link, 1157 .unlink = xfs_vn_unlink, 1158 .symlink = xfs_vn_symlink, 1159 .mkdir = xfs_vn_mkdir, 1160 /* 1161 * Yes, XFS uses the same method for rmdir and unlink. 1162 * 1163 * There are some subtile differences deeper in the code, 1164 * but we use S_ISDIR to check for those. 1165 */ 1166 .rmdir = xfs_vn_unlink, 1167 .mknod = xfs_vn_mknod, 1168 .rename = xfs_vn_rename, 1169 .get_inode_acl = xfs_get_acl, 1170 .set_acl = xfs_set_acl, 1171 .getattr = xfs_vn_getattr, 1172 .setattr = xfs_vn_setattr, 1173 .listxattr = xfs_vn_listxattr, 1174 .update_time = xfs_vn_update_time, 1175 .tmpfile = xfs_vn_tmpfile, 1176 .fileattr_get = xfs_fileattr_get, 1177 .fileattr_set = xfs_fileattr_set, 1178 }; 1179 1180 static const struct inode_operations xfs_symlink_inode_operations = { 1181 .get_link = xfs_vn_get_link, 1182 .getattr = xfs_vn_getattr, 1183 .setattr = xfs_vn_setattr, 1184 .listxattr = xfs_vn_listxattr, 1185 .update_time = xfs_vn_update_time, 1186 }; 1187 1188 /* Figure out if this file actually supports DAX. */ 1189 static bool 1190 xfs_inode_supports_dax( 1191 struct xfs_inode *ip) 1192 { 1193 struct xfs_mount *mp = ip->i_mount; 1194 1195 /* Only supported on regular files. */ 1196 if (!S_ISREG(VFS_I(ip)->i_mode)) 1197 return false; 1198 1199 /* Block size must match page size */ 1200 if (mp->m_sb.sb_blocksize != PAGE_SIZE) 1201 return false; 1202 1203 /* Device has to support DAX too. */ 1204 return xfs_inode_buftarg(ip)->bt_daxdev != NULL; 1205 } 1206 1207 static bool 1208 xfs_inode_should_enable_dax( 1209 struct xfs_inode *ip) 1210 { 1211 if (!IS_ENABLED(CONFIG_FS_DAX)) 1212 return false; 1213 if (xfs_has_dax_never(ip->i_mount)) 1214 return false; 1215 if (!xfs_inode_supports_dax(ip)) 1216 return false; 1217 if (xfs_has_dax_always(ip->i_mount)) 1218 return true; 1219 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 1220 return true; 1221 return false; 1222 } 1223 1224 void 1225 xfs_diflags_to_iflags( 1226 struct xfs_inode *ip, 1227 bool init) 1228 { 1229 struct inode *inode = VFS_I(ip); 1230 unsigned int xflags = xfs_ip2xflags(ip); 1231 unsigned int flags = 0; 1232 1233 ASSERT(!(IS_DAX(inode) && init)); 1234 1235 if (xflags & FS_XFLAG_IMMUTABLE) 1236 flags |= S_IMMUTABLE; 1237 if (xflags & FS_XFLAG_APPEND) 1238 flags |= S_APPEND; 1239 if (xflags & FS_XFLAG_SYNC) 1240 flags |= S_SYNC; 1241 if (xflags & FS_XFLAG_NOATIME) 1242 flags |= S_NOATIME; 1243 if (init && xfs_inode_should_enable_dax(ip)) 1244 flags |= S_DAX; 1245 1246 /* 1247 * S_DAX can only be set during inode initialization and is never set by 1248 * the VFS, so we cannot mask off S_DAX in i_flags. 1249 */ 1250 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME); 1251 inode->i_flags |= flags; 1252 } 1253 1254 /* 1255 * Initialize the Linux inode. 1256 * 1257 * When reading existing inodes from disk this is called directly from xfs_iget, 1258 * when creating a new inode it is called from xfs_init_new_inode after setting 1259 * up the inode. These callers have different criteria for clearing XFS_INEW, so 1260 * leave it up to the caller to deal with unlocking the inode appropriately. 1261 */ 1262 void 1263 xfs_setup_inode( 1264 struct xfs_inode *ip) 1265 { 1266 struct inode *inode = &ip->i_vnode; 1267 gfp_t gfp_mask; 1268 1269 inode->i_ino = ip->i_ino; 1270 inode->i_state |= I_NEW; 1271 1272 inode_sb_list_add(inode); 1273 /* make the inode look hashed for the writeback code */ 1274 inode_fake_hash(inode); 1275 1276 i_size_write(inode, ip->i_disk_size); 1277 xfs_diflags_to_iflags(ip, true); 1278 1279 if (S_ISDIR(inode->i_mode)) { 1280 /* 1281 * We set the i_rwsem class here to avoid potential races with 1282 * lockdep_annotate_inode_mutex_key() reinitialising the lock 1283 * after a filehandle lookup has already found the inode in 1284 * cache before it has been unlocked via unlock_new_inode(). 1285 */ 1286 lockdep_set_class(&inode->i_rwsem, 1287 &inode->i_sb->s_type->i_mutex_dir_key); 1288 lockdep_set_class(&ip->i_lock, &xfs_dir_ilock_class); 1289 } else { 1290 lockdep_set_class(&ip->i_lock, &xfs_nondir_ilock_class); 1291 } 1292 1293 /* 1294 * Ensure all page cache allocations are done from GFP_NOFS context to 1295 * prevent direct reclaim recursion back into the filesystem and blowing 1296 * stacks or deadlocking. 1297 */ 1298 gfp_mask = mapping_gfp_mask(inode->i_mapping); 1299 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS))); 1300 1301 /* 1302 * For real-time inodes update the stable write flags to that of the RT 1303 * device instead of the data device. 1304 */ 1305 if (S_ISREG(inode->i_mode) && XFS_IS_REALTIME_INODE(ip)) 1306 xfs_update_stable_writes(ip); 1307 1308 /* 1309 * If there is no attribute fork no ACL can exist on this inode, 1310 * and it can't have any file capabilities attached to it either. 1311 */ 1312 if (!xfs_inode_has_attr_fork(ip)) { 1313 inode_has_no_xattr(inode); 1314 cache_no_acl(inode); 1315 } 1316 } 1317 1318 void 1319 xfs_setup_iops( 1320 struct xfs_inode *ip) 1321 { 1322 struct inode *inode = &ip->i_vnode; 1323 1324 switch (inode->i_mode & S_IFMT) { 1325 case S_IFREG: 1326 inode->i_op = &xfs_inode_operations; 1327 inode->i_fop = &xfs_file_operations; 1328 if (IS_DAX(inode)) 1329 inode->i_mapping->a_ops = &xfs_dax_aops; 1330 else 1331 inode->i_mapping->a_ops = &xfs_address_space_operations; 1332 break; 1333 case S_IFDIR: 1334 if (xfs_has_asciici(XFS_M(inode->i_sb))) 1335 inode->i_op = &xfs_dir_ci_inode_operations; 1336 else 1337 inode->i_op = &xfs_dir_inode_operations; 1338 inode->i_fop = &xfs_dir_file_operations; 1339 break; 1340 case S_IFLNK: 1341 inode->i_op = &xfs_symlink_inode_operations; 1342 break; 1343 default: 1344 inode->i_op = &xfs_inode_operations; 1345 init_special_inode(inode, inode->i_mode, inode->i_rdev); 1346 break; 1347 } 1348 } 1349