xref: /linux/fs/xfs/xfs_iops.c (revision f14aa5ea415b8add245e976bfab96a12986c6843)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_acl.h"
15 #include "xfs_quota.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans.h"
20 #include "xfs_trace.h"
21 #include "xfs_icache.h"
22 #include "xfs_symlink.h"
23 #include "xfs_dir2.h"
24 #include "xfs_iomap.h"
25 #include "xfs_error.h"
26 #include "xfs_ioctl.h"
27 #include "xfs_xattr.h"
28 #include "xfs_file.h"
29 
30 #include <linux/posix_acl.h>
31 #include <linux/security.h>
32 #include <linux/iversion.h>
33 #include <linux/fiemap.h>
34 
35 /*
36  * Directories have different lock order w.r.t. mmap_lock compared to regular
37  * files. This is due to readdir potentially triggering page faults on a user
38  * buffer inside filldir(), and this happens with the ilock on the directory
39  * held. For regular files, the lock order is the other way around - the
40  * mmap_lock is taken during the page fault, and then we lock the ilock to do
41  * block mapping. Hence we need a different class for the directory ilock so
42  * that lockdep can tell them apart.
43  */
44 static struct lock_class_key xfs_nondir_ilock_class;
45 static struct lock_class_key xfs_dir_ilock_class;
46 
47 static int
48 xfs_initxattrs(
49 	struct inode		*inode,
50 	const struct xattr	*xattr_array,
51 	void			*fs_info)
52 {
53 	const struct xattr	*xattr;
54 	struct xfs_inode	*ip = XFS_I(inode);
55 	int			error = 0;
56 
57 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
58 		struct xfs_da_args	args = {
59 			.dp		= ip,
60 			.attr_filter	= XFS_ATTR_SECURE,
61 			.name		= xattr->name,
62 			.namelen	= strlen(xattr->name),
63 			.value		= xattr->value,
64 			.valuelen	= xattr->value_len,
65 		};
66 		error = xfs_attr_change(&args, XFS_ATTRUPDATE_UPSERT);
67 		if (error < 0)
68 			break;
69 	}
70 	return error;
71 }
72 
73 /*
74  * Hook in SELinux.  This is not quite correct yet, what we really need
75  * here (as we do for default ACLs) is a mechanism by which creation of
76  * these attrs can be journalled at inode creation time (along with the
77  * inode, of course, such that log replay can't cause these to be lost).
78  */
79 int
80 xfs_inode_init_security(
81 	struct inode	*inode,
82 	struct inode	*dir,
83 	const struct qstr *qstr)
84 {
85 	return security_inode_init_security(inode, dir, qstr,
86 					     &xfs_initxattrs, NULL);
87 }
88 
89 static void
90 xfs_dentry_to_name(
91 	struct xfs_name	*namep,
92 	struct dentry	*dentry)
93 {
94 	namep->name = dentry->d_name.name;
95 	namep->len = dentry->d_name.len;
96 	namep->type = XFS_DIR3_FT_UNKNOWN;
97 }
98 
99 static int
100 xfs_dentry_mode_to_name(
101 	struct xfs_name	*namep,
102 	struct dentry	*dentry,
103 	int		mode)
104 {
105 	namep->name = dentry->d_name.name;
106 	namep->len = dentry->d_name.len;
107 	namep->type = xfs_mode_to_ftype(mode);
108 
109 	if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
110 		return -EFSCORRUPTED;
111 
112 	return 0;
113 }
114 
115 STATIC void
116 xfs_cleanup_inode(
117 	struct inode	*dir,
118 	struct inode	*inode,
119 	struct dentry	*dentry)
120 {
121 	struct xfs_name	teardown;
122 
123 	/* Oh, the horror.
124 	 * If we can't add the ACL or we fail in
125 	 * xfs_inode_init_security we must back out.
126 	 * ENOSPC can hit here, among other things.
127 	 */
128 	xfs_dentry_to_name(&teardown, dentry);
129 
130 	xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
131 }
132 
133 /*
134  * Check to see if we are likely to need an extended attribute to be added to
135  * the inode we are about to allocate. This allows the attribute fork to be
136  * created during the inode allocation, reducing the number of transactions we
137  * need to do in this fast path.
138  *
139  * The security checks are optimistic, but not guaranteed. The two LSMs that
140  * require xattrs to be added here (selinux and smack) are also the only two
141  * LSMs that add a sb->s_security structure to the superblock. Hence if security
142  * is enabled and sb->s_security is set, we have a pretty good idea that we are
143  * going to be asked to add a security xattr immediately after allocating the
144  * xfs inode and instantiating the VFS inode.
145  */
146 static inline bool
147 xfs_create_need_xattr(
148 	struct inode	*dir,
149 	struct posix_acl *default_acl,
150 	struct posix_acl *acl)
151 {
152 	if (acl)
153 		return true;
154 	if (default_acl)
155 		return true;
156 #if IS_ENABLED(CONFIG_SECURITY)
157 	if (dir->i_sb->s_security)
158 		return true;
159 #endif
160 	if (xfs_has_parent(XFS_I(dir)->i_mount))
161 		return true;
162 	return false;
163 }
164 
165 
166 STATIC int
167 xfs_generic_create(
168 	struct mnt_idmap	*idmap,
169 	struct inode		*dir,
170 	struct dentry		*dentry,
171 	umode_t			mode,
172 	dev_t			rdev,
173 	struct file		*tmpfile)	/* unnamed file */
174 {
175 	struct inode	*inode;
176 	struct xfs_inode *ip = NULL;
177 	struct posix_acl *default_acl, *acl;
178 	struct xfs_name	name;
179 	int		error;
180 
181 	/*
182 	 * Irix uses Missed'em'V split, but doesn't want to see
183 	 * the upper 5 bits of (14bit) major.
184 	 */
185 	if (S_ISCHR(mode) || S_ISBLK(mode)) {
186 		if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
187 			return -EINVAL;
188 	} else {
189 		rdev = 0;
190 	}
191 
192 	error = posix_acl_create(dir, &mode, &default_acl, &acl);
193 	if (error)
194 		return error;
195 
196 	/* Verify mode is valid also for tmpfile case */
197 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
198 	if (unlikely(error))
199 		goto out_free_acl;
200 
201 	if (!tmpfile) {
202 		error = xfs_create(idmap, XFS_I(dir), &name, mode, rdev,
203 				xfs_create_need_xattr(dir, default_acl, acl),
204 				&ip);
205 	} else {
206 		bool	init_xattrs = false;
207 
208 		/*
209 		 * If this temporary file will be linkable, set up the file
210 		 * with an attr fork to receive a parent pointer.
211 		 */
212 		if (!(tmpfile->f_flags & O_EXCL) &&
213 		    xfs_has_parent(XFS_I(dir)->i_mount))
214 			init_xattrs = true;
215 
216 		error = xfs_create_tmpfile(idmap, XFS_I(dir), mode,
217 				init_xattrs, &ip);
218 	}
219 	if (unlikely(error))
220 		goto out_free_acl;
221 
222 	inode = VFS_I(ip);
223 
224 	error = xfs_inode_init_security(inode, dir, &dentry->d_name);
225 	if (unlikely(error))
226 		goto out_cleanup_inode;
227 
228 	if (default_acl) {
229 		error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
230 		if (error)
231 			goto out_cleanup_inode;
232 	}
233 	if (acl) {
234 		error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
235 		if (error)
236 			goto out_cleanup_inode;
237 	}
238 
239 	xfs_setup_iops(ip);
240 
241 	if (tmpfile) {
242 		/*
243 		 * The VFS requires that any inode fed to d_tmpfile must have
244 		 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
245 		 * However, we created the temp file with nlink == 0 because
246 		 * we're not allowed to put an inode with nlink > 0 on the
247 		 * unlinked list.  Therefore we have to set nlink to 1 so that
248 		 * d_tmpfile can immediately set it back to zero.
249 		 */
250 		set_nlink(inode, 1);
251 		d_tmpfile(tmpfile, inode);
252 	} else
253 		d_instantiate(dentry, inode);
254 
255 	xfs_finish_inode_setup(ip);
256 
257  out_free_acl:
258 	posix_acl_release(default_acl);
259 	posix_acl_release(acl);
260 	return error;
261 
262  out_cleanup_inode:
263 	xfs_finish_inode_setup(ip);
264 	if (!tmpfile)
265 		xfs_cleanup_inode(dir, inode, dentry);
266 	xfs_irele(ip);
267 	goto out_free_acl;
268 }
269 
270 STATIC int
271 xfs_vn_mknod(
272 	struct mnt_idmap	*idmap,
273 	struct inode		*dir,
274 	struct dentry		*dentry,
275 	umode_t			mode,
276 	dev_t			rdev)
277 {
278 	return xfs_generic_create(idmap, dir, dentry, mode, rdev, NULL);
279 }
280 
281 STATIC int
282 xfs_vn_create(
283 	struct mnt_idmap	*idmap,
284 	struct inode		*dir,
285 	struct dentry		*dentry,
286 	umode_t			mode,
287 	bool			flags)
288 {
289 	return xfs_generic_create(idmap, dir, dentry, mode, 0, NULL);
290 }
291 
292 STATIC int
293 xfs_vn_mkdir(
294 	struct mnt_idmap	*idmap,
295 	struct inode		*dir,
296 	struct dentry		*dentry,
297 	umode_t			mode)
298 {
299 	return xfs_generic_create(idmap, dir, dentry, mode | S_IFDIR, 0, NULL);
300 }
301 
302 STATIC struct dentry *
303 xfs_vn_lookup(
304 	struct inode	*dir,
305 	struct dentry	*dentry,
306 	unsigned int flags)
307 {
308 	struct inode *inode;
309 	struct xfs_inode *cip;
310 	struct xfs_name	name;
311 	int		error;
312 
313 	if (dentry->d_name.len >= MAXNAMELEN)
314 		return ERR_PTR(-ENAMETOOLONG);
315 
316 	xfs_dentry_to_name(&name, dentry);
317 	error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
318 	if (likely(!error))
319 		inode = VFS_I(cip);
320 	else if (likely(error == -ENOENT))
321 		inode = NULL;
322 	else
323 		inode = ERR_PTR(error);
324 	return d_splice_alias(inode, dentry);
325 }
326 
327 STATIC struct dentry *
328 xfs_vn_ci_lookup(
329 	struct inode	*dir,
330 	struct dentry	*dentry,
331 	unsigned int flags)
332 {
333 	struct xfs_inode *ip;
334 	struct xfs_name	xname;
335 	struct xfs_name ci_name;
336 	struct qstr	dname;
337 	int		error;
338 
339 	if (dentry->d_name.len >= MAXNAMELEN)
340 		return ERR_PTR(-ENAMETOOLONG);
341 
342 	xfs_dentry_to_name(&xname, dentry);
343 	error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
344 	if (unlikely(error)) {
345 		if (unlikely(error != -ENOENT))
346 			return ERR_PTR(error);
347 		/*
348 		 * call d_add(dentry, NULL) here when d_drop_negative_children
349 		 * is called in xfs_vn_mknod (ie. allow negative dentries
350 		 * with CI filesystems).
351 		 */
352 		return NULL;
353 	}
354 
355 	/* if exact match, just splice and exit */
356 	if (!ci_name.name)
357 		return d_splice_alias(VFS_I(ip), dentry);
358 
359 	/* else case-insensitive match... */
360 	dname.name = ci_name.name;
361 	dname.len = ci_name.len;
362 	dentry = d_add_ci(dentry, VFS_I(ip), &dname);
363 	kfree(ci_name.name);
364 	return dentry;
365 }
366 
367 STATIC int
368 xfs_vn_link(
369 	struct dentry	*old_dentry,
370 	struct inode	*dir,
371 	struct dentry	*dentry)
372 {
373 	struct inode	*inode = d_inode(old_dentry);
374 	struct xfs_name	name;
375 	int		error;
376 
377 	error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
378 	if (unlikely(error))
379 		return error;
380 
381 	if (IS_PRIVATE(inode))
382 		return -EPERM;
383 
384 	error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
385 	if (unlikely(error))
386 		return error;
387 
388 	ihold(inode);
389 	d_instantiate(dentry, inode);
390 	return 0;
391 }
392 
393 STATIC int
394 xfs_vn_unlink(
395 	struct inode	*dir,
396 	struct dentry	*dentry)
397 {
398 	struct xfs_name	name;
399 	int		error;
400 
401 	xfs_dentry_to_name(&name, dentry);
402 
403 	error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
404 	if (error)
405 		return error;
406 
407 	/*
408 	 * With unlink, the VFS makes the dentry "negative": no inode,
409 	 * but still hashed. This is incompatible with case-insensitive
410 	 * mode, so invalidate (unhash) the dentry in CI-mode.
411 	 */
412 	if (xfs_has_asciici(XFS_M(dir->i_sb)))
413 		d_invalidate(dentry);
414 	return 0;
415 }
416 
417 STATIC int
418 xfs_vn_symlink(
419 	struct mnt_idmap	*idmap,
420 	struct inode		*dir,
421 	struct dentry		*dentry,
422 	const char		*symname)
423 {
424 	struct inode	*inode;
425 	struct xfs_inode *cip = NULL;
426 	struct xfs_name	name;
427 	int		error;
428 	umode_t		mode;
429 
430 	mode = S_IFLNK |
431 		(irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
432 	error = xfs_dentry_mode_to_name(&name, dentry, mode);
433 	if (unlikely(error))
434 		goto out;
435 
436 	error = xfs_symlink(idmap, XFS_I(dir), &name, symname, mode, &cip);
437 	if (unlikely(error))
438 		goto out;
439 
440 	inode = VFS_I(cip);
441 
442 	error = xfs_inode_init_security(inode, dir, &dentry->d_name);
443 	if (unlikely(error))
444 		goto out_cleanup_inode;
445 
446 	xfs_setup_iops(cip);
447 
448 	d_instantiate(dentry, inode);
449 	xfs_finish_inode_setup(cip);
450 	return 0;
451 
452  out_cleanup_inode:
453 	xfs_finish_inode_setup(cip);
454 	xfs_cleanup_inode(dir, inode, dentry);
455 	xfs_irele(cip);
456  out:
457 	return error;
458 }
459 
460 STATIC int
461 xfs_vn_rename(
462 	struct mnt_idmap	*idmap,
463 	struct inode		*odir,
464 	struct dentry		*odentry,
465 	struct inode		*ndir,
466 	struct dentry		*ndentry,
467 	unsigned int		flags)
468 {
469 	struct inode	*new_inode = d_inode(ndentry);
470 	int		omode = 0;
471 	int		error;
472 	struct xfs_name	oname;
473 	struct xfs_name	nname;
474 
475 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
476 		return -EINVAL;
477 
478 	/* if we are exchanging files, we need to set i_mode of both files */
479 	if (flags & RENAME_EXCHANGE)
480 		omode = d_inode(ndentry)->i_mode;
481 
482 	error = xfs_dentry_mode_to_name(&oname, odentry, omode);
483 	if (omode && unlikely(error))
484 		return error;
485 
486 	error = xfs_dentry_mode_to_name(&nname, ndentry,
487 					d_inode(odentry)->i_mode);
488 	if (unlikely(error))
489 		return error;
490 
491 	return xfs_rename(idmap, XFS_I(odir), &oname,
492 			  XFS_I(d_inode(odentry)), XFS_I(ndir), &nname,
493 			  new_inode ? XFS_I(new_inode) : NULL, flags);
494 }
495 
496 /*
497  * careful here - this function can get called recursively, so
498  * we need to be very careful about how much stack we use.
499  * uio is kmalloced for this reason...
500  */
501 STATIC const char *
502 xfs_vn_get_link(
503 	struct dentry		*dentry,
504 	struct inode		*inode,
505 	struct delayed_call	*done)
506 {
507 	char			*link;
508 	int			error = -ENOMEM;
509 
510 	if (!dentry)
511 		return ERR_PTR(-ECHILD);
512 
513 	link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
514 	if (!link)
515 		goto out_err;
516 
517 	error = xfs_readlink(XFS_I(d_inode(dentry)), link);
518 	if (unlikely(error))
519 		goto out_kfree;
520 
521 	set_delayed_call(done, kfree_link, link);
522 	return link;
523 
524  out_kfree:
525 	kfree(link);
526  out_err:
527 	return ERR_PTR(error);
528 }
529 
530 static uint32_t
531 xfs_stat_blksize(
532 	struct xfs_inode	*ip)
533 {
534 	struct xfs_mount	*mp = ip->i_mount;
535 
536 	/*
537 	 * If the file blocks are being allocated from a realtime volume, then
538 	 * always return the realtime extent size.
539 	 */
540 	if (XFS_IS_REALTIME_INODE(ip))
541 		return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip) ? : 1);
542 
543 	/*
544 	 * Allow large block sizes to be reported to userspace programs if the
545 	 * "largeio" mount option is used.
546 	 *
547 	 * If compatibility mode is specified, simply return the basic unit of
548 	 * caching so that we don't get inefficient read/modify/write I/O from
549 	 * user apps. Otherwise....
550 	 *
551 	 * If the underlying volume is a stripe, then return the stripe width in
552 	 * bytes as the recommended I/O size. It is not a stripe and we've set a
553 	 * default buffered I/O size, return that, otherwise return the compat
554 	 * default.
555 	 */
556 	if (xfs_has_large_iosize(mp)) {
557 		if (mp->m_swidth)
558 			return XFS_FSB_TO_B(mp, mp->m_swidth);
559 		if (xfs_has_allocsize(mp))
560 			return 1U << mp->m_allocsize_log;
561 	}
562 
563 	return PAGE_SIZE;
564 }
565 
566 STATIC int
567 xfs_vn_getattr(
568 	struct mnt_idmap	*idmap,
569 	const struct path	*path,
570 	struct kstat		*stat,
571 	u32			request_mask,
572 	unsigned int		query_flags)
573 {
574 	struct inode		*inode = d_inode(path->dentry);
575 	struct xfs_inode	*ip = XFS_I(inode);
576 	struct xfs_mount	*mp = ip->i_mount;
577 	vfsuid_t		vfsuid = i_uid_into_vfsuid(idmap, inode);
578 	vfsgid_t		vfsgid = i_gid_into_vfsgid(idmap, inode);
579 
580 	trace_xfs_getattr(ip);
581 
582 	if (xfs_is_shutdown(mp))
583 		return -EIO;
584 
585 	stat->size = XFS_ISIZE(ip);
586 	stat->dev = inode->i_sb->s_dev;
587 	stat->mode = inode->i_mode;
588 	stat->nlink = inode->i_nlink;
589 	stat->uid = vfsuid_into_kuid(vfsuid);
590 	stat->gid = vfsgid_into_kgid(vfsgid);
591 	stat->ino = ip->i_ino;
592 	stat->atime = inode_get_atime(inode);
593 	stat->mtime = inode_get_mtime(inode);
594 	stat->ctime = inode_get_ctime(inode);
595 	stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks);
596 
597 	if (xfs_has_v3inodes(mp)) {
598 		if (request_mask & STATX_BTIME) {
599 			stat->result_mask |= STATX_BTIME;
600 			stat->btime = ip->i_crtime;
601 		}
602 	}
603 
604 	if ((request_mask & STATX_CHANGE_COOKIE) && IS_I_VERSION(inode)) {
605 		stat->change_cookie = inode_query_iversion(inode);
606 		stat->result_mask |= STATX_CHANGE_COOKIE;
607 	}
608 
609 	/*
610 	 * Note: If you add another clause to set an attribute flag, please
611 	 * update attributes_mask below.
612 	 */
613 	if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
614 		stat->attributes |= STATX_ATTR_IMMUTABLE;
615 	if (ip->i_diflags & XFS_DIFLAG_APPEND)
616 		stat->attributes |= STATX_ATTR_APPEND;
617 	if (ip->i_diflags & XFS_DIFLAG_NODUMP)
618 		stat->attributes |= STATX_ATTR_NODUMP;
619 
620 	stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
621 				  STATX_ATTR_APPEND |
622 				  STATX_ATTR_NODUMP);
623 
624 	switch (inode->i_mode & S_IFMT) {
625 	case S_IFBLK:
626 	case S_IFCHR:
627 		stat->blksize = BLKDEV_IOSIZE;
628 		stat->rdev = inode->i_rdev;
629 		break;
630 	case S_IFREG:
631 		if (request_mask & STATX_DIOALIGN) {
632 			struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
633 			struct block_device	*bdev = target->bt_bdev;
634 
635 			stat->result_mask |= STATX_DIOALIGN;
636 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
637 			stat->dio_offset_align = bdev_logical_block_size(bdev);
638 		}
639 		fallthrough;
640 	default:
641 		stat->blksize = xfs_stat_blksize(ip);
642 		stat->rdev = 0;
643 		break;
644 	}
645 
646 	return 0;
647 }
648 
649 static int
650 xfs_vn_change_ok(
651 	struct mnt_idmap	*idmap,
652 	struct dentry		*dentry,
653 	struct iattr		*iattr)
654 {
655 	struct xfs_mount	*mp = XFS_I(d_inode(dentry))->i_mount;
656 
657 	if (xfs_is_readonly(mp))
658 		return -EROFS;
659 
660 	if (xfs_is_shutdown(mp))
661 		return -EIO;
662 
663 	return setattr_prepare(idmap, dentry, iattr);
664 }
665 
666 /*
667  * Set non-size attributes of an inode.
668  *
669  * Caution: The caller of this function is responsible for calling
670  * setattr_prepare() or otherwise verifying the change is fine.
671  */
672 static int
673 xfs_setattr_nonsize(
674 	struct mnt_idmap	*idmap,
675 	struct dentry		*dentry,
676 	struct xfs_inode	*ip,
677 	struct iattr		*iattr)
678 {
679 	xfs_mount_t		*mp = ip->i_mount;
680 	struct inode		*inode = VFS_I(ip);
681 	int			mask = iattr->ia_valid;
682 	xfs_trans_t		*tp;
683 	int			error;
684 	kuid_t			uid = GLOBAL_ROOT_UID;
685 	kgid_t			gid = GLOBAL_ROOT_GID;
686 	struct xfs_dquot	*udqp = NULL, *gdqp = NULL;
687 	struct xfs_dquot	*old_udqp = NULL, *old_gdqp = NULL;
688 
689 	ASSERT((mask & ATTR_SIZE) == 0);
690 
691 	/*
692 	 * If disk quotas is on, we make sure that the dquots do exist on disk,
693 	 * before we start any other transactions. Trying to do this later
694 	 * is messy. We don't care to take a readlock to look at the ids
695 	 * in inode here, because we can't hold it across the trans_reserve.
696 	 * If the IDs do change before we take the ilock, we're covered
697 	 * because the i_*dquot fields will get updated anyway.
698 	 */
699 	if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
700 		uint	qflags = 0;
701 
702 		if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
703 			uid = from_vfsuid(idmap, i_user_ns(inode),
704 					  iattr->ia_vfsuid);
705 			qflags |= XFS_QMOPT_UQUOTA;
706 		} else {
707 			uid = inode->i_uid;
708 		}
709 		if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
710 			gid = from_vfsgid(idmap, i_user_ns(inode),
711 					  iattr->ia_vfsgid);
712 			qflags |= XFS_QMOPT_GQUOTA;
713 		}  else {
714 			gid = inode->i_gid;
715 		}
716 
717 		/*
718 		 * We take a reference when we initialize udqp and gdqp,
719 		 * so it is important that we never blindly double trip on
720 		 * the same variable. See xfs_create() for an example.
721 		 */
722 		ASSERT(udqp == NULL);
723 		ASSERT(gdqp == NULL);
724 		error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid,
725 					   qflags, &udqp, &gdqp, NULL);
726 		if (error)
727 			return error;
728 	}
729 
730 	error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL,
731 			has_capability_noaudit(current, CAP_FOWNER), &tp);
732 	if (error)
733 		goto out_dqrele;
734 
735 	/*
736 	 * Register quota modifications in the transaction.  Must be the owner
737 	 * or privileged.  These IDs could have changed since we last looked at
738 	 * them.  But, we're assured that if the ownership did change while we
739 	 * didn't have the inode locked, inode's dquot(s) would have changed
740 	 * also.
741 	 */
742 	if (XFS_IS_UQUOTA_ON(mp) &&
743 	    i_uid_needs_update(idmap, iattr, inode)) {
744 		ASSERT(udqp);
745 		old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp);
746 	}
747 	if (XFS_IS_GQUOTA_ON(mp) &&
748 	    i_gid_needs_update(idmap, iattr, inode)) {
749 		ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp));
750 		ASSERT(gdqp);
751 		old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp);
752 	}
753 
754 	setattr_copy(idmap, inode, iattr);
755 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
756 
757 	XFS_STATS_INC(mp, xs_ig_attrchg);
758 
759 	if (xfs_has_wsync(mp))
760 		xfs_trans_set_sync(tp);
761 	error = xfs_trans_commit(tp);
762 
763 	/*
764 	 * Release any dquot(s) the inode had kept before chown.
765 	 */
766 	xfs_qm_dqrele(old_udqp);
767 	xfs_qm_dqrele(old_gdqp);
768 	xfs_qm_dqrele(udqp);
769 	xfs_qm_dqrele(gdqp);
770 
771 	if (error)
772 		return error;
773 
774 	/*
775 	 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
776 	 * 	     update.  We could avoid this with linked transactions
777 	 * 	     and passing down the transaction pointer all the way
778 	 *	     to attr_set.  No previous user of the generic
779 	 * 	     Posix ACL code seems to care about this issue either.
780 	 */
781 	if (mask & ATTR_MODE) {
782 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
783 		if (error)
784 			return error;
785 	}
786 
787 	return 0;
788 
789 out_dqrele:
790 	xfs_qm_dqrele(udqp);
791 	xfs_qm_dqrele(gdqp);
792 	return error;
793 }
794 
795 /*
796  * Truncate file.  Must have write permission and not be a directory.
797  *
798  * Caution: The caller of this function is responsible for calling
799  * setattr_prepare() or otherwise verifying the change is fine.
800  */
801 STATIC int
802 xfs_setattr_size(
803 	struct mnt_idmap	*idmap,
804 	struct dentry		*dentry,
805 	struct xfs_inode	*ip,
806 	struct iattr		*iattr)
807 {
808 	struct xfs_mount	*mp = ip->i_mount;
809 	struct inode		*inode = VFS_I(ip);
810 	xfs_off_t		oldsize, newsize;
811 	struct xfs_trans	*tp;
812 	int			error;
813 	uint			lock_flags = 0;
814 	bool			did_zeroing = false;
815 
816 	xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
817 	ASSERT(S_ISREG(inode->i_mode));
818 	ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
819 		ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0);
820 
821 	oldsize = inode->i_size;
822 	newsize = iattr->ia_size;
823 
824 	/*
825 	 * Short circuit the truncate case for zero length files.
826 	 */
827 	if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) {
828 		if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
829 			return 0;
830 
831 		/*
832 		 * Use the regular setattr path to update the timestamps.
833 		 */
834 		iattr->ia_valid &= ~ATTR_SIZE;
835 		return xfs_setattr_nonsize(idmap, dentry, ip, iattr);
836 	}
837 
838 	/*
839 	 * Make sure that the dquots are attached to the inode.
840 	 */
841 	error = xfs_qm_dqattach(ip);
842 	if (error)
843 		return error;
844 
845 	/*
846 	 * Wait for all direct I/O to complete.
847 	 */
848 	inode_dio_wait(inode);
849 
850 	/*
851 	 * File data changes must be complete before we start the transaction to
852 	 * modify the inode.  This needs to be done before joining the inode to
853 	 * the transaction because the inode cannot be unlocked once it is a
854 	 * part of the transaction.
855 	 *
856 	 * Start with zeroing any data beyond EOF that we may expose on file
857 	 * extension, or zeroing out the rest of the block on a downward
858 	 * truncate.
859 	 */
860 	if (newsize > oldsize) {
861 		trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
862 		error = xfs_zero_range(ip, oldsize, newsize - oldsize,
863 				&did_zeroing);
864 	} else {
865 		/*
866 		 * iomap won't detect a dirty page over an unwritten block (or a
867 		 * cow block over a hole) and subsequently skips zeroing the
868 		 * newly post-EOF portion of the page. Flush the new EOF to
869 		 * convert the block before the pagecache truncate.
870 		 */
871 		error = filemap_write_and_wait_range(inode->i_mapping, newsize,
872 						     newsize);
873 		if (error)
874 			return error;
875 		error = xfs_truncate_page(ip, newsize, &did_zeroing);
876 	}
877 
878 	if (error)
879 		return error;
880 
881 	/*
882 	 * We've already locked out new page faults, so now we can safely remove
883 	 * pages from the page cache knowing they won't get refaulted until we
884 	 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
885 	 * complete. The truncate_setsize() call also cleans partial EOF page
886 	 * PTEs on extending truncates and hence ensures sub-page block size
887 	 * filesystems are correctly handled, too.
888 	 *
889 	 * We have to do all the page cache truncate work outside the
890 	 * transaction context as the "lock" order is page lock->log space
891 	 * reservation as defined by extent allocation in the writeback path.
892 	 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
893 	 * having already truncated the in-memory version of the file (i.e. made
894 	 * user visible changes). There's not much we can do about this, except
895 	 * to hope that the caller sees ENOMEM and retries the truncate
896 	 * operation.
897 	 *
898 	 * And we update in-core i_size and truncate page cache beyond newsize
899 	 * before writeback the [i_disk_size, newsize] range, so we're
900 	 * guaranteed not to write stale data past the new EOF on truncate down.
901 	 */
902 	truncate_setsize(inode, newsize);
903 
904 	/*
905 	 * We are going to log the inode size change in this transaction so
906 	 * any previous writes that are beyond the on disk EOF and the new
907 	 * EOF that have not been written out need to be written here.  If we
908 	 * do not write the data out, we expose ourselves to the null files
909 	 * problem. Note that this includes any block zeroing we did above;
910 	 * otherwise those blocks may not be zeroed after a crash.
911 	 */
912 	if (did_zeroing ||
913 	    (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) {
914 		error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
915 						ip->i_disk_size, newsize - 1);
916 		if (error)
917 			return error;
918 	}
919 
920 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
921 	if (error)
922 		return error;
923 
924 	lock_flags |= XFS_ILOCK_EXCL;
925 	xfs_ilock(ip, XFS_ILOCK_EXCL);
926 	xfs_trans_ijoin(tp, ip, 0);
927 
928 	/*
929 	 * Only change the c/mtime if we are changing the size or we are
930 	 * explicitly asked to change it.  This handles the semantic difference
931 	 * between truncate() and ftruncate() as implemented in the VFS.
932 	 *
933 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
934 	 * special case where we need to update the times despite not having
935 	 * these flags set.  For all other operations the VFS set these flags
936 	 * explicitly if it wants a timestamp update.
937 	 */
938 	if (newsize != oldsize &&
939 	    !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
940 		iattr->ia_ctime = iattr->ia_mtime =
941 			current_time(inode);
942 		iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
943 	}
944 
945 	/*
946 	 * The first thing we do is set the size to new_size permanently on
947 	 * disk.  This way we don't have to worry about anyone ever being able
948 	 * to look at the data being freed even in the face of a crash.
949 	 * What we're getting around here is the case where we free a block, it
950 	 * is allocated to another file, it is written to, and then we crash.
951 	 * If the new data gets written to the file but the log buffers
952 	 * containing the free and reallocation don't, then we'd end up with
953 	 * garbage in the blocks being freed.  As long as we make the new size
954 	 * permanent before actually freeing any blocks it doesn't matter if
955 	 * they get written to.
956 	 */
957 	ip->i_disk_size = newsize;
958 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
959 
960 	if (newsize <= oldsize) {
961 		error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
962 		if (error)
963 			goto out_trans_cancel;
964 
965 		/*
966 		 * Truncated "down", so we're removing references to old data
967 		 * here - if we delay flushing for a long time, we expose
968 		 * ourselves unduly to the notorious NULL files problem.  So,
969 		 * we mark this inode and flush it when the file is closed,
970 		 * and do not wait the usual (long) time for writeout.
971 		 */
972 		xfs_iflags_set(ip, XFS_ITRUNCATED);
973 
974 		/* A truncate down always removes post-EOF blocks. */
975 		xfs_inode_clear_eofblocks_tag(ip);
976 	}
977 
978 	ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID)));
979 	setattr_copy(idmap, inode, iattr);
980 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
981 
982 	XFS_STATS_INC(mp, xs_ig_attrchg);
983 
984 	if (xfs_has_wsync(mp))
985 		xfs_trans_set_sync(tp);
986 
987 	error = xfs_trans_commit(tp);
988 out_unlock:
989 	if (lock_flags)
990 		xfs_iunlock(ip, lock_flags);
991 	return error;
992 
993 out_trans_cancel:
994 	xfs_trans_cancel(tp);
995 	goto out_unlock;
996 }
997 
998 int
999 xfs_vn_setattr_size(
1000 	struct mnt_idmap	*idmap,
1001 	struct dentry		*dentry,
1002 	struct iattr		*iattr)
1003 {
1004 	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
1005 	int error;
1006 
1007 	trace_xfs_setattr(ip);
1008 
1009 	error = xfs_vn_change_ok(idmap, dentry, iattr);
1010 	if (error)
1011 		return error;
1012 	return xfs_setattr_size(idmap, dentry, ip, iattr);
1013 }
1014 
1015 STATIC int
1016 xfs_vn_setattr(
1017 	struct mnt_idmap	*idmap,
1018 	struct dentry		*dentry,
1019 	struct iattr		*iattr)
1020 {
1021 	struct inode		*inode = d_inode(dentry);
1022 	struct xfs_inode	*ip = XFS_I(inode);
1023 	int			error;
1024 
1025 	if (iattr->ia_valid & ATTR_SIZE) {
1026 		uint			iolock;
1027 
1028 		xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1029 		iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1030 
1031 		error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1032 		if (error) {
1033 			xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1034 			return error;
1035 		}
1036 
1037 		error = xfs_vn_setattr_size(idmap, dentry, iattr);
1038 		xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1039 	} else {
1040 		trace_xfs_setattr(ip);
1041 
1042 		error = xfs_vn_change_ok(idmap, dentry, iattr);
1043 		if (!error)
1044 			error = xfs_setattr_nonsize(idmap, dentry, ip, iattr);
1045 	}
1046 
1047 	return error;
1048 }
1049 
1050 STATIC int
1051 xfs_vn_update_time(
1052 	struct inode		*inode,
1053 	int			flags)
1054 {
1055 	struct xfs_inode	*ip = XFS_I(inode);
1056 	struct xfs_mount	*mp = ip->i_mount;
1057 	int			log_flags = XFS_ILOG_TIMESTAMP;
1058 	struct xfs_trans	*tp;
1059 	int			error;
1060 	struct timespec64	now;
1061 
1062 	trace_xfs_update_time(ip);
1063 
1064 	if (inode->i_sb->s_flags & SB_LAZYTIME) {
1065 		if (!((flags & S_VERSION) &&
1066 		      inode_maybe_inc_iversion(inode, false))) {
1067 			generic_update_time(inode, flags);
1068 			return 0;
1069 		}
1070 
1071 		/* Capture the iversion update that just occurred */
1072 		log_flags |= XFS_ILOG_CORE;
1073 	}
1074 
1075 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1076 	if (error)
1077 		return error;
1078 
1079 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1080 	if (flags & (S_CTIME|S_MTIME))
1081 		now = inode_set_ctime_current(inode);
1082 	else
1083 		now = current_time(inode);
1084 
1085 	if (flags & S_MTIME)
1086 		inode_set_mtime_to_ts(inode, now);
1087 	if (flags & S_ATIME)
1088 		inode_set_atime_to_ts(inode, now);
1089 
1090 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1091 	xfs_trans_log_inode(tp, ip, log_flags);
1092 	return xfs_trans_commit(tp);
1093 }
1094 
1095 STATIC int
1096 xfs_vn_fiemap(
1097 	struct inode		*inode,
1098 	struct fiemap_extent_info *fieinfo,
1099 	u64			start,
1100 	u64			length)
1101 {
1102 	int			error;
1103 
1104 	xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1105 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1106 		fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1107 		error = iomap_fiemap(inode, fieinfo, start, length,
1108 				&xfs_xattr_iomap_ops);
1109 	} else {
1110 		error = iomap_fiemap(inode, fieinfo, start, length,
1111 				&xfs_read_iomap_ops);
1112 	}
1113 	xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1114 
1115 	return error;
1116 }
1117 
1118 STATIC int
1119 xfs_vn_tmpfile(
1120 	struct mnt_idmap	*idmap,
1121 	struct inode		*dir,
1122 	struct file		*file,
1123 	umode_t			mode)
1124 {
1125 	int err = xfs_generic_create(idmap, dir, file->f_path.dentry, mode, 0, file);
1126 
1127 	return finish_open_simple(file, err);
1128 }
1129 
1130 static const struct inode_operations xfs_inode_operations = {
1131 	.get_inode_acl		= xfs_get_acl,
1132 	.set_acl		= xfs_set_acl,
1133 	.getattr		= xfs_vn_getattr,
1134 	.setattr		= xfs_vn_setattr,
1135 	.listxattr		= xfs_vn_listxattr,
1136 	.fiemap			= xfs_vn_fiemap,
1137 	.update_time		= xfs_vn_update_time,
1138 	.fileattr_get		= xfs_fileattr_get,
1139 	.fileattr_set		= xfs_fileattr_set,
1140 };
1141 
1142 static const struct inode_operations xfs_dir_inode_operations = {
1143 	.create			= xfs_vn_create,
1144 	.lookup			= xfs_vn_lookup,
1145 	.link			= xfs_vn_link,
1146 	.unlink			= xfs_vn_unlink,
1147 	.symlink		= xfs_vn_symlink,
1148 	.mkdir			= xfs_vn_mkdir,
1149 	/*
1150 	 * Yes, XFS uses the same method for rmdir and unlink.
1151 	 *
1152 	 * There are some subtile differences deeper in the code,
1153 	 * but we use S_ISDIR to check for those.
1154 	 */
1155 	.rmdir			= xfs_vn_unlink,
1156 	.mknod			= xfs_vn_mknod,
1157 	.rename			= xfs_vn_rename,
1158 	.get_inode_acl		= xfs_get_acl,
1159 	.set_acl		= xfs_set_acl,
1160 	.getattr		= xfs_vn_getattr,
1161 	.setattr		= xfs_vn_setattr,
1162 	.listxattr		= xfs_vn_listxattr,
1163 	.update_time		= xfs_vn_update_time,
1164 	.tmpfile		= xfs_vn_tmpfile,
1165 	.fileattr_get		= xfs_fileattr_get,
1166 	.fileattr_set		= xfs_fileattr_set,
1167 };
1168 
1169 static const struct inode_operations xfs_dir_ci_inode_operations = {
1170 	.create			= xfs_vn_create,
1171 	.lookup			= xfs_vn_ci_lookup,
1172 	.link			= xfs_vn_link,
1173 	.unlink			= xfs_vn_unlink,
1174 	.symlink		= xfs_vn_symlink,
1175 	.mkdir			= xfs_vn_mkdir,
1176 	/*
1177 	 * Yes, XFS uses the same method for rmdir and unlink.
1178 	 *
1179 	 * There are some subtile differences deeper in the code,
1180 	 * but we use S_ISDIR to check for those.
1181 	 */
1182 	.rmdir			= xfs_vn_unlink,
1183 	.mknod			= xfs_vn_mknod,
1184 	.rename			= xfs_vn_rename,
1185 	.get_inode_acl		= xfs_get_acl,
1186 	.set_acl		= xfs_set_acl,
1187 	.getattr		= xfs_vn_getattr,
1188 	.setattr		= xfs_vn_setattr,
1189 	.listxattr		= xfs_vn_listxattr,
1190 	.update_time		= xfs_vn_update_time,
1191 	.tmpfile		= xfs_vn_tmpfile,
1192 	.fileattr_get		= xfs_fileattr_get,
1193 	.fileattr_set		= xfs_fileattr_set,
1194 };
1195 
1196 static const struct inode_operations xfs_symlink_inode_operations = {
1197 	.get_link		= xfs_vn_get_link,
1198 	.getattr		= xfs_vn_getattr,
1199 	.setattr		= xfs_vn_setattr,
1200 	.listxattr		= xfs_vn_listxattr,
1201 	.update_time		= xfs_vn_update_time,
1202 };
1203 
1204 /* Figure out if this file actually supports DAX. */
1205 static bool
1206 xfs_inode_supports_dax(
1207 	struct xfs_inode	*ip)
1208 {
1209 	struct xfs_mount	*mp = ip->i_mount;
1210 
1211 	/* Only supported on regular files. */
1212 	if (!S_ISREG(VFS_I(ip)->i_mode))
1213 		return false;
1214 
1215 	/* Block size must match page size */
1216 	if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1217 		return false;
1218 
1219 	/* Device has to support DAX too. */
1220 	return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1221 }
1222 
1223 static bool
1224 xfs_inode_should_enable_dax(
1225 	struct xfs_inode *ip)
1226 {
1227 	if (!IS_ENABLED(CONFIG_FS_DAX))
1228 		return false;
1229 	if (xfs_has_dax_never(ip->i_mount))
1230 		return false;
1231 	if (!xfs_inode_supports_dax(ip))
1232 		return false;
1233 	if (xfs_has_dax_always(ip->i_mount))
1234 		return true;
1235 	if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
1236 		return true;
1237 	return false;
1238 }
1239 
1240 void
1241 xfs_diflags_to_iflags(
1242 	struct xfs_inode	*ip,
1243 	bool init)
1244 {
1245 	struct inode            *inode = VFS_I(ip);
1246 	unsigned int            xflags = xfs_ip2xflags(ip);
1247 	unsigned int            flags = 0;
1248 
1249 	ASSERT(!(IS_DAX(inode) && init));
1250 
1251 	if (xflags & FS_XFLAG_IMMUTABLE)
1252 		flags |= S_IMMUTABLE;
1253 	if (xflags & FS_XFLAG_APPEND)
1254 		flags |= S_APPEND;
1255 	if (xflags & FS_XFLAG_SYNC)
1256 		flags |= S_SYNC;
1257 	if (xflags & FS_XFLAG_NOATIME)
1258 		flags |= S_NOATIME;
1259 	if (init && xfs_inode_should_enable_dax(ip))
1260 		flags |= S_DAX;
1261 
1262 	/*
1263 	 * S_DAX can only be set during inode initialization and is never set by
1264 	 * the VFS, so we cannot mask off S_DAX in i_flags.
1265 	 */
1266 	inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME);
1267 	inode->i_flags |= flags;
1268 }
1269 
1270 /*
1271  * Initialize the Linux inode.
1272  *
1273  * When reading existing inodes from disk this is called directly from xfs_iget,
1274  * when creating a new inode it is called from xfs_init_new_inode after setting
1275  * up the inode. These callers have different criteria for clearing XFS_INEW, so
1276  * leave it up to the caller to deal with unlocking the inode appropriately.
1277  */
1278 void
1279 xfs_setup_inode(
1280 	struct xfs_inode	*ip)
1281 {
1282 	struct inode		*inode = &ip->i_vnode;
1283 	gfp_t			gfp_mask;
1284 
1285 	inode->i_ino = ip->i_ino;
1286 	inode->i_state |= I_NEW;
1287 
1288 	inode_sb_list_add(inode);
1289 	/* make the inode look hashed for the writeback code */
1290 	inode_fake_hash(inode);
1291 
1292 	i_size_write(inode, ip->i_disk_size);
1293 	xfs_diflags_to_iflags(ip, true);
1294 
1295 	if (S_ISDIR(inode->i_mode)) {
1296 		/*
1297 		 * We set the i_rwsem class here to avoid potential races with
1298 		 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1299 		 * after a filehandle lookup has already found the inode in
1300 		 * cache before it has been unlocked via unlock_new_inode().
1301 		 */
1302 		lockdep_set_class(&inode->i_rwsem,
1303 				  &inode->i_sb->s_type->i_mutex_dir_key);
1304 		lockdep_set_class(&ip->i_lock, &xfs_dir_ilock_class);
1305 	} else {
1306 		lockdep_set_class(&ip->i_lock, &xfs_nondir_ilock_class);
1307 	}
1308 
1309 	/*
1310 	 * Ensure all page cache allocations are done from GFP_NOFS context to
1311 	 * prevent direct reclaim recursion back into the filesystem and blowing
1312 	 * stacks or deadlocking.
1313 	 */
1314 	gfp_mask = mapping_gfp_mask(inode->i_mapping);
1315 	mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1316 
1317 	/*
1318 	 * For real-time inodes update the stable write flags to that of the RT
1319 	 * device instead of the data device.
1320 	 */
1321 	if (S_ISREG(inode->i_mode) && XFS_IS_REALTIME_INODE(ip))
1322 		xfs_update_stable_writes(ip);
1323 
1324 	/*
1325 	 * If there is no attribute fork no ACL can exist on this inode,
1326 	 * and it can't have any file capabilities attached to it either.
1327 	 */
1328 	if (!xfs_inode_has_attr_fork(ip)) {
1329 		inode_has_no_xattr(inode);
1330 		cache_no_acl(inode);
1331 	}
1332 }
1333 
1334 void
1335 xfs_setup_iops(
1336 	struct xfs_inode	*ip)
1337 {
1338 	struct inode		*inode = &ip->i_vnode;
1339 
1340 	switch (inode->i_mode & S_IFMT) {
1341 	case S_IFREG:
1342 		inode->i_op = &xfs_inode_operations;
1343 		inode->i_fop = &xfs_file_operations;
1344 		if (IS_DAX(inode))
1345 			inode->i_mapping->a_ops = &xfs_dax_aops;
1346 		else
1347 			inode->i_mapping->a_ops = &xfs_address_space_operations;
1348 		break;
1349 	case S_IFDIR:
1350 		if (xfs_has_asciici(XFS_M(inode->i_sb)))
1351 			inode->i_op = &xfs_dir_ci_inode_operations;
1352 		else
1353 			inode->i_op = &xfs_dir_inode_operations;
1354 		inode->i_fop = &xfs_dir_file_operations;
1355 		break;
1356 	case S_IFLNK:
1357 		inode->i_op = &xfs_symlink_inode_operations;
1358 		break;
1359 	default:
1360 		inode->i_op = &xfs_inode_operations;
1361 		init_special_inode(inode, inode->i_mode, inode->i_rdev);
1362 		break;
1363 	}
1364 }
1365